Photophysical studies of Zinc phthalocyanine-silica nanoparticles conjugates
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
Preparation and evaluation of Lignocellulose-Montmorillonite nanocomposites for the adsorption of some heavy metals and organic dyes from aqueous solution
- Authors: Bunhu, Tavengwa
- Date: 2011
- Subjects: Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11333 , http://hdl.handle.net/10353/535 , Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Description: The need to reduce the cost of adsorption technology has led scientists to explore the use of many low cost adsorbents especially those from renewable resources. Lignocellulose and montmorillonite clay have been identified as potentially low cost and efficient adsorbent materials for the removal of toxic heavy metals and organic substances from contaminated water. Montmorillonite clay has good adsorption properties and the potential for ion exchange. Lignocellulose possesses many hydroxyl, carbonyl and phenyl groups and therefore, both montmorillonite and lignocellulose are good candidates for the development of effective and low cost adsorbents in water treatment and purification. The aim of this study was to prepare composite materials based on lignocellulose and montmorillonite clay and subsequently evaluate their efficacy as adsorbents for heavy metal species and organic pollutants in aqueous solution. It was also important to assess the adsorption properties of the modified individual (uncombined) lignocellulose and montmorillonite. Lignocellulose and sodium-exchanged montmorillonite (NaMMT) clay were each separately modified with methyl methacrylate (MMA), methacrylic acid (MAA) and methacryloxypropyl trimethoxysilane (MPS) and used as adsorbents for the removal of heavy metals and dyes from aqueous solution. The lignocellulose and NaMMT were modified with MMA, MAA and MPS through free radical graft polymerisation and/or condensation reactions. NaMMT was also modified through Al-pillaring to give AlpMMT. The materials were characterised by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS) and characterisation results showed that the modification of the montmorillonite with MAA, MMA and MPS was successful. The modified lignocellulose and montmorillonite materials were evaluated for the adsorption of heavy metal ions (Cd2+ and Pb2+) from aqueous solution by the batch method. The adsorption isotherms and kinetics of both Cd2+ and Pb2+ onto the NaMMT clay, AlpMMT and lignocellulose materials are presented. The Langmuir isotherm was found to be the best fit for the adsorption of both heavy metals onto all the adsorbents. AlpMMT showed very poor uptake for heavy metals (both Cd2+ and Pb2+). PMMAgMMT, PMAAgMMT, PMAAgLig and PMPSgLig showed improved adsorption for both heavy metals. The mechanism of heavy metal adsorption onto the adsorbents was best represented by the pseudo second-order kinetic model. PMPSgLig, NaMMT and AlpMMT showed relatively high adsorption capacities for methyl orange, while the adsorption of neutral red was comparable for almost all the adsorbents. Neither the Langmuir model nor the Freundlich model was found to v adequately describe the adsorption process of dyes onto all the adsorbents. The pseudo second-order model was found to be the best fit to describe the adsorption mechanism of both dyes onto all the adsorbents. The modification of lignocellulose and montmorillonite with suitable organic groups can potentially produce highly effective and efficient adsorbents for the removal of both heavy metals and dyes from contaminated water. Novel adsorbent composite materials based on lignocellulose and montmorillonite clay (NaMMT) were also prepared and evaluated for the removal of pollutants (dyes and heavy metals) from aqueous solution. The lignocellulose-montmorillonite composites were prepared by in situ intercalative polymerisation, using methyl methacrylate, methacrylic acid and methacryloxypropyl trimethoxysilane (MPS) as coupling agents. The composite materials were characterised by FTIR, TGA, TEM and SAXS. SAXS diffractograms showed intercalated nanocomposites of PMMAgLig-NaMMT and PMAAgLig-NaMMT, whereas PMPSgLig-NaMMT showed a phase-separated composite and the same results were confirmed by TEM. The lignocellulose-montmorillonite composites were assessed for their adsorption properties for heavy metal ions (Cd2+ and Pb2+) and dyes (methyl orange and neutral red) from aqueous solution. Among these composite materials, only PMAAgLig-NaMMT showed a marked increase in the uptake of both Cd2+ and Pb2+ relative to lignocellulose and montmorillonite when used independently. The adsorption data were fitted to the Langmuir and Freundlich isotherms, as well as to the pseudo first-order and pseudo second-order kinetic models. The data were best described by the Langmuir isotherm and the pseudo second-order kinetic model. On the adsorption of dyes, only PMPSgLig-NaMMT showed enhanced adsorption of methyl orange (MetO) compared with lignocellulose and montmorillonite separately. The enhanced adsorption was attributed to the synergistic adsorption due to the presence of MPS, lignocellulose and NaMMT. Competitive adsorption studies were carried out from binary mixtures of MetO and Cd2+ or Pb2+ in aqueous solution. The adsorption process of MetO onto the composite material was found to follow the Freundlich adsorption model, while the mechanism of adsorption followed both the pseudo first-order and pseudo second-order models. This particular composite can be used for the simultaneous adsorption of both heavy metals and organic dyes from contaminated water. The adsorption of neutral red to the composite materials was comparable and the pseudo second-order kinetic model best described the adsorption mechanism.
- Full Text:
- Date Issued: 2011
- Authors: Bunhu, Tavengwa
- Date: 2011
- Subjects: Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11333 , http://hdl.handle.net/10353/535 , Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Description: The need to reduce the cost of adsorption technology has led scientists to explore the use of many low cost adsorbents especially those from renewable resources. Lignocellulose and montmorillonite clay have been identified as potentially low cost and efficient adsorbent materials for the removal of toxic heavy metals and organic substances from contaminated water. Montmorillonite clay has good adsorption properties and the potential for ion exchange. Lignocellulose possesses many hydroxyl, carbonyl and phenyl groups and therefore, both montmorillonite and lignocellulose are good candidates for the development of effective and low cost adsorbents in water treatment and purification. The aim of this study was to prepare composite materials based on lignocellulose and montmorillonite clay and subsequently evaluate their efficacy as adsorbents for heavy metal species and organic pollutants in aqueous solution. It was also important to assess the adsorption properties of the modified individual (uncombined) lignocellulose and montmorillonite. Lignocellulose and sodium-exchanged montmorillonite (NaMMT) clay were each separately modified with methyl methacrylate (MMA), methacrylic acid (MAA) and methacryloxypropyl trimethoxysilane (MPS) and used as adsorbents for the removal of heavy metals and dyes from aqueous solution. The lignocellulose and NaMMT were modified with MMA, MAA and MPS through free radical graft polymerisation and/or condensation reactions. NaMMT was also modified through Al-pillaring to give AlpMMT. The materials were characterised by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS) and characterisation results showed that the modification of the montmorillonite with MAA, MMA and MPS was successful. The modified lignocellulose and montmorillonite materials were evaluated for the adsorption of heavy metal ions (Cd2+ and Pb2+) from aqueous solution by the batch method. The adsorption isotherms and kinetics of both Cd2+ and Pb2+ onto the NaMMT clay, AlpMMT and lignocellulose materials are presented. The Langmuir isotherm was found to be the best fit for the adsorption of both heavy metals onto all the adsorbents. AlpMMT showed very poor uptake for heavy metals (both Cd2+ and Pb2+). PMMAgMMT, PMAAgMMT, PMAAgLig and PMPSgLig showed improved adsorption for both heavy metals. The mechanism of heavy metal adsorption onto the adsorbents was best represented by the pseudo second-order kinetic model. PMPSgLig, NaMMT and AlpMMT showed relatively high adsorption capacities for methyl orange, while the adsorption of neutral red was comparable for almost all the adsorbents. Neither the Langmuir model nor the Freundlich model was found to v adequately describe the adsorption process of dyes onto all the adsorbents. The pseudo second-order model was found to be the best fit to describe the adsorption mechanism of both dyes onto all the adsorbents. The modification of lignocellulose and montmorillonite with suitable organic groups can potentially produce highly effective and efficient adsorbents for the removal of both heavy metals and dyes from contaminated water. Novel adsorbent composite materials based on lignocellulose and montmorillonite clay (NaMMT) were also prepared and evaluated for the removal of pollutants (dyes and heavy metals) from aqueous solution. The lignocellulose-montmorillonite composites were prepared by in situ intercalative polymerisation, using methyl methacrylate, methacrylic acid and methacryloxypropyl trimethoxysilane (MPS) as coupling agents. The composite materials were characterised by FTIR, TGA, TEM and SAXS. SAXS diffractograms showed intercalated nanocomposites of PMMAgLig-NaMMT and PMAAgLig-NaMMT, whereas PMPSgLig-NaMMT showed a phase-separated composite and the same results were confirmed by TEM. The lignocellulose-montmorillonite composites were assessed for their adsorption properties for heavy metal ions (Cd2+ and Pb2+) and dyes (methyl orange and neutral red) from aqueous solution. Among these composite materials, only PMAAgLig-NaMMT showed a marked increase in the uptake of both Cd2+ and Pb2+ relative to lignocellulose and montmorillonite when used independently. The adsorption data were fitted to the Langmuir and Freundlich isotherms, as well as to the pseudo first-order and pseudo second-order kinetic models. The data were best described by the Langmuir isotherm and the pseudo second-order kinetic model. On the adsorption of dyes, only PMPSgLig-NaMMT showed enhanced adsorption of methyl orange (MetO) compared with lignocellulose and montmorillonite separately. The enhanced adsorption was attributed to the synergistic adsorption due to the presence of MPS, lignocellulose and NaMMT. Competitive adsorption studies were carried out from binary mixtures of MetO and Cd2+ or Pb2+ in aqueous solution. The adsorption process of MetO onto the composite material was found to follow the Freundlich adsorption model, while the mechanism of adsorption followed both the pseudo first-order and pseudo second-order models. This particular composite can be used for the simultaneous adsorption of both heavy metals and organic dyes from contaminated water. The adsorption of neutral red to the composite materials was comparable and the pseudo second-order kinetic model best described the adsorption mechanism.
- Full Text:
- Date Issued: 2011
The development of platinum and palladium-selective polymeric materials
- Authors: Fayemi, Omolola Esther
- Date: 2013 , 2013-05-03
- Subjects: Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4287 , http://hdl.handle.net/10962/d1002964 , Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species (PtCl₆²⁻ and PdCl₄²⁻) on polystyrene-based beads and nanofibers as well as silica microparticles functionalized with polyamine centres derived from ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) is described. The functionalized sorbent materials were characterized by using microanalysis, SEM, XPS, BET and FTIR. The nanofiber sorbent material functionalized with ethylenediamine (F-EDA) had the highest loading capacity which was attributed to its high nitrogen content (10.83%) and larger surface area (241.3m²/g). The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies in 1 M HCI. The adsorption studies for both PtCl₆²⁻ and PdCl₄²⁻ on the polystyrene-based sorbent materials fit the Langmuir isotherm while the silica-based sorbents fitted the Freundlich isotherm with R² values > 0.99. In the column experiment the highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively on the nanofiber sorbent material based on ethylenediamine (EDA). The polystyrene and silica-based resins with triethylenetetramine (TETA) functionality (M-TETA and S-TETA) showed selectivity for platinum and palladium, respectively. Metal chlorido complexes loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as teh eluting agent with quantitative desorption efficiency under the selected experimental conditions. The separation of platinum from palladium was partially achieved by selective stripping of PtCl₆²⁻ with 0.5 M of NaClO₄ in 1.0 M HCI with PdCl₄²⁻ was eluted with 0.5 M thiourea in 1.0 M HCI. The selectivity of the M-TETA and S-TETA sorbent materials was proved by column separation of platinum(IV) and palladium(II), respectively, from synthetic solutions containing iridium(IV) and rhodium(III). The loading capacity for platinum on M-TETA was 0.09 mg/g while it was 0.27 mg/g for palladium on S-TETA. , Acrobat PDFMaker 10.1 for Word , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
- Authors: Fayemi, Omolola Esther
- Date: 2013 , 2013-05-03
- Subjects: Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4287 , http://hdl.handle.net/10962/d1002964 , Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species (PtCl₆²⁻ and PdCl₄²⁻) on polystyrene-based beads and nanofibers as well as silica microparticles functionalized with polyamine centres derived from ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) is described. The functionalized sorbent materials were characterized by using microanalysis, SEM, XPS, BET and FTIR. The nanofiber sorbent material functionalized with ethylenediamine (F-EDA) had the highest loading capacity which was attributed to its high nitrogen content (10.83%) and larger surface area (241.3m²/g). The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies in 1 M HCI. The adsorption studies for both PtCl₆²⁻ and PdCl₄²⁻ on the polystyrene-based sorbent materials fit the Langmuir isotherm while the silica-based sorbents fitted the Freundlich isotherm with R² values > 0.99. In the column experiment the highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively on the nanofiber sorbent material based on ethylenediamine (EDA). The polystyrene and silica-based resins with triethylenetetramine (TETA) functionality (M-TETA and S-TETA) showed selectivity for platinum and palladium, respectively. Metal chlorido complexes loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as teh eluting agent with quantitative desorption efficiency under the selected experimental conditions. The separation of platinum from palladium was partially achieved by selective stripping of PtCl₆²⁻ with 0.5 M of NaClO₄ in 1.0 M HCI with PdCl₄²⁻ was eluted with 0.5 M thiourea in 1.0 M HCI. The selectivity of the M-TETA and S-TETA sorbent materials was proved by column separation of platinum(IV) and palladium(II), respectively, from synthetic solutions containing iridium(IV) and rhodium(III). The loading capacity for platinum on M-TETA was 0.09 mg/g while it was 0.27 mg/g for palladium on S-TETA. , Acrobat PDFMaker 10.1 for Word , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
A conductimetric investigation of phenomena in extremely dilute aqueous solutions
- Authors: Faure, Pierre Knobel
- Date: 1957
- Subjects: Adsorption , Solution (Chemistry)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4524 , http://hdl.handle.net/10962/d1014891
- Description: 1. The apparatus used in this investigation is fully described, and a new method is outlined for the calibration of bridge resistances "in situ". 2. A chart is given for the accurate correction of weights in air to weights in vacuum for a range of temperatures extending from 10° to 28°C, and for pressures from 690 to 730 mm. 3. An automatic recycling still has been designed for the continuous production of "ultra-pure" water. This still is capable of delivering daily, in routine operation, 16 l. of water of conductivity less than 100 nm/cm after aeration with "C0₂- and NH₃-free" air. 4. A very soluble layer appears to form on the surface of' glass when it is dried; this layer is readily removed on contact with water. 5. The removal of carbon dioxide and of ammonia from aqueous solution by aeration with an indifferent gas has been fully investigated, and it has been shown that these gases can be completely eliminated by such a process. Whereas the carbon dioxide is removed fairly rapidly, however, the ammonia, whether present alone or together with carbon dioxide, only goes out of solution rather slowly. 6. It has been shown that ammonia is adsorbed from aqueous solution on the glass walls of the cell. 7. There does not appear to be any ammonium bicarbonate in the residual impurity left in the "ultra-pure" water obtained from the still; the impurity can, in fact, be regarded as neutral salt with sufficient accuracy for most purposes. 8. The resistance change which accompanies any variation in the rate of bubbling of the stirring gas through the water has been investigated, but no solution has been found as to the cause of this change. 9. A comparison has been made of the efficiency of different gases for stirring purposes, and it seems that, for general work, nitrogen is by far the most suitable of the common gases. 10. The extrapolation to be used for converting resistances to their values at infinite frequency appears ...
- Full Text:
- Date Issued: 1957
- Authors: Faure, Pierre Knobel
- Date: 1957
- Subjects: Adsorption , Solution (Chemistry)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4524 , http://hdl.handle.net/10962/d1014891
- Description: 1. The apparatus used in this investigation is fully described, and a new method is outlined for the calibration of bridge resistances "in situ". 2. A chart is given for the accurate correction of weights in air to weights in vacuum for a range of temperatures extending from 10° to 28°C, and for pressures from 690 to 730 mm. 3. An automatic recycling still has been designed for the continuous production of "ultra-pure" water. This still is capable of delivering daily, in routine operation, 16 l. of water of conductivity less than 100 nm/cm after aeration with "C0₂- and NH₃-free" air. 4. A very soluble layer appears to form on the surface of' glass when it is dried; this layer is readily removed on contact with water. 5. The removal of carbon dioxide and of ammonia from aqueous solution by aeration with an indifferent gas has been fully investigated, and it has been shown that these gases can be completely eliminated by such a process. Whereas the carbon dioxide is removed fairly rapidly, however, the ammonia, whether present alone or together with carbon dioxide, only goes out of solution rather slowly. 6. It has been shown that ammonia is adsorbed from aqueous solution on the glass walls of the cell. 7. There does not appear to be any ammonium bicarbonate in the residual impurity left in the "ultra-pure" water obtained from the still; the impurity can, in fact, be regarded as neutral salt with sufficient accuracy for most purposes. 8. The resistance change which accompanies any variation in the rate of bubbling of the stirring gas through the water has been investigated, but no solution has been found as to the cause of this change. 9. A comparison has been made of the efficiency of different gases for stirring purposes, and it seems that, for general work, nitrogen is by far the most suitable of the common gases. 10. The extrapolation to be used for converting resistances to their values at infinite frequency appears ...
- Full Text:
- Date Issued: 1957
- «
- ‹
- 1
- ›
- »