Metallophthalocyanines linked to metal nanoparticles and folic acid for use in photodynamic therapy of cancer and photoinactivation of bacterial microorganisms.
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
Synthesis and physicochemical evaluation of a series of boron dipyrromethene dye derivatives for potential utility in antimicrobial photodynamic therapy and nonlinear optics
- Authors: Kubheka, Gugu Patience
- Date: 2017
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Nonlinear optics , BODIPY
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4776 , vital:20723
- Description: A series of new BODIPY dye derivatives have been synthesized and characterized using various characterization tools such as 1H-NMR, MALDI-TOF mass spectrometry, FT-IR, UV-visible spectrophotometry and elemental analysis. The aniline-substituted BODIPY derivative was further coordinated with gold nanorods and the characterization was achieved by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS).In addition to this dye, quaternized BODIPY dyes were also synthesized and investigated for their potential utility as photosentitizers in antimicrobial photodynamic therapy (APDT).BODIPY dyes with pyrene substituted styryl groups were embedded in polymer thin film using poly(bisphenol A carbonate) (PBC) to study their optical limiting properties. The optical limiting values of these BODIPY dyes once embedded in thin films were found to be greatly improved and the limiting intensityof each film was well below the maximum threshold which is set to be 0.95 J.cm-². The physicochemical properties and NLO parameters of all of the synthesized dyes were investigated.
- Full Text:
- Date Issued: 2017
- Authors: Kubheka, Gugu Patience
- Date: 2017
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Nonlinear optics , BODIPY
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4776 , vital:20723
- Description: A series of new BODIPY dye derivatives have been synthesized and characterized using various characterization tools such as 1H-NMR, MALDI-TOF mass spectrometry, FT-IR, UV-visible spectrophotometry and elemental analysis. The aniline-substituted BODIPY derivative was further coordinated with gold nanorods and the characterization was achieved by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS).In addition to this dye, quaternized BODIPY dyes were also synthesized and investigated for their potential utility as photosentitizers in antimicrobial photodynamic therapy (APDT).BODIPY dyes with pyrene substituted styryl groups were embedded in polymer thin film using poly(bisphenol A carbonate) (PBC) to study their optical limiting properties. The optical limiting values of these BODIPY dyes once embedded in thin films were found to be greatly improved and the limiting intensityof each film was well below the maximum threshold which is set to be 0.95 J.cm-². The physicochemical properties and NLO parameters of all of the synthesized dyes were investigated.
- Full Text:
- Date Issued: 2017
The preparation of BODIPY and porphyrin dyes and their cyclodextrin inclusion complexes and Pluronic® F-127 encapsulation micelles for use in PDT and PACT
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
Photophysicochemical properties of aluminium phthalocyanine-platinum conjugates
- Authors: Malinga, Nduduzo Nkanyiso
- Date: 2013 , 2013-04-05
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Aluminium , Platinum , Nanoparticles , Cancer -- Photochemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4285 , http://hdl.handle.net/10962/d1002954 , Phthalocyanines , Photochemistry , Photochemotherapy , Aluminium , Platinum , Nanoparticles , Cancer -- Photochemotherapy
- Description: The combination of chemotherapy and photodynamic therapy was investigated by synthesis and characterization of octacarboxy phthalocyanine covalent conjugates with platinum complexes. This work presents the synthesis, characterization and photophysicochemical properties of aluminium (diaquaplatinum) octacarboxyphthalocyanine and aluminium (diammine) octacarboxyphthalocyanine. The conjugates were prepared by conjugating aluminium octacarboxy phthalocyanine with potassium tetrachloro platinate to yield aluminium tetrakis and trikis (diaquaplatinum) octacarboxy phthalocyanine. The aluminium octacarboxy phthalocyanine was also conjugated with cis-diamminedichloroplatinum to yield aluminium bis and tris (diaquaplatinum) octacarboxy phthalocyanine. From the characterization of the conjugates it was discovered that the aluminium (diaquaplatinum) octacarboxy phthalocyanine had formed platinum nanoparticles with the Pc acting as a capping agent. The triplet lifetimes decreased with the increasing number of platinum complexesconjugated to the Pc. The heavy atom effect improved the overall photophysicochemical properties.
- Full Text:
- Date Issued: 2013
- Authors: Malinga, Nduduzo Nkanyiso
- Date: 2013 , 2013-04-05
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Aluminium , Platinum , Nanoparticles , Cancer -- Photochemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4285 , http://hdl.handle.net/10962/d1002954 , Phthalocyanines , Photochemistry , Photochemotherapy , Aluminium , Platinum , Nanoparticles , Cancer -- Photochemotherapy
- Description: The combination of chemotherapy and photodynamic therapy was investigated by synthesis and characterization of octacarboxy phthalocyanine covalent conjugates with platinum complexes. This work presents the synthesis, characterization and photophysicochemical properties of aluminium (diaquaplatinum) octacarboxyphthalocyanine and aluminium (diammine) octacarboxyphthalocyanine. The conjugates were prepared by conjugating aluminium octacarboxy phthalocyanine with potassium tetrachloro platinate to yield aluminium tetrakis and trikis (diaquaplatinum) octacarboxy phthalocyanine. The aluminium octacarboxy phthalocyanine was also conjugated with cis-diamminedichloroplatinum to yield aluminium bis and tris (diaquaplatinum) octacarboxy phthalocyanine. From the characterization of the conjugates it was discovered that the aluminium (diaquaplatinum) octacarboxy phthalocyanine had formed platinum nanoparticles with the Pc acting as a capping agent. The triplet lifetimes decreased with the increasing number of platinum complexesconjugated to the Pc. The heavy atom effect improved the overall photophysicochemical properties.
- Full Text:
- Date Issued: 2013
Photophysicochemical and photodynamic antimicrobial chemotherapeutic studies of novel phthalocyanines conjugated to silver nanoparticles
- Authors: Rapulenyane, Nomasonto
- Date: 2013 , 2013-06-10
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4291 , http://hdl.handle.net/10962/d1003912 , Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Description: This work reports on the synthesis, characterization and the physicochemical properties of novel unsymmetrically substituted zinc phthalocyanines: namely tris{11,19, 27-(1,2- diethylaminoethylthiol)-2-(captopril) phthalocyanine Zn ((ZnMCapPc (1.5)), hexakis{8,11,16,19,42,27-(octylthio)-1-(4-phenoxycarboxy) phthalocyanine} Zn (ZnMPCPc(1.7)) and Tris {11, 19, 27-(1,2-diethylaminoethylthiol)-1,2(caffeic acid) phthalocyanine} Zn ((ZnMCafPc (1.3)). Symmetrically substituted counterparts (tetrakis(diethylamino)zinc phthalocyaninato (3.8), octakis(octylthio)zinc phthalocyaninato (3.9) and tetrakis (carboxyphenoxy)zinc phthalocyaninato (3.10) complexes) were also synthesized for comparison of the photophysicochemical properties and to investigate the effect of the substituents on the low symmetry Pcs. The complexes were successfully characterized by IR, NMR, mass spectral and elemental analyses. All the complexes showed the ability to produce singlet oxygen, while the highest triplet quantum yields were obtained for 1.7, 1.5 and 3.9 (0.80, 0.65 and 0.62 respectively and the lowest were obtained for 1.3 and 3.10 (0.57 and 0.47 respectively). High triplet lifetimes (109-286 μs) were also obtained for all complexes, with 1.7 being the highest (286 μs) which also corresponds to its triplet and singlet quantum yields (0.80 and 0.77 respectively). The photosensitizing properties of low symmetry derivatives, ZnMCapPc and ZnMCafPc were investigated by conjugating glutathione (GSH) capped silver nanoparticles (AgNP). The formation of the amide bond was confirmed by IR and UV-Vis spectroscopies. The photophysicochemical behaviour of the novel phthalocyanine-GSH-AgNP conjugates and the simple mixture of the Ag NPs with low the symmetry phthalocyanines were investigated. It was observed that upon conjugation of the phthalocyanines to the GSH-AgNPs, a blue shift in the Q band was induced. The triplet lifetimes and quantum yields improved upon conjugation as compared to the phthalocyanines (Pc) alone. Complex 1.5 triplet lifetimes increased from 109 to 148 and triplet quantum yield from 0.65 to 0.86 upon conjugation. Fluorescence lifetimes and quantum yields decreased for the conjugates compared to the phthalocyanines alone, due to the quenching caused by the Ag NPs. The antimicrobial activity of the zinc phthalocyanines (complexes 1.3 and 1.5) and their conjugates against Escherichia coli was investigated. Only 1.3 and 1.5 complexes were investigated because of the availability of the sample. In general phthalocyanines showed increase in antibacterial activity with the increase in phthalocyanines concentration in the presence and absence of light. The Pc complexes and their Ag NP conjugates showed an increase in antibacterial activity, due to the synergistic effect afforded by Ag NP and Pcs. Improved antibacterial properties were obtained upon irradiation. 1.5-AgNPs had the highest antibacterial activity compared to 1.3-AgNPs conjugate; these results are in agreement with the photophysical behaviour. This work demonstrates improved photophysicochemical properties of low symm
- Full Text:
- Date Issued: 2013
- Authors: Rapulenyane, Nomasonto
- Date: 2013 , 2013-06-10
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4291 , http://hdl.handle.net/10962/d1003912 , Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Description: This work reports on the synthesis, characterization and the physicochemical properties of novel unsymmetrically substituted zinc phthalocyanines: namely tris{11,19, 27-(1,2- diethylaminoethylthiol)-2-(captopril) phthalocyanine Zn ((ZnMCapPc (1.5)), hexakis{8,11,16,19,42,27-(octylthio)-1-(4-phenoxycarboxy) phthalocyanine} Zn (ZnMPCPc(1.7)) and Tris {11, 19, 27-(1,2-diethylaminoethylthiol)-1,2(caffeic acid) phthalocyanine} Zn ((ZnMCafPc (1.3)). Symmetrically substituted counterparts (tetrakis(diethylamino)zinc phthalocyaninato (3.8), octakis(octylthio)zinc phthalocyaninato (3.9) and tetrakis (carboxyphenoxy)zinc phthalocyaninato (3.10) complexes) were also synthesized for comparison of the photophysicochemical properties and to investigate the effect of the substituents on the low symmetry Pcs. The complexes were successfully characterized by IR, NMR, mass spectral and elemental analyses. All the complexes showed the ability to produce singlet oxygen, while the highest triplet quantum yields were obtained for 1.7, 1.5 and 3.9 (0.80, 0.65 and 0.62 respectively and the lowest were obtained for 1.3 and 3.10 (0.57 and 0.47 respectively). High triplet lifetimes (109-286 μs) were also obtained for all complexes, with 1.7 being the highest (286 μs) which also corresponds to its triplet and singlet quantum yields (0.80 and 0.77 respectively). The photosensitizing properties of low symmetry derivatives, ZnMCapPc and ZnMCafPc were investigated by conjugating glutathione (GSH) capped silver nanoparticles (AgNP). The formation of the amide bond was confirmed by IR and UV-Vis spectroscopies. The photophysicochemical behaviour of the novel phthalocyanine-GSH-AgNP conjugates and the simple mixture of the Ag NPs with low the symmetry phthalocyanines were investigated. It was observed that upon conjugation of the phthalocyanines to the GSH-AgNPs, a blue shift in the Q band was induced. The triplet lifetimes and quantum yields improved upon conjugation as compared to the phthalocyanines (Pc) alone. Complex 1.5 triplet lifetimes increased from 109 to 148 and triplet quantum yield from 0.65 to 0.86 upon conjugation. Fluorescence lifetimes and quantum yields decreased for the conjugates compared to the phthalocyanines alone, due to the quenching caused by the Ag NPs. The antimicrobial activity of the zinc phthalocyanines (complexes 1.3 and 1.5) and their conjugates against Escherichia coli was investigated. Only 1.3 and 1.5 complexes were investigated because of the availability of the sample. In general phthalocyanines showed increase in antibacterial activity with the increase in phthalocyanines concentration in the presence and absence of light. The Pc complexes and their Ag NP conjugates showed an increase in antibacterial activity, due to the synergistic effect afforded by Ag NP and Pcs. Improved antibacterial properties were obtained upon irradiation. 1.5-AgNPs had the highest antibacterial activity compared to 1.3-AgNPs conjugate; these results are in agreement with the photophysical behaviour. This work demonstrates improved photophysicochemical properties of low symm
- Full Text:
- Date Issued: 2013
Donor-acceptor effects on the optical limiting properties of BODIPY dyes
- Authors: Hlatshwayo, Zweli Thabiso
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Photosensitizing compounds -- Therapeutic use , Cancer -- Photochemotherapy , Upconversion nanoparticles (UCNPs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63368 , vital:28397
- Description: The main objectives of the research described in this thesis were firstly to synthesize and characterize a series of structurally related BODIPY dyes that are potentially suitable for use in applications, secondly to conjugate a carboxylic acid substituted BODIPY dye to amine-functionalized upconversion nanoparticles (UCNPs) through an amide bond to enable singlet oxygen production upon irradiation at 978 nm in the biological window for tissue penetration for biomedical applications, and thirdly to compare the nonlinear optical (NLO) properties of various BODIPY dyes to determine whether push-pull effects enhance their utility for optical limiting (OL) applications. Halogenated BODIPY cores with high singlet oxygen quantum yields were prepared, which absorb in the green portion of the visible region and making it difficult to treat deeper skin tumors in the context of photodynamic therapy (PDT) applications. UCNPs generally absorb in the near-infrared (NIR) region (978 nm), and this is advantageous because, this is where absorption by water, cells and tissues is minimized. NaYF4: Yb/Er/Gd UCNPs were synthesized, amine functionalized and successfully conjugated to a halogenated carboxylic acid functionalized BODIPY. This allowed for favorable Förster resonance energy transfer (FRET) since one of the emission wavelengths of the NaYF4: Yb/Er/Gd UCNPs overlaps with the main absorption band of the BODIPY at 540 nm. The conjugate was irradiated at 978 nm, but instability of the BODIPY dye was observed, which made singlet oxygen quantum yield determination impossible. An enhanced singlet oxygen quantum yield value was observed upon irradiation of the conjugate at 540 nm, suggesting that further studies of this system are warranted. The OL properties of BODIPY cores and dyes, which are π-extended at the 3,5-positions with styryl groups, were studied in a series of different organic solvents at 532 nm by using the z-scan technique on a nanosecond timescale. Many of the dyes were used to compare the effects of introducing electron donor and acceptor groups on the OL properties of the dyes. The dipole moments of these dyes were found to correlate with the OL response. The OL results indicate that BODIPY dyes with push-pull properties, which are π-extended at the 3,5-positions with styryl groups, can be considered as viable candidates for use in OL applications. The studies sought to establish the effect of ESA in the triplet manifold as compared to the singlet manifold in as far as the OL response is concerned. The most promising dyes were embedded in polystyrene thin films, and this was found to significantly enhance their OL properties.
- Full Text:
- Date Issued: 2018
- Authors: Hlatshwayo, Zweli Thabiso
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Photosensitizing compounds -- Therapeutic use , Cancer -- Photochemotherapy , Upconversion nanoparticles (UCNPs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63368 , vital:28397
- Description: The main objectives of the research described in this thesis were firstly to synthesize and characterize a series of structurally related BODIPY dyes that are potentially suitable for use in applications, secondly to conjugate a carboxylic acid substituted BODIPY dye to amine-functionalized upconversion nanoparticles (UCNPs) through an amide bond to enable singlet oxygen production upon irradiation at 978 nm in the biological window for tissue penetration for biomedical applications, and thirdly to compare the nonlinear optical (NLO) properties of various BODIPY dyes to determine whether push-pull effects enhance their utility for optical limiting (OL) applications. Halogenated BODIPY cores with high singlet oxygen quantum yields were prepared, which absorb in the green portion of the visible region and making it difficult to treat deeper skin tumors in the context of photodynamic therapy (PDT) applications. UCNPs generally absorb in the near-infrared (NIR) region (978 nm), and this is advantageous because, this is where absorption by water, cells and tissues is minimized. NaYF4: Yb/Er/Gd UCNPs were synthesized, amine functionalized and successfully conjugated to a halogenated carboxylic acid functionalized BODIPY. This allowed for favorable Förster resonance energy transfer (FRET) since one of the emission wavelengths of the NaYF4: Yb/Er/Gd UCNPs overlaps with the main absorption band of the BODIPY at 540 nm. The conjugate was irradiated at 978 nm, but instability of the BODIPY dye was observed, which made singlet oxygen quantum yield determination impossible. An enhanced singlet oxygen quantum yield value was observed upon irradiation of the conjugate at 540 nm, suggesting that further studies of this system are warranted. The OL properties of BODIPY cores and dyes, which are π-extended at the 3,5-positions with styryl groups, were studied in a series of different organic solvents at 532 nm by using the z-scan technique on a nanosecond timescale. Many of the dyes were used to compare the effects of introducing electron donor and acceptor groups on the OL properties of the dyes. The dipole moments of these dyes were found to correlate with the OL response. The OL results indicate that BODIPY dyes with push-pull properties, which are π-extended at the 3,5-positions with styryl groups, can be considered as viable candidates for use in OL applications. The studies sought to establish the effect of ESA in the triplet manifold as compared to the singlet manifold in as far as the OL response is concerned. The most promising dyes were embedded in polystyrene thin films, and this was found to significantly enhance their OL properties.
- Full Text:
- Date Issued: 2018
Azadipyrromethenes for applications in photodynamic antimicrobial chemotherapy, photodynamic therapy and optical limiting
- Authors: Dubazana, Nadine
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Staphylococcus aureus , Nonlinear optics , Azadipyrromethenes , BODIPY
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166150 , vital:41333
- Description: Azadipyrromethenes, azaBODIPYs and zinc azadipyrromethene complexes were prepared and characterised to examine the effect on their photophysical properties of incorporating phenyl groups at the 1,3,5,7-positions with electron-donating and withdrawing groups at the para-positions. To enhance their ability to generate singlet oxygen, appropriate structural modifications were made through the addition of a Zn(II) ion or halogenation at the 2,6 positions. In vitro photodynamic therapy (PDT) studies targeting MCF-7 human breast cancer cells were carried out. To evaluate and understand the effectiveness of the dyes as photosensitisers, cellular uptake, phototoxicity and the half-maximal inhibitory concentration (IC50) values were analysed. Photodynamic antimicrobial chemotherapy (PACT) studies were also carried out to study the effectiveness of the dyes against Staphylococcus aureus (S. aureus). Dyes with donor-π-acceptor (D-π-A) properties were synthesised and tested against the second harmonic of the Nd:YAG laser in optical limiting (OL) studies. The second-order hyperpolarisability, third-order susceptibility and nonlinear absorption coefficient values were determined. The results suggest that 1,3,5,7-azaBODIPY dyes may be less suitable for use in this context than analogous D-π-A 3,5-distyrylBODIPY dyes. Molecular modelling was carried out to identify the structure-property relationships of the synthesised dyes by analysing trends in the energies of the frontier molecular orbitals (MOs) and spectroscopic properties.
- Full Text:
- Date Issued: 2020
- Authors: Dubazana, Nadine
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Staphylococcus aureus , Nonlinear optics , Azadipyrromethenes , BODIPY
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166150 , vital:41333
- Description: Azadipyrromethenes, azaBODIPYs and zinc azadipyrromethene complexes were prepared and characterised to examine the effect on their photophysical properties of incorporating phenyl groups at the 1,3,5,7-positions with electron-donating and withdrawing groups at the para-positions. To enhance their ability to generate singlet oxygen, appropriate structural modifications were made through the addition of a Zn(II) ion or halogenation at the 2,6 positions. In vitro photodynamic therapy (PDT) studies targeting MCF-7 human breast cancer cells were carried out. To evaluate and understand the effectiveness of the dyes as photosensitisers, cellular uptake, phototoxicity and the half-maximal inhibitory concentration (IC50) values were analysed. Photodynamic antimicrobial chemotherapy (PACT) studies were also carried out to study the effectiveness of the dyes against Staphylococcus aureus (S. aureus). Dyes with donor-π-acceptor (D-π-A) properties were synthesised and tested against the second harmonic of the Nd:YAG laser in optical limiting (OL) studies. The second-order hyperpolarisability, third-order susceptibility and nonlinear absorption coefficient values were determined. The results suggest that 1,3,5,7-azaBODIPY dyes may be less suitable for use in this context than analogous D-π-A 3,5-distyrylBODIPY dyes. Molecular modelling was carried out to identify the structure-property relationships of the synthesised dyes by analysing trends in the energies of the frontier molecular orbitals (MOs) and spectroscopic properties.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »