Synthesis and biological evaluation of anti-HIV-I integrase agents
- Jesumoroti, Omobolanle Janet
- Authors: Jesumoroti, Omobolanle Janet
- Date: 2017
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/59215 , vital:27479
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2017
- Authors: Jesumoroti, Omobolanle Janet
- Date: 2017
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/59215 , vital:27479
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2017
Hop as an anti-cancer drug target
- Vaaltyn, Michaelone Chantelle
- Authors: Vaaltyn, Michaelone Chantelle
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164704 , vital:41156 , doi:10.21504/10962/164704
- Description: Thesis (PhD)--Rhodes University, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Vaaltyn, Michaelone Chantelle
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164704 , vital:41156 , doi:10.21504/10962/164704
- Description: Thesis (PhD)--Rhodes University, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
Development and optimisation of a novel Plasmodium falciparum Hsp90-Hop interaction assay
- Authors: Wambua, Lynn
- Date: 2018
- Subjects: Plasmodium falciparum , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Antimalarials
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62626 , vital:28216
- Description: Protein-protein interactions are involved in a range of disease processes and thus have become the focus of many drug discovery programs. Widespread drug resistance to all currently used antimalarial drugs drives the search for alternative drug targets with novel mechanisms of action that offer new therapeutic options. Molecular chaperones such as heat shock proteins facilitate protein folding, play a role in protein trafficking and prevent protein misfolding in cells under stress. Heat shock protein 90 (Hsp90) is a well-studied chaperone that has been the focus of cancer drug development with moderate success. In Plasmodium falciparum (P. falciparum), heat shock proteins are thought to play a vital role in parasite survival of the physiologically diverse habitats of the parasite lifecycle and because Hsp90 is prominently expressed in P. falciparum, the chaperone is considered a potentially ideal drug target. Hsp90 function in cells is regulated by interactions with co-chaperones, which includes Heat shock protein 70-Heat shock protein 90 organising protein (Hop). As opposed to directly inhibiting Hsp90 activity, targeting Hsp90 interaction with Hop has recently been suggested as an alternative method of Hsp90 inhibition that has not been explored in P. falciparum. The aim of this research project was to demonstrate PfHsp90 and PfHop robustly interact in vitro and to facilitate high-throughput screening of PfHsp90-PfHop inhibitors by developing and optimising a novel plate capture Hsp90-Hop interaction assay. To establish the assay, the respective domains of the proteins that mediate Hsp90-Hop interaction were used (Hsp90 C- terminal domain and Hop TPR2A domain). The human Hsp90 C-terminal domain and glutathione-S-transferase (GST) coding sequences were cloned into pET-28a(+) and murine and P. falciparum TPR2A sequences into pGEX-4T-1 plasmids to enable expression of histidine-tagged and GST fusion proteins, respectively, in Escherichia coli. The P. falciparum Hsp90 C-terminal domain sequence cloned into pET-28a(+) was supplied by GenScript. The constructs were transformed into T7 Express lysYcompetent E. coli cells and subsequent small- scale expression studies showed the recombinant proteins were expressed in a soluble form allowing for subsequent protein purification. Purification of the recombinant proteins was achieved using nickel-NTA and glutathione affinity chromatography for the His-tagged (Hsp90 C-terminal domains and GST) and GST fusion proteins (TPR2A domains), respectively. The purified proteins were used to establish and optimise mammalian and P. falciparum Hsp90- Hop interaction assays on nickel-coated plates by immobilising the His-tagged C-terminal domains on the plates and detecting the binding of the GST-TPR2A domains using a colorimetric GST enzyme assay. Z’-factor values above 0.5 were observed for both assays indicating good separation between the protein interaction signals and negative control background signals, although relatively high background signals were observed for the mammalian interaction due to non-specific binding of murine TPR2A to the plate. Designed human and P. falciparum TPR peptides were observed to be effective inhibitors of the mammalian and P. falciparum interactions, demonstrating the assay’s ability to respond to inhibitor compounds. Comparison of assay performance using GST assay kit reagents and lab- prepared reagents showed the assay was more efficient using lab-prepared reagents, however, lower GST signals were observed when comparing assay performance using a custom prepared Ni-NTA plate to a purchased Ni-NTA plate. The Hsp90-Hop interaction assays were also performed using an alternative assay format in which the GST-TPR2A fusion proteins were immobilised on glutathione-coated plates and binding of the His-tagged C-terminal domains detected with a nickel-horseradish peroxidase (HRP) conjugate and a colorimetric HRP substrate. The assay showed higher interaction signals for the P. falciparum proteins but comparatively low signals for the mammalian proteins. Z’-factor values for the assay were above 0.8 for both protein sets, suggesting this assay format is superior to the GST assay. However, further optimisation of this assay format is required. This study demonstrated direct binding of PfHsp90-PfHop in vitro and established a novel and robust PfHsp90-PfHop interaction assay format that can be used in future screening campaigns.
- Full Text:
- Date Issued: 2018
- Authors: Wambua, Lynn
- Date: 2018
- Subjects: Plasmodium falciparum , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Antimalarials
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62626 , vital:28216
- Description: Protein-protein interactions are involved in a range of disease processes and thus have become the focus of many drug discovery programs. Widespread drug resistance to all currently used antimalarial drugs drives the search for alternative drug targets with novel mechanisms of action that offer new therapeutic options. Molecular chaperones such as heat shock proteins facilitate protein folding, play a role in protein trafficking and prevent protein misfolding in cells under stress. Heat shock protein 90 (Hsp90) is a well-studied chaperone that has been the focus of cancer drug development with moderate success. In Plasmodium falciparum (P. falciparum), heat shock proteins are thought to play a vital role in parasite survival of the physiologically diverse habitats of the parasite lifecycle and because Hsp90 is prominently expressed in P. falciparum, the chaperone is considered a potentially ideal drug target. Hsp90 function in cells is regulated by interactions with co-chaperones, which includes Heat shock protein 70-Heat shock protein 90 organising protein (Hop). As opposed to directly inhibiting Hsp90 activity, targeting Hsp90 interaction with Hop has recently been suggested as an alternative method of Hsp90 inhibition that has not been explored in P. falciparum. The aim of this research project was to demonstrate PfHsp90 and PfHop robustly interact in vitro and to facilitate high-throughput screening of PfHsp90-PfHop inhibitors by developing and optimising a novel plate capture Hsp90-Hop interaction assay. To establish the assay, the respective domains of the proteins that mediate Hsp90-Hop interaction were used (Hsp90 C- terminal domain and Hop TPR2A domain). The human Hsp90 C-terminal domain and glutathione-S-transferase (GST) coding sequences were cloned into pET-28a(+) and murine and P. falciparum TPR2A sequences into pGEX-4T-1 plasmids to enable expression of histidine-tagged and GST fusion proteins, respectively, in Escherichia coli. The P. falciparum Hsp90 C-terminal domain sequence cloned into pET-28a(+) was supplied by GenScript. The constructs were transformed into T7 Express lysYcompetent E. coli cells and subsequent small- scale expression studies showed the recombinant proteins were expressed in a soluble form allowing for subsequent protein purification. Purification of the recombinant proteins was achieved using nickel-NTA and glutathione affinity chromatography for the His-tagged (Hsp90 C-terminal domains and GST) and GST fusion proteins (TPR2A domains), respectively. The purified proteins were used to establish and optimise mammalian and P. falciparum Hsp90- Hop interaction assays on nickel-coated plates by immobilising the His-tagged C-terminal domains on the plates and detecting the binding of the GST-TPR2A domains using a colorimetric GST enzyme assay. Z’-factor values above 0.5 were observed for both assays indicating good separation between the protein interaction signals and negative control background signals, although relatively high background signals were observed for the mammalian interaction due to non-specific binding of murine TPR2A to the plate. Designed human and P. falciparum TPR peptides were observed to be effective inhibitors of the mammalian and P. falciparum interactions, demonstrating the assay’s ability to respond to inhibitor compounds. Comparison of assay performance using GST assay kit reagents and lab- prepared reagents showed the assay was more efficient using lab-prepared reagents, however, lower GST signals were observed when comparing assay performance using a custom prepared Ni-NTA plate to a purchased Ni-NTA plate. The Hsp90-Hop interaction assays were also performed using an alternative assay format in which the GST-TPR2A fusion proteins were immobilised on glutathione-coated plates and binding of the His-tagged C-terminal domains detected with a nickel-horseradish peroxidase (HRP) conjugate and a colorimetric HRP substrate. The assay showed higher interaction signals for the P. falciparum proteins but comparatively low signals for the mammalian proteins. Z’-factor values for the assay were above 0.8 for both protein sets, suggesting this assay format is superior to the GST assay. However, further optimisation of this assay format is required. This study demonstrated direct binding of PfHsp90-PfHop in vitro and established a novel and robust PfHsp90-PfHop interaction assay format that can be used in future screening campaigns.
- Full Text:
- Date Issued: 2018
Studies on an autolysin produced by clostridium acetobutylicum
- Authors: Webster, Jocelyn Rowena
- Date: 1981
- Subjects: Clostridium acetobutylicum , Autolysis , Bacteriocins , Proteins -- Synthesis , DNA -- Synthesis , RNA -- Synthesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3893 , http://hdl.handle.net/10962/d1003724
- Description: An extracellular bacteriocin-like substance produced by Clostridium acetobutylicum was detected during studies on an industrial fermentation process. The bacteriocin-like substance was not inducible by either ultraviolet light or mitomycin C, and its production was not associated with the induction of a protease. Studies on the mode of action of the bacteriocin-like substance indicated that it had no significant effect on DNA, RNA, or protein synthesis, and it did not cause the loss of intracellular ATP. However, the bacteriocin-like substance was able to lyse SDS-treated cells and cell walls of C. acetobutylicum and was identified as an autolysin. Some of the characteristics of this extracellular autolysin were determined, and after purification it was shown to be a glycoprotein with a molecular weight of 28 000.
- Full Text:
- Date Issued: 1981
- Authors: Webster, Jocelyn Rowena
- Date: 1981
- Subjects: Clostridium acetobutylicum , Autolysis , Bacteriocins , Proteins -- Synthesis , DNA -- Synthesis , RNA -- Synthesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3893 , http://hdl.handle.net/10962/d1003724
- Description: An extracellular bacteriocin-like substance produced by Clostridium acetobutylicum was detected during studies on an industrial fermentation process. The bacteriocin-like substance was not inducible by either ultraviolet light or mitomycin C, and its production was not associated with the induction of a protease. Studies on the mode of action of the bacteriocin-like substance indicated that it had no significant effect on DNA, RNA, or protein synthesis, and it did not cause the loss of intracellular ATP. However, the bacteriocin-like substance was able to lyse SDS-treated cells and cell walls of C. acetobutylicum and was identified as an autolysin. Some of the characteristics of this extracellular autolysin were determined, and after purification it was shown to be a glycoprotein with a molecular weight of 28 000.
- Full Text:
- Date Issued: 1981
The independent high rate algal pond as a unit operation in tertiary wastewater treatment
- Authors: Clark, Stewart James
- Date: 2002
- Subjects: Algae -- Biotechnology , Sewage -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4092 , http://hdl.handle.net/10962/d1007805
- Description: The development of the High Rate Algal Pond (HRAP) as an independent tertiary treatment unit operation for phosphate and nitrate removal is reported. A novel Integrated Algal Ponding System (lAPS) design is proposed for nutrient removal from the effluents of both a conventional domestic sewage treatment plant and from an Advanced Integrated Wastewater Ponding System (AIWPS). The viability of an independently operated HRAP has been identified and termed the Independent High Rate Algal Pond (l-HRAP). A 500 m² pilot 1- HRAP was operated in such a way as to facilitate the precipitation of calcium phosphate, known to be controlled by pH (greater than 9.4) and resulting in final phosphate levels of less than 1 mg.L⁻¹ as P0₄-P. The incorporation of the I-HRAP into a denitrification process was also investigated. Continuously fed column reactors, utilising algal biomass as a carbon source, showed that the heterotrophic bacterial community dominant in the anaerobic algal sludge were denitrifying the nitrate in the feed. It was demonstrated that as the cultures were stressed (using increased nitrate concentrations, anaerobiosis and light starvation) total polysaccharide (TPS) concentrations increased, with a notable increase 111 the exopolysaccharide (EPS) fraction. These experiments corroborated the hypothesis that harvested microalgal biomass can be manipulated to produce, and release, exopolymeric substances under stress conditions, and which may serve as carbon source for denitrification. In both batch flask studies and in laboratory-scale reactor systems, harvested microalgal biomass from an HRAP was shown to produce exopolymeric substances under stress conditions. Initial high loading-rates of greater than 20 mg.L⁻¹ NO₃-N resulted in double the amount of exopolysaccharide production than in flasks with initial low loading-rates (less than 5 mg.L⁻¹ NO₃-N). Making use of an upflow anaerobic sludge blanket-type degrading-bed reactor, and an anaerobic, flooded trickle filter (ANTRIC) receiving HRAP effluent, the relationship between denitrification and the changes in polysaccharide content was investigated. This phenomenon has considerable beneficial implications in biological wastewater treatment systems where high nitrate concentration in the final effluent is a potential mitigating factor. Identification of the heterotrophic bacteria active in the denitrification process was attempted. This study presents a first report on the development and operation of the I-HRAP and has been followed by a technical-scale pilot plant evaluation of the process in the tertiary treatment of domestic wastewaters.
- Full Text:
- Date Issued: 2002
- Authors: Clark, Stewart James
- Date: 2002
- Subjects: Algae -- Biotechnology , Sewage -- Purification -- Biological treatment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4092 , http://hdl.handle.net/10962/d1007805
- Description: The development of the High Rate Algal Pond (HRAP) as an independent tertiary treatment unit operation for phosphate and nitrate removal is reported. A novel Integrated Algal Ponding System (lAPS) design is proposed for nutrient removal from the effluents of both a conventional domestic sewage treatment plant and from an Advanced Integrated Wastewater Ponding System (AIWPS). The viability of an independently operated HRAP has been identified and termed the Independent High Rate Algal Pond (l-HRAP). A 500 m² pilot 1- HRAP was operated in such a way as to facilitate the precipitation of calcium phosphate, known to be controlled by pH (greater than 9.4) and resulting in final phosphate levels of less than 1 mg.L⁻¹ as P0₄-P. The incorporation of the I-HRAP into a denitrification process was also investigated. Continuously fed column reactors, utilising algal biomass as a carbon source, showed that the heterotrophic bacterial community dominant in the anaerobic algal sludge were denitrifying the nitrate in the feed. It was demonstrated that as the cultures were stressed (using increased nitrate concentrations, anaerobiosis and light starvation) total polysaccharide (TPS) concentrations increased, with a notable increase 111 the exopolysaccharide (EPS) fraction. These experiments corroborated the hypothesis that harvested microalgal biomass can be manipulated to produce, and release, exopolymeric substances under stress conditions, and which may serve as carbon source for denitrification. In both batch flask studies and in laboratory-scale reactor systems, harvested microalgal biomass from an HRAP was shown to produce exopolymeric substances under stress conditions. Initial high loading-rates of greater than 20 mg.L⁻¹ NO₃-N resulted in double the amount of exopolysaccharide production than in flasks with initial low loading-rates (less than 5 mg.L⁻¹ NO₃-N). Making use of an upflow anaerobic sludge blanket-type degrading-bed reactor, and an anaerobic, flooded trickle filter (ANTRIC) receiving HRAP effluent, the relationship between denitrification and the changes in polysaccharide content was investigated. This phenomenon has considerable beneficial implications in biological wastewater treatment systems where high nitrate concentration in the final effluent is a potential mitigating factor. Identification of the heterotrophic bacteria active in the denitrification process was attempted. This study presents a first report on the development and operation of the I-HRAP and has been followed by a technical-scale pilot plant evaluation of the process in the tertiary treatment of domestic wastewaters.
- Full Text:
- Date Issued: 2002
Investigation of the causative agents of the 1982 Gazankulu poliomyelitis outbreak, using four biochemical techniques
- Authors: Gibson, Katherine Margaret
- Date: 1989
- Subjects: Poliomyelitis -- Analysis , Poliomyelitis -- History -- South Africa , Poliomyelitis vaccine -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3878 , http://hdl.handle.net/10962/d1001612
- Description: Comparison of poliovirus strains was carried out to determine the origin of the virus in two isolates obtained during the 1982 outbreak of poliomyelitis in Gazankulu. Comparisons of the outbreak isolates with vaccine and wild-type strains of the same poliovirus type were carried out using four biochemical techniques. SDS-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional thin-layer chromatography (TLC) and reversed-phase high-performance liquid-chromatography (RP-HPLC) were used for comparing viral capsid proteins. Comparison of poliovirus strains at a genetic level was carried out using two-dimensional oligonucleotide mapping of viral RNA. Results showed the type 1 poliovirus isolate, 5061, to be a novel wild-type poliovirus. The type 2 isolate, 5068, was closely related to the poliovirus type 2 Sabin vaccine strain, P712. It was concluded that the intrinsic variability of poliovirus strains was responsible for the appearance of isolate 5068
- Full Text:
- Date Issued: 1989
- Authors: Gibson, Katherine Margaret
- Date: 1989
- Subjects: Poliomyelitis -- Analysis , Poliomyelitis -- History -- South Africa , Poliomyelitis vaccine -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3878 , http://hdl.handle.net/10962/d1001612
- Description: Comparison of poliovirus strains was carried out to determine the origin of the virus in two isolates obtained during the 1982 outbreak of poliomyelitis in Gazankulu. Comparisons of the outbreak isolates with vaccine and wild-type strains of the same poliovirus type were carried out using four biochemical techniques. SDS-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional thin-layer chromatography (TLC) and reversed-phase high-performance liquid-chromatography (RP-HPLC) were used for comparing viral capsid proteins. Comparison of poliovirus strains at a genetic level was carried out using two-dimensional oligonucleotide mapping of viral RNA. Results showed the type 1 poliovirus isolate, 5061, to be a novel wild-type poliovirus. The type 2 isolate, 5068, was closely related to the poliovirus type 2 Sabin vaccine strain, P712. It was concluded that the intrinsic variability of poliovirus strains was responsible for the appearance of isolate 5068
- Full Text:
- Date Issued: 1989
Using bioinformatics tools to screen for trypanosomal cathepsin B cysteine protease inhibitors from the SANCDB as a novel therapeutic modality against Human African Trypanosomiasis (HAT)
- Authors: Mokhawa, Gaone
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3304 , vital:20470
- Description: Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a fatal chronic disease that is caused by flagellated protozoans, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. HAT is spread by a bite from an infected tsetse fly of the Glosina genus. Up to 60 million people in 36 countries in sub-Saharan Africa are at a risk of infection from HAT with up to 30 000 deaths reported every year. Current chemotherapy for HAT is insufficient since the available drugs exhibit unacceptable side effects (toxicity) and parasite resistance. Novel treatments and approaches for development of specific and more potent drugs for HAT are therefore required. One approach is to target vital proteins that are essential to the life cycle of the parasite. The main interest of this study is to explore Trypanosoma brucei cathepsin B-like protease (TbCatB) structural and functional properties with the primary goal of discovering non peptide small molecule inhibitors of TbCatB using bioinformatics approaches. TbCatB is a papain family C1 cysteine protease which belongs to clan CA group and it has emerged as a potential HAT drug target. Papain family cysteine proteases of Clan CA group of Trypanosoma brucei (rhodesain and TbCatB) have demonstrated potential as chemotherapeutic targets using synthetic protease inhibitors like Z-Phe-Ala-CHN2 to kill the parasite in vitro and in vivo. TbCatB has been identified as the essential cysteine protease of T. brucei since mRNA silencing of TbCatB killed the parasite and resulted in a cure in mice infected with T. brucei while mRNA silencing of rhodesain only extended mice life. TbCatB is therefore a promising drug target against HAT and the discovery and development of compounds that can selectively inhibit TbCatB without posing any danger to the human host represent a great therapeutic solution for treatment of HAT. To understand protein-inhibitor interactions, useful information can be obtained from high resolution protease-inhibitor crystal structure complexes. This study aims to use bioinformatics approaches to carry out comparative sequence, structural and functional analysis of TbCatB protease and its homologs from T. congolense, T, cruzi, T. vivax and H. sapien as well as to identify non-peptide small molecule inhibitors of TbCatB cysteine proteases from natural compounds of South African origin. Sequences of TbCatB (PDB ID: 3HHI) homologs were retrieved by a BLAST search. Human cathepsin B (PDB ID: 3CBJ) was selected from a list of templates for homology modelling found by HHpred. MODELLER version 9.10 program was used to generate a hundred models for T. congolense, T, cruzi and T. vivax cathepsin B like proteases using 3HHI and 3CBJ as templates. The best models were chosen based on their low DOPE Z scores before validation using MetaMQAPII, ANOLEA, PROCHECK and QMEAN6. The DOPE Z scores and the RMSD (RMS) values of the calculated models indicate that the models are of acceptable energy (stability) and fold (conformation). Results from the different MQAPs indicate the models are of acceptable quality and they can be used for docking studies. High throughput screening of SANCDB using AutoDock Vina revealed nine compounds, SANC00 478, 479, 480, 481, 482, 488, 489, 490 and 491, having a strong affinity for Trypanosoma spp. cathepsin B proteases than HsCatB. SANC00488 has the strongest binding to Trypanosoma spp. cathepsin B proteases and the weakest binding to HsCatB protease. Molecular dynamics (MD) simulations show that the complexes between SANC00488 and TbCatB, TcCatB, TcrCatB and TvCatB are stable and do not come apart during simulation. The complex between this compound and HsCatB however is unstable and comes apart during simulation. Residues that are important for the stability of SANC00488-TbCatB complex are Gly328 of the S2 subsite, Phe208, and Ala256. In conclusion SANC00488 is a good candidate for development of a drug against HAT.
- Full Text:
- Date Issued: 2016
- Authors: Mokhawa, Gaone
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3304 , vital:20470
- Description: Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a fatal chronic disease that is caused by flagellated protozoans, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. HAT is spread by a bite from an infected tsetse fly of the Glosina genus. Up to 60 million people in 36 countries in sub-Saharan Africa are at a risk of infection from HAT with up to 30 000 deaths reported every year. Current chemotherapy for HAT is insufficient since the available drugs exhibit unacceptable side effects (toxicity) and parasite resistance. Novel treatments and approaches for development of specific and more potent drugs for HAT are therefore required. One approach is to target vital proteins that are essential to the life cycle of the parasite. The main interest of this study is to explore Trypanosoma brucei cathepsin B-like protease (TbCatB) structural and functional properties with the primary goal of discovering non peptide small molecule inhibitors of TbCatB using bioinformatics approaches. TbCatB is a papain family C1 cysteine protease which belongs to clan CA group and it has emerged as a potential HAT drug target. Papain family cysteine proteases of Clan CA group of Trypanosoma brucei (rhodesain and TbCatB) have demonstrated potential as chemotherapeutic targets using synthetic protease inhibitors like Z-Phe-Ala-CHN2 to kill the parasite in vitro and in vivo. TbCatB has been identified as the essential cysteine protease of T. brucei since mRNA silencing of TbCatB killed the parasite and resulted in a cure in mice infected with T. brucei while mRNA silencing of rhodesain only extended mice life. TbCatB is therefore a promising drug target against HAT and the discovery and development of compounds that can selectively inhibit TbCatB without posing any danger to the human host represent a great therapeutic solution for treatment of HAT. To understand protein-inhibitor interactions, useful information can be obtained from high resolution protease-inhibitor crystal structure complexes. This study aims to use bioinformatics approaches to carry out comparative sequence, structural and functional analysis of TbCatB protease and its homologs from T. congolense, T, cruzi, T. vivax and H. sapien as well as to identify non-peptide small molecule inhibitors of TbCatB cysteine proteases from natural compounds of South African origin. Sequences of TbCatB (PDB ID: 3HHI) homologs were retrieved by a BLAST search. Human cathepsin B (PDB ID: 3CBJ) was selected from a list of templates for homology modelling found by HHpred. MODELLER version 9.10 program was used to generate a hundred models for T. congolense, T, cruzi and T. vivax cathepsin B like proteases using 3HHI and 3CBJ as templates. The best models were chosen based on their low DOPE Z scores before validation using MetaMQAPII, ANOLEA, PROCHECK and QMEAN6. The DOPE Z scores and the RMSD (RMS) values of the calculated models indicate that the models are of acceptable energy (stability) and fold (conformation). Results from the different MQAPs indicate the models are of acceptable quality and they can be used for docking studies. High throughput screening of SANCDB using AutoDock Vina revealed nine compounds, SANC00 478, 479, 480, 481, 482, 488, 489, 490 and 491, having a strong affinity for Trypanosoma spp. cathepsin B proteases than HsCatB. SANC00488 has the strongest binding to Trypanosoma spp. cathepsin B proteases and the weakest binding to HsCatB protease. Molecular dynamics (MD) simulations show that the complexes between SANC00488 and TbCatB, TcCatB, TcrCatB and TvCatB are stable and do not come apart during simulation. The complex between this compound and HsCatB however is unstable and comes apart during simulation. Residues that are important for the stability of SANC00488-TbCatB complex are Gly328 of the S2 subsite, Phe208, and Ala256. In conclusion SANC00488 is a good candidate for development of a drug against HAT.
- Full Text:
- Date Issued: 2016
The detection of glyphosate and glyphosate-based herbicides in water, using nanotechnology
- De Almeida, Louise Kashiyavala Sophia
- Authors: De Almeida, Louise Kashiyavala Sophia
- Date: 2015
- Subjects: Water -- Glyphosate content , Aquatic herbicides -- South Africa , Aquatic herbicides -- Physiological effect , Nanotechnology , Invasive plants -- South Africa , Genetic toxicology , Thiazoles , Tetrazolium , Immunotoxicology , Colorimetry , Nanofibers
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4163 , http://hdl.handle.net/10962/d1019755
- Description: Glyphosate (N-phosphonomethylglycine) is an organophosphate compound which was developed by the Monsanto Company in 1971 and is the active ingredient found in several herbicide formulations. The use of glyphosate-based herbicides in South Africa for the control of alien invasive plants and weeds is well established, extensive and currently unregulated, which vastly increases the likelihood of glyphosate contamination in environmental water systems. Although the use of glyphosate-based herbicides is required for economic enhancement in industries such as agriculture, the presence of this compound in natural water systems presents a potential risk to human health. Glyphosate and glyphosate formulations were previously considered safe, however their toxicity has become a major focal point of research over recent years. The lack of monitoring protocols for pesticides in South Africa is primarily due to limited financial capacity and the lack of analytical techniques.
- Full Text:
- Date Issued: 2015
- Authors: De Almeida, Louise Kashiyavala Sophia
- Date: 2015
- Subjects: Water -- Glyphosate content , Aquatic herbicides -- South Africa , Aquatic herbicides -- Physiological effect , Nanotechnology , Invasive plants -- South Africa , Genetic toxicology , Thiazoles , Tetrazolium , Immunotoxicology , Colorimetry , Nanofibers
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4163 , http://hdl.handle.net/10962/d1019755
- Description: Glyphosate (N-phosphonomethylglycine) is an organophosphate compound which was developed by the Monsanto Company in 1971 and is the active ingredient found in several herbicide formulations. The use of glyphosate-based herbicides in South Africa for the control of alien invasive plants and weeds is well established, extensive and currently unregulated, which vastly increases the likelihood of glyphosate contamination in environmental water systems. Although the use of glyphosate-based herbicides is required for economic enhancement in industries such as agriculture, the presence of this compound in natural water systems presents a potential risk to human health. Glyphosate and glyphosate formulations were previously considered safe, however their toxicity has become a major focal point of research over recent years. The lack of monitoring protocols for pesticides in South Africa is primarily due to limited financial capacity and the lack of analytical techniques.
- Full Text:
- Date Issued: 2015
Computational analysis of known drug resistant mutants of Plasmodium falciparum Dihydrofolate Reductase (PfDHFR) and screening for novel antifolates against the enzyme
- Authors: Tata, Rolland Bantar
- Date: 2022-04-08
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/234184 , vital:50170
- Description: Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Tata, Rolland Bantar
- Date: 2022-04-08
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/234184 , vital:50170
- Description: Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-08
Identification of novel compounds against Plasmodium falciparum Cytochrome bc1 Complex inhibiting the trans-membrane electron transfer pathway: an In Silico study
- Authors: Chebon, Lorna Jemosop
- Date: 2022-10-14
- Subjects: Malaria , Plasmodium falciparum , Molecular dynamics , Antimalarials , Molecules Models , Docking , Cytochromes , Drug resistance , Computer simulation , Drugs Computer-aided design , System analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365666 , vital:65774 , DOI https://doi.org/10.21504/10962/365666
- Description: Malaria continues to be a burden globally with a myriad of challenges deterring eradication efforts. With most antimalarials facing drug resistance, such as atovaquone (ATQ), alternative compounds that can withstand resistance are warranted. The Plasmodium falciparum cytochrome b (PfCytb), a subunit of P. falciparum cytochrome bc1 complex, is a validated drug target. Structurally, cytochrome b, cytochrome c1, and iron sulphur protein (ISP) subunits form the catalytic domain of the protein complex having heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors. These cofactos have redox centres to aid in the electron transfer (ET) process. These subunits promote ET mainly through the enzyme’s ubiquinol oxidation (Qo) and ubiquinone reduction (Qi) processes in the catalytic domain. ATQ drug has been used in the prevention and treatment of uncomplicated malaria by targeting PfCytb protein. Once the mitochondrial transmembrane ET pathway is inhibited, it causes a collapse in its membrane potential. Previously reported ATQ drug resistance has been associated with the point mutations Y268C, Y268N and Y268S. Thus, in finding alternatives to the ATQ drug, this research aimed to: i) employ in silico approaches incorporating protein into phospholipid bilayer for the first time to understand the parasites’ resistance mechanism; ii) determine any sequence and structural differences that could be explored in drug design studies; and iii) screen for PfCytb-iron sulphur protein (Cytb-ISP) hit compounds from South African natural compound database (SANCDB) and Medicines for Malaria Venture (MMV) that can withstand the identified mutations. Using computational tools, comparative sequence and structural analyses were performed on the cytochrome b protein, where the ultimate focus was on P. falciparum cytochrome b and its human homolog. Through multiple sequence alignment, motif discovery and phylogeny, differences between P. falciparum and H. sapiens cytochrome b were identified. Protein modelling of both P. falciparum and H. sapiens cytochrome b - iron sulphur protein (PfCytb-ISP and HsCytb-ISP) was performed. Results showed that at the sequence level, there were few amino acid residue differences because the protein is highly conserved. Important to note is the four-residue deletion in Plasmodium spp. absent in the human homolog. Motif analysis discovered five unique motifs in P. falciparum cytochrome b protein which were mapped onto the predicted protein model. These motifs were not in regions of functional importance; hence their function is still unknown. At a structural level, the four-residue deletion was observed to alter the Qo substrate binding pocket as reported in previous studies and confirmed in this study. This deletion resulted in a 0.83 Å structural displacement. Also, there are currently no in silico studies that have performed experiments with P. falciparum cytochrome b protein incorporated into a phospholipid bilayer. Using 350 ns molecular dynamics (MD) simulations of the holo and ATQ-bound systems, the study highlighted the resistance mechanism of the parasite protein where the loss of active site residue-residue interactions was identified, all linked to the three mutations. The identified compromised interactions are likely to destabilise the protein’s function, specifically in the Qo substrate binding site. This showed the possible effect of mutations on ATQ drug activity, where all three mutations were reported to share a similar resistance mechanism. Thereafter, this research work utilised in silico approaches where both Qo active site and interface pocket were targeted by screening the South African natural compounds database (SANCDB) and Medicines for Malaria Venture (MMV) compounds to identify novel selective hits. SANCDB compounds are known for their structural complexity that preserves the potency of the drug molecule. Both SANCDB and MMV compounds have not been explored as inhibitors against the PfCytb drug target. Molecular docking, molecular dynamics (MD) simulations, principal component, and dynamic residue network (DRN; global and local) analyses were utilised to identify and confirm the potential selective inhibitors. Docking results identified compounds that bound selectively onto PfCytb-ISP with a binding energy ≤ -8.7 kcal/mol-1. Further, this work validated a total of eight potential selective compounds to inhibit PfCytb-ISP protein (Qo active site) not only in the wild-type but also in the presence of the point mutations Y268C, Y268N and Y268S. The selective binding of these hit compounds could be linked to the differences reported at sequence/residue level in chapter 3. DRN and residue contact map analyses of the eight compounds in holo and ligand-bound systems revealed reduced residue interactions and decreased protein communication. This suggests that the eight compounds show the possibility of inhibiting the parasite and disrupting important residue-residue interactions. Additionally, 13 selective compounds were identified to bind at the protein’s heterodimer interface, where global and local analysis confirmed their effect on active site residues (distal location) as well as on the communication network. Based on the sequence differences between PfCytb and the human homolog, these findings suggest these selective compounds as potential allosteric modulators of the parasite enzyme, which may serve as possible replacements of the already resistant ATQ drug. Therefore, these findings pave the way for further in vitro studies to establish their anti-plasmodial inhibition levels. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Chebon, Lorna Jemosop
- Date: 2022-10-14
- Subjects: Malaria , Plasmodium falciparum , Molecular dynamics , Antimalarials , Molecules Models , Docking , Cytochromes , Drug resistance , Computer simulation , Drugs Computer-aided design , System analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365666 , vital:65774 , DOI https://doi.org/10.21504/10962/365666
- Description: Malaria continues to be a burden globally with a myriad of challenges deterring eradication efforts. With most antimalarials facing drug resistance, such as atovaquone (ATQ), alternative compounds that can withstand resistance are warranted. The Plasmodium falciparum cytochrome b (PfCytb), a subunit of P. falciparum cytochrome bc1 complex, is a validated drug target. Structurally, cytochrome b, cytochrome c1, and iron sulphur protein (ISP) subunits form the catalytic domain of the protein complex having heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors. These cofactos have redox centres to aid in the electron transfer (ET) process. These subunits promote ET mainly through the enzyme’s ubiquinol oxidation (Qo) and ubiquinone reduction (Qi) processes in the catalytic domain. ATQ drug has been used in the prevention and treatment of uncomplicated malaria by targeting PfCytb protein. Once the mitochondrial transmembrane ET pathway is inhibited, it causes a collapse in its membrane potential. Previously reported ATQ drug resistance has been associated with the point mutations Y268C, Y268N and Y268S. Thus, in finding alternatives to the ATQ drug, this research aimed to: i) employ in silico approaches incorporating protein into phospholipid bilayer for the first time to understand the parasites’ resistance mechanism; ii) determine any sequence and structural differences that could be explored in drug design studies; and iii) screen for PfCytb-iron sulphur protein (Cytb-ISP) hit compounds from South African natural compound database (SANCDB) and Medicines for Malaria Venture (MMV) that can withstand the identified mutations. Using computational tools, comparative sequence and structural analyses were performed on the cytochrome b protein, where the ultimate focus was on P. falciparum cytochrome b and its human homolog. Through multiple sequence alignment, motif discovery and phylogeny, differences between P. falciparum and H. sapiens cytochrome b were identified. Protein modelling of both P. falciparum and H. sapiens cytochrome b - iron sulphur protein (PfCytb-ISP and HsCytb-ISP) was performed. Results showed that at the sequence level, there were few amino acid residue differences because the protein is highly conserved. Important to note is the four-residue deletion in Plasmodium spp. absent in the human homolog. Motif analysis discovered five unique motifs in P. falciparum cytochrome b protein which were mapped onto the predicted protein model. These motifs were not in regions of functional importance; hence their function is still unknown. At a structural level, the four-residue deletion was observed to alter the Qo substrate binding pocket as reported in previous studies and confirmed in this study. This deletion resulted in a 0.83 Å structural displacement. Also, there are currently no in silico studies that have performed experiments with P. falciparum cytochrome b protein incorporated into a phospholipid bilayer. Using 350 ns molecular dynamics (MD) simulations of the holo and ATQ-bound systems, the study highlighted the resistance mechanism of the parasite protein where the loss of active site residue-residue interactions was identified, all linked to the three mutations. The identified compromised interactions are likely to destabilise the protein’s function, specifically in the Qo substrate binding site. This showed the possible effect of mutations on ATQ drug activity, where all three mutations were reported to share a similar resistance mechanism. Thereafter, this research work utilised in silico approaches where both Qo active site and interface pocket were targeted by screening the South African natural compounds database (SANCDB) and Medicines for Malaria Venture (MMV) compounds to identify novel selective hits. SANCDB compounds are known for their structural complexity that preserves the potency of the drug molecule. Both SANCDB and MMV compounds have not been explored as inhibitors against the PfCytb drug target. Molecular docking, molecular dynamics (MD) simulations, principal component, and dynamic residue network (DRN; global and local) analyses were utilised to identify and confirm the potential selective inhibitors. Docking results identified compounds that bound selectively onto PfCytb-ISP with a binding energy ≤ -8.7 kcal/mol-1. Further, this work validated a total of eight potential selective compounds to inhibit PfCytb-ISP protein (Qo active site) not only in the wild-type but also in the presence of the point mutations Y268C, Y268N and Y268S. The selective binding of these hit compounds could be linked to the differences reported at sequence/residue level in chapter 3. DRN and residue contact map analyses of the eight compounds in holo and ligand-bound systems revealed reduced residue interactions and decreased protein communication. This suggests that the eight compounds show the possibility of inhibiting the parasite and disrupting important residue-residue interactions. Additionally, 13 selective compounds were identified to bind at the protein’s heterodimer interface, where global and local analysis confirmed their effect on active site residues (distal location) as well as on the communication network. Based on the sequence differences between PfCytb and the human homolog, these findings suggest these selective compounds as potential allosteric modulators of the parasite enzyme, which may serve as possible replacements of the already resistant ATQ drug. Therefore, these findings pave the way for further in vitro studies to establish their anti-plasmodial inhibition levels. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
Mechanistic analysis of two cytotoxic thiazolidinones as novel inhibitors of Triple-Negative Breast Cancer
- Authors: Vukea, Nyeleti
- Date: 2022-10-14
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365734 , vital:65780
- Description: Thesis embargoes. Expected release date early 2025. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Vukea, Nyeleti
- Date: 2022-10-14
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365734 , vital:65780
- Description: Thesis embargoes. Expected release date early 2025. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
Localizing selected endocytosis protein candidates in Plasmodium falciparum using GFP-tagged fusion constructs
- Authors: Basson, Travis
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2680 , vital:20316
- Description: Malaria is a mosquito-borne infectious disease caused by several obligate intracellular protozoan parasites in the Plasmodium genus, with Plasmodium falciparum causing the most widespread cases and malaria deaths. In 2013 there were approximately 190 million cases of the disease and between 584,000 and 855,000 deaths. It is essential to identify novel drug targets and develop novel drug candidates due to the increase in resistance of P. falciparum parasites to the current arsenal of antimalarial drugs. Endocytosis is an essential process in eukaryotic cells in which the external environment is internalized by the cell in order to obtain various particles from the extracellular space. This extracellular cytoplasm is internalized in membrane-bound invaginations at the plasma membrane. During the blood stage of malaria infection, the parasite requires nutrients from the host red blood cell. To obtain these nutrients, the parasite internalizes haemoglobin in large amounts and degrades it in an acidic, lysosome-like organelle, known as the digestive vacuole. Whilst the exact molecular mechanism of malaria parasite endocytosis is not yet fully understood, a number of proteins have been suggested to be involved. The most expedient approach in identifying candidate endocytosis proteins is to investigate parasite homologues of proteins known to be involved in endocytosis in mammalian cells. The three proteins selected for investigation in this study were the P. falciparum homologues of coronin, dynamin 2, and μ4. The coding sequences for the candidate endocytosis proteins were amplified by PCR and cloned into the pARL2-GFP expression vector. P. falciparum 3D7 parasites were transfected with these vectors and the episomal expression of full-length GFP-tagged fusion protein was confirmed by Western blot analysis using commercially available anti-GFP antibodies. Microscopic analysis of live parasites using fluorescence and confocal microscopy was used to determine the localization of the candidate endocytosis proteins. Coronin appeared to display diffuse cytoplasmic GFP localization during the trophozoite stage, arguing against a role in endocytosis. However, distinct localization during the schizont stage at what appears to be the inner membrane complex was observed. Coronin is thus likely required to coordinate the formation of the actin network between the merozoite IMC and the plasma membrane on which the glideosome is dependant for generating the motile forces required for the merozoite motility and invasion of RBCs. Dynamin 2 displayed localization at three potential locii: the parasite periphery (plasma membrane), punctuate regions within the cytoplasm (potentially at membrane bound organelles) and at the parasite food vacuole. The data suggested that dynamin 2 is involved in endocytosis and membrane trafficking in a similar manner to classical dynamins, potentially as a vesicle scission molecule at the plasma membrane, mediating vesicle formation at the food vacuole to recycle membrane to the plasma membrane, and possibly mitochondria organelle division. μ4 displayed transient localization, cycling between cytosolic localization, and localization to distinct regions at the plasma membrane and the food vacuole. Localization of Pfμ4 to the plasma membrane is indicative of a role for μ4 as a part of an adaptor protein (AP) complex which may be responsible for recruitment of clathrin to initiate endocytosis in a manner similar to mammalian AP-2. As was observed with PfDYN2, Pfμ4 localizes to the FV, which suggests that Pfμ4 forms part of a coat complex that mediates the formation of vesicles that recycle membrane from the FV to the parasite plasma membrane. This study showed that expressing proteins as full-length GFP-tagged fusion constructs is an effective approach in the early stages of determining the localization and function of P. falciparum proteins in vitro, and distinguishing between candidates that have a potential role in endocytosis and those that are unlikely to do so.
- Full Text:
- Date Issued: 2016
- Authors: Basson, Travis
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2680 , vital:20316
- Description: Malaria is a mosquito-borne infectious disease caused by several obligate intracellular protozoan parasites in the Plasmodium genus, with Plasmodium falciparum causing the most widespread cases and malaria deaths. In 2013 there were approximately 190 million cases of the disease and between 584,000 and 855,000 deaths. It is essential to identify novel drug targets and develop novel drug candidates due to the increase in resistance of P. falciparum parasites to the current arsenal of antimalarial drugs. Endocytosis is an essential process in eukaryotic cells in which the external environment is internalized by the cell in order to obtain various particles from the extracellular space. This extracellular cytoplasm is internalized in membrane-bound invaginations at the plasma membrane. During the blood stage of malaria infection, the parasite requires nutrients from the host red blood cell. To obtain these nutrients, the parasite internalizes haemoglobin in large amounts and degrades it in an acidic, lysosome-like organelle, known as the digestive vacuole. Whilst the exact molecular mechanism of malaria parasite endocytosis is not yet fully understood, a number of proteins have been suggested to be involved. The most expedient approach in identifying candidate endocytosis proteins is to investigate parasite homologues of proteins known to be involved in endocytosis in mammalian cells. The three proteins selected for investigation in this study were the P. falciparum homologues of coronin, dynamin 2, and μ4. The coding sequences for the candidate endocytosis proteins were amplified by PCR and cloned into the pARL2-GFP expression vector. P. falciparum 3D7 parasites were transfected with these vectors and the episomal expression of full-length GFP-tagged fusion protein was confirmed by Western blot analysis using commercially available anti-GFP antibodies. Microscopic analysis of live parasites using fluorescence and confocal microscopy was used to determine the localization of the candidate endocytosis proteins. Coronin appeared to display diffuse cytoplasmic GFP localization during the trophozoite stage, arguing against a role in endocytosis. However, distinct localization during the schizont stage at what appears to be the inner membrane complex was observed. Coronin is thus likely required to coordinate the formation of the actin network between the merozoite IMC and the plasma membrane on which the glideosome is dependant for generating the motile forces required for the merozoite motility and invasion of RBCs. Dynamin 2 displayed localization at three potential locii: the parasite periphery (plasma membrane), punctuate regions within the cytoplasm (potentially at membrane bound organelles) and at the parasite food vacuole. The data suggested that dynamin 2 is involved in endocytosis and membrane trafficking in a similar manner to classical dynamins, potentially as a vesicle scission molecule at the plasma membrane, mediating vesicle formation at the food vacuole to recycle membrane to the plasma membrane, and possibly mitochondria organelle division. μ4 displayed transient localization, cycling between cytosolic localization, and localization to distinct regions at the plasma membrane and the food vacuole. Localization of Pfμ4 to the plasma membrane is indicative of a role for μ4 as a part of an adaptor protein (AP) complex which may be responsible for recruitment of clathrin to initiate endocytosis in a manner similar to mammalian AP-2. As was observed with PfDYN2, Pfμ4 localizes to the FV, which suggests that Pfμ4 forms part of a coat complex that mediates the formation of vesicles that recycle membrane from the FV to the parasite plasma membrane. This study showed that expressing proteins as full-length GFP-tagged fusion constructs is an effective approach in the early stages of determining the localization and function of P. falciparum proteins in vitro, and distinguishing between candidates that have a potential role in endocytosis and those that are unlikely to do so.
- Full Text:
- Date Issued: 2016
The pineal gland as a model to elucidate the primary mode of action of sympathoactive agents
- Authors: Welman, Alan David
- Date: 1991
- Subjects: Pineal gland , Cythochemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3876 , http://hdl.handle.net/10962/d1001610
- Description: An attempt was made to use the pineal gland as a model for the study of the primary mode of action of sympathoactive agents. Two drugs were investigated, viz. alpha-methyldopa and ephedrine whose mode of action is not entirely clear. Organ cultures of pineal glands from rats treated chronically with alpha-methyldopa showed enhanced conversion of radioactive serotonin to melatonin (aMT) , as well as its precursor Nacetylserotonin (aHT). This treatment was also found to raise Nacetyltransferase (NAT) activity. These increases associated with alpha-methyldopa treatment were further enhanced by the beta-adrenergic agonist, isoproterenol, suggesting a supersensitivity-type effect occurring at the level of the beta-receptor. A subsequent binding study, however, showed a decrease in beta-receptor binding with exposure to alpha-methyldopa, providing mitigating evidence against the occurrence of a supersensitivity phenomenon. It is possible that a metabolite of alpha-methyldopa acts as an alpha 1 and beta-adrenergic agonist, resulting in greater melatonin (aMT) and N-acetylserotonin (aHT) synthesis than by a beta-adrenergic agonist, isoproterenol. Combined treatment of pineals with alpha-methyldopa and an alphareceptor blocker, phentolamine, resulted in melatonin (aMT) , Nacetylserotonin (aHT) , and N-acetyltransferase (NAT) activity levels which were lower than those obtained with alpha-methyldopa treatment alone, thus confirming the alpha-adrenergic activity of the metabolite of alpha-methyldopa. Additional pineal metabolites were isolated and measured simultaneously in the organ culture experiments. Organ cultures of rat pineal glands treated with ephedrine showed raised levels of melatonin (aMT) and N-acetylserotonin (aHT). Treatment with ephedrine also produced raised N-acetyltransferase activity. A further enhancement of these parameters was induced by norepinephrine, suggesting a supersensitivity-type effect occurring at the level of the beta-adrenergic receptor. Rats were treated with reserpine (a norepinephrine depleter) and the pineals exposed to ephedrine. Endogenous norepinephrine normally released by the action of ephedrine was thus absent, and under these conditions, levels of melatonin (aMT) and N-acetylserotonin (aHT) were reduced. N-acetyltransferase (NAT) activity was also reduced, but maintained levels pointing to substantial adrenergic activity of ephedrine as well as norepinephrine released by virtue of the drug's action. A subsequent binding study showed a decrease in beta-adrenergic receptor binding with exposure to ephedrine and a further decrease in ephedrine treated pineals from reserpine treated rats, thus ruling out the occurrence of a supersensitivity phenomenon. It is possible that both ephedrine and released norepinephrine have alpha- and beta-receptor activity. Additional pineal metabolites were isolated and measured in the organ culture experiments. A 16-hour time profile of the production of melatonin (aMT) and N-acetylserotonin (aHT) with norepinephrine and ephedrine treatment provided useful information regarding the course of action of the two agents. A pineal cell-culture system was developed and exposed to ephedrine and norepinephrine. N-acetyltransferase (NAT) activity levels measured after exposure to these agents were raised, confirming the adrenergic activity of both in the model. Finally, an HPLC system coupled to a UV detector was used in an attempt to measure melatonin (aMT) extracted from pineal organ culture media. The results showed that melatonin could be measured by this method, however, a more sensitive detection system was recommended for future work.
- Full Text:
- Date Issued: 1991
- Authors: Welman, Alan David
- Date: 1991
- Subjects: Pineal gland , Cythochemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3876 , http://hdl.handle.net/10962/d1001610
- Description: An attempt was made to use the pineal gland as a model for the study of the primary mode of action of sympathoactive agents. Two drugs were investigated, viz. alpha-methyldopa and ephedrine whose mode of action is not entirely clear. Organ cultures of pineal glands from rats treated chronically with alpha-methyldopa showed enhanced conversion of radioactive serotonin to melatonin (aMT) , as well as its precursor Nacetylserotonin (aHT). This treatment was also found to raise Nacetyltransferase (NAT) activity. These increases associated with alpha-methyldopa treatment were further enhanced by the beta-adrenergic agonist, isoproterenol, suggesting a supersensitivity-type effect occurring at the level of the beta-receptor. A subsequent binding study, however, showed a decrease in beta-receptor binding with exposure to alpha-methyldopa, providing mitigating evidence against the occurrence of a supersensitivity phenomenon. It is possible that a metabolite of alpha-methyldopa acts as an alpha 1 and beta-adrenergic agonist, resulting in greater melatonin (aMT) and N-acetylserotonin (aHT) synthesis than by a beta-adrenergic agonist, isoproterenol. Combined treatment of pineals with alpha-methyldopa and an alphareceptor blocker, phentolamine, resulted in melatonin (aMT) , Nacetylserotonin (aHT) , and N-acetyltransferase (NAT) activity levels which were lower than those obtained with alpha-methyldopa treatment alone, thus confirming the alpha-adrenergic activity of the metabolite of alpha-methyldopa. Additional pineal metabolites were isolated and measured simultaneously in the organ culture experiments. Organ cultures of rat pineal glands treated with ephedrine showed raised levels of melatonin (aMT) and N-acetylserotonin (aHT). Treatment with ephedrine also produced raised N-acetyltransferase activity. A further enhancement of these parameters was induced by norepinephrine, suggesting a supersensitivity-type effect occurring at the level of the beta-adrenergic receptor. Rats were treated with reserpine (a norepinephrine depleter) and the pineals exposed to ephedrine. Endogenous norepinephrine normally released by the action of ephedrine was thus absent, and under these conditions, levels of melatonin (aMT) and N-acetylserotonin (aHT) were reduced. N-acetyltransferase (NAT) activity was also reduced, but maintained levels pointing to substantial adrenergic activity of ephedrine as well as norepinephrine released by virtue of the drug's action. A subsequent binding study showed a decrease in beta-adrenergic receptor binding with exposure to ephedrine and a further decrease in ephedrine treated pineals from reserpine treated rats, thus ruling out the occurrence of a supersensitivity phenomenon. It is possible that both ephedrine and released norepinephrine have alpha- and beta-receptor activity. Additional pineal metabolites were isolated and measured in the organ culture experiments. A 16-hour time profile of the production of melatonin (aMT) and N-acetylserotonin (aHT) with norepinephrine and ephedrine treatment provided useful information regarding the course of action of the two agents. A pineal cell-culture system was developed and exposed to ephedrine and norepinephrine. N-acetyltransferase (NAT) activity levels measured after exposure to these agents were raised, confirming the adrenergic activity of both in the model. Finally, an HPLC system coupled to a UV detector was used in an attempt to measure melatonin (aMT) extracted from pineal organ culture media. The results showed that melatonin could be measured by this method, however, a more sensitive detection system was recommended for future work.
- Full Text:
- Date Issued: 1991
Production of mannooligosaccharides from pineapple pulp and pine sawdust using Aspergillus niger derived Man26A and determination of their prebiotic effect
- Authors: Hlalukana, Nosipho Pretty
- Date: 2022-10-14
- Subjects: Oligosaccharides , Prebiotics , Lignocellulose , Mannans
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362853 , vital:65368
- Description: Lignocellulosic biomass is the most abundant source of renewable biomass on earth. Lignocellulosic biomass consists of cellulose, hemicelluloses and lignin. These can be used as a source of renewable fuel as well as other value-added products . Mannans are part of the hemicellulose fraction of lignocellulosic biomass and are the major hemicellulosic polysaccharide fraction in softwoods, where they are found as galactoglucomannans and as glucomannans. Mannans are also found in hardwoods in the form of glucomannans. Mannans can be enzymatically hydrolysed using endo-mannanases to produce of short chain mannooligosaccharides (MOS). MOS have received significant attention for their prebiotic properties, as they promote the growth of probiotic bacteria, which have positively affects on gut health. This study focused on the production of prebiotic MOS from lignocellulosic biomass waste (LBW) and an evaluation of the prebiotic potential of the produced MOS. An Aspergillus niger derived endo-mannanase, Man26A, was fractionated and biochemically analysed. Purified Man26A had a fold purification of 1.25 and a yield of 41.1%. SDS-PAGE analysis of the enzyme revealed that it had a molecular weight of 46 kDa. The pH and temperature optima of Man26A were determined and the pH optimum was found to be pH 4.0 (but the enzyme displayed high activity over a broad acidic pH range, with up to 90% of the activity retained between pH 3.0 and 7.0). The temperature optimum was 50℃. The enzyme was shown to have the highest specific activity on locust bean gum (52.27 U/mg) and ivory nut mannan (57.25 U/mg), compared to guar gum (29.07 U/mg), which indicated that it was affected by the substitution pattern of the mannans. Man26A produced MOS of different diversity on model mannan substrates, where the MOS produced were mannobiose, mannotriose, and mannotetraose for ivory nut mannan, mannobiose, mannotriose, mannotetraose, and mannopentaose and MOS with a higher degree of polymerisation for locust bean gum, and mannobiose, mannotriose, mannotetraose, mannopentaose, and mannohexose and MOS with a higher degree of polymerisation for guar gum, as determined by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Pretreatment and characterisation of pineapple pulp (PP) and pine sawdust (PSD) was conducted, and the impact of the pretreatment procedures was analysed using Megazyme sugar kits, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and microscopic analysis using scanning electron microscopy (SEM) and light microscopy. Compositional analysis of the carbohydrates present in both substrates revealed that they had a glucan content of 36.41 and 50.47% for untreated PP and PSD, respectively. Their respective mannan content was 6.74 and 11.59% and was deemed sufficient for the production of MOS via enzymatic hydrolysis. TGA analysis revealed that untreated and sodium chlorite-acetic acid delignified samples decomposed at approximately the same time, and had a negligible ash content at 600℃, while delignified plus phosphoric acid swollen substrates decomposed at a faster rate, but had a residual ash content at 600℃. FTIR analysis of the substrates revealed slight changes in the structures of untreated and pretreated samples. SEM analysis of PP and PSD showed a change in the morphology of the substrates with subsequent pretreatment steps. Histochemical analysis for lignin for PP and PSD showed successful delignification upon pretreatment. Untreated and sodium chlorite delignified PP and PSD released low amounts of reducing sugars compared to delignified + phosphoric acid swollen substrates. The delignified + phosphoric acid swollen substrates were used for further experiments. MOS produced from delignified and phosphoric acid swollen (Del + PAS) PP and PSD at 0.1 mg/ml enzyme loading and 80 mg/ml (8% (w/v)) substrate concentration, ran between mannose and mannobiose and between mannobiose and manotriose on TLC, with low concentrations of MOS running between mannotetraose and mannopentaose. HPLC analysis of the MOS revealed that Del + PAS PP produced mannose to mannohexose, while Del + PAS PSD produced mannose, mannobiose, and mannotetraose. The MOS were analysed using FTIR, to determine whether the MOS produced contained any acetyl groups, which were present for Del + PAS PSD at 1706 cm-1. The MOS were stable at different pHs, and at temperatures below 200℃. The MOS were also found to be stable in a simulated gastrointestinal environment, in the presence of bile salts and digestive enzymes. The prebiotic effect of the MOS derived from Del + PAS PP and PSD was evaluated. MOS had a proliferative effect on probiotic bacteria (Lactobacillus bulgaricus, Bacillus subtilis and Streptococcus thermophilus). The production of short chain fatty acids (SCFAs) was evaluated on TLC, where no SCFAs were observed on the plate. The effect of MOS on the adhesion ability of bacteria revealed that they do not positively influence the adhesion of probiotic bacteria. The antioxidant activities of 1 mg/ml MOS produced from both substrates were determined to be approximately 15% using the ABTS radical scavenging assay, compared to a radical scavenging activity of 45% for the 0.02 mg/ml gallic acid standard. This study demonstrated that biomass waste could be used to produce prebiotic MOS, which play a positive role in gut ecology and provide health benefits. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Hlalukana, Nosipho Pretty
- Date: 2022-10-14
- Subjects: Oligosaccharides , Prebiotics , Lignocellulose , Mannans
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362853 , vital:65368
- Description: Lignocellulosic biomass is the most abundant source of renewable biomass on earth. Lignocellulosic biomass consists of cellulose, hemicelluloses and lignin. These can be used as a source of renewable fuel as well as other value-added products . Mannans are part of the hemicellulose fraction of lignocellulosic biomass and are the major hemicellulosic polysaccharide fraction in softwoods, where they are found as galactoglucomannans and as glucomannans. Mannans are also found in hardwoods in the form of glucomannans. Mannans can be enzymatically hydrolysed using endo-mannanases to produce of short chain mannooligosaccharides (MOS). MOS have received significant attention for their prebiotic properties, as they promote the growth of probiotic bacteria, which have positively affects on gut health. This study focused on the production of prebiotic MOS from lignocellulosic biomass waste (LBW) and an evaluation of the prebiotic potential of the produced MOS. An Aspergillus niger derived endo-mannanase, Man26A, was fractionated and biochemically analysed. Purified Man26A had a fold purification of 1.25 and a yield of 41.1%. SDS-PAGE analysis of the enzyme revealed that it had a molecular weight of 46 kDa. The pH and temperature optima of Man26A were determined and the pH optimum was found to be pH 4.0 (but the enzyme displayed high activity over a broad acidic pH range, with up to 90% of the activity retained between pH 3.0 and 7.0). The temperature optimum was 50℃. The enzyme was shown to have the highest specific activity on locust bean gum (52.27 U/mg) and ivory nut mannan (57.25 U/mg), compared to guar gum (29.07 U/mg), which indicated that it was affected by the substitution pattern of the mannans. Man26A produced MOS of different diversity on model mannan substrates, where the MOS produced were mannobiose, mannotriose, and mannotetraose for ivory nut mannan, mannobiose, mannotriose, mannotetraose, and mannopentaose and MOS with a higher degree of polymerisation for locust bean gum, and mannobiose, mannotriose, mannotetraose, mannopentaose, and mannohexose and MOS with a higher degree of polymerisation for guar gum, as determined by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Pretreatment and characterisation of pineapple pulp (PP) and pine sawdust (PSD) was conducted, and the impact of the pretreatment procedures was analysed using Megazyme sugar kits, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and microscopic analysis using scanning electron microscopy (SEM) and light microscopy. Compositional analysis of the carbohydrates present in both substrates revealed that they had a glucan content of 36.41 and 50.47% for untreated PP and PSD, respectively. Their respective mannan content was 6.74 and 11.59% and was deemed sufficient for the production of MOS via enzymatic hydrolysis. TGA analysis revealed that untreated and sodium chlorite-acetic acid delignified samples decomposed at approximately the same time, and had a negligible ash content at 600℃, while delignified plus phosphoric acid swollen substrates decomposed at a faster rate, but had a residual ash content at 600℃. FTIR analysis of the substrates revealed slight changes in the structures of untreated and pretreated samples. SEM analysis of PP and PSD showed a change in the morphology of the substrates with subsequent pretreatment steps. Histochemical analysis for lignin for PP and PSD showed successful delignification upon pretreatment. Untreated and sodium chlorite delignified PP and PSD released low amounts of reducing sugars compared to delignified + phosphoric acid swollen substrates. The delignified + phosphoric acid swollen substrates were used for further experiments. MOS produced from delignified and phosphoric acid swollen (Del + PAS) PP and PSD at 0.1 mg/ml enzyme loading and 80 mg/ml (8% (w/v)) substrate concentration, ran between mannose and mannobiose and between mannobiose and manotriose on TLC, with low concentrations of MOS running between mannotetraose and mannopentaose. HPLC analysis of the MOS revealed that Del + PAS PP produced mannose to mannohexose, while Del + PAS PSD produced mannose, mannobiose, and mannotetraose. The MOS were analysed using FTIR, to determine whether the MOS produced contained any acetyl groups, which were present for Del + PAS PSD at 1706 cm-1. The MOS were stable at different pHs, and at temperatures below 200℃. The MOS were also found to be stable in a simulated gastrointestinal environment, in the presence of bile salts and digestive enzymes. The prebiotic effect of the MOS derived from Del + PAS PP and PSD was evaluated. MOS had a proliferative effect on probiotic bacteria (Lactobacillus bulgaricus, Bacillus subtilis and Streptococcus thermophilus). The production of short chain fatty acids (SCFAs) was evaluated on TLC, where no SCFAs were observed on the plate. The effect of MOS on the adhesion ability of bacteria revealed that they do not positively influence the adhesion of probiotic bacteria. The antioxidant activities of 1 mg/ml MOS produced from both substrates were determined to be approximately 15% using the ABTS radical scavenging assay, compared to a radical scavenging activity of 45% for the 0.02 mg/ml gallic acid standard. This study demonstrated that biomass waste could be used to produce prebiotic MOS, which play a positive role in gut ecology and provide health benefits. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
Effects of hydraulic fracking fluid on soil microbial composition and diversity
- Authors: Sianyuka, Nicolette
- Date: 2022-04-06
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/232366 , vital:49985
- Description: Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Sianyuka, Nicolette
- Date: 2022-04-06
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/232366 , vital:49985
- Description: Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-06
Analysis of the human HSP70-HSP90 organising protein (HOP) gene - characterisation of the promoter and identification of a novel isoform
- Authors: Mattison, Stacey
- Date: 2018
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62821 , vital:28296
- Description: Expected release date-April 2020
- Full Text:
- Date Issued: 2018
- Authors: Mattison, Stacey
- Date: 2018
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62821 , vital:28296
- Description: Expected release date-April 2020
- Full Text:
- Date Issued: 2018
The Rhodes BioSure process in the treatment of acid mine drainage wastewaters
- Authors: Corbett, Christopher John
- Date: 2001 , 2013-05-03
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4077 , http://hdl.handle.net/10962/d1007405
- Description: While sulphate-enriched wastewaters are generated in a number of industrial processes, such as tanning, paper manufacture and metals processing, the principal contributors to large-scale pollution from this source in South Africa are the gold and coal mining industries. Both biological and physico-chemical processes, set in train by mining operations, give rise to the oxidation of sulphur species, and the resultant generation of AMD. The Vaal River system is most affected and receives large tonnages of mining related salinity as both direct discharges, and in diffuse runoff flows. The long-term burden of this problem, and sustaining ongoing treatment over the time-frames involved will almost certainly resort to the community inhabiting the area, notwithstanding progressive mine closure legislation and comprehensive regulation governing the polluterpays principle. The volume and time-frame of the AMD problem, and the need for a long-term and sustainable response has focused interest in biological treatment approaches. These have concentrated on active and passive treatment systems, both of which rely on microbial activity related to the biological sulphur cycle. Notwithstanding the reactor type, and the particular treatment approach used, widespread application of active AMD treatment has not yet been seen on any large scale. Singular factors constraining process development are bioreactor design, cost of bioreactor construction, and the cost of the carbon source and electron donor for the biological sulphate reduction process. The SRB are able to utilise only a limited range of small organic molecules. The studies reported here were motivated by the need to evaluate low-cost options and the treatment of high volume AMD flows. This has focussed research activity on bioprocess developments using complex organic compounds derived from waste streams as electron donor sources, and the integration of AMD treatment with other waste treatment objectives. The co-disposal of organic wastes with AMD treatment would enable the development of an 'integrated resource management' approach to the problem, including sustainability of treatment operations over the long time-frames involved. Apart from the cost advantages accrued to waste treatment, the recovery of the treated water as a resource to the wider community provides a potentially important value-added function to the combined operation. , KMBT_363 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 2001
- Authors: Corbett, Christopher John
- Date: 2001 , 2013-05-03
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4077 , http://hdl.handle.net/10962/d1007405
- Description: While sulphate-enriched wastewaters are generated in a number of industrial processes, such as tanning, paper manufacture and metals processing, the principal contributors to large-scale pollution from this source in South Africa are the gold and coal mining industries. Both biological and physico-chemical processes, set in train by mining operations, give rise to the oxidation of sulphur species, and the resultant generation of AMD. The Vaal River system is most affected and receives large tonnages of mining related salinity as both direct discharges, and in diffuse runoff flows. The long-term burden of this problem, and sustaining ongoing treatment over the time-frames involved will almost certainly resort to the community inhabiting the area, notwithstanding progressive mine closure legislation and comprehensive regulation governing the polluterpays principle. The volume and time-frame of the AMD problem, and the need for a long-term and sustainable response has focused interest in biological treatment approaches. These have concentrated on active and passive treatment systems, both of which rely on microbial activity related to the biological sulphur cycle. Notwithstanding the reactor type, and the particular treatment approach used, widespread application of active AMD treatment has not yet been seen on any large scale. Singular factors constraining process development are bioreactor design, cost of bioreactor construction, and the cost of the carbon source and electron donor for the biological sulphate reduction process. The SRB are able to utilise only a limited range of small organic molecules. The studies reported here were motivated by the need to evaluate low-cost options and the treatment of high volume AMD flows. This has focussed research activity on bioprocess developments using complex organic compounds derived from waste streams as electron donor sources, and the integration of AMD treatment with other waste treatment objectives. The co-disposal of organic wastes with AMD treatment would enable the development of an 'integrated resource management' approach to the problem, including sustainability of treatment operations over the long time-frames involved. Apart from the cost advantages accrued to waste treatment, the recovery of the treated water as a resource to the wider community provides a potentially important value-added function to the combined operation. , KMBT_363 , Adobe Acrobat 9.53 Paper Capture Plug-in
- Full Text:
- Date Issued: 2001
Development of an enzyme-synergy based bioreactor system for the beneficiation of apple pomace lignocellulosic waste
- Authors: Abboo, Sagaran
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/315 , vital:19947
- Description: Due to the finite supply of non-renewable fossil fuels, agro-industrial wastes are identified as alternate, renewable sources for energy supply. Large amounts of fruit waste are generated in South Africa due to fruit juice and wine processing from apples, grapes and citrus fruit. Apple pomace is the solid residue that is left over after juice, cider and wine processing and constitutes between 25-30% of the total fruit. On a global scale millions of tonnes of apple pomace are produced; between 2006-2007 over 46 million tonnes were produced. In South Africa a total production of 244 469 tonnes were produced during the 2011- 2012 season. Initially, apple pomace was regarded as a waste by-product used for animal feed and compost in soil, however presently it is considered a source of dietary fiber and natural antioxidants like polyphenols. In addition, apple pomace has a high carbohydrate content and can be enzymatically hydrolysed to produce sugar monomers which, in turn, can be fermented by yeasts to produce bioethanol. The polyphenols present in apple pomace can be used for their health properties, and the bioethanol can be used as a replacement for fossil fuel. Apple pomace is lignocellulosic in nature and consists of hemicellulose, cellulose, lignin and pectin. A combination of enzymes such as cellulases, hemicellulases, pectinases and lignases are required to operate in synergy for the degradation of lignocellulosic biomass. This is due to the recalcitrant nature of lignocellulose. This study investigated the degradation of apple pomace using a combination of commercially obtained enzyme cocktails viz. Viscozyme L , Celluclast 1.5L and Novozyme 188. The commercial enzymes Viscozyme L and Celluclast 1.5L were added in a ratio of 1:1 (50%:50%). The final concentrations of the enzymes were 0.019 mg/ml each. Novozyme 188 was added to provide a final concentration of 0.0024 mg/ml. A novel cost effective 20L bioreactor was designed, constructed and implemented for the degradation of apple pomace to produce value added products. The hydrolysis of the apple pomace was performed initially in 1 L flasks (batch fed) and, once optimized, scaled up to a 20 L bioreactor in batch mode. The bioreactors were operated at room temperature (22 ± 2ºC) and in an unbuffered system. The sugars released were detected and quantified using an optimized validated HPLC method established in this study. The sugars released in the bioreactors were mainly glucose, galactose, arabinose, cellobiose and fructose. The polyphenols released in this study were gallic acid, catechin, epicatechin, chlorogenic acid, rutin and phloridzin, which have a number of health benefits. The simultaneous analyses of the polyphenols were performed using a newly developed and validated HPLC method established in this study. This method was developed to detect nine polyphenols simultaneously. The two HPLC methods developed and validated in this study for the analysis of sugars and polyphenols demonstrated good accuracy, precision, reproducibility, linearity, robustness and sensitivity. Both analytical methods were validated according to the International Convention on Harmonization (ICH). The HPLC parameters for sugar analysis were: refractive index (RI) as the detection mode, the stationary phase was a ligand-exchange sugar column (Shodex SP0810) and an aqueous mobile phase in isocratic mode was used. The HPLC method for polyphenols employed UV diode array detection (DAD) as the detection mode, a reverse phase column as the stationary phase and a mobile phase of consisting of 0.01 M phosphoric acid in water and 100% methanol using gradient elution mode. The highest concentrations of sugars released in the novel 20 L bioreactor with 20% apple pomace (w/v) substrate loading were as follow: glucose (6.5 mg/ml), followed by galactose (2.1 mg/ml), arabinose (1.4 mg/ml), cellobiose (0.7 mg/ml) and fructose (0.5 mg/ml). The amounts of polyphenols released at 20% (w/v) apple pomace substrate were epicatechin (0.01 mg/ml), catechin (0.002 mg/ml), rutin (0.03 mg/ml), chlorogenic acid (0.002 mg/ml) and gallic acid 0.01 (mg/ml). Two mathematical models were developed in this study for kinetic analysis of lignocellulose (apple pomace) hydrolysis in the novel 20 L bioreactor, using the experimental data generated by the above HPLC analyses. The first model, modelling with regression, defines the hydrolysis of the sugars glucose, galactose, cellobiose and arabinose produced in the novel 20 L bioreactor at 5%, 10%, 15% and 20% (w/v) substrate concentrations. The regression model describes the sugars produced in the 20 L bioreactor by minimizing the error of the sugars released by finding a value for K which minimises the function which computes the sum of squares of errors between the solution curves and the data points. The second, more complex, model developed in this study used a system of differential equations model (ODE). This model solved the system by using a numerical method, such as the Runge-Kutta method, then fitted the solution curves to the data. Both models simulated (and had the ability to predict) the production of sugars in the novel 20 L bioreactor for apple pomace hydrolysis. These two models also revealed the time at which the maximum amount of sugars were released, which revealed the optimum time to run the 20 L bioreactor in order to be more cost effective. The optimum time for maximum glucose (the main sugar used in fermentation for biofuel production) release was determined to be around 60 h. The ODE model, in addition, determined the rate at which the substrate became depleted, as well as the rate at which the enzymes became deactivated for the various substrate loadings in the 20 L bioreactor. A third model was developed to determine the optimal running cost of the bioreactor which incorporated the substrate loading and the amount of glucose (g/L) produced. The novel 20 L bioreactor constructed from cost effective materials demonstrated that agro-industrial waste can be converted to value-added products by lignocellolytic enzymes. The sugars released from apple pomace can be used in biofuel production and the polyphenols as food supplements and nutraceuticals for health benefits. This novel study contributes to agro-industrial waste beneficiation via fuel production. In addition, using agro-industrial waste for the generation of value added products (instead of mere disposal) will help prevent environmental pollution.
- Full Text:
- Date Issued: 2016
- Authors: Abboo, Sagaran
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/315 , vital:19947
- Description: Due to the finite supply of non-renewable fossil fuels, agro-industrial wastes are identified as alternate, renewable sources for energy supply. Large amounts of fruit waste are generated in South Africa due to fruit juice and wine processing from apples, grapes and citrus fruit. Apple pomace is the solid residue that is left over after juice, cider and wine processing and constitutes between 25-30% of the total fruit. On a global scale millions of tonnes of apple pomace are produced; between 2006-2007 over 46 million tonnes were produced. In South Africa a total production of 244 469 tonnes were produced during the 2011- 2012 season. Initially, apple pomace was regarded as a waste by-product used for animal feed and compost in soil, however presently it is considered a source of dietary fiber and natural antioxidants like polyphenols. In addition, apple pomace has a high carbohydrate content and can be enzymatically hydrolysed to produce sugar monomers which, in turn, can be fermented by yeasts to produce bioethanol. The polyphenols present in apple pomace can be used for their health properties, and the bioethanol can be used as a replacement for fossil fuel. Apple pomace is lignocellulosic in nature and consists of hemicellulose, cellulose, lignin and pectin. A combination of enzymes such as cellulases, hemicellulases, pectinases and lignases are required to operate in synergy for the degradation of lignocellulosic biomass. This is due to the recalcitrant nature of lignocellulose. This study investigated the degradation of apple pomace using a combination of commercially obtained enzyme cocktails viz. Viscozyme L , Celluclast 1.5L and Novozyme 188. The commercial enzymes Viscozyme L and Celluclast 1.5L were added in a ratio of 1:1 (50%:50%). The final concentrations of the enzymes were 0.019 mg/ml each. Novozyme 188 was added to provide a final concentration of 0.0024 mg/ml. A novel cost effective 20L bioreactor was designed, constructed and implemented for the degradation of apple pomace to produce value added products. The hydrolysis of the apple pomace was performed initially in 1 L flasks (batch fed) and, once optimized, scaled up to a 20 L bioreactor in batch mode. The bioreactors were operated at room temperature (22 ± 2ºC) and in an unbuffered system. The sugars released were detected and quantified using an optimized validated HPLC method established in this study. The sugars released in the bioreactors were mainly glucose, galactose, arabinose, cellobiose and fructose. The polyphenols released in this study were gallic acid, catechin, epicatechin, chlorogenic acid, rutin and phloridzin, which have a number of health benefits. The simultaneous analyses of the polyphenols were performed using a newly developed and validated HPLC method established in this study. This method was developed to detect nine polyphenols simultaneously. The two HPLC methods developed and validated in this study for the analysis of sugars and polyphenols demonstrated good accuracy, precision, reproducibility, linearity, robustness and sensitivity. Both analytical methods were validated according to the International Convention on Harmonization (ICH). The HPLC parameters for sugar analysis were: refractive index (RI) as the detection mode, the stationary phase was a ligand-exchange sugar column (Shodex SP0810) and an aqueous mobile phase in isocratic mode was used. The HPLC method for polyphenols employed UV diode array detection (DAD) as the detection mode, a reverse phase column as the stationary phase and a mobile phase of consisting of 0.01 M phosphoric acid in water and 100% methanol using gradient elution mode. The highest concentrations of sugars released in the novel 20 L bioreactor with 20% apple pomace (w/v) substrate loading were as follow: glucose (6.5 mg/ml), followed by galactose (2.1 mg/ml), arabinose (1.4 mg/ml), cellobiose (0.7 mg/ml) and fructose (0.5 mg/ml). The amounts of polyphenols released at 20% (w/v) apple pomace substrate were epicatechin (0.01 mg/ml), catechin (0.002 mg/ml), rutin (0.03 mg/ml), chlorogenic acid (0.002 mg/ml) and gallic acid 0.01 (mg/ml). Two mathematical models were developed in this study for kinetic analysis of lignocellulose (apple pomace) hydrolysis in the novel 20 L bioreactor, using the experimental data generated by the above HPLC analyses. The first model, modelling with regression, defines the hydrolysis of the sugars glucose, galactose, cellobiose and arabinose produced in the novel 20 L bioreactor at 5%, 10%, 15% and 20% (w/v) substrate concentrations. The regression model describes the sugars produced in the 20 L bioreactor by minimizing the error of the sugars released by finding a value for K which minimises the function which computes the sum of squares of errors between the solution curves and the data points. The second, more complex, model developed in this study used a system of differential equations model (ODE). This model solved the system by using a numerical method, such as the Runge-Kutta method, then fitted the solution curves to the data. Both models simulated (and had the ability to predict) the production of sugars in the novel 20 L bioreactor for apple pomace hydrolysis. These two models also revealed the time at which the maximum amount of sugars were released, which revealed the optimum time to run the 20 L bioreactor in order to be more cost effective. The optimum time for maximum glucose (the main sugar used in fermentation for biofuel production) release was determined to be around 60 h. The ODE model, in addition, determined the rate at which the substrate became depleted, as well as the rate at which the enzymes became deactivated for the various substrate loadings in the 20 L bioreactor. A third model was developed to determine the optimal running cost of the bioreactor which incorporated the substrate loading and the amount of glucose (g/L) produced. The novel 20 L bioreactor constructed from cost effective materials demonstrated that agro-industrial waste can be converted to value-added products by lignocellolytic enzymes. The sugars released from apple pomace can be used in biofuel production and the polyphenols as food supplements and nutraceuticals for health benefits. This novel study contributes to agro-industrial waste beneficiation via fuel production. In addition, using agro-industrial waste for the generation of value added products (instead of mere disposal) will help prevent environmental pollution.
- Full Text:
- Date Issued: 2016
The characterization of GTP Cyclohydrolase I and 6-Pyruvoyl Tetrahydropterin Synthase enzymes as potential anti-malarial drug targets
- Khairallah, Afrah Yousif Huseein
- Authors: Khairallah, Afrah Yousif Huseein
- Date: 2022-04-08
- Subjects: Antimalarials , Plasmodium falciparum , Malaria Chemotherapy , Malaria Africa , Drug resistance , Drug development , Molecular dynamics
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/233784 , vital:50127 , DOI 10.21504/10962/233784
- Description: Malaria remains a public health problem and a high burden of disease, especially in developing countries. The unicellular protozoan malaria parasite of the genus Plasmodium infects about a quarter of a billion people annually, with an estimated 409 000 death cases. The majority of malaria cases occurred in Africa; hence, the region is regarded as endemic for malaria. Global efforts to eradicate the disease led to a decrease in morbidity and mortality rates. However, an enormous burden of malaria infection remains, and it cannot go unnoticed. Countries with limited resources are more affected by the disease, mainly on its public health and socio-economic development, due to many factors besides malaria itself, such as lack of access to adequate, affordable treatments and preventative regimes. Furthermore, the current antimalarial drugs are losing their efficacy because of parasite drug resistance. The emerged drug resistance has reduced the drug efficacy in clearing the parasite from the host system, causing prolonged illness and a higher risk of death. Therefore, the emerged antimalarial drug resistance has hindered the global efforts for malaria control and elimination and established an urgent need for new treatment strategies. When the resistance against classical antimalarial drugs emerged, the class of antifolate antimalarial medicines became the most common alternative. The antifolate antimalarial drugs target the malaria parasite de novo folate biosynthesis pathway by limiting folate derivates, which are essential for the parasite cell growth and survival. Yet again, the malaria parasite developed resistance against the available antifolate drugs, rendering the drugs ineffective in many cases. Given the previous success in targeting the malaria parasite de novo folate biosynthesis pathway, alternative enzymes within this pathway stand as good targets and can be explored to develop new antifolate drugs with novel mechanisms of action. The primary focus of this thesis is to contribute to the existing and growing knowledge of antimalarial drug discovery. The study aims to characterise the malaria parasite de novo folate synthesis pathway enzymes guanosine-5'-triphosphate (GTP) cyclohydrolase I (GCH1) and 6-pyruvoyl tetrahydropterin synthase (PTPS) as alternative drug targets for malaria treatment by using computational approaches. Further, discover new allosteric drug targeting sites within the two enzymes' 3D structures for future drug design and discovery. Sequence and structural analysis were carried out to characterise and pinpoint the two enzymes' unique sequence and structure-based features. From the analyses, key sequence and structure differences were identified between the malaria parasite enzymes relative to their human homolog; the identified sites can aid significantly in designing and developing new antimalarial antifolate drugs with good selectivity toward the parasites’ enzymes. GCH1 and PTPS contain a catalytically essential metal ion in their active site; therefore, force field parameters were needed to study their active sites accurately during all-atom molecular dynamic simulations (MD). The force field parameters were derived through quantum mechanics potential energy surface scans of the metals bonded terms and evaluated via all-atom MD simulations. Proteins structural dynamics is imperative for many biological processes; thus, it is essential to consider the structural dynamics of proteins whilst understanding their function. In this regard, the normal mode analysis (NMA) approach based on the elastic network model (ENM) was employed to study the intrinsic dynamics and conformations changes of GCH1 and PTPS enzymes. The NMA disclosed essential structural information about the protein’s intrinsic dynamics and mechanism of allosteric modulation of their binding properties, further highlighting regions that govern their conformational changes. The analysis also disclosed hotspot residues that are crucial for the proteins' fold stability and function. The NMA was further combined with sequence motif results and showed that conserved residues of GCH1 and PTPS were located within the identified key structural sites modulating the proteins' conformational rearrangement. The characterized structural features and hotspot residues were regarded as potential allosteric sites of important value for the design and development of allosteric drugs. Both GCH1 and PTPS enzymes have never been targeted before and can provide an excellent opportunity to overcome the antimalarial antifolate drug resistance problem. The data presented in this thesis contribute to the understanding of the sequence, structure, and global dynamics of both GCH1 and PTPS, further disclose potential allosteric drug targeting sites and unique structural features of both enzymes that can establish a solid starting point for drug design and development of new antimalarial drugs of a novel mechanism of actions. Lastly, the reported force field parameters will be of value for MD simulations for future in-silico drug discovery studies involving the two enzymes and other enzymes with the same Zn2+ binding motifs and coordination environments. The impact of this research can facilitate the discovery of new effective antimalarial medicines with novel mechanisms of action. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Khairallah, Afrah Yousif Huseein
- Date: 2022-04-08
- Subjects: Antimalarials , Plasmodium falciparum , Malaria Chemotherapy , Malaria Africa , Drug resistance , Drug development , Molecular dynamics
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/233784 , vital:50127 , DOI 10.21504/10962/233784
- Description: Malaria remains a public health problem and a high burden of disease, especially in developing countries. The unicellular protozoan malaria parasite of the genus Plasmodium infects about a quarter of a billion people annually, with an estimated 409 000 death cases. The majority of malaria cases occurred in Africa; hence, the region is regarded as endemic for malaria. Global efforts to eradicate the disease led to a decrease in morbidity and mortality rates. However, an enormous burden of malaria infection remains, and it cannot go unnoticed. Countries with limited resources are more affected by the disease, mainly on its public health and socio-economic development, due to many factors besides malaria itself, such as lack of access to adequate, affordable treatments and preventative regimes. Furthermore, the current antimalarial drugs are losing their efficacy because of parasite drug resistance. The emerged drug resistance has reduced the drug efficacy in clearing the parasite from the host system, causing prolonged illness and a higher risk of death. Therefore, the emerged antimalarial drug resistance has hindered the global efforts for malaria control and elimination and established an urgent need for new treatment strategies. When the resistance against classical antimalarial drugs emerged, the class of antifolate antimalarial medicines became the most common alternative. The antifolate antimalarial drugs target the malaria parasite de novo folate biosynthesis pathway by limiting folate derivates, which are essential for the parasite cell growth and survival. Yet again, the malaria parasite developed resistance against the available antifolate drugs, rendering the drugs ineffective in many cases. Given the previous success in targeting the malaria parasite de novo folate biosynthesis pathway, alternative enzymes within this pathway stand as good targets and can be explored to develop new antifolate drugs with novel mechanisms of action. The primary focus of this thesis is to contribute to the existing and growing knowledge of antimalarial drug discovery. The study aims to characterise the malaria parasite de novo folate synthesis pathway enzymes guanosine-5'-triphosphate (GTP) cyclohydrolase I (GCH1) and 6-pyruvoyl tetrahydropterin synthase (PTPS) as alternative drug targets for malaria treatment by using computational approaches. Further, discover new allosteric drug targeting sites within the two enzymes' 3D structures for future drug design and discovery. Sequence and structural analysis were carried out to characterise and pinpoint the two enzymes' unique sequence and structure-based features. From the analyses, key sequence and structure differences were identified between the malaria parasite enzymes relative to their human homolog; the identified sites can aid significantly in designing and developing new antimalarial antifolate drugs with good selectivity toward the parasites’ enzymes. GCH1 and PTPS contain a catalytically essential metal ion in their active site; therefore, force field parameters were needed to study their active sites accurately during all-atom molecular dynamic simulations (MD). The force field parameters were derived through quantum mechanics potential energy surface scans of the metals bonded terms and evaluated via all-atom MD simulations. Proteins structural dynamics is imperative for many biological processes; thus, it is essential to consider the structural dynamics of proteins whilst understanding their function. In this regard, the normal mode analysis (NMA) approach based on the elastic network model (ENM) was employed to study the intrinsic dynamics and conformations changes of GCH1 and PTPS enzymes. The NMA disclosed essential structural information about the protein’s intrinsic dynamics and mechanism of allosteric modulation of their binding properties, further highlighting regions that govern their conformational changes. The analysis also disclosed hotspot residues that are crucial for the proteins' fold stability and function. The NMA was further combined with sequence motif results and showed that conserved residues of GCH1 and PTPS were located within the identified key structural sites modulating the proteins' conformational rearrangement. The characterized structural features and hotspot residues were regarded as potential allosteric sites of important value for the design and development of allosteric drugs. Both GCH1 and PTPS enzymes have never been targeted before and can provide an excellent opportunity to overcome the antimalarial antifolate drug resistance problem. The data presented in this thesis contribute to the understanding of the sequence, structure, and global dynamics of both GCH1 and PTPS, further disclose potential allosteric drug targeting sites and unique structural features of both enzymes that can establish a solid starting point for drug design and development of new antimalarial drugs of a novel mechanism of actions. Lastly, the reported force field parameters will be of value for MD simulations for future in-silico drug discovery studies involving the two enzymes and other enzymes with the same Zn2+ binding motifs and coordination environments. The impact of this research can facilitate the discovery of new effective antimalarial medicines with novel mechanisms of action. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-04-08
Targeting allosteric sites of Escherichia coli heat shock protein 70 for antibiotic development
- Authors: Okeke, Chiamaka Jessica
- Date: 2019
- Subjects: Heat shock proteins , Escherichia coli , Allosteric proteins , Antibiotics , Molecular chaperones , Ligands (Biochemistry) , Molecular dynamics , Principal components analysis , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115998 , vital:34287
- Description: Hsp70s are members of the heat shock proteins family with a molecular weight of 70-kDa and are the most abundant group in bacterial and eukaryotic systems, hence the most extensively studied ones. These proteins are molecular chaperones that play a significant role in protein homeostasis by facilitating appropriate folding of proteins, preventing proteins from aggregating and misfolding. They are also involved in translocation of proteins into subcellular compartments and protection of cells against stress. Stress caused by environmental or biological factors affects the functionality of the cell. In response to these stressful conditions, up-regulation of Hsp70s ensures that the cells are protected by balancing out unfolded proteins giving them ample time to repair denatured proteins. Hsp70s is connected to numerous illnesses such as autoimmune and neurodegenerative diseases, bacterial infection, cancer, malaria, and obesity. The multi-functional nature of Hsp70s predisposes them as promising therapeutic targets. Hsp70s play vital roles in various cell developments, and survival pathways, therefore targeting this protein will provide a new avenue towards the discovery of active therapeutic agents for the treatment of a wide range of diseases. Allosteric sites of these proteins in its multi-conformational states have not been explored for inhibitory properties hence the aim of this study. This study aims at identifying allosteric sites that inhibit the ATPase and substrate binding activities using computational approaches. Using E. coli as a model organism, molecular docking for high throughput virtual screening was carried out using 623 compounds from the South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) against identified allosteric sites. Ligands with the highest binding affinity (good binders) interacting with critical allosteric residues that are druggable were identified. Molecular dynamics (MD) simulation was also performed on the identified hits to assess for protein-inhibitor complex stability. Finally, principal component analysis (PCA) was performed to understand the structural dynamics of the ligand-free and ligand-bound structures during MD simulation.
- Full Text:
- Date Issued: 2019
- Authors: Okeke, Chiamaka Jessica
- Date: 2019
- Subjects: Heat shock proteins , Escherichia coli , Allosteric proteins , Antibiotics , Molecular chaperones , Ligands (Biochemistry) , Molecular dynamics , Principal components analysis , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115998 , vital:34287
- Description: Hsp70s are members of the heat shock proteins family with a molecular weight of 70-kDa and are the most abundant group in bacterial and eukaryotic systems, hence the most extensively studied ones. These proteins are molecular chaperones that play a significant role in protein homeostasis by facilitating appropriate folding of proteins, preventing proteins from aggregating and misfolding. They are also involved in translocation of proteins into subcellular compartments and protection of cells against stress. Stress caused by environmental or biological factors affects the functionality of the cell. In response to these stressful conditions, up-regulation of Hsp70s ensures that the cells are protected by balancing out unfolded proteins giving them ample time to repair denatured proteins. Hsp70s is connected to numerous illnesses such as autoimmune and neurodegenerative diseases, bacterial infection, cancer, malaria, and obesity. The multi-functional nature of Hsp70s predisposes them as promising therapeutic targets. Hsp70s play vital roles in various cell developments, and survival pathways, therefore targeting this protein will provide a new avenue towards the discovery of active therapeutic agents for the treatment of a wide range of diseases. Allosteric sites of these proteins in its multi-conformational states have not been explored for inhibitory properties hence the aim of this study. This study aims at identifying allosteric sites that inhibit the ATPase and substrate binding activities using computational approaches. Using E. coli as a model organism, molecular docking for high throughput virtual screening was carried out using 623 compounds from the South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) against identified allosteric sites. Ligands with the highest binding affinity (good binders) interacting with critical allosteric residues that are druggable were identified. Molecular dynamics (MD) simulation was also performed on the identified hits to assess for protein-inhibitor complex stability. Finally, principal component analysis (PCA) was performed to understand the structural dynamics of the ligand-free and ligand-bound structures during MD simulation.
- Full Text:
- Date Issued: 2019