Photo-physicochemical studies and photodynamic therapy activity of indium and gallium phthalocyanines
- Tshangana, Charmaine Sesethu
- Authors: Tshangana, Charmaine Sesethu
- Date: 2015
- Subjects: Quantum dots , Nanoparticles , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4548 , http://hdl.handle.net/10962/d1017928
- Description: The potential toxicity of seven different types of quantum dots without shell (L-cysteine-CdTe, TGA-CdTe, MPA-CdTe, TGA-CdSe) and with the shell (GSH-CdSe@ZnS, GSH-CdTe@ZnS,) with different capping agents were evaluated. The growth inhibitory effects of the various quantum dots on human pancreatic BON cancerous cells were determined. The least cytotoxic of the various quantum dots synthesized and the one displaying the lowest growth inhibitory potential and no embryotoxicity was determined to be the GSH-CdSe@ZnS quantum dots. The GSH-CdSe@ZnS quantum dots were then conjugated to gallium, aluminium and indium octacarboxy phthalocyanine and the photophysical behaviour of the conjugates studied for potential use in photodynamic therapy and imaging applications. The sizes, morphology, thermal stability and confirmation of successful conjugation was determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively. The study was extended by conjugating amino functionalized magnetic nanoparticles (Fe₃O₄) to indium octacarboxy phthalocyanine to study the photophysical behaviour of the conjugate as a potential bi-functional anti-cancer agent (hyperthermia and photodynamic therapy applications). A three-in-one multifunctional nanocomposite comprising of the quantum dots, magnetic nanoparticles and indium octacarboxy phthalocyanine was developed with the aim of developing a multifunctional composite that is able detect, monitor and treat cancer. All conjugates showed improved and enhanced photophysical behaviour. Finally, GSH-CdSe@ZnS conjugated to aluminium octacarboxy phthalocyanine was applied in human pancreatic carcinoid BON cells. The conjugates induced cell death dose-dependently.
- Full Text:
- Date Issued: 2015
- Authors: Tshangana, Charmaine Sesethu
- Date: 2015
- Subjects: Quantum dots , Nanoparticles , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4548 , http://hdl.handle.net/10962/d1017928
- Description: The potential toxicity of seven different types of quantum dots without shell (L-cysteine-CdTe, TGA-CdTe, MPA-CdTe, TGA-CdSe) and with the shell (GSH-CdSe@ZnS, GSH-CdTe@ZnS,) with different capping agents were evaluated. The growth inhibitory effects of the various quantum dots on human pancreatic BON cancerous cells were determined. The least cytotoxic of the various quantum dots synthesized and the one displaying the lowest growth inhibitory potential and no embryotoxicity was determined to be the GSH-CdSe@ZnS quantum dots. The GSH-CdSe@ZnS quantum dots were then conjugated to gallium, aluminium and indium octacarboxy phthalocyanine and the photophysical behaviour of the conjugates studied for potential use in photodynamic therapy and imaging applications. The sizes, morphology, thermal stability and confirmation of successful conjugation was determined using X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), respectively. The study was extended by conjugating amino functionalized magnetic nanoparticles (Fe₃O₄) to indium octacarboxy phthalocyanine to study the photophysical behaviour of the conjugate as a potential bi-functional anti-cancer agent (hyperthermia and photodynamic therapy applications). A three-in-one multifunctional nanocomposite comprising of the quantum dots, magnetic nanoparticles and indium octacarboxy phthalocyanine was developed with the aim of developing a multifunctional composite that is able detect, monitor and treat cancer. All conjugates showed improved and enhanced photophysical behaviour. Finally, GSH-CdSe@ZnS conjugated to aluminium octacarboxy phthalocyanine was applied in human pancreatic carcinoid BON cells. The conjugates induced cell death dose-dependently.
- Full Text:
- Date Issued: 2015
Metallophthalocyanines linked to metal nanoparticles and folic acid for use in photodynamic therapy of cancer and photoinactivation of bacterial microorganisms.
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Date Issued: 2020
Photophysicochemical properties and in vitro photodynamic therapy activities of zinc phthalocyanine conjugates with biomolecules and single-walled carbon nanotubes
- Authors: Ogbodu, Racheal O
- Date: 2015
- Subjects: Photochemotherapy , Phthalocyanines , Biomolecules
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4544 , http://hdl.handle.net/10962/d1017924
- Description: The synthesis, photophysicochemcial properties, in vitro dark toxicity and photodynamic therapy (PDT) activities of different derivatives of zinc phthalocyanine (ZnPc) conjugates with biomolecules (folic acid, bovine serum albumin (BSA), ascorbic acid, uridine or spermine) and single-walled carbon nanotubes (SWCNTs) are presented in this work. The fluorescence quantum yields (ΦF) (Subscript F) of the ZnPc derivatives or ZnPc-biomolecule conjugates remained relatively the same as compared to the precursor Pcs. Slight increases were observed in the ΦF (Subscript F) values of conjugates containing substituents such as pyrene, folic acid or BSA with intrinsic fluorescence properties. The triplet quantum yield (ΦT ) (Subscript T) values for some ZnPc conjugates increases compared to the precursor ZnPcs due to extended π conjugation (for the conjugate with pyrene) and the presence of phenyl ring that support spin-orbit charge transfer intersystem crossing to triplet state. While some conjugates showed decreases in the ΦT (Subscript T) values compared to precursor ZnPcs due to the presence of substituents that could quench photo-excited state properties. The singlet oxygen quantum yield (ΦΔ ) values follow the trends of the triplet quantum yield values. The conjugates containing BSA also show increases in the ΦΔ values without corresponding increases in ΦT (Subscript T) values due to the ability of BSA to generate free radicals including singlet oxygen. The presence of SWCNTs decreases the photophysicochemcial properties of some ZnPc-SWCNT conjugates compared to the precursor ZnPcs due to photo-induced electron transfer from an excited Pc complex (electron donor) to SWCNTs (electron acceptor). However, increases were observed in some ZnPc-SWCNT conjugates as a result of fast charge recombination process due to highly short-lived radical ion pair produced. These phenomena affected the ΦF (Suscript F) values, ΦT (Suscript T) values, and the ΦΔ values. Increases or decreases in ΦT (Suscript T) values resulted in corresponding increases or decreases in ΦΔ values
- Full Text:
- Date Issued: 2015
- Authors: Ogbodu, Racheal O
- Date: 2015
- Subjects: Photochemotherapy , Phthalocyanines , Biomolecules
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4544 , http://hdl.handle.net/10962/d1017924
- Description: The synthesis, photophysicochemcial properties, in vitro dark toxicity and photodynamic therapy (PDT) activities of different derivatives of zinc phthalocyanine (ZnPc) conjugates with biomolecules (folic acid, bovine serum albumin (BSA), ascorbic acid, uridine or spermine) and single-walled carbon nanotubes (SWCNTs) are presented in this work. The fluorescence quantum yields (ΦF) (Subscript F) of the ZnPc derivatives or ZnPc-biomolecule conjugates remained relatively the same as compared to the precursor Pcs. Slight increases were observed in the ΦF (Subscript F) values of conjugates containing substituents such as pyrene, folic acid or BSA with intrinsic fluorescence properties. The triplet quantum yield (ΦT ) (Subscript T) values for some ZnPc conjugates increases compared to the precursor ZnPcs due to extended π conjugation (for the conjugate with pyrene) and the presence of phenyl ring that support spin-orbit charge transfer intersystem crossing to triplet state. While some conjugates showed decreases in the ΦT (Subscript T) values compared to precursor ZnPcs due to the presence of substituents that could quench photo-excited state properties. The singlet oxygen quantum yield (ΦΔ ) values follow the trends of the triplet quantum yield values. The conjugates containing BSA also show increases in the ΦΔ values without corresponding increases in ΦT (Subscript T) values due to the ability of BSA to generate free radicals including singlet oxygen. The presence of SWCNTs decreases the photophysicochemcial properties of some ZnPc-SWCNT conjugates compared to the precursor ZnPcs due to photo-induced electron transfer from an excited Pc complex (electron donor) to SWCNTs (electron acceptor). However, increases were observed in some ZnPc-SWCNT conjugates as a result of fast charge recombination process due to highly short-lived radical ion pair produced. These phenomena affected the ΦF (Suscript F) values, ΦT (Suscript T) values, and the ΦΔ values. Increases or decreases in ΦT (Suscript T) values resulted in corresponding increases or decreases in ΦΔ values
- Full Text:
- Date Issued: 2015
Phthalocyanine-nanoparticle conjugates for photodynamic therapy of cancer and phototransformation of organic pollutants
- Authors: Khoza, Phindile Brenda
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Photochemotherapy , Cancer -- Chemotherapy , Zinc oxide , Photocatalysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4538 , http://hdl.handle.net/10962/d1017918
- Description: The synthesis and extensive spectroscopical characterization of novel phthalocyanines are reported. The new compounds were characterized by elemental analysis, FT-IR, ¹HNMR, mass spectrometry and UV–Vis spectroscopy. The new phthalocyanines showed remarkable photophysicochemical behaviour. The novel phthalocyanines were then conjugated to nanoparticles, silver and ZnO. The coupling of the novel Pcs to nanoparticles was through covalent bonding and ligand exchange. These conjugates were supported onto electrospun polystyrene fibers and chitosan microbeads for use as photocatalysts. The efficiency of the immobilized Pcs and Pc-nanoparticles was assessed by the phototrasfromation of organic pollutants, methyl orange and Rhodamine 6G as model dyes. Upon conjugating phthalocyanines to nanoparticles, there was a great increase in the rate of photodegradation of the model dyes. The photodynamic activity of the novel phthalocyanines upon conjugating to nanoparticles and selected targeting agents is also reported. The targeting agents employed in this study are folic acid and polylysine. Conjugating the phthalocyanines to folic acid or polylysine improved the solubility of the phthalocyanines in aqueous media. The potency of the conjugates was investigated on breast (MCF-7), prostate and melanoma cancer cell lines. The phthalocyanines showed no toxicity in the absence of light. However, upon illumination, a concentration dependent cellular decrease was observed.
- Full Text:
- Date Issued: 2015
- Authors: Khoza, Phindile Brenda
- Date: 2015
- Subjects: Phthalocyanines , Nanoparticles , Photochemotherapy , Cancer -- Chemotherapy , Zinc oxide , Photocatalysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4538 , http://hdl.handle.net/10962/d1017918
- Description: The synthesis and extensive spectroscopical characterization of novel phthalocyanines are reported. The new compounds were characterized by elemental analysis, FT-IR, ¹HNMR, mass spectrometry and UV–Vis spectroscopy. The new phthalocyanines showed remarkable photophysicochemical behaviour. The novel phthalocyanines were then conjugated to nanoparticles, silver and ZnO. The coupling of the novel Pcs to nanoparticles was through covalent bonding and ligand exchange. These conjugates were supported onto electrospun polystyrene fibers and chitosan microbeads for use as photocatalysts. The efficiency of the immobilized Pcs and Pc-nanoparticles was assessed by the phototrasfromation of organic pollutants, methyl orange and Rhodamine 6G as model dyes. Upon conjugating phthalocyanines to nanoparticles, there was a great increase in the rate of photodegradation of the model dyes. The photodynamic activity of the novel phthalocyanines upon conjugating to nanoparticles and selected targeting agents is also reported. The targeting agents employed in this study are folic acid and polylysine. Conjugating the phthalocyanines to folic acid or polylysine improved the solubility of the phthalocyanines in aqueous media. The potency of the conjugates was investigated on breast (MCF-7), prostate and melanoma cancer cell lines. The phthalocyanines showed no toxicity in the absence of light. However, upon illumination, a concentration dependent cellular decrease was observed.
- Full Text:
- Date Issued: 2015
Singlet oxygen and optical limiting applications of BODIPYs and other molecular dyes
- Authors: May, Aviwe Khanya
- Date: 2022-04-08
- Subjects: Dyes and dyeing Chemistry , Phthalocyanines , Photochemotherapy , Active oxygen , Nonlinear optics , Time-dependent density functional theory , Photochemistry
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/294618 , vital:57238 , DOI 10.21504/10962/294620
- Description: A series of structurally diverse novel and previously synthesized BODIPY core dyes are synthesized and characterized in this thesis. These BODIPYs were synthesized using 2-methylpyrrole, 2-ethylpyrrole, 2,4-dimethylpyrrole and 3-ethyl-2,4-dimethylpyrrole as the starting pyrroles. The combination of different pyrroles with the same aldehyde results in BODIPY core dyes that are structural analogues. These core dyes were used as precursors to synthesise halogenated BODIPYs and novel styrylBODIPY dyes, which were successfully characterized using FT-IR and 1H NMR spectroscopy. The halogenated BODIPY core dyes and the styrylBODIPY dyes were also characterized using MALDI-TOF mass spectrometry. The introduction of heavy atoms on the BODIPY core leads to a red shift of the main spectral. In the presence of styryl groups, the main spectral band red shifts to the far red end of the visible region. As expected, the halogenated BODIPY core dyes also had moderate singlet oxygen quantum yields. These halogenated core dyes were found to be suitable as photosensitizers as all the dyes reduced bacterial viability to below 50% during photodynamic antimicrobial chemotherapy (PACT) studies against Staphylococcus aureus. The structure-property relationships studied demonstrate that the presence of protons rather than methyls at the 1,7-positions or iodines at the 2,6-positions results in more favorable PACT activity. This is likely to be related to the greater ability of the meso-aryl to rotate into the plane of the dipyrromethene ligand and suggests that there should be a stronger focus on dyes of this type in future studies in this field. During nonlinear optical (NLO) studies, all the styrylBODIPYs exhibited favorable reverse saturable absorption (RSA) responses. In the absence of methyl groups at the 1,7-positions, the meso-aryl ring lies closer to the π-system of the BODIPY core, enhancing donor (D)–π–acceptor (A) properties and resulting in slightly enhanced optical limiting (OL) parameters. Additionally, there is no evidence that the introduction of heavy atoms at the 2,6-positions significantly enhances OL properties. In a similar manner, alkyl substituents at these positions also do not significantly enhance OL properties; this was studied for the first time using 15 with ethyl groups at the 2,6-positions. The combination of z-scan data and transient spectroscopy for 16 demonstrated that the main mechanism responsible for the NLO properties of nonhalogenated BODIPY dyes is one-photon absorption from the ground state followed by ESA in the singlet manifold. From the NLO studies of 25, OL parameters of 1,3,5-tristyrylBODIPY dyes were found to be similar in magnitude to properties of distyrylBODIPY dyes, but to have less favorable optical properties for OL applications. The OL properties of scandium phthalocyanines were assessed for the first time, since the Sc(III) ion, unusually for a first row transition metal ion, is known to readily form sandwich complexes. The presence of a Sc(III) ion does not significantly enhance the OL properties of phthalocyanines relative to those of rare earth metal ions that also form complexes of this type. Because BODIPYs and phthalocyanines typically absorb significantly in the visible region, transparent PBC polymer thin films of disilane-bridged compounds with minimal absorption in this region were studied and exhibited an excellent RSA response. These compounds may be useful in the design of OL materials that can protect the human eye. The optimized geometries and spectroscopic properties of selected BODIPYs were studied. As expected, the presence of bromine, iodine, ethyl and styryl groups at different positions of the BODIPY core leads to a narrowing of the HOMO–LUMO band gap, which results in a red-shift of the main spectral band. Partial atomic charges have also been calculated for some of the styrylBODIPY dyes studied for application in OL, and electrostatic potential energy maps were also visualized to better assess how the dipole moment of BODIPY dyes can be modulated since this can affect the OL properties. For all the BODIPYs studied, the electronegativity of the atoms present influences charge distribution on the BODIPY structure. , Thesis (PhD) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: May, Aviwe Khanya
- Date: 2022-04-08
- Subjects: Dyes and dyeing Chemistry , Phthalocyanines , Photochemotherapy , Active oxygen , Nonlinear optics , Time-dependent density functional theory , Photochemistry
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/294618 , vital:57238 , DOI 10.21504/10962/294620
- Description: A series of structurally diverse novel and previously synthesized BODIPY core dyes are synthesized and characterized in this thesis. These BODIPYs were synthesized using 2-methylpyrrole, 2-ethylpyrrole, 2,4-dimethylpyrrole and 3-ethyl-2,4-dimethylpyrrole as the starting pyrroles. The combination of different pyrroles with the same aldehyde results in BODIPY core dyes that are structural analogues. These core dyes were used as precursors to synthesise halogenated BODIPYs and novel styrylBODIPY dyes, which were successfully characterized using FT-IR and 1H NMR spectroscopy. The halogenated BODIPY core dyes and the styrylBODIPY dyes were also characterized using MALDI-TOF mass spectrometry. The introduction of heavy atoms on the BODIPY core leads to a red shift of the main spectral. In the presence of styryl groups, the main spectral band red shifts to the far red end of the visible region. As expected, the halogenated BODIPY core dyes also had moderate singlet oxygen quantum yields. These halogenated core dyes were found to be suitable as photosensitizers as all the dyes reduced bacterial viability to below 50% during photodynamic antimicrobial chemotherapy (PACT) studies against Staphylococcus aureus. The structure-property relationships studied demonstrate that the presence of protons rather than methyls at the 1,7-positions or iodines at the 2,6-positions results in more favorable PACT activity. This is likely to be related to the greater ability of the meso-aryl to rotate into the plane of the dipyrromethene ligand and suggests that there should be a stronger focus on dyes of this type in future studies in this field. During nonlinear optical (NLO) studies, all the styrylBODIPYs exhibited favorable reverse saturable absorption (RSA) responses. In the absence of methyl groups at the 1,7-positions, the meso-aryl ring lies closer to the π-system of the BODIPY core, enhancing donor (D)–π–acceptor (A) properties and resulting in slightly enhanced optical limiting (OL) parameters. Additionally, there is no evidence that the introduction of heavy atoms at the 2,6-positions significantly enhances OL properties. In a similar manner, alkyl substituents at these positions also do not significantly enhance OL properties; this was studied for the first time using 15 with ethyl groups at the 2,6-positions. The combination of z-scan data and transient spectroscopy for 16 demonstrated that the main mechanism responsible for the NLO properties of nonhalogenated BODIPY dyes is one-photon absorption from the ground state followed by ESA in the singlet manifold. From the NLO studies of 25, OL parameters of 1,3,5-tristyrylBODIPY dyes were found to be similar in magnitude to properties of distyrylBODIPY dyes, but to have less favorable optical properties for OL applications. The OL properties of scandium phthalocyanines were assessed for the first time, since the Sc(III) ion, unusually for a first row transition metal ion, is known to readily form sandwich complexes. The presence of a Sc(III) ion does not significantly enhance the OL properties of phthalocyanines relative to those of rare earth metal ions that also form complexes of this type. Because BODIPYs and phthalocyanines typically absorb significantly in the visible region, transparent PBC polymer thin films of disilane-bridged compounds with minimal absorption in this region were studied and exhibited an excellent RSA response. These compounds may be useful in the design of OL materials that can protect the human eye. The optimized geometries and spectroscopic properties of selected BODIPYs were studied. As expected, the presence of bromine, iodine, ethyl and styryl groups at different positions of the BODIPY core leads to a narrowing of the HOMO–LUMO band gap, which results in a red-shift of the main spectral band. Partial atomic charges have also been calculated for some of the styrylBODIPY dyes studied for application in OL, and electrostatic potential energy maps were also visualized to better assess how the dipole moment of BODIPY dyes can be modulated since this can affect the OL properties. For all the BODIPYs studied, the electronegativity of the atoms present influences charge distribution on the BODIPY structure. , Thesis (PhD) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-04-08
Photodynamic anticancer and antimicrobial activities of π-extended BODIPY dyes and cationic mitochondria-targeted porphyrins
- Authors: Chiyumba, Choonzo Nachoobe
- Date: 2022-10-14
- Subjects: Dyes and dyeing Chemistry , Mitochondria , Cancer Chemotherapy , Porphyrins , Molecules Models , Photochemotherapy
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362785 , vital:65362
- Description: Cancer is among the most devastating diseases and is mainly caused by gene mutation. This could be hereditary, or the mutation could be stimulated due to a lifestyle one lives, such as smoking, which induces lung cancer. The high morbidity rates of cancer are attributed to it being metastatic. The relatively poor physicochemical properties of existing drugs have caused treatment to be ineffective. Photofrin®, Foscan®, and Photogem® are some of the porphyrin-based derivatives approved by the Food and Drug Administration (FDA) for use in photodynamic therapy (PDT). Despite having such drugs, the quest to find better cancer drugs is still ongoing and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes are among the molecules that are being studied as potential photosensitisers (PS) in PDT. However, these molecules suffer from poor solubility and ineffective generation of singlet oxygen, the main ingredient in PDT treatment. Furthermore, photosensitisers used in PDT face a problem with hypoxic conditions associated with cancer cells, which causes the generation of singlet oxygen to be relatively low. The PS also suffer from the untargeted treatment, increasing their toxicity. Therefore, the main aim of this study was to improve the bioavailability of BODIPY dyes. Thus, a series of BODPIY dyes were synthesised with hydrogen bond accepting atoms and heavy atoms that enhance singlet oxygen generation. Additionally, to override hypoxia conditions, porphyrins with mitochondria targeting properties were synthesised since it has been well established that the mitochondria will always have a decent amount of oxygen in cancerous cells. When employed as PS in PDT studies, these molecules have better cytotoxic abilities than BODIPY dyes, and this potency was credited to their mitochondria targeting ability and efficient singlet oxygen generation. Finally, this study reports the synthesis of di- and mono-substituted BODIPY dyes with improved solubility and porphyrins substituted with triphenyl phosphine, a mitochondria targeting moiety. On the other hand, the work further illustrates the synthesis of β-substituted cationic porphyrin with mitochondria targeting properties. , Thesis (MSc) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Chiyumba, Choonzo Nachoobe
- Date: 2022-10-14
- Subjects: Dyes and dyeing Chemistry , Mitochondria , Cancer Chemotherapy , Porphyrins , Molecules Models , Photochemotherapy
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362785 , vital:65362
- Description: Cancer is among the most devastating diseases and is mainly caused by gene mutation. This could be hereditary, or the mutation could be stimulated due to a lifestyle one lives, such as smoking, which induces lung cancer. The high morbidity rates of cancer are attributed to it being metastatic. The relatively poor physicochemical properties of existing drugs have caused treatment to be ineffective. Photofrin®, Foscan®, and Photogem® are some of the porphyrin-based derivatives approved by the Food and Drug Administration (FDA) for use in photodynamic therapy (PDT). Despite having such drugs, the quest to find better cancer drugs is still ongoing and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes are among the molecules that are being studied as potential photosensitisers (PS) in PDT. However, these molecules suffer from poor solubility and ineffective generation of singlet oxygen, the main ingredient in PDT treatment. Furthermore, photosensitisers used in PDT face a problem with hypoxic conditions associated with cancer cells, which causes the generation of singlet oxygen to be relatively low. The PS also suffer from the untargeted treatment, increasing their toxicity. Therefore, the main aim of this study was to improve the bioavailability of BODIPY dyes. Thus, a series of BODPIY dyes were synthesised with hydrogen bond accepting atoms and heavy atoms that enhance singlet oxygen generation. Additionally, to override hypoxia conditions, porphyrins with mitochondria targeting properties were synthesised since it has been well established that the mitochondria will always have a decent amount of oxygen in cancerous cells. When employed as PS in PDT studies, these molecules have better cytotoxic abilities than BODIPY dyes, and this potency was credited to their mitochondria targeting ability and efficient singlet oxygen generation. Finally, this study reports the synthesis of di- and mono-substituted BODIPY dyes with improved solubility and porphyrins substituted with triphenyl phosphine, a mitochondria targeting moiety. On the other hand, the work further illustrates the synthesis of β-substituted cationic porphyrin with mitochondria targeting properties. , Thesis (MSc) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-10-14