Improved nonlinear optical behaviour of ball type indium (III) phthalocyanine linked to glutathione capped nanoparticles
- Nwaji, Njemuwa, Oluwole, David O, Mack, John, Louzada, Marcel, Khene, Samson M, Britton, Jonathan, Nyokong, Tebello
- Authors: Nwaji, Njemuwa , Oluwole, David O , Mack, John , Louzada, Marcel , Khene, Samson M , Britton, Jonathan , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/239654 , vital:50752 , xlink:href="https://doi.org/10.1016/j.dyepig.2017.01.066"
- Description: The synthesis of ball–type indium phthalocyanine (complex 4) and its covalent attachment to glutathione (GSH–) capped (Ag, Au, CdTeSe, CdTeSe/ZnO) nanoparticles are reported in this work. Furthermore, their photophysical and nonlinear optical behaviour were investigated. We observed a decrease in the fluorescence quantum yield with corresponding increase in the triplet quantum yield of the nanoconjugates in comparison to complex 4 alone. The reverse saturable absorption was found to be dependent on excited state absorption. The optical limiting threshold ranges from 0.40–0.78 (J/cm2). The nanoconjugate of the complex 4 with GSH–CdTeSe/ZnO (QD1) accounted for the most improved triplet state parameters and nonlinear optical behaviour in comparison to complex 4 and the other nanoconjugates studied in this work.
- Full Text:
- Date Issued: 2017
- Authors: Nwaji, Njemuwa , Oluwole, David O , Mack, John , Louzada, Marcel , Khene, Samson M , Britton, Jonathan , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/239654 , vital:50752 , xlink:href="https://doi.org/10.1016/j.dyepig.2017.01.066"
- Description: The synthesis of ball–type indium phthalocyanine (complex 4) and its covalent attachment to glutathione (GSH–) capped (Ag, Au, CdTeSe, CdTeSe/ZnO) nanoparticles are reported in this work. Furthermore, their photophysical and nonlinear optical behaviour were investigated. We observed a decrease in the fluorescence quantum yield with corresponding increase in the triplet quantum yield of the nanoconjugates in comparison to complex 4 alone. The reverse saturable absorption was found to be dependent on excited state absorption. The optical limiting threshold ranges from 0.40–0.78 (J/cm2). The nanoconjugate of the complex 4 with GSH–CdTeSe/ZnO (QD1) accounted for the most improved triplet state parameters and nonlinear optical behaviour in comparison to complex 4 and the other nanoconjugates studied in this work.
- Full Text:
- Date Issued: 2017
Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy
- Dube, Edith, Oluwole, David O, Nwaji, Njemuwa, Nyokong, Tebello
- Authors: Dube, Edith , Oluwole, David O , Nwaji, Njemuwa , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234524 , vital:50205 , xlink:href="https://doi.org/10.1016/j.saa.2018.05.081"
- Description: In this work, we report on the synthesis of tris-[(2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4′,5′-d]pyran-5-yl)methoxy)-2-(4-benzo[d]thiazol-2-ylphenoxyphthalocyaninato] zinc(II) (complex 3) and its linkage to gold nanoparticles (AuNPs) of different shapes through S-Au/N-Au self-assembly. The conjugates of complex 3 (with both gold nanorods (AuNR) and nanospheres (AuNS)), displayed decreased fluorescence quantum yield with corresponding improved triplet and singlet quantum yields compared to complex 3 alone, however 3-AuNR showed improved properties than 3-AuNS. Complex 3 showed relatively low in vitro dark cytotoxicity against the epithelial breast cancer cells with cell survival ≥ 85% at concentration ≤ 160 μg/mL but afforded reduced photodynamic therapy activity which may be due to aggregation. 3-AuNR afforded superior PDT activity with more than 50% viable cells at concentration ≥ 40 μg/mL in comparison to 3-AuNS with more than 50% viable cells at concentration ≥ 80 μg/mL. The superior activity of 3-AuNR is attributed to the photothermal therapy effect since nanorods absorb more light at 680 nm than nanospheres.
- Full Text:
- Date Issued: 2018
- Authors: Dube, Edith , Oluwole, David O , Nwaji, Njemuwa , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234524 , vital:50205 , xlink:href="https://doi.org/10.1016/j.saa.2018.05.081"
- Description: In this work, we report on the synthesis of tris-[(2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4′,5′-d]pyran-5-yl)methoxy)-2-(4-benzo[d]thiazol-2-ylphenoxyphthalocyaninato] zinc(II) (complex 3) and its linkage to gold nanoparticles (AuNPs) of different shapes through S-Au/N-Au self-assembly. The conjugates of complex 3 (with both gold nanorods (AuNR) and nanospheres (AuNS)), displayed decreased fluorescence quantum yield with corresponding improved triplet and singlet quantum yields compared to complex 3 alone, however 3-AuNR showed improved properties than 3-AuNS. Complex 3 showed relatively low in vitro dark cytotoxicity against the epithelial breast cancer cells with cell survival ≥ 85% at concentration ≤ 160 μg/mL but afforded reduced photodynamic therapy activity which may be due to aggregation. 3-AuNR afforded superior PDT activity with more than 50% viable cells at concentration ≥ 40 μg/mL in comparison to 3-AuNS with more than 50% viable cells at concentration ≥ 80 μg/mL. The superior activity of 3-AuNR is attributed to the photothermal therapy effect since nanorods absorb more light at 680 nm than nanospheres.
- Full Text:
- Date Issued: 2018
Synthesis and photophysical properties of nanocomposites of aluminum tetrasulfonated phthalocyanine covalently linked to glutathione capped CdTe/CdS/ZnS quantum dots
- Oluwole, David O, Britton, Jonathan, Mashazi, Philani N, Nyokong, Tebello
- Authors: Oluwole, David O , Britton, Jonathan , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241379 , vital:50934 , xlink:href="https://doi.org/10.1016/j.synthmet.2015.04.015"
- Description: Aluminum tetrasulfonated phthalocyanine (ClAlTSPc) was covalently linked with different sizes of glutathione capped CdTe/CdS/ZnS quantum dots (QDs). The photophysical and Förster resonance energy transfer (FRET) properties of the nanoconjugates were investigated. The CdTe/CdS/ZnS(6.3) nanocomposite showed the highest enhancement in its photophysical properties while (CdTe/CdS/ZnS(3.2) nanocomposite showed the least. Highest FRET efficiency was observed in the linked CdTe/CdS/ZnS(6.3) nanocomposites at 93%. Hence, the combination of CdTe/CdS/ZnS with ClAlTSPc exhibited excellent photophysical properties.
- Full Text:
- Date Issued: 2015
- Authors: Oluwole, David O , Britton, Jonathan , Mashazi, Philani N , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241379 , vital:50934 , xlink:href="https://doi.org/10.1016/j.synthmet.2015.04.015"
- Description: Aluminum tetrasulfonated phthalocyanine (ClAlTSPc) was covalently linked with different sizes of glutathione capped CdTe/CdS/ZnS quantum dots (QDs). The photophysical and Förster resonance energy transfer (FRET) properties of the nanoconjugates were investigated. The CdTe/CdS/ZnS(6.3) nanocomposite showed the highest enhancement in its photophysical properties while (CdTe/CdS/ZnS(3.2) nanocomposite showed the least. Highest FRET efficiency was observed in the linked CdTe/CdS/ZnS(6.3) nanocomposites at 93%. Hence, the combination of CdTe/CdS/ZnS with ClAlTSPc exhibited excellent photophysical properties.
- Full Text:
- Date Issued: 2015
Physicochemical behavior of nanohybrids of mono and tetra substituted carboxyphenoxy phthalocyanine covalently linked to GSH–CdTe/CdS/ZnS quantum dots
- Oluwole, David O, Nyokong, Tebello
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189480 , vital:44850 , xlink:href="https://doi.org/10.1016/j.poly.2014.10.024"
- Description: Zinc monocarboxyphenoxy and tetracarboxyphenoxy phthalocyanines were covalently linked with three different sizes of glutathione capped core/shell/shell {CdTe/CdS/ZnS(4.2), CdTe/CdS/ZnS(5.1) and CdTe/CdS/ZnS(6.7)}; a core shell {CdTe/CdS(3.1)} and core {CdTe(2.4)} quantum dots. The physicochemical behavior and Förster resonance energy transfer (FRET) processes of the nanohybrids were investigated. The highest FRET efficiency was observed with CdTe/CdS/ZnS(6.7) nanohybrids with 98% and the least efficiency was observed with CdTe(2.4) nanohybrids with 85%. The CdTe/CdS/ZnS(6.7) also showed the best physicochemical behavior. These good physicochemical properties make the synthesized nanohybrids viable photosensitizers.
- Full Text:
- Date Issued: 2015
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189480 , vital:44850 , xlink:href="https://doi.org/10.1016/j.poly.2014.10.024"
- Description: Zinc monocarboxyphenoxy and tetracarboxyphenoxy phthalocyanines were covalently linked with three different sizes of glutathione capped core/shell/shell {CdTe/CdS/ZnS(4.2), CdTe/CdS/ZnS(5.1) and CdTe/CdS/ZnS(6.7)}; a core shell {CdTe/CdS(3.1)} and core {CdTe(2.4)} quantum dots. The physicochemical behavior and Förster resonance energy transfer (FRET) processes of the nanohybrids were investigated. The highest FRET efficiency was observed with CdTe/CdS/ZnS(6.7) nanohybrids with 98% and the least efficiency was observed with CdTe(2.4) nanohybrids with 85%. The CdTe/CdS/ZnS(6.7) also showed the best physicochemical behavior. These good physicochemical properties make the synthesized nanohybrids viable photosensitizers.
- Full Text:
- Date Issued: 2015
The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (II)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line
- Nene, Lindokuhle C, Managa, Muthumuni E, Oluwole, David O, Mafukidze, Donovan M, Sindelo, Azole, Nyokong, Tebello
- Authors: Nene, Lindokuhle C , Managa, Muthumuni E , Oluwole, David O , Mafukidze, Donovan M , Sindelo, Azole , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187449 , vital:44653 , xlink:href="https://doi.org/10.1016/j.ica.2019.01.012"
- Description: Several differently substituted Zn(II) phthalocyanines (ZnPcs) were prepared and conjugated to GQDs. The photophysical properties were determined for both the Pcs and their respective conjugates including the fluorescence/triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pcs decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields, this is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of the reduced actual number of Pcs units provided in the conjugate for therapy. Upon introduction of cationic charges, the photodynamic therapy activity of the complexes increased.
- Full Text:
- Date Issued: 2019
- Authors: Nene, Lindokuhle C , Managa, Muthumuni E , Oluwole, David O , Mafukidze, Donovan M , Sindelo, Azole , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187449 , vital:44653 , xlink:href="https://doi.org/10.1016/j.ica.2019.01.012"
- Description: Several differently substituted Zn(II) phthalocyanines (ZnPcs) were prepared and conjugated to GQDs. The photophysical properties were determined for both the Pcs and their respective conjugates including the fluorescence/triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pcs decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields, this is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of the reduced actual number of Pcs units provided in the conjugate for therapy. Upon introduction of cationic charges, the photodynamic therapy activity of the complexes increased.
- Full Text:
- Date Issued: 2019
Fabrication of efficient nonlinear optical absorber using Zn phthalocyanine-semiconductor quantum dots conjugates
- Mgidlana, Sithi, Oluwole, David O, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187496 , vital:44663 , xlink:href="https://doi.org/10.1016/j.poly.2018.11.024"
- Description: In this paper, we report on the synthesis of Zn(II) phthalocyanine derivatives and their conjugates with core/shell and core/shell/shell semiconductor quantum dots (SQDs). Zn(II) mono amino-carboxyethylphenoxy phthalocyanine (1), Zn(II) mono 3-carboxyphenoxy-tris(pyridin-2-yloxy) phthalocyanine (2) and Zn(II) mono aminophenoxy-tris(benzothiazole) phthalocyanine (3) were synthesized. The photophysical and optical limiting properties of the phthalocyanine (Pc) complexes and their conjugates with SQDs were investigated in dimethyl sulfoxide. The optical limiting behaviour of the Pc complexes and their conjugates were measured by the open aperture Z-scan technique at laser excitation wavelength of 532 nm with 10 ns pulse. The conjugates outperformed the Pc complexes alone with the conjugates of 2-SQDs affording highest nonlinear absorption coefficient (βeff) value of ∼80 cm/GW and lowest limiting threshold (Ilim) value of ∼0.27 J·cm−2 as compared to other samples while complex 1 gave low βeff and high Ilim values of 42.2 cm/GW and 1.39 J·cm−2, respectively.
- Full Text:
- Date Issued: 2019
- Authors: Mgidlana, Sithi , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187496 , vital:44663 , xlink:href="https://doi.org/10.1016/j.poly.2018.11.024"
- Description: In this paper, we report on the synthesis of Zn(II) phthalocyanine derivatives and their conjugates with core/shell and core/shell/shell semiconductor quantum dots (SQDs). Zn(II) mono amino-carboxyethylphenoxy phthalocyanine (1), Zn(II) mono 3-carboxyphenoxy-tris(pyridin-2-yloxy) phthalocyanine (2) and Zn(II) mono aminophenoxy-tris(benzothiazole) phthalocyanine (3) were synthesized. The photophysical and optical limiting properties of the phthalocyanine (Pc) complexes and their conjugates with SQDs were investigated in dimethyl sulfoxide. The optical limiting behaviour of the Pc complexes and their conjugates were measured by the open aperture Z-scan technique at laser excitation wavelength of 532 nm with 10 ns pulse. The conjugates outperformed the Pc complexes alone with the conjugates of 2-SQDs affording highest nonlinear absorption coefficient (βeff) value of ∼80 cm/GW and lowest limiting threshold (Ilim) value of ∼0.27 J·cm−2 as compared to other samples while complex 1 gave low βeff and high Ilim values of 42.2 cm/GW and 1.39 J·cm−2, respectively.
- Full Text:
- Date Issued: 2019
Comparative photophysicochemical behavior of nanoconjugates of indium tetracarboxyphenoxy phthalocyanines covalently linked to CdTe/ZnSe/ZnO quantum dots
- Oluwole, David O, Nyokong, Tebello
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2015
- Language: English
- Type: text , Article
- Identifier: vital:7294 , http://hdl.handle.net/10962/d1020357 , http://dx.doi.org/10.1016/j.jphotochem.2015.07.009
- Description: This work reports on the photophysicochemical behavior of different nanoconjugates of core/shell/shell (GSH-CdTe/ZnSe/ZnO), core/shell (GSH-CdTe/ZnSe) and core (GSH-CdTe) (quantum dots QDs) with indium tetracarboxyphenoxy phthalocyanines ((OH)InTCPPc) in dimethylsulfoxide. The fluorescence quantum yields (Φf) and lifetimes (τf, in brackets) of QDs ranged from 0.20 (13.9 ns) to 0.42 (25.6 ns). The highest Φf value was obtained for GSH-CdTe/ZnSe/ZnO (4.5) while the least was observed in GSH-CdTe/ZnSe/ZnO (7.6), the numbers in brackets refer to the sizes. For (OH)InTCPPc alone a Φf and τf values of 0.02 and 2.43 ns, respectively were obtained. In the nanoconjugates, pivotal decrease in the Φf and τf of the QDs were observed with increase in the triplet and singlet oxygen quantum yields of (OH)InTCPPc. , Original publication is available at http://dx.doi.org/10.1016/j.jphotochem.2015.07.009
- Full Text: false
- Date Issued: 2015
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2015
- Language: English
- Type: text , Article
- Identifier: vital:7294 , http://hdl.handle.net/10962/d1020357 , http://dx.doi.org/10.1016/j.jphotochem.2015.07.009
- Description: This work reports on the photophysicochemical behavior of different nanoconjugates of core/shell/shell (GSH-CdTe/ZnSe/ZnO), core/shell (GSH-CdTe/ZnSe) and core (GSH-CdTe) (quantum dots QDs) with indium tetracarboxyphenoxy phthalocyanines ((OH)InTCPPc) in dimethylsulfoxide. The fluorescence quantum yields (Φf) and lifetimes (τf, in brackets) of QDs ranged from 0.20 (13.9 ns) to 0.42 (25.6 ns). The highest Φf value was obtained for GSH-CdTe/ZnSe/ZnO (4.5) while the least was observed in GSH-CdTe/ZnSe/ZnO (7.6), the numbers in brackets refer to the sizes. For (OH)InTCPPc alone a Φf and τf values of 0.02 and 2.43 ns, respectively were obtained. In the nanoconjugates, pivotal decrease in the Φf and τf of the QDs were observed with increase in the triplet and singlet oxygen quantum yields of (OH)InTCPPc. , Original publication is available at http://dx.doi.org/10.1016/j.jphotochem.2015.07.009
- Full Text: false
- Date Issued: 2015
Investigation of novel substituted zinc and aluminium phthalocyanines for photodynamic therapy of epithelial breast cancer
- Mohammed, Imadalulla, Oluwole, David O, Nemakal, Majunatha, Sannegowda, Lokesh K, Nyokong, Tebello
- Authors: Mohammed, Imadalulla , Oluwole, David O , Nemakal, Majunatha , Sannegowda, Lokesh K , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186824 , vital:44537 , xlink:href="https://doi.org/10.1016/j.dyepig.2019.107592"
- Description: A series of phthalonitrile ligands were synthesized by nucleophilic substitution reaction using the hydroxyl or sulfanyl group precursors and the nitro moiety of the nitrophthalonitrile to yield corresponding oxy or sulfanyl bridged ligands. These ligands were subsequently subjected to cyclocondensation reaction with diamagnetic metal ions like zinc and aluminium to afford symmetrically substituted zinc and aluminium phthalocyanine (Pc) complexes and polymers. The ligands and Pc complexes were characterized by 1 H nuclear magnetic resonance, fourier transform infrared, ultraviolet visible and mass spectrometric techniques. Additionally, thermal gravimetric, and elemental analyzer were used for characterization of the Pc complexes. The photophysical and photochemical behaviour of the Pc complexes were investigated in dimethyl sulfoxide. Additionally, the complexes were tested against epithelial breast cancer cells for photodynamic therapy (PDT) effect. The substituted ZnPc complexes afforded higher singlet oxygen quantum yields as compared to the AlPc analogue. All the complexes showed innocuous invitro dark cytotoxicity and moderate PDT effect.
- Full Text:
- Date Issued: 2019
- Authors: Mohammed, Imadalulla , Oluwole, David O , Nemakal, Majunatha , Sannegowda, Lokesh K , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186824 , vital:44537 , xlink:href="https://doi.org/10.1016/j.dyepig.2019.107592"
- Description: A series of phthalonitrile ligands were synthesized by nucleophilic substitution reaction using the hydroxyl or sulfanyl group precursors and the nitro moiety of the nitrophthalonitrile to yield corresponding oxy or sulfanyl bridged ligands. These ligands were subsequently subjected to cyclocondensation reaction with diamagnetic metal ions like zinc and aluminium to afford symmetrically substituted zinc and aluminium phthalocyanine (Pc) complexes and polymers. The ligands and Pc complexes were characterized by 1 H nuclear magnetic resonance, fourier transform infrared, ultraviolet visible and mass spectrometric techniques. Additionally, thermal gravimetric, and elemental analyzer were used for characterization of the Pc complexes. The photophysical and photochemical behaviour of the Pc complexes were investigated in dimethyl sulfoxide. Additionally, the complexes were tested against epithelial breast cancer cells for photodynamic therapy (PDT) effect. The substituted ZnPc complexes afforded higher singlet oxygen quantum yields as compared to the AlPc analogue. All the complexes showed innocuous invitro dark cytotoxicity and moderate PDT effect.
- Full Text:
- Date Issued: 2019
Optimizing phthalocyanine based dye-sensitized solar cells: The role of reduced graphene oxide
- Chindeka, Francis, Mashazi, Philani N, Britton, Jonathan, Fomo, Gertrude, Oluwole, David O, Sindelo, Azole, Nyokong, Tebello
- Authors: Chindeka, Francis , Mashazi, Philani N , Britton, Jonathan , Fomo, Gertrude , Oluwole, David O , Sindelo, Azole , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187770 , vital:44695 , xlink:href="https://doi.org/10.1016/j.synthmet.2018.10.021"
- Description: Dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparison purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency.
- Full Text:
- Date Issued: 2018
- Authors: Chindeka, Francis , Mashazi, Philani N , Britton, Jonathan , Fomo, Gertrude , Oluwole, David O , Sindelo, Azole , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187770 , vital:44695 , xlink:href="https://doi.org/10.1016/j.synthmet.2018.10.021"
- Description: Dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparison purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency.
- Full Text:
- Date Issued: 2018
Evaluation of the photosensitizing properties of zinc and indium tetra cinnamic acid phthalocyanines linked to magnetic nanoparticles on human breast adenocarcinoma cells
- Matlou, Gauta G, Oluwole, David O, Nyokong, Tebello
- Authors: Matlou, Gauta G , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187582 , vital:44673 , xlink:href="https://doi.org/10.1016/j.jlumin.2018.09.054"
- Description: This work reports on the synthesis, photophysico-chemical properties and photodynamic therapy activity of novel zinc (1) and indium (2) tetra substituted cinnamic acid phthalocyanine (Pc) complexes linked to amino functionalized magnetic nanoparticles (AMNPs) through an amide bond. Asymmetric ZnPc complex (3) showed better triplet and singlet oxygen quantum yields as compared to its symmetrical analogues (1 and 2). The AMNPs (1-AMNPs and 2-AMNPs) linked conjugates depicted increased triplet quantum yields in comparison to their unlinked Pcs, while 3-AMNPs showed a decrease compared to 3. The complexes showed increased in-vitro photo-cytotoxic effect against MCF-7 cells with an increase in drug concentration. At 80 µg/mL, 2 and 3, 2-AMNPs and 3-AMNPs with higher singlet oxygen quantum yields caused more cytotoxic effect on the cancer cells in the presence of light as compared to 1 and 1-AMNPs respectively.
- Full Text:
- Date Issued: 2019
- Authors: Matlou, Gauta G , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187582 , vital:44673 , xlink:href="https://doi.org/10.1016/j.jlumin.2018.09.054"
- Description: This work reports on the synthesis, photophysico-chemical properties and photodynamic therapy activity of novel zinc (1) and indium (2) tetra substituted cinnamic acid phthalocyanine (Pc) complexes linked to amino functionalized magnetic nanoparticles (AMNPs) through an amide bond. Asymmetric ZnPc complex (3) showed better triplet and singlet oxygen quantum yields as compared to its symmetrical analogues (1 and 2). The AMNPs (1-AMNPs and 2-AMNPs) linked conjugates depicted increased triplet quantum yields in comparison to their unlinked Pcs, while 3-AMNPs showed a decrease compared to 3. The complexes showed increased in-vitro photo-cytotoxic effect against MCF-7 cells with an increase in drug concentration. At 80 µg/mL, 2 and 3, 2-AMNPs and 3-AMNPs with higher singlet oxygen quantum yields caused more cytotoxic effect on the cancer cells in the presence of light as compared to 1 and 1-AMNPs respectively.
- Full Text:
- Date Issued: 2019
Electrocatalytic activity of a push pull Co (II) phthalocyanine in the presence of graphitic carbon nitride quantum dots
- Nxele, Siphesihle R, Oluwole, David O, Nyokong, Tebello
- Authors: Nxele, Siphesihle R , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186746 , vital:44530 , xlink:href="https://doi.org/10.1016/j.electacta.2019.134978"
- Description: This work reports for the first time on the use of a conjugate of graphitic carbon nitride quantum dots (gCNQDs) with a push-pull asymmetrical cobalt phthalocyanine (CoPc) for electrochemical sensing. The nanocomposite is immobilized on a glassy carbon electrode (GCE) surface for the use in l-cysteine electrocatalysis. The nanocomposites were characterized using techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy and electrochemical methods. The nanocomposites were immobilized by the drop-dry method, sequentially or when premixed in solution. Good electrocatalytic oxidation of l-cysteine was observed, especially by the sequentially modified electrode surface, with the CoPc on top of gCNQDs. The sensitivity was determined as 3.5 μA.mM-1 and the limit of detection (LoD) as 101.3 μM for GCE-gCNQDs, 0.65 μA.mM-1 and 0.96 μM for GCE-CoPc, 23.41 μA.mM-1 and 0.41 μM for gCNQDs-CoPc (premixed) and 100.5 μA.mM-1 and 0.02 μM for gCNQDs-CoPc (sequential). The electrode surfaces also showed high stability by continuous cyclization.
- Full Text:
- Date Issued: 2019
- Authors: Nxele, Siphesihle R , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186746 , vital:44530 , xlink:href="https://doi.org/10.1016/j.electacta.2019.134978"
- Description: This work reports for the first time on the use of a conjugate of graphitic carbon nitride quantum dots (gCNQDs) with a push-pull asymmetrical cobalt phthalocyanine (CoPc) for electrochemical sensing. The nanocomposite is immobilized on a glassy carbon electrode (GCE) surface for the use in l-cysteine electrocatalysis. The nanocomposites were characterized using techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy and electrochemical methods. The nanocomposites were immobilized by the drop-dry method, sequentially or when premixed in solution. Good electrocatalytic oxidation of l-cysteine was observed, especially by the sequentially modified electrode surface, with the CoPc on top of gCNQDs. The sensitivity was determined as 3.5 μA.mM-1 and the limit of detection (LoD) as 101.3 μM for GCE-gCNQDs, 0.65 μA.mM-1 and 0.96 μM for GCE-CoPc, 23.41 μA.mM-1 and 0.41 μM for gCNQDs-CoPc (premixed) and 100.5 μA.mM-1 and 0.02 μM for gCNQDs-CoPc (sequential). The electrode surfaces also showed high stability by continuous cyclization.
- Full Text:
- Date Issued: 2019
The effect of point of substitution and silver based nanoparticles on the photophysical and optical nonlinearity of indium carboxyphenoxy phthalocyanine
- Oluwole, David O, Ngxeke, Sixolisile M, Britton, Jonathan, Nyokong, Tebello
- Authors: Oluwole, David O , Ngxeke, Sixolisile M , Britton, Jonathan , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188596 , vital:44768 , xlink:href="https://doi.org/10.1016/j.jphotochem.2017.07.032"
- Description: Indium(III) chloride 1,8(11),15(18),22(25)-tetra-(3-carboxyphenoxy) phthalocyanine (1) and indium(III) chloride 2,9(10),16(17),23(24)-tetra–(3-carboxyphenoxy) phthalocyanine (2) were covalently linked to glutathione capped silver nanoparticles (AgNPs–GSH) and silver selenide/zinc sulfide (Ag2Se/ZnS–GSH) quantum dots via amide bond formation. The photophysical and nonlinear optical behaviour of the metallophthalocyanines and their conjugates with nanoparticles were investigated using the open aperture Z–scan technique. Complex 2 showed enhanced photophysical properties compared to 1. The conjugates revealed improved triplet state quantum yields (except for 1-AgNPs-GSH which afforded lower triplet state quantum yields in comparison to 1) and nonlinear optical activities in comparison to the Pc complexes. The synthesized complexes, nanoparticles and their conjugates could be potential nonlinear optical materials due to their good nonlinear optical activities.
- Full Text:
- Date Issued: 2017
- Authors: Oluwole, David O , Ngxeke, Sixolisile M , Britton, Jonathan , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188596 , vital:44768 , xlink:href="https://doi.org/10.1016/j.jphotochem.2017.07.032"
- Description: Indium(III) chloride 1,8(11),15(18),22(25)-tetra-(3-carboxyphenoxy) phthalocyanine (1) and indium(III) chloride 2,9(10),16(17),23(24)-tetra–(3-carboxyphenoxy) phthalocyanine (2) were covalently linked to glutathione capped silver nanoparticles (AgNPs–GSH) and silver selenide/zinc sulfide (Ag2Se/ZnS–GSH) quantum dots via amide bond formation. The photophysical and nonlinear optical behaviour of the metallophthalocyanines and their conjugates with nanoparticles were investigated using the open aperture Z–scan technique. Complex 2 showed enhanced photophysical properties compared to 1. The conjugates revealed improved triplet state quantum yields (except for 1-AgNPs-GSH which afforded lower triplet state quantum yields in comparison to 1) and nonlinear optical activities in comparison to the Pc complexes. The synthesized complexes, nanoparticles and their conjugates could be potential nonlinear optical materials due to their good nonlinear optical activities.
- Full Text:
- Date Issued: 2017
Physicochemical and antimicrobial photodynamic chemotherapy (against E. coli) by indium phthalocyanines in the presence of silver–iron bimetallic nanoparticles
- Magadla, Aviwe, Oluwole, David O, Managa, Muthumuni, Nyokong, Tebello
- Authors: Magadla, Aviwe , Oluwole, David O , Managa, Muthumuni , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187091 , vital:44564 , xlink:href="https://doi.org/10.1016/j.poly.2019.01.032"
- Description: In this work, Schiff base indium phthalocyanines: In–Cl tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine (complex 1b) and In–Cl tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine (complex 2b) are synthesized from tetra amino and tetra phenoxy amino phthalocyanines, respectively. These complexes were further quartenised with 1,3-propanesultone to form zwitterionic complexes 1 and 2, respectively. Silver–iron dimers (Ag–Fe3O4) and silver-iron core shell (Ag@Fe3O4) nanoparticles (NPs) were linked to the synthesised complexes. The photophysical and photochemical behaviour of the complexes and their conjugates with NPs were investigated in dimethyl sulfoxide. Complexes 2 and 2b and their conjugates were then used for photodynamic antimicrobial chemotherapy on Escherichia coli. The zwitter ionic photosensitiser 2 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2019
- Authors: Magadla, Aviwe , Oluwole, David O , Managa, Muthumuni , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187091 , vital:44564 , xlink:href="https://doi.org/10.1016/j.poly.2019.01.032"
- Description: In this work, Schiff base indium phthalocyanines: In–Cl tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine (complex 1b) and In–Cl tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine (complex 2b) are synthesized from tetra amino and tetra phenoxy amino phthalocyanines, respectively. These complexes were further quartenised with 1,3-propanesultone to form zwitterionic complexes 1 and 2, respectively. Silver–iron dimers (Ag–Fe3O4) and silver-iron core shell (Ag@Fe3O4) nanoparticles (NPs) were linked to the synthesised complexes. The photophysical and photochemical behaviour of the complexes and their conjugates with NPs were investigated in dimethyl sulfoxide. Complexes 2 and 2b and their conjugates were then used for photodynamic antimicrobial chemotherapy on Escherichia coli. The zwitter ionic photosensitiser 2 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Date Issued: 2019
Optical nonlinearity of pentadecylphenoxyl substituted sandwich–type metallophthalocyanines in the presence of Ag–CdSeTe/ZnTeSe nanocrystals: Effects of conjugation and central metals
- Oluwole, David O, Nyokong, Tebello
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187899 , vital:44708 , xlink:href="https://doi.org/10.1016/j.dyepig.2018.01.009"
- Description: Novel pentadecylphenoxyl substituted homoleptic sandwich–type metallophthalocyanines: bis (complexes 2 and 4 containing Eu and Dy, respectively) and tris (complexes 3 and 5 containing Eu and Dy, respectively) 2,9,16,23–tetrakis–(3–pentadecylphenoxyl) phthalocyanines and cadmium based (Ag–CdSeTe/ZnTeSe) nanocrystals (NCs) were synthesized. The nonlinear optical (NLO) behavior of the metallophthalocyanines and their composites with NCs were investigated using the open aperture Z–scan technique at excitation wavelength of 532 nm with 10 ns pulse. All of the samples exhibited interesting NLO attributes: among all the sandwich–type complexes, complex 5 afforded the most efficient NLO features accounting for large nonlinear absorption coefficient (βeff) value of 3500 cm/GW and limiting threshold (Ilim) value of 0.43 J cm−2. Overall, the composites of the triple decker sandwich–type complexes with Ag–CdSeTe/ZnTeSe yielded the best NLO characteristics with 3 and 5 accounting for the largest βeff value of 5500 cm/GW and Ilim value of 0.09 J cm−2. The synthesized complexes and their composites with NCs could be viable and efficient NLO absorber due to their interesting NLO activities.
- Full Text:
- Date Issued: 2018
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187899 , vital:44708 , xlink:href="https://doi.org/10.1016/j.dyepig.2018.01.009"
- Description: Novel pentadecylphenoxyl substituted homoleptic sandwich–type metallophthalocyanines: bis (complexes 2 and 4 containing Eu and Dy, respectively) and tris (complexes 3 and 5 containing Eu and Dy, respectively) 2,9,16,23–tetrakis–(3–pentadecylphenoxyl) phthalocyanines and cadmium based (Ag–CdSeTe/ZnTeSe) nanocrystals (NCs) were synthesized. The nonlinear optical (NLO) behavior of the metallophthalocyanines and their composites with NCs were investigated using the open aperture Z–scan technique at excitation wavelength of 532 nm with 10 ns pulse. All of the samples exhibited interesting NLO attributes: among all the sandwich–type complexes, complex 5 afforded the most efficient NLO features accounting for large nonlinear absorption coefficient (βeff) value of 3500 cm/GW and limiting threshold (Ilim) value of 0.43 J cm−2. Overall, the composites of the triple decker sandwich–type complexes with Ag–CdSeTe/ZnTeSe yielded the best NLO characteristics with 3 and 5 accounting for the largest βeff value of 5500 cm/GW and Ilim value of 0.09 J cm−2. The synthesized complexes and their composites with NCs could be viable and efficient NLO absorber due to their interesting NLO activities.
- Full Text:
- Date Issued: 2018
Photophysicochemical behaviour of metallophthalocyanines when doped onto silica nanoparticles
- Oluwole, David O, Nyokong, Tebello
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188518 , vital:44761 , xlink:href="https://doi.org/10.1016/j.dyepig.2016.08.053"
- Description: Aluminum(III) chloride 2,9(10),16(17),23(24)–tetra–(4–tert–butylphenoxy)phthalocyanine (1), zinc(II) 2,9(10),16(17),23(24)–tetra–(4–tert–butylphenoxy)phthalocyanine (2), zinc(II) 1,8(11),15(18),22(25)–tetra–(4–tert–butylphenoxy) phthalocyanine (3) and zinc(II) 2,9(10),16(17),23(24)–tetra–(4–carboxylphenoxy) phthalocyanine (4) were doped onto silica nanoparticles (SiNPs). There were no significant changes in fluorescence quantum yields and lifetimes of the metallophthalocyanines ( MPcs) when doped onto SiNPs. The triplet quantum yields of the MPcs alone range from 0.22 to 0.85 and in the presence of SiNPs the values range from 0.17 to 0.89. We observed a general decrease of triplet quantum yields of phthalocyanines in the conjugates except for 2 where there was an increase. The values were highly affected by aggregation. Complexes 1 and 3 were highly aggregated when doped onto SiNPs, while 2 and 4 did not show much aggregation.
- Full Text:
- Date Issued: 2017
- Authors: Oluwole, David O , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188518 , vital:44761 , xlink:href="https://doi.org/10.1016/j.dyepig.2016.08.053"
- Description: Aluminum(III) chloride 2,9(10),16(17),23(24)–tetra–(4–tert–butylphenoxy)phthalocyanine (1), zinc(II) 2,9(10),16(17),23(24)–tetra–(4–tert–butylphenoxy)phthalocyanine (2), zinc(II) 1,8(11),15(18),22(25)–tetra–(4–tert–butylphenoxy) phthalocyanine (3) and zinc(II) 2,9(10),16(17),23(24)–tetra–(4–carboxylphenoxy) phthalocyanine (4) were doped onto silica nanoparticles (SiNPs). There were no significant changes in fluorescence quantum yields and lifetimes of the metallophthalocyanines ( MPcs) when doped onto SiNPs. The triplet quantum yields of the MPcs alone range from 0.22 to 0.85 and in the presence of SiNPs the values range from 0.17 to 0.89. We observed a general decrease of triplet quantum yields of phthalocyanines in the conjugates except for 2 where there was an increase. The values were highly affected by aggregation. Complexes 1 and 3 were highly aggregated when doped onto SiNPs, while 2 and 4 did not show much aggregation.
- Full Text:
- Date Issued: 2017
Photophysicochemical behaviour of anionic indium phthalocyanine when grafted onto AgxAuy and porous silica nanoparticles
- Dube, Edith, Oluwole, David O, Nyokong, Tebello
- Authors: Dube, Edith , Oluwole, David O , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188899 , vital:44796 , xlink:href="https://doi.org/10.1016/j.jlumin.2017.05.071"
- Description: This work reports on the synthesis of glutathione functionalised Ag3Au1 (Ag rich alloy, denoted as AgAu) and Ag1Au3 (Au rich alloy – denoted as AuAg) nano alloys as well as aminopropyl triethoxylsilane capped Ag1Au3 doped silica nanoparticles (NPs). The NPs were covalently linked to indium(III) chloride 2,9(10),16(17),23(24)–tetra–(3–carboxyphenoxy)phthalocyanine (1) via amide bond to form 1–AgAuNPs–GSH and 1–AuAgNPs–GSH. The AgAuNPs were also doped into aminopropyl triethoxylsilane (APTES) silica NPs (SiNPs-APTES) followed by linkage to complex 1 to form 1–AgAu-SiNPs–APTES. The photophysicochemical behaviour of complex 1 and its nanoconjugates were investigated. Decrease in the fluorescence quantum yields and lifetimes was observed in the conjugates in comparison to 1 alone. The singlet oxygen quantum yield for 1–AgAuNPs–GSH and 1–AuAgNPs–GSH decreased probably due to the screening effect caused by the NPs, while that of 1–AgAu-SiNPs–APTES increased in dimethylsulfoxide probably due to the permeability of the porous silica matrix to molecular oxygen.
- Full Text:
- Date Issued: 2017
- Authors: Dube, Edith , Oluwole, David O , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188899 , vital:44796 , xlink:href="https://doi.org/10.1016/j.jlumin.2017.05.071"
- Description: This work reports on the synthesis of glutathione functionalised Ag3Au1 (Ag rich alloy, denoted as AgAu) and Ag1Au3 (Au rich alloy – denoted as AuAg) nano alloys as well as aminopropyl triethoxylsilane capped Ag1Au3 doped silica nanoparticles (NPs). The NPs were covalently linked to indium(III) chloride 2,9(10),16(17),23(24)–tetra–(3–carboxyphenoxy)phthalocyanine (1) via amide bond to form 1–AgAuNPs–GSH and 1–AuAgNPs–GSH. The AgAuNPs were also doped into aminopropyl triethoxylsilane (APTES) silica NPs (SiNPs-APTES) followed by linkage to complex 1 to form 1–AgAu-SiNPs–APTES. The photophysicochemical behaviour of complex 1 and its nanoconjugates were investigated. Decrease in the fluorescence quantum yields and lifetimes was observed in the conjugates in comparison to 1 alone. The singlet oxygen quantum yield for 1–AgAuNPs–GSH and 1–AuAgNPs–GSH decreased probably due to the screening effect caused by the NPs, while that of 1–AgAu-SiNPs–APTES increased in dimethylsulfoxide probably due to the permeability of the porous silica matrix to molecular oxygen.
- Full Text:
- Date Issued: 2017
Evaluation of the photophysicochemical properties and photodynamic therapy activity of nanoconjugates of zinc phthalocyanine linked to glutathione capped Au and Au3Ag1 nanoparticles
- Oluwole, David O, Manoto, Sello L, Malabi, Rudzani, Maphanga, Charles, Ombinda-Lemboumba, Saturnin, Mthunzi-Kufa, Patience, Nyokong, Tebello
- Authors: Oluwole, David O , Manoto, Sello L , Malabi, Rudzani , Maphanga, Charles , Ombinda-Lemboumba, Saturnin , Mthunzi-Kufa, Patience , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/237886 , vital:50563 , xlink:href="https://doi.org/10.1016/j.dyepig.2017.11.019"
- Description: We report on the synthesis of glutathione capped gold (AuNPs–GSH) and gold–silver (Au3Ag1NPs–GSH) nanoparticles and their covalent attachment to Zn monocarboxyphenoxy phthalocyanine (1) via amide bond formation. The photophysicochemical properties and photodynamic therapy (PDT) activity of the complex and its nanoconjugates were assessed. The conjugates afforded improved triplet and singlet oxygen quantum yield as well as PDT activity (except for 1-Au3Ag1NPs which afforded decreased activity) in comparison to complex 1.
- Full Text:
- Date Issued: 2018
- Authors: Oluwole, David O , Manoto, Sello L , Malabi, Rudzani , Maphanga, Charles , Ombinda-Lemboumba, Saturnin , Mthunzi-Kufa, Patience , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/237886 , vital:50563 , xlink:href="https://doi.org/10.1016/j.dyepig.2017.11.019"
- Description: We report on the synthesis of glutathione capped gold (AuNPs–GSH) and gold–silver (Au3Ag1NPs–GSH) nanoparticles and their covalent attachment to Zn monocarboxyphenoxy phthalocyanine (1) via amide bond formation. The photophysicochemical properties and photodynamic therapy (PDT) activity of the complex and its nanoconjugates were assessed. The conjugates afforded improved triplet and singlet oxygen quantum yield as well as PDT activity (except for 1-Au3Ag1NPs which afforded decreased activity) in comparison to complex 1.
- Full Text:
- Date Issued: 2018
Effect of nature of nanoparticles on the photophysicochemical properties of asymmetrically substituted Zn phthalocyanines
- Magadla, Aviwe, Oluwole, David O, Britton, Jonathan, Nyokong, Tebello
- Authors: Magadla, Aviwe , Oluwole, David O , Britton, Jonathan , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234539 , vital:50206 , xlink:href="https://doi.org/10.1016/j.ica.2018.06.043"
- Description: In this work, low symmetry Zn mono caffeic acid tri-tert butyl (1) and Zn monocarboxyphenoxy tri-(tert-butylphenoxyl) (2) phthalocyanines (Pcs) were covalently linked to amino (using glutathione, GSH, or 3-aminopropyl)triethoxysilane, APTES) functionalised nanoparticles. The nanoparticles are represented as: AgNPs-GSH, SiNPs-APTES, Fe3O4-Ag-SiNPs-APTES and Fe3O4-AgNPs-GSH). The photophysical and photochemical behaviour of the complexes 1 and 2 and their conjugates with nanoparticles were investigated in dimethyl sulfoxide. The conjugates of the Pc complexes with the NPs afforded increase in triplet quantum yields with corresponding decrease in fluorescence quantum yield compared to the Pc complexes alone. The conjugates of 1-AgNPs-GSH, 2-SiNPs-APTES and 2-Fe3O4-Ag-SiNPs-APTES showed higher singlet oxygen quantum yield values as compared to the Pc complexes alone.
- Full Text:
- Date Issued: 2018
- Authors: Magadla, Aviwe , Oluwole, David O , Britton, Jonathan , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234539 , vital:50206 , xlink:href="https://doi.org/10.1016/j.ica.2018.06.043"
- Description: In this work, low symmetry Zn mono caffeic acid tri-tert butyl (1) and Zn monocarboxyphenoxy tri-(tert-butylphenoxyl) (2) phthalocyanines (Pcs) were covalently linked to amino (using glutathione, GSH, or 3-aminopropyl)triethoxysilane, APTES) functionalised nanoparticles. The nanoparticles are represented as: AgNPs-GSH, SiNPs-APTES, Fe3O4-Ag-SiNPs-APTES and Fe3O4-AgNPs-GSH). The photophysical and photochemical behaviour of the complexes 1 and 2 and their conjugates with nanoparticles were investigated in dimethyl sulfoxide. The conjugates of the Pc complexes with the NPs afforded increase in triplet quantum yields with corresponding decrease in fluorescence quantum yield compared to the Pc complexes alone. The conjugates of 1-AgNPs-GSH, 2-SiNPs-APTES and 2-Fe3O4-Ag-SiNPs-APTES showed higher singlet oxygen quantum yield values as compared to the Pc complexes alone.
- Full Text:
- Date Issued: 2018
Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles
- Dube, Edith, Nwaji, Njemuwa, Oluwole, David O, Mack, John, Nyokong, Tebello
- Authors: Dube, Edith , Nwaji, Njemuwa , Oluwole, David O , Mack, John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233425 , vital:50089 , xlink:href="https://doi.org/10.1016/j.jphotochem.2017.09.020"
- Description: The syntheses of zinc(II) tetra–[3–(4–phenoxy) (propanoic acid) phthalocyanine] (2) and zinc(II) mono–[3–(4–phenoxy) (propanoic acid) phthalocyanine (3) are reported in this work. Compounds 2 and 3 were covalently linked to glutathione capped silver (AgNPs–GSH), gold (AuNPs–GSH) and silver-gold alloy (Ag3Au1NPs–GSH) nanoparticles (NPs) via an amide bond formation to afford the conjugates: 2–AgNPs–GSH, 3–AgNPs–GSH, 2–AuNPs–GSH, 3–AuNPs–GSH, 2-Ag3Au1NPs–GSH and 3-Ag3Au1NPs–GSH. The photophysicochemical behaviours of the compounds and their conjugates with NPs were assessed in solution. The conjugates afforded a decrease in fluorescence quantum yields and lifetimes with improved triplet quantum yields in comparison to the compounds. Accordingly, the AgNPs and AuNPs conjugates with the compounds afforded high singlet quantum yields. On the contrary, the conjugates of the alloy afforded decreased singlet quantum yields probably due to the screening effect. The compounds and their conjugates with NPs could serve as a viable and efficacious photosensitizer for photodynamic therapy.
- Full Text:
- Date Issued: 2017
- Authors: Dube, Edith , Nwaji, Njemuwa , Oluwole, David O , Mack, John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233425 , vital:50089 , xlink:href="https://doi.org/10.1016/j.jphotochem.2017.09.020"
- Description: The syntheses of zinc(II) tetra–[3–(4–phenoxy) (propanoic acid) phthalocyanine] (2) and zinc(II) mono–[3–(4–phenoxy) (propanoic acid) phthalocyanine (3) are reported in this work. Compounds 2 and 3 were covalently linked to glutathione capped silver (AgNPs–GSH), gold (AuNPs–GSH) and silver-gold alloy (Ag3Au1NPs–GSH) nanoparticles (NPs) via an amide bond formation to afford the conjugates: 2–AgNPs–GSH, 3–AgNPs–GSH, 2–AuNPs–GSH, 3–AuNPs–GSH, 2-Ag3Au1NPs–GSH and 3-Ag3Au1NPs–GSH. The photophysicochemical behaviours of the compounds and their conjugates with NPs were assessed in solution. The conjugates afforded a decrease in fluorescence quantum yields and lifetimes with improved triplet quantum yields in comparison to the compounds. Accordingly, the AgNPs and AuNPs conjugates with the compounds afforded high singlet quantum yields. On the contrary, the conjugates of the alloy afforded decreased singlet quantum yields probably due to the screening effect. The compounds and their conjugates with NPs could serve as a viable and efficacious photosensitizer for photodynamic therapy.
- Full Text:
- Date Issued: 2017
Nonlinear optical dynamics of benzothiazole derivatized phthalocyanines in solution, thin films and when conjugated to nanoparticles
- Nwaji, Njemuwa, Jones, Benjamin M, Mack, John, Oluwole, David O, Nyokong, Tebello
- Authors: Nwaji, Njemuwa , Jones, Benjamin M , Mack, John , Oluwole, David O , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190426 , vital:44993 , xlink:href="https://doi.org/10.1016/j.jphotochem.2017.05.042"
- Description: Benzothiazole phthalocynines complexes: tetrakis[(benzo[d]thiazol-2-ylphenoxy)phthalocyaninato] indium(III) chloride (1) and tetrakis[(benzo[d]thiazol-2-ylthio)phthalocyaninato] indium(III) chloride (2) were synthesisized and their nanosecond nonlinear optical behaviours in solution, solid state and when conjugated to metallic nanoparticles were examined and compared to those of the corresponding ZnPc and GaPc which are designated as: tetrakis[(4-benzo[d]thiazol-2-ylphenoxy)phthalocyaninato] zinc(II) (3), tetrakis[(4-benzo[d]thiazol-2-ylphenoxy)phthalocyaninato] gallium(III) chloride (4), tetrakis[(4-benzo[d]thiazol-2-ylthio)phthalocyaninato] zinc(II) (5) and tetrakis[(4-benzo[d]thiazol-2-ylthio)phthalocyaninato] gallium(III) chloride (6). Trends in the electronic structures were identified through a comparison of the UV–vis absorption and magnetic circular dichroism (MCD) spectroscopy of the complexes and calculated spectra predicted by time dependent density functional theory (TD-DFT). Of all the complexes and nanoconjugates, complex 2 (containing sulphur linkages and In as a central metal) gave the best optical limiting behaviour.
- Full Text:
- Date Issued: 2017
- Authors: Nwaji, Njemuwa , Jones, Benjamin M , Mack, John , Oluwole, David O , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190426 , vital:44993 , xlink:href="https://doi.org/10.1016/j.jphotochem.2017.05.042"
- Description: Benzothiazole phthalocynines complexes: tetrakis[(benzo[d]thiazol-2-ylphenoxy)phthalocyaninato] indium(III) chloride (1) and tetrakis[(benzo[d]thiazol-2-ylthio)phthalocyaninato] indium(III) chloride (2) were synthesisized and their nanosecond nonlinear optical behaviours in solution, solid state and when conjugated to metallic nanoparticles were examined and compared to those of the corresponding ZnPc and GaPc which are designated as: tetrakis[(4-benzo[d]thiazol-2-ylphenoxy)phthalocyaninato] zinc(II) (3), tetrakis[(4-benzo[d]thiazol-2-ylphenoxy)phthalocyaninato] gallium(III) chloride (4), tetrakis[(4-benzo[d]thiazol-2-ylthio)phthalocyaninato] zinc(II) (5) and tetrakis[(4-benzo[d]thiazol-2-ylthio)phthalocyaninato] gallium(III) chloride (6). Trends in the electronic structures were identified through a comparison of the UV–vis absorption and magnetic circular dichroism (MCD) spectroscopy of the complexes and calculated spectra predicted by time dependent density functional theory (TD-DFT). Of all the complexes and nanoconjugates, complex 2 (containing sulphur linkages and In as a central metal) gave the best optical limiting behaviour.
- Full Text:
- Date Issued: 2017