A Comparison of Mitochondrial Heat Shock Protein 70 and Hsp70 Escort Protein 1 Orthologues from Trypanosoma brucei and Homo sapiens
- Authors: Hand, Francis Bryan
- Date: 2023-03-29
- Subjects: Trypanosoma brucei , Heat shock proteins , Molecular chaperones , Transport protein , AlphaFold , Mitochondrial heat shock protein
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422281 , vital:71927
- Description: The causative agent of African trypanosomiasis, Trypanosoma brucei (T. brucei), has an expanded retinue of specialized heat shock proteins, which have been identified as crucial to the progression of the disease. These play a central role in disease progression and transmission through their involvement in cell-cycle pathways which bring about cell-cycle arrest and differentiation. Hsp70 proteins are essential for the maintenance of proteostasis in the cell. Mitochondrial Hsp70 (mtHsp70) is a highly conserved molecular chaperone required for both the translocation of nuclear encoded proteins across the two mitochondrial membranes and the subsequent folding of proteins in the matrix. The T. brucei genome encodes three copies of mtHsp70 which are 100% identical. MtHsp70 self-aggregates, a property unique to this isoform, and an Hsp70 escort protein (Hep1) is required to maintain the molecular chaperone in a soluble, functional state. This study aimed to compare the solubilizing interaction of Hep1 from T. brucei and Homo sapiens (H. sapien). The recently introduced Alphafold program was used to analyze the structures of mtHsp70 and Hep1 proteins and allowed observations of structures unavailable to other modelling techniques. The GVFEV motif found in the ATPase domain of mtHsp70s interacted with the linker region, resulting in aggregation, the Alphafold models produced indicated that the replacement of the lysine (K) residue within the KTFEV motif of DnaK (prokaryotic Hsp70) with Glycine (G), may abrogate bond formation between the motif and a region between lobe I and II of the ATPase domain. This may facilitate the aggregation reaction of mtHsp70 orthologues and provides a residue of interest for future studies. Both TbHep1 and HsHep1 reduced the thermal aggregation of TbmtHsp70 and mortalin (H. sapien mtHsp70) respectively, however, TbHep1 was ~ 15 % less effective than HsHep1 at higher concentrations (4 uM). TbHep1 itself appeared to be aggregation-prone when under conditions of thermal stress, Alphafold models suggest this may be due to an N-terminal α- helical structure not present in HsHep1. These results indicate that TbHep1 is functionally similar to HsHep1, however, the orthologue may operate in a unique manner which requires further investigation. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-03-29
- Authors: Hand, Francis Bryan
- Date: 2023-03-29
- Subjects: Trypanosoma brucei , Heat shock proteins , Molecular chaperones , Transport protein , AlphaFold , Mitochondrial heat shock protein
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422281 , vital:71927
- Description: The causative agent of African trypanosomiasis, Trypanosoma brucei (T. brucei), has an expanded retinue of specialized heat shock proteins, which have been identified as crucial to the progression of the disease. These play a central role in disease progression and transmission through their involvement in cell-cycle pathways which bring about cell-cycle arrest and differentiation. Hsp70 proteins are essential for the maintenance of proteostasis in the cell. Mitochondrial Hsp70 (mtHsp70) is a highly conserved molecular chaperone required for both the translocation of nuclear encoded proteins across the two mitochondrial membranes and the subsequent folding of proteins in the matrix. The T. brucei genome encodes three copies of mtHsp70 which are 100% identical. MtHsp70 self-aggregates, a property unique to this isoform, and an Hsp70 escort protein (Hep1) is required to maintain the molecular chaperone in a soluble, functional state. This study aimed to compare the solubilizing interaction of Hep1 from T. brucei and Homo sapiens (H. sapien). The recently introduced Alphafold program was used to analyze the structures of mtHsp70 and Hep1 proteins and allowed observations of structures unavailable to other modelling techniques. The GVFEV motif found in the ATPase domain of mtHsp70s interacted with the linker region, resulting in aggregation, the Alphafold models produced indicated that the replacement of the lysine (K) residue within the KTFEV motif of DnaK (prokaryotic Hsp70) with Glycine (G), may abrogate bond formation between the motif and a region between lobe I and II of the ATPase domain. This may facilitate the aggregation reaction of mtHsp70 orthologues and provides a residue of interest for future studies. Both TbHep1 and HsHep1 reduced the thermal aggregation of TbmtHsp70 and mortalin (H. sapien mtHsp70) respectively, however, TbHep1 was ~ 15 % less effective than HsHep1 at higher concentrations (4 uM). TbHep1 itself appeared to be aggregation-prone when under conditions of thermal stress, Alphafold models suggest this may be due to an N-terminal α- helical structure not present in HsHep1. These results indicate that TbHep1 is functionally similar to HsHep1, however, the orthologue may operate in a unique manner which requires further investigation. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-03-29
Bioethical analysis of COVID19, WASH/waste and related disaster management implications
- Authors: Iheanetu, Chidinma Uchenna
- Date: 2022-04-06
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/232250 , vital:49975
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Iheanetu, Chidinma Uchenna
- Date: 2022-04-06
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/232250 , vital:49975
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2022
- Full Text:
- Date Issued: 2022-04-06
Characterization of Fluorescently-Labelled Plasmodium Lactate Dehydrogenase-Binding Aptamers for the Detection and Speciation of Malarial Infections
- Authors: Taylor, Bianca Rose
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192572 , vital:45238
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Taylor, Bianca Rose
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192572 , vital:45238
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
Computational design for genome reduction of Lactococcus lactis towards microbial chassis development
- Authors: Hamese, Saltiel
- Date: 2024-04-04
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435321 , vital:73147
- Description: Access restricted. Expected release date 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Hamese, Saltiel
- Date: 2024-04-04
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435321 , vital:73147
- Description: Access restricted. Expected release date 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-04-04
Design and fabrication of millifluidic devices for maintenance of tissue cultures under perfusion
- Buthelezi, Khanyisile Thando Fatima
- Authors: Buthelezi, Khanyisile Thando Fatima
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464358 , vital:76504
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Buthelezi, Khanyisile Thando Fatima
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464358 , vital:76504
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
Development of a 3D bioprinting and standalone bioreactor unit for the production and maintenance of bioscaffolds in vitro
- Authors: Hundling, Jethro Daniel
- Date: 2021-10-29
- Subjects: Bioreactors , Tissue scaffolds , Cell culture , Polyethylene glycol Biotechnology , 3D bioprinting , Poly(ethylene glycol) diacrylate (PEGDA)
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192063 , vital:45192
- Description: The most common method for in vitro cell culture currently is to grow a specific cell type in isolation, in monolayer format, adhered to a 2D culture surface. This brings about many limitations in comparison to in vivo models due to altered cell phenotypes, as caused by the culturing technique itself, and the lack of naturally occurring cell-to-cell interactions. Three dimensional mammalian cell culture technologies have the potential to overcome these limitations, and provide models more representative of natural systems. Unfortunately, the cost and difficulty associated with achieving sustainable and useful 3D mammalian cell culture is still very high, preventing its widespread adoption across scientific platforms. In this research, we investigate the feasibility of developing and producing a visible light-based 3D stereolithographic bioprinter to produce 3D scaffolds for cell culture. Furthermore, we investigate the possibility of developing and implementing a forced perfusion bioreactor system, which would support the produced scaffold and improve longer-term culture conditions. The developed 3D bioprinter, and bioreactor designs were developed and tested alongside Poly (ethylene glycol) diacrylate (PEGDA), a versatile synthetic scaffold material. PEGDA itself was also evaluated for its printability, robustness in culture conditions over time, and its ability to maintain 3D mammalian cell culture. This research showed that both the developed 3D bioprinter, and bioreactor unit were capable of producing and maintaining an easily modifiable PEGDA scaffold, in culture conditions. In addition, the PEGDA formulation developed was shown to allow for the effective and reproducible 3D cell culture conditions over the medium term, with automated media feeding. The research presented here aimed to illustrate a proof of concept that the low-cost development and production of 3D culture scaffold production and maintenance systems was feasible to the scientific research environment. This technology can then be built upon, into a system that would then allow for the broader adoption and investigation of 3D cell culture as a tool within the scientific community. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Hundling, Jethro Daniel
- Date: 2021-10-29
- Subjects: Bioreactors , Tissue scaffolds , Cell culture , Polyethylene glycol Biotechnology , 3D bioprinting , Poly(ethylene glycol) diacrylate (PEGDA)
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192063 , vital:45192
- Description: The most common method for in vitro cell culture currently is to grow a specific cell type in isolation, in monolayer format, adhered to a 2D culture surface. This brings about many limitations in comparison to in vivo models due to altered cell phenotypes, as caused by the culturing technique itself, and the lack of naturally occurring cell-to-cell interactions. Three dimensional mammalian cell culture technologies have the potential to overcome these limitations, and provide models more representative of natural systems. Unfortunately, the cost and difficulty associated with achieving sustainable and useful 3D mammalian cell culture is still very high, preventing its widespread adoption across scientific platforms. In this research, we investigate the feasibility of developing and producing a visible light-based 3D stereolithographic bioprinter to produce 3D scaffolds for cell culture. Furthermore, we investigate the possibility of developing and implementing a forced perfusion bioreactor system, which would support the produced scaffold and improve longer-term culture conditions. The developed 3D bioprinter, and bioreactor designs were developed and tested alongside Poly (ethylene glycol) diacrylate (PEGDA), a versatile synthetic scaffold material. PEGDA itself was also evaluated for its printability, robustness in culture conditions over time, and its ability to maintain 3D mammalian cell culture. This research showed that both the developed 3D bioprinter, and bioreactor unit were capable of producing and maintaining an easily modifiable PEGDA scaffold, in culture conditions. In addition, the PEGDA formulation developed was shown to allow for the effective and reproducible 3D cell culture conditions over the medium term, with automated media feeding. The research presented here aimed to illustrate a proof of concept that the low-cost development and production of 3D culture scaffold production and maintenance systems was feasible to the scientific research environment. This technology can then be built upon, into a system that would then allow for the broader adoption and investigation of 3D cell culture as a tool within the scientific community. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
Development of a low-cost bioprinting system for engineering of Human Tumour Models
- Authors: Fanucci, Sidne
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/163295 , vital:41026
- Description: Thesis (MSc)--Rhodes University, Faculty of Science, Biotechnology Innovation Centre, 2020.
- Full Text:
- Date Issued: 2020
- Authors: Fanucci, Sidne
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/163295 , vital:41026
- Description: Thesis (MSc)--Rhodes University, Faculty of Science, Biotechnology Innovation Centre, 2020.
- Full Text:
- Date Issued: 2020
Development of a novel agar-based microtitre plate system for construction of consistent biofilm models and subsequent use in antimicrobial screening
- Authors: Davies, Michaela Roxanne
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464369 , vital:76505
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Davies, Michaela Roxanne
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464369 , vital:76505
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
Development of efficient protocols to generate breast cancer spheroids for application in drug discovery
- Ntsoyi, Nomaphelo Ntombikayise
- Authors: Ntsoyi, Nomaphelo Ntombikayise
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464380 , vital:76506
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Ntsoyi, Nomaphelo Ntombikayise
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464380 , vital:76506
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
Development of paper-based aptasensors for detection of Plasmodium falciparum lactate dehydrogenase in malaria
- Ogunmolasuyi, Adewoyin Martin
- Authors: Ogunmolasuyi, Adewoyin Martin
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164601 , vital:41147 , doi:10.21504/10962/164601
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biotechnology Innovation Centre, 2020
- Full Text:
- Date Issued: 2020
- Authors: Ogunmolasuyi, Adewoyin Martin
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164601 , vital:41147 , doi:10.21504/10962/164601
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biotechnology Innovation Centre, 2020
- Full Text:
- Date Issued: 2020
Evaluation of screening methods for aptamer-target affinity: towards biosensors for the detection of histamine and human chorionic gonadotropin
- Authors: Yu, Jialin
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464395 , vital:76507
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Yu, Jialin
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464395 , vital:76507
- Description: Restricted access. Expected release in 2026. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2024
- Full Text:
- Date Issued: 2024-10-11
Fabrication of gold-nanoparticle/conductive polymer composite materials: application to aptamer-based impedimetric biosensors for detection of histamine
- Authors: Ojo, Dupe Ruth
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192550 , vital:45236
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Ojo, Dupe Ruth
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192550 , vital:45236
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
Integration of dual metallophthalocyanine catalysis and green energy for sustainable oxidative removal of endocrine disrupting compounds
- Authors: Kruid, Jan
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192820 , vital:45267
- Description: Thesis (PhD) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Kruid, Jan
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192820 , vital:45267
- Description: Thesis (PhD) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
Investigating cell culture models for improved understanding of adipose tissue and co-morbidities in vitro
- Authors: Stoffels, Mihlali
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164674 , vital:41154
- Description: Thesis (MSc)--Rhodes University, Faculty of Science, Biotechnology Innovation Centre, 2020
- Full Text:
- Date Issued: 2020
- Authors: Stoffels, Mihlali
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164674 , vital:41154
- Description: Thesis (MSc)--Rhodes University, Faculty of Science, Biotechnology Innovation Centre, 2020
- Full Text:
- Date Issued: 2020
Investigation of brewery waste grains and microbial fuel cells as value-additive technologies improving solvent production yields in Clostridium acetobutylicum (ATCC 824) fermentation
- Authors: Du Toit, Ryan Guillaume
- Date: 2023-10-13
- Subjects: Biomass energy , Butanol , Fermentation , Microbial fuel cells , Brewery waste , Clostridium acetobutylicum
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424643 , vital:72171
- Description: The production of the solvent compounds acetone, ethanol and butanol through fermentation of organic feedstocks using Clostridia species could be a promising route for biofuel production. However, the cost of raw materials, low yields and the complexity of anaerobic fermentation continue to hinder this means of generating these compounds. The research presented in this Thesis investigated low-cost interventions that could decrease the costs of production and to direct the synthesis of fuel compounds using microbial fuel cells. Low-cost anaerobic chambers were designed and constructed for the propagation and manipulation of Clostridium acetobutylicum, selected as a low-risk microbial catalyst. Fermentation was monitored using in situ pH measurements and a combination of turbidity measurements, nutrient assays (especially total carbohydrates) and HPLC-RI detection as a means of monitoring the consumption of nutrients (glucose), production of precursor compounds (butyric acid) and the formation of solvent molecules (acetone/ethanol and butanol) during fermentation by this organism. Brewer’s spent grains were tested as a sustainable and low-cost feedstock for solvent production, comparing the effects of sterilising before fermentation, or allowing resident microflora to remain during Clostridium-catalysed solvent production. Sterilised spent grains significantly improved the production of solvent molecules (e.g. 12.97 ± 0.38 g/L of butanol yielded, compared to 0.40 ± 0.33 g/L for defined media sampled during the solventogenic phase); compared to these, the use of non-sterilised brewer’s grain decreased both the reproducibility and yields of fermentation (8.66 ± 1.6 g/L of butanol). Microbial fuel cells were studied as a possible means of altering electron transfer to/from electrode-attached Clostridia to control the metabolic shift in bacteria from acidogenesis to solventogenesis. The base line MFC (11.00 ± 4.69 g/L) fermentation experiment did produce higher acetone/ethanol than the baseline batch experiment MB (5.47 ± 4.48 g/L), indicating an improvement to solvent production in C. acetobutylicum (ATCC 824) in a MFC fermentation. In this study, MFC-1 demonstrated remarkable superiority over MB in terms of butyric acid production, yielding significantly higher concentrations while also improving acetone and ethanol production. However, the enhanced butyric acid production did not correspond to significantly increased butanol yields when compared to batch fermentation of chemically defined media. These findings highlight the potential of MFC-1 as an efficient approach for enhancing the fermentative production of valuable compounds, with a particular focus on butyric acid and acetone/ethanol. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Du Toit, Ryan Guillaume
- Date: 2023-10-13
- Subjects: Biomass energy , Butanol , Fermentation , Microbial fuel cells , Brewery waste , Clostridium acetobutylicum
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424643 , vital:72171
- Description: The production of the solvent compounds acetone, ethanol and butanol through fermentation of organic feedstocks using Clostridia species could be a promising route for biofuel production. However, the cost of raw materials, low yields and the complexity of anaerobic fermentation continue to hinder this means of generating these compounds. The research presented in this Thesis investigated low-cost interventions that could decrease the costs of production and to direct the synthesis of fuel compounds using microbial fuel cells. Low-cost anaerobic chambers were designed and constructed for the propagation and manipulation of Clostridium acetobutylicum, selected as a low-risk microbial catalyst. Fermentation was monitored using in situ pH measurements and a combination of turbidity measurements, nutrient assays (especially total carbohydrates) and HPLC-RI detection as a means of monitoring the consumption of nutrients (glucose), production of precursor compounds (butyric acid) and the formation of solvent molecules (acetone/ethanol and butanol) during fermentation by this organism. Brewer’s spent grains were tested as a sustainable and low-cost feedstock for solvent production, comparing the effects of sterilising before fermentation, or allowing resident microflora to remain during Clostridium-catalysed solvent production. Sterilised spent grains significantly improved the production of solvent molecules (e.g. 12.97 ± 0.38 g/L of butanol yielded, compared to 0.40 ± 0.33 g/L for defined media sampled during the solventogenic phase); compared to these, the use of non-sterilised brewer’s grain decreased both the reproducibility and yields of fermentation (8.66 ± 1.6 g/L of butanol). Microbial fuel cells were studied as a possible means of altering electron transfer to/from electrode-attached Clostridia to control the metabolic shift in bacteria from acidogenesis to solventogenesis. The base line MFC (11.00 ± 4.69 g/L) fermentation experiment did produce higher acetone/ethanol than the baseline batch experiment MB (5.47 ± 4.48 g/L), indicating an improvement to solvent production in C. acetobutylicum (ATCC 824) in a MFC fermentation. In this study, MFC-1 demonstrated remarkable superiority over MB in terms of butyric acid production, yielding significantly higher concentrations while also improving acetone and ethanol production. However, the enhanced butyric acid production did not correspond to significantly increased butanol yields when compared to batch fermentation of chemically defined media. These findings highlight the potential of MFC-1 as an efficient approach for enhancing the fermentative production of valuable compounds, with a particular focus on butyric acid and acetone/ethanol. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-10-13
Investigation of microbial fuel cell technologies for flexible, small-scale domestic and educational use
- Authors: Mpofu, Trisha Lerato
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192539 , vital:45235
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Mpofu, Trisha Lerato
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192539 , vital:45235
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
Modification of Gelatin-Methacrylate, Hyaluronic-Methacrylate and Poly(ethylene) glycol Diacrylate hydrogel bioinks towards the additive manufacturing of articular cartilage
- Authors: Barwick, Matthew William
- Date: 2021-10
- Subjects: Cartilage Diseases , Cartilage Regeneration , Articular cartilage Diseases , Chondrogenesis , Stem cells , Scanning electron microscopy , Fourier transform infrared spectroscopy , Three-dimensional printing , Gelatin-Methacrylate , Hyaluronic-Methacrylate , Poly(ethylene) glycolDiacrylate , Hydrogel bioinks , Real-Time Quantitative Cell Analysis (RTCA) , Bioprinting
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/191181 , vital:45068
- Description: Cartilage degradation is most commonly associated with Rheumatoid arthritis and Osteoarthritis, affecting millions of people worldwide. Joint transplants commonly use titanium alloys, which have a shelf life of between 10-15 years. Although the titanium transplant restores partial mobility, side effects such as inflammation, swelling, faulty implants, and metal poisoning in some cases resulting from the transplant. The use of additive manufacturing of articular cartilage sheds new, innovative prospects for joint replacements. This study sets out to formulate and characterize five different hydrogel types towards the additive manufacturing of articular cartilage. Chondrogenic and Adipogenic differentiation was carried out on two separate adipose-mesenchymal stem cell lines A270620-01A, and A311019-02T and validation and efficiency of the differentiation and chondrogenic gene expression was carried out using Alcian Blue stain, Oil Red O stain and Quantitative Reverse Transcription PCR (RT-qPCR). Hydrogel formulation and characterisation of 10 % Gelatin-methacryloyl (GelMA), 10 % Poly (ethylene) glycol diacrylate (PEGDA), 5 % GelMA/5 % PEGDA, 10 % GelMA/0.5 % Hyaluronic Acid Methacrylate (HAMA) and 10 % PEGDA/0.5 % HAMA was carried out through swelling and degradation ratios, surface area and porosity characterisation using Scanning Electron Microscopy (SEM). Hydrogel component and spectroscopic analysis were carried using Real-Time Quantitative Cell Analysis (RTCA) and Fourier-transform Infrared Spectroscopy (FTIR) analysis for each formulated hydrogel's chemical characterisation. Three-dimensional printing (3D) of 10 % PEGDA/0.5 % HAMA and 5 % GelMA/5 % PEGDA was performed using the Zortrax INKSPIRE Resin Ultra-Violet (UV) LCD Desktop 3D Printer. Hydrogel sterility and cell viability were carried out for each hydrogel type using fluorescence microscopy. Both A270620-01A and A311019-02T cell lines showed adipogenic and chondrogenic differentiation ability, with A311019-02T cell line showing greater chondrogenic differentiation of Alcian blue staining. The A270620-01A cell line resulted in a greater collagen gene expression based on the RT-qPCR results. The hydrogel 10 % GelMA showed the greatest swelling ratio of 1260 % in DPBS and 1192 % in DMEM. A significant difference between hydrogel swelling and swelling with Dulbecco's Phosphate Buffered Saline (DPBS) and Dulbecco’s Modified Eagle Medium (DMEM) was observed. The 10 % PEGDA hydrogel had the greatest degradation ratio of 59 % mass remaining, where the 10 % GelMA/0.5 % HAMA showed the least amount of degradation with a mass remaining at 91 %. The 10 % GelMA showed the greatest porosity will the largest pore size of 14 μm in diameter. Hydrogel component and spectroscopic analysis showed no cytotoxic effects for the visible light photoinitiator used to polymerize the hydrogel and no cytotoxic effects for the concentrations used in chondrogenic differentiation. The FTIR analysis showed partial gelatin and hyaluronic acid modification with methacrylic anhydride; however, the distinction between the hybrid hydrogels and single polymer hydrogels could not be made effectively. UV and ethanol washing showed to completely sterilise the hydrogel disks from any contaminants, making them suitable for tissue culture. The cell viability analysis showed the 10 % GelMA/HAMA having the highest cell viability of 77.3 % using 5000 cells/disk and 89.64 % viability using 50 000 cells/disk over a 7-day incubation period. Overall, the combination of two polymers, GelMA and HAMA, has good potential as a 3D hydrogel scaffold towards additive manufacturing of articular cartilage. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10
- Authors: Barwick, Matthew William
- Date: 2021-10
- Subjects: Cartilage Diseases , Cartilage Regeneration , Articular cartilage Diseases , Chondrogenesis , Stem cells , Scanning electron microscopy , Fourier transform infrared spectroscopy , Three-dimensional printing , Gelatin-Methacrylate , Hyaluronic-Methacrylate , Poly(ethylene) glycolDiacrylate , Hydrogel bioinks , Real-Time Quantitative Cell Analysis (RTCA) , Bioprinting
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/191181 , vital:45068
- Description: Cartilage degradation is most commonly associated with Rheumatoid arthritis and Osteoarthritis, affecting millions of people worldwide. Joint transplants commonly use titanium alloys, which have a shelf life of between 10-15 years. Although the titanium transplant restores partial mobility, side effects such as inflammation, swelling, faulty implants, and metal poisoning in some cases resulting from the transplant. The use of additive manufacturing of articular cartilage sheds new, innovative prospects for joint replacements. This study sets out to formulate and characterize five different hydrogel types towards the additive manufacturing of articular cartilage. Chondrogenic and Adipogenic differentiation was carried out on two separate adipose-mesenchymal stem cell lines A270620-01A, and A311019-02T and validation and efficiency of the differentiation and chondrogenic gene expression was carried out using Alcian Blue stain, Oil Red O stain and Quantitative Reverse Transcription PCR (RT-qPCR). Hydrogel formulation and characterisation of 10 % Gelatin-methacryloyl (GelMA), 10 % Poly (ethylene) glycol diacrylate (PEGDA), 5 % GelMA/5 % PEGDA, 10 % GelMA/0.5 % Hyaluronic Acid Methacrylate (HAMA) and 10 % PEGDA/0.5 % HAMA was carried out through swelling and degradation ratios, surface area and porosity characterisation using Scanning Electron Microscopy (SEM). Hydrogel component and spectroscopic analysis were carried using Real-Time Quantitative Cell Analysis (RTCA) and Fourier-transform Infrared Spectroscopy (FTIR) analysis for each formulated hydrogel's chemical characterisation. Three-dimensional printing (3D) of 10 % PEGDA/0.5 % HAMA and 5 % GelMA/5 % PEGDA was performed using the Zortrax INKSPIRE Resin Ultra-Violet (UV) LCD Desktop 3D Printer. Hydrogel sterility and cell viability were carried out for each hydrogel type using fluorescence microscopy. Both A270620-01A and A311019-02T cell lines showed adipogenic and chondrogenic differentiation ability, with A311019-02T cell line showing greater chondrogenic differentiation of Alcian blue staining. The A270620-01A cell line resulted in a greater collagen gene expression based on the RT-qPCR results. The hydrogel 10 % GelMA showed the greatest swelling ratio of 1260 % in DPBS and 1192 % in DMEM. A significant difference between hydrogel swelling and swelling with Dulbecco's Phosphate Buffered Saline (DPBS) and Dulbecco’s Modified Eagle Medium (DMEM) was observed. The 10 % PEGDA hydrogel had the greatest degradation ratio of 59 % mass remaining, where the 10 % GelMA/0.5 % HAMA showed the least amount of degradation with a mass remaining at 91 %. The 10 % GelMA showed the greatest porosity will the largest pore size of 14 μm in diameter. Hydrogel component and spectroscopic analysis showed no cytotoxic effects for the visible light photoinitiator used to polymerize the hydrogel and no cytotoxic effects for the concentrations used in chondrogenic differentiation. The FTIR analysis showed partial gelatin and hyaluronic acid modification with methacrylic anhydride; however, the distinction between the hybrid hydrogels and single polymer hydrogels could not be made effectively. UV and ethanol washing showed to completely sterilise the hydrogel disks from any contaminants, making them suitable for tissue culture. The cell viability analysis showed the 10 % GelMA/HAMA having the highest cell viability of 77.3 % using 5000 cells/disk and 89.64 % viability using 50 000 cells/disk over a 7-day incubation period. Overall, the combination of two polymers, GelMA and HAMA, has good potential as a 3D hydrogel scaffold towards additive manufacturing of articular cartilage. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10
Photosynthetic microbial fuel cells and fabricated photobioreactors applied with halotolerant microorganisms for nutrient and metal remediation under adverse hypersaline
- Authors: Smith, Galad Gilbert
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192561 , vital:45237
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Smith, Galad Gilbert
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192561 , vital:45237
- Description: Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2021
- Full Text:
- Date Issued: 2021-10-29
Selection of DNA aptamers against Cancer-Targeting Murine Antibodies
- Authors: Nisbet, Laura Jade
- Date: 2023-03-29
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422426 , vital:71941
- Description: Access restricted. Access embargoed until 2025. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-03-29
- Authors: Nisbet, Laura Jade
- Date: 2023-03-29
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/422426 , vital:71941
- Description: Access restricted. Access embargoed until 2025. , Thesis (MSc) -- Faculty of Science, Biotechnology Innovation Centre, 2023
- Full Text:
- Date Issued: 2023-03-29
The creation and validation of aptamers binding to murine 3T3-L1 Preadipocytes: preliminary implications for controlled cellular attachment, differentiation and cell fate
- Authors: Rubidge, Mark Lourens
- Date: 2017
- Subjects: Oligonucleotides , Fat cells , Stem cells , Ligand binding (Biochemistry) , Fluorimetry
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65247 , vital:28714
- Description: The controlled seeding of a variety of stem cells in vitro has been reported to alter the patterns of their subsequent differentiation. This has been attributed to the control of the surface microenvironment onto which adherent stem cells are cultured, especially control of the proximal density of neighbouring cells. Simultaneously, advances in the generation of aptamers - synthetic ligand molecules developed using in vitro selection techniques targeting complex molecules - have aided in the production of molecules capable of selectively binding to a variety of commercial stem cell lines. Combining the aforementioned research fields, the project reported in this thesis aimed to generate DNA-based aptamers capable of assisting with the selective binding of murine 3T3- L1 preadipocytes to a solid surface. This was performed with a view to, eventually, control the seeding densities of the adherent preadipocytes on the surface of the tissue culture dish in subsequent researchers. In the process of meeting this goal, several optimisations of the in vitro process by which aptamers binding to cells are generated (Cell-SELEX) were performed: an analysis into a variety of methods used for the removal of the single stranded aptamer candidate sequences attached to the surface of 3T3-L1 preadipocytes, a comparison of methods for the generation of single-stranded aptamer sequences from double-stranded DNA template molecules and a method for quantifying the removed ssDNA from the cell surface. Their use is further reported in this work. Initially, it was determined that a fluorimetric evaluation of the unbound single stranded DNA was the optimum technique to use to evaluate the relative amounts of aptamer DNA binding to target cells during cell-SELEX; this arose from the release of DNA, and other cell lysate contaminates, which interfered UV/ Vis quantification. The evaluation into different methods of ssDNA removal from the cell surface showed that although trypsinisation of the cells demonstrated the highest level of aptamer detachment (quantified by fluorimetry), there is a decrease the number of potential targets that aptamers could attach to. The most common method for detaching bound DNA aptamer molecules from cellular targets reported in literature, the use of high temperatures, was selected for cell-SELEX to increase the variability in potential target sites on the cell surface. Using techniques optimised in this work, fluorescently-tagged single-stranded oligonucleotide aptamers were later generated with a positive selection pressure to bind to the surface of the 3T3-L1 preadipocytes, but not to their differentiated adipocyte counterparts. After eight cycles of cell-SELEX, fluorescent spectroscopic analysis depicted a 74 % binding retention of the selection pool in the positive preadipocyte selection pool, as opposed to a 0.69 % binding of sequences to the negative differentiated preadipocytes. Following the isolation and identification of candidate sequences, seven separate sequences were identified as being successfully generated from the selection process. Bioinformatic characterisation of these placed sequenced aptamer candidates into two separate families, that were then analysed in opposition to each for their binding affinity toward each other. Using fluorescently-tagged sequences, the binding selectivity of the generated aptamers was validated using both epifluorescent microscopy and confocal microscopy. At this stage, an aptamer sequence selected from prior in-house research to serve as a negative control also demonstrated significant binding to the extracellular matrix of both preadipocytes and mature adipocytes. 5’-thiolated aptamer sequences were used to form self-assembled monolayers on the electrode surfaces of the impedimetric Roche xCELLigence Real-Time Cell Analysis. The use of aptamer sequences to capture the seeded preadipocytes, demonstrated a slight increase in the extent of binding of the preadipocytes to the gold electrode surface and produced some preliminary indications of alterations to the pattern and rate of subsequent differentiation in the preadipocytes. This provides preliminary evidence that aptamers developed to bind specifically to a stem cell line in vitro show potential to be used as to capture said cell when cast in a self- assembled monolayer assembly. This provides a future opportunity to control the seeding densities of the cells in vitro. The effects of cellular differentiation at a set of predefined cellular densities can be demonstrated on a desired stem cell line. , Thesis (MSc) -- Faculty of Faculty of Science, Biotechnology Innovation Centre, 2017
- Full Text:
- Date Issued: 2017
- Authors: Rubidge, Mark Lourens
- Date: 2017
- Subjects: Oligonucleotides , Fat cells , Stem cells , Ligand binding (Biochemistry) , Fluorimetry
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/65247 , vital:28714
- Description: The controlled seeding of a variety of stem cells in vitro has been reported to alter the patterns of their subsequent differentiation. This has been attributed to the control of the surface microenvironment onto which adherent stem cells are cultured, especially control of the proximal density of neighbouring cells. Simultaneously, advances in the generation of aptamers - synthetic ligand molecules developed using in vitro selection techniques targeting complex molecules - have aided in the production of molecules capable of selectively binding to a variety of commercial stem cell lines. Combining the aforementioned research fields, the project reported in this thesis aimed to generate DNA-based aptamers capable of assisting with the selective binding of murine 3T3- L1 preadipocytes to a solid surface. This was performed with a view to, eventually, control the seeding densities of the adherent preadipocytes on the surface of the tissue culture dish in subsequent researchers. In the process of meeting this goal, several optimisations of the in vitro process by which aptamers binding to cells are generated (Cell-SELEX) were performed: an analysis into a variety of methods used for the removal of the single stranded aptamer candidate sequences attached to the surface of 3T3-L1 preadipocytes, a comparison of methods for the generation of single-stranded aptamer sequences from double-stranded DNA template molecules and a method for quantifying the removed ssDNA from the cell surface. Their use is further reported in this work. Initially, it was determined that a fluorimetric evaluation of the unbound single stranded DNA was the optimum technique to use to evaluate the relative amounts of aptamer DNA binding to target cells during cell-SELEX; this arose from the release of DNA, and other cell lysate contaminates, which interfered UV/ Vis quantification. The evaluation into different methods of ssDNA removal from the cell surface showed that although trypsinisation of the cells demonstrated the highest level of aptamer detachment (quantified by fluorimetry), there is a decrease the number of potential targets that aptamers could attach to. The most common method for detaching bound DNA aptamer molecules from cellular targets reported in literature, the use of high temperatures, was selected for cell-SELEX to increase the variability in potential target sites on the cell surface. Using techniques optimised in this work, fluorescently-tagged single-stranded oligonucleotide aptamers were later generated with a positive selection pressure to bind to the surface of the 3T3-L1 preadipocytes, but not to their differentiated adipocyte counterparts. After eight cycles of cell-SELEX, fluorescent spectroscopic analysis depicted a 74 % binding retention of the selection pool in the positive preadipocyte selection pool, as opposed to a 0.69 % binding of sequences to the negative differentiated preadipocytes. Following the isolation and identification of candidate sequences, seven separate sequences were identified as being successfully generated from the selection process. Bioinformatic characterisation of these placed sequenced aptamer candidates into two separate families, that were then analysed in opposition to each for their binding affinity toward each other. Using fluorescently-tagged sequences, the binding selectivity of the generated aptamers was validated using both epifluorescent microscopy and confocal microscopy. At this stage, an aptamer sequence selected from prior in-house research to serve as a negative control also demonstrated significant binding to the extracellular matrix of both preadipocytes and mature adipocytes. 5’-thiolated aptamer sequences were used to form self-assembled monolayers on the electrode surfaces of the impedimetric Roche xCELLigence Real-Time Cell Analysis. The use of aptamer sequences to capture the seeded preadipocytes, demonstrated a slight increase in the extent of binding of the preadipocytes to the gold electrode surface and produced some preliminary indications of alterations to the pattern and rate of subsequent differentiation in the preadipocytes. This provides preliminary evidence that aptamers developed to bind specifically to a stem cell line in vitro show potential to be used as to capture said cell when cast in a self- assembled monolayer assembly. This provides a future opportunity to control the seeding densities of the cells in vitro. The effects of cellular differentiation at a set of predefined cellular densities can be demonstrated on a desired stem cell line. , Thesis (MSc) -- Faculty of Faculty of Science, Biotechnology Innovation Centre, 2017
- Full Text:
- Date Issued: 2017