A classification of large wetlands in Africa’s elevated drylands based on their formation, structure, and hydrological functioning using Earth Observation (EO) data and Geographic Information System (GIS)
- Authors: Lidzhegu, Zwidofhelangani
- Date: 2020
- Subjects: Wetlands -- Africa -- Classification , Wetlands -- Africa -- Research , Wetlands -- Africa -- Monitoring , Topographical surveying -- Africa , Hydrological surveys == Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/142668 , vital:38100
- Description: Due to wetland inaccessibility and limited wetland geomorphological studies, there is limited information on the geomorphological origin and hydrological functioning of different types of wetlands in Africa’s elevated drylands. As a result, there is limited information for the development of a comprehensive wetland classification system that classifies wetlands based on long-term geomorphic processes that determine their formation and shape, their structure and hydrological functioning. Therefore, the current study was designed to classify large wetlands in Africa’s elevated drylands based on processes that determine their formation, and shape their structure and hydrological functioning using remote sensing and Geographic Information System (GIS) techniques. Although wetlands perform a number of hydrological functions including groundwater recharge and water purification, the current study focuses mainly on their flood attenuation function. Detailed analysis of topographic information was undertaken using Shuttle Radar Topographic Mission (SRTM) elevations measured at the scale of 30 m x 30 m. LandsatLook and Google Earth images, tectonic as well as geological data were used as supplementary data for developing an understanding of the origin, structure and hydrological characteristics of wetlands. The Principal Component Analysis (PCA) of wetland environmental variables was used to identify and explain wetland heterogeneity. The results of the study showed that fluvial processes, tectonic history and the evolution of Africa’s landscape played a fundamental role in the formation and evolution of wetlands. This study demonstrates a wide range of processes that contribute to wetland formation, structure and functioning. At one extreme it is clear that tectonic processes may be primarily responsible for the creation of basins that host wetlands. At another extreme, wetlands may be structured primarily by fluvial processes. At a third extreme are wetlands that superficially appear to be structured by fluvial processes, but which have their structures modified by gradual rising of the base level at their distal ends, either through marginal uplift adjacent to rift valleys, or through aggradation of a floodplain that blocks a tributary valley. Overall, the classification of wetlands considered in this study can be summarised into four distinct groupings, with two of these divided further into two groupings each: (1) Tectonic basins with little or no indication of fluvial development (Bahi and Wembere wetlands), (2) Tectonic basins evolving towards a wetland with a structure increasingly shaped by fluvial characteristics (Usangu wetland), (3) Fluvially modified valleys with a local base level at the toe of the wetland such as a resistant lithology or a tectonic control that limits the rate of incision of easily weathered and eroded lithologies, leading to valley widening and longitudinal slope reduction, which are of two distinct types: (a) With a catchment on Kalahari Group sediment that is transported fluvially as bedload, and therefore with no prominent alluvial ridge or backwater depressions (Upper Zambezi and Barotse wetlands), (b) With a catchment that produces abundant fine sediment that is deposited as overbank sediments, leading to channel migration via meandering and to the construction of an elevated alluvial ridge (Lufira wetland), (4) Fluvially modified basins with evidence of gradual elevation of the base level at the toe of the wetland, which are of two types: (a) Tectonic marginal rift valley uplift such that they behave more as depression wetlands rather than as wetlands shaped by fluvial processes (Kafue and Luapula wetlands), (b) Tributary valley wetlands blocked by aggradation of the trunk valley (Lukanga wetland). In conclusion, although few geomorphological studies have been conducted on southern African wetlands because of their inaccessibility, Africa’s surface topography and its historical evolution, as well as aridity, provide an opportunity for illustrating the important role that the long-term tectonic, geological and geomorphological processes play in determining wetland origin, structure and dynamics. GIS methodology and Earth Observation (EO) data on the other hand, provide a practical means for acquiring information on inaccessible and hard to traverse wetland systems. A novel cut-and-fill approach for delineating wetlands from a Digital Elevation Model (DEM) was presented as another way in which GIS methodology and Earth Observation (EO) data can provide practical means for assessing inaccessible and hard to traverse wetland systems.
- Full Text:
- Date Issued: 2020
- Authors: Lidzhegu, Zwidofhelangani
- Date: 2020
- Subjects: Wetlands -- Africa -- Classification , Wetlands -- Africa -- Research , Wetlands -- Africa -- Monitoring , Topographical surveying -- Africa , Hydrological surveys == Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/142668 , vital:38100
- Description: Due to wetland inaccessibility and limited wetland geomorphological studies, there is limited information on the geomorphological origin and hydrological functioning of different types of wetlands in Africa’s elevated drylands. As a result, there is limited information for the development of a comprehensive wetland classification system that classifies wetlands based on long-term geomorphic processes that determine their formation and shape, their structure and hydrological functioning. Therefore, the current study was designed to classify large wetlands in Africa’s elevated drylands based on processes that determine their formation, and shape their structure and hydrological functioning using remote sensing and Geographic Information System (GIS) techniques. Although wetlands perform a number of hydrological functions including groundwater recharge and water purification, the current study focuses mainly on their flood attenuation function. Detailed analysis of topographic information was undertaken using Shuttle Radar Topographic Mission (SRTM) elevations measured at the scale of 30 m x 30 m. LandsatLook and Google Earth images, tectonic as well as geological data were used as supplementary data for developing an understanding of the origin, structure and hydrological characteristics of wetlands. The Principal Component Analysis (PCA) of wetland environmental variables was used to identify and explain wetland heterogeneity. The results of the study showed that fluvial processes, tectonic history and the evolution of Africa’s landscape played a fundamental role in the formation and evolution of wetlands. This study demonstrates a wide range of processes that contribute to wetland formation, structure and functioning. At one extreme it is clear that tectonic processes may be primarily responsible for the creation of basins that host wetlands. At another extreme, wetlands may be structured primarily by fluvial processes. At a third extreme are wetlands that superficially appear to be structured by fluvial processes, but which have their structures modified by gradual rising of the base level at their distal ends, either through marginal uplift adjacent to rift valleys, or through aggradation of a floodplain that blocks a tributary valley. Overall, the classification of wetlands considered in this study can be summarised into four distinct groupings, with two of these divided further into two groupings each: (1) Tectonic basins with little or no indication of fluvial development (Bahi and Wembere wetlands), (2) Tectonic basins evolving towards a wetland with a structure increasingly shaped by fluvial characteristics (Usangu wetland), (3) Fluvially modified valleys with a local base level at the toe of the wetland such as a resistant lithology or a tectonic control that limits the rate of incision of easily weathered and eroded lithologies, leading to valley widening and longitudinal slope reduction, which are of two distinct types: (a) With a catchment on Kalahari Group sediment that is transported fluvially as bedload, and therefore with no prominent alluvial ridge or backwater depressions (Upper Zambezi and Barotse wetlands), (b) With a catchment that produces abundant fine sediment that is deposited as overbank sediments, leading to channel migration via meandering and to the construction of an elevated alluvial ridge (Lufira wetland), (4) Fluvially modified basins with evidence of gradual elevation of the base level at the toe of the wetland, which are of two types: (a) Tectonic marginal rift valley uplift such that they behave more as depression wetlands rather than as wetlands shaped by fluvial processes (Kafue and Luapula wetlands), (b) Tributary valley wetlands blocked by aggradation of the trunk valley (Lukanga wetland). In conclusion, although few geomorphological studies have been conducted on southern African wetlands because of their inaccessibility, Africa’s surface topography and its historical evolution, as well as aridity, provide an opportunity for illustrating the important role that the long-term tectonic, geological and geomorphological processes play in determining wetland origin, structure and dynamics. GIS methodology and Earth Observation (EO) data on the other hand, provide a practical means for acquiring information on inaccessible and hard to traverse wetland systems. A novel cut-and-fill approach for delineating wetlands from a Digital Elevation Model (DEM) was presented as another way in which GIS methodology and Earth Observation (EO) data can provide practical means for assessing inaccessible and hard to traverse wetland systems.
- Full Text:
- Date Issued: 2020
A combined modelling approach for simulating channel–wetland exchanges in large African river basins
- Authors: Makungu, Eunice J
- Date: 2020
- Subjects: Watersheds -- Africa , Watershed management -- Africa , Water resources development -- Africa -- International cooperation , Floodplain management -- Africa , Wetland ecology -- Simulation methods -- Africa , Wetland management -- Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/123288 , vital:35424
- Description: In Africa, many large and extensive wetlands are hydrologically connected to rivers, and their environmental integrity, as well as their influence on downstream flow regimes, depends on the prevailing channel–wetland exchange processes. These processes are inherently complex and vary spatially and temporally. Understanding channel–wetland exchanges is therefore, indispensable for the effective management of wetlands and the associated river basins. However, this information is limited in most of the river basins containing large wetlands in Africa. Furthermore, it is important to understand the links between upstream and downstream flow regimes and the wetland dynamics themselves, specifically where there are water resource developments that may affect these links (upstream developments), or be affected by them (downstream developments). Hydrological modelling of the entire basin using basin-scale models that include wetland components in their structures can be used to provide the information required to manage water resources in such basins. However, the level of detail of wetland processes included in many basin-scale models is typically very low and the lack of understanding of the wetland dynamics makes it difficult to quantify the relevant parameters. Detailed hydraulic models represent the channel-wetland exchanges in a much more explicit manner, but require relatively more data and time resources to establish than coarser scale hydrological models. The main objective of this study was, therefore, to investigate the use of a detailed hydraulic wetland model to provide a better understanding of channel–wetland exchanges and wetland dynamics, and to use the results to improve the parameterisation of a basin-scale model. The study focused on improving the water resource assessments modelling of three data-scarce African river basins that contain large wetlands: the floodplains of the Luangwa and Upper Zambezi River basins and the Usangu wetland in the Upper Great Ruaha River basin. The overall objective was achieved through a combined modelling approach that uses a detailed high-resolution LISFLOOD-FP hydraulic model to inform the structure and parameters of the GW Pitman monthly hydrological model. The results from the LISFLOOD-FP were used to improve the understanding of the channel–wetland exchange dynamics and to establish the wetland parameters required in the GW Pitman model. While some wetland parameters were directly quantified from the LISFLOOD-FP model results, others, which are highly empirical, were estimated by manually calibrating the GW Pitman wetland sub-model implemented in excel spreadsheets containing the LISFLOOD-FP model results. Finally, the GW Pitman model with the inclusion of the estimated wetland parameters was applied for each basin and the results compared to the available downstream observed flow data. The two models have been successfully applied in southern Africa, with the GW Pitman model being one of the most widely applied hydrological models in this region. To address the issue of data scarcity, during setup of these models, the study mainly relied on the global datasets which clearly adds to the overall uncertainty of the modelling approach. However, this is a typical situation for most of the data scarce regions of the continent. A number of challenges were, however, faced during the setup of the LISFLOOD-FP, mainly due to the limitations of the data inputs. Some of the LISFLOOD-FP data inputs include boundary conditions (upstream and downstream), channel cross-sections and wetland topography. In the absence of observed daily flows to quantify the wetland upstream boundary conditions, monthly flow volumes simulated using the GW Pitman monthly model (without including the wetland sub-model) were disaggregated into daily flows using a disaggregation sub-model. The simulated wetland inflows were evaluated using the observed flow data for downstream gauging stations that include the wetland effects. The results highlighted that it is important to understand the possible impacts of each wetland on the downstream flow regime during the evaluations of the model simulation results. Although the disaggregation approach cannot be validated due to a lack of observed data, it at least enables the simulated monthly flows to be used in the daily time step hydraulic model. One of the recommendations is that improvements are required in gauging station networks to provide more observed information for the main river and the larger tributary inflows into these large and important wetland systems. Even a limited amount of newly observed data would be helpful to reduce some of the uncertainties in the combined modelling approach. The SRTM 90 m DEM (used to represent wetland topography) was filtered to reduce local variations and noise effects (mainly vegetation bias), but there were some pixels that falsely affect the inundation results, and the recently released vegetation-corrected DEMs are suggested to improve the simulation results. Channel cross-section values derived from global datasets should be examined because some widths estimated from the Andreadis et al. (2013) dataset were found to be over-generalised and did not reflect widths measured using high-resolution Google Earth in many places. There is an indication that channel cross-sections digitised from Google Earth images can be successfully used in the model setup except in densely vegetated swamps where the values are difficult to estimate, and in such situations, field measured cross-section data are required. Small channels such as those found in the Usangu wetland could play major role in the exchange dynamics, but digitising them all was not straightforward and only key ones were included in the model setup. Clearly, this inevitably introduced uncertainties in the simulated results, and future studies should consider applying methods that simplify extractions of most of these channels from high-resolution images to improve the simulated results. The study demonstrated that the wetland and channel physical characteristics, as well as the seasonal flow magnitude, largely influence the channel–wetland exchanges and wetland dynamics. The inundation results indicated that the area–storage and storage–inflow relationships form hysteretic curves, but the shape of these curves vary with flood magnitude and wetland type. Anticlockwise hysteresis curves were observed in both relationships for the floodplains (Luangwa and Barotse), whereas there appears to be no dominant curve type for the Usangu wetlands. The lack of well-defined hysteretic relationships in the Usangu could be related to some of the difficulties (and resulting uncertainties) that were experienced in setting up the model for this wetland. The storage–inflow relationships in all wetlands have quite complex rising limbs due to multiple flow peaks during the main wet season. The largest inundation area and storage volume for the Barotse and Usangu wetlands occurred after the peak discharge of the wet season, a result that is clearly related to the degree of connectivity between the main channel and those areas of the wetlands that are furthest away from the channel. Hysteresis effects were found to increase with an increase in flood magnitudes and temporal variations in the wetland inflows. Overall, hysteresis behaviour is common in large wetlands and it is recommended that hysteresis curves should be reflected in basin-scale modelling of large river basins with substantial wetland areas. At a daily time scale, inflow–outflow relationships showed a significant peak reduction and a delayed time to peak of several weeks in the Barotse and Usangu wetlands, whereas the attenuation effects of the Luangwa floodplain are minimal. To a large extent, the LISFLOOD-FP results provided useful information to establish wetland parameters and assess the structure of Pitman wetland sub-model. The simple spreadsheet used to estimate wetland parameters did not account for the wetland water transfers from the upstream to the next section downstream (the condition that is included in the LISFLOOD-FP model) for the case when the wetlands were distributed across more than one sub-basin. It is recommended that a method that allows for the upstream wetland inflows and the channel inflows should be included in the spreadsheet. The same is true to the Pitman model structure, and a downstream transfer of water can be modelled through return flows to the channel. The structure of the wetland sub-model was modified to allow an option for the return flows to occur at any time during the simulation period to provide for types of wetlands (e.g. the Luangwa) where spills from the channel and drainage back to the channel occur simultaneously. The setup of the GW Pitman model with the inclusion of wetland parameters improved the simulation results. However, the results for the Usangu wetlands were not very satisfactory and the collection of additional field data related to exchange dynamics is recommended to achieve improvements. The impacts of the Luangwa floodplain on the flow regime of the Luangwa River are very small at the monthly time scale, whereas the Barotse floodplain system and the Usangu wetlands extensively regulate flows of the Zambezi River and the Great Ruaha River, respectively. The results highlighted the possibilities of regionalising some wetland parameters using an understanding of wetland physical characteristics and their water exchange dynamics. However, some parameters remain difficult to quantify in the absence of site-specific information about the water exchange dynamics. The overall conclusion is that the approach implemented in this study presents an important step towards the improvements of water resource assessments modelling for research and practical purposes in data-scarce river basins. This approach is not restricted to the two used models, as it can be applied using different model combinations to achieve similar study purpose.
- Full Text:
- Date Issued: 2020
A combined modelling approach for simulating channel–wetland exchanges in large African river basins
- Authors: Makungu, Eunice J
- Date: 2020
- Subjects: Watersheds -- Africa , Watershed management -- Africa , Water resources development -- Africa -- International cooperation , Floodplain management -- Africa , Wetland ecology -- Simulation methods -- Africa , Wetland management -- Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/123288 , vital:35424
- Description: In Africa, many large and extensive wetlands are hydrologically connected to rivers, and their environmental integrity, as well as their influence on downstream flow regimes, depends on the prevailing channel–wetland exchange processes. These processes are inherently complex and vary spatially and temporally. Understanding channel–wetland exchanges is therefore, indispensable for the effective management of wetlands and the associated river basins. However, this information is limited in most of the river basins containing large wetlands in Africa. Furthermore, it is important to understand the links between upstream and downstream flow regimes and the wetland dynamics themselves, specifically where there are water resource developments that may affect these links (upstream developments), or be affected by them (downstream developments). Hydrological modelling of the entire basin using basin-scale models that include wetland components in their structures can be used to provide the information required to manage water resources in such basins. However, the level of detail of wetland processes included in many basin-scale models is typically very low and the lack of understanding of the wetland dynamics makes it difficult to quantify the relevant parameters. Detailed hydraulic models represent the channel-wetland exchanges in a much more explicit manner, but require relatively more data and time resources to establish than coarser scale hydrological models. The main objective of this study was, therefore, to investigate the use of a detailed hydraulic wetland model to provide a better understanding of channel–wetland exchanges and wetland dynamics, and to use the results to improve the parameterisation of a basin-scale model. The study focused on improving the water resource assessments modelling of three data-scarce African river basins that contain large wetlands: the floodplains of the Luangwa and Upper Zambezi River basins and the Usangu wetland in the Upper Great Ruaha River basin. The overall objective was achieved through a combined modelling approach that uses a detailed high-resolution LISFLOOD-FP hydraulic model to inform the structure and parameters of the GW Pitman monthly hydrological model. The results from the LISFLOOD-FP were used to improve the understanding of the channel–wetland exchange dynamics and to establish the wetland parameters required in the GW Pitman model. While some wetland parameters were directly quantified from the LISFLOOD-FP model results, others, which are highly empirical, were estimated by manually calibrating the GW Pitman wetland sub-model implemented in excel spreadsheets containing the LISFLOOD-FP model results. Finally, the GW Pitman model with the inclusion of the estimated wetland parameters was applied for each basin and the results compared to the available downstream observed flow data. The two models have been successfully applied in southern Africa, with the GW Pitman model being one of the most widely applied hydrological models in this region. To address the issue of data scarcity, during setup of these models, the study mainly relied on the global datasets which clearly adds to the overall uncertainty of the modelling approach. However, this is a typical situation for most of the data scarce regions of the continent. A number of challenges were, however, faced during the setup of the LISFLOOD-FP, mainly due to the limitations of the data inputs. Some of the LISFLOOD-FP data inputs include boundary conditions (upstream and downstream), channel cross-sections and wetland topography. In the absence of observed daily flows to quantify the wetland upstream boundary conditions, monthly flow volumes simulated using the GW Pitman monthly model (without including the wetland sub-model) were disaggregated into daily flows using a disaggregation sub-model. The simulated wetland inflows were evaluated using the observed flow data for downstream gauging stations that include the wetland effects. The results highlighted that it is important to understand the possible impacts of each wetland on the downstream flow regime during the evaluations of the model simulation results. Although the disaggregation approach cannot be validated due to a lack of observed data, it at least enables the simulated monthly flows to be used in the daily time step hydraulic model. One of the recommendations is that improvements are required in gauging station networks to provide more observed information for the main river and the larger tributary inflows into these large and important wetland systems. Even a limited amount of newly observed data would be helpful to reduce some of the uncertainties in the combined modelling approach. The SRTM 90 m DEM (used to represent wetland topography) was filtered to reduce local variations and noise effects (mainly vegetation bias), but there were some pixels that falsely affect the inundation results, and the recently released vegetation-corrected DEMs are suggested to improve the simulation results. Channel cross-section values derived from global datasets should be examined because some widths estimated from the Andreadis et al. (2013) dataset were found to be over-generalised and did not reflect widths measured using high-resolution Google Earth in many places. There is an indication that channel cross-sections digitised from Google Earth images can be successfully used in the model setup except in densely vegetated swamps where the values are difficult to estimate, and in such situations, field measured cross-section data are required. Small channels such as those found in the Usangu wetland could play major role in the exchange dynamics, but digitising them all was not straightforward and only key ones were included in the model setup. Clearly, this inevitably introduced uncertainties in the simulated results, and future studies should consider applying methods that simplify extractions of most of these channels from high-resolution images to improve the simulated results. The study demonstrated that the wetland and channel physical characteristics, as well as the seasonal flow magnitude, largely influence the channel–wetland exchanges and wetland dynamics. The inundation results indicated that the area–storage and storage–inflow relationships form hysteretic curves, but the shape of these curves vary with flood magnitude and wetland type. Anticlockwise hysteresis curves were observed in both relationships for the floodplains (Luangwa and Barotse), whereas there appears to be no dominant curve type for the Usangu wetlands. The lack of well-defined hysteretic relationships in the Usangu could be related to some of the difficulties (and resulting uncertainties) that were experienced in setting up the model for this wetland. The storage–inflow relationships in all wetlands have quite complex rising limbs due to multiple flow peaks during the main wet season. The largest inundation area and storage volume for the Barotse and Usangu wetlands occurred after the peak discharge of the wet season, a result that is clearly related to the degree of connectivity between the main channel and those areas of the wetlands that are furthest away from the channel. Hysteresis effects were found to increase with an increase in flood magnitudes and temporal variations in the wetland inflows. Overall, hysteresis behaviour is common in large wetlands and it is recommended that hysteresis curves should be reflected in basin-scale modelling of large river basins with substantial wetland areas. At a daily time scale, inflow–outflow relationships showed a significant peak reduction and a delayed time to peak of several weeks in the Barotse and Usangu wetlands, whereas the attenuation effects of the Luangwa floodplain are minimal. To a large extent, the LISFLOOD-FP results provided useful information to establish wetland parameters and assess the structure of Pitman wetland sub-model. The simple spreadsheet used to estimate wetland parameters did not account for the wetland water transfers from the upstream to the next section downstream (the condition that is included in the LISFLOOD-FP model) for the case when the wetlands were distributed across more than one sub-basin. It is recommended that a method that allows for the upstream wetland inflows and the channel inflows should be included in the spreadsheet. The same is true to the Pitman model structure, and a downstream transfer of water can be modelled through return flows to the channel. The structure of the wetland sub-model was modified to allow an option for the return flows to occur at any time during the simulation period to provide for types of wetlands (e.g. the Luangwa) where spills from the channel and drainage back to the channel occur simultaneously. The setup of the GW Pitman model with the inclusion of wetland parameters improved the simulation results. However, the results for the Usangu wetlands were not very satisfactory and the collection of additional field data related to exchange dynamics is recommended to achieve improvements. The impacts of the Luangwa floodplain on the flow regime of the Luangwa River are very small at the monthly time scale, whereas the Barotse floodplain system and the Usangu wetlands extensively regulate flows of the Zambezi River and the Great Ruaha River, respectively. The results highlighted the possibilities of regionalising some wetland parameters using an understanding of wetland physical characteristics and their water exchange dynamics. However, some parameters remain difficult to quantify in the absence of site-specific information about the water exchange dynamics. The overall conclusion is that the approach implemented in this study presents an important step towards the improvements of water resource assessments modelling for research and practical purposes in data-scarce river basins. This approach is not restricted to the two used models, as it can be applied using different model combinations to achieve similar study purpose.
- Full Text:
- Date Issued: 2020
A comparison of the legal environmental sustainability requirements of those engaging in the mining cycle, with actual practice in the Carolina X11B quaternary catchment, Mpumalanga, South Africa
- Authors: Thomson, Gareth Peter
- Date: 2018
- Subjects: Mineral industries Environmental aspects South Africa Mpumalanga , Acid mine drainage , Mineral industries Safety measures , Watersheds South Africa , South Africa. National Environmental Management Act, 1998 , Water-supply Law and legislation South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63481 , vital:28417
- Description: Mining is one of the most contentious water users. The mining sector has assumed that promises of economic growth and job creation will enable environmental concerns to be bypassed with as little interference as possible. More recently, the reality of legacy issues related to the inappropriate sign-off of mining sites has become increasingly clear, with acid mine drainage (AMD) being a prime example. There are also increasing concerns regarding uncontrolled prospecting. Climate change is one of the major issues faced in the 21st century, with predictions of heightened water stress for the Southern African region. This, coupled with increased population growth is putting a massive strain on the water resources currently available, making it vital to better protect and ensure the longevity of our water resources. The Carolina Crisis of 2012 highlighted the importance of protecting our water resources, and how easily they can be contaminated to a point where water is not usable. The Carolina crisis provided researchers with a suitable study site to better understand the role mining operations have in a catchment that has experienced a major pollution incident, and what changes have occurred since. In order to understand coal mining practice in relation to regulatory provisions, this project critically explored the processes involved within the mining sector, from ‘cradle-to-grave’, which is known as the coal mining life cycle. In addition, the composite suite of requirements of all the legislative provisions involved in the industry were investigated and the relationship between coal mining practice and environmental protection was explored. These elements were researched in the Upper Komati River Catchment specifically for catchment X11B, using Cultural Historical Activity Theory (CHAT), which gives a holistic understanding of mining as a human activity system. CHAT also sheds light on the issues, gaps and overlaps currently being experienced in the coal mining sector. The Thesis refers to case studies of where mining issues have caused environmental degradation. A complete mining lifecycle in terms of regulatory provisions was compiled, and major issues were uncovered with current legislation in the mining sector that can contribute to the degradation of water resources in South Africa. An integrated water resource quality management plan is needed in order to streamline conservation mandates, identify and reduce duplication of effort and specify roles and responsibilities of authorities involved with decision making process. A Decision Support System (DSS) has been proposed, which would involve adaptive, participatory and inclusive management.
- Full Text:
- Date Issued: 2018
- Authors: Thomson, Gareth Peter
- Date: 2018
- Subjects: Mineral industries Environmental aspects South Africa Mpumalanga , Acid mine drainage , Mineral industries Safety measures , Watersheds South Africa , South Africa. National Environmental Management Act, 1998 , Water-supply Law and legislation South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63481 , vital:28417
- Description: Mining is one of the most contentious water users. The mining sector has assumed that promises of economic growth and job creation will enable environmental concerns to be bypassed with as little interference as possible. More recently, the reality of legacy issues related to the inappropriate sign-off of mining sites has become increasingly clear, with acid mine drainage (AMD) being a prime example. There are also increasing concerns regarding uncontrolled prospecting. Climate change is one of the major issues faced in the 21st century, with predictions of heightened water stress for the Southern African region. This, coupled with increased population growth is putting a massive strain on the water resources currently available, making it vital to better protect and ensure the longevity of our water resources. The Carolina Crisis of 2012 highlighted the importance of protecting our water resources, and how easily they can be contaminated to a point where water is not usable. The Carolina crisis provided researchers with a suitable study site to better understand the role mining operations have in a catchment that has experienced a major pollution incident, and what changes have occurred since. In order to understand coal mining practice in relation to regulatory provisions, this project critically explored the processes involved within the mining sector, from ‘cradle-to-grave’, which is known as the coal mining life cycle. In addition, the composite suite of requirements of all the legislative provisions involved in the industry were investigated and the relationship between coal mining practice and environmental protection was explored. These elements were researched in the Upper Komati River Catchment specifically for catchment X11B, using Cultural Historical Activity Theory (CHAT), which gives a holistic understanding of mining as a human activity system. CHAT also sheds light on the issues, gaps and overlaps currently being experienced in the coal mining sector. The Thesis refers to case studies of where mining issues have caused environmental degradation. A complete mining lifecycle in terms of regulatory provisions was compiled, and major issues were uncovered with current legislation in the mining sector that can contribute to the degradation of water resources in South Africa. An integrated water resource quality management plan is needed in order to streamline conservation mandates, identify and reduce duplication of effort and specify roles and responsibilities of authorities involved with decision making process. A Decision Support System (DSS) has been proposed, which would involve adaptive, participatory and inclusive management.
- Full Text:
- Date Issued: 2018
A hydrogeological investigation of Grahamstown, assessing both the dynamics and quality of the local groundwater system
- Authors: Smetherham, Kyle Norman
- Date: 2019
- Subjects: Hydrogeology -- South Africa -- Makhanda , Water quality -- South Africa -- Makhanda , Groundwater -- Quality -- South Africa -- Makhanda
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/94444 , vital:31045
- Description: In many parts of South Africa, complete allocation of surface water reservoirs together with current drought conditions has led to serious water shortages and subsequent awareness regarding the importance to save water. Grahamstown is no different, with water problems relating to low supply and high demand being compounded by insufficient treatment capacity and aging infrastructure. Groundwater is an alternative water resource that could potentially act as a supplementary and/or emergency supply to the town, reducing the reliability on surface reservoirs. Groundwater however, is a hidden resource and requires an understanding of various aquifer properties and continuous monitoring and modelling so not to permanently disrupt the natural system but rather achieve sustainable management. Grahamstown is situated towards the northern extent of the Cape Fold Belt (CFB) system, within a synclinal fold structure. The local geology forms two local aquifer systems beneath Grahamstown that directly influence both the dynamics and quality of the groundwater. These underground reservoirs are the Witpoort and Dwyka aquifers and can be described as a semi-confined, fractured, quartzitic sandstone aquifer and an unconfined, fractured, tillite aquifer, respectively. Separating these aquifer systems is a shale aquitard, although due to the fractured nature of the rocks in the region there is most likely some groundwater interaction between them. Evaluation of geological formations together with the monitoring of 31 local boreholes presented a valuable conceptualisation of the local system and allowed for the application of methods to estimate recharge. Recharge estimation is one of the most crucial factors when managing aquifer systems as it can be used to determine what proportion of rainfall contributes to the subsurface reservoir and therefore, the sustainable amount that can be extracted. Various methods have been developed to estimate recharge, however due to the uncertainty surrounding groundwater systems, especially fractured aquifers, it was important to apply multiple methods to validate results. The water-table fluctuation (WTF) and cumulative rainfall departure (CRD) are two methods that were used in the present study to determine recharge. These methods rely on water-table changes in boreholes and specifically how they respond to rainfall events. Along with the WTF and CRD methods, a modelling approach was also used to estimate recharge which focused on the dynamics of a natural groundwater outlet, termed the Fairview Spring. This natural spring system is located just outside the main town of Grahamstown, within the Witpoort aquifer system, and is an important water resource to many residents due to poor supply and quality of municipal water. Monitoring the discharge of this spring allowed for the development of a model which attempts to recreate the discharge conditions observed. Along with groundwater recharge, other processes added to the model include evapotranspiration, storage, interflow spring outflow and groundwater outflow. Several different model simulation scenarios provided valuable insight into the greater groundwater dynamics. In terms of groundwater quality, nine borehole samples and one spring sample were analysed for major ions (Ca, Na, K, Cl, Mg, SO4, HCO3), metals (Cu, Fe, Mn) as well as pH and electrical conductivity. Overall electrical conductivity levels and major ion concentrations were lower in the Witpoort aquifer indicating a better groundwater quality compared to that of the Dwyka aquifer. Of the three metals included in the analysis, Mn proved to be the most significant and the highest concentrations were produced for samples that intersected the shale aquitard unit, suggesting that Mn-containing groundwater is drawn from this geological layer. Development of a supplementary and/or emergency groundwater supply requires careful consideration of the geology, quantity, quality, and recharge in the study site. All these aspects were assessed as well as deliberation into the potential infrastructural costs involved. Through conceptualisation of the system; evidence gathered during basic monitoring; and a simple spring model, the current study aimed to explore certain management strategies and recommend potential options going forward. The hidden nature of the resource together with the heterogeneity of fracture networks creates an inevitable uncertainty surrounding the system. Proper development and management of the aquifer can only be achieved if the system is continually monitored, modelled and utilised sustainably.
- Full Text:
- Date Issued: 2019
- Authors: Smetherham, Kyle Norman
- Date: 2019
- Subjects: Hydrogeology -- South Africa -- Makhanda , Water quality -- South Africa -- Makhanda , Groundwater -- Quality -- South Africa -- Makhanda
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/94444 , vital:31045
- Description: In many parts of South Africa, complete allocation of surface water reservoirs together with current drought conditions has led to serious water shortages and subsequent awareness regarding the importance to save water. Grahamstown is no different, with water problems relating to low supply and high demand being compounded by insufficient treatment capacity and aging infrastructure. Groundwater is an alternative water resource that could potentially act as a supplementary and/or emergency supply to the town, reducing the reliability on surface reservoirs. Groundwater however, is a hidden resource and requires an understanding of various aquifer properties and continuous monitoring and modelling so not to permanently disrupt the natural system but rather achieve sustainable management. Grahamstown is situated towards the northern extent of the Cape Fold Belt (CFB) system, within a synclinal fold structure. The local geology forms two local aquifer systems beneath Grahamstown that directly influence both the dynamics and quality of the groundwater. These underground reservoirs are the Witpoort and Dwyka aquifers and can be described as a semi-confined, fractured, quartzitic sandstone aquifer and an unconfined, fractured, tillite aquifer, respectively. Separating these aquifer systems is a shale aquitard, although due to the fractured nature of the rocks in the region there is most likely some groundwater interaction between them. Evaluation of geological formations together with the monitoring of 31 local boreholes presented a valuable conceptualisation of the local system and allowed for the application of methods to estimate recharge. Recharge estimation is one of the most crucial factors when managing aquifer systems as it can be used to determine what proportion of rainfall contributes to the subsurface reservoir and therefore, the sustainable amount that can be extracted. Various methods have been developed to estimate recharge, however due to the uncertainty surrounding groundwater systems, especially fractured aquifers, it was important to apply multiple methods to validate results. The water-table fluctuation (WTF) and cumulative rainfall departure (CRD) are two methods that were used in the present study to determine recharge. These methods rely on water-table changes in boreholes and specifically how they respond to rainfall events. Along with the WTF and CRD methods, a modelling approach was also used to estimate recharge which focused on the dynamics of a natural groundwater outlet, termed the Fairview Spring. This natural spring system is located just outside the main town of Grahamstown, within the Witpoort aquifer system, and is an important water resource to many residents due to poor supply and quality of municipal water. Monitoring the discharge of this spring allowed for the development of a model which attempts to recreate the discharge conditions observed. Along with groundwater recharge, other processes added to the model include evapotranspiration, storage, interflow spring outflow and groundwater outflow. Several different model simulation scenarios provided valuable insight into the greater groundwater dynamics. In terms of groundwater quality, nine borehole samples and one spring sample were analysed for major ions (Ca, Na, K, Cl, Mg, SO4, HCO3), metals (Cu, Fe, Mn) as well as pH and electrical conductivity. Overall electrical conductivity levels and major ion concentrations were lower in the Witpoort aquifer indicating a better groundwater quality compared to that of the Dwyka aquifer. Of the three metals included in the analysis, Mn proved to be the most significant and the highest concentrations were produced for samples that intersected the shale aquitard unit, suggesting that Mn-containing groundwater is drawn from this geological layer. Development of a supplementary and/or emergency groundwater supply requires careful consideration of the geology, quantity, quality, and recharge in the study site. All these aspects were assessed as well as deliberation into the potential infrastructural costs involved. Through conceptualisation of the system; evidence gathered during basic monitoring; and a simple spring model, the current study aimed to explore certain management strategies and recommend potential options going forward. The hidden nature of the resource together with the heterogeneity of fracture networks creates an inevitable uncertainty surrounding the system. Proper development and management of the aquifer can only be achieved if the system is continually monitored, modelled and utilised sustainably.
- Full Text:
- Date Issued: 2019
An erosion and sediment delivery model for semi-arid catchments
- Authors: Bryson, Louise Kay
- Date: 2016
- Subjects: Sedimentation and deposition , Erosion , Watershed management -- South Africa , Water-supply -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6056 , http://hdl.handle.net/10962/d1020331
- Description: Sedimentation has become a significant environmental threat in South Africa as it intensifies water management problems in the water-scarce semi-arid regions of the country. As South Africa already allocates 98% of available water, the loss of storage capacity in reservoirs and degraded water quality has meant that a reliable water supply is compromised. The overall aim of this thesis was to develop a catchment scale model that represents the sediment dynamics of semi-arid regions of South Africa as a simple and practically applicable tool for water resource managers. Development of a conceptual framework for the model relied on an understanding of both the sediment dynamics of South African catchments and applicable modelling techniques. Scale was an issue in both cases as most of our understanding of the physical processes of runoff generation and sediment transport has been derived from plot scale studies. By identifying defining properties of semi-arid catchments it was possible to consider how temporal and spatial properties at higher levels emerged from properties at lower levels. These properties were effectively represented by using the Pitman rainfall-runoff model disaggregated to a daily timescale, the Modified Universal Soil Loss Equation (MUSLE) model incorporating probability function theory and through the representation of sediment storages across a semi-distributed catchment. The model was tested on two small and one large study catchment in the Karoo, South Africa, with limited observed data. Limitations to the model were found to be the large parameter data set and the dominance of structural constraints with an increase in catchment size. The next steps in model development will require a reduction of the parameter data set and an inclusion of an in-stream component for sub-catchments at a larger spatial scale. The model is applicable in areas such as South Africa where water resource managers need a simple model at the catchment scale in order to make decisions. This type of model provides a simple representation of the stochastic nature of erosion and sediment delivery over large spatial and temporal scales.
- Full Text:
- Date Issued: 2016
- Authors: Bryson, Louise Kay
- Date: 2016
- Subjects: Sedimentation and deposition , Erosion , Watershed management -- South Africa , Water-supply -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6056 , http://hdl.handle.net/10962/d1020331
- Description: Sedimentation has become a significant environmental threat in South Africa as it intensifies water management problems in the water-scarce semi-arid regions of the country. As South Africa already allocates 98% of available water, the loss of storage capacity in reservoirs and degraded water quality has meant that a reliable water supply is compromised. The overall aim of this thesis was to develop a catchment scale model that represents the sediment dynamics of semi-arid regions of South Africa as a simple and practically applicable tool for water resource managers. Development of a conceptual framework for the model relied on an understanding of both the sediment dynamics of South African catchments and applicable modelling techniques. Scale was an issue in both cases as most of our understanding of the physical processes of runoff generation and sediment transport has been derived from plot scale studies. By identifying defining properties of semi-arid catchments it was possible to consider how temporal and spatial properties at higher levels emerged from properties at lower levels. These properties were effectively represented by using the Pitman rainfall-runoff model disaggregated to a daily timescale, the Modified Universal Soil Loss Equation (MUSLE) model incorporating probability function theory and through the representation of sediment storages across a semi-distributed catchment. The model was tested on two small and one large study catchment in the Karoo, South Africa, with limited observed data. Limitations to the model were found to be the large parameter data set and the dominance of structural constraints with an increase in catchment size. The next steps in model development will require a reduction of the parameter data set and an inclusion of an in-stream component for sub-catchments at a larger spatial scale. The model is applicable in areas such as South Africa where water resource managers need a simple model at the catchment scale in order to make decisions. This type of model provides a simple representation of the stochastic nature of erosion and sediment delivery over large spatial and temporal scales.
- Full Text:
- Date Issued: 2016
An evaluation of macroinvertebrate-based biomonitoring and ecotoxicological assessments of deteriorating environmental water quality in the Swartkops River, South Africa
- Authors: Odume, Oghenekaro Nelson
- Date: 2014
- Subjects: Water -- Pollution -- South Africa -- Swartkops River , Water quality biological assessment -- South Africa -- Swartkops River , Environmental toxicology -- South Africa -- Swartkops River , Environmental monitoring -- South Africa -- Swartkops River , Aquatic invertebrates -- Effect of water pollution on -- South Africa -- Swartkops River , Chironomidae -- Effect of water pollution on -- South Africa -- Swartkops River , Freshwater ecology -- South Africa -- Swartkops River
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6046 , http://hdl.handle.net/10962/d1013156
- Description: Freshwater resources are increasingly subject to pollution because of escalating human population growth, accompanied by urbanisation, industrialisation, and the increased demand for food. Consequently, freshwater quality, and aquatic ecosystem structure and function have been severely impaired. The Swartkops River, which drains an urbanised and industrialised catchment in the Eastern Cape of South Africa, is no exception. An integrated environmental water quality (EWQ) approach is needed to measure the impacts of deteriorating water quality on its aquatic ecosystem structure and function to sustain these vital ecosystem-attributes. In this study, an integrated EWQ approach, which included i) analysis of water physico-chemical variables; ii) macroinvertebrate-based family-level taxonomic- and traits-based community analysis; iii) Chironomidae species-level taxonomic- and traits-based community analysis; iv) Chironomidae deformity-based sub-lethal analysis; and v) experimental investigation of long-term wastewater effluent effects, using model stream ecosystems, were applied to investigate environmental water quality in the Swartkops River. One upstream reference site and three downstream sites in the Swartkops River were monitored over a period of three years (August 2009 – September 2012). The family-level taxonomic community responses based on the South African Scoring System version 5 (SASS5) and a newly developed Swartkops multimetric index indicated very poor river health conditions for the three downstream sites, compared with the good condition of the upstream site. The Chironomidae species-level responses in the three downstream sites provided evidence of differences in biotic impairments, which were not evident with the family-level taxonomic data at these sites, thus highlighting the importance of species identification in freshwater biomonitoring. The family-level traits-based approach (TBA) showed that macroinvertebrates with gills and lungs were more abundant at the upstream site, decreasing markedly at the downstream sites. The relative abundance of macroinvertebrates relying on aerial and tegument respiration increased at the downstream sites compared with the upstream sites. The results of the family-level TBA highlighted the inextricable link between the traits-based approach (TBA) and taxonomic identification, clearly showing that the TBA is additional to, and not an alternative to, taxonomic recognition because important traits, e.g. reproductive cannot be used at a coarse taxonomic identification. A novel chironomid species traits-based functional strategies approach developed in this study, based on species combining similar sets of traits, proved sensitive in diagnosing the main abiotic water physico-chemical stressors. The functional traits responded predictably to deteriorating water quality and provided an adaptive and mechanistic basis for interpreting chironomid species occurrences at the four sampling sites, providing insight into why certain chironomid species occurred at one site but not at the other. Chironomid deformities provided evidence of sub-lethal in-stream biological response to deteriorating water quality. A newly developed deformity-based extended toxic score index proved sensitive, enabling the discrimination of the sampling sites, indicating that a biomonitoring tool based on sub-lethal effects could be used to assess the effects of deteriorating water quality before it reached lethal levels. Empirical evidence based on the taxonomic, traits and sub-lethal responses suggested that the changes in macroinvertebrate community structure were caused chiefly by the discharge of wastewater effluents into the river. This was supported by the model-stream ecosystem results indicating significant effects of effluents on the macroinvertebrate community structure, similar to the observed in-stream responses. The model stream results indicated that improved physico-chemical effluent quality compliance after 50% effluent dilution did not significantly reduce the effects of the effluent on the macroinvertebrate communities, showing that ecologically-based methods rather than physico-chemical measures alone are necessary to assess effluent quality. Finally, the results of the multi-criteria approach were integrated to propose tools to manage environmental water quality in the Swartkops River, and the benefits of the study were highlighted in the context of biomonitoring in South Africa.
- Full Text:
- Date Issued: 2014
- Authors: Odume, Oghenekaro Nelson
- Date: 2014
- Subjects: Water -- Pollution -- South Africa -- Swartkops River , Water quality biological assessment -- South Africa -- Swartkops River , Environmental toxicology -- South Africa -- Swartkops River , Environmental monitoring -- South Africa -- Swartkops River , Aquatic invertebrates -- Effect of water pollution on -- South Africa -- Swartkops River , Chironomidae -- Effect of water pollution on -- South Africa -- Swartkops River , Freshwater ecology -- South Africa -- Swartkops River
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6046 , http://hdl.handle.net/10962/d1013156
- Description: Freshwater resources are increasingly subject to pollution because of escalating human population growth, accompanied by urbanisation, industrialisation, and the increased demand for food. Consequently, freshwater quality, and aquatic ecosystem structure and function have been severely impaired. The Swartkops River, which drains an urbanised and industrialised catchment in the Eastern Cape of South Africa, is no exception. An integrated environmental water quality (EWQ) approach is needed to measure the impacts of deteriorating water quality on its aquatic ecosystem structure and function to sustain these vital ecosystem-attributes. In this study, an integrated EWQ approach, which included i) analysis of water physico-chemical variables; ii) macroinvertebrate-based family-level taxonomic- and traits-based community analysis; iii) Chironomidae species-level taxonomic- and traits-based community analysis; iv) Chironomidae deformity-based sub-lethal analysis; and v) experimental investigation of long-term wastewater effluent effects, using model stream ecosystems, were applied to investigate environmental water quality in the Swartkops River. One upstream reference site and three downstream sites in the Swartkops River were monitored over a period of three years (August 2009 – September 2012). The family-level taxonomic community responses based on the South African Scoring System version 5 (SASS5) and a newly developed Swartkops multimetric index indicated very poor river health conditions for the three downstream sites, compared with the good condition of the upstream site. The Chironomidae species-level responses in the three downstream sites provided evidence of differences in biotic impairments, which were not evident with the family-level taxonomic data at these sites, thus highlighting the importance of species identification in freshwater biomonitoring. The family-level traits-based approach (TBA) showed that macroinvertebrates with gills and lungs were more abundant at the upstream site, decreasing markedly at the downstream sites. The relative abundance of macroinvertebrates relying on aerial and tegument respiration increased at the downstream sites compared with the upstream sites. The results of the family-level TBA highlighted the inextricable link between the traits-based approach (TBA) and taxonomic identification, clearly showing that the TBA is additional to, and not an alternative to, taxonomic recognition because important traits, e.g. reproductive cannot be used at a coarse taxonomic identification. A novel chironomid species traits-based functional strategies approach developed in this study, based on species combining similar sets of traits, proved sensitive in diagnosing the main abiotic water physico-chemical stressors. The functional traits responded predictably to deteriorating water quality and provided an adaptive and mechanistic basis for interpreting chironomid species occurrences at the four sampling sites, providing insight into why certain chironomid species occurred at one site but not at the other. Chironomid deformities provided evidence of sub-lethal in-stream biological response to deteriorating water quality. A newly developed deformity-based extended toxic score index proved sensitive, enabling the discrimination of the sampling sites, indicating that a biomonitoring tool based on sub-lethal effects could be used to assess the effects of deteriorating water quality before it reached lethal levels. Empirical evidence based on the taxonomic, traits and sub-lethal responses suggested that the changes in macroinvertebrate community structure were caused chiefly by the discharge of wastewater effluents into the river. This was supported by the model-stream ecosystem results indicating significant effects of effluents on the macroinvertebrate community structure, similar to the observed in-stream responses. The model stream results indicated that improved physico-chemical effluent quality compliance after 50% effluent dilution did not significantly reduce the effects of the effluent on the macroinvertebrate communities, showing that ecologically-based methods rather than physico-chemical measures alone are necessary to assess effluent quality. Finally, the results of the multi-criteria approach were integrated to propose tools to manage environmental water quality in the Swartkops River, and the benefits of the study were highlighted in the context of biomonitoring in South Africa.
- Full Text:
- Date Issued: 2014
Analysing equity and ethical dimensions of water governance challenges in the lower section of the upper Vaal River catchment, Gauteng, South Africa
- Authors: Tavengwa, Noleen Shamiso
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424199 , vital:72132
- Description: Poor water governance practices have been identified as one of the root causes of water problems confronting the South African water sector. This is evident in the lower section of the Upper Vaal River Catchment, where ineffective implementation of the regulatory measures has resulted in multiple incidents of illegal discharge of effluent from municipal wastewater treatment works, industrial and mining activities. Pollution and deterioration of water quality is a major challenge in the catchment; the Vaal River is severely polluted beyond acceptable standards and impacts negatively on other water users who have legitimate rights to the water resources. Pollution not only affects human activities and use, but also has negative impacts on ecological health and functionality. Poor water governance practices raise ethical implications for the rights to water for both social and ecological components. Although many water governance challenges in South Africa have implications that border on values and ethics, the relationship between these concepts has hardly been explored. In order to contribute towards filling this gap, this study explores water governance challenges and their ethical implications, and then analyse the equity dimensions of key water challenges among institutional actors in the lower section of the Upper Vaal WMA, Gauteng. The study uses a qualitative research approach which involves several methods of data collection: document analysis, workshops, focus group discussions, key informant interviews and participant observation. The data collected were analysed using thematic analysis, and then applied an ethical framework to distil ethical implications of the identified water governance challenges. There are five water governance challenges that were identified, which are i) failure in the implementation of water legislation and regulations, ii) ineffective leadership and management, iii) cooperative governance and poor accountability, iv) decentralisation and ineffective participation, and v) finance, infrastructure, and technical capacity. The deterioration of water quality and pollution due to ineffective implementation of the regulatory system has ethical implications towards protection of the ecological system and sustainable management of the water resources for the present and future generation. Ineffective implementation of the regulatory measure also raises the issue of distributive equity between different water users and between current and future users. These implications are critical particularly when viewed from the perspective of systemic-relational ethical approach which posit that in social-ecological systems, all components ought to be treated with equal regards, and their inherent worth respected in order to maintain the unity of the SES. The idea of equal regards to the inherent worth of the component implies due respect, in ways that do not undermine the integrity of the entire system. The challenges identified in the system suggest that i) the right of the ecological system to water is undermined due to anthropogenic activities, which may in the long term undermine the functionality of the entire SES; ii) the right of the margined to access to water of the right quality is also undermined, and pollution costs is externalised. These are matters of ethics that thus deserved attention in policy and management considerations. The study analysed equity dimensions (distributive and procedural), targeting the key institutional water users (i.e., mines, industries, agriculture, municipalities, and the wastewater treatment works) in the lower section of the Upper Vaal River Catchment as equity candidates due to their activities that significantly impact the environment and the water resources. The cost of pollution caused by mining activities, industrial activities and the wastewater treatment works is externalised to other users who are not responsible for the pollution. In this regard study identified key drivers that raise concerns linked to distributive equity, which are ) pollution and water quality deterioration, ii) the legacies of mining activities, and iii) poor infrastructure maintenance, vandalism, and theft. Identifying these key drivers of distributive equity concerns is critical in ensuring that the water governance processes are designed in a way that stakeholders and actors reliant on water resources within the catchment have equitable and fair access without the effects of externalised costs from other actors. The identified water governance challenges in the catchment all borders on ethics, thus an ethical framework is crucial in tackling water related problems. The principles of ethics can be used as guidelines to decision-making process for the management and governance of water resources in South Africa. Therefore, implementing and incorporating principles of the systemic-relational ethics into policy making and water resources management will yield sustainable, efficient, and equitable use and management of water resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Tavengwa, Noleen Shamiso
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424199 , vital:72132
- Description: Poor water governance practices have been identified as one of the root causes of water problems confronting the South African water sector. This is evident in the lower section of the Upper Vaal River Catchment, where ineffective implementation of the regulatory measures has resulted in multiple incidents of illegal discharge of effluent from municipal wastewater treatment works, industrial and mining activities. Pollution and deterioration of water quality is a major challenge in the catchment; the Vaal River is severely polluted beyond acceptable standards and impacts negatively on other water users who have legitimate rights to the water resources. Pollution not only affects human activities and use, but also has negative impacts on ecological health and functionality. Poor water governance practices raise ethical implications for the rights to water for both social and ecological components. Although many water governance challenges in South Africa have implications that border on values and ethics, the relationship between these concepts has hardly been explored. In order to contribute towards filling this gap, this study explores water governance challenges and their ethical implications, and then analyse the equity dimensions of key water challenges among institutional actors in the lower section of the Upper Vaal WMA, Gauteng. The study uses a qualitative research approach which involves several methods of data collection: document analysis, workshops, focus group discussions, key informant interviews and participant observation. The data collected were analysed using thematic analysis, and then applied an ethical framework to distil ethical implications of the identified water governance challenges. There are five water governance challenges that were identified, which are i) failure in the implementation of water legislation and regulations, ii) ineffective leadership and management, iii) cooperative governance and poor accountability, iv) decentralisation and ineffective participation, and v) finance, infrastructure, and technical capacity. The deterioration of water quality and pollution due to ineffective implementation of the regulatory system has ethical implications towards protection of the ecological system and sustainable management of the water resources for the present and future generation. Ineffective implementation of the regulatory measure also raises the issue of distributive equity between different water users and between current and future users. These implications are critical particularly when viewed from the perspective of systemic-relational ethical approach which posit that in social-ecological systems, all components ought to be treated with equal regards, and their inherent worth respected in order to maintain the unity of the SES. The idea of equal regards to the inherent worth of the component implies due respect, in ways that do not undermine the integrity of the entire system. The challenges identified in the system suggest that i) the right of the ecological system to water is undermined due to anthropogenic activities, which may in the long term undermine the functionality of the entire SES; ii) the right of the margined to access to water of the right quality is also undermined, and pollution costs is externalised. These are matters of ethics that thus deserved attention in policy and management considerations. The study analysed equity dimensions (distributive and procedural), targeting the key institutional water users (i.e., mines, industries, agriculture, municipalities, and the wastewater treatment works) in the lower section of the Upper Vaal River Catchment as equity candidates due to their activities that significantly impact the environment and the water resources. The cost of pollution caused by mining activities, industrial activities and the wastewater treatment works is externalised to other users who are not responsible for the pollution. In this regard study identified key drivers that raise concerns linked to distributive equity, which are ) pollution and water quality deterioration, ii) the legacies of mining activities, and iii) poor infrastructure maintenance, vandalism, and theft. Identifying these key drivers of distributive equity concerns is critical in ensuring that the water governance processes are designed in a way that stakeholders and actors reliant on water resources within the catchment have equitable and fair access without the effects of externalised costs from other actors. The identified water governance challenges in the catchment all borders on ethics, thus an ethical framework is crucial in tackling water related problems. The principles of ethics can be used as guidelines to decision-making process for the management and governance of water resources in South Africa. Therefore, implementing and incorporating principles of the systemic-relational ethics into policy making and water resources management will yield sustainable, efficient, and equitable use and management of water resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Application of macroinvertebrate based biomonitoring approaches to assess anthropogenic impacts in the Swartkops River, South Africa
- Authors: Odume, Oghenekaro Nelson
- Date: 2011
- Subjects: Water -- Pollution -- South Africa -- Swartkops River Water quality biological assessment -- South Africa -- Swartkops River Environmental monitoring -- South Africa -- Swartkops River Aquatic invertebrates -- Effect of water pollution on -- South Africa -- Swartkops River
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6040 , http://hdl.handle.net/10962/d1006199
- Description: A growing human population accompanied by urbanisation and industrialisation have led to over exploitation and pollution of freshwater resources and have consequently impacted on aquatic ecosystem health. The Swartkops River in the Eastern Cape of South Africa is no exception. It drains a heavily industrialised catchment which has led to deterioration of its water quality due to pollution. Integrated water resources management (IWRM) requires the concurrent sustainable use of water resources and the protection of aquatic ecosystem health. Macroinvertebrates are well known for their ability to reflect the health of the environment in which they live, thus they were used to assess anthropogenic impacts in the Swartkops River for this study. Macroinvertebrate based biomonitoring approaches, including the South African Scoring System version 5 (SASS5); a multimetric approach involving 19 metrics; Chironomidae community assessments and screening of morphological deformities in Chironomidae larvae, were applied at four selected sampling sites to assess environmental water quality in the Swartkops River. Macroinvertebrates were sampled us ing the SASS5 protocols. Chironomidae were mounted and identified as far as practically possible using available keys. Mentum, ligula, mandible, paraligula and antenna in Chironomidae larvae were screened for deformities. Physical and chemical water quality variables were measured at each of the selected sampling sites. All data were subjected to relevant statistical analyses. Of the four sites sampled during the study period, results revealed that water quality at site 1 was the least impacted with highest SASS5 scores, average score per taxa (ASPT) values, richness, diversity, equitability and Ephemeroptera –Plecoptera-Trichoptera (EPT) richness, as well as least incidences of chironomid deformities. Water quality at site 2 was considered the next least impacted with higher SASS5 scores, A SPT values, richness, diversity and equitability, and lower incidences of deformities compared to sites 3 and 4. SASS5 scores and ASPT values revealed that both sites 3 and 4 were critically modified but the multimetric analysis, Chironomidae community assessment and incidences of deformities in Chironomidae larvae indicated that site 3 is the most impacted of the four sampling sites, with least species diversity, richness, equitability and highest incidences of deformities. The study revealed the importance of multicriteria approach to environmental biomonitoring as an integrated water resources management tool, and based on the results, site 3, as the most impacted, could be prioritised for restoration intervention.
- Full Text:
- Date Issued: 2011
- Authors: Odume, Oghenekaro Nelson
- Date: 2011
- Subjects: Water -- Pollution -- South Africa -- Swartkops River Water quality biological assessment -- South Africa -- Swartkops River Environmental monitoring -- South Africa -- Swartkops River Aquatic invertebrates -- Effect of water pollution on -- South Africa -- Swartkops River
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6040 , http://hdl.handle.net/10962/d1006199
- Description: A growing human population accompanied by urbanisation and industrialisation have led to over exploitation and pollution of freshwater resources and have consequently impacted on aquatic ecosystem health. The Swartkops River in the Eastern Cape of South Africa is no exception. It drains a heavily industrialised catchment which has led to deterioration of its water quality due to pollution. Integrated water resources management (IWRM) requires the concurrent sustainable use of water resources and the protection of aquatic ecosystem health. Macroinvertebrates are well known for their ability to reflect the health of the environment in which they live, thus they were used to assess anthropogenic impacts in the Swartkops River for this study. Macroinvertebrate based biomonitoring approaches, including the South African Scoring System version 5 (SASS5); a multimetric approach involving 19 metrics; Chironomidae community assessments and screening of morphological deformities in Chironomidae larvae, were applied at four selected sampling sites to assess environmental water quality in the Swartkops River. Macroinvertebrates were sampled us ing the SASS5 protocols. Chironomidae were mounted and identified as far as practically possible using available keys. Mentum, ligula, mandible, paraligula and antenna in Chironomidae larvae were screened for deformities. Physical and chemical water quality variables were measured at each of the selected sampling sites. All data were subjected to relevant statistical analyses. Of the four sites sampled during the study period, results revealed that water quality at site 1 was the least impacted with highest SASS5 scores, average score per taxa (ASPT) values, richness, diversity, equitability and Ephemeroptera –Plecoptera-Trichoptera (EPT) richness, as well as least incidences of chironomid deformities. Water quality at site 2 was considered the next least impacted with higher SASS5 scores, A SPT values, richness, diversity and equitability, and lower incidences of deformities compared to sites 3 and 4. SASS5 scores and ASPT values revealed that both sites 3 and 4 were critically modified but the multimetric analysis, Chironomidae community assessment and incidences of deformities in Chironomidae larvae indicated that site 3 is the most impacted of the four sampling sites, with least species diversity, richness, equitability and highest incidences of deformities. The study revealed the importance of multicriteria approach to environmental biomonitoring as an integrated water resources management tool, and based on the results, site 3, as the most impacted, could be prioritised for restoration intervention.
- Full Text:
- Date Issued: 2011
Application of the modified pitman and swat models for groundwater recharge estimation in the upstream area of the Uitenhage artesian basin, South Africa
- Authors: Wasswa, Peter
- Date: 2024-04-04
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435400 , vital:73154
- Description: The world's most plentiful source of freshwater is thought to be groundwater. During extended dry times, it serves as an essential storage component and guards against environmental catastrophes. Despite its critical functions in the aforementioned scenarios, it is often insufficiently understood and inadequately managed. As a result, it calls for the adoption of integrated methods to comprehend the dynamics of groundwater recharge. Thus, the current study evaluated the applicability and suitability of the Modified Pitman and SWAT models for groundwater recharge estimation in the upstream area of UAB for the period that spanned from 1993 to 2021. It was achieved by using a qualitative conceptual-perceptual model to inform the two hydrological models, Modified Pitman, and SWAT. The developed qualitative conceptual-perceptual model depicted the dominancy of irregularly folded and fractured TMG rock outcrops coupled with fault systems in the upstream area. In the downward section, TMG is overlaid by the aquiclude from the Uitenhage Group which is responsible for the artesian conditions. Groundwater potential zones were classified as Poor, Fair, Good, and Excellent, with 65.4% and 8.7% of the upstream area attributed to Good and Excellent zones respectively. Both Modified Pitman and SWAT predicted decreasing rates of groundwater recharge in the upstream area over time, though Mann-Kendal trend tests done at 5% signifance level depicted significant decreasing rates in SWAT predicted recharge compared to Modified Pitman predicted recharge. The two models did also predict recharge and other water balance components with differing peaks, lows and timings. Modified Pitman predicted mean annual recharge of 63.3-92.8 mm where as SWAT predicted mean annual recharge of 14.4-182.8 mm. In reference to earlier findings within TMG areas, estimated percentages of groundwater recharge were close to those simulated by both Pitman and SWAT models. Modified Pitman and SWAT models appear to both be reasonable tools to estimate recharge in TMG setting, producing relatively similar results to one another and to other regional estimates. Since the current study estimated low recharge rates (Modified Pitman; ~9.3-13.6% MAP), (SWAT; ~2.1-26.7% MAP) which are close to those predicted in other TMG areas, the study recommends exercising caution when developing a water supply strategy in the current study area. The recharge rates within the pertinent recharging areas should be considered when designing and sitting abstraction points such as boreholes and a sustainable abstraction rate in any one borehole for improved sustainable management of groundwater resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Wasswa, Peter
- Date: 2024-04-04
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435400 , vital:73154
- Description: The world's most plentiful source of freshwater is thought to be groundwater. During extended dry times, it serves as an essential storage component and guards against environmental catastrophes. Despite its critical functions in the aforementioned scenarios, it is often insufficiently understood and inadequately managed. As a result, it calls for the adoption of integrated methods to comprehend the dynamics of groundwater recharge. Thus, the current study evaluated the applicability and suitability of the Modified Pitman and SWAT models for groundwater recharge estimation in the upstream area of UAB for the period that spanned from 1993 to 2021. It was achieved by using a qualitative conceptual-perceptual model to inform the two hydrological models, Modified Pitman, and SWAT. The developed qualitative conceptual-perceptual model depicted the dominancy of irregularly folded and fractured TMG rock outcrops coupled with fault systems in the upstream area. In the downward section, TMG is overlaid by the aquiclude from the Uitenhage Group which is responsible for the artesian conditions. Groundwater potential zones were classified as Poor, Fair, Good, and Excellent, with 65.4% and 8.7% of the upstream area attributed to Good and Excellent zones respectively. Both Modified Pitman and SWAT predicted decreasing rates of groundwater recharge in the upstream area over time, though Mann-Kendal trend tests done at 5% signifance level depicted significant decreasing rates in SWAT predicted recharge compared to Modified Pitman predicted recharge. The two models did also predict recharge and other water balance components with differing peaks, lows and timings. Modified Pitman predicted mean annual recharge of 63.3-92.8 mm where as SWAT predicted mean annual recharge of 14.4-182.8 mm. In reference to earlier findings within TMG areas, estimated percentages of groundwater recharge were close to those simulated by both Pitman and SWAT models. Modified Pitman and SWAT models appear to both be reasonable tools to estimate recharge in TMG setting, producing relatively similar results to one another and to other regional estimates. Since the current study estimated low recharge rates (Modified Pitman; ~9.3-13.6% MAP), (SWAT; ~2.1-26.7% MAP) which are close to those predicted in other TMG areas, the study recommends exercising caution when developing a water supply strategy in the current study area. The recharge rates within the pertinent recharging areas should be considered when designing and sitting abstraction points such as boreholes and a sustainable abstraction rate in any one borehole for improved sustainable management of groundwater resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-04-04
Assessing MODIS evapotranspiration data for hydrological modelling in South Africa
- Mazibuko, Sbongiseni Christian
- Authors: Mazibuko, Sbongiseni Christian
- Date: 2017
- Subjects: Evapotranspiration , Evapotranspiration -- Measurement , Hydrologic models , Hydrologic models -- South Africa , MODIS (Spectroradiometer)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/8009 , vital:21334
- Description: Evapotranspiration as a major component of the water balance has been identified as a key factor in hydrological modelling. Water management can be improved by means of increased use of reliable methods for estimating evapotranspiration. The limited availability of measured climate and discharge data sets, particularly in the developing world, restricts the reliability of hydrological models in these regions. Furthermore, rapid changes in hydrological systems with increasing development mean uncertainties in water resource estimation are growing. These changes are related to the modification of catchment hydrological processes with increasing human activity. Dealing with data uncertainty and quantifying the impacts of catchment activities are significant challenges that scientists in the field of hydrology face today. Uncertainties in hydrometeorological data are associated with poor observation networks that provide data at point scales which are not adequately representative of the inherent heterogeneity within catchment processes. Using uncertain data in model applications reduces the predictive power of hydrological models as well as the ability to validate the model outcomes. This study examines the potential of using remote sensing-based evapotranspiration data to reduce uncertainty in the climatic forcing data and constraining the output of a rainfall-runoff hydrological model. It is common to use fixed seasonally variable potential evapotranspiration (PET) instead of temporally varying PET data as inputs to standard rainfall-runoff models. Part of the reason is that there are relatively few stations available to measure a variety of meteorological input data needed to compute PET, as well as the apparent lack of sensitivity of rainfall-runoff models to different types of PET inputs. As hydrometeorological data become more readily available through the use of earth observation systems, it is important to determine whether rainfall-runoff models are sensitive to time-varying PET derived from these earth observations systems. Further potential includes the use of actual evapotranspiration (ETa) from this type of data to constrain model outputs and improve model realism. It is assumed that a better representation of evapotranspiration demands could improve the efficiency of models, and this study explores some of these issues. The study used evapotranspiration estimates (PET and ETa) from the MOD16 global product with one of the most widely used hydrological models in South Africa. The investigation included applying the Pitman model in a number of case study catchments located in different climatic regions of the country. The main objectives of the study included (i) the establishment of behavioural model parameter sets that generate acceptable hydrological response under both naturalised and present-day conditions, (ii) the use of time-varying PET estimates derived from MOD16 data to force the model, and (iii) the use of MOD16 ETa estimates to constrain model-simulated ETa. Before examining the use of different PET forcing data in the model, a two-step modelling approached was employed both a single-run and an uncertainty version of the Pitman model. During the first step (using a single-run version), available information on catchment physical properties and regionalised groundwater recharge together with model calibration principles were used to develop model functionality understanding and establish initial parameter sets. The outcomes from the first step were used to define uncertain parameter ranges for the use in the uncertainty version of the Pitman model (second step). Further, catchment water uses were quantified to ensure comparability with present-day flow conditions represented by the stream flow records. The effects of forcing the Pitman model with MOD16-based time-varying PET data inputs were evaluated using static and dynamic sensitivity analysis approaches. In the static approach, parameter sets calibrated using fixed seasonal distributions of PET data remain unchanged when forcing the model with other forms of PET, whereas in the dynamic method, the model is recalibrated with changing PET inputs. In both approaches, model sensitivity was assessed by comparing objective function statistics of reference flow simulations with those simulations incorporating changing PET data inputs. The use of the MOD16 ETa data to constrain model- simulated evapotranspiration losses was conducted by calibrating the parameters such that the simulated-ETa matched the evapotranspiration loss estimated from the MOD16 data. Despite issues around model equifinality and significant uncertainty within water use information, the Pitman model simulations were generally satisfactory and compared with observed stream flow data where available. The use of time-varying PET data does not improve the efficiency of the model when both static and dynamic sensitivity approaches are used. This was highly expected with the static approach where fixed model parameter sets do not account for the changes in evapotranspiration demands. However, with the dynamic approach, it was difficult to conclude why the model efficiency did not improve given the flexibility of the model to achieve appropriate parameter sets to different forms of PET. The study noted that the insensitivity of the model to changes in PET demands could be due to uncertainties in the model structure and MOD16 data. Attempts to constrain the model-simulated actual evapotranspiration with MOD16 ETa estimates were hampered by large errors in the MOD16 data and resulted in the non-closure of the catchment annual water balance, even when likely errors in the other components of the water balance were accounted for. There is still a great deal of work that needs to be done to reduce uncertainties associated with the use of earth observation data in hydrological modelling. This study has identified some of the specific gaps within the application of evapotranspiration data from earth observation information. While the MOD16 data applied with the Pitman model did not achieve improved simulations, the study has demonstrated the enormous potential of the data product in the future should the identified uncertainties be resolved. Lastly, the investigation highlighted some of the possible model structural uncertainties specifically associated with the simplified soil-moisture accounting routines within the model. It is possible that amending the model structure through investigating the dynamics of the relationship between soil moisture and evapotranspiration losses would assist in the improved utilisation of earth observation products related to the MOD16 ET data.
- Full Text:
- Date Issued: 2017
- Authors: Mazibuko, Sbongiseni Christian
- Date: 2017
- Subjects: Evapotranspiration , Evapotranspiration -- Measurement , Hydrologic models , Hydrologic models -- South Africa , MODIS (Spectroradiometer)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/8009 , vital:21334
- Description: Evapotranspiration as a major component of the water balance has been identified as a key factor in hydrological modelling. Water management can be improved by means of increased use of reliable methods for estimating evapotranspiration. The limited availability of measured climate and discharge data sets, particularly in the developing world, restricts the reliability of hydrological models in these regions. Furthermore, rapid changes in hydrological systems with increasing development mean uncertainties in water resource estimation are growing. These changes are related to the modification of catchment hydrological processes with increasing human activity. Dealing with data uncertainty and quantifying the impacts of catchment activities are significant challenges that scientists in the field of hydrology face today. Uncertainties in hydrometeorological data are associated with poor observation networks that provide data at point scales which are not adequately representative of the inherent heterogeneity within catchment processes. Using uncertain data in model applications reduces the predictive power of hydrological models as well as the ability to validate the model outcomes. This study examines the potential of using remote sensing-based evapotranspiration data to reduce uncertainty in the climatic forcing data and constraining the output of a rainfall-runoff hydrological model. It is common to use fixed seasonally variable potential evapotranspiration (PET) instead of temporally varying PET data as inputs to standard rainfall-runoff models. Part of the reason is that there are relatively few stations available to measure a variety of meteorological input data needed to compute PET, as well as the apparent lack of sensitivity of rainfall-runoff models to different types of PET inputs. As hydrometeorological data become more readily available through the use of earth observation systems, it is important to determine whether rainfall-runoff models are sensitive to time-varying PET derived from these earth observations systems. Further potential includes the use of actual evapotranspiration (ETa) from this type of data to constrain model outputs and improve model realism. It is assumed that a better representation of evapotranspiration demands could improve the efficiency of models, and this study explores some of these issues. The study used evapotranspiration estimates (PET and ETa) from the MOD16 global product with one of the most widely used hydrological models in South Africa. The investigation included applying the Pitman model in a number of case study catchments located in different climatic regions of the country. The main objectives of the study included (i) the establishment of behavioural model parameter sets that generate acceptable hydrological response under both naturalised and present-day conditions, (ii) the use of time-varying PET estimates derived from MOD16 data to force the model, and (iii) the use of MOD16 ETa estimates to constrain model-simulated ETa. Before examining the use of different PET forcing data in the model, a two-step modelling approached was employed both a single-run and an uncertainty version of the Pitman model. During the first step (using a single-run version), available information on catchment physical properties and regionalised groundwater recharge together with model calibration principles were used to develop model functionality understanding and establish initial parameter sets. The outcomes from the first step were used to define uncertain parameter ranges for the use in the uncertainty version of the Pitman model (second step). Further, catchment water uses were quantified to ensure comparability with present-day flow conditions represented by the stream flow records. The effects of forcing the Pitman model with MOD16-based time-varying PET data inputs were evaluated using static and dynamic sensitivity analysis approaches. In the static approach, parameter sets calibrated using fixed seasonal distributions of PET data remain unchanged when forcing the model with other forms of PET, whereas in the dynamic method, the model is recalibrated with changing PET inputs. In both approaches, model sensitivity was assessed by comparing objective function statistics of reference flow simulations with those simulations incorporating changing PET data inputs. The use of the MOD16 ETa data to constrain model- simulated evapotranspiration losses was conducted by calibrating the parameters such that the simulated-ETa matched the evapotranspiration loss estimated from the MOD16 data. Despite issues around model equifinality and significant uncertainty within water use information, the Pitman model simulations were generally satisfactory and compared with observed stream flow data where available. The use of time-varying PET data does not improve the efficiency of the model when both static and dynamic sensitivity approaches are used. This was highly expected with the static approach where fixed model parameter sets do not account for the changes in evapotranspiration demands. However, with the dynamic approach, it was difficult to conclude why the model efficiency did not improve given the flexibility of the model to achieve appropriate parameter sets to different forms of PET. The study noted that the insensitivity of the model to changes in PET demands could be due to uncertainties in the model structure and MOD16 data. Attempts to constrain the model-simulated actual evapotranspiration with MOD16 ETa estimates were hampered by large errors in the MOD16 data and resulted in the non-closure of the catchment annual water balance, even when likely errors in the other components of the water balance were accounted for. There is still a great deal of work that needs to be done to reduce uncertainties associated with the use of earth observation data in hydrological modelling. This study has identified some of the specific gaps within the application of evapotranspiration data from earth observation information. While the MOD16 data applied with the Pitman model did not achieve improved simulations, the study has demonstrated the enormous potential of the data product in the future should the identified uncertainties be resolved. Lastly, the investigation highlighted some of the possible model structural uncertainties specifically associated with the simplified soil-moisture accounting routines within the model. It is possible that amending the model structure through investigating the dynamics of the relationship between soil moisture and evapotranspiration losses would assist in the improved utilisation of earth observation products related to the MOD16 ET data.
- Full Text:
- Date Issued: 2017
Assessing the effect of a laundry detergent ingredient (LAS) on organisms of a rural South African river
- Authors: Gordon, Andrew K
- Date: 2012
- Subjects: Detergent pollution of rivers, lakes, etc. -- Research -- South Africa -- Eastern Cape Water -- Pollution -- Research -- South Africa -- Eastern Cape Stream health -- Research -- South Africa -- Eastern Cape Stream ecology -- Research -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6042 , http://hdl.handle.net/10962/d1006201
- Description: Powdered laundry detergents are consumed in high volumes worldwide. Post use, they are directed toward water resources via wastewater treatment works or, as is the situation in many rural areas of South Africa, they enter the environment directly as a result of laundry washing activity undertaken alongside surface waters. Within wastewater treatment works, the main ingredient in powdered laundry detergents, the narcotic toxin linear alkylbenzene sulfonate (LAS), is mostly removed, rendering the waste stream a negligible risk to the aquatic biota of receiving waters. In contrast, the biological and ecological impacts of direct LAS input to the aquatic environment, as a consequence of near-stream laundry washing, are yet to be fully realised. Consequently, this thesis posed two research questions: 1) 'What are the LAS concentrations in a small rural South African river'? and 2) 'Is the in-stream biological community negatively affected at these concentrations?' The chosen study area, the community of Balfour in the Eastern Cape Province, is like many rural areas of South Africa where inadequate provision of piped water to homesteads necessitates laundry washing alongside the nearby Balfour River. The first research question was addressed in two ways: by predicting LAS concentrations in Balfour River water by assessing detergent consumption and laundry washing behaviour of residents living alongside the river; and measuring actual in- stream LAS concentrations on different days of the week and during different seasons. Results indicated that LAS concentrations were highly variable temporally and spatially. High peak concentrations of LAS occurred infrequently and were limited to the immediate vicinity of near-stream laundry washing activity with the highest measured concentration being 342 μg.L ⁻¹ and the average 21 μg.L ⁻¹ over the sampling period. The second research question was addressed by integrating the chemical evidence, determined from the first research question, with the biological evidence of stress responses measured in macroinvertebrates collected downstream of near-stream laundry washing activity on the Balfour River. Predicted and measured LAS exposure concentrations from the Balfour River were compared to a water quality guideline for LAS (304 μg.L ⁻¹), specifically derived in this thesis. Biological stress responses were measured at different levels of organisation: two sub-cellular responses (lipid peroxidation and cholinesterase activity); three measures of macroinvertebrate tolerance to water quality impairment; five measures of community composition; three measures of community richness; and a surrogate measure of ecosystem function (functional feeding groups). Weight-of-evidence methodology was utilised to assess, integrate and interpret the chemical and biological evidence, and at its conclusion, determined no effect on the in-stream biological community of the Balfour River downstream of laundry washing activity.
- Full Text:
- Date Issued: 2012
- Authors: Gordon, Andrew K
- Date: 2012
- Subjects: Detergent pollution of rivers, lakes, etc. -- Research -- South Africa -- Eastern Cape Water -- Pollution -- Research -- South Africa -- Eastern Cape Stream health -- Research -- South Africa -- Eastern Cape Stream ecology -- Research -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6042 , http://hdl.handle.net/10962/d1006201
- Description: Powdered laundry detergents are consumed in high volumes worldwide. Post use, they are directed toward water resources via wastewater treatment works or, as is the situation in many rural areas of South Africa, they enter the environment directly as a result of laundry washing activity undertaken alongside surface waters. Within wastewater treatment works, the main ingredient in powdered laundry detergents, the narcotic toxin linear alkylbenzene sulfonate (LAS), is mostly removed, rendering the waste stream a negligible risk to the aquatic biota of receiving waters. In contrast, the biological and ecological impacts of direct LAS input to the aquatic environment, as a consequence of near-stream laundry washing, are yet to be fully realised. Consequently, this thesis posed two research questions: 1) 'What are the LAS concentrations in a small rural South African river'? and 2) 'Is the in-stream biological community negatively affected at these concentrations?' The chosen study area, the community of Balfour in the Eastern Cape Province, is like many rural areas of South Africa where inadequate provision of piped water to homesteads necessitates laundry washing alongside the nearby Balfour River. The first research question was addressed in two ways: by predicting LAS concentrations in Balfour River water by assessing detergent consumption and laundry washing behaviour of residents living alongside the river; and measuring actual in- stream LAS concentrations on different days of the week and during different seasons. Results indicated that LAS concentrations were highly variable temporally and spatially. High peak concentrations of LAS occurred infrequently and were limited to the immediate vicinity of near-stream laundry washing activity with the highest measured concentration being 342 μg.L ⁻¹ and the average 21 μg.L ⁻¹ over the sampling period. The second research question was addressed by integrating the chemical evidence, determined from the first research question, with the biological evidence of stress responses measured in macroinvertebrates collected downstream of near-stream laundry washing activity on the Balfour River. Predicted and measured LAS exposure concentrations from the Balfour River were compared to a water quality guideline for LAS (304 μg.L ⁻¹), specifically derived in this thesis. Biological stress responses were measured at different levels of organisation: two sub-cellular responses (lipid peroxidation and cholinesterase activity); three measures of macroinvertebrate tolerance to water quality impairment; five measures of community composition; three measures of community richness; and a surrogate measure of ecosystem function (functional feeding groups). Weight-of-evidence methodology was utilised to assess, integrate and interpret the chemical and biological evidence, and at its conclusion, determined no effect on the in-stream biological community of the Balfour River downstream of laundry washing activity.
- Full Text:
- Date Issued: 2012
Assessment of fluctuating asymmetry as an indicator of water quality stress in South Africa
- Authors: Holland, Alexandra Jennifer
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/430 , vital:19958
- Description: South Africa’s freshwater resources are facing numerous water quality challenges and need to be protected from degradation and pollution by appropriate management strategies as they are a limited and shared resource. The South African Scoring System (SASS5), which assesses macroinvertebrate communities at family level, is used in routine monitoring of riverine ecosystems in South Africa. Assessing the condition of these ecosystems is limited as SASS5 does not allow for changes at lower levels of biological organisation to be detected. Fluctuating asymmetry (FA) - small random deviations from perfect symmetry - is considered a direct measure of developmental instability. This phenotypical response results from numerous internal and external factors and has a low level of heritability. FA is based on sound scientific principles, easy to measure, biologically robust and cost-effective. It reflects synergistic interactions between stressors and provides an integrated measure of several anthropogenic stresses, which strengthens the assertion that FA is an environmental indicator of water quality stress, and can potentially be used to detect stress in populations before irreversible effects manifest. FA responses were investigated by (1) exposing freshwater shrimp to increasing concentrations of cadmium chloride in a long-term experiment and (2) comparing FA responses to water quality changes and macroinvertebrate community responses in two case studies (Kwazulu-Natal and Limpopo Province) in South Africa. Although no consistent concentration-response curve could be established, this study suggests that FA responses can be used as a sublethal endpoint in exposure experiments. Determining water quality parameters causing FA responses was not possible in field collected freshwater shrimp in either case study. Although FA did not specifically respond to any of the measured water quality parameters identified in the case studies, it has potential as a general indicator of water quality stress in freshwater shrimp. This study shows that FA responses are potentially more sensitive than macroinvertebrate community responses to pollution since it is not affected by habitat. Since FA has the potential to be a general indicator of population quality, particularly where there are natural habitat differences, it can be useful at the level of biomonitoring required for routine basic river status assessments in South Africa. However, in order for FA to become a robust tool that can be used routinely in conjunction with SASS5 more research is required.
- Full Text:
- Date Issued: 2016
- Authors: Holland, Alexandra Jennifer
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/430 , vital:19958
- Description: South Africa’s freshwater resources are facing numerous water quality challenges and need to be protected from degradation and pollution by appropriate management strategies as they are a limited and shared resource. The South African Scoring System (SASS5), which assesses macroinvertebrate communities at family level, is used in routine monitoring of riverine ecosystems in South Africa. Assessing the condition of these ecosystems is limited as SASS5 does not allow for changes at lower levels of biological organisation to be detected. Fluctuating asymmetry (FA) - small random deviations from perfect symmetry - is considered a direct measure of developmental instability. This phenotypical response results from numerous internal and external factors and has a low level of heritability. FA is based on sound scientific principles, easy to measure, biologically robust and cost-effective. It reflects synergistic interactions between stressors and provides an integrated measure of several anthropogenic stresses, which strengthens the assertion that FA is an environmental indicator of water quality stress, and can potentially be used to detect stress in populations before irreversible effects manifest. FA responses were investigated by (1) exposing freshwater shrimp to increasing concentrations of cadmium chloride in a long-term experiment and (2) comparing FA responses to water quality changes and macroinvertebrate community responses in two case studies (Kwazulu-Natal and Limpopo Province) in South Africa. Although no consistent concentration-response curve could be established, this study suggests that FA responses can be used as a sublethal endpoint in exposure experiments. Determining water quality parameters causing FA responses was not possible in field collected freshwater shrimp in either case study. Although FA did not specifically respond to any of the measured water quality parameters identified in the case studies, it has potential as a general indicator of water quality stress in freshwater shrimp. This study shows that FA responses are potentially more sensitive than macroinvertebrate community responses to pollution since it is not affected by habitat. Since FA has the potential to be a general indicator of population quality, particularly where there are natural habitat differences, it can be useful at the level of biomonitoring required for routine basic river status assessments in South Africa. However, in order for FA to become a robust tool that can be used routinely in conjunction with SASS5 more research is required.
- Full Text:
- Date Issued: 2016
Assessment of Pitman Model Capabilities in Modelling Surface Water-Groundwater Interactions in the Lake Sibaya Catchment, South Africa
- Authors: Ramatsabana, Phatsimo Pearl
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424188 , vital:72131
- Description: Difficulties arising from data scarcity, input data error or uncertainty, heterogeneous environments, lack of process understanding, and model structural uncertainty frequently constrain hydrological assessments of South African catchments. This research aimed to assess the usefulness of a “simpler” conceptual model for the conjunctive management of surface water and groundwater. The idea is that, to leverage the limited available data and information, a compromise between model complexity and data availability is required, which improves the use of models to produce reliable hydrological systems assessments. The research methodology focused on catchment-scale lake-groundwater dynamics to explore the limits of the groundwater components of the modified Pitman model (Hughes, 2004) in this type of environment, thus, determining the potential for using this model for integrated water assessments in South Africa. The Pitman model (Pitman, 1973; Hughes, 2013) is one of the most widely accepted models regarding surface water hydrology in South Africa; however, the newly incorporated groundwater components (Hughes, 2004) have not been applied as extensively as the surface water components. There remains uncertainty regarding their capability to adequately simulate groundwater processes and accurately represent surface and groundwater interactions in some environments. The model was assessed based on how well simulated water balance variables accurately reflected available evidence and expected catchment response (objective 1). Secondly, the research identified and addressed uncertainties as regards the structure and application of the model’s groundwater interaction components (objective 2). The model was set up for the Lake Sibaya catchment, which is a predominantly groundwater-driven system and, thus, provides an important opportunity to interrogate different aspects of uncertainty in both the conceptualizing and quantifying interaction processes. The study’s overall conclusion is that the model performed satisfactorily as it was able to simulate the lake’s water balance correctly enough such that the influences of dominating components were sensibly reflected in variations in streamflow and lake volumes. The following key findings were noted; (i) the lake volume shows a continuous decline, (ii) the lake volume decreased with increasing development (forestry and abstractions) in the lake catchment, (iii) there is significant rainfall uncertainty in the study area and the model showed high sensitivity to rainfall differences, (iv) robust conceptual knowledge of local catchment conditions was valuable for reducing some of the data related uncertainty in the study area and for producing realistic model simulations, (v) the Pitman model (Hughes, 2013) updated GW components can provide a valuable tool for modelling integrated hydrological processes; nevertheless, when applying the model to specific environments, implicit approaches may be necessary to account for processes that are not fully represented in the model. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Ramatsabana, Phatsimo Pearl
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424188 , vital:72131
- Description: Difficulties arising from data scarcity, input data error or uncertainty, heterogeneous environments, lack of process understanding, and model structural uncertainty frequently constrain hydrological assessments of South African catchments. This research aimed to assess the usefulness of a “simpler” conceptual model for the conjunctive management of surface water and groundwater. The idea is that, to leverage the limited available data and information, a compromise between model complexity and data availability is required, which improves the use of models to produce reliable hydrological systems assessments. The research methodology focused on catchment-scale lake-groundwater dynamics to explore the limits of the groundwater components of the modified Pitman model (Hughes, 2004) in this type of environment, thus, determining the potential for using this model for integrated water assessments in South Africa. The Pitman model (Pitman, 1973; Hughes, 2013) is one of the most widely accepted models regarding surface water hydrology in South Africa; however, the newly incorporated groundwater components (Hughes, 2004) have not been applied as extensively as the surface water components. There remains uncertainty regarding their capability to adequately simulate groundwater processes and accurately represent surface and groundwater interactions in some environments. The model was assessed based on how well simulated water balance variables accurately reflected available evidence and expected catchment response (objective 1). Secondly, the research identified and addressed uncertainties as regards the structure and application of the model’s groundwater interaction components (objective 2). The model was set up for the Lake Sibaya catchment, which is a predominantly groundwater-driven system and, thus, provides an important opportunity to interrogate different aspects of uncertainty in both the conceptualizing and quantifying interaction processes. The study’s overall conclusion is that the model performed satisfactorily as it was able to simulate the lake’s water balance correctly enough such that the influences of dominating components were sensibly reflected in variations in streamflow and lake volumes. The following key findings were noted; (i) the lake volume shows a continuous decline, (ii) the lake volume decreased with increasing development (forestry and abstractions) in the lake catchment, (iii) there is significant rainfall uncertainty in the study area and the model showed high sensitivity to rainfall differences, (iv) robust conceptual knowledge of local catchment conditions was valuable for reducing some of the data related uncertainty in the study area and for producing realistic model simulations, (v) the Pitman model (Hughes, 2013) updated GW components can provide a valuable tool for modelling integrated hydrological processes; nevertheless, when applying the model to specific environments, implicit approaches may be necessary to account for processes that are not fully represented in the model. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Climate variability and climate change in water resources management of the Zambezi River basin
- Authors: Tirivarombo, Sithabile
- Date: 2013
- Subjects: Water resources development -- Zambezi River Watershed Climatic changes -- Zambezi River Watershed Water-supply -- Zambezi River Watershed Water-supply -- Political aspects -- Africa, Southern Water rights -- Africa, Southern Water security -- Africa, Southern Rain and rainfall -- Africa, Southern Rainfall probabilities -- Africa, Southern Food security -- Africa, Southern Drought forecasting -- Africa, Southern Watersheds -- Africa, Southern Water supply -- Measurement -- Africa, Southern
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6024 , http://hdl.handle.net/10962/d1002955
- Description: Water is recognised as a key driver for social and economic development in the Zambezi basin. The basin is riparian to eight southern African countries and the transboundary nature of the basin’s water resources can be viewed as an agent of cooperation between the basin countries. It is possible, however, that the same water resource can lead to conflicts between water users. The southern African Water Vision for ‘equitable and sustainable utilisation of water for social, environmental justice and economic benefits for the present and future generations’ calls for an integrated and efficient management of water resources within the basin. Ensuring water and food security in the Zambezi basin is, however, faced with challenges due to high variability in climate and the available water resources. Water resources are under continuous threat from pollution, increased population growth, development and urbanisation as well as global climate change. These factors increase the demand for freshwater resources and have resulted in water being one of the major driving forces for development. The basin is also vulnerable due to lack of adequate financial resources and appropriate water resources infrastructure to enable viable, equitable and sustainable distribution of the water resources. This is in addition to the fact that the basin’s economic mainstay and social well-being are largely dependent on rainfed agriculture. There is also competition among the different water users and this has the potential to generate conflicts, which further hinder the development of water resources in the basin. This thesis has focused on the Zambezi River basin emphasising climate variability and climate change. It is now considered common knowledge that the global climate is changing and that many of the impacts will be felt through water resources. If these predictions are correct then the Zambezi basin is most likely to suffer under such impacts since its economic mainstay is largely determined by the availability of rainfall. It is the belief of this study that in order to ascertain the impacts of climate change, there should be a basis against which this change is evaluated. If we do not know the historical patterns of variability it may be difficult to predict changes in the future climate and in the hydrological resources and it will certainly be difficult to develop appropriate management strategies. Reliable quantitative estimates of water availability are a prerequisite for successful water resource plans. However, such initiatives have been hindered by paucity in data especially in a basin where gauging networks are inadequate and some of them have deteriorated. This is further compounded by shortages in resources, both human and financial, to ensure adequate monitoring. To address the data problems, this study largely relied on global data sets and the CRU TS2.1 rainfall grids were used for a large part of this study. The study starts by assessing the historical variability of rainfall and streamflow in the Zambezi basin and the results are used to inform the prediction of change in the future. Various methods of assessing historical trends were employed and regional drought indices were generated and evaluated against the historical rainfall trends. The study clearly demonstrates that the basin has a high degree of temporal and spatial variability in rainfall and streamflow at inter-annual and multi-decadal scales. The Standardised Precipitation Index, a rainfall based drought index, is used to assess historical drought events in the basin and it is shown that most of the droughts that have occurred were influenced by climatic and hydrological variability. It is concluded, through the evaluation of agricultural maize yields, that the basin’s food security is mostly constrained by the availability of rainfall. Comparing the viability of using a rainfall based index to a soil moisture based index as an agricultural drought indicator, this study concluded that a soil moisture based index is a better indicator since all of the water balance components are considered in the generation of the index. This index presents the actual amount of water available for the plant unlike purely rainfall based indices, that do not account for other components of the water budget that cause water losses. A number of challenges were, however, faced in assessing the variability and historical drought conditions, mainly due to the fact that most parts of the Zambezi basin are ungauged and available data are sparse, short and not continuous (with missing gaps). Hydrological modelling is frequently used to bridge the data gap and to facilitate the quantification of a basin’s hydrology for both gauged and ungauged catchments. The trend has been to use various methods of regionalisation to transfer information from gauged basins, or from basins with adequate physical basin data, to ungauged basins. All this is done to ensure that water resources are accounted for and that the future can be well planned. A number of approaches leading to the evaluation of the basin’s hydrological response to future climate change scenarios are taken. The Pitman rainfall-runoff model has enjoyed wide use as a water resources estimation tool in southern Africa. The model has been calibrated for the Zambezi basin but it should be acknowledged that any hydrological modelling process is characterised by many uncertainties arising from limitations in input data and inherent model structural uncertainty. The calibration process is thus carried out in a manner that embraces some of the uncertainties. Initial ranges of parameter values (maximum and minimum) that incorporate the possible parameter uncertainties are assigned in relation to physical basin properties. These parameter sets are used as input to the uncertainty version of the model to generate behavioural parameter space which is then further modified through manual calibration. The use of parameter ranges initially guided by the basin physical properties generates streamflows that adequately represent the historically observed amounts. This study concludes that the uncertainty framework and the Pitman model perform quite well in the Zambezi basin. Based on assumptions of an intensifying hydrological cycle, climate changes are frequently expected to result in negative impacts on water resources. However, it is important that basin scale assessments are undertaken so that appropriate future management strategies can be developed. To assess the likely changes in the Zambezi basin, the calibrated Pitman model was forced with downscaled and bias corrected GCM data. Three GCMs were used for this study, namely; ECHAM, GFDL and IPSL. The general observation made in this study is that the near future (2046-2065) conditions of the Zambezi basin are expected to remain within the ranges of historically observed variability. The differences between the predictions for the three GCMs are an indication of the uncertainties in the future and it has not been possible to make any firm conclusions about directions of change. It is therefore recommended that future water resources management strategies account for historical patterns of variability, but also for increased uncertainty. Any management strategies that are able to satisfactorily deal with the large variability that is evident from the historical data should be robust enough to account for the near future patterns of water availability predicted by this study. However, the uncertainties in these predictions suggest that improved monitoring systems are required to provide additional data against which future model outputs can be assessed.
- Full Text:
- Date Issued: 2013
- Authors: Tirivarombo, Sithabile
- Date: 2013
- Subjects: Water resources development -- Zambezi River Watershed Climatic changes -- Zambezi River Watershed Water-supply -- Zambezi River Watershed Water-supply -- Political aspects -- Africa, Southern Water rights -- Africa, Southern Water security -- Africa, Southern Rain and rainfall -- Africa, Southern Rainfall probabilities -- Africa, Southern Food security -- Africa, Southern Drought forecasting -- Africa, Southern Watersheds -- Africa, Southern Water supply -- Measurement -- Africa, Southern
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6024 , http://hdl.handle.net/10962/d1002955
- Description: Water is recognised as a key driver for social and economic development in the Zambezi basin. The basin is riparian to eight southern African countries and the transboundary nature of the basin’s water resources can be viewed as an agent of cooperation between the basin countries. It is possible, however, that the same water resource can lead to conflicts between water users. The southern African Water Vision for ‘equitable and sustainable utilisation of water for social, environmental justice and economic benefits for the present and future generations’ calls for an integrated and efficient management of water resources within the basin. Ensuring water and food security in the Zambezi basin is, however, faced with challenges due to high variability in climate and the available water resources. Water resources are under continuous threat from pollution, increased population growth, development and urbanisation as well as global climate change. These factors increase the demand for freshwater resources and have resulted in water being one of the major driving forces for development. The basin is also vulnerable due to lack of adequate financial resources and appropriate water resources infrastructure to enable viable, equitable and sustainable distribution of the water resources. This is in addition to the fact that the basin’s economic mainstay and social well-being are largely dependent on rainfed agriculture. There is also competition among the different water users and this has the potential to generate conflicts, which further hinder the development of water resources in the basin. This thesis has focused on the Zambezi River basin emphasising climate variability and climate change. It is now considered common knowledge that the global climate is changing and that many of the impacts will be felt through water resources. If these predictions are correct then the Zambezi basin is most likely to suffer under such impacts since its economic mainstay is largely determined by the availability of rainfall. It is the belief of this study that in order to ascertain the impacts of climate change, there should be a basis against which this change is evaluated. If we do not know the historical patterns of variability it may be difficult to predict changes in the future climate and in the hydrological resources and it will certainly be difficult to develop appropriate management strategies. Reliable quantitative estimates of water availability are a prerequisite for successful water resource plans. However, such initiatives have been hindered by paucity in data especially in a basin where gauging networks are inadequate and some of them have deteriorated. This is further compounded by shortages in resources, both human and financial, to ensure adequate monitoring. To address the data problems, this study largely relied on global data sets and the CRU TS2.1 rainfall grids were used for a large part of this study. The study starts by assessing the historical variability of rainfall and streamflow in the Zambezi basin and the results are used to inform the prediction of change in the future. Various methods of assessing historical trends were employed and regional drought indices were generated and evaluated against the historical rainfall trends. The study clearly demonstrates that the basin has a high degree of temporal and spatial variability in rainfall and streamflow at inter-annual and multi-decadal scales. The Standardised Precipitation Index, a rainfall based drought index, is used to assess historical drought events in the basin and it is shown that most of the droughts that have occurred were influenced by climatic and hydrological variability. It is concluded, through the evaluation of agricultural maize yields, that the basin’s food security is mostly constrained by the availability of rainfall. Comparing the viability of using a rainfall based index to a soil moisture based index as an agricultural drought indicator, this study concluded that a soil moisture based index is a better indicator since all of the water balance components are considered in the generation of the index. This index presents the actual amount of water available for the plant unlike purely rainfall based indices, that do not account for other components of the water budget that cause water losses. A number of challenges were, however, faced in assessing the variability and historical drought conditions, mainly due to the fact that most parts of the Zambezi basin are ungauged and available data are sparse, short and not continuous (with missing gaps). Hydrological modelling is frequently used to bridge the data gap and to facilitate the quantification of a basin’s hydrology for both gauged and ungauged catchments. The trend has been to use various methods of regionalisation to transfer information from gauged basins, or from basins with adequate physical basin data, to ungauged basins. All this is done to ensure that water resources are accounted for and that the future can be well planned. A number of approaches leading to the evaluation of the basin’s hydrological response to future climate change scenarios are taken. The Pitman rainfall-runoff model has enjoyed wide use as a water resources estimation tool in southern Africa. The model has been calibrated for the Zambezi basin but it should be acknowledged that any hydrological modelling process is characterised by many uncertainties arising from limitations in input data and inherent model structural uncertainty. The calibration process is thus carried out in a manner that embraces some of the uncertainties. Initial ranges of parameter values (maximum and minimum) that incorporate the possible parameter uncertainties are assigned in relation to physical basin properties. These parameter sets are used as input to the uncertainty version of the model to generate behavioural parameter space which is then further modified through manual calibration. The use of parameter ranges initially guided by the basin physical properties generates streamflows that adequately represent the historically observed amounts. This study concludes that the uncertainty framework and the Pitman model perform quite well in the Zambezi basin. Based on assumptions of an intensifying hydrological cycle, climate changes are frequently expected to result in negative impacts on water resources. However, it is important that basin scale assessments are undertaken so that appropriate future management strategies can be developed. To assess the likely changes in the Zambezi basin, the calibrated Pitman model was forced with downscaled and bias corrected GCM data. Three GCMs were used for this study, namely; ECHAM, GFDL and IPSL. The general observation made in this study is that the near future (2046-2065) conditions of the Zambezi basin are expected to remain within the ranges of historically observed variability. The differences between the predictions for the three GCMs are an indication of the uncertainties in the future and it has not been possible to make any firm conclusions about directions of change. It is therefore recommended that future water resources management strategies account for historical patterns of variability, but also for increased uncertainty. Any management strategies that are able to satisfactorily deal with the large variability that is evident from the historical data should be robust enough to account for the near future patterns of water availability predicted by this study. However, the uncertainties in these predictions suggest that improved monitoring systems are required to provide additional data against which future model outputs can be assessed.
- Full Text:
- Date Issued: 2013
Constraining simulation uncertainties in a hydrological model of the Congo River Basin including a combined modelling approach for channel-wetland exchanges
- Authors: Kabuya, Pierre Mulamba
- Date: 2021-04
- Subjects: Congo River Watershed , Watersheds -- Congo (Democratic Republic) , Hydrologic models , Rain and rainfall -- Mathematical models , Runoff -- Mathematical models , Wetland hydrology
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/177997 , vital:42897 , 10.21504/10962/177997
- Description: Compared to other large river basins of the world, such as the Amazon, the Congo River Basin appears to be the most ungauged and less studied. This is partly because the basin lacks sufficient observational hydro-climatic monitoring stations and appropriate information on physiographic basin properties at a spatial scale deemed for hydrological applications, making it difficult to estimate water resources at the scale of sub-basins (Chapter 3). In the same time, the basin is facing the challenges related to rapid population growth, uncontrolled urbanisation as well as climate change. Adequate quantification of hydrological processes across different spatial and temporal scales in the basin, and the drivers of change, is essential for prediction and strategic planning to ensure sustainable management of water resources in the Congo River Basin. Hydrological models are particularly important to generate the required information. However, the shortness of the available streamflow records, lack of spatial representativeness of the available streamflow gauging stations and the lack of understanding of the processes in channel-wetland exchanges, are the main challenges that constrain the use of traditional approaches to models development. They also contribute to increased uncertainty in the estimation of water resources across the basin (Chapter 1 and 2). Given this ungauged nature of the Congo River Basin, it is important to resort to hydrological modelling approaches that can reasonably quantify and model the uncertainty associated with water resources estimation (Chapter 4) to make hydrological predictions reliable. This study explores appropriate methods for hydrological predictions and water resources assessment in ungauged catchments of the Congo River Basin. In this context, the core modelling framework combines the quantification of uncertainty in constraint indices, hydrological modelling and hydrodynamic modelling. The latter accounts for channel-wetland exchanges in sub-basins where wetlands exert considerable influence on downstream flow regimes at the monthly time scale. The constraint indices are the characteristics of a sub-basin’s long-term hydrological behaviour and may reflect the dynamics of the different components of the catchment water balance such as climate, water storage and different runoff processes. Currently, six constraint indices namely the mean monthly runoff volume (MMQ in m3 *106), mean monthly groundwater recharge depth (MMR in mm), the 10th, 50th and 90th percentiles of the flow duration curve expressed as a fraction of MMQ (Q10/MMQ, Q50/MMQ, Q90/MMQ) and the percentage of time that zero flows are expected (%Zero), are used in the modelling approach. These were judged to be the minimum number of key indices that can discriminate between different hydrological responses. The constraint indices in the framework help to determine an uncertainty range within which behavioural model parameters of the expected hydrological response can be identified. Predictive equations of the constraint indices across all climate and physiographic regions of the Congo Basin were based only on the aridity index because it was the most influential sub-basin attribute (Chapter 5) for which quantitative information was available. The degree of uncertainty in the constraint Q10/MMQ and Q50/MMQ indices is less than 41%, while it is somewhat higher for the mean monthly runoff (MMQ) and Q90/MMQ constraint indices. The established uncertainty ranges of the constraint indices were tested in some selected sub-basins of the Congo Basin, including the Lualaba (93 sub-basins), Sangha (24 sub-basins), Oubangui (19 sub-basins), Batéké plateaux (4 sub-basins), Kasai (4 sub-basins) and Inkisi (3 sub-basins). The results proved useful through the application of a 2-stage uncertainty approach of the PITMAN model. However, it comes out of this study that the application of the original constraint indices ranges (Chapter 5) generated satisfactory simulation results in some areas, while in others both small and large adjustments were required to fully capture some aspects of the observed hydrological responses (Chapter 6). Part of the reason is attributed to the availability and quality of streamflow data used to develop the constraint indices ranges (Chapter 5). The main issue identified in the modelling process was whether the changes made to the original constraints at headwater-gauged sub-basins can be applied to ungauged upstream sub-basins to match the observed flow at downstream gauging stations. Ideally, only gauged sub-basin’s constraints can be easily revised based on the observed flow. However, the refinement made to gauged sub-basins alone may fail to substantially affect the results if ungauged upstream sub-basins exert a major impact on defining downstream hydrological response. The majority of gauging stations used in this analysis are located downstream of many upstream ungauged sub-basins and therefore adjustments were required in ungauged sub-basins. These adjustments consist of shifting the full range of a constraint index either towards higher or lower values, depending on the degree to which the simulated uncertainty bounds depart from the observed flow. While this modelling approach seems effective in capturing many aspects of the hydrological responses with a reduced level of uncertainty compared to a previous study, it is recommended that the approach be extended to the remaining parts of the Congo Basin and assessed under current and future development conditions including environmental changes. A 2D hydrodynamic river-wetland model (LISFLOOD-FP) has been used to explicitly represent the inundation process exchanges between river channels and wetland systems. The hydrodynamic modelling outputs are used to calibrate the PITMAN wetland sub-model parameters. The five hydrodynamic models constructed for Ankoro, Kamalondo, Kundelungu, Mweru and Tshiangalele wetland systems have been partially validated using independent estimates of inundation extents available from Landsat imagery. Other sources of data such as remote sensing of water level altimetry, SAR images and wetland storage estimates may be used to improve the validation results. However, the important objective in this study was to make sure that flow volume exchanges between river channels and their adjacent floodplains were being simulated realistically. The wetland sub-model parameters are calibrated in a spreadsheet version of the PITMAN wetland routine to achieve visual correspondence between the LISFLOOD-FP and PITMAN wetland sub-model outputs (Storage volumes and channel outputs). The hysteretic patterns of the river-wetland processes were quantified using hysteresis indices and were associated with the spill and return flow parameters of the wetland sub-model and eventually with the wetland morphometric characteristics. One example is the scale parameter of the return flow function (AA), which shows a good relationship with the average surface slope of the wetland when the coefficient parameter (BB) of the same function is kept constant to a value of 1.25. The same parameter (AA) is a good indicator of the wetland emptying mechanism. A small AA indicates a wetland that slowly releases its flow, resulting in a highly delayed and attenuated hydrological response in downstream sub-basins. This understanding has a practical advantage for the estimation of the PITMAN wetland parameters in the many areas where it is not possible, or where the resources are not available, to run complex hydrodynamic models (Chapter 7). The inclusion of these LISFLOOD-FP informed wetland parameters in the basin-scale hydrological modelling results in acceptable simulations for the lower Lualaba drainage system. The small wetlands, like Ankoro and Tshiangalele, have a negligible impact on downstream flow regimes, whereas large wetlands, such as Kamalondo and Mweru, have very large impacts. In general, the testing of the original constraint indices in the region of wetlands and further downstream of the Lualaba drainage system has shown acceptable results. However, there remains an unresolved uncertainty issue related to the under and over-estimation of some aspects of the hydrological response at both Mulongo and Ankoro, two gauging stations in the immediate downstream of the Kamalondo wetland system. It is difficult to attribute this uncertainty to Kamalondo wetland parameters alone because many of the incremental sub-basins contributing to wetland inflows are ungauged. The issue at Mulongo is the under simulation of low flow, while the high flows at the Ankoro gauging station are over-simulated. However, the pattern of the calibrated constraint indices in this region (Chapter 8) shows that the under simulation of low flow at Mulongo cannot be attributed to incremental sub-basins (between Bukama, Kapolowe and Mulongo gauging stations), because their Q90/MMQ constraint indices are even slightly above the original constraint ranges, but maintain a spatial consistency with sub-basins of other regions. Similarly, sub-basins located between Mulongo, Luvua and Ankoro gauging stations have high flow indices slightly below the original constraint ranges and therefore they are unlikely to be responsible for the over simulation of high flow at the Ankoro gauging station. These facts highlight the need for a further understanding of the complex wetland system of Kamalondo. Short-term data collection and monitoring programme are required. Important tributaries that drain to this wetland need to be monitored by installing water level loggers and periodically collecting flow data and river bathymetry. This programme should lead to the development of rating curves of wetland input tributaries. This would partially solve the unresolved uncertainty issues at the Ankoro and Mulongo gauging stations. The integrated modelling approach offers many opportunities in the Congo Basin. The quantified and modelled uncertainty helps to identify regions with high uncertainty and allows for the identification of various data collection and management strategies that can potentially contribute to the uncertainty reduction. The quantified channel-wetland exchanges contribute to the improvement of the overall knowledge of water resources estimation within the regions where the effects of wetlands are evident even at the monthly time scale. In contrast, ignoring uncertainty in the estimates of water resources availability means that water resources planning and management decisions in the Congo Basin will continue to be based on inadequate information and unquantified uncertainty, thus increasing the risk associated with water resources decision making. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2021
- Full Text:
- Date Issued: 2021-04
- Authors: Kabuya, Pierre Mulamba
- Date: 2021-04
- Subjects: Congo River Watershed , Watersheds -- Congo (Democratic Republic) , Hydrologic models , Rain and rainfall -- Mathematical models , Runoff -- Mathematical models , Wetland hydrology
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/177997 , vital:42897 , 10.21504/10962/177997
- Description: Compared to other large river basins of the world, such as the Amazon, the Congo River Basin appears to be the most ungauged and less studied. This is partly because the basin lacks sufficient observational hydro-climatic monitoring stations and appropriate information on physiographic basin properties at a spatial scale deemed for hydrological applications, making it difficult to estimate water resources at the scale of sub-basins (Chapter 3). In the same time, the basin is facing the challenges related to rapid population growth, uncontrolled urbanisation as well as climate change. Adequate quantification of hydrological processes across different spatial and temporal scales in the basin, and the drivers of change, is essential for prediction and strategic planning to ensure sustainable management of water resources in the Congo River Basin. Hydrological models are particularly important to generate the required information. However, the shortness of the available streamflow records, lack of spatial representativeness of the available streamflow gauging stations and the lack of understanding of the processes in channel-wetland exchanges, are the main challenges that constrain the use of traditional approaches to models development. They also contribute to increased uncertainty in the estimation of water resources across the basin (Chapter 1 and 2). Given this ungauged nature of the Congo River Basin, it is important to resort to hydrological modelling approaches that can reasonably quantify and model the uncertainty associated with water resources estimation (Chapter 4) to make hydrological predictions reliable. This study explores appropriate methods for hydrological predictions and water resources assessment in ungauged catchments of the Congo River Basin. In this context, the core modelling framework combines the quantification of uncertainty in constraint indices, hydrological modelling and hydrodynamic modelling. The latter accounts for channel-wetland exchanges in sub-basins where wetlands exert considerable influence on downstream flow regimes at the monthly time scale. The constraint indices are the characteristics of a sub-basin’s long-term hydrological behaviour and may reflect the dynamics of the different components of the catchment water balance such as climate, water storage and different runoff processes. Currently, six constraint indices namely the mean monthly runoff volume (MMQ in m3 *106), mean monthly groundwater recharge depth (MMR in mm), the 10th, 50th and 90th percentiles of the flow duration curve expressed as a fraction of MMQ (Q10/MMQ, Q50/MMQ, Q90/MMQ) and the percentage of time that zero flows are expected (%Zero), are used in the modelling approach. These were judged to be the minimum number of key indices that can discriminate between different hydrological responses. The constraint indices in the framework help to determine an uncertainty range within which behavioural model parameters of the expected hydrological response can be identified. Predictive equations of the constraint indices across all climate and physiographic regions of the Congo Basin were based only on the aridity index because it was the most influential sub-basin attribute (Chapter 5) for which quantitative information was available. The degree of uncertainty in the constraint Q10/MMQ and Q50/MMQ indices is less than 41%, while it is somewhat higher for the mean monthly runoff (MMQ) and Q90/MMQ constraint indices. The established uncertainty ranges of the constraint indices were tested in some selected sub-basins of the Congo Basin, including the Lualaba (93 sub-basins), Sangha (24 sub-basins), Oubangui (19 sub-basins), Batéké plateaux (4 sub-basins), Kasai (4 sub-basins) and Inkisi (3 sub-basins). The results proved useful through the application of a 2-stage uncertainty approach of the PITMAN model. However, it comes out of this study that the application of the original constraint indices ranges (Chapter 5) generated satisfactory simulation results in some areas, while in others both small and large adjustments were required to fully capture some aspects of the observed hydrological responses (Chapter 6). Part of the reason is attributed to the availability and quality of streamflow data used to develop the constraint indices ranges (Chapter 5). The main issue identified in the modelling process was whether the changes made to the original constraints at headwater-gauged sub-basins can be applied to ungauged upstream sub-basins to match the observed flow at downstream gauging stations. Ideally, only gauged sub-basin’s constraints can be easily revised based on the observed flow. However, the refinement made to gauged sub-basins alone may fail to substantially affect the results if ungauged upstream sub-basins exert a major impact on defining downstream hydrological response. The majority of gauging stations used in this analysis are located downstream of many upstream ungauged sub-basins and therefore adjustments were required in ungauged sub-basins. These adjustments consist of shifting the full range of a constraint index either towards higher or lower values, depending on the degree to which the simulated uncertainty bounds depart from the observed flow. While this modelling approach seems effective in capturing many aspects of the hydrological responses with a reduced level of uncertainty compared to a previous study, it is recommended that the approach be extended to the remaining parts of the Congo Basin and assessed under current and future development conditions including environmental changes. A 2D hydrodynamic river-wetland model (LISFLOOD-FP) has been used to explicitly represent the inundation process exchanges between river channels and wetland systems. The hydrodynamic modelling outputs are used to calibrate the PITMAN wetland sub-model parameters. The five hydrodynamic models constructed for Ankoro, Kamalondo, Kundelungu, Mweru and Tshiangalele wetland systems have been partially validated using independent estimates of inundation extents available from Landsat imagery. Other sources of data such as remote sensing of water level altimetry, SAR images and wetland storage estimates may be used to improve the validation results. However, the important objective in this study was to make sure that flow volume exchanges between river channels and their adjacent floodplains were being simulated realistically. The wetland sub-model parameters are calibrated in a spreadsheet version of the PITMAN wetland routine to achieve visual correspondence between the LISFLOOD-FP and PITMAN wetland sub-model outputs (Storage volumes and channel outputs). The hysteretic patterns of the river-wetland processes were quantified using hysteresis indices and were associated with the spill and return flow parameters of the wetland sub-model and eventually with the wetland morphometric characteristics. One example is the scale parameter of the return flow function (AA), which shows a good relationship with the average surface slope of the wetland when the coefficient parameter (BB) of the same function is kept constant to a value of 1.25. The same parameter (AA) is a good indicator of the wetland emptying mechanism. A small AA indicates a wetland that slowly releases its flow, resulting in a highly delayed and attenuated hydrological response in downstream sub-basins. This understanding has a practical advantage for the estimation of the PITMAN wetland parameters in the many areas where it is not possible, or where the resources are not available, to run complex hydrodynamic models (Chapter 7). The inclusion of these LISFLOOD-FP informed wetland parameters in the basin-scale hydrological modelling results in acceptable simulations for the lower Lualaba drainage system. The small wetlands, like Ankoro and Tshiangalele, have a negligible impact on downstream flow regimes, whereas large wetlands, such as Kamalondo and Mweru, have very large impacts. In general, the testing of the original constraint indices in the region of wetlands and further downstream of the Lualaba drainage system has shown acceptable results. However, there remains an unresolved uncertainty issue related to the under and over-estimation of some aspects of the hydrological response at both Mulongo and Ankoro, two gauging stations in the immediate downstream of the Kamalondo wetland system. It is difficult to attribute this uncertainty to Kamalondo wetland parameters alone because many of the incremental sub-basins contributing to wetland inflows are ungauged. The issue at Mulongo is the under simulation of low flow, while the high flows at the Ankoro gauging station are over-simulated. However, the pattern of the calibrated constraint indices in this region (Chapter 8) shows that the under simulation of low flow at Mulongo cannot be attributed to incremental sub-basins (between Bukama, Kapolowe and Mulongo gauging stations), because their Q90/MMQ constraint indices are even slightly above the original constraint ranges, but maintain a spatial consistency with sub-basins of other regions. Similarly, sub-basins located between Mulongo, Luvua and Ankoro gauging stations have high flow indices slightly below the original constraint ranges and therefore they are unlikely to be responsible for the over simulation of high flow at the Ankoro gauging station. These facts highlight the need for a further understanding of the complex wetland system of Kamalondo. Short-term data collection and monitoring programme are required. Important tributaries that drain to this wetland need to be monitored by installing water level loggers and periodically collecting flow data and river bathymetry. This programme should lead to the development of rating curves of wetland input tributaries. This would partially solve the unresolved uncertainty issues at the Ankoro and Mulongo gauging stations. The integrated modelling approach offers many opportunities in the Congo Basin. The quantified and modelled uncertainty helps to identify regions with high uncertainty and allows for the identification of various data collection and management strategies that can potentially contribute to the uncertainty reduction. The quantified channel-wetland exchanges contribute to the improvement of the overall knowledge of water resources estimation within the regions where the effects of wetlands are evident even at the monthly time scale. In contrast, ignoring uncertainty in the estimates of water resources availability means that water resources planning and management decisions in the Congo Basin will continue to be based on inadequate information and unquantified uncertainty, thus increasing the risk associated with water resources decision making. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2021
- Full Text:
- Date Issued: 2021-04
Determining the hydrological functioning of the palmiet wetlands in the Eastern and Western Cape South Africa
- Authors: Smith, Caitlin
- Date: 2019
- Subjects: Wetlands -- South Africa -- Eastern Cape , Wetland ecology -- South Africa -- Eastern Cape , Wetland management -- South Africa -- Eastern Cape , Prioniaceae -- South Africa -- Eastern Cape , Prionium serratum -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/95956 , vital:31218
- Description: Wetlands provide a range of supporting, regulating and provisioning ecosystem services, including hydrological benefits such as flood attenuation and sustaining base flows. Despite their value, wetlands are one of the most vulnerable ecosystems in South Africa. Palmiet wetlands in the Eastern and Western Cape are particularly threatened. Palmiet (Prionium serratum) is a robust perennial plant that is endemic to wetlands and rivers located in the sandstones and quartzites of the Table Mountain Group (TMG), in the Eastern and Western Cape as well as the Natal Group sandstones in KwaZulu-Natal. Palmiet is described as an ecosystem engineer because of its ability to alter its environment and create large valley-bottom wetlands. The Krom River is an important water source for the city of Port Elizabeth and there has been a decline in palmiet wetlands along the Krom River as a result of alien vegetation invasion, agricultural activity, and gully erosion. Working for Water has been clearing alien vegetation and Working for Wetlands has been installing rehabilitation structures in the Krom River catchment for a number of years. There are, however, serious knowledge gaps in the understanding of palmiet wetland structure and function, particularly in respect of the hydrological functioning of these wetland systems. The aim of this study was to investigate the hydrology (surface and groundwater) behind these wetland systems. The investigation focussed on small-scale dynamics of the palmiet wetland system in order to increase general understanding of the surface water and groundwater processes of these wetland systems. Field work was concentrated on the Kompanjiesdrif and Krugersland palmiet wetlands in the upper K90A Krom River catchment. The investigation involved the installation of piezometers, water quality and stable isotope sampling and analysis, an Electrical Resistivity Tomography survey, and hydrological and mixing cell modelling. The results of the investigation indicate that the hydrological functioning of palmiet wetlands is closely linked with high sub-surface discharges typically associated with TMG aquifers. It is proposed that the palmiet wetlands are sustained by significant amounts of sub-surface water (both groundwater and interflow) moving through preferential flow paths in the alluvial fans and tributaries, which are in turn sustained by groundwater discharge from the surrounding sandstones and quartzites of the Nardouw Sub-group and Peninsula Formation. The palmiet wetlands clearly retain a significant amount of water, leading to the maintenance of prolonged flows, and a larger baseflow. However, it is hypothesised that the occurrence of palmiet as the dominant species in these wetlands is due to the sustained low flows related to catchment geology and high hydrological connectivity between the catchment and the wetland that is enabled by flow paths that allow the free flow of water from the catchment to the wetland. It is further proposed that palmiet is possibly more reliant on a consistent water supply for its existence and survival than it is on acidic nutrient-poor water and soils as stated by other authors.
- Full Text:
- Date Issued: 2019
- Authors: Smith, Caitlin
- Date: 2019
- Subjects: Wetlands -- South Africa -- Eastern Cape , Wetland ecology -- South Africa -- Eastern Cape , Wetland management -- South Africa -- Eastern Cape , Prioniaceae -- South Africa -- Eastern Cape , Prionium serratum -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/95956 , vital:31218
- Description: Wetlands provide a range of supporting, regulating and provisioning ecosystem services, including hydrological benefits such as flood attenuation and sustaining base flows. Despite their value, wetlands are one of the most vulnerable ecosystems in South Africa. Palmiet wetlands in the Eastern and Western Cape are particularly threatened. Palmiet (Prionium serratum) is a robust perennial plant that is endemic to wetlands and rivers located in the sandstones and quartzites of the Table Mountain Group (TMG), in the Eastern and Western Cape as well as the Natal Group sandstones in KwaZulu-Natal. Palmiet is described as an ecosystem engineer because of its ability to alter its environment and create large valley-bottom wetlands. The Krom River is an important water source for the city of Port Elizabeth and there has been a decline in palmiet wetlands along the Krom River as a result of alien vegetation invasion, agricultural activity, and gully erosion. Working for Water has been clearing alien vegetation and Working for Wetlands has been installing rehabilitation structures in the Krom River catchment for a number of years. There are, however, serious knowledge gaps in the understanding of palmiet wetland structure and function, particularly in respect of the hydrological functioning of these wetland systems. The aim of this study was to investigate the hydrology (surface and groundwater) behind these wetland systems. The investigation focussed on small-scale dynamics of the palmiet wetland system in order to increase general understanding of the surface water and groundwater processes of these wetland systems. Field work was concentrated on the Kompanjiesdrif and Krugersland palmiet wetlands in the upper K90A Krom River catchment. The investigation involved the installation of piezometers, water quality and stable isotope sampling and analysis, an Electrical Resistivity Tomography survey, and hydrological and mixing cell modelling. The results of the investigation indicate that the hydrological functioning of palmiet wetlands is closely linked with high sub-surface discharges typically associated with TMG aquifers. It is proposed that the palmiet wetlands are sustained by significant amounts of sub-surface water (both groundwater and interflow) moving through preferential flow paths in the alluvial fans and tributaries, which are in turn sustained by groundwater discharge from the surrounding sandstones and quartzites of the Nardouw Sub-group and Peninsula Formation. The palmiet wetlands clearly retain a significant amount of water, leading to the maintenance of prolonged flows, and a larger baseflow. However, it is hypothesised that the occurrence of palmiet as the dominant species in these wetlands is due to the sustained low flows related to catchment geology and high hydrological connectivity between the catchment and the wetland that is enabled by flow paths that allow the free flow of water from the catchment to the wetland. It is further proposed that palmiet is possibly more reliant on a consistent water supply for its existence and survival than it is on acidic nutrient-poor water and soils as stated by other authors.
- Full Text:
- Date Issued: 2019
Developing macroinvertebrate trait- and taxonomically-based approaches for biomonitoring wadeable riverine systems in the Niger delta, Nigeria
- Authors: Edegbene, Ovie Augustine
- Date: 2020
- Subjects: Water – Pollution -- Nigeria -- Niger River Delta , Stream health -- Nigeria -- Niger River Delta , Water -- Pollution -- Measurement , Environmental monitoring -- Nigeria -- Niger River Delta , Water quality -- Nigeria -- Niger River Delta , Water quality biological assessment -- Nigeria -- Niger River Delta , Aquatic invertebrates -- Nigeria -- Niger River Delta , Stream restoration -- Nigeria -- Niger River Delta , Urban agriculture -- Nigeria -- Niger River Delta , Stream ecology -- Nigeria -- Niger River Delta
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/140660 , vital:37907
- Description: Riverine systems are increasingly subjected to pollution due to rapid urbanisation, industrialisation, and agricultural activities. Increasing pollution in freshwater systems impairs water quality, causes biodiversity loss and impairs aquatic ecosystem functionality and supply of ecosystem services. Rivers in the Niger Delta region of Nigeria are particularly vulnerable to urban pollution and agricultural activities as natural forests are increasingly replaced by urbanisation and agriculture. The differential effects of these pressures on the ecological processes of these river systems are poorly explored, as is the development of appropriate biomonitoring tools for routine monitoring of river health. In this study, a physico-chemically-based approach and macroinvertebrate trait- and taxonomic- approaches were developed to better understand the effects of multiple pressures on riverine systems, while developing multimetric indices to enable sustainable management of rivers within the region. Sixty-six stations in 20 river systems within the Edo and Delta States of the Niger Delta ecoregion were monitored seasonally for a period of five (2008–2012) years. The physico-chemically based approach makes apparent the extent of degradation of rivers and streams in the Niger Delta. For each dominant land use type, river stations were classified into least impacted stations (LIS), moderately impacted stations (MIS) or heavily impacted stations (HIS). Of 11 stations within urban catchments, only two were considered least impacted, suggesting that urgent measures are necessary to revise the current trajectories of urban rivers within the region. Most of the stations designated as MIS and HIS in the urban and urban-agriculture catchments were found to be significantly correlated with increased nutrients, EC and BOD5. Characteristics of most of the MIS and HIS within rivers in urban catchments evidenced the so-called urban stream syndrome, a state of persistent degradation of urban streams. The results of the traits and ecological preferences approach showed traits sensitive to urban and urban-agriculture pollution. Traits and ecological preferences that were associated with the LIS include the possession of hardshell, moderate and high sensitivities to oxygen depletion, very large body sized individuals (>20-40mm), swimmers, flattened body shape, a preference for temporary attachment, crawling, respiration with aerial/vegetation, possession of breathing tubes, possession of strap or other apparatus for respiration, streamlined body, and a high sensitivity to oxygen depletion. Permanent attachment as an ecological preference associated with LIS was also positively correlated with increasing dissolved oxygen (DO) and was deemed a pollution sensitive ecological preference. The possession of very small body size (<5mm), associated with HIS, was deemed a pollution-tolerant trait and was negatively correlated with DO, confirming the deteriorating state of the urban and urban-agricultural rivers. The impact of urban-forestry pollution on the distribution pattern of macroinvertebrate traits and ecological preferences was also explored in the selected rivers. Traits and ecological preferences such as possession of hard-shell, large body size, and grazing as a feeding preference which were significantly positively associated with the LIS, were also either significantly positively correlated with DO, or significantly negatively correlated with increasing any two of flow velocity, water temperature, BOD5 and nutrient. These traits and ecological preferences were deemed sensitive in forested rivers receiving urban pollution. Further, burrowing, the pupa aquatic stage, and predation which were significantly positively associated with HIS on the RLQ ordination, were also significantly negatively associated with DO. These traits were deemed tolerant of forested systems receiving urban pollution. Multimetric indices (MMI) were developed, validated and applied for urban, urban-agriculture and urban-forested (MMI-urban, MMI-urban-agric and urban-forest) areas. Of the 26 metrics that satisfactorily discriminated between the LIS, the MIS, and the HIS for MMI-urban, only five metric were retained for integration into MMI-urban, they are log VeL, Hemiptera abundance, % Coleoptera + Hemiptera, % Chironomidae + Oligochaeta and Evenness index. Further, of the 18 metrics that satisfactorily discriminated between the LIS, the MIS, and the HIS for MMI-urban-agric, only 12 metrics were retained and nine proved to be redundant. The nine metrics represent different measures; two of them were retained in addition to Chironomidae/Diptera abundance, % Odonata and Oligochaeta richness. The two metrics selected in addition to the hironomidae/Diptera abundance, % Odonata and Oligochaeta richness were the Margalef index and the logarithm of relative abundance of sprawler. For the MMI-urban-forest, 14 metrics satisfactorily discriminated between the LIS, the MIS, and the HIS, and 12 metrics were retained and 11 proved to be redundant. The non-redundant metric was Trichoptera abundance. Three metrics were further selected in addition to the Trichoptera abundance which include % Chironomidae + Oligochaeta, Coleoptera + Hemiptera richness and Shannon diversity. The MMI-urban and MMI-urban-agric indices performed better for LIS designated stations compared to the MIS and HIS deignated stations. The developed indices proved effective as biomonitoring tools for assessing the ecological health of rivers in the urban and urban-agriculture catchments within the Niger Delta. Overall, the results of the macroinvertebrate traits and ecological preferences, and taxonomic approaches showed the strength in the complementarity of both approaches in developing biomonitoring tools for assessing levels of deterioration in riverine systems. The study contributes significantly to understanding the ecology of riverine systems in the Niger Delta, particularly those subject to urban stresses, agricultural activities and urban pollution in forested systems, and thus makes an important contribution to the science and practice of biomonitoring in Nigeria where such studies are sparse.
- Full Text:
- Date Issued: 2020
- Authors: Edegbene, Ovie Augustine
- Date: 2020
- Subjects: Water – Pollution -- Nigeria -- Niger River Delta , Stream health -- Nigeria -- Niger River Delta , Water -- Pollution -- Measurement , Environmental monitoring -- Nigeria -- Niger River Delta , Water quality -- Nigeria -- Niger River Delta , Water quality biological assessment -- Nigeria -- Niger River Delta , Aquatic invertebrates -- Nigeria -- Niger River Delta , Stream restoration -- Nigeria -- Niger River Delta , Urban agriculture -- Nigeria -- Niger River Delta , Stream ecology -- Nigeria -- Niger River Delta
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/140660 , vital:37907
- Description: Riverine systems are increasingly subjected to pollution due to rapid urbanisation, industrialisation, and agricultural activities. Increasing pollution in freshwater systems impairs water quality, causes biodiversity loss and impairs aquatic ecosystem functionality and supply of ecosystem services. Rivers in the Niger Delta region of Nigeria are particularly vulnerable to urban pollution and agricultural activities as natural forests are increasingly replaced by urbanisation and agriculture. The differential effects of these pressures on the ecological processes of these river systems are poorly explored, as is the development of appropriate biomonitoring tools for routine monitoring of river health. In this study, a physico-chemically-based approach and macroinvertebrate trait- and taxonomic- approaches were developed to better understand the effects of multiple pressures on riverine systems, while developing multimetric indices to enable sustainable management of rivers within the region. Sixty-six stations in 20 river systems within the Edo and Delta States of the Niger Delta ecoregion were monitored seasonally for a period of five (2008–2012) years. The physico-chemically based approach makes apparent the extent of degradation of rivers and streams in the Niger Delta. For each dominant land use type, river stations were classified into least impacted stations (LIS), moderately impacted stations (MIS) or heavily impacted stations (HIS). Of 11 stations within urban catchments, only two were considered least impacted, suggesting that urgent measures are necessary to revise the current trajectories of urban rivers within the region. Most of the stations designated as MIS and HIS in the urban and urban-agriculture catchments were found to be significantly correlated with increased nutrients, EC and BOD5. Characteristics of most of the MIS and HIS within rivers in urban catchments evidenced the so-called urban stream syndrome, a state of persistent degradation of urban streams. The results of the traits and ecological preferences approach showed traits sensitive to urban and urban-agriculture pollution. Traits and ecological preferences that were associated with the LIS include the possession of hardshell, moderate and high sensitivities to oxygen depletion, very large body sized individuals (>20-40mm), swimmers, flattened body shape, a preference for temporary attachment, crawling, respiration with aerial/vegetation, possession of breathing tubes, possession of strap or other apparatus for respiration, streamlined body, and a high sensitivity to oxygen depletion. Permanent attachment as an ecological preference associated with LIS was also positively correlated with increasing dissolved oxygen (DO) and was deemed a pollution sensitive ecological preference. The possession of very small body size (<5mm), associated with HIS, was deemed a pollution-tolerant trait and was negatively correlated with DO, confirming the deteriorating state of the urban and urban-agricultural rivers. The impact of urban-forestry pollution on the distribution pattern of macroinvertebrate traits and ecological preferences was also explored in the selected rivers. Traits and ecological preferences such as possession of hard-shell, large body size, and grazing as a feeding preference which were significantly positively associated with the LIS, were also either significantly positively correlated with DO, or significantly negatively correlated with increasing any two of flow velocity, water temperature, BOD5 and nutrient. These traits and ecological preferences were deemed sensitive in forested rivers receiving urban pollution. Further, burrowing, the pupa aquatic stage, and predation which were significantly positively associated with HIS on the RLQ ordination, were also significantly negatively associated with DO. These traits were deemed tolerant of forested systems receiving urban pollution. Multimetric indices (MMI) were developed, validated and applied for urban, urban-agriculture and urban-forested (MMI-urban, MMI-urban-agric and urban-forest) areas. Of the 26 metrics that satisfactorily discriminated between the LIS, the MIS, and the HIS for MMI-urban, only five metric were retained for integration into MMI-urban, they are log VeL, Hemiptera abundance, % Coleoptera + Hemiptera, % Chironomidae + Oligochaeta and Evenness index. Further, of the 18 metrics that satisfactorily discriminated between the LIS, the MIS, and the HIS for MMI-urban-agric, only 12 metrics were retained and nine proved to be redundant. The nine metrics represent different measures; two of them were retained in addition to Chironomidae/Diptera abundance, % Odonata and Oligochaeta richness. The two metrics selected in addition to the hironomidae/Diptera abundance, % Odonata and Oligochaeta richness were the Margalef index and the logarithm of relative abundance of sprawler. For the MMI-urban-forest, 14 metrics satisfactorily discriminated between the LIS, the MIS, and the HIS, and 12 metrics were retained and 11 proved to be redundant. The non-redundant metric was Trichoptera abundance. Three metrics were further selected in addition to the Trichoptera abundance which include % Chironomidae + Oligochaeta, Coleoptera + Hemiptera richness and Shannon diversity. The MMI-urban and MMI-urban-agric indices performed better for LIS designated stations compared to the MIS and HIS deignated stations. The developed indices proved effective as biomonitoring tools for assessing the ecological health of rivers in the urban and urban-agriculture catchments within the Niger Delta. Overall, the results of the macroinvertebrate traits and ecological preferences, and taxonomic approaches showed the strength in the complementarity of both approaches in developing biomonitoring tools for assessing levels of deterioration in riverine systems. The study contributes significantly to understanding the ecology of riverine systems in the Niger Delta, particularly those subject to urban stresses, agricultural activities and urban pollution in forested systems, and thus makes an important contribution to the science and practice of biomonitoring in Nigeria where such studies are sparse.
- Full Text:
- Date Issued: 2020
Developing taxonomic and trait-based approaches for assessing and predicting macroinvertebrate responses to elevated fine sediments in the Tsitsa River and its tributaries, South Africa
- Authors: Ntloko, Pindiwe
- Date: 2022-04-08
- Subjects: Water quality South Africa Mzimvubu River Watershed , Sedimentation and deposition South Africa Mzimvubu River Watershed , Aquatic invertebrates Effect of sediments on South Africa Mzimvubu River Watershed , Aquatic invertebrates Classification , Environmental monitoring South Africa Mzimvubu River Watershed , Analysis of variance , Multivariate analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/294692 , vital:57245 , DOI 10.21504/10962/294692
- Description: Sedimentation of freshwater systems is one of the leading causes of water quality deterioration. The Mzimvubu River catchment, which includes the Tsitsa River and its tributaries, in the Eastern Cape is prone to elevated sediment impact due to dispersive soils that are easily erodible. In this study, taxonomy and trait-based approaches were used to assess the responses of macroinvertebrates to fine sediments in the Tsitsa River and its tributaries. Macroinvertebrates and environmental variables were sampled seasonally in winter, spring, summer and autumn of 2016 to 2018 in six selected sites, using the South African Scoring System version 5 as a collecting protocol. The sites were selected to represent a decreasing gradient of sediment influence from the highly impacted Sites 1 (Tsitsa upstream) 2 (Tsitsa downstream), and 3 (Qurana River) to moderately impacted Sites 4 (Millstream upstream) and 5 (Millstream downstream) and the least impacted Sites 6 (Pot River upstream), 7 (Little Pot River) and 8 (Pot River downstream), which were collectively referred to as the control sites. Analysis of basic physico-chemical variables, dissolved oxygen, pH, electrical conductivity, turbidity, total suspended solids, temperature and nutrients were undertaken seasonally over the study period. Sediments grain sizes were also analysed. All collected data were subjected to appropriate statistical tests – univariate and multivariate techniques. A fine-sediment-specific multimetric index was developed to monitor the impact of fine sediments on macroinvertebrate assemblages of the Tsitsa River and its tributaries. A total of 12 traits, resolved into 48 trait attributes, were selected to explore their distribution in relation to a fine-sediment stress gradient, and identify the trait-based signature of fine-sediment impact. A trait-based approach was then developed to classify South African macroinvertebrates into two groups: taxa that are potentially vulnerable to fine-sediment impact and those potentially resilient, based on the combination of traits possessed. Two-way analysis of variance (ANOVA) indicated that electrical conductivity, turbidity, embeddedness and total suspended solids were statistically significantly different between the sites. Apart from Dissolved oxygen, the remaining variables were statistically significantly lower at the control sites (P < 0.05). The two-way multivariate analysis of variance (MANOVA) indicated global significant differences between sites and seasons. The two-way MANOVA also revealed that the interaction between the sites and seasons were statistically significant. The MANOVA indicated global combined interactive effects across the sites for suspended fine-sediment grain sizes, two-way ANOVA, followed by a Tukey’s post-hoc test, was carried out to indicate where the significant differences lay. The one-way ANOVA results indicated that very fine sand, very coarse silt, medium silt, and fine silt were significantly higher at Tsitsa upstream, Tsitsa downstream, Qurana tributary that is at Millstream upstream, Millstream downstream and Control sites. The rest of the grain sizes did not differ statistically between the sites. In terms of the settled sediment grain sizes, the volumetric analysis did not show considerable differences across the sites. Settled fine-sediment grain sizes were evenly distributed across the sites. Statistically, MANOVA results indicated no significant differences across sites or across seasons. The developed Sediment Multimetric Index indicated that the sites in the Tsitsa River and those in the Qurana River were highly sedimented during the wet season, but became moderately sedimented during the dry season, indicating that the index responded to seasonality. The sediment multimetric index indicated that the control sites were less sedimented during both the wet season and dry seasons, suggesting minimal seasonal effects at the control sites. Traits such as an exposed and soft body, collector-filterers, shredding, feeding on coarse particulate organic matter and a high sensitivity to dissolved oxygen were identified as fine- sediment-sensitive indicator traits. Identified fine-sediment-tolerant traits and ecological preferences included complete sclerotisation, a cased/tubed body, a preference for fine particulate organic matter, a high tolerance to dissolved oxygen depletion, and climbing and skating behaviours. Regarding the trait-based approach followed for classifying macroinvertebrates into vulnerable taxa and resilient taxa, the results revealed that the relative abundance and richness of the vulnerable taxa decreased predictably along the increasing gradient of sediment impact. However, the relative abundance and richness of resilient taxa showed no marked response to the impact of an increasing gradient of fine sediments. Overall, the present study makes a contribution to the complementary application of trait-and taxonomy-based approaches to freshwater biomonitoring. The trait-based approach enables predictions to be made and tested based on the mechanistic understanding of the mediating roles of traits in organism- environment interaction. A fundamental challenge, which showcases the limitation of the current study, is the sparse trait data on Afrotropical macroinvertebrates at the species or generic levels. In this regard, the iv trait-based approaches developed here were the family level instead of species or genus. This is the first study in South Africa to develop explicit trait-based indicators of elevated fine sediments as well as an approach for predicting macroinvertebrate vulnerability and resilience to fine-sediment effects, thus advancing the science and practice of freshwater biomonitoring. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Ntloko, Pindiwe
- Date: 2022-04-08
- Subjects: Water quality South Africa Mzimvubu River Watershed , Sedimentation and deposition South Africa Mzimvubu River Watershed , Aquatic invertebrates Effect of sediments on South Africa Mzimvubu River Watershed , Aquatic invertebrates Classification , Environmental monitoring South Africa Mzimvubu River Watershed , Analysis of variance , Multivariate analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/294692 , vital:57245 , DOI 10.21504/10962/294692
- Description: Sedimentation of freshwater systems is one of the leading causes of water quality deterioration. The Mzimvubu River catchment, which includes the Tsitsa River and its tributaries, in the Eastern Cape is prone to elevated sediment impact due to dispersive soils that are easily erodible. In this study, taxonomy and trait-based approaches were used to assess the responses of macroinvertebrates to fine sediments in the Tsitsa River and its tributaries. Macroinvertebrates and environmental variables were sampled seasonally in winter, spring, summer and autumn of 2016 to 2018 in six selected sites, using the South African Scoring System version 5 as a collecting protocol. The sites were selected to represent a decreasing gradient of sediment influence from the highly impacted Sites 1 (Tsitsa upstream) 2 (Tsitsa downstream), and 3 (Qurana River) to moderately impacted Sites 4 (Millstream upstream) and 5 (Millstream downstream) and the least impacted Sites 6 (Pot River upstream), 7 (Little Pot River) and 8 (Pot River downstream), which were collectively referred to as the control sites. Analysis of basic physico-chemical variables, dissolved oxygen, pH, electrical conductivity, turbidity, total suspended solids, temperature and nutrients were undertaken seasonally over the study period. Sediments grain sizes were also analysed. All collected data were subjected to appropriate statistical tests – univariate and multivariate techniques. A fine-sediment-specific multimetric index was developed to monitor the impact of fine sediments on macroinvertebrate assemblages of the Tsitsa River and its tributaries. A total of 12 traits, resolved into 48 trait attributes, were selected to explore their distribution in relation to a fine-sediment stress gradient, and identify the trait-based signature of fine-sediment impact. A trait-based approach was then developed to classify South African macroinvertebrates into two groups: taxa that are potentially vulnerable to fine-sediment impact and those potentially resilient, based on the combination of traits possessed. Two-way analysis of variance (ANOVA) indicated that electrical conductivity, turbidity, embeddedness and total suspended solids were statistically significantly different between the sites. Apart from Dissolved oxygen, the remaining variables were statistically significantly lower at the control sites (P < 0.05). The two-way multivariate analysis of variance (MANOVA) indicated global significant differences between sites and seasons. The two-way MANOVA also revealed that the interaction between the sites and seasons were statistically significant. The MANOVA indicated global combined interactive effects across the sites for suspended fine-sediment grain sizes, two-way ANOVA, followed by a Tukey’s post-hoc test, was carried out to indicate where the significant differences lay. The one-way ANOVA results indicated that very fine sand, very coarse silt, medium silt, and fine silt were significantly higher at Tsitsa upstream, Tsitsa downstream, Qurana tributary that is at Millstream upstream, Millstream downstream and Control sites. The rest of the grain sizes did not differ statistically between the sites. In terms of the settled sediment grain sizes, the volumetric analysis did not show considerable differences across the sites. Settled fine-sediment grain sizes were evenly distributed across the sites. Statistically, MANOVA results indicated no significant differences across sites or across seasons. The developed Sediment Multimetric Index indicated that the sites in the Tsitsa River and those in the Qurana River were highly sedimented during the wet season, but became moderately sedimented during the dry season, indicating that the index responded to seasonality. The sediment multimetric index indicated that the control sites were less sedimented during both the wet season and dry seasons, suggesting minimal seasonal effects at the control sites. Traits such as an exposed and soft body, collector-filterers, shredding, feeding on coarse particulate organic matter and a high sensitivity to dissolved oxygen were identified as fine- sediment-sensitive indicator traits. Identified fine-sediment-tolerant traits and ecological preferences included complete sclerotisation, a cased/tubed body, a preference for fine particulate organic matter, a high tolerance to dissolved oxygen depletion, and climbing and skating behaviours. Regarding the trait-based approach followed for classifying macroinvertebrates into vulnerable taxa and resilient taxa, the results revealed that the relative abundance and richness of the vulnerable taxa decreased predictably along the increasing gradient of sediment impact. However, the relative abundance and richness of resilient taxa showed no marked response to the impact of an increasing gradient of fine sediments. Overall, the present study makes a contribution to the complementary application of trait-and taxonomy-based approaches to freshwater biomonitoring. The trait-based approach enables predictions to be made and tested based on the mechanistic understanding of the mediating roles of traits in organism- environment interaction. A fundamental challenge, which showcases the limitation of the current study, is the sparse trait data on Afrotropical macroinvertebrates at the species or generic levels. In this regard, the iv trait-based approaches developed here were the family level instead of species or genus. This is the first study in South Africa to develop explicit trait-based indicators of elevated fine sediments as well as an approach for predicting macroinvertebrate vulnerability and resilience to fine-sediment effects, thus advancing the science and practice of freshwater biomonitoring. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-08
Development of a hydraulic sub-model as part of a desktop environmental flow assessment method
- Authors: Desai, Ahmed Yacoob
- Date: 2012
- Subjects: Hydrologic models -- Research -- South Africa Hydraulic engineering -- South Africa Rivers -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6041 , http://hdl.handle.net/10962/d1006200
- Description: Countries around the world have been developing ecological policies to protect their water resources and minimise the impacts of development on their river systems. The concept of ‘minimum flows’ was initially established as a solution but it did not provide sufficient protection as all elements of a flow regime were found to be important for the protection of the river ecosystem. “Environmental flows” were developed to determine these flow regimes to maintain a river in some defined ecological condition. Rapid, initial estimates of the quantity component of environmental flows may be determined using the Desktop Reserve Model in South Africa. However, the Desktop Reserve Model is dependent upon the characteristics of the reference natural hydrology used. The advancements in hydraulic and ecological relationships from the past decade have prompted the development of a Revised Desktop Reserve Model (RDRM) that would incorporate these relationships. The research in this thesis presents the development of the hydraulic sub-model for the RDRM. The hydraulic sub-model was designed to produce a realistic representation of the hydraulic conditions using hydraulic parameters/characteristics from readily available information for any part of South Africa. Hydraulic data from past EWR studies were used to estimate the hydraulic parameters. These estimated hydraulic parameters were used to develop hydraulic estimation relationships and these relationships were developed based on a combination of regression and rule-based procedures. The estimation relationships were incorporated into the hydraulic sub-model of the integrated RDRM and assessments of the hydraulic outputs and EWR results were undertaken to assess the ‘applicability’ of the hydraulic sub-model. The hydraulic sub-model was assessed to be at a stage where it can satisfactorily be incorporated in the RDRM and that it is adequately robust in many situations. Recommendations for future work include the refinement of estimation of the channel forming discharge or the use of spatial imagery to check the maximum channel width estimation. It is also proposed that a future version of the hydraulic sub-model could include flow regime change impacts on channel geomorphology and sedimentology so that flow management scenarios can be more effectively assessed.
- Full Text:
- Date Issued: 2012
- Authors: Desai, Ahmed Yacoob
- Date: 2012
- Subjects: Hydrologic models -- Research -- South Africa Hydraulic engineering -- South Africa Rivers -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:6041 , http://hdl.handle.net/10962/d1006200
- Description: Countries around the world have been developing ecological policies to protect their water resources and minimise the impacts of development on their river systems. The concept of ‘minimum flows’ was initially established as a solution but it did not provide sufficient protection as all elements of a flow regime were found to be important for the protection of the river ecosystem. “Environmental flows” were developed to determine these flow regimes to maintain a river in some defined ecological condition. Rapid, initial estimates of the quantity component of environmental flows may be determined using the Desktop Reserve Model in South Africa. However, the Desktop Reserve Model is dependent upon the characteristics of the reference natural hydrology used. The advancements in hydraulic and ecological relationships from the past decade have prompted the development of a Revised Desktop Reserve Model (RDRM) that would incorporate these relationships. The research in this thesis presents the development of the hydraulic sub-model for the RDRM. The hydraulic sub-model was designed to produce a realistic representation of the hydraulic conditions using hydraulic parameters/characteristics from readily available information for any part of South Africa. Hydraulic data from past EWR studies were used to estimate the hydraulic parameters. These estimated hydraulic parameters were used to develop hydraulic estimation relationships and these relationships were developed based on a combination of regression and rule-based procedures. The estimation relationships were incorporated into the hydraulic sub-model of the integrated RDRM and assessments of the hydraulic outputs and EWR results were undertaken to assess the ‘applicability’ of the hydraulic sub-model. The hydraulic sub-model was assessed to be at a stage where it can satisfactorily be incorporated in the RDRM and that it is adequately robust in many situations. Recommendations for future work include the refinement of estimation of the channel forming discharge or the use of spatial imagery to check the maximum channel width estimation. It is also proposed that a future version of the hydraulic sub-model could include flow regime change impacts on channel geomorphology and sedimentology so that flow management scenarios can be more effectively assessed.
- Full Text:
- Date Issued: 2012
Ecological infrastructure importance for drought mitigation in rural South African catchments: the Cacadu Catchment case example
- Authors: Xoxo, Beauten Sinetemba
- Date: 2021-10
- Subjects: Sustainable Development Goals , Water security South Africa , Remote sensing , Watershed restoration South Africa , Restoration ecology South Africa , Ecosystem services South Africa , SDG 15.3.1
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/191203 , vital:45070
- Description: Water scarcity is recognised as one of the significant challenges facing many countries, including South Africa. The threat of water scarcity is exacerbated by the coupled impacts of climate and anthropogenic drivers. Ongoing droughts and continued land cover change and degradation influence the ability of catchments to partition rainwater runoff, thereby affecting streamflow returns. However, quantifying land degradation accurately remains a challenge. This thesis used the theoretical lens of investing in ecological infrastructure to improve the drought mitigation function in rural catchments. This theoretical framework allows for a social-ecological systems approach to understand and facilitate science-based strategies for promoting ecosystem recovery. Specifically, this study aimed to explore the role and benefit of ecological infrastructure for improving drought mitigation, and consequently, water security for rural communities. Thus, this study sought to assess the consequences of human actions to catchment health status using the 15th Sustainable Development Goal indicator for the proportion of degraded land over the total land area as a surrogate. Secondly, hydrological modelling was used to describe how different land covers influence catchment hydrology, which related to how ecological infrastructure enables drought risk-reduction for mitigation regulation. Finally, this study developed a spatial prioritisation plan for restoration to improve drought mitigation for four focal ecological infrastructure (EI) categories (i.e. wetlands, riparian margins, abandoned agricultural fields and grasslands). The focal EI categories were selected for their importance in delivering water-related ecosystem services when sustainably managed. Chapter 1 sets the scene (i.e. provides the study background) and Chapter 2 provides a review of the literature. In Chapter 3, the recently released global GIS toolbox (TRENDS.EARTH) was used for tracking land change and for assessing the SDG 15.3.1 degradation indicator of i.e. Cacadu catchment over 15 years at a 300 m resolution. The results showed a declining trend in biomass productivity within the Cacadu catchment led to moderate degradation, with 16.79% of the total landscape degraded, which was determined by the pugin using the one-out, all-out rule. The incidence of degradation was detected in middle reaches of the catchment (i.e. S10F-J), while some improvement was detected in upper reaches (S10A-C) and lower reaches (S10J). In Chapter 4, a GIS-based Analytic Hierarchical Process (AHP) based on community stakeholder priorities, open-access spatial datasets and expert opinions, was used to identify EI focal areas that are best suitable for restoration to increase the drought mitigation capacity of the Cacadu catchment. The collected datasets provided three broad criteria (ecosystem health, water provision and social benefit) for establishing the AHP model using 12 spatial attributes. Prioritisation results show that up to 89% of the Cacadu catchment is suitable for restoration to improve drought mitigation. Catchments S10B-D, and S10F, S10G and S10J were highly prioritised while S10A, S10E and S10H received low priority, due to improving environmental conditions and low hydrological potential. Areas that were prioritised with consideration for local livelihoods overlap the areas for drought mitigation and form a network of villages from the middle to lower catchment reaches. Prioritised restoration areas with a consideration of societal benefit made up 0.56% of wetlands, 4.27% of riparian margins, 92.06% of abandoned croplands, and 51.86% of grasslands. Chapter 5 reports on use of the Pitman groundwater model to help understand the influence of land modification on catchment hydrology, and highlight the role of restoration interventions. The Cacadu catchment is ungauged, therefore the neighbouring Indwe catchment was used for parameter transfer through a spatial regionalisation technique. Results suggest that degradation increases surface runoff and aggravates recharge reduction, thereby reducing streamflow during low flow periods. In areas where there is natural land cover recovery, the Pitman Model simulated similar dry season streamflow to the natural land cover. Combining the outcomes from the three assessments allowed the study to highlight the role and benefits of ecological infrastructure in terms of drought mitigation. Study findings were interpreted to make recommendations for the role and benefit of ecological infrastructure for drought mitigation at a landscape scale and tertiary catchment level, within the context of available management options. The results support the notion that multiple science data sources can promote investments in ecological infrastructure. However, better spatial and temporal resolution datasets at a national level are still needed to improve the accuracy of studies such as the one outlined in this thesis. The study recommends adopting better ecosystem protection approaches and collaborative governance at multiple levels to reduce the vulnerability of rural communities to drought impacts. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2021
- Full Text:
- Date Issued: 2021-10
- Authors: Xoxo, Beauten Sinetemba
- Date: 2021-10
- Subjects: Sustainable Development Goals , Water security South Africa , Remote sensing , Watershed restoration South Africa , Restoration ecology South Africa , Ecosystem services South Africa , SDG 15.3.1
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/191203 , vital:45070
- Description: Water scarcity is recognised as one of the significant challenges facing many countries, including South Africa. The threat of water scarcity is exacerbated by the coupled impacts of climate and anthropogenic drivers. Ongoing droughts and continued land cover change and degradation influence the ability of catchments to partition rainwater runoff, thereby affecting streamflow returns. However, quantifying land degradation accurately remains a challenge. This thesis used the theoretical lens of investing in ecological infrastructure to improve the drought mitigation function in rural catchments. This theoretical framework allows for a social-ecological systems approach to understand and facilitate science-based strategies for promoting ecosystem recovery. Specifically, this study aimed to explore the role and benefit of ecological infrastructure for improving drought mitigation, and consequently, water security for rural communities. Thus, this study sought to assess the consequences of human actions to catchment health status using the 15th Sustainable Development Goal indicator for the proportion of degraded land over the total land area as a surrogate. Secondly, hydrological modelling was used to describe how different land covers influence catchment hydrology, which related to how ecological infrastructure enables drought risk-reduction for mitigation regulation. Finally, this study developed a spatial prioritisation plan for restoration to improve drought mitigation for four focal ecological infrastructure (EI) categories (i.e. wetlands, riparian margins, abandoned agricultural fields and grasslands). The focal EI categories were selected for their importance in delivering water-related ecosystem services when sustainably managed. Chapter 1 sets the scene (i.e. provides the study background) and Chapter 2 provides a review of the literature. In Chapter 3, the recently released global GIS toolbox (TRENDS.EARTH) was used for tracking land change and for assessing the SDG 15.3.1 degradation indicator of i.e. Cacadu catchment over 15 years at a 300 m resolution. The results showed a declining trend in biomass productivity within the Cacadu catchment led to moderate degradation, with 16.79% of the total landscape degraded, which was determined by the pugin using the one-out, all-out rule. The incidence of degradation was detected in middle reaches of the catchment (i.e. S10F-J), while some improvement was detected in upper reaches (S10A-C) and lower reaches (S10J). In Chapter 4, a GIS-based Analytic Hierarchical Process (AHP) based on community stakeholder priorities, open-access spatial datasets and expert opinions, was used to identify EI focal areas that are best suitable for restoration to increase the drought mitigation capacity of the Cacadu catchment. The collected datasets provided three broad criteria (ecosystem health, water provision and social benefit) for establishing the AHP model using 12 spatial attributes. Prioritisation results show that up to 89% of the Cacadu catchment is suitable for restoration to improve drought mitigation. Catchments S10B-D, and S10F, S10G and S10J were highly prioritised while S10A, S10E and S10H received low priority, due to improving environmental conditions and low hydrological potential. Areas that were prioritised with consideration for local livelihoods overlap the areas for drought mitigation and form a network of villages from the middle to lower catchment reaches. Prioritised restoration areas with a consideration of societal benefit made up 0.56% of wetlands, 4.27% of riparian margins, 92.06% of abandoned croplands, and 51.86% of grasslands. Chapter 5 reports on use of the Pitman groundwater model to help understand the influence of land modification on catchment hydrology, and highlight the role of restoration interventions. The Cacadu catchment is ungauged, therefore the neighbouring Indwe catchment was used for parameter transfer through a spatial regionalisation technique. Results suggest that degradation increases surface runoff and aggravates recharge reduction, thereby reducing streamflow during low flow periods. In areas where there is natural land cover recovery, the Pitman Model simulated similar dry season streamflow to the natural land cover. Combining the outcomes from the three assessments allowed the study to highlight the role and benefits of ecological infrastructure in terms of drought mitigation. Study findings were interpreted to make recommendations for the role and benefit of ecological infrastructure for drought mitigation at a landscape scale and tertiary catchment level, within the context of available management options. The results support the notion that multiple science data sources can promote investments in ecological infrastructure. However, better spatial and temporal resolution datasets at a national level are still needed to improve the accuracy of studies such as the one outlined in this thesis. The study recommends adopting better ecosystem protection approaches and collaborative governance at multiple levels to reduce the vulnerability of rural communities to drought impacts. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2021
- Full Text:
- Date Issued: 2021-10