The effect of appetite suppressants on pineal function
- Authors: Mchunu, Bongani Isaac
- Date: 1994
- Subjects: Pineal gland -- Research , Pineal gland -- Secretions , Appetite depressants -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4038 , http://hdl.handle.net/10962/d1004098 , Pineal gland -- Research , Pineal gland -- Secretions , Appetite depressants -- Physiological effect
- Description: The pineal gland has become the subject of considerable investigation as it provides a productive experimental model for studying circadian rhythms and regulation of end organs. In the rat, the pineal gland provides a convenient model for investigating the noradrenergic receptor system and the effects of various drugs on this system. The effect of appetite suppressants on the rat pineal gland function is described. Appetite suppressants increase melatonin synthesis in organ cultures of rat pineal glands. This effect appears to be mediated by noradrenaline acting on β-adrenoceptors on the pinealocyte membrane. When β-adrenoceptors are blocked, the appetite suppressant-induced rise in melatonin synthesis is prevented. Depletion of noradrenaline in sympathetic nerve terminals also prevented the appetite suppressant-induced rise in melatonin synthesis. Activation of β-adrenoceptors is followed by a rise in N-acetyltransferase activity via a cyclic adenosine monophosphate second messenger system. The effect of appetite suppressants on the activity of liver tryptophan pyrrolase was also investigated. The activity of this enzyme is an important determinant of tryptophan availability to the brain and consequently of brain serotonin levels. The results show that appetite suppressants inhibit both holoenzyme and total enzyme activities of tryptophan pyrrolase. This finding suggests that appetite suppressants may act by inhibiting tryptophan pyrrolase activity thereby increasing brain serotonin, a phenomenon known to be associated with anorexia. There are two possible mechanisms by which appetite suppressants inhibit tryptophan pyrrolase activity. Firstly, these agents, being drugs of dependence, may increase liver NADPH concentrations which inhibit pyrrolase activity. Secondly, appetite suppressants may act on the pineal gland to stimulate melatonin synthesis. Melatonin inhibits pyrrolase activity in a dose-dependent manner. This inhibition will elevate plasma tryptophan levels which result in a rise in brain serotonin synthesis. The present study suggests a possible relationship between the pineal gland and appetite centres in the hypothalamus. Melatonin may have a direct effect on appetite centres since food restriction is associated with an increased melatonin binding in the hypothalamus. If this possible relationship can be extended, melatonin can open new possibilities for the control of food intake and consequently, of pathological obesity.
- Full Text:
- Date Issued: 1994
- Authors: Mchunu, Bongani Isaac
- Date: 1994
- Subjects: Pineal gland -- Research , Pineal gland -- Secretions , Appetite depressants -- Physiological effect
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4038 , http://hdl.handle.net/10962/d1004098 , Pineal gland -- Research , Pineal gland -- Secretions , Appetite depressants -- Physiological effect
- Description: The pineal gland has become the subject of considerable investigation as it provides a productive experimental model for studying circadian rhythms and regulation of end organs. In the rat, the pineal gland provides a convenient model for investigating the noradrenergic receptor system and the effects of various drugs on this system. The effect of appetite suppressants on the rat pineal gland function is described. Appetite suppressants increase melatonin synthesis in organ cultures of rat pineal glands. This effect appears to be mediated by noradrenaline acting on β-adrenoceptors on the pinealocyte membrane. When β-adrenoceptors are blocked, the appetite suppressant-induced rise in melatonin synthesis is prevented. Depletion of noradrenaline in sympathetic nerve terminals also prevented the appetite suppressant-induced rise in melatonin synthesis. Activation of β-adrenoceptors is followed by a rise in N-acetyltransferase activity via a cyclic adenosine monophosphate second messenger system. The effect of appetite suppressants on the activity of liver tryptophan pyrrolase was also investigated. The activity of this enzyme is an important determinant of tryptophan availability to the brain and consequently of brain serotonin levels. The results show that appetite suppressants inhibit both holoenzyme and total enzyme activities of tryptophan pyrrolase. This finding suggests that appetite suppressants may act by inhibiting tryptophan pyrrolase activity thereby increasing brain serotonin, a phenomenon known to be associated with anorexia. There are two possible mechanisms by which appetite suppressants inhibit tryptophan pyrrolase activity. Firstly, these agents, being drugs of dependence, may increase liver NADPH concentrations which inhibit pyrrolase activity. Secondly, appetite suppressants may act on the pineal gland to stimulate melatonin synthesis. Melatonin inhibits pyrrolase activity in a dose-dependent manner. This inhibition will elevate plasma tryptophan levels which result in a rise in brain serotonin synthesis. The present study suggests a possible relationship between the pineal gland and appetite centres in the hypothalamus. Melatonin may have a direct effect on appetite centres since food restriction is associated with an increased melatonin binding in the hypothalamus. If this possible relationship can be extended, melatonin can open new possibilities for the control of food intake and consequently, of pathological obesity.
- Full Text:
- Date Issued: 1994
Development of integrated biological processing for the biodesalination of sulphate- and metal-rich wastewaters
- Authors: Boshoff, Genevieve Ann
- Date: 1999
- Subjects: Sewage -- Purification -- Biological treatment Sulfates Mineral industries -- Environmental aspects
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3899 , http://hdl.handle.net/10962/d1003958
- Description: The substantial pollution threat to the South African environment from acid mine drainage (AMD) effluents has been well documented. Due to the juvenile nature of acidity in these flows, any remediation strategies implemented will need to function effectively and at low cost for long periods of time. The widespread use of sulphate reducing biological systems for the treatment of such effluents, and in particular large volume flows, has been limited. The supply of inexpensive electron donor and carbon sources, as well as appropriate reactor designs capable of handling large volume flows, have been identified as among the principal factors limiting development of this technology. The broad aim of the research programme reported here was to undertake an evaluation of the feasibility of an algal-bacterial integrated ponding system for the treatment of AMD, and the waste stabilisation pond (WSP) as an appropriate reactor design for this application. The study attempted to demonstrate the feasibility of individual unit operations in a proposed process train using complex organic carbon serving as the electron donor source for the sulphate reducing bacteria (SRB). Studies were undertaken as laboratory and pilot-scale investigations. Tannery effluent was shown to be a functional carbon source for biological sulphate reduction, with effective removal of sulphate and organics being recorded. In turn, the use of biological sulphate reduction for the treatment of tannery effluent was demonstrated. Algal biomass was shown in laboratory studies to function as an effective carbon source for biological sulphate reduction. It is known that micro-algae produce large quantities of photosynthate which is released to the growth medium under conditions of physiological stress. The potential for the use of photosynthate production in high rate algal ponding systems and its manipulation and use as a sustainable carbon source for sulphate reduction was investigated. Growth of a mixed culture of Dunaliella under conditions of light, temperature and salinity stress demonstrated production of large quantities of organic carbon. However, growth was inhibited at high temperatures. An elevation of salinity levels led to a decrease in growth of Dunaliella, but to increased organic carbon production. Spirulina spp., on the other hand, grew well at higher temperatures but showed the highest organic carbon production, and release to the medium, under low light conditions. These results led to a proposed process for the integration of algal ponding into an integrated system for the treatment of AMD. The algal biomass may be fed into the anaerobic digester as a carbon source, or it may be passed into a High Rate Algal Pond (HRAP) where it is stressed to enhance the organic carbon content. This can then be fed into the anaerobic digester as a carbon source. The impact of high levels of sulphide in the water feeding to the algal growth compartment was investigated. Spirulina spp. isolated from a tannery waste stabilisation pond was shown to be a sulphidophilic strain of cyanobacterium, capable of being adapted to high concentrations of sulphide. Dunaliella salina on the other hand was less tolerant. These results demonstrated the practical use of algal biomass providing an oxygen-rich cap for odour control on the surface of the facultative pond as well for the secondary treatment of sulphide-rich overflow to the High Rate Algal Pond. The ability of micro-algae to elevate the pH of their surrounding environment was evaluated as a functional precipitant and neutralisation reagent for acidic metal containing wastewater. Spirulina spp. was shown to perform effectively. D. salina was less functional in this environment. Anacystis spp. was effective in elevating the pH of a defined medium as well as a zinc-rich effluent. These results indicated the practicality of a neutralising function for algal ponds in the treatment of AMD. Metal removal in the system was found to be a combined function of sulphide precipitation, removal by binding to micro-algal biomass and extracellular polymeric substances. The feasibility of waste stabilisation ponding technology use for the treatment of large volume AMD effluents was provisionally demonstrated. It was shown that complex carbon sources would be used as efficient electron donors for sulphate reduction. The integration of algal ponding into the system provides for the generation of a sustainable carbon source, odour control with the recycling of oxygen-rich water onto the top of the facultative pond, secondary treatment of the anaerobic digester overflow, and the neutralisation of the incoming acidic effluents and removal of heavy metals. Integration of the individual unit operations, the feasibility of which has been provisionally demonstrated in this study, into a continuous process train is being investigated in follow-upstudies.
- Full Text:
- Date Issued: 1999
- Authors: Boshoff, Genevieve Ann
- Date: 1999
- Subjects: Sewage -- Purification -- Biological treatment Sulfates Mineral industries -- Environmental aspects
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3899 , http://hdl.handle.net/10962/d1003958
- Description: The substantial pollution threat to the South African environment from acid mine drainage (AMD) effluents has been well documented. Due to the juvenile nature of acidity in these flows, any remediation strategies implemented will need to function effectively and at low cost for long periods of time. The widespread use of sulphate reducing biological systems for the treatment of such effluents, and in particular large volume flows, has been limited. The supply of inexpensive electron donor and carbon sources, as well as appropriate reactor designs capable of handling large volume flows, have been identified as among the principal factors limiting development of this technology. The broad aim of the research programme reported here was to undertake an evaluation of the feasibility of an algal-bacterial integrated ponding system for the treatment of AMD, and the waste stabilisation pond (WSP) as an appropriate reactor design for this application. The study attempted to demonstrate the feasibility of individual unit operations in a proposed process train using complex organic carbon serving as the electron donor source for the sulphate reducing bacteria (SRB). Studies were undertaken as laboratory and pilot-scale investigations. Tannery effluent was shown to be a functional carbon source for biological sulphate reduction, with effective removal of sulphate and organics being recorded. In turn, the use of biological sulphate reduction for the treatment of tannery effluent was demonstrated. Algal biomass was shown in laboratory studies to function as an effective carbon source for biological sulphate reduction. It is known that micro-algae produce large quantities of photosynthate which is released to the growth medium under conditions of physiological stress. The potential for the use of photosynthate production in high rate algal ponding systems and its manipulation and use as a sustainable carbon source for sulphate reduction was investigated. Growth of a mixed culture of Dunaliella under conditions of light, temperature and salinity stress demonstrated production of large quantities of organic carbon. However, growth was inhibited at high temperatures. An elevation of salinity levels led to a decrease in growth of Dunaliella, but to increased organic carbon production. Spirulina spp., on the other hand, grew well at higher temperatures but showed the highest organic carbon production, and release to the medium, under low light conditions. These results led to a proposed process for the integration of algal ponding into an integrated system for the treatment of AMD. The algal biomass may be fed into the anaerobic digester as a carbon source, or it may be passed into a High Rate Algal Pond (HRAP) where it is stressed to enhance the organic carbon content. This can then be fed into the anaerobic digester as a carbon source. The impact of high levels of sulphide in the water feeding to the algal growth compartment was investigated. Spirulina spp. isolated from a tannery waste stabilisation pond was shown to be a sulphidophilic strain of cyanobacterium, capable of being adapted to high concentrations of sulphide. Dunaliella salina on the other hand was less tolerant. These results demonstrated the practical use of algal biomass providing an oxygen-rich cap for odour control on the surface of the facultative pond as well for the secondary treatment of sulphide-rich overflow to the High Rate Algal Pond. The ability of micro-algae to elevate the pH of their surrounding environment was evaluated as a functional precipitant and neutralisation reagent for acidic metal containing wastewater. Spirulina spp. was shown to perform effectively. D. salina was less functional in this environment. Anacystis spp. was effective in elevating the pH of a defined medium as well as a zinc-rich effluent. These results indicated the practicality of a neutralising function for algal ponds in the treatment of AMD. Metal removal in the system was found to be a combined function of sulphide precipitation, removal by binding to micro-algal biomass and extracellular polymeric substances. The feasibility of waste stabilisation ponding technology use for the treatment of large volume AMD effluents was provisionally demonstrated. It was shown that complex carbon sources would be used as efficient electron donors for sulphate reduction. The integration of algal ponding into the system provides for the generation of a sustainable carbon source, odour control with the recycling of oxygen-rich water onto the top of the facultative pond, secondary treatment of the anaerobic digester overflow, and the neutralisation of the incoming acidic effluents and removal of heavy metals. Integration of the individual unit operations, the feasibility of which has been provisionally demonstrated in this study, into a continuous process train is being investigated in follow-upstudies.
- Full Text:
- Date Issued: 1999
An investigation of the role of mitochondrial STAT3 and modulation of Reactive Oxygen Species in adipocyte differentiation
- Authors: Kramer, Adam Hildyard
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54632 , vital:26595
- Description: Stem cells have the ability to differentiate into a myriad of different cell types. The understanding of the differentiation process is of paramount importance if we are to use these cells in the lab as well as in therapeutics. Here, the levels and localization of the signal transducer and activator of transcription 3 (STAT3), with particular attention focused on the mitochondrial serine 727 phosphorylated form of STAT3 (pSTAT3S727) during differentiation, was investigated. Using the murine preadipocyte progenitor cell line 3T3-L1, as well as adipose derived human mesenchymal stem cells (HMSC-ad) as differentiation models, the relative levels of Reactive Oxygen Species (ROS) and the levels and localization of STAT3 were investigated during the differentiation process. ROS is known to play an important signalling role during differentiation and is well reported during the events of adipogenesis. ROS are generated as a by-product in the Electron Transport Chain (ETC), and it has recently been reported that pSTAT3S727 plays an important role at complex I of the ETC. Various techniques including fluorescence confocal microscopy, flow cytometry and Western blots were utilized to investigate the non-canonical role STAT3 plays during adipogenesis. Mitochondrial isolations were performed to investigate the levels of STAT3 in the mitochondria during differentiation. Further to this, an impedance based real time differentiation assay was developed using the xCELLigence Real Time Cell Analyser to monitor differentiation and the affects various compounds, including a STAT3 inhibitor, have on differentiation. Results indicate that upon induction of differentiation, levels of mitochondrial pSTAT3S727 dramatically decrease and leave the mitochondria. This corresponds to increasing levels of ROS. The canonical active form of STAT3 following phosphorylation on tyrosine 705 (pSTAT3Y705) was found to decrease and lose its nuclear localization. These initial results indicate that STAT3 plays an important non-canonical role in the mitochondria during differentiation.
- Full Text:
- Date Issued: 2014
- Authors: Kramer, Adam Hildyard
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54632 , vital:26595
- Description: Stem cells have the ability to differentiate into a myriad of different cell types. The understanding of the differentiation process is of paramount importance if we are to use these cells in the lab as well as in therapeutics. Here, the levels and localization of the signal transducer and activator of transcription 3 (STAT3), with particular attention focused on the mitochondrial serine 727 phosphorylated form of STAT3 (pSTAT3S727) during differentiation, was investigated. Using the murine preadipocyte progenitor cell line 3T3-L1, as well as adipose derived human mesenchymal stem cells (HMSC-ad) as differentiation models, the relative levels of Reactive Oxygen Species (ROS) and the levels and localization of STAT3 were investigated during the differentiation process. ROS is known to play an important signalling role during differentiation and is well reported during the events of adipogenesis. ROS are generated as a by-product in the Electron Transport Chain (ETC), and it has recently been reported that pSTAT3S727 plays an important role at complex I of the ETC. Various techniques including fluorescence confocal microscopy, flow cytometry and Western blots were utilized to investigate the non-canonical role STAT3 plays during adipogenesis. Mitochondrial isolations were performed to investigate the levels of STAT3 in the mitochondria during differentiation. Further to this, an impedance based real time differentiation assay was developed using the xCELLigence Real Time Cell Analyser to monitor differentiation and the affects various compounds, including a STAT3 inhibitor, have on differentiation. Results indicate that upon induction of differentiation, levels of mitochondrial pSTAT3S727 dramatically decrease and leave the mitochondria. This corresponds to increasing levels of ROS. The canonical active form of STAT3 following phosphorylation on tyrosine 705 (pSTAT3Y705) was found to decrease and lose its nuclear localization. These initial results indicate that STAT3 plays an important non-canonical role in the mitochondria during differentiation.
- Full Text:
- Date Issued: 2014
Enhancing the saccharolytic phase of sugar beet pulp via hemicellulase synergy
- Authors: Dredge, Roselyn Ann
- Date: 2010
- Subjects: Sugar plantations , Sugar plantations -- South Africa , Sugar beet industry -- South Africa , Saccharomyces cerevisiae -- Biotechnology , Biomass energy industries -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3955 , http://hdl.handle.net/10962/d1004014 , Sugar plantations , Sugar plantations -- South Africa , Sugar beet industry -- South Africa , Saccharomyces cerevisiae -- Biotechnology , Biomass energy industries -- South Africa
- Description: The sugar beet (Beta vulgaris) plant has in recent years been added to the Biofuel Industrial Strategy (Department of Minerals and Energy, 2007) by the South African government as a crop grown for the production of bio-ethanol. Sugar beet is commonly grown in Europe for the production of sucrose and has recently been cultivated in Cradock and the surrounding areas (Engineering News, 2008). The biofuel industry usually ferments the sucrose with Saccharomyces cerevisiae to yield bio-ethanol. However, researchers are presented with a critical role to increase current yields as there are concerns over the process costs from industrial biotechnologists. The beet factories produce a pulp by-product removed of all sucrose. The hemicellulose-rich pulp can be degraded by microbial enzymes to simple sugars that can be subsequently fermented to bio-ethanol. Thus, the pulp represents a potential source for second generation biofuel. The process of utilising microbial hemicellulases requires an initial chemical pre-treatment step to delignify the sugar beet pulp (SBP). An alkaline pre-treatment with ‘slake lime’ (calcium hydroxide) was investigated using a 23 factorial design and the factors examined were: lime load; temperature and time. The analysed results showed the highest release of reducing sugars at the pre-treatment conditions of: 0.4 g lime / g SBP; 40°C and 36 hours. A partial characterisation of the Clostridium cellulovorans hemicellulases was carried out to verify the optimal activity conditions stated in literature. The highest release of reducing sugars was measured at pH 6.5 – 7.0 and at 45°C for arabinofuranosidase A (ArfA); at pH 5.5 and 40°C for mannanase A (ManA) and pH 5.0 – 6.0 and 45°C for xylanase A (XynA). Temperature studies showed that a complete loss of enzymatic activity occurred after 11 hours for ManA; and 84-96 hours for ArfA. XynA was still active after 120 hours. The optimised lime pre-treated SBP was subsequently degraded using various combinations and percentages of C. cellulovorans ArfA, ManA and XynA to determine the maximal release of reducing sugars. Synergistically, the highest synergy was observed at 75% ArfA and 25% ManA, with a specific activity of 2.9 μmol/min/g protein. However, the highest release of sugars was observed at 4.2 μmol/min/g protein at 100% ArfA. This study has initiated the research within South Africa on SBP and its degradation by C. cellulovorans. Preliminary studies show that SBP has the potential to be utilised as a second generation biofuel source.
- Full Text:
- Date Issued: 2010
- Authors: Dredge, Roselyn Ann
- Date: 2010
- Subjects: Sugar plantations , Sugar plantations -- South Africa , Sugar beet industry -- South Africa , Saccharomyces cerevisiae -- Biotechnology , Biomass energy industries -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3955 , http://hdl.handle.net/10962/d1004014 , Sugar plantations , Sugar plantations -- South Africa , Sugar beet industry -- South Africa , Saccharomyces cerevisiae -- Biotechnology , Biomass energy industries -- South Africa
- Description: The sugar beet (Beta vulgaris) plant has in recent years been added to the Biofuel Industrial Strategy (Department of Minerals and Energy, 2007) by the South African government as a crop grown for the production of bio-ethanol. Sugar beet is commonly grown in Europe for the production of sucrose and has recently been cultivated in Cradock and the surrounding areas (Engineering News, 2008). The biofuel industry usually ferments the sucrose with Saccharomyces cerevisiae to yield bio-ethanol. However, researchers are presented with a critical role to increase current yields as there are concerns over the process costs from industrial biotechnologists. The beet factories produce a pulp by-product removed of all sucrose. The hemicellulose-rich pulp can be degraded by microbial enzymes to simple sugars that can be subsequently fermented to bio-ethanol. Thus, the pulp represents a potential source for second generation biofuel. The process of utilising microbial hemicellulases requires an initial chemical pre-treatment step to delignify the sugar beet pulp (SBP). An alkaline pre-treatment with ‘slake lime’ (calcium hydroxide) was investigated using a 23 factorial design and the factors examined were: lime load; temperature and time. The analysed results showed the highest release of reducing sugars at the pre-treatment conditions of: 0.4 g lime / g SBP; 40°C and 36 hours. A partial characterisation of the Clostridium cellulovorans hemicellulases was carried out to verify the optimal activity conditions stated in literature. The highest release of reducing sugars was measured at pH 6.5 – 7.0 and at 45°C for arabinofuranosidase A (ArfA); at pH 5.5 and 40°C for mannanase A (ManA) and pH 5.0 – 6.0 and 45°C for xylanase A (XynA). Temperature studies showed that a complete loss of enzymatic activity occurred after 11 hours for ManA; and 84-96 hours for ArfA. XynA was still active after 120 hours. The optimised lime pre-treated SBP was subsequently degraded using various combinations and percentages of C. cellulovorans ArfA, ManA and XynA to determine the maximal release of reducing sugars. Synergistically, the highest synergy was observed at 75% ArfA and 25% ManA, with a specific activity of 2.9 μmol/min/g protein. However, the highest release of sugars was observed at 4.2 μmol/min/g protein at 100% ArfA. This study has initiated the research within South Africa on SBP and its degradation by C. cellulovorans. Preliminary studies show that SBP has the potential to be utilised as a second generation biofuel source.
- Full Text:
- Date Issued: 2010
Fundamental investigations into the factors affecting the response of laccase-based electrochemical biosensors
- Authors: Fogel, Ronen
- Date: 2011
- Subjects: Laccase Phenols Biosensors
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4073 , http://hdl.handle.net/10962/d1007166
- Description: Given their widespread effects and distribution in both natural and industrial environments, the monitoring of phenolic compounds is of considerable analytical interest. Electrochemical biosensor technologies, in particular those comprising laccase enzymes, afford many potential benefits to address this analytical need. However, several key factors affecting sensor response currently limit their applicability. This Thesis reports on the fabrication and optimisation of an electrochemical laccase-based biosensor towards the application of the monitoring of phenolic compounds. Selected factors considered to affect sensor response were investigated using the optimised biosensor. These included: electrochemical, biochemical and substrate-dependent factors, which were found to intersect in modulating biosensor response signals. Through the application of transducer-dependent and substrate-dependent parameters, the selective and simultaneous detection of a mixture of different phenolic analytes is successfully demonstrated. This Thesis also investigates the use of Quartz-Crystal Microbalance with Dissipation (QCM-D) technology, an analytical technique that measures physical parameters of thin-film structures, towards the successful monitoring of enzyme immobilisation strategies. These strategies are fundamental to the successful fabrication of biosensors, and the real-time monitoring of immobilised film formations is of considerable research interest. In the studies reported on in this Thesis, QCM-D technology was demonstrated to be an effective complementary technology in the prediction of film immobilisation techniques on the resultant biochemical kinetics of immobilised enzymes.
- Full Text:
- Date Issued: 2011
- Authors: Fogel, Ronen
- Date: 2011
- Subjects: Laccase Phenols Biosensors
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4073 , http://hdl.handle.net/10962/d1007166
- Description: Given their widespread effects and distribution in both natural and industrial environments, the monitoring of phenolic compounds is of considerable analytical interest. Electrochemical biosensor technologies, in particular those comprising laccase enzymes, afford many potential benefits to address this analytical need. However, several key factors affecting sensor response currently limit their applicability. This Thesis reports on the fabrication and optimisation of an electrochemical laccase-based biosensor towards the application of the monitoring of phenolic compounds. Selected factors considered to affect sensor response were investigated using the optimised biosensor. These included: electrochemical, biochemical and substrate-dependent factors, which were found to intersect in modulating biosensor response signals. Through the application of transducer-dependent and substrate-dependent parameters, the selective and simultaneous detection of a mixture of different phenolic analytes is successfully demonstrated. This Thesis also investigates the use of Quartz-Crystal Microbalance with Dissipation (QCM-D) technology, an analytical technique that measures physical parameters of thin-film structures, towards the successful monitoring of enzyme immobilisation strategies. These strategies are fundamental to the successful fabrication of biosensors, and the real-time monitoring of immobilised film formations is of considerable research interest. In the studies reported on in this Thesis, QCM-D technology was demonstrated to be an effective complementary technology in the prediction of film immobilisation techniques on the resultant biochemical kinetics of immobilised enzymes.
- Full Text:
- Date Issued: 2011
Functional characterization of the nuclear localisation and export signals of the human Hsp70/Hsp90 organising protein (HOP)
- Authors: Rousseau, Robert
- Date: 2019
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97819 , vital:31489
- Description: Expected release date-April 2021
- Full Text: false
- Date Issued: 2019
- Authors: Rousseau, Robert
- Date: 2019
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97819 , vital:31489
- Description: Expected release date-April 2021
- Full Text: false
- Date Issued: 2019
An investigation into the antioxidative potential and regulatory aspects of liver tryptophan 2,3-dioxygenase by tryptophan and related analogues
- Authors: Antunes, Ana Paula Martins
- Date: 1998
- Subjects: Tryptophan -- Physiological effect , Antioxidants , Liver
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4010 , http://hdl.handle.net/10962/d1004070 , Tryptophan -- Physiological effect , Antioxidants , Liver
- Description: The amino acid, tryptophan, obtained through dietary means, is metabolised by the enzymes tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase. All the enzymes have an effect on circulating tryptophan levels, especially TDO, since it is the major site of tryptophan catabolism in the liver and results in the production of kynurenine metabolites, viz. kynurenine, kynurenic acid, 3-hydroxyanthranilic acid and quinolinic acid. Extrahepatically, IDO is responsible for the synthesis of the kynurenine metabolites. Tryptophan 2,3-dioxygenase and IDO activity is increased by hormones or substrates such as tryptophan, and inflammation, in the case of IDO. Tryptophan availability for serotonin (5-HT) synthesis by the enzyme tryptophan hydroxylase is primarily dependent on TDO activity. A study was attempted in order to ascertain whether any of the endogenous metabolites of the kynurenine and serotonergic pathways would be able to inhibit TDO activity. Results showed that although the kynurenines had no effect, the indoleamines, except for the indoleacetic acids, were able to reduce TDO activity. 6-Methoxy-2-benzoxazolinone (6-MBOA), a structural analogue to melatonin, was the most potent inhibitor with a reduction in activity of 55 % compared with the control. The pineal gland in the rat brain has been shown to have the highest IDO activity. With induction, the kynurenine metabolite concentrations of kynurenic acid and quinolinic acid are increased. The effects of both compounds were determined on the serotonergic pathway. Although kynurenic acid produced no significant effect, quinolinic acid significantly reduced N-acetylserotonin and melatonin synthesis at concentrations of lOJLM and 100 JLM respectively. Many authors have implicated oxygen derived species as causative agents in the important neurodegenerative disorders such as Parkinson's and Huntington's disease. Increased radical generation and lipid peroxidation have been suggested to be responsible for the toxic destruction of neurons, especially in the brain because of its high lipid content and oxygen demand. The brain is therefore vulnerable to oxidative attack. During inflammatory diseases, IDO is induced with a resultant increase in kynurenines. This study was also an attempt at determining the effect of kynurenines on lipid peroxidation. All metabolites of the kynurenine pathway were able to induce lipid peroxidation significantly. The antioxidative potential of various tryptophan analogues, viz. serotonin, melatonin and 6-methoxy-2-benzoxazolinone, was determined using quinolinic acid-induced lipid peroxidation. Serotonin, melatonin and 6-MBOA were able to significantly reduce quinolinic acid-induced lipid peroxidation.
- Full Text:
- Date Issued: 1998
- Authors: Antunes, Ana Paula Martins
- Date: 1998
- Subjects: Tryptophan -- Physiological effect , Antioxidants , Liver
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4010 , http://hdl.handle.net/10962/d1004070 , Tryptophan -- Physiological effect , Antioxidants , Liver
- Description: The amino acid, tryptophan, obtained through dietary means, is metabolised by the enzymes tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase. All the enzymes have an effect on circulating tryptophan levels, especially TDO, since it is the major site of tryptophan catabolism in the liver and results in the production of kynurenine metabolites, viz. kynurenine, kynurenic acid, 3-hydroxyanthranilic acid and quinolinic acid. Extrahepatically, IDO is responsible for the synthesis of the kynurenine metabolites. Tryptophan 2,3-dioxygenase and IDO activity is increased by hormones or substrates such as tryptophan, and inflammation, in the case of IDO. Tryptophan availability for serotonin (5-HT) synthesis by the enzyme tryptophan hydroxylase is primarily dependent on TDO activity. A study was attempted in order to ascertain whether any of the endogenous metabolites of the kynurenine and serotonergic pathways would be able to inhibit TDO activity. Results showed that although the kynurenines had no effect, the indoleamines, except for the indoleacetic acids, were able to reduce TDO activity. 6-Methoxy-2-benzoxazolinone (6-MBOA), a structural analogue to melatonin, was the most potent inhibitor with a reduction in activity of 55 % compared with the control. The pineal gland in the rat brain has been shown to have the highest IDO activity. With induction, the kynurenine metabolite concentrations of kynurenic acid and quinolinic acid are increased. The effects of both compounds were determined on the serotonergic pathway. Although kynurenic acid produced no significant effect, quinolinic acid significantly reduced N-acetylserotonin and melatonin synthesis at concentrations of lOJLM and 100 JLM respectively. Many authors have implicated oxygen derived species as causative agents in the important neurodegenerative disorders such as Parkinson's and Huntington's disease. Increased radical generation and lipid peroxidation have been suggested to be responsible for the toxic destruction of neurons, especially in the brain because of its high lipid content and oxygen demand. The brain is therefore vulnerable to oxidative attack. During inflammatory diseases, IDO is induced with a resultant increase in kynurenines. This study was also an attempt at determining the effect of kynurenines on lipid peroxidation. All metabolites of the kynurenine pathway were able to induce lipid peroxidation significantly. The antioxidative potential of various tryptophan analogues, viz. serotonin, melatonin and 6-methoxy-2-benzoxazolinone, was determined using quinolinic acid-induced lipid peroxidation. Serotonin, melatonin and 6-MBOA were able to significantly reduce quinolinic acid-induced lipid peroxidation.
- Full Text:
- Date Issued: 1998
Determination of the botanical composition of black rhinoceros (Diceros bicornis) dung using the rbcL gene as a molecular marker, and analysis of antioxidant and phenolic content of its browse
- Authors: Bulani, Siyavuya Ishmael
- Date: 2007 , 2013-06-25
- Subjects: Black rhinoceros -- Food , Black rhinoceros -- South Africa -- Eastern Cape , Browse (Animal food) -- Analysis -- South Africa -- Eastern Cape , Plant ecology -- South Africa -- Eastern Cape , Genetic markers , Black rhinoceros -- Manure -- Analysis , Phenols , Antioxidants
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4070 , http://hdl.handle.net/10962/d1006468 , Black rhinoceros -- Food , Black rhinoceros -- South Africa -- Eastern Cape , Browse (Animal food) -- Analysis -- South Africa -- Eastern Cape , Plant ecology -- South Africa -- Eastern Cape , Genetic markers , Black rhinoceros -- Manure -- Analysis , Phenols , Antioxidants
- Description: The black rhinoceros remains one of the world's extremely endangered species despite a variety of policies to protect it. The black rhinoceros population at the Great Fish River Reserve (GFRR) in the Eastern Cape in South Africa has increased steadily since their re-introduction in 1986. This megaherbivore is a browser, with a diet obtained largely from the short and medium succulent thicket of the GFRR. Knowledge of the preferential diet of the black rhinoceros on the reserve is an important factor for the effective management of the land and the herbivores that compete for its resources. The dietary preferences of the black rhinoceros at the reserve have been established using backtracking methods. In this study the rbcL gene was used to establish an rbcL gene database of the plants from the GFRR and determine the botanical composition of the black rhinoceros dung from the GFRR. Due to the limited number of rbcL gene plant sequences from the GFRR deposited in the GenBank database, 18 plant species from the GFRR were sequenced. Sequence analyses between the partial rbcL gene sequences generated were able to distinguish between plants down to species level. Plant species from the family Euphorbiaceae and Fabaceae showed sequence variation at intra-specific level compared to those of Tiliaceae which were more conserved. The generated rbcL gene sequences from seasonal dung samples were compared to the rbcL gene sequenced from 18 plant species obtained from the GFRR and those from the GenBank database. A wide range of plant species were identified from the dung samples. There were no major differences in botanical composition between the dung samples, except that Grewia spp. were found to dominate in almost all seasons. The results obtained on the free radical scavenging activity of the extracts against 2,2-Diphenyl-l-picrylhydrazyl (DPPH) increased in the order of methanol > ethyl acetate > chloroform. The DPPH free radical scavenging activity of the methanol plant extracts increased in the order Brachylaena elliptica > Plumbago auriculata > Grewia robusta > Azima tetracantha. Methanol extracts on the TLC plate sprayed with Fe³⁺-2,4,6-Tri-2-pyridyl-s-triazine (TPTZ) showed that the compounds present in the extracts react differently to ferric ion, with most compounds unable to reduce ferric ion. Furthermore the methanol extracts were able to exhibit reduction potentials vs. Ag/AgCl at low concentrations. The compounds in the extracts were shown to be phenolic acids and flavonoid glycosides.
- Full Text:
- Date Issued: 2007
- Authors: Bulani, Siyavuya Ishmael
- Date: 2007 , 2013-06-25
- Subjects: Black rhinoceros -- Food , Black rhinoceros -- South Africa -- Eastern Cape , Browse (Animal food) -- Analysis -- South Africa -- Eastern Cape , Plant ecology -- South Africa -- Eastern Cape , Genetic markers , Black rhinoceros -- Manure -- Analysis , Phenols , Antioxidants
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4070 , http://hdl.handle.net/10962/d1006468 , Black rhinoceros -- Food , Black rhinoceros -- South Africa -- Eastern Cape , Browse (Animal food) -- Analysis -- South Africa -- Eastern Cape , Plant ecology -- South Africa -- Eastern Cape , Genetic markers , Black rhinoceros -- Manure -- Analysis , Phenols , Antioxidants
- Description: The black rhinoceros remains one of the world's extremely endangered species despite a variety of policies to protect it. The black rhinoceros population at the Great Fish River Reserve (GFRR) in the Eastern Cape in South Africa has increased steadily since their re-introduction in 1986. This megaherbivore is a browser, with a diet obtained largely from the short and medium succulent thicket of the GFRR. Knowledge of the preferential diet of the black rhinoceros on the reserve is an important factor for the effective management of the land and the herbivores that compete for its resources. The dietary preferences of the black rhinoceros at the reserve have been established using backtracking methods. In this study the rbcL gene was used to establish an rbcL gene database of the plants from the GFRR and determine the botanical composition of the black rhinoceros dung from the GFRR. Due to the limited number of rbcL gene plant sequences from the GFRR deposited in the GenBank database, 18 plant species from the GFRR were sequenced. Sequence analyses between the partial rbcL gene sequences generated were able to distinguish between plants down to species level. Plant species from the family Euphorbiaceae and Fabaceae showed sequence variation at intra-specific level compared to those of Tiliaceae which were more conserved. The generated rbcL gene sequences from seasonal dung samples were compared to the rbcL gene sequenced from 18 plant species obtained from the GFRR and those from the GenBank database. A wide range of plant species were identified from the dung samples. There were no major differences in botanical composition between the dung samples, except that Grewia spp. were found to dominate in almost all seasons. The results obtained on the free radical scavenging activity of the extracts against 2,2-Diphenyl-l-picrylhydrazyl (DPPH) increased in the order of methanol > ethyl acetate > chloroform. The DPPH free radical scavenging activity of the methanol plant extracts increased in the order Brachylaena elliptica > Plumbago auriculata > Grewia robusta > Azima tetracantha. Methanol extracts on the TLC plate sprayed with Fe³⁺-2,4,6-Tri-2-pyridyl-s-triazine (TPTZ) showed that the compounds present in the extracts react differently to ferric ion, with most compounds unable to reduce ferric ion. Furthermore the methanol extracts were able to exhibit reduction potentials vs. Ag/AgCl at low concentrations. The compounds in the extracts were shown to be phenolic acids and flavonoid glycosides.
- Full Text:
- Date Issued: 2007
Evaluation of a 'defouling on demand' strategy for the ultrafiltration of brown water using activatable enzymes
- Authors: Buchanan, K
- Date: 1999
- Subjects: Water -- Purification , Ultrafiltration , Enzymes , Membranes (Technology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3904 , http://hdl.handle.net/10962/d1003963 , Water -- Purification , Ultrafiltration , Enzymes , Membranes (Technology)
- Description: New approaches to the application of membranes for the production of potable water are constantly being sought after in anticipation of future demands for increasingly rigorous water quality standards and reduced environmental impact. A major limitation, however, is membrane fouling, which manifests itself as a continual reduction in flux over time and thus restricts the practical implementation to restore flux. Mechanical and chemical methods have been implemented to restore flux to ultrafiltration systems, but these either result in a break in the process operation or lead to membrane damage or additional pollution problems. This project was aimed to develop a 'defouling on demand' stategy for cleaning membranes used during brown water ultrafiltration. The process involves the use of activatable peroxidase enzymes, which were immobilised onto flat sheet polysulphone membranes. Following flux decline which reaches a critical level with the build-up of the foulant layer, the immobilised enzyme layer was activated by the addition of a chemical activator solution, in this case hydrogen peroxidase and manganous sulphate. Manganese peroxidase was found to be the most effective enzyme at alleviating fouling by degrading the foulant layer formed on the membrane surface and hence restored flux to the ultrafiltration system. A 93% flux improvement was observed when manganese peroxidase was activated when 800uM manganous sulphate, 100mM hydrogen peroxide were added in the presence of a manganese chelator, lactate. The concept and the potential benefits this system holds will be discussed in further detail.
- Full Text:
- Date Issued: 1999
- Authors: Buchanan, K
- Date: 1999
- Subjects: Water -- Purification , Ultrafiltration , Enzymes , Membranes (Technology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3904 , http://hdl.handle.net/10962/d1003963 , Water -- Purification , Ultrafiltration , Enzymes , Membranes (Technology)
- Description: New approaches to the application of membranes for the production of potable water are constantly being sought after in anticipation of future demands for increasingly rigorous water quality standards and reduced environmental impact. A major limitation, however, is membrane fouling, which manifests itself as a continual reduction in flux over time and thus restricts the practical implementation to restore flux. Mechanical and chemical methods have been implemented to restore flux to ultrafiltration systems, but these either result in a break in the process operation or lead to membrane damage or additional pollution problems. This project was aimed to develop a 'defouling on demand' stategy for cleaning membranes used during brown water ultrafiltration. The process involves the use of activatable peroxidase enzymes, which were immobilised onto flat sheet polysulphone membranes. Following flux decline which reaches a critical level with the build-up of the foulant layer, the immobilised enzyme layer was activated by the addition of a chemical activator solution, in this case hydrogen peroxidase and manganous sulphate. Manganese peroxidase was found to be the most effective enzyme at alleviating fouling by degrading the foulant layer formed on the membrane surface and hence restored flux to the ultrafiltration system. A 93% flux improvement was observed when manganese peroxidase was activated when 800uM manganous sulphate, 100mM hydrogen peroxide were added in the presence of a manganese chelator, lactate. The concept and the potential benefits this system holds will be discussed in further detail.
- Full Text:
- Date Issued: 1999
The druggable antimalarial target 1-deoxy-D-xylulose-5-phosphate reductoisomerase: purfication, kinetic characterization and inhibition studies
- Authors: Goble, Jessica Leigh
- Date: 2011
- Subjects: Antimalarials -- Development Plasmodium falciparum Drug development Plasmodium falciparum -- Purification Plasmodium falciparum -- Inhibitors Enzyme kinetics Malaria -- Chemotherapy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3949 , http://hdl.handle.net/10962/d1004008
- Description: Plasmodium falciparum 1–deoxy–D–xylulose–5 phosphatereductoisomerase (PfDXR) plays a role in isoprenoid biosynthesis in the malaria parasite and is absent in the human host, making this parasite enzyme an attractive target for antimalarial drug design. To characterize PfDXR, it is necessary to produce large quantities of the enzyme in a soluble and functional form. However, the over–production of malarial proteins in prokaryotic host systems often results in the formation of truncated proteins or insoluble protein aggregates. A heterologous expression system was developed for the production of active PfDXR using codon harmonization and tight control of expression in the presence of lac repressor. Yields of up to 2 mg/l of enzyme were reported using the optimised expression system, which is 8 to 10– fold greater than previously reported yields. The kinetic parameters Km, Vmax and kcat were determined for PfDXR; values reported in this study were consistent with those reported in the literature for other DXR enzymes. A three–dimensional model of the malarial drug target protein PfDXR was generated, and validated using structure–checking programs and protein docking studies. Structural and functional features unique to PfDXR were identified using the model and comparative sequence analyses with apicomplexan and non–apicomplexan DXR proteins. Residues Val44 and Asn45, essential for NADPH binding; and catalytic hatch residues Lys224 and Lys226, which are unique to the species of Plasmodium, were mutated to resemble those of E. coli DXR. Interestingly,these mutations resulted in significant reductions in substrate affinity, when compared to the unmutated PfDXR. Mutant enzymes PfDXR(VN43,44AG) and PfDXR(KK224,226NS) also demonstrated a decreased ability to turnover substrate by 4–fold and 2–fold respectively. This study indicates a difference in the role of the catalytic hatch of PfDXR with regards to the way in which it captures substrates. The study also highlights subtle differences in cofactor binding to PfDXR, compared with the well characterized EcDXR enzyme. The validated PfDXR model was also used to develop a novel efficient in silico screening method for potential tool compounds for use in the rational design of novel DXR inhibitors. Following in silico screening of 46 potential DXR inhibitors, a two–tiered in vitro screening approach was undertaken. DXR inhibition was assessed for the 46 novel compounds using an NADPH– ependant DXP enzyme inhibition assay and antimalarial potential was assessed using P.falciparum–infected erythrocyte growth assays. Select compounds were tested in human cells in order to determine whether they were toxic to the host. From the parallel in silico and in vitro drug screening, it was evident that only a single compound demonstrated reasonable potential binding to DXR (determined using in silico docking), inhibited DXR in vitro and inhibited P. falciparum growth, without being toxic to human cells. Its potential as a lead compound in antimalarial drug development is therefore feasible. Two outcomes were evident from this work. Firstly, analogues of known antimalarial natural products can be screened against malaria, which may then lead towards the rational design of novel compounds that are effective against a specific antimalarial drug target enzyme, such as PfDXR. Secondly, the rational design of novel compounds against a specific antimalarial drug target enzyme can be untaken by adopting a coupled in silico and in vitro approach to drug discovery.
- Full Text:
- Date Issued: 2011
- Authors: Goble, Jessica Leigh
- Date: 2011
- Subjects: Antimalarials -- Development Plasmodium falciparum Drug development Plasmodium falciparum -- Purification Plasmodium falciparum -- Inhibitors Enzyme kinetics Malaria -- Chemotherapy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3949 , http://hdl.handle.net/10962/d1004008
- Description: Plasmodium falciparum 1–deoxy–D–xylulose–5 phosphatereductoisomerase (PfDXR) plays a role in isoprenoid biosynthesis in the malaria parasite and is absent in the human host, making this parasite enzyme an attractive target for antimalarial drug design. To characterize PfDXR, it is necessary to produce large quantities of the enzyme in a soluble and functional form. However, the over–production of malarial proteins in prokaryotic host systems often results in the formation of truncated proteins or insoluble protein aggregates. A heterologous expression system was developed for the production of active PfDXR using codon harmonization and tight control of expression in the presence of lac repressor. Yields of up to 2 mg/l of enzyme were reported using the optimised expression system, which is 8 to 10– fold greater than previously reported yields. The kinetic parameters Km, Vmax and kcat were determined for PfDXR; values reported in this study were consistent with those reported in the literature for other DXR enzymes. A three–dimensional model of the malarial drug target protein PfDXR was generated, and validated using structure–checking programs and protein docking studies. Structural and functional features unique to PfDXR were identified using the model and comparative sequence analyses with apicomplexan and non–apicomplexan DXR proteins. Residues Val44 and Asn45, essential for NADPH binding; and catalytic hatch residues Lys224 and Lys226, which are unique to the species of Plasmodium, were mutated to resemble those of E. coli DXR. Interestingly,these mutations resulted in significant reductions in substrate affinity, when compared to the unmutated PfDXR. Mutant enzymes PfDXR(VN43,44AG) and PfDXR(KK224,226NS) also demonstrated a decreased ability to turnover substrate by 4–fold and 2–fold respectively. This study indicates a difference in the role of the catalytic hatch of PfDXR with regards to the way in which it captures substrates. The study also highlights subtle differences in cofactor binding to PfDXR, compared with the well characterized EcDXR enzyme. The validated PfDXR model was also used to develop a novel efficient in silico screening method for potential tool compounds for use in the rational design of novel DXR inhibitors. Following in silico screening of 46 potential DXR inhibitors, a two–tiered in vitro screening approach was undertaken. DXR inhibition was assessed for the 46 novel compounds using an NADPH– ependant DXP enzyme inhibition assay and antimalarial potential was assessed using P.falciparum–infected erythrocyte growth assays. Select compounds were tested in human cells in order to determine whether they were toxic to the host. From the parallel in silico and in vitro drug screening, it was evident that only a single compound demonstrated reasonable potential binding to DXR (determined using in silico docking), inhibited DXR in vitro and inhibited P. falciparum growth, without being toxic to human cells. Its potential as a lead compound in antimalarial drug development is therefore feasible. Two outcomes were evident from this work. Firstly, analogues of known antimalarial natural products can be screened against malaria, which may then lead towards the rational design of novel compounds that are effective against a specific antimalarial drug target enzyme, such as PfDXR. Secondly, the rational design of novel compounds against a specific antimalarial drug target enzyme can be untaken by adopting a coupled in silico and in vitro approach to drug discovery.
- Full Text:
- Date Issued: 2011
Biological synthesis of metallic nanoparticles and their interactions with various biomedical targets
- Authors: Sennuga, Afolake Temitope
- Date: 2012
- Subjects: Nanoparticles Biosynthesis Nanotechnology Biomineralization Morphology Ceruloplasmin Ribonucleases Adenosine triphosphatase Acetylcholinesterase Platinum Gold Silver
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4009 , http://hdl.handle.net/10962/d1004069
- Description: The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology. In this study, a comparative biological synthesis, characterization and biomedical effects of metallic nanoparticles of platinum, gold and silver were investigated. Metallic nanoparticles were biologically synthesized using cage-like (apoferritin), barrel-like (GroEL) and non-caged (ribonuclease) proteins. Nanoparticles generated were characterized using common techniques such as UV-visible spectroscopy, scanning and transmission electron microscopy, inductively coupled optical emission spectroscopy, Fourier transform infra-red spectroscopy and energy dispersion analysis of X-rays (EDAX). Nanoparticles synthesised biologically using apoferritin, GroEL and RNase with exhibited similar chemical and physical properties as thoses nanoparticles generated chemically. In addition, the metallic nanoparticles fabricated within the cage-like and barrel-like cavities of apoferritin and GroEL respectively, resulted in nanoparticles with relatively uniform morphology as opposed to those obtained with the non-caged ribonuclease. The enzymatic (ferroxidase) activity of apoferritin was found to be greatly enhanced with platinum (9-fold), gold (7-fold) and silver (54-fold) nanoparticles. The ATPase activity of GroEL was inhibited by silver nanoparticles (64%), was moderately activated by gold nanoparticles (47%) and considerably enhanced by platinum nanoparticles (85%). The hydrolytic activity of RNase was however, lowered by these metallic nanoparticles (90% in Ag nanoparticles) and to a higher degree with platinum (95%) and gold nanoparticles (~100%). The effect of synthesized nanoparticles on the respective enzyme activities of these proteins was also investigated and the potential neurotoxic property of these particles was also determined by an in vitro interaction with acetylcholinesterase. Protein encapsulated nanoparticles with apoferrtin and GroEL showed a decreased inhibition of acetylcholinesterase (<50%) compared with nanoparticles attached to ribonuclease (>50%). Thus, it can be concluded that the cavities of apoferitin and GroEL acted as nanobiofactories for the synthesis and confinement of the size and shape of nanoparticles. Furthermore, the interior of these proteins provided a shielding effect for these nanoparticles and thus reduced/prevented their possible neurotoxic effect and confirmed safety in their method of production and application. The findings from this study would prove beneficial in the application of these nanoparticles as a potential drug/drug delivery vehicle for the prevention, treatment/management of diseases associated with these enzymes/proteins.
- Full Text:
- Date Issued: 2012
- Authors: Sennuga, Afolake Temitope
- Date: 2012
- Subjects: Nanoparticles Biosynthesis Nanotechnology Biomineralization Morphology Ceruloplasmin Ribonucleases Adenosine triphosphatase Acetylcholinesterase Platinum Gold Silver
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4009 , http://hdl.handle.net/10962/d1004069
- Description: The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology. In this study, a comparative biological synthesis, characterization and biomedical effects of metallic nanoparticles of platinum, gold and silver were investigated. Metallic nanoparticles were biologically synthesized using cage-like (apoferritin), barrel-like (GroEL) and non-caged (ribonuclease) proteins. Nanoparticles generated were characterized using common techniques such as UV-visible spectroscopy, scanning and transmission electron microscopy, inductively coupled optical emission spectroscopy, Fourier transform infra-red spectroscopy and energy dispersion analysis of X-rays (EDAX). Nanoparticles synthesised biologically using apoferritin, GroEL and RNase with exhibited similar chemical and physical properties as thoses nanoparticles generated chemically. In addition, the metallic nanoparticles fabricated within the cage-like and barrel-like cavities of apoferritin and GroEL respectively, resulted in nanoparticles with relatively uniform morphology as opposed to those obtained with the non-caged ribonuclease. The enzymatic (ferroxidase) activity of apoferritin was found to be greatly enhanced with platinum (9-fold), gold (7-fold) and silver (54-fold) nanoparticles. The ATPase activity of GroEL was inhibited by silver nanoparticles (64%), was moderately activated by gold nanoparticles (47%) and considerably enhanced by platinum nanoparticles (85%). The hydrolytic activity of RNase was however, lowered by these metallic nanoparticles (90% in Ag nanoparticles) and to a higher degree with platinum (95%) and gold nanoparticles (~100%). The effect of synthesized nanoparticles on the respective enzyme activities of these proteins was also investigated and the potential neurotoxic property of these particles was also determined by an in vitro interaction with acetylcholinesterase. Protein encapsulated nanoparticles with apoferrtin and GroEL showed a decreased inhibition of acetylcholinesterase (<50%) compared with nanoparticles attached to ribonuclease (>50%). Thus, it can be concluded that the cavities of apoferitin and GroEL acted as nanobiofactories for the synthesis and confinement of the size and shape of nanoparticles. Furthermore, the interior of these proteins provided a shielding effect for these nanoparticles and thus reduced/prevented their possible neurotoxic effect and confirmed safety in their method of production and application. The findings from this study would prove beneficial in the application of these nanoparticles as a potential drug/drug delivery vehicle for the prevention, treatment/management of diseases associated with these enzymes/proteins.
- Full Text:
- Date Issued: 2012
Investigation into the biological removal of sulphate from ethanol distillery wastewater using sulphate-reducing prokaryotes
- Authors: Smuts, Lizl
- Date: 2005
- Subjects: Sewage -- Purification -- Biological treatment , Prokaryotes , Sulfates , Distilleries -- Waste disposal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3941 , http://hdl.handle.net/10962/d1004000 , Sewage -- Purification -- Biological treatment , Prokaryotes , Sulfates , Distilleries -- Waste disposal
- Description: Ethanol production wastewater is known to be toxic, and is not easily biodegradable. It also consists of a variety of coloured components adding to the complex composition of this wastewater. Disposal of this wastewater into water courses is not recommended and yet is performed all over the world. Investigation of this wastewater found that there was a high concentration of sulphate which, in the presence of sulphate-reducing prokaryotes can cause sulphide corrosion of cement. The concentration of sulphate in the wastewater was approximately 2770 mg/L. It was also found that the wastewater pH was very low and discharge of the wastewater into the wastewater treatment works caused a negative impact on the overall quality of the final wastewater discharged to sea. It was found using FISH techniques that there were no sulphate-reducing prokaryotes present in the wastewaters but that a sulphate-reducing population existed on the sewer wall. An anaerobic contact process was designed to treat this wastewater targeting sulphate reduction to sulphide, to be converted into elemental sulphur and to increase the wastewater pH. The process did not achieve this aim and only approximately 20-30 % reduction in sulphate from the wastewater was achieved with little to no change in the pH. A 95 % reduction in sulphate concentration was needed in order to reach acceptable discharge limits. Sulphate reduction could not be carried out, even under ideal laboratory conditions. It was found that the barrier causing the digester failure was the high concentration of phenols present in the wastewater (3.3 g/L) together with the production of high concentrations of volatile fatty acids (on average 13 g acetic/L). These two components are known to cause digester failure, especially phenols, and phenols are usually only degraded by fungal species. It was concluded that the wastewater itself was not amenable to this method of biological treatment.
- Full Text:
- Date Issued: 2005
- Authors: Smuts, Lizl
- Date: 2005
- Subjects: Sewage -- Purification -- Biological treatment , Prokaryotes , Sulfates , Distilleries -- Waste disposal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3941 , http://hdl.handle.net/10962/d1004000 , Sewage -- Purification -- Biological treatment , Prokaryotes , Sulfates , Distilleries -- Waste disposal
- Description: Ethanol production wastewater is known to be toxic, and is not easily biodegradable. It also consists of a variety of coloured components adding to the complex composition of this wastewater. Disposal of this wastewater into water courses is not recommended and yet is performed all over the world. Investigation of this wastewater found that there was a high concentration of sulphate which, in the presence of sulphate-reducing prokaryotes can cause sulphide corrosion of cement. The concentration of sulphate in the wastewater was approximately 2770 mg/L. It was also found that the wastewater pH was very low and discharge of the wastewater into the wastewater treatment works caused a negative impact on the overall quality of the final wastewater discharged to sea. It was found using FISH techniques that there were no sulphate-reducing prokaryotes present in the wastewaters but that a sulphate-reducing population existed on the sewer wall. An anaerobic contact process was designed to treat this wastewater targeting sulphate reduction to sulphide, to be converted into elemental sulphur and to increase the wastewater pH. The process did not achieve this aim and only approximately 20-30 % reduction in sulphate from the wastewater was achieved with little to no change in the pH. A 95 % reduction in sulphate concentration was needed in order to reach acceptable discharge limits. Sulphate reduction could not be carried out, even under ideal laboratory conditions. It was found that the barrier causing the digester failure was the high concentration of phenols present in the wastewater (3.3 g/L) together with the production of high concentrations of volatile fatty acids (on average 13 g acetic/L). These two components are known to cause digester failure, especially phenols, and phenols are usually only degraded by fungal species. It was concluded that the wastewater itself was not amenable to this method of biological treatment.
- Full Text:
- Date Issued: 2005
Phenolic compounds in water and the implications for rapid detection of indicator micro-organisms using ß-D-Galactosidase and ß-D-Glucuronidase
- Authors: Abboo, Sagaran
- Date: 2009
- Subjects: Water -- Purification -- Biological treatment , Pollutants -- Biodegradation , Phenol , Organic water pollutants , Water quality biological assessment , Water -- Pollution
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3978 , http://hdl.handle.net/10962/d1004037 , Water -- Purification -- Biological treatment , Pollutants -- Biodegradation , Phenol , Organic water pollutants , Water quality biological assessment , Water -- Pollution
- Description: Faecal contamination in water is detected using appropriate microbial models such as total coliforms, faecal coliforms and E. coli. Βeta-D-Galactosidase (β-GAL) and Beta-D-glucuronidase (β-GUD) are two marker enzymes that are used to test for the presence of total coliforms and E. coli in water samples, respectively. Various assay methods have been developed using chromogenic and fluorogenic substrates. In this study, the chromogenic substrates chlorophenol red β-D-galactopyranoside (CPRG) for β-GAL and p-nitrophenyl-β-D-galactopyranoside (PNPG) for β-GUD were used. Potential problems associated with this approach include interference from other organisms present in the environment (e.g. plants, algae and other bacteria), as well as the presence of certain chemicals, such as phenolic compounds in water. Phenolic compounds are present in the aquatic environment due to their extensive industrial applications. The USA Enviromental Protection Agency (EPA) lists 11 Priority Pollutant Phenols (PPP) due to their high level of toxicity. This study investigated the interfering effects of the eleven PPP found in water on the enzyme activities of both the β-GAL and β-GUD enzyme assays. The presence of these PPP in the β-GAL and β-GUD enzyme assays showed that over and underestimation of activity may occur due to inhibition or activation of these enzymes. Three types of inhibition to enzyme activities were identified from double reciprocal Lineweaver-Burk plots. The inhibition constants (Ki) were determined for all inhibitory phenolic compounds from appropriate secondary plots. Furthermore, this study presented a validated reverse phase high performance liquid chromatography (RP-HPLC) method, developed for the simultaneous detection, separation and determination of all eleven phenolic compounds found in the environment. This method demonstrated good linearity, reproducibility, accuracy and sensitivity. Environmental water samples were collected from rivers, streams, industrial sites and wastewater treatment plant effluent. These samples were extracted and concentrated using a solid phase extraction (SPE) procedure prior to analysis employing the newly developed HPLC method in this study. Seasonal variations on the presence of the PPP in the environment were observed at certain collection sites. The concentrations found were between 0.033 μg/ml for 2,4-dinitrophenol in a running stream to 0.890 mg/ml for pentachlorophenol from an tannery industrial site. These concentrations of phenolic compounds found in these environments were able to interfere with the β-GAL and β-GUD enzyme assays.
- Full Text:
- Date Issued: 2009
- Authors: Abboo, Sagaran
- Date: 2009
- Subjects: Water -- Purification -- Biological treatment , Pollutants -- Biodegradation , Phenol , Organic water pollutants , Water quality biological assessment , Water -- Pollution
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3978 , http://hdl.handle.net/10962/d1004037 , Water -- Purification -- Biological treatment , Pollutants -- Biodegradation , Phenol , Organic water pollutants , Water quality biological assessment , Water -- Pollution
- Description: Faecal contamination in water is detected using appropriate microbial models such as total coliforms, faecal coliforms and E. coli. Βeta-D-Galactosidase (β-GAL) and Beta-D-glucuronidase (β-GUD) are two marker enzymes that are used to test for the presence of total coliforms and E. coli in water samples, respectively. Various assay methods have been developed using chromogenic and fluorogenic substrates. In this study, the chromogenic substrates chlorophenol red β-D-galactopyranoside (CPRG) for β-GAL and p-nitrophenyl-β-D-galactopyranoside (PNPG) for β-GUD were used. Potential problems associated with this approach include interference from other organisms present in the environment (e.g. plants, algae and other bacteria), as well as the presence of certain chemicals, such as phenolic compounds in water. Phenolic compounds are present in the aquatic environment due to their extensive industrial applications. The USA Enviromental Protection Agency (EPA) lists 11 Priority Pollutant Phenols (PPP) due to their high level of toxicity. This study investigated the interfering effects of the eleven PPP found in water on the enzyme activities of both the β-GAL and β-GUD enzyme assays. The presence of these PPP in the β-GAL and β-GUD enzyme assays showed that over and underestimation of activity may occur due to inhibition or activation of these enzymes. Three types of inhibition to enzyme activities were identified from double reciprocal Lineweaver-Burk plots. The inhibition constants (Ki) were determined for all inhibitory phenolic compounds from appropriate secondary plots. Furthermore, this study presented a validated reverse phase high performance liquid chromatography (RP-HPLC) method, developed for the simultaneous detection, separation and determination of all eleven phenolic compounds found in the environment. This method demonstrated good linearity, reproducibility, accuracy and sensitivity. Environmental water samples were collected from rivers, streams, industrial sites and wastewater treatment plant effluent. These samples were extracted and concentrated using a solid phase extraction (SPE) procedure prior to analysis employing the newly developed HPLC method in this study. Seasonal variations on the presence of the PPP in the environment were observed at certain collection sites. The concentrations found were between 0.033 μg/ml for 2,4-dinitrophenol in a running stream to 0.890 mg/ml for pentachlorophenol from an tannery industrial site. These concentrations of phenolic compounds found in these environments were able to interfere with the β-GAL and β-GUD enzyme assays.
- Full Text:
- Date Issued: 2009
Proportional distribution of predominant rumen bacteria between the solid and the liquid portions of ruminal ingesta
- Authors: Brinkman, Paul A
- Date: 1966
- Subjects: Rumen -- Microbiology , Bacteria -- Rumen
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4100 , http://hdl.handle.net/10962/d1009715 , Rumen -- Microbiology , Bacteria -- Rumen
- Description: That certain bacteria in the rumen of sheep and cattle are attached to solid particles in the ruminal ingesta has been known for many years. In 1942 Baker published direct microscopical evidence that bacteria were attached to cellulose food particles and to starch granules in the rumen. The sites of attachment of these bacteria corresponded to sites of disintegration of the particles when viewed by polarised light. This indicated that at least bacteria attacking solid substrates such as cellulose and starch were attached to particles of ruminal ingesta. Van der Wath (1942) found rumen bacteria attached to particles of chemically pure cellulose and of crushed maize which he suspended in separate compartments of a pure silk bag inside the rumen of sheep. The bacteria associated with the particles of cellulose were mainly Gram negative rods , while clusters of iodophilic cocci were observed in most instances around the maize kernels . The latter organisms were isolated in pure culture and found to be heat-tolerant, short-chain, Gram positive cocci fermenting glucose, maltose, and other soluble sugars as well as starch. It was thus not surprising that many years later Schwartz et al (1964) obtained evidence which suggested that bacteria metabolising soluble substrates such as glucose also showed marked attachment to solid particles of ingesta.
- Full Text:
- Date Issued: 1966
- Authors: Brinkman, Paul A
- Date: 1966
- Subjects: Rumen -- Microbiology , Bacteria -- Rumen
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4100 , http://hdl.handle.net/10962/d1009715 , Rumen -- Microbiology , Bacteria -- Rumen
- Description: That certain bacteria in the rumen of sheep and cattle are attached to solid particles in the ruminal ingesta has been known for many years. In 1942 Baker published direct microscopical evidence that bacteria were attached to cellulose food particles and to starch granules in the rumen. The sites of attachment of these bacteria corresponded to sites of disintegration of the particles when viewed by polarised light. This indicated that at least bacteria attacking solid substrates such as cellulose and starch were attached to particles of ruminal ingesta. Van der Wath (1942) found rumen bacteria attached to particles of chemically pure cellulose and of crushed maize which he suspended in separate compartments of a pure silk bag inside the rumen of sheep. The bacteria associated with the particles of cellulose were mainly Gram negative rods , while clusters of iodophilic cocci were observed in most instances around the maize kernels . The latter organisms were isolated in pure culture and found to be heat-tolerant, short-chain, Gram positive cocci fermenting glucose, maltose, and other soluble sugars as well as starch. It was thus not surprising that many years later Schwartz et al (1964) obtained evidence which suggested that bacteria metabolising soluble substrates such as glucose also showed marked attachment to solid particles of ingesta.
- Full Text:
- Date Issued: 1966
An investigation into the effects of inorganic toxins and tryptophan metabolites on the forebrain cholinergic system and the pineal gland of the rat
- Authors: Mahabeer, Rajeshree
- Date: 1997
- Subjects: Toxins -- Physiological effect , Metabolites -- Physiological effect , Pineal gland , Brain -- Physiological aspects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4018 , http://hdl.handle.net/10962/d1004078 , Toxins -- Physiological effect , Metabolites -- Physiological effect , Pineal gland , Brain -- Physiological aspects
- Description: As soon as the building of the body is completed, the ageing process begins. In the natural course of events, the functioning of some organ systems finally ebbs below the threshold necessary to maintain the body, resulting in death. This occurrence is relatively rare, because diseases superimpose themselves upon the ageing process, bringing premature death resulting from pathological causes. This study focused on the cholinergic system of the rat forebrain. The cholinergic neurons in the brain are said to be involved in memory and learning, and a decrease in the activity of its enzymes has been reported in certain diseases, such as Alzheimer's disease. In the present study, the in vitro effects on the cholinergic system, of aluminium and mercury and tryptophan metabolites, kynurenic acid and quinolinic acid, are determined. Aluminium has been considered as a possible factor in Alzheimer's disease. Mercury in high concentrations is toxic, and its use in amalgam for dental treatment is under consideration with regard to its possible role in promoting neurological disease. The tryptophan metabolites increase in the brain with age and may have a role in pathological diseases. Quinolinic acid, when administered in toxic concentrations produces a possible model for Huntington's disease. This study investigated the effects of the above mentioned toxins on: (1) The synthesis of acetylcholine by choline acetyltransferase; (2) The specific binding of acetylcholine muscarinic receptors; (3) The degradation of acetylcholine by acetyl cholinesterase, Choline acetyltransferase activity did not change in the presence of aluminium chloride, kynurenic acid and quinolinic acid from 1 nM to 1 mM. Mercuric chloride had no significant effect on the enzymes activity from a concentration of 1 nM- 1 pM. At 10 pM there was a significant decrease in cholineacetyltransferase activity (P < 0.001). Enzyme activity continued to decrease at 100 pM (P < 0.0002). At 1 mM, enzyme activity was virtually non existent (P < 0.0001). Acetyl cholinesterase activity was not affected by aluminium chloride, kynurenic acid and quinolinic acid. Mercuric chloride from 1 pM - 1 mM significantly reduced the enzyme activity (P < 0.05). The binding of the antagonist, [³H] quinuclidinyl benzilate (QNB), to acetylcholine muscarinic receptors, revealed that aluminium chloride did not affect the binding of the antagonist, in the concentration range of 1 nM - 100 pM, to the receptors. At 1 mM, aluminium chloride appears to increase the sensitivity of the receptors for the ligand (P < 0.01). Mercuric chloride also does not appear to have any significant effect on receptor binding in this range. However, at 1 mM there appears to be a very significant decrease in receptor binding (P < 0.01). This decrease may be attributed to the interaction of mercury with the sulfhydryl groups in muscarinic receptors. Kynurenic acid had no effect on the receptor binding. Quinolinic acid, in the concentration range from 10 nM - 1 mM increased the binding ofthe receptor to [3Hi QNB significantly (P < 0.001). The study also investigated the effect of the tryptophan metabolites of the kynurenine pathway on pineal indole metabolism. The kynurenine pathway is a major route of tryptophan metabolism in the pineal gland, along with indole metabolism. Investigations showed that kynurenic acid produced a decrease in N-acetylserotonin concentrations ( P < 0.001) and melatonin concentrations (P < 0.003). Further experiments using quinolinic acid produced a similar decrease in N-acetylserotonin (P < 0.001) and melatonin (P < 0.015). A decrease was also noted in the level of 5-methoxytryptophol (P < 0.0005). These findings suggest that aluminium chloride, kynurenic acid and quinolinic acid have no possible role in the decrease of activity of cholinergic enzymes which is observered in diseases such as Alzheimer's disease. The results regarding the effect of mercury chloride on the cholinergic system suggest that low exposure to the toxin will not adversely effect the enzymes. The decrease in N-acetylserotonin and melatonin concentrations reported here, may be a result of kynurenic acid and quinolinic acid having an inhibitory effect on the enzyme, serotonin Nacetyltransferase, which is responsible for the conversion of serotonin to N-acety/serotonin.
- Full Text:
- Date Issued: 1997
- Authors: Mahabeer, Rajeshree
- Date: 1997
- Subjects: Toxins -- Physiological effect , Metabolites -- Physiological effect , Pineal gland , Brain -- Physiological aspects
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4018 , http://hdl.handle.net/10962/d1004078 , Toxins -- Physiological effect , Metabolites -- Physiological effect , Pineal gland , Brain -- Physiological aspects
- Description: As soon as the building of the body is completed, the ageing process begins. In the natural course of events, the functioning of some organ systems finally ebbs below the threshold necessary to maintain the body, resulting in death. This occurrence is relatively rare, because diseases superimpose themselves upon the ageing process, bringing premature death resulting from pathological causes. This study focused on the cholinergic system of the rat forebrain. The cholinergic neurons in the brain are said to be involved in memory and learning, and a decrease in the activity of its enzymes has been reported in certain diseases, such as Alzheimer's disease. In the present study, the in vitro effects on the cholinergic system, of aluminium and mercury and tryptophan metabolites, kynurenic acid and quinolinic acid, are determined. Aluminium has been considered as a possible factor in Alzheimer's disease. Mercury in high concentrations is toxic, and its use in amalgam for dental treatment is under consideration with regard to its possible role in promoting neurological disease. The tryptophan metabolites increase in the brain with age and may have a role in pathological diseases. Quinolinic acid, when administered in toxic concentrations produces a possible model for Huntington's disease. This study investigated the effects of the above mentioned toxins on: (1) The synthesis of acetylcholine by choline acetyltransferase; (2) The specific binding of acetylcholine muscarinic receptors; (3) The degradation of acetylcholine by acetyl cholinesterase, Choline acetyltransferase activity did not change in the presence of aluminium chloride, kynurenic acid and quinolinic acid from 1 nM to 1 mM. Mercuric chloride had no significant effect on the enzymes activity from a concentration of 1 nM- 1 pM. At 10 pM there was a significant decrease in cholineacetyltransferase activity (P < 0.001). Enzyme activity continued to decrease at 100 pM (P < 0.0002). At 1 mM, enzyme activity was virtually non existent (P < 0.0001). Acetyl cholinesterase activity was not affected by aluminium chloride, kynurenic acid and quinolinic acid. Mercuric chloride from 1 pM - 1 mM significantly reduced the enzyme activity (P < 0.05). The binding of the antagonist, [³H] quinuclidinyl benzilate (QNB), to acetylcholine muscarinic receptors, revealed that aluminium chloride did not affect the binding of the antagonist, in the concentration range of 1 nM - 100 pM, to the receptors. At 1 mM, aluminium chloride appears to increase the sensitivity of the receptors for the ligand (P < 0.01). Mercuric chloride also does not appear to have any significant effect on receptor binding in this range. However, at 1 mM there appears to be a very significant decrease in receptor binding (P < 0.01). This decrease may be attributed to the interaction of mercury with the sulfhydryl groups in muscarinic receptors. Kynurenic acid had no effect on the receptor binding. Quinolinic acid, in the concentration range from 10 nM - 1 mM increased the binding ofthe receptor to [3Hi QNB significantly (P < 0.001). The study also investigated the effect of the tryptophan metabolites of the kynurenine pathway on pineal indole metabolism. The kynurenine pathway is a major route of tryptophan metabolism in the pineal gland, along with indole metabolism. Investigations showed that kynurenic acid produced a decrease in N-acetylserotonin concentrations ( P < 0.001) and melatonin concentrations (P < 0.003). Further experiments using quinolinic acid produced a similar decrease in N-acetylserotonin (P < 0.001) and melatonin (P < 0.015). A decrease was also noted in the level of 5-methoxytryptophol (P < 0.0005). These findings suggest that aluminium chloride, kynurenic acid and quinolinic acid have no possible role in the decrease of activity of cholinergic enzymes which is observered in diseases such as Alzheimer's disease. The results regarding the effect of mercury chloride on the cholinergic system suggest that low exposure to the toxin will not adversely effect the enzymes. The decrease in N-acetylserotonin and melatonin concentrations reported here, may be a result of kynurenic acid and quinolinic acid having an inhibitory effect on the enzyme, serotonin Nacetyltransferase, which is responsible for the conversion of serotonin to N-acety/serotonin.
- Full Text:
- Date Issued: 1997
Heterologous expression of the helicoverpa armigera stunt virus in Saccharomyces cerevisiae
- Authors: Venter, Philip Arno
- Date: 2002
- Subjects: Helicoverpa armigera Saccharomyces cerevisiae
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3895 , http://hdl.handle.net/10962/d1003811
- Description: Lepidopteran insects like Helicoverpa armigera, more commonly known as the cotton bollworm, are economically important pests of a wide variety of crops throughout the world. The Helicoverpa armigera stunt virus (HaSV), a tetravirus with a bipartite single-stranded positive-sense RNA genome, has great potential as a biological pesticide against H. armigera. The larger genomic strand of this virus (RNA1) encodes the viral replicase, while the other (RNA2) encodes the 71 kDa capsid protein precursor (p71). 240 copies of p71 assemble into a procapsid with the concomitant encapsidation of the viral RNA. This is followed by a complex maturation event that is characterized by the autoproteolytic cleavage of p71 into the 64 kDa capsid protein (P64) and a 7 kDa peptide (p7). The rearrangements that occur during maturation results in the formation of mature HaSV capsids that can thereupon deliver RNA to other susceptible host cells. The principal objective of the research described in this study was to demonstrate that this virus could be assembled in Saccharomyces cerevisiae. S. cerevisiae expression vectors were constructed for the production of p71. This protein was detected in cell lysates from two different strains of S. cerevisiae, both containing either chromosomal or episomal copies of an expression cassette for P71. A number of factors relating to the expression of P71 (e.g. strains used, expression loci and expression rate) and the preparation of protein extracts from S. cerevisiae (e.g. the presence of various protease inhibitors and salt concentrations) were examined to attain optimal levels of soluble p71. A small fraction of the optimized soluble p71 was shown to be in the form of virus-like particles (VLPs), with a yield of ≤10⁷ VLPs from a 1.5l culture of P71⁺ cells. These particles were exclusively in the procapsid form, had a similar buoyant density to that of wild-type HaSV and could undergo maturation when the pH was reduced to 5. S. cerevisiae vectors were constructed for the episomal expression of the HaSV genomic RNAs. These vectors directed the transcription of RNA1 and RNA2 transcripts, which had similar sizes to those of the HaSV genomic RNAs. Mature HaSV particles were purified from cells, transgenic for P71, RNA1 and RNA2, by way of two different virus purification protocols that were developed during this study. RT-PCR analyses on RNA-extracts from these particles demonstrated that RNA transcripts, which were produced in trans with p71, could be encapsidated by HaSV capsids in S. cerevisiae. A droplet-feed bioassay on H. armigera larvae demonstrated that the S. cerevisiae-derived HaSV particles caused impaired larval development. This response was correlated with the detection of HaSV RNA2 in RNA extractions from larvae that were used in this bioassay. The results that were generated through the course of this study, provided proof for the concept of the non-host production of infectious HaSV particles from S. cerevisiae. This work could serve as a foundation for future research on the development of an expression system for the large-scale production of this virus as a biopesticide.
- Full Text:
- Date Issued: 2002
- Authors: Venter, Philip Arno
- Date: 2002
- Subjects: Helicoverpa armigera Saccharomyces cerevisiae
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3895 , http://hdl.handle.net/10962/d1003811
- Description: Lepidopteran insects like Helicoverpa armigera, more commonly known as the cotton bollworm, are economically important pests of a wide variety of crops throughout the world. The Helicoverpa armigera stunt virus (HaSV), a tetravirus with a bipartite single-stranded positive-sense RNA genome, has great potential as a biological pesticide against H. armigera. The larger genomic strand of this virus (RNA1) encodes the viral replicase, while the other (RNA2) encodes the 71 kDa capsid protein precursor (p71). 240 copies of p71 assemble into a procapsid with the concomitant encapsidation of the viral RNA. This is followed by a complex maturation event that is characterized by the autoproteolytic cleavage of p71 into the 64 kDa capsid protein (P64) and a 7 kDa peptide (p7). The rearrangements that occur during maturation results in the formation of mature HaSV capsids that can thereupon deliver RNA to other susceptible host cells. The principal objective of the research described in this study was to demonstrate that this virus could be assembled in Saccharomyces cerevisiae. S. cerevisiae expression vectors were constructed for the production of p71. This protein was detected in cell lysates from two different strains of S. cerevisiae, both containing either chromosomal or episomal copies of an expression cassette for P71. A number of factors relating to the expression of P71 (e.g. strains used, expression loci and expression rate) and the preparation of protein extracts from S. cerevisiae (e.g. the presence of various protease inhibitors and salt concentrations) were examined to attain optimal levels of soluble p71. A small fraction of the optimized soluble p71 was shown to be in the form of virus-like particles (VLPs), with a yield of ≤10⁷ VLPs from a 1.5l culture of P71⁺ cells. These particles were exclusively in the procapsid form, had a similar buoyant density to that of wild-type HaSV and could undergo maturation when the pH was reduced to 5. S. cerevisiae vectors were constructed for the episomal expression of the HaSV genomic RNAs. These vectors directed the transcription of RNA1 and RNA2 transcripts, which had similar sizes to those of the HaSV genomic RNAs. Mature HaSV particles were purified from cells, transgenic for P71, RNA1 and RNA2, by way of two different virus purification protocols that were developed during this study. RT-PCR analyses on RNA-extracts from these particles demonstrated that RNA transcripts, which were produced in trans with p71, could be encapsidated by HaSV capsids in S. cerevisiae. A droplet-feed bioassay on H. armigera larvae demonstrated that the S. cerevisiae-derived HaSV particles caused impaired larval development. This response was correlated with the detection of HaSV RNA2 in RNA extractions from larvae that were used in this bioassay. The results that were generated through the course of this study, provided proof for the concept of the non-host production of infectious HaSV particles from S. cerevisiae. This work could serve as a foundation for future research on the development of an expression system for the large-scale production of this virus as a biopesticide.
- Full Text:
- Date Issued: 2002
Localisation of Theiler's Murine Encephalomyelitis virus non-structural proteins 2B, 2C, 2BC and 3A in BHK-21 cells, and the effect of amino acid substitutions in 2C on localisation and virus replication
- Authors: Murray, Lindsay
- Date: 2007
- Subjects: Encephalomyelitis -- Genetic aspects , Amino acid sequence , Picornaviruses , Viruses -- Reproduction
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4090 , http://hdl.handle.net/10962/d1007722 , Encephalomyelitis -- Genetic aspects , Amino acid sequence , Picornaviruses , Viruses -- Reproduction
- Description: The picornavirus family includes significant human and animal viruses such as poliovirus (PV), human rhinovirus (HRV) and foot-and-mouth-disease virus (FMDV). Current disease treatment and control strategies are limited by an incomplete understanding of the interactions between the non-structural, replicative picornavirus proteins and host cell components. To investigate these interactions, Theiler's murine encephalomyelitis virus (TMEV) 2B, 2C, 2BC and 3A proteins were transiently expressed in BHK-21 cells and detected by indirect immunostaining and laser-scanning or epifluorescence microscopy. The signal of the 2B protein overlapped with that of the ER marker protein, ERp60, as well as that of the peripheral Golgi marker protein, β-COP. The 2C protein overlapped with ERp60 in a faint reticular stain, and localised to large punctate structures that partially overlapped with β-COP at higher levels of expression. The 2BC protein located to large perinuclear structures that overlapped exclusively with β-COP. The TMEV 3A protein signal overlapped with both ERp60 and β-COP stains, in addition in cells expressing the 3A protein the ER appeared swollen and bulbous while the Golgi was dispersed in some cells. 2C and 2BC proteins with C-terminal deletions localised in the same manner as the wild type proteins indicating that the localisation signals that determine subcellular localisation of the proteins are within the N-terminal 60 amino acids of the 2C protein. The significance of the high degree of conservation of the N-terminal domain of the 2C protein throughout the Picornaviridae was investigated through the introduction of amino acid substitution mutations at highly conserved residues in the N-terminal domain of 2C into the viral cDNA. Upon transfection of the viral RNA into BHK-21 cells, it was observed that substitution of amino acid residues 8, 18 and 29 abolished the ability of TMEV to induce cytopathic effect (CPE), while substitution of residues 4, 14 and 23 only attenuated the ability of TMEV to induce CPE. To determine whether amino acid substitution mutations would affect the localisation of the 2C protein, 2C proteins with substitution mutations at amino acids 4, 8, 14, 18, 23 and 29 were transiently expressed in BHK-21 cells and detected by indirect imrnunostaining and examination by laser-scanning confocal and epifluorescence microscopy. The 2C mutant 4, 8 and 29 proteins showed slightly altered localisation patterns compared to the wild type protein with a significant portion of the proteins localising in a perinuclear stain suggesting possible localisation to the nuclear envelop. The 2C mutant 14 and 18 proteins localised to a diffuse pattern in BHK-21 cells while the 2C mutant 23 protein located to small punctate structures that partially overlapped with the ERp60 stain but were completely separate from the β-COP stain. Finally, a hydrophilic, antigenic region of the 2C protein was expressed in frame with an N-terminal GST tag and was successfully purified on a pilot-scale and detected by Western analysis. This 2C178 peptide will be used to generate antibodies against the 2C and 2BC proteins for use in future studies. This study has furthered our knowledge of the localisation of the picornavirus 2B, 2C, 2BC and 3A proteins in host cells and identified a possible link between this localisation and an ability of TMEV to replicate in BHK-21 cells.
- Full Text:
- Date Issued: 2007
- Authors: Murray, Lindsay
- Date: 2007
- Subjects: Encephalomyelitis -- Genetic aspects , Amino acid sequence , Picornaviruses , Viruses -- Reproduction
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4090 , http://hdl.handle.net/10962/d1007722 , Encephalomyelitis -- Genetic aspects , Amino acid sequence , Picornaviruses , Viruses -- Reproduction
- Description: The picornavirus family includes significant human and animal viruses such as poliovirus (PV), human rhinovirus (HRV) and foot-and-mouth-disease virus (FMDV). Current disease treatment and control strategies are limited by an incomplete understanding of the interactions between the non-structural, replicative picornavirus proteins and host cell components. To investigate these interactions, Theiler's murine encephalomyelitis virus (TMEV) 2B, 2C, 2BC and 3A proteins were transiently expressed in BHK-21 cells and detected by indirect immunostaining and laser-scanning or epifluorescence microscopy. The signal of the 2B protein overlapped with that of the ER marker protein, ERp60, as well as that of the peripheral Golgi marker protein, β-COP. The 2C protein overlapped with ERp60 in a faint reticular stain, and localised to large punctate structures that partially overlapped with β-COP at higher levels of expression. The 2BC protein located to large perinuclear structures that overlapped exclusively with β-COP. The TMEV 3A protein signal overlapped with both ERp60 and β-COP stains, in addition in cells expressing the 3A protein the ER appeared swollen and bulbous while the Golgi was dispersed in some cells. 2C and 2BC proteins with C-terminal deletions localised in the same manner as the wild type proteins indicating that the localisation signals that determine subcellular localisation of the proteins are within the N-terminal 60 amino acids of the 2C protein. The significance of the high degree of conservation of the N-terminal domain of the 2C protein throughout the Picornaviridae was investigated through the introduction of amino acid substitution mutations at highly conserved residues in the N-terminal domain of 2C into the viral cDNA. Upon transfection of the viral RNA into BHK-21 cells, it was observed that substitution of amino acid residues 8, 18 and 29 abolished the ability of TMEV to induce cytopathic effect (CPE), while substitution of residues 4, 14 and 23 only attenuated the ability of TMEV to induce CPE. To determine whether amino acid substitution mutations would affect the localisation of the 2C protein, 2C proteins with substitution mutations at amino acids 4, 8, 14, 18, 23 and 29 were transiently expressed in BHK-21 cells and detected by indirect imrnunostaining and examination by laser-scanning confocal and epifluorescence microscopy. The 2C mutant 4, 8 and 29 proteins showed slightly altered localisation patterns compared to the wild type protein with a significant portion of the proteins localising in a perinuclear stain suggesting possible localisation to the nuclear envelop. The 2C mutant 14 and 18 proteins localised to a diffuse pattern in BHK-21 cells while the 2C mutant 23 protein located to small punctate structures that partially overlapped with the ERp60 stain but were completely separate from the β-COP stain. Finally, a hydrophilic, antigenic region of the 2C protein was expressed in frame with an N-terminal GST tag and was successfully purified on a pilot-scale and detected by Western analysis. This 2C178 peptide will be used to generate antibodies against the 2C and 2BC proteins for use in future studies. This study has furthered our knowledge of the localisation of the picornavirus 2B, 2C, 2BC and 3A proteins in host cells and identified a possible link between this localisation and an ability of TMEV to replicate in BHK-21 cells.
- Full Text:
- Date Issued: 2007
Biochemical mechanisms towards understanding Alzheimer's disease
- Authors: Padayachee, Eden Rebecca
- Date: 2014
- Subjects: Alzheimer's disease Nitric-oxide synthase Biochemical markers Amyloid beta-protein Peptide hormones
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4103 , http://hdl.handle.net/10962/d1011092
- Description: The start of the amyloidogenic pathway in Alzheimer’s disease (AD) begins with the deposition of the Aβ₁₋₄₂ peptide surrounded by astrocytes. High levels of arginine and low amounts of neuronal nitric oxide synthase (nNOS) are associated with AD. These astrocytes store reserve arginine that is eventually metabolized by nNOS, within the vicinity of the Aβ₁₋₄₂ peptide. We propose the existence of an association vs. dissociation equilibrium between Aβ and nNOS such that nNOS is an amyloidogenic catalyst for fibrils. When Aβ binds to nNOS, it inhibits the activity of the enzyme (association phase). However when the amyloid peptide dissociates into a form that can no longer bind, later deduced as a fibril, the activity is restored. Thus, the interaction of Aβ with nNOS could serve to regulate the interaction between nNOS and arginine by restoring activity of the enzyme but at the same time promoting fibrillogenesis. Given this event occurring with the neuron, both nNOS and amyloid can serve as a biomarker for the early onset of AD. The enzyme nNOS catalyzed the formation of fibrils in the presence of Aβ peptides, while Ag nps were shown to reverse the fibril formation from Aβ peptides more so than Au and curcumin either through electrostatic or π-π stacking (aromatic) influences. Our studies have shown that the fragments of Aβ₁₋₄₂ i.e. the pentapeptide (Aβ₁₇₋₂₁) and the three glycine zipper peptides (Aβ₂₅₋₂₉, Aβ₂₉₋₃₃, Aβ₃₃₋₃₇) and the full length glycine zipper stretch (Aβ₂₅₋₃₇) all inhibited nNOS activity to varying degrees. The peptides Aβ₁₇₋₂₁ and Aβ₂₉₋₃₃ with their respective Ki values of 5.1 μM and 7.5 μM inhibited the enzyme the most. The Ki values for reversed sequenced peptides (Aβ₁₇₋₂₁r and Aβ₂₉₋₃₃r) were two fold greater than that of the original peptides while the Ki values for the polar forms (Aβ₁₇₋₂₁p and Aβ₂₉₋₃₃p) were between 3-4 fold greater than that of the original peptides. It was also found that Ag nps (Ki = 0.12 μM) inhibited the activity of nNOS the most compared to Au nps; (Ki = 0.15 μM) and curcumin (Ki = 0.25 μM). At 298K, all the ligands bound at a single site on the enzyme (n=1) and a single Trp residue (θ =1), (later identified as Trp678) was made available on the enzyme surface for quenching by the ligands. Increasing the temperature from 298K-313K, increased the value of Ksv and pointed to a dynamic quenching mechanism for Aβ peptides, nps and curcumin interaction with nNOS. The positive signs for entropy and enthalpy for all Aβ peptides nps and curcumin pointed to hydrophobic–hydrophobic interaction with the enzyme. The fact that Kd increased with temperature emphasized the endothermic nature of the binding reaction and the requirement of thermal energy to aid in diffusion of the ligand to the active site. It was concluded that the binding reaction between the ligands and nNOS was non-spontaneous and endothermic at low temperatures (+ΔG) but spontaneous at high temperatures (-ΔG). The two amino acids Tyr706 and Trp678 moved from their original positions, subject to ligand binding. Trp678 moved a minimum distance of 5 Å toward the heme while Tyr706 moved a maximum distance of 14 Å away from the heme. AutoDock 4.2 was a valuable tool in monitoring the distance of Trp678 within the enzyme interior and fluorescence resonance energy transfer (FRET) was efficient in monitoring the distance moved by Trp residues on the enzyme surface.
- Full Text:
- Date Issued: 2014
- Authors: Padayachee, Eden Rebecca
- Date: 2014
- Subjects: Alzheimer's disease Nitric-oxide synthase Biochemical markers Amyloid beta-protein Peptide hormones
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4103 , http://hdl.handle.net/10962/d1011092
- Description: The start of the amyloidogenic pathway in Alzheimer’s disease (AD) begins with the deposition of the Aβ₁₋₄₂ peptide surrounded by astrocytes. High levels of arginine and low amounts of neuronal nitric oxide synthase (nNOS) are associated with AD. These astrocytes store reserve arginine that is eventually metabolized by nNOS, within the vicinity of the Aβ₁₋₄₂ peptide. We propose the existence of an association vs. dissociation equilibrium between Aβ and nNOS such that nNOS is an amyloidogenic catalyst for fibrils. When Aβ binds to nNOS, it inhibits the activity of the enzyme (association phase). However when the amyloid peptide dissociates into a form that can no longer bind, later deduced as a fibril, the activity is restored. Thus, the interaction of Aβ with nNOS could serve to regulate the interaction between nNOS and arginine by restoring activity of the enzyme but at the same time promoting fibrillogenesis. Given this event occurring with the neuron, both nNOS and amyloid can serve as a biomarker for the early onset of AD. The enzyme nNOS catalyzed the formation of fibrils in the presence of Aβ peptides, while Ag nps were shown to reverse the fibril formation from Aβ peptides more so than Au and curcumin either through electrostatic or π-π stacking (aromatic) influences. Our studies have shown that the fragments of Aβ₁₋₄₂ i.e. the pentapeptide (Aβ₁₇₋₂₁) and the three glycine zipper peptides (Aβ₂₅₋₂₉, Aβ₂₉₋₃₃, Aβ₃₃₋₃₇) and the full length glycine zipper stretch (Aβ₂₅₋₃₇) all inhibited nNOS activity to varying degrees. The peptides Aβ₁₇₋₂₁ and Aβ₂₉₋₃₃ with their respective Ki values of 5.1 μM and 7.5 μM inhibited the enzyme the most. The Ki values for reversed sequenced peptides (Aβ₁₇₋₂₁r and Aβ₂₉₋₃₃r) were two fold greater than that of the original peptides while the Ki values for the polar forms (Aβ₁₇₋₂₁p and Aβ₂₉₋₃₃p) were between 3-4 fold greater than that of the original peptides. It was also found that Ag nps (Ki = 0.12 μM) inhibited the activity of nNOS the most compared to Au nps; (Ki = 0.15 μM) and curcumin (Ki = 0.25 μM). At 298K, all the ligands bound at a single site on the enzyme (n=1) and a single Trp residue (θ =1), (later identified as Trp678) was made available on the enzyme surface for quenching by the ligands. Increasing the temperature from 298K-313K, increased the value of Ksv and pointed to a dynamic quenching mechanism for Aβ peptides, nps and curcumin interaction with nNOS. The positive signs for entropy and enthalpy for all Aβ peptides nps and curcumin pointed to hydrophobic–hydrophobic interaction with the enzyme. The fact that Kd increased with temperature emphasized the endothermic nature of the binding reaction and the requirement of thermal energy to aid in diffusion of the ligand to the active site. It was concluded that the binding reaction between the ligands and nNOS was non-spontaneous and endothermic at low temperatures (+ΔG) but spontaneous at high temperatures (-ΔG). The two amino acids Tyr706 and Trp678 moved from their original positions, subject to ligand binding. Trp678 moved a minimum distance of 5 Å toward the heme while Tyr706 moved a maximum distance of 14 Å away from the heme. AutoDock 4.2 was a valuable tool in monitoring the distance of Trp678 within the enzyme interior and fluorescence resonance energy transfer (FRET) was efficient in monitoring the distance moved by Trp residues on the enzyme surface.
- Full Text:
- Date Issued: 2014
The nature and control of organic compounds in soda ash evaporate production
- Masemola, Patricia Mmoniemang
- Authors: Masemola, Patricia Mmoniemang
- Date: 2000
- Subjects: Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3902 , http://hdl.handle.net/10962/d1003961 , Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Description: Solar evaporite systems are man-managed ecosystems which are highly vulnerable to biological,physical and chemical disturbances. The problems encountered in such systems are in many cases found to be associated with the microbial ecology and the design of the system. This project focussed on investigating the nature of organic compounds contaminating soda ash produced at a solar evaporite production system located at Sua Pan in Botswana. Several years after the plant was commissioned, problems, including accumulation of total organic carbon (TOC) and discolouration of the soda ash product were encountered. The salt produced also retained high moisture content and was coloured pink. These phenomena impacted severely on the economic performance of the enterprise. This study was aimed at determining the origin and fate of these organic compounds within the system in order to elucidate the nature of the problem and also to conceptualise a remediation strategy suitable to reducing its impact. This was achieved by analysis of both dialysed and solvent extracts of the influent brine (well-brine), brine in the ponds (T-brine) and the bicarbonate filter cake. Although complete identification of the organic compounds isolated was not undertaken in this study, spectroscopic analysis of compounds isolated, by UV, IR, NMR and MS, strongly indicated that fulvic acids, a component of the influent well-brine organics, contribute to the organic contamination of the final product. Part of this component, however, is degraded during the ponding process. It was shown that an extracellular polysaccharide (EPS) produced by Dunaliella. spp., which proliferates in the evaporation ponds, contributes in a major way to the accumulation of TOC in the system. This was demonstrated by relating the sugar profile of carbohydrates isolated from the pond brine and final product, being arabinose, xylose, 2-o-methyl hexose, mannose, glucose and galactose. Studies reported show that EPS production was enhanced when algal cultures were exposed to stress conditions of high illumination, increasing salinity and temperature, and nitrogen limitation. Studies undertaken for the development of a remediation process for this system have shown that nutrient stripping and bacterial systems could be applied to deal with the dissolved TOC fraction, whereas adsorption systems could deal with the particulate fractions. Algal systems showed most potential for the removal of nutrients in the influent well-brine compared to chemical processes.Complete removal of ammonium and phosphorus removal efficiencies of pproximately 50% were achieved in an unoptimised pilot-scale Dunaliella-based HRAP. While similar effects were demonstrated for chemical processes, some economic constraints were noted. The potential of halophilic bacterial systems for the degradation of organic compounds in brine was also demonstrated. The limitations on the performance of such systems, associated with the low metabolic diversity, and poor immobilisation of physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product.halobacteria, however, were noted. Although physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product. Apart from a description of the microbial ecology of the ponds and the identification of major contributions to the TOC of the final product, a number of remediation strategies were evaluated and are described. These include chemical and biological stripping of nutrients sustaining microbial TOC production in the ponds, and also biological and physico-chemical processes for their removal once formed. Future studies to undertake the further development of these proposals has been described
- Full Text:
- Date Issued: 2000
- Authors: Masemola, Patricia Mmoniemang
- Date: 2000
- Subjects: Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3902 , http://hdl.handle.net/10962/d1003961 , Organic compounds , Biotic communities , Sua Pan Soda Ash Project -- Botswana
- Description: Solar evaporite systems are man-managed ecosystems which are highly vulnerable to biological,physical and chemical disturbances. The problems encountered in such systems are in many cases found to be associated with the microbial ecology and the design of the system. This project focussed on investigating the nature of organic compounds contaminating soda ash produced at a solar evaporite production system located at Sua Pan in Botswana. Several years after the plant was commissioned, problems, including accumulation of total organic carbon (TOC) and discolouration of the soda ash product were encountered. The salt produced also retained high moisture content and was coloured pink. These phenomena impacted severely on the economic performance of the enterprise. This study was aimed at determining the origin and fate of these organic compounds within the system in order to elucidate the nature of the problem and also to conceptualise a remediation strategy suitable to reducing its impact. This was achieved by analysis of both dialysed and solvent extracts of the influent brine (well-brine), brine in the ponds (T-brine) and the bicarbonate filter cake. Although complete identification of the organic compounds isolated was not undertaken in this study, spectroscopic analysis of compounds isolated, by UV, IR, NMR and MS, strongly indicated that fulvic acids, a component of the influent well-brine organics, contribute to the organic contamination of the final product. Part of this component, however, is degraded during the ponding process. It was shown that an extracellular polysaccharide (EPS) produced by Dunaliella. spp., which proliferates in the evaporation ponds, contributes in a major way to the accumulation of TOC in the system. This was demonstrated by relating the sugar profile of carbohydrates isolated from the pond brine and final product, being arabinose, xylose, 2-o-methyl hexose, mannose, glucose and galactose. Studies reported show that EPS production was enhanced when algal cultures were exposed to stress conditions of high illumination, increasing salinity and temperature, and nitrogen limitation. Studies undertaken for the development of a remediation process for this system have shown that nutrient stripping and bacterial systems could be applied to deal with the dissolved TOC fraction, whereas adsorption systems could deal with the particulate fractions. Algal systems showed most potential for the removal of nutrients in the influent well-brine compared to chemical processes.Complete removal of ammonium and phosphorus removal efficiencies of pproximately 50% were achieved in an unoptimised pilot-scale Dunaliella-based HRAP. While similar effects were demonstrated for chemical processes, some economic constraints were noted. The potential of halophilic bacterial systems for the degradation of organic compounds in brine was also demonstrated. The limitations on the performance of such systems, associated with the low metabolic diversity, and poor immobilisation of physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product.halobacteria, however, were noted. Although physico-chemical processes were found to have a very low impact on the dissolved TOC fraction of the brine, the removal of the particulate material was found to result in a 35% TOC reduction in the final soda ash product and the production of a white final product. Apart from a description of the microbial ecology of the ponds and the identification of major contributions to the TOC of the final product, a number of remediation strategies were evaluated and are described. These include chemical and biological stripping of nutrients sustaining microbial TOC production in the ponds, and also biological and physico-chemical processes for their removal once formed. Future studies to undertake the further development of these proposals has been described
- Full Text:
- Date Issued: 2000
The development and evaluation of Cryptophlebia Leucotreta granulovirus (CrleGV) as a biological control agent for the management of false codling moth, Cryptophlebia Leucotreta, on citrus
- Authors: Moore, Sean Douglas
- Date: 2003
- Subjects: Cryptophlebia leucotreta Cryptophlebia leucotreta -- Control Pests -- Biological control Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3942 , http://hdl.handle.net/10962/d1004001
- Description: A granulovirus isolated from Cryptophlebia leucotreta larvae was shown through restriction endonuclease analysis to be a novel strain (CrleGV-SA). No more than one isolate could be identified from a laboratory culture of C. leucotreta. However, a preliminary examination of restricted DNA profiles of isolates from different geographical regions indicated some minor differences. In surface dose bioassays on artificial diet, LC50 and LC90 values with neonate larvae were estimated to be 4.095 x 103 OBs/ml and 1.185 x 105 OBs/ml respectively. LT50 and LT90 values with neonate larvae were estimated to be 4 days 22 h and 7 days 8 h, respectively. Detached fruit (navel orange) bioassays with neonate larvae indicated that virus concentrations that are likely to be effective in the field range from 1.08 x 107 to 3.819 x 1010 OBs/ml. In surface dose bioassays with fifth instar larvae LC50 and LC90 values were estimated to be 2.678 x 107 OBs/ml and 9.118 x 109 OBs/ml respectively. LT50 and LT90 values were estimated to be 7 days 17 h and 9 days 8 h, respectively. A new artificial diet for mass rearing the host was developed. Microbial contamination of diet was significantly reduced by adding nipagin and sorbic acid to the diet and by surface sterilising C. leucotreta eggs with Sporekill. Almost 20 % more eggs were produced from moths reared on the new diet compared to moths reared on the old diet. A further 9 % improvement in egg production and a reduction in the labour required to produce eggs, was made with the development of a new oviposition cage attached to the moth eclosion box. Virus was mass produced in fifth instar C. leucotreta larvae by surface inoculating diet with the LC90. When 300 individuals were placed onto inoculated diet, 56 % of them were recovered six to 11 days later as infected larvae. Mean larval equivalents was 1.158 x 1011 OBs/larva. When larvae and diet were harvested together, highest yields of virus were achieved at eight days after inoculation. Microbial contamination in semi-purified preparations of CrleGV ranged from 176211 to 433594 (OB:CFU ratio). Half-life of CrleGV in the field was estimated to be less than 1 day on the northern aspect of trees and between 3 - 6 days on the southern aspect. Original activity remaining (OAR) of the virus dropped below 50 % after 5 days on the northern aspect of trees and was still at 69 % on the southern aspect of trees after 3 weeks. In field trials, CrleGV reduced C. leucotreta infestation of navel oranges by up to 60 % for a period of 39 days. CrleGV in combination with augmentation of the C. leucotreta egg parasitoid, Trichogrammatoidea cryptophlebiae, reduced infestation by 70 %. The integration of CrleGV into an integrated pest management (IPM) system for the management of C. leucotreta on citrus is proposed.
- Full Text:
- Date Issued: 2003
- Authors: Moore, Sean Douglas
- Date: 2003
- Subjects: Cryptophlebia leucotreta Cryptophlebia leucotreta -- Control Pests -- Biological control Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3942 , http://hdl.handle.net/10962/d1004001
- Description: A granulovirus isolated from Cryptophlebia leucotreta larvae was shown through restriction endonuclease analysis to be a novel strain (CrleGV-SA). No more than one isolate could be identified from a laboratory culture of C. leucotreta. However, a preliminary examination of restricted DNA profiles of isolates from different geographical regions indicated some minor differences. In surface dose bioassays on artificial diet, LC50 and LC90 values with neonate larvae were estimated to be 4.095 x 103 OBs/ml and 1.185 x 105 OBs/ml respectively. LT50 and LT90 values with neonate larvae were estimated to be 4 days 22 h and 7 days 8 h, respectively. Detached fruit (navel orange) bioassays with neonate larvae indicated that virus concentrations that are likely to be effective in the field range from 1.08 x 107 to 3.819 x 1010 OBs/ml. In surface dose bioassays with fifth instar larvae LC50 and LC90 values were estimated to be 2.678 x 107 OBs/ml and 9.118 x 109 OBs/ml respectively. LT50 and LT90 values were estimated to be 7 days 17 h and 9 days 8 h, respectively. A new artificial diet for mass rearing the host was developed. Microbial contamination of diet was significantly reduced by adding nipagin and sorbic acid to the diet and by surface sterilising C. leucotreta eggs with Sporekill. Almost 20 % more eggs were produced from moths reared on the new diet compared to moths reared on the old diet. A further 9 % improvement in egg production and a reduction in the labour required to produce eggs, was made with the development of a new oviposition cage attached to the moth eclosion box. Virus was mass produced in fifth instar C. leucotreta larvae by surface inoculating diet with the LC90. When 300 individuals were placed onto inoculated diet, 56 % of them were recovered six to 11 days later as infected larvae. Mean larval equivalents was 1.158 x 1011 OBs/larva. When larvae and diet were harvested together, highest yields of virus were achieved at eight days after inoculation. Microbial contamination in semi-purified preparations of CrleGV ranged from 176211 to 433594 (OB:CFU ratio). Half-life of CrleGV in the field was estimated to be less than 1 day on the northern aspect of trees and between 3 - 6 days on the southern aspect. Original activity remaining (OAR) of the virus dropped below 50 % after 5 days on the northern aspect of trees and was still at 69 % on the southern aspect of trees after 3 weeks. In field trials, CrleGV reduced C. leucotreta infestation of navel oranges by up to 60 % for a period of 39 days. CrleGV in combination with augmentation of the C. leucotreta egg parasitoid, Trichogrammatoidea cryptophlebiae, reduced infestation by 70 %. The integration of CrleGV into an integrated pest management (IPM) system for the management of C. leucotreta on citrus is proposed.
- Full Text:
- Date Issued: 2003