Quantitation of zolpidem in biological fluids by electro-driven microextraction combined with HPLC-UV analysis
- Yaripour, Saeid, Mohammadi, Ali, Esfanjani, Isa, Walker, Roderick B, Nojavan, Saeed
- Authors: Yaripour, Saeid , Mohammadi, Ali , Esfanjani, Isa , Walker, Roderick B , Nojavan, Saeed
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184723 , vital:44266 , xlink:href="http://dx.doi.org/10.17179/excli2018-1140"
- Description: In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability (%RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.
- Full Text:
- Date Issued: 2018
- Authors: Yaripour, Saeid , Mohammadi, Ali , Esfanjani, Isa , Walker, Roderick B , Nojavan, Saeed
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184723 , vital:44266 , xlink:href="http://dx.doi.org/10.17179/excli2018-1140"
- Description: In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability (%RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.
- Full Text:
- Date Issued: 2018
A comparative study of the effect of different stabilizers on the critical quality attributes of self-assembling nano co-crystals
- Witika, Bwalya A, Smith, Vincent J, Walker, Roderick B
- Authors: Witika, Bwalya A , Smith, Vincent J , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183224 , vital:43931 , xlink:href=" https://doi.org/10.3390/pharmaceutics12020182"
- Description: Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) less than 1000 nm, polydispersity index (PDI) less than 0.500 and Zeta potential (ZP) less than −30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Smith, Vincent J , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183224 , vital:43931 , xlink:href=" https://doi.org/10.3390/pharmaceutics12020182"
- Description: Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) less than 1000 nm, polydispersity index (PDI) less than 0.500 and Zeta potential (ZP) less than −30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.
- Full Text:
- Date Issued: 2020
Nano Co-Crystal Embedded Stimuli-Responsive Hydrogels: A Potential Approach to Treat HIV/AIDS
- Witika, Bwalya A, Stander, Jessé-Clint, Smith, Vincent J, Walker, Roderick B
- Authors: Witika, Bwalya A , Stander, Jessé-Clint , Smith, Vincent J , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183137 , vital:43915 , xlink:href="https://doi.org/10.3390/pharmaceutics13020127"
- Description: Currently, the human immunodeficiency virus (HIV) that causes acquired immunodeficiency syndrome (AIDS) can only be treated successfully, using combination antiretroviral (ARV) therapy. Lamivudine (3TC) and zidovudine (AZT), two compounds used for the treatment of HIV and prevention of disease progression to AIDS are used in such combinations. Successful therapy with 3TC and AZT requires frequent dosing that may lead to reduced adherence, resistance and consequently treatment failure. Improved toxicity profiles of 3TC and AZT were observed when combined as a nano co-crystal (NCC). The use of stimuli-responsive delivery systems provides an opportunity to overcome the challenge of frequent dosing, by controlling and/or sustaining delivery of drugs. Preliminary studies undertaken to identify a suitable composition for a stimulus-responsive in situ forming hydrogel carrier for 3TC-AZT NCC were conducted, and the gelation and erosion time were determined. A 25% w/w Pluronic® F-127 thermoresponsive hydrogel was identified as a suitable carrier as it exhibited a gelation time of 5 min and an erosion time of 7 days. NCC-loaded hydrogels were evaluated using in vitro dissolution and cytotoxicity assays. In vitro dissolution undertaken using membrane-less diffusion over 168 h revealed that 3TC and AZT release from NCC-loaded hydrogels was complete and followed zero-order kinetic processes, whereas those loaded with the micro co-crystal and physical mixture were incomplete and best described using the Korsmeyer–Peppas kinetic model. The release of AZT and 3TC from the physical mixture and MCC-loaded gel exhibited a value for n of 0.595 for AZT release from the physical mixture and 0.540 for the MCC technology, whereas the release exponent for 3TC was 0.513 for the physical mixture and 0.557 for the MCC technology indicating that diffusion and erosion controlled 3TC and AZT release. In vitro cytotoxicity assay data revealed that the addition of NCC to the thermoresponsive hydrogel resulted in an improved cell viability of 88.0% ± 5.0% when compared to the cell viability of the NCC of 76.9% ± 5.0%. The results suggest that the use of a thermoresponsive nanosuspension may have the potential to be delivered as an intramuscular injection that can subsequently increase bioavailability and permit dose reduction and/or permit use of a longer dosing frequency.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Stander, Jessé-Clint , Smith, Vincent J , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183137 , vital:43915 , xlink:href="https://doi.org/10.3390/pharmaceutics13020127"
- Description: Currently, the human immunodeficiency virus (HIV) that causes acquired immunodeficiency syndrome (AIDS) can only be treated successfully, using combination antiretroviral (ARV) therapy. Lamivudine (3TC) and zidovudine (AZT), two compounds used for the treatment of HIV and prevention of disease progression to AIDS are used in such combinations. Successful therapy with 3TC and AZT requires frequent dosing that may lead to reduced adherence, resistance and consequently treatment failure. Improved toxicity profiles of 3TC and AZT were observed when combined as a nano co-crystal (NCC). The use of stimuli-responsive delivery systems provides an opportunity to overcome the challenge of frequent dosing, by controlling and/or sustaining delivery of drugs. Preliminary studies undertaken to identify a suitable composition for a stimulus-responsive in situ forming hydrogel carrier for 3TC-AZT NCC were conducted, and the gelation and erosion time were determined. A 25% w/w Pluronic® F-127 thermoresponsive hydrogel was identified as a suitable carrier as it exhibited a gelation time of 5 min and an erosion time of 7 days. NCC-loaded hydrogels were evaluated using in vitro dissolution and cytotoxicity assays. In vitro dissolution undertaken using membrane-less diffusion over 168 h revealed that 3TC and AZT release from NCC-loaded hydrogels was complete and followed zero-order kinetic processes, whereas those loaded with the micro co-crystal and physical mixture were incomplete and best described using the Korsmeyer–Peppas kinetic model. The release of AZT and 3TC from the physical mixture and MCC-loaded gel exhibited a value for n of 0.595 for AZT release from the physical mixture and 0.540 for the MCC technology, whereas the release exponent for 3TC was 0.513 for the physical mixture and 0.557 for the MCC technology indicating that diffusion and erosion controlled 3TC and AZT release. In vitro cytotoxicity assay data revealed that the addition of NCC to the thermoresponsive hydrogel resulted in an improved cell viability of 88.0% ± 5.0% when compared to the cell viability of the NCC of 76.9% ± 5.0%. The results suggest that the use of a thermoresponsive nanosuspension may have the potential to be delivered as an intramuscular injection that can subsequently increase bioavailability and permit dose reduction and/or permit use of a longer dosing frequency.
- Full Text:
- Date Issued: 2021
Top-Down Synthesis of a Lamivudine-Zidovudine Nano Co-Crystal
- Witika, Bwalya A, Smith, Vincent J, Walker, Roderick B
- Authors: Witika, Bwalya A , Smith, Vincent J , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183172 , vital:43918 , xlink:href="https://doi.org/10.3390/cryst11010033"
- Description: Lamivudine (3TC) and zidovudine (AZT) are antiretroviral agents used to manage HIV/AIDS infection. A wet media milling top-down approach was used to develop and produce nano co-crystals of 3TC and AZT. Micro co-crystals were prepared by solvent evaporation and subsequently milled in the presence of two surfactants, viz., sodium lauryl sulfate (SLS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000). Optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) to establish and identify parameters that may affect the manufacturing of nano co-crystals. The impact of SLS and TPGS 1000 concentration, milling time, and number of units of milling medium on the manufacturing of nano co-crystals, was investigated. The critical quality attributes (CQA) monitored were particle size (PS), Zeta potential (ZP), and polydispersity index (PDI). Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, transmission electron microscopy, energy dispersive X-ray spectroscopy scanning electron microscopy, and cytotoxicity assays were used for additional characterization of the optimised nano co-crystal. The mean PS, PDI, and ZP of the optimised top-down nanocrystal were 271.0 ± 92.0 nm, 0.467 ± 0.073, and −41.9 ± 3.94 mV, respectively. In conclusion, a simple, inexpensive, rapid, and precise method of nano co-crystal manufacturing was developed, validated, and optimised using DoE and RSM, and the final product exhibited the target CQA.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Smith, Vincent J , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183172 , vital:43918 , xlink:href="https://doi.org/10.3390/cryst11010033"
- Description: Lamivudine (3TC) and zidovudine (AZT) are antiretroviral agents used to manage HIV/AIDS infection. A wet media milling top-down approach was used to develop and produce nano co-crystals of 3TC and AZT. Micro co-crystals were prepared by solvent evaporation and subsequently milled in the presence of two surfactants, viz., sodium lauryl sulfate (SLS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000). Optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) to establish and identify parameters that may affect the manufacturing of nano co-crystals. The impact of SLS and TPGS 1000 concentration, milling time, and number of units of milling medium on the manufacturing of nano co-crystals, was investigated. The critical quality attributes (CQA) monitored were particle size (PS), Zeta potential (ZP), and polydispersity index (PDI). Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, transmission electron microscopy, energy dispersive X-ray spectroscopy scanning electron microscopy, and cytotoxicity assays were used for additional characterization of the optimised nano co-crystal. The mean PS, PDI, and ZP of the optimised top-down nanocrystal were 271.0 ± 92.0 nm, 0.467 ± 0.073, and −41.9 ± 3.94 mV, respectively. In conclusion, a simple, inexpensive, rapid, and precise method of nano co-crystal manufacturing was developed, validated, and optimised using DoE and RSM, and the final product exhibited the target CQA.
- Full Text:
- Date Issued: 2021
Biocompatibility of biomaterials for nanoencapsulation: Current approaches
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Chabalenge, Billy, Mwila, Chiluba, Kalungia, Aubrey C, Nkanga, Christian I, Bapolisi, Alain M, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
Preformulation characterization and identification of excipients for nevirapine loaded niosomes
- Witika, Bwalya A, Walker, Roderick B
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183126 , vital:43914 , xlink:href="https://doi.org/10.1691/ph.2021.0137"
- Description: Nevirapine (NVP) is used for the management of HIV/AIDS but must be dosed frequently, exhibits unpredictable bioavailability and a side effect profile that includes hepato- and dermo-toxicity. Niosomes are a colloidal drug delivery system that may be used to overcome the low bioavailability, side effect profile and frequent dosing needed when using conventional drug delivery systems. The compatibility of NVP with sorbitan esters, polysorbate, cholesterol and dihexadecyl phosphate (DCP) was investigated using Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray Powder Diffraction (XRPD). Screening studies were undertaken to identify potential excipients that would produce niosomes with target critical quality attributes (CQA) viz, a particle size (PS) less than 1000 nm, a polydispersity index (PDI) less than 0.500 and an entrapment efficiency greater than 90%. The results revealed that sorbitan esters in combination with cholesterol and 5 μmol DCP produced niosomes with the best CQA and Zeta potential (ZP) less than -30 mV which suggests good stability of the niosomes on storage. Sorbitan esters produced the smallest niosomes of less than 400 nm diameter with a PDI less than 0.400 and an entrapment efficiency of more than 78% without cholesterol. The addition of cholesterol and DCP was essential to form niosomes with target CQA.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183126 , vital:43914 , xlink:href="https://doi.org/10.1691/ph.2021.0137"
- Description: Nevirapine (NVP) is used for the management of HIV/AIDS but must be dosed frequently, exhibits unpredictable bioavailability and a side effect profile that includes hepato- and dermo-toxicity. Niosomes are a colloidal drug delivery system that may be used to overcome the low bioavailability, side effect profile and frequent dosing needed when using conventional drug delivery systems. The compatibility of NVP with sorbitan esters, polysorbate, cholesterol and dihexadecyl phosphate (DCP) was investigated using Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray Powder Diffraction (XRPD). Screening studies were undertaken to identify potential excipients that would produce niosomes with target critical quality attributes (CQA) viz, a particle size (PS) less than 1000 nm, a polydispersity index (PDI) less than 0.500 and an entrapment efficiency greater than 90%. The results revealed that sorbitan esters in combination with cholesterol and 5 μmol DCP produced niosomes with the best CQA and Zeta potential (ZP) less than -30 mV which suggests good stability of the niosomes on storage. Sorbitan esters produced the smallest niosomes of less than 400 nm diameter with a PDI less than 0.400 and an entrapment efficiency of more than 78% without cholesterol. The addition of cholesterol and DCP was essential to form niosomes with target CQA.
- Full Text:
- Date Issued: 2021
Development, manufacture and characterization of niosomes for the delivery for nevirapine
- Witika, Bwalya A, Walker, Roderick B
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183514 , vital:44002 , xlink:href="https://doi.org/10.1691/ph.2019.8168"
- Description: Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.
- Full Text:
- Date Issued: 2019
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183514 , vital:44002 , xlink:href="https://doi.org/10.1691/ph.2019.8168"
- Description: Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.
- Full Text:
- Date Issued: 2019
Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Mweetwa, Larry L, Shandele, Ginnethon C, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Mweetwa, Larry L , Shandele, Ginnethon C , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183161 , vital:43917 , xlink:href="https://doi.org/10.3390/molecules26144244"
- Description: There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Mweetwa, Larry L , Shandele, Ginnethon C , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183161 , vital:43917 , xlink:href="https://doi.org/10.3390/molecules26144244"
- Description: There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
- Full Text:
- Date Issued: 2021
Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment
- Witika, Bwalya A, Makoni, Pedzisai A, Mweetwa, Larry L, Ntemi, Pascal V, Chikukwa, Mellisa T R, Matafwali, Scott K, Mwila, Chiluba, Mudenda, Steward, Katandula, Jonathan, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
In vitro release of amoxycillin from lipophilic suppositories
- Webster, Jessica A, Dowse, Roslind, Walker, Roderick B
- Authors: Webster, Jessica A , Dowse, Roslind , Walker, Roderick B
- Date: 1998
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184377 , vital:44213 , xlink:href="https://doi.org/10.3109/03639049809085636"
- Description: The in vitro release characteristics of amoxycillin from different lipophilic suppository bases were investigated using the USP rotating basket method. Suppositories containing 250 mg amoxycillin were prepared in theobroma oil and in the semisynthetic bases Witepsol W35, Suppocire A32, Novata BD, and Novata 299. Both freshly prepared and 1-month-old suppositories were tested. Analysis of amoxycillin was performed using a validated high-performance liquid chromatographic (HPLC) technique. Release profiles differed significantly between bases, with the greatest amount of amoxycillin being released from both newly made and 1-month-old Novata BD bases (87.57 ± 8.18 and 99.66 ± 6.63%, respectively), and the lowest amount released from the newly manufactured theobroma suppositories (8.82 ± 0.75%) and the 1-month-old Suppocire A32 suppositories (7.78 ± 0.27%).
- Full Text:
- Date Issued: 1998
- Authors: Webster, Jessica A , Dowse, Roslind , Walker, Roderick B
- Date: 1998
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184377 , vital:44213 , xlink:href="https://doi.org/10.3109/03639049809085636"
- Description: The in vitro release characteristics of amoxycillin from different lipophilic suppository bases were investigated using the USP rotating basket method. Suppositories containing 250 mg amoxycillin were prepared in theobroma oil and in the semisynthetic bases Witepsol W35, Suppocire A32, Novata BD, and Novata 299. Both freshly prepared and 1-month-old suppositories were tested. Analysis of amoxycillin was performed using a validated high-performance liquid chromatographic (HPLC) technique. Release profiles differed significantly between bases, with the greatest amount of amoxycillin being released from both newly made and 1-month-old Novata BD bases (87.57 ± 8.18 and 99.66 ± 6.63%, respectively), and the lowest amount released from the newly manufactured theobroma suppositories (8.82 ± 0.75%) and the 1-month-old Suppocire A32 suppositories (7.78 ± 0.27%).
- Full Text:
- Date Issued: 1998
Suppositories: An underutilized dosage form
- Webster, Jessica A, Dowse, Roslind, Walker, Roderick B
- Authors: Webster, Jessica A , Dowse, Roslind , Walker, Roderick B
- Date: 1996
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184697 , vital:44264 , xlink:href="https://hdl.handle.net/10520/AJA16836707_911"
- Description: The rectal route is useful for the delivery of both local acting and systemic drugs. In certain cases suppositories are the best form of therapy, or else they are an effective alternative when oral therapy is not possible. However; doctors rarely prescribe them and patients are often reluctant to use them. Understanding how suppositories work, and their numerous uses, can overcome the aversion to this particular dosage form. Pharmacists are in an ideal position to educate doctors, other health care providers, and patients, on the benefits of using suppositories and their correct use, and to offer advice on any problems associated with their use.
- Full Text:
- Date Issued: 1996
- Authors: Webster, Jessica A , Dowse, Roslind , Walker, Roderick B
- Date: 1996
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184697 , vital:44264 , xlink:href="https://hdl.handle.net/10520/AJA16836707_911"
- Description: The rectal route is useful for the delivery of both local acting and systemic drugs. In certain cases suppositories are the best form of therapy, or else they are an effective alternative when oral therapy is not possible. However; doctors rarely prescribe them and patients are often reluctant to use them. Understanding how suppositories work, and their numerous uses, can overcome the aversion to this particular dosage form. Pharmacists are in an ideal position to educate doctors, other health care providers, and patients, on the benefits of using suppositories and their correct use, and to offer advice on any problems associated with their use.
- Full Text:
- Date Issued: 1996
Bioequivalence assessment of generic products an innovative South African approach
- Walker, Roderick B, Kanfer, Isadore, Skinner, Michael F
- Authors: Walker, Roderick B , Kanfer, Isadore , Skinner, Michael F
- Date: 2006
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184256 , vital:44194 , xlink:href="https://doi.org/10.1080/10601330500534014"
- Description: Concurrent with the implementation of new legislation mandating Generic Substitution in South Africa, a new set of guidelines for bioavailability and bioequivalence have been published. Since one of the main objectives of the new legislation in South Africa relating to Generic Substitution is to ensure that medicines of high quality, safety, and efficacy are made more accessible and more affordable to the wider public, the need to speed up approval of such multi-source products has become a regulatory priority. In order to facilitate this process, various bioequivalence issues have been addressed including important issues such as the acceptance criteria and associated bioequivalence intervals, use of a foreign reference product and the issue of assessing highly variable drugs (HVDs). In addition, dispensations have been made with respect to food effect assessment and variability relating to genetic polymorphism in drug metabolism (genotyping/phenotyping). Furthermore, the use of “old” biostudies submitted in support of an application is subject to expiry date. Acceptance of appropriate data requires that specific criteria such as Cmax and AUC, in addition to the usual considerations, also meet the limits specified by the particular registration authority of the country where such products are intended to be marketed. Generally, these limits require that the 90% confidence interval (CI) for AUC and Cmax test/reference ratios lies within the acceptance interval of 0.80–1.25 calculated using log-transformed data. While such acceptance criteria are, in general, ubiquitous, some differences in acceptance criteria do exist between various countries. The new guidelines for bioavailability/bioequivalence studies developed by the South African regulatory authority, the Medicines Control Council (MCC), makes provision for highly variable drugs and the use of a non-South African reference product. The MCC requires that the acceptance criterion for Cmax ratios be set at 0.75–1.33 while maintaining AUC ratios at 0.80–1.25 using a 90% CI. Furthermore, provision is made to apply scaling based on average bioequivalence assessment and, as an interim measure, consideration has also been given to the use of a foreign reference product provided that equivalence between that product and the innovator product currently available on the South African market can be shown using in vitro testing.
- Full Text:
- Date Issued: 2006
- Authors: Walker, Roderick B , Kanfer, Isadore , Skinner, Michael F
- Date: 2006
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184256 , vital:44194 , xlink:href="https://doi.org/10.1080/10601330500534014"
- Description: Concurrent with the implementation of new legislation mandating Generic Substitution in South Africa, a new set of guidelines for bioavailability and bioequivalence have been published. Since one of the main objectives of the new legislation in South Africa relating to Generic Substitution is to ensure that medicines of high quality, safety, and efficacy are made more accessible and more affordable to the wider public, the need to speed up approval of such multi-source products has become a regulatory priority. In order to facilitate this process, various bioequivalence issues have been addressed including important issues such as the acceptance criteria and associated bioequivalence intervals, use of a foreign reference product and the issue of assessing highly variable drugs (HVDs). In addition, dispensations have been made with respect to food effect assessment and variability relating to genetic polymorphism in drug metabolism (genotyping/phenotyping). Furthermore, the use of “old” biostudies submitted in support of an application is subject to expiry date. Acceptance of appropriate data requires that specific criteria such as Cmax and AUC, in addition to the usual considerations, also meet the limits specified by the particular registration authority of the country where such products are intended to be marketed. Generally, these limits require that the 90% confidence interval (CI) for AUC and Cmax test/reference ratios lies within the acceptance interval of 0.80–1.25 calculated using log-transformed data. While such acceptance criteria are, in general, ubiquitous, some differences in acceptance criteria do exist between various countries. The new guidelines for bioavailability/bioequivalence studies developed by the South African regulatory authority, the Medicines Control Council (MCC), makes provision for highly variable drugs and the use of a non-South African reference product. The MCC requires that the acceptance criterion for Cmax ratios be set at 0.75–1.33 while maintaining AUC ratios at 0.80–1.25 using a 90% CI. Furthermore, provision is made to apply scaling based on average bioequivalence assessment and, as an interim measure, consideration has also been given to the use of a foreign reference product provided that equivalence between that product and the innovator product currently available on the South African market can be shown using in vitro testing.
- Full Text:
- Date Issued: 2006
Spotlight on research: 50 years of Pharmaceutical Sciences Research Excellence Faculty of Pharmacy Rhodes University
- Authors: Walker, Roderick B
- Date: 2006
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184243 , vital:44193 , xlink:href="https://hdl.handle.net/10520/EJC81478"
- Description: This year, the Faculty of Pharmacy at Rhodes University is celebrating its 50th Anniversary. Over 2000 BPharm, 33 BSc honours, 65 MSc and 27 PhD degrees have been conferred since the Faculty’s inception. The diverse research activities and dedicated academic staff have ensured that the Faculty of Pharmacy has high visibility with respect to research outputs, as is evidenced by the appointment of various members of staff to national and international research, regulatory and professional committees, as well as to serving on the editorial boards of a number of international journals. In addition, staff regularly publish in international and local peer-reviewed journals and present their research findings at international and local conferences.
- Full Text:
- Date Issued: 2006
- Authors: Walker, Roderick B
- Date: 2006
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184243 , vital:44193 , xlink:href="https://hdl.handle.net/10520/EJC81478"
- Description: This year, the Faculty of Pharmacy at Rhodes University is celebrating its 50th Anniversary. Over 2000 BPharm, 33 BSc honours, 65 MSc and 27 PhD degrees have been conferred since the Faculty’s inception. The diverse research activities and dedicated academic staff have ensured that the Faculty of Pharmacy has high visibility with respect to research outputs, as is evidenced by the appointment of various members of staff to national and international research, regulatory and professional committees, as well as to serving on the editorial boards of a number of international journals. In addition, staff regularly publish in international and local peer-reviewed journals and present their research findings at international and local conferences.
- Full Text:
- Date Issued: 2006
Academy of Pharmaceutical Sciences
- Authors: Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184768 , vital:44270 , xlink:href="https://hdl.handle.net/10520/EJC-98c37d47c"
- Description: It is an honour and a pleasure to report on the activities of the Academy of Pharmaceutical Sciences since the PSSA AGM in 2016. The Academy of Pharmaceutical Sciences of the Pharmaceutical Society of South Africa (APSSA) held their 37th Annual Conference and 38th Annual General Meeting at the All African Congress on Pharmacology and Pharmacy. The conference was jointly organised by the Academy of Pharmaceutical Sciences of South Africa (APSSA), the South African Society for Basic and Clinical Pharmacology (SASBCP) on behalf of Pharmacology for Africa (Pharfa) and the Toxicology Society of South Africa (ToxSA). The annual APSSA conference was hosted by the Department of Pharmaceutical Sciences, Tshwane University of Technology under the leadership of Dr Ilze Vermaak and was held from 5-8 October 2016 at Misty Hills Conference Centre, situated close to the Cradle of Humankind.
- Full Text:
- Date Issued: 2017
- Authors: Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184768 , vital:44270 , xlink:href="https://hdl.handle.net/10520/EJC-98c37d47c"
- Description: It is an honour and a pleasure to report on the activities of the Academy of Pharmaceutical Sciences since the PSSA AGM in 2016. The Academy of Pharmaceutical Sciences of the Pharmaceutical Society of South Africa (APSSA) held their 37th Annual Conference and 38th Annual General Meeting at the All African Congress on Pharmacology and Pharmacy. The conference was jointly organised by the Academy of Pharmaceutical Sciences of South Africa (APSSA), the South African Society for Basic and Clinical Pharmacology (SASBCP) on behalf of Pharmacology for Africa (Pharfa) and the Toxicology Society of South Africa (ToxSA). The annual APSSA conference was hosted by the Department of Pharmaceutical Sciences, Tshwane University of Technology under the leadership of Dr Ilze Vermaak and was held from 5-8 October 2016 at Misty Hills Conference Centre, situated close to the Cradle of Humankind.
- Full Text:
- Date Issued: 2017
Formulation development and in vitro evaluation of didanosine-loaded nanostructured lipid carriers for the potential treatment of AIDS dementia complex
- Wa Kasongo, Kasongo, Shegokar, Ranjita, Müller, Rainer H, Walker, Roderick B
- Authors: Wa Kasongo, Kasongo , Shegokar, Ranjita , Müller, Rainer H , Walker, Roderick B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184210 , vital:44190 , xlink:href="https://doi.org/10.3109/03639045.2010.516264"
- Description: The purpose of this article was to investigate the feasibility of incorporating didanosine (DDI) into nanostructured lipid carriers (NLC) for potential treatment of AIDS dementia complex. Aqueous DDI-free and DDI-loaded NLC were manufactured using hot high-pressure homogenization. The lipid matrix contained a mixture of Precirol ® ATO 5 and Transcutol ® HP. Photon correlation spectroscopy revealed that the mean particle size for all formulations was below 250 nm with narrow polydispersity indices. In addition, the d99% values for all formulations determined using laser diffractometry were below 400 nm with the span values ranging from 0.84 to 1.0. The zeta potential values ranged from −18.4 to −11.4 mV and the encapsulation efficiency of NLC for DDI ranged from 33.02% to 78.34%. These parameters remained relatively constant for all formulations tested following storage for 2 months at 25°C indicating that all the formulations were relatively stable. Differential scanning calorimetry revealed a decrease in the degree of crystallinity of NLC in all formulations developed relative to the bulk lipid material. In addition, wide-angle X-ray scattering showed that NLC in all formulations tested existed in a single β-modification form and that DDI that had been incorporated into the NLC appeared to be molecularly dispersed in the lipid matrices. Images of the NLC formulations obtained using transmission electron microscopy revealed that all formulations contained a mixture of spherical and nonspherical particles irrespective of the amount of DDI that was added during the manufacture of the formulations.
- Full Text:
- Date Issued: 2011
- Authors: Wa Kasongo, Kasongo , Shegokar, Ranjita , Müller, Rainer H , Walker, Roderick B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184210 , vital:44190 , xlink:href="https://doi.org/10.3109/03639045.2010.516264"
- Description: The purpose of this article was to investigate the feasibility of incorporating didanosine (DDI) into nanostructured lipid carriers (NLC) for potential treatment of AIDS dementia complex. Aqueous DDI-free and DDI-loaded NLC were manufactured using hot high-pressure homogenization. The lipid matrix contained a mixture of Precirol ® ATO 5 and Transcutol ® HP. Photon correlation spectroscopy revealed that the mean particle size for all formulations was below 250 nm with narrow polydispersity indices. In addition, the d99% values for all formulations determined using laser diffractometry were below 400 nm with the span values ranging from 0.84 to 1.0. The zeta potential values ranged from −18.4 to −11.4 mV and the encapsulation efficiency of NLC for DDI ranged from 33.02% to 78.34%. These parameters remained relatively constant for all formulations tested following storage for 2 months at 25°C indicating that all the formulations were relatively stable. Differential scanning calorimetry revealed a decrease in the degree of crystallinity of NLC in all formulations developed relative to the bulk lipid material. In addition, wide-angle X-ray scattering showed that NLC in all formulations tested existed in a single β-modification form and that DDI that had been incorporated into the NLC appeared to be molecularly dispersed in the lipid matrices. Images of the NLC formulations obtained using transmission electron microscopy revealed that all formulations contained a mixture of spherical and nonspherical particles irrespective of the amount of DDI that was added during the manufacture of the formulations.
- Full Text:
- Date Issued: 2011
Development and Validation of a Stability-indicating RP-HPLC Method Using Quality by Design for Estimating Captopril
- Veerubhotla, Krishna, Walker, Roderick B
- Authors: Veerubhotla, Krishna , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183525 , vital:44003 , xlink:href="10.4172/pharmaceutical-sciences.1000478"
- Description: The applicability of a quality by design framework for the development of a sensitive, simple and selective, stability-indicating reversed-phase high-performance liquid chromatography analytical method for the analysis of captopril was investigated. Design of experiments using a central composite design approach was used for method development. Twenty experimental runs were performed with acetonitrile content ranging between 28 and 36 % v/v, pH from 2.8 to 3.6 and temperature between 22° and 32°. The experimental data obtained was used to derive a quadratic model for the retention time of captopril. The optimized method produced sharp peaks with good resolution (>2) for captopril and the internal standard with retention times of 3.1 and 6.2 min, respectively. The experimental data revealed that acetonitrile content in the mobile phase and pH are significant factors that affect the retention time and resolution of captopril. Normal probability plots revealed that the residual and predicted data fall approximately on a straight line, indicating that the experimental error for these studies was evenly distributed suggesting that the model could be used to navigate the design space. This approach is useful to expedite method development and optimization activities in analytical laboratories.
- Full Text:
- Date Issued: 2019
- Authors: Veerubhotla, Krishna , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183525 , vital:44003 , xlink:href="10.4172/pharmaceutical-sciences.1000478"
- Description: The applicability of a quality by design framework for the development of a sensitive, simple and selective, stability-indicating reversed-phase high-performance liquid chromatography analytical method for the analysis of captopril was investigated. Design of experiments using a central composite design approach was used for method development. Twenty experimental runs were performed with acetonitrile content ranging between 28 and 36 % v/v, pH from 2.8 to 3.6 and temperature between 22° and 32°. The experimental data obtained was used to derive a quadratic model for the retention time of captopril. The optimized method produced sharp peaks with good resolution (>2) for captopril and the internal standard with retention times of 3.1 and 6.2 min, respectively. The experimental data revealed that acetonitrile content in the mobile phase and pH are significant factors that affect the retention time and resolution of captopril. Normal probability plots revealed that the residual and predicted data fall approximately on a straight line, indicating that the experimental error for these studies was evenly distributed suggesting that the model could be used to navigate the design space. This approach is useful to expedite method development and optimization activities in analytical laboratories.
- Full Text:
- Date Issued: 2019
An assessment of the efficacy of two lysine microencapsulation techniques to determine the quantitative lysine requirement of the South African abalone, Haliotis midae L
- Shipton, Thomas A, Britz, Peter J, Walker, Roderick B
- Authors: Shipton, Thomas A , Britz, Peter J , Walker, Roderick B
- Date: 2002
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184289 , vital:44197 , xlink:href="https://doi.org/10.1046/j.1365-2095.2002.00204.x"
- Description: The quantification of the essential amino acid requirements of a species is a prerequisite to the formulation of biologically optimized diets. In this study, crystalline L-lysine was used in an attempt to determine the quantitative lysine requirement of juvenile Haliotis midae. Two microencapsulation techniques [gelatine/acacia and cellulose acetate phthalate (CAP)] were used to retard leaching of crystalline L-lysine incorporated into semipurified test diets. An assessment of the efficacy of the encapsulation techniques, revealed that despite effective lysine supplementation, H. midae fed semipurified test diets containing encapsulated crystalline L-lysine failed to promote significant improvements in either growth, feed or protein efficiency (P > 0.05). The failure of the crystalline L-lysine to illicit growth and nutritional responses is discussed.
- Full Text:
- Date Issued: 2002
- Authors: Shipton, Thomas A , Britz, Peter J , Walker, Roderick B
- Date: 2002
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184289 , vital:44197 , xlink:href="https://doi.org/10.1046/j.1365-2095.2002.00204.x"
- Description: The quantification of the essential amino acid requirements of a species is a prerequisite to the formulation of biologically optimized diets. In this study, crystalline L-lysine was used in an attempt to determine the quantitative lysine requirement of juvenile Haliotis midae. Two microencapsulation techniques [gelatine/acacia and cellulose acetate phthalate (CAP)] were used to retard leaching of crystalline L-lysine incorporated into semipurified test diets. An assessment of the efficacy of the encapsulation techniques, revealed that despite effective lysine supplementation, H. midae fed semipurified test diets containing encapsulated crystalline L-lysine failed to promote significant improvements in either growth, feed or protein efficiency (P > 0.05). The failure of the crystalline L-lysine to illicit growth and nutritional responses is discussed.
- Full Text:
- Date Issued: 2002
Encapsulation and physicochemical evaluation of efavirenz in liposomes
- Okafor, Nnamdi Ikemefuna, Nkanga, Christian I, Walker, Roderick B, Noundou, Xavier S, Krause, Rui W M
- Authors: Okafor, Nnamdi Ikemefuna , Nkanga, Christian I , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183414 , vital:43988 , xlink:href="https://doi.org/10.1007/s40005-019-00458-8"
- Description: Antiretroviral therapy remains the most efective means of managing the human immune defciency virus/acquired immune defciency syndrome (HIV/AIDS). Application of therapeutics has been hampered by factors including poor bioavailability of most anti-retroviral compounds (ARV), side efects and an alarming emergence of drug resistant strains of the virus. Recent developments and use of drug delivery systems (DDS) has shown potential for improving the pharmacological profle of ARV. Amongst these complex DDS, liposomes have been explored for delivery of ARV. In this study, we have aimed at exploring efcient encapsulation of efavirenz (EFV), a potent ARV using diferent mass ratios of crude soybean lecithin and cholesterol. The EFV-loaded liposomes (EFL) were prepared using thin flm hydration and evaluated for particle size, zeta potential (ZP), encapsulation efciency (EE%), morphology and drug release studies. Diferential scanning calorimetry (DSC), X-ray difraction (XRD), energy dispersity spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were used for comprehensive physicochemical characterization of EFL. EFL exhibited high encapsulation (99%) in 1:1 crude lecithin to cholesterol mass ratio. The average particle size and Zeta Potential of EFL were found to be 411.10±7.40 nm and −53.5.3±0.06 mV, respectively. EFL showed a relatively controlled EFV release behaviour that was similar to the dissolution profle of un-encapsulated EFV. This suggests that EFL represents a promising vehicle for efective EFV delivery while providing the advantages of a nano-scaled delivery system
- Full Text:
- Date Issued: 2020
- Authors: Okafor, Nnamdi Ikemefuna , Nkanga, Christian I , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183414 , vital:43988 , xlink:href="https://doi.org/10.1007/s40005-019-00458-8"
- Description: Antiretroviral therapy remains the most efective means of managing the human immune defciency virus/acquired immune defciency syndrome (HIV/AIDS). Application of therapeutics has been hampered by factors including poor bioavailability of most anti-retroviral compounds (ARV), side efects and an alarming emergence of drug resistant strains of the virus. Recent developments and use of drug delivery systems (DDS) has shown potential for improving the pharmacological profle of ARV. Amongst these complex DDS, liposomes have been explored for delivery of ARV. In this study, we have aimed at exploring efcient encapsulation of efavirenz (EFV), a potent ARV using diferent mass ratios of crude soybean lecithin and cholesterol. The EFV-loaded liposomes (EFL) were prepared using thin flm hydration and evaluated for particle size, zeta potential (ZP), encapsulation efciency (EE%), morphology and drug release studies. Diferential scanning calorimetry (DSC), X-ray difraction (XRD), energy dispersity spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were used for comprehensive physicochemical characterization of EFL. EFL exhibited high encapsulation (99%) in 1:1 crude lecithin to cholesterol mass ratio. The average particle size and Zeta Potential of EFL were found to be 411.10±7.40 nm and −53.5.3±0.06 mV, respectively. EFL showed a relatively controlled EFV release behaviour that was similar to the dissolution profle of un-encapsulated EFV. This suggests that EFL represents a promising vehicle for efective EFV delivery while providing the advantages of a nano-scaled delivery system
- Full Text:
- Date Issued: 2020
Design, evaluation and optimization of taste masked clarithromycin powder
- Ntemi, Pascal V, Walker, Roderick B, Khamanga, Sandile M
- Authors: Ntemi, Pascal V , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183503 , vital:44001 , xlink:href="https://doi.org/10.1691/ph.2019.8116"
- Description: Clarithromycin (CLA) is an extremely bitter macrolide antibiotic used to treat paediatric and adult infections. The bitter taste affects patient adherence and may compromise therapy. This research developed a taste masked CLA resinate using Indion® 234, a weak acidic cation exchange resin. The factors affecting formation of the CLA-resin complex were assessed. Design of experiments was used to optimize response while evaluating input variables such as temperature, CLA-resin ratio,stirring time and pH. CLA loading efficiency was determined spectrophotometrically and CLA release using USP Apparatus II. Differential Scanning Calorimetry (DSC), Scanning Electron Microscop (SEM), Fourier Transform Infrared (FT-IR) Spectroscopy and X-ray Diffraction (XRD) were used to confirm complex formation. A spectrophotometric method was used to assess taste evaluation. The optimum CLA-resin ratio, temperature, and stirring time were 1:4, 80 °C, 3 hours, respectively, at pH 8. Characterization techniques revealed that CLA was crystalline and the complex amorphous in nature. FT-IR spectra of resinate revealed the absence of resonance due to the tertiary amine functional group that is responsible for the bitter taste of CLA. CLA was stable in simulated salivary fluid and was released within 3 hours in gastric fluid. All CLAresin batches revealed complete taste masking. Taste analysis highlighted the improvement of taste masking properties of the resinate as the CLA to resin ratio, increased.
- Full Text:
- Date Issued: 2019
- Authors: Ntemi, Pascal V , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183503 , vital:44001 , xlink:href="https://doi.org/10.1691/ph.2019.8116"
- Description: Clarithromycin (CLA) is an extremely bitter macrolide antibiotic used to treat paediatric and adult infections. The bitter taste affects patient adherence and may compromise therapy. This research developed a taste masked CLA resinate using Indion® 234, a weak acidic cation exchange resin. The factors affecting formation of the CLA-resin complex were assessed. Design of experiments was used to optimize response while evaluating input variables such as temperature, CLA-resin ratio,stirring time and pH. CLA loading efficiency was determined spectrophotometrically and CLA release using USP Apparatus II. Differential Scanning Calorimetry (DSC), Scanning Electron Microscop (SEM), Fourier Transform Infrared (FT-IR) Spectroscopy and X-ray Diffraction (XRD) were used to confirm complex formation. A spectrophotometric method was used to assess taste evaluation. The optimum CLA-resin ratio, temperature, and stirring time were 1:4, 80 °C, 3 hours, respectively, at pH 8. Characterization techniques revealed that CLA was crystalline and the complex amorphous in nature. FT-IR spectra of resinate revealed the absence of resonance due to the tertiary amine functional group that is responsible for the bitter taste of CLA. CLA was stable in simulated salivary fluid and was released within 3 hours in gastric fluid. All CLAresin batches revealed complete taste masking. Taste analysis highlighted the improvement of taste masking properties of the resinate as the CLA to resin ratio, increased.
- Full Text:
- Date Issued: 2019
Co-encapsulation of rifampicin and isoniazid in crude soybean lecithin liposomes
- Nkanga, Christian I, Noundou, Xavier S, Walker, Roderick B, Krause, Rui W M
- Authors: Nkanga, Christian I , Noundou, Xavier S , Walker, Roderick B , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183536 , vital:44005 , xlink:href="https://doi.org/10.17159/0379-4350/2019/v72a11"
- Description: Despite the well-known anti-mycobacterial actions of isoniazid (INH) and rifampicin (RIF), the clinical success of tuberculosis (TB) therapy requires prolonged administration of multiple drugs in high doses, which often result in frequent adverse effects and low patient adherence. Although liposomes are promising candidates for controlled delivery of anti-TB drug, the high cost of synthetic and highly purified natural lipids currently used in liposomal technology might preclude the universal application of therapeutic liposomes. This work aimed at evaluating the potential of a cost-effective lipid material, crude soybean lecithin (CL), to co-encapsulate RIF and INH for liposomal dual delivery. RIF was encapsulated in CL-liposomes with/without cholesterol using film hydration method, after which INH was incorporated using a freeze–thawing technique. Dynamic light scattering, differential scanning calorimetry, X-ray diffraction and dialysis were used for liposome characterization. Liposomes containing CL alone (CLL) exhibited 90%encapsulation efficiency for RIF and 59%for INH. The mean size and surface charge of CLL were 1114nm and –63mV, respectively. In addition, CLL showed a controlled release profile for the co-encapsulated drugs. CLL would be promising vehicles for macrophage-targeting drug delivery. The present findings demonstrate the feasibility of using CL for preparation of combination products for liposomal delivery.
- Full Text:
- Date Issued: 2019
- Authors: Nkanga, Christian I , Noundou, Xavier S , Walker, Roderick B , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183536 , vital:44005 , xlink:href="https://doi.org/10.17159/0379-4350/2019/v72a11"
- Description: Despite the well-known anti-mycobacterial actions of isoniazid (INH) and rifampicin (RIF), the clinical success of tuberculosis (TB) therapy requires prolonged administration of multiple drugs in high doses, which often result in frequent adverse effects and low patient adherence. Although liposomes are promising candidates for controlled delivery of anti-TB drug, the high cost of synthetic and highly purified natural lipids currently used in liposomal technology might preclude the universal application of therapeutic liposomes. This work aimed at evaluating the potential of a cost-effective lipid material, crude soybean lecithin (CL), to co-encapsulate RIF and INH for liposomal dual delivery. RIF was encapsulated in CL-liposomes with/without cholesterol using film hydration method, after which INH was incorporated using a freeze–thawing technique. Dynamic light scattering, differential scanning calorimetry, X-ray diffraction and dialysis were used for liposome characterization. Liposomes containing CL alone (CLL) exhibited 90%encapsulation efficiency for RIF and 59%for INH. The mean size and surface charge of CLL were 1114nm and –63mV, respectively. In addition, CLL showed a controlled release profile for the co-encapsulated drugs. CLL would be promising vehicles for macrophage-targeting drug delivery. The present findings demonstrate the feasibility of using CL for preparation of combination products for liposomal delivery.
- Full Text:
- Date Issued: 2019