Is classical biological control a 20th century" old science" paradigm that is losing its way?
- Sheppard, Andy, Werner, K, Hill, Martin P, McEvoy, Peter, Fowler, Simon, Hill, Richard
- Authors: Sheppard, Andy , Werner, K , Hill, Martin P , McEvoy, Peter , Fowler, Simon , Hill, Richard
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/425434 , vital:72239 , xlink:href="https://www.fs.usda.gov/research/treesearch/44754"
- Description: For years most countries accepted the benefits of biological control as given, leading to facilitated inside lanes through the regulatory maze. "Successes" led to many passionate disciples over science rationalists. Biocontrol targets continue to be selected on assumptions of good value with little direct evidence. Even when successful, biocontrol has rarely delivered environmental benefits that have been measured. Money flow is still healthy, but is arguably being directed against less impactful targets. Lack of science rigour exposes the field to attacks from an increasing number of critics as values change. A global change driven counter-revolution is underway on the dichotomy of hate between natives and aliens. Will climate change undermine even currently successful biocontrol outcomes? Meanwhile negative direct and indirect impacts of biological continue to fuel dissent. Nowhere is this issue hotter than in Hawaii where "invaders" have massively increased biodiversity, make up nearly all the biomass and create whole new ecosystems. This workshop will entertain a panel discussion around the future for classical biological control of weeds. Does it need to change its paradigm in response to changing societal values, if so can it reinvent itself?
- Full Text:
- Date Issued: 2013
- Authors: Sheppard, Andy , Werner, K , Hill, Martin P , McEvoy, Peter , Fowler, Simon , Hill, Richard
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/425434 , vital:72239 , xlink:href="https://www.fs.usda.gov/research/treesearch/44754"
- Description: For years most countries accepted the benefits of biological control as given, leading to facilitated inside lanes through the regulatory maze. "Successes" led to many passionate disciples over science rationalists. Biocontrol targets continue to be selected on assumptions of good value with little direct evidence. Even when successful, biocontrol has rarely delivered environmental benefits that have been measured. Money flow is still healthy, but is arguably being directed against less impactful targets. Lack of science rigour exposes the field to attacks from an increasing number of critics as values change. A global change driven counter-revolution is underway on the dichotomy of hate between natives and aliens. Will climate change undermine even currently successful biocontrol outcomes? Meanwhile negative direct and indirect impacts of biological continue to fuel dissent. Nowhere is this issue hotter than in Hawaii where "invaders" have massively increased biodiversity, make up nearly all the biomass and create whole new ecosystems. This workshop will entertain a panel discussion around the future for classical biological control of weeds. Does it need to change its paradigm in response to changing societal values, if so can it reinvent itself?
- Full Text:
- Date Issued: 2013
Agathis bishopi (Hymenoptera: Braconidae) as a potential tool for detecting oranges infested with Thaumatotibia leucotreta (Lepidoptera: Tortricidae)
- Zimba, Kennedy J, Hill, Martin P, Moore, Sean D, Heshula, Unathi
- Authors: Zimba, Kennedy J , Hill, Martin P , Moore, Sean D , Heshula, Unathi
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423955 , vital:72108 , xlink:href="https://doi.org/10.1007/s10905-015-9526-0"
- Description: In South Africa, Thaumatotibia leucotreta is a key pest of citrus impacting its production and trade. Detection of newly infested fruit by visual inspection is challenging and poses a risk of packing infested with healthy fruit for export. Agathis bishopi is a larval endoparasitoid of T. leucotreta, attacking early larval instars. Understanding how A. bishopi parasitoids locate fruit infested with their host is of interest for developing an efficient detector for T. leucotreta infested fruit. The response of female adult A. bishopi parasitoids to olfactory and visual cues associated with T. leucotreta infested fruit were evaluated using a Y-tube olfactometer and flight tunnel. Agathis bishopi parasitoids were strongly attracted to infested fruit over healthy fruit, either when only olfactory or combinations of visual and olfactory cues were offered. Among the four synthetic compounds tested, D-limonene and ocimene elicited a strong attraction to parasitoids with response rates of 92 % and 72 % respectively. A blend of four synthetic compounds simulating T. leucotreta infested fruit odour equally elicited strong attraction to parasitoids (84 % response rate). Attraction of parasitoids to infested fruit cues was heightened by prior experience, suggesting the occurrence of associative learning. Results from this study indicate that A. bishopi parasitoids mainly rely on olfactory cues in host habitat location and that D-limonene and ocimene are the major attractants in infested fruit volatiles. These findings and the potential for manipulating A. bishopi for detection of infested fruit in the packhouse are discussed.
- Full Text:
- Date Issued: 2015
- Authors: Zimba, Kennedy J , Hill, Martin P , Moore, Sean D , Heshula, Unathi
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423955 , vital:72108 , xlink:href="https://doi.org/10.1007/s10905-015-9526-0"
- Description: In South Africa, Thaumatotibia leucotreta is a key pest of citrus impacting its production and trade. Detection of newly infested fruit by visual inspection is challenging and poses a risk of packing infested with healthy fruit for export. Agathis bishopi is a larval endoparasitoid of T. leucotreta, attacking early larval instars. Understanding how A. bishopi parasitoids locate fruit infested with their host is of interest for developing an efficient detector for T. leucotreta infested fruit. The response of female adult A. bishopi parasitoids to olfactory and visual cues associated with T. leucotreta infested fruit were evaluated using a Y-tube olfactometer and flight tunnel. Agathis bishopi parasitoids were strongly attracted to infested fruit over healthy fruit, either when only olfactory or combinations of visual and olfactory cues were offered. Among the four synthetic compounds tested, D-limonene and ocimene elicited a strong attraction to parasitoids with response rates of 92 % and 72 % respectively. A blend of four synthetic compounds simulating T. leucotreta infested fruit odour equally elicited strong attraction to parasitoids (84 % response rate). Attraction of parasitoids to infested fruit cues was heightened by prior experience, suggesting the occurrence of associative learning. Results from this study indicate that A. bishopi parasitoids mainly rely on olfactory cues in host habitat location and that D-limonene and ocimene are the major attractants in infested fruit volatiles. These findings and the potential for manipulating A. bishopi for detection of infested fruit in the packhouse are discussed.
- Full Text:
- Date Issued: 2015
International agreement for the use and exchange of classical biological control genetic resources: a practical proposal
- Mason, Peter G, Mc Kay, Fernando, Silvestri, Luciano C, Hill, Martin P, Weyl, Philip S R, Hinz, Hariet L, Brodeur, Jacques, Vitorino, Marcello Diniz, Barratt, Barbara I P
- Authors: Mason, Peter G , Mc Kay, Fernando , Silvestri, Luciano C , Hill, Martin P , Weyl, Philip S R , Hinz, Hariet L , Brodeur, Jacques , Vitorino, Marcello Diniz , Barratt, Barbara I P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418025 , vital:71502 , xlink:href="https://doi.org/10.1007/s10526-023-10177-7"
- Description: The Nagoya Protocol on Access and Benefit Sharing (ABS) was implemented to further develop the third objective of the Convention on Biological Diversity, the fair and equitable sharing of benefits arising out of the utilization of genetic resources. Interpretation of this agreement is wide-ranging and there is concern that if ABS measures are poorly implemented biological control and the resultant public good will be greatly impeded. The ethos of multilateral use and exchange of genetic resources used in classical biological control will be particularly affected. In the spirit of the fair and equitable sharing of benefits arising out of the utilization of genetic resources, we propose a simple practical solution in the form of an international agreement on the use and exchange of classical biological control genetic resources.
- Full Text:
- Date Issued: 2023
- Authors: Mason, Peter G , Mc Kay, Fernando , Silvestri, Luciano C , Hill, Martin P , Weyl, Philip S R , Hinz, Hariet L , Brodeur, Jacques , Vitorino, Marcello Diniz , Barratt, Barbara I P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418025 , vital:71502 , xlink:href="https://doi.org/10.1007/s10526-023-10177-7"
- Description: The Nagoya Protocol on Access and Benefit Sharing (ABS) was implemented to further develop the third objective of the Convention on Biological Diversity, the fair and equitable sharing of benefits arising out of the utilization of genetic resources. Interpretation of this agreement is wide-ranging and there is concern that if ABS measures are poorly implemented biological control and the resultant public good will be greatly impeded. The ethos of multilateral use and exchange of genetic resources used in classical biological control will be particularly affected. In the spirit of the fair and equitable sharing of benefits arising out of the utilization of genetic resources, we propose a simple practical solution in the form of an international agreement on the use and exchange of classical biological control genetic resources.
- Full Text:
- Date Issued: 2023
Performance and field host range of the life stages of Cornops aquaticum, a biological control agent of water hyacinth
- Franceschini, M Celeste, Hill, Martin P, Fuentes-Rodríguez, Daniela, Gervazoni, Paula B, Sabater, Lara M, Coetzee, Julie A
- Authors: Franceschini, M Celeste , Hill, Martin P , Fuentes-Rodríguez, Daniela , Gervazoni, Paula B , Sabater, Lara M , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424814 , vital:72186 , xlink:href="https://doi.org/10.1111/eea.13354"
- Description: Host specificity determination of weed biocontrol agents has historically relied on evidence generated through quarantine trials in the region of introduction. These trials could give ‘false positive’ results due to a maximum type I error probability, and where possible, more research under field conditions should be conducted in the region of origin. The oligophagous, semiaquatic grasshopper, Cornops aquaticum Bruner (Orthoptera: Acrididae, Tetrataeniini), was released in South Africa for the biological control of Pontederia crassipes Pellegrini and Horn (Pontederiaceae). The aim of this study was to assess how the performance and field host range of C. aquaticum varies according to its stages of development, and how this contributes to the understanding of the relationship between the fundamental (laboratory-based) and the ecological (field-based) host range of this grasshopper, and its implications for water hyacinth biocontrol. We conducted post-release laboratory no-choice trials, confining early instars (instars 1 and 2), later instars (instars 3–6), and adult females and males in mesh cages, to determine insect performance on wetland plants growing in sympatry with P. crassipes. Also, gut analysis from field-collected C. aquaticum was done to determine the ecological host range of this insect, identifying epidermal tissue of consumed plants. In no-choice trials, survival rates of the later instars and adult C. aquaticum were similar on Pistia stratiotes L. (Araceae), Oxycaryum cubense (Poepp. and Kunth) Lye (Cyperaceae), and P. crassipes. However, under field conditions, P. crassipes and the congeneric Pontederia azurea Sw. were the only plant contents in the guts of early instars and the most abundant species in later instars and adults. The results support the hypothesis that C. aquaticum is an oligophagous insect on the genus Pontederia, and that different life stages should be considered when conducting host-specificity trials in externally feeding mobile herbivore species. Diet composition of field-collected insects thus could help detect false positives in laboratory trials, being an additional and realistic approach in understanding and predicting the selection processes of the insect in the new environment. Retrospective analysis of potential agents that were rejected due to lack of host-specificity, using the methods from this study, could add a suite of additional agents to programs where invasive weeds remain unmanaged.
- Full Text:
- Date Issued: 2023
- Authors: Franceschini, M Celeste , Hill, Martin P , Fuentes-Rodríguez, Daniela , Gervazoni, Paula B , Sabater, Lara M , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424814 , vital:72186 , xlink:href="https://doi.org/10.1111/eea.13354"
- Description: Host specificity determination of weed biocontrol agents has historically relied on evidence generated through quarantine trials in the region of introduction. These trials could give ‘false positive’ results due to a maximum type I error probability, and where possible, more research under field conditions should be conducted in the region of origin. The oligophagous, semiaquatic grasshopper, Cornops aquaticum Bruner (Orthoptera: Acrididae, Tetrataeniini), was released in South Africa for the biological control of Pontederia crassipes Pellegrini and Horn (Pontederiaceae). The aim of this study was to assess how the performance and field host range of C. aquaticum varies according to its stages of development, and how this contributes to the understanding of the relationship between the fundamental (laboratory-based) and the ecological (field-based) host range of this grasshopper, and its implications for water hyacinth biocontrol. We conducted post-release laboratory no-choice trials, confining early instars (instars 1 and 2), later instars (instars 3–6), and adult females and males in mesh cages, to determine insect performance on wetland plants growing in sympatry with P. crassipes. Also, gut analysis from field-collected C. aquaticum was done to determine the ecological host range of this insect, identifying epidermal tissue of consumed plants. In no-choice trials, survival rates of the later instars and adult C. aquaticum were similar on Pistia stratiotes L. (Araceae), Oxycaryum cubense (Poepp. and Kunth) Lye (Cyperaceae), and P. crassipes. However, under field conditions, P. crassipes and the congeneric Pontederia azurea Sw. were the only plant contents in the guts of early instars and the most abundant species in later instars and adults. The results support the hypothesis that C. aquaticum is an oligophagous insect on the genus Pontederia, and that different life stages should be considered when conducting host-specificity trials in externally feeding mobile herbivore species. Diet composition of field-collected insects thus could help detect false positives in laboratory trials, being an additional and realistic approach in understanding and predicting the selection processes of the insect in the new environment. Retrospective analysis of potential agents that were rejected due to lack of host-specificity, using the methods from this study, could add a suite of additional agents to programs where invasive weeds remain unmanaged.
- Full Text:
- Date Issued: 2023
Know thy enemy: Investigating genetic contributions from putative parents of invasive Nymphaea mexicana hybrids in South Africa as part of efforts to develop biological control
- Reid, Megan K, Paterson, Iain D, Coetzee, Julie A, Gettys, Lyn A, Hill, Martin P
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
Efforts towards engaging communities to promote the benefits of biological control research and implementation in South Africa
- Weaver, Kim N, Hill, Martin P, Byrne, Marcus J, Ivey, Philip J
- Authors: Weaver, Kim N , Hill, Martin P , Byrne, Marcus J , Ivey, Philip J
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414428 , vital:71146 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a23"
- Description: In the last decade, biological control in South Africa has evolved from a classical applied science, allied to an extension service, to a more community engagement-based activity. Therefore, capacity building is important for the sustainability of biological control research and its implementation. In South Africa, a broad approach has been taken to build capacity in weed biological control, starting at grass-roots level with primary and secondary school learner programmes, through to developing research capacity at the tertiary level and enhancing technical capacity through adult education. Non-specialists are empowered through access to knowledge. The dissemination of accurate information through the most appropriate outlets has become increasingly important, including non-traditional science communication through the internet and, more importantly, social media, which has the potential to reach a far wider audience. Public understanding of biological control has the potential to contribute significantly to the green and knowledge economies of South Africa, but relies on government support for the sustainability of this discipline.
- Full Text:
- Date Issued: 2021
- Authors: Weaver, Kim N , Hill, Martin P , Byrne, Marcus J , Ivey, Philip J
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414428 , vital:71146 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a23"
- Description: In the last decade, biological control in South Africa has evolved from a classical applied science, allied to an extension service, to a more community engagement-based activity. Therefore, capacity building is important for the sustainability of biological control research and its implementation. In South Africa, a broad approach has been taken to build capacity in weed biological control, starting at grass-roots level with primary and secondary school learner programmes, through to developing research capacity at the tertiary level and enhancing technical capacity through adult education. Non-specialists are empowered through access to knowledge. The dissemination of accurate information through the most appropriate outlets has become increasingly important, including non-traditional science communication through the internet and, more importantly, social media, which has the potential to reach a far wider audience. Public understanding of biological control has the potential to contribute significantly to the green and knowledge economies of South Africa, but relies on government support for the sustainability of this discipline.
- Full Text:
- Date Issued: 2021
Prioritisation of targets for weed biological control I: a review of existing prioritisation schemes and development of a system for South Africa
- Downey, Paul O, Paterson, Iain D, Canavan, Kim N, Hill, Martin P
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
Best of both worlds: The thermal physiology of Hydrellia egeriae, a biological control agent for the submerged aquatic weed, Egeria densa in South Africa
- Smith, Rosali, Coetzee, Julie A, Hill, Martin P
- Authors: Smith, Rosali , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417913 , vital:71494 , xlink:href="https://doi.org/10.1007/s10526-022-10142-w"
- Description: The submerged aquatic weed, Egeria densa Planch. (Hydrocharitaceae) or Brazilian waterweed, is a secondary invader of eutrophic freshwater systems in South Africa, following the successful management of floating aquatic weeds. In 2018, the leaf and stem-mining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae), was released against E. densa, the first agent released against a submerged aquatic weed in South Africa. During its life stages, the biological control agent is exposed to two environments, air and water. The thermal physiology of both life stages was investigated to optimize agent establishment through fine-tuned release strategies. The thermal physiological limits of H. egeriae encompassed its host plant’s optimal temperature range of 10 to 35 °C, with lower and upper critical temperatures of 2.6 to 47.0 °C, lower and upper lethal temperatures of − 5.6 and 40.6 °C for adults, and − 6.3 to 41.3 °C for larvae. Results from development time experiments and degree-day accumulation showed that the agent is capable of establishing at all E. densa sites in South Africa, with between 6.9 and 8.3 generations per year. However, cold temperatures (14 °C) prolonged the agent’s development time to three months, allowing it to only develop through one generation in winter. Predictions obtained from laboratory thermal physiology experiments corroborates field data, where the agent has established at all the sites it was released.
- Full Text:
- Date Issued: 2022
- Authors: Smith, Rosali , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417913 , vital:71494 , xlink:href="https://doi.org/10.1007/s10526-022-10142-w"
- Description: The submerged aquatic weed, Egeria densa Planch. (Hydrocharitaceae) or Brazilian waterweed, is a secondary invader of eutrophic freshwater systems in South Africa, following the successful management of floating aquatic weeds. In 2018, the leaf and stem-mining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae), was released against E. densa, the first agent released against a submerged aquatic weed in South Africa. During its life stages, the biological control agent is exposed to two environments, air and water. The thermal physiology of both life stages was investigated to optimize agent establishment through fine-tuned release strategies. The thermal physiological limits of H. egeriae encompassed its host plant’s optimal temperature range of 10 to 35 °C, with lower and upper critical temperatures of 2.6 to 47.0 °C, lower and upper lethal temperatures of − 5.6 and 40.6 °C for adults, and − 6.3 to 41.3 °C for larvae. Results from development time experiments and degree-day accumulation showed that the agent is capable of establishing at all E. densa sites in South Africa, with between 6.9 and 8.3 generations per year. However, cold temperatures (14 °C) prolonged the agent’s development time to three months, allowing it to only develop through one generation in winter. Predictions obtained from laboratory thermal physiology experiments corroborates field data, where the agent has established at all the sites it was released.
- Full Text:
- Date Issued: 2022
Baculovirus-based strategies for the management of insect pests: a focus on development and application in South Africa
- Knox, Caroline M, Moore, Sean D, Luke, Garry, Hill, Martin P
- Authors: Knox, Caroline M , Moore, Sean D , Luke, Garry , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416829 , vital:71389 , xlink:href="https://doi.org/10.1080/09583157.2014.949222"
- Description: There is growing concern among governments, scientists, agricultural practitioners and the general public regarding the negative implications of widespread synthetic chemical pesticide application for the control of crop pests. As a result, baculovirus biopesticides are gaining popularity as components of integrated pest management (IPM) programmes in many countries despite several disadvantages related to slow speed of kill, limited host range and complex large scale production. In South Africa, baculoviruses are incorporated into IPM programmes for the control of crop pests in the field, and recent bioprospecting has led to the characterisation of several novel isolates with the potential to be formulated as commercial products. This contribution will provide an overview of the use of baculoviruses against insect pests in South Africa, as well as research and development efforts aimed at broadening their application as biocontrol agents. Challenges faced by researchers in developmental projects as well as potential users of baculoviruses as biopesticides in the field are also discussed.
- Full Text:
- Date Issued: 2015
- Authors: Knox, Caroline M , Moore, Sean D , Luke, Garry , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416829 , vital:71389 , xlink:href="https://doi.org/10.1080/09583157.2014.949222"
- Description: There is growing concern among governments, scientists, agricultural practitioners and the general public regarding the negative implications of widespread synthetic chemical pesticide application for the control of crop pests. As a result, baculovirus biopesticides are gaining popularity as components of integrated pest management (IPM) programmes in many countries despite several disadvantages related to slow speed of kill, limited host range and complex large scale production. In South Africa, baculoviruses are incorporated into IPM programmes for the control of crop pests in the field, and recent bioprospecting has led to the characterisation of several novel isolates with the potential to be formulated as commercial products. This contribution will provide an overview of the use of baculoviruses against insect pests in South Africa, as well as research and development efforts aimed at broadening their application as biocontrol agents. Challenges faced by researchers in developmental projects as well as potential users of baculoviruses as biopesticides in the field are also discussed.
- Full Text:
- Date Issued: 2015
Best practices in the use and exchange of microorganism biological control genetic resources
- Mason, Peter G, Hill, Martin P, Smith, David, Silvestri, Luciano C, Weyl, Philip S R, Brodeur, Jacques, Vitorino, Marcello Diniz
- Authors: Mason, Peter G , Hill, Martin P , Smith, David , Silvestri, Luciano C , Weyl, Philip S R , Brodeur, Jacques , Vitorino, Marcello Diniz
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417927 , vital:71495 , xlink:href="https://doi.org/10.1007/s10526-023-10197-3"
- Description: The Nagoya Protocol actions the third objective of the Convention on Biological Diversity and provides a framework to effectively implement the fair and equitable sharing of benefits arising out of the use of genetic resources. This includes microorganisms used as biological control agents. Thus biological control practitioners must comply with access and benefit-sharing regulations that are implemented by countries providing microbial biological control agents. A review of best practices and guidance for the use and exchange of microorganisms used for biological control has been prepared by the IOBC Global Commission on Biological Control and Access and Benefit-Sharing to demonstrate commitment to comply with access and benefit-sharing requirements, and to reassure the international community that biological control is a very successful and environmentally safe pest management strategy that uses biological resources responsibly and sustainably. We propose that best practices include the following elements: collaboration to facilitate information exchange about the availability of microbial biological control agents and where they may be sourced; freely sharing available knowledge in databases about successes and failures; collaborative research with provider countries to develop capacity; and production technology transfer to provide economic opportunities. We recommend the use of model concept agreements for accessing microorganisms for scientific research and non-commercial release into nature where access and benefit-sharing regulations exist and where regulations are not restrictive or do not exist. We also recommend a model agreement for deposition of microbial biological control agents into culture collections.
- Full Text:
- Date Issued: 2023
- Authors: Mason, Peter G , Hill, Martin P , Smith, David , Silvestri, Luciano C , Weyl, Philip S R , Brodeur, Jacques , Vitorino, Marcello Diniz
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417927 , vital:71495 , xlink:href="https://doi.org/10.1007/s10526-023-10197-3"
- Description: The Nagoya Protocol actions the third objective of the Convention on Biological Diversity and provides a framework to effectively implement the fair and equitable sharing of benefits arising out of the use of genetic resources. This includes microorganisms used as biological control agents. Thus biological control practitioners must comply with access and benefit-sharing regulations that are implemented by countries providing microbial biological control agents. A review of best practices and guidance for the use and exchange of microorganisms used for biological control has been prepared by the IOBC Global Commission on Biological Control and Access and Benefit-Sharing to demonstrate commitment to comply with access and benefit-sharing requirements, and to reassure the international community that biological control is a very successful and environmentally safe pest management strategy that uses biological resources responsibly and sustainably. We propose that best practices include the following elements: collaboration to facilitate information exchange about the availability of microbial biological control agents and where they may be sourced; freely sharing available knowledge in databases about successes and failures; collaborative research with provider countries to develop capacity; and production technology transfer to provide economic opportunities. We recommend the use of model concept agreements for accessing microorganisms for scientific research and non-commercial release into nature where access and benefit-sharing regulations exist and where regulations are not restrictive or do not exist. We also recommend a model agreement for deposition of microbial biological control agents into culture collections.
- Full Text:
- Date Issued: 2023
Impact of Access and Benefit Sharing implementation on biological control genetic resources
- Mason, Peter G, Barratt, Barbara I P, Mc Kay, Fernando, Klapwijk, Johannette N, Silvestri, Luciano C, Hill, Martin P, Hinz, Hariet L, Sheppard, Andy, Brodeur, Jacques, Vitorino, Marcello Diniz, Weyl, Philip S R, Hoelmer, Kim A
- Authors: Mason, Peter G , Barratt, Barbara I P , Mc Kay, Fernando , Klapwijk, Johannette N , Silvestri, Luciano C , Hill, Martin P , Hinz, Hariet L , Sheppard, Andy , Brodeur, Jacques , Vitorino, Marcello Diniz , Weyl, Philip S R , Hoelmer, Kim A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418013 , vital:71501 , xlink:href="https://doi.org/10.1007/s10526-023-10176-8"
- Description: The third objective of the Convention on Biological Diversity, the fair and equitable sharing of benefits arising out of the use of genetic resources was further developed when the Nagoya Protocol on Access and Benefit Sharing came into effect in 2014. Interpretation of how this agreement is being implemented is wide-ranging and there are implications for biological control. A survey of biological control workers indicated that while some countries have facilitated access to biological control genetic resources, requirements in other countries have impeded biological control implementation. There was consensus that benefits to provider countries should be in the form of supporting local research communities. There was also agreement that the free use and exchange of biological control genetic resources has provided benefits to the global community, including to both providers and recipients of the agents. It is recommended that consideration of the free use and exchange principal should be a key element of Access and Benefit Sharing measures for the future.
- Full Text:
- Date Issued: 2023
- Authors: Mason, Peter G , Barratt, Barbara I P , Mc Kay, Fernando , Klapwijk, Johannette N , Silvestri, Luciano C , Hill, Martin P , Hinz, Hariet L , Sheppard, Andy , Brodeur, Jacques , Vitorino, Marcello Diniz , Weyl, Philip S R , Hoelmer, Kim A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418013 , vital:71501 , xlink:href="https://doi.org/10.1007/s10526-023-10176-8"
- Description: The third objective of the Convention on Biological Diversity, the fair and equitable sharing of benefits arising out of the use of genetic resources was further developed when the Nagoya Protocol on Access and Benefit Sharing came into effect in 2014. Interpretation of how this agreement is being implemented is wide-ranging and there are implications for biological control. A survey of biological control workers indicated that while some countries have facilitated access to biological control genetic resources, requirements in other countries have impeded biological control implementation. There was consensus that benefits to provider countries should be in the form of supporting local research communities. There was also agreement that the free use and exchange of biological control genetic resources has provided benefits to the global community, including to both providers and recipients of the agents. It is recommended that consideration of the free use and exchange principal should be a key element of Access and Benefit Sharing measures for the future.
- Full Text:
- Date Issued: 2023
Nagoya Protocol and Africa’s willingness to share biological control agents, are we deterred by barriers instead of using opportunities to work together?
- Ivey, Philip J, Hill, Martin P, Voukeng, Sonia Nadege Kenfack, Weaver, Kim N
- Authors: Ivey, Philip J , Hill, Martin P , Voukeng, Sonia Nadege Kenfack , Weaver, Kim N
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418040 , vital:71503 , xlink:href="https://doi.org/10.1007/s10526-023-10184-8"
- Description: Amongst members of the biological control community there is a range of perceptions regarding the Nagoya Protocol, at best it will hinder access to natural enemies of pests and invasive plants and at worst implementation of the Protocol will prevent access to these resources. In this preliminary study of Africa’s preparedness to implement the Nagoya Protocol and control access to potential biological control agents, we found that several countries have not yet established procedures and policies in this regard. Several factors including lack of awareness, insufficient relevant information and lack of capacity may cause delay in countries implementing access and benefit sharing legislation and processes. The lack of preparedness provides an opportunity for the research community to work with government officials to facilitate future access to natural enemies to act as biological control agents on invasive plants and agricultural pests. Collaboration between researchers, managers and bureaucrats in support of African countries could lead to collective action that develops policies and implements processes to foster exploration of African biodiversity. This collaboration could also foster the sharing of biological control agents that will benefit Africa through integrated pest management in agriculture, protection of human lives and livelihoods, and reduction of the impact of invasive alien species on biodiversity and environmental infrastructure.
- Full Text:
- Date Issued: 2023
- Authors: Ivey, Philip J , Hill, Martin P , Voukeng, Sonia Nadege Kenfack , Weaver, Kim N
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418040 , vital:71503 , xlink:href="https://doi.org/10.1007/s10526-023-10184-8"
- Description: Amongst members of the biological control community there is a range of perceptions regarding the Nagoya Protocol, at best it will hinder access to natural enemies of pests and invasive plants and at worst implementation of the Protocol will prevent access to these resources. In this preliminary study of Africa’s preparedness to implement the Nagoya Protocol and control access to potential biological control agents, we found that several countries have not yet established procedures and policies in this regard. Several factors including lack of awareness, insufficient relevant information and lack of capacity may cause delay in countries implementing access and benefit sharing legislation and processes. The lack of preparedness provides an opportunity for the research community to work with government officials to facilitate future access to natural enemies to act as biological control agents on invasive plants and agricultural pests. Collaboration between researchers, managers and bureaucrats in support of African countries could lead to collective action that develops policies and implements processes to foster exploration of African biodiversity. This collaboration could also foster the sharing of biological control agents that will benefit Africa through integrated pest management in agriculture, protection of human lives and livelihoods, and reduction of the impact of invasive alien species on biodiversity and environmental infrastructure.
- Full Text:
- Date Issued: 2023
Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa
- Aigbedion-Atalor, Pascal O, Mohamed, Samira A, Hill, Martin P, Zalucki, Myron P, Azrag, Abdelmutalab G A, Srinivasan, Ramasamy, Ekesi, Sunday
- Authors: Aigbedion-Atalor, Pascal O , Mohamed, Samira A , Hill, Martin P , Zalucki, Myron P , Azrag, Abdelmutalab G A , Srinivasan, Ramasamy , Ekesi, Sunday
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423516 , vital:72068 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104215"
- Description: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is native to South America but has invaded the Afro-Eurasian supercontinent where it is currently the most devastating invasive arthropod pest of tomato. As a part of the first classical biological control programme against T. absoluta in Africa, a larval parasitoid, Dolichogenidea gelechiidivoris Marsh. (Syn.: Apanteles gelechiidivoris Marsh) (Hymenoptera: Braconidae), of T. absoluta was imported from Peru into the quarantine facility of the International Centre of Insect Physiology and Ecology, Kenya. We report on the host larval preference of D. gelechiidivoris and the host suitability, and the parasitoid’s reproductive strategy, including lifetime fecundity and egg maturation dynamics. Dolichogenidea gelechiidivoris females preferentially oviposited in early (1st and 2nd) larval instars of T. absoluta but parasitized and completed development in all four instars of the host. Host instar did not affect D. gelechiidivoris sex-ratio but females reared on the first instar had significantly fewer eggs than when reared in late larval instars (3rd and 4th). Females of the parasitoid emerged with a high mature egg load which peaked 2 d post eclosion. The females of D. gelechiidivoris survived 8.51 ± 0.65 d and produced 103 ± 8 offspring per female at 26 ± 4 °C (range: 24 to 29 °C) and 50–70% relative humidity (RH) with males present and fed honey-water (80% honey). Increasing maternal age decreased the proportion of female offspring. Under the aforementioned laboratory conditions, the Gross and Net reproductive rates were 72 and 39.5 respectively, while the mean generation time was 20 d. The potential intrinsic rate of natural increase was 0.18. This study shows that D. gelechiidivoris is a potential biological control agent of T. absoluta and should be considered for release in Kenya and across Africa following host specificity testing and risk assessments.
- Full Text:
- Date Issued: 2020
- Authors: Aigbedion-Atalor, Pascal O , Mohamed, Samira A , Hill, Martin P , Zalucki, Myron P , Azrag, Abdelmutalab G A , Srinivasan, Ramasamy , Ekesi, Sunday
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423516 , vital:72068 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104215"
- Description: Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is native to South America but has invaded the Afro-Eurasian supercontinent where it is currently the most devastating invasive arthropod pest of tomato. As a part of the first classical biological control programme against T. absoluta in Africa, a larval parasitoid, Dolichogenidea gelechiidivoris Marsh. (Syn.: Apanteles gelechiidivoris Marsh) (Hymenoptera: Braconidae), of T. absoluta was imported from Peru into the quarantine facility of the International Centre of Insect Physiology and Ecology, Kenya. We report on the host larval preference of D. gelechiidivoris and the host suitability, and the parasitoid’s reproductive strategy, including lifetime fecundity and egg maturation dynamics. Dolichogenidea gelechiidivoris females preferentially oviposited in early (1st and 2nd) larval instars of T. absoluta but parasitized and completed development in all four instars of the host. Host instar did not affect D. gelechiidivoris sex-ratio but females reared on the first instar had significantly fewer eggs than when reared in late larval instars (3rd and 4th). Females of the parasitoid emerged with a high mature egg load which peaked 2 d post eclosion. The females of D. gelechiidivoris survived 8.51 ± 0.65 d and produced 103 ± 8 offspring per female at 26 ± 4 °C (range: 24 to 29 °C) and 50–70% relative humidity (RH) with males present and fed honey-water (80% honey). Increasing maternal age decreased the proportion of female offspring. Under the aforementioned laboratory conditions, the Gross and Net reproductive rates were 72 and 39.5 respectively, while the mean generation time was 20 d. The potential intrinsic rate of natural increase was 0.18. This study shows that D. gelechiidivoris is a potential biological control agent of T. absoluta and should be considered for release in Kenya and across Africa following host specificity testing and risk assessments.
- Full Text:
- Date Issued: 2020
The influence of citrus orchard age on the ecology of entomopathogenic fungi and nematodes
- Albertyn ,Sonnica, Moore, Sean D, Marsberg, Tamryn, Coombes, Candice A, Hill, Martin P
- Authors: Albertyn ,Sonnica , Moore, Sean D , Marsberg, Tamryn , Coombes, Candice A , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417545 , vital:71462 , xlink:href="https://hdl.handle.net/10520/ejc-cristal-v10-n1-a7"
- Description: A three-year survey of the ecology of entomopathogenic nematodes (EPN) and entomopathogenic fungi (EPF) was undertaken on soils from citrus orchards of different ages to determine the influence of orchard age on the ecology of entomopathogenic fungi and nematodes. The influence of mulch and irrigation method on the occurrence of EPN and EPF was also determined. Most of the isolates recovered (n = 810) were Beauveria sp. (87.88% of all isolates), followed by Metarhizium sp. (11.87% of all isolates). Only 0.24% of soil samples collected during this study tested positive for EPN. All EPN isolates recovered were Heterorhabditis bacteriophora. No significant differences in EPF occurrence were recorded between orchards under drip and micro-sprinkler irrigation. EPF occurrence was significantly lower (P = 0.016) in orchards covered by mulch (31.85% ± 2.07% occurrence) than in orchards with no covering (38.57% ± 1.57% occurrence). EPF occurrence of 40.33 ± 2.13% was highest in non-bearing orchards, followed by mature orchards (nine years or older) (36.76 ± 2.05% of samples) with the lowest EPF occurrence of 25.30 ± 2.02% reported in juvenile orchards (four to eight years old). Juvenile orchards sustain significantly less EPF than mature and non-bearing orchards because of the combined negative impact of less favourable environmental conditions (lower shade density) and fungicide applications.
- Full Text:
- Date Issued: 2020
- Authors: Albertyn ,Sonnica , Moore, Sean D , Marsberg, Tamryn , Coombes, Candice A , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417545 , vital:71462 , xlink:href="https://hdl.handle.net/10520/ejc-cristal-v10-n1-a7"
- Description: A three-year survey of the ecology of entomopathogenic nematodes (EPN) and entomopathogenic fungi (EPF) was undertaken on soils from citrus orchards of different ages to determine the influence of orchard age on the ecology of entomopathogenic fungi and nematodes. The influence of mulch and irrigation method on the occurrence of EPN and EPF was also determined. Most of the isolates recovered (n = 810) were Beauveria sp. (87.88% of all isolates), followed by Metarhizium sp. (11.87% of all isolates). Only 0.24% of soil samples collected during this study tested positive for EPN. All EPN isolates recovered were Heterorhabditis bacteriophora. No significant differences in EPF occurrence were recorded between orchards under drip and micro-sprinkler irrigation. EPF occurrence was significantly lower (P = 0.016) in orchards covered by mulch (31.85% ± 2.07% occurrence) than in orchards with no covering (38.57% ± 1.57% occurrence). EPF occurrence of 40.33 ± 2.13% was highest in non-bearing orchards, followed by mature orchards (nine years or older) (36.76 ± 2.05% of samples) with the lowest EPF occurrence of 25.30 ± 2.02% reported in juvenile orchards (four to eight years old). Juvenile orchards sustain significantly less EPF than mature and non-bearing orchards because of the combined negative impact of less favourable environmental conditions (lower shade density) and fungicide applications.
- Full Text:
- Date Issued: 2020
Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes
- Acheampong, M A, Coombes, Candice A, Moore, Sean D, Hill, Martin P
- Authors: Acheampong, M A , Coombes, Candice A , Moore, Sean D , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419399 , vital:71641 , xlink:href="https://doi.org/10.1016/j.jip.2020.107436"
- Description: Several isolates of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitacae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitacae) have been investigated as possible microbial control agents of key citrus pests in South Africa. Although laboratory results have been promising, field trials against foliar pests have shown limited success. These findings highlighted the need to investigate other biological attributes of these fungal isolates besides virulence in order to select candidates that may be better suited for the foliar environment. Thus, this study investigated the influence of temperature on the in vitro growth of seven indigenous local isolates and the humidity requirements necessary to promote successful infection, in comparison with two commercial isolates (B. bassiana PPRI 5339 and M. anisopliae ICIPE 69). All the fungal isolates grew across a range of temperatures (8–34 °C) and optimally between 26 and 28 °C. Similarly, fungal infection of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) fifth instars occurred across a range of humidity levels (12%, 43%, 75%, 98%) regardless of fungal concentration, although external sporulation was restricted to treatments exposed to 98% relative humidity. It was concluded that neither temperature nor humidity, when considered alone, is likely to significantly influence the efficacy of any of the isolates in the field, given that they are active within temperature and humidity ranges experienced in South African citrus orchards.
- Full Text:
- Date Issued: 2020
- Authors: Acheampong, M A , Coombes, Candice A , Moore, Sean D , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419399 , vital:71641 , xlink:href="https://doi.org/10.1016/j.jip.2020.107436"
- Description: Several isolates of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitacae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitacae) have been investigated as possible microbial control agents of key citrus pests in South Africa. Although laboratory results have been promising, field trials against foliar pests have shown limited success. These findings highlighted the need to investigate other biological attributes of these fungal isolates besides virulence in order to select candidates that may be better suited for the foliar environment. Thus, this study investigated the influence of temperature on the in vitro growth of seven indigenous local isolates and the humidity requirements necessary to promote successful infection, in comparison with two commercial isolates (B. bassiana PPRI 5339 and M. anisopliae ICIPE 69). All the fungal isolates grew across a range of temperatures (8–34 °C) and optimally between 26 and 28 °C. Similarly, fungal infection of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) fifth instars occurred across a range of humidity levels (12%, 43%, 75%, 98%) regardless of fungal concentration, although external sporulation was restricted to treatments exposed to 98% relative humidity. It was concluded that neither temperature nor humidity, when considered alone, is likely to significantly influence the efficacy of any of the isolates in the field, given that they are active within temperature and humidity ranges experienced in South African citrus orchards.
- Full Text:
- Date Issued: 2020
The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts
- Aigbedion-Atalor, Pascal O, Hill, Martin P, Zalucki, Myron P, Obala, Francis, Idriss, Gamal E, Midingoyi, Soul-Kifouly G, Chidege, Maneno, Ekesi, Sunday, Mohamed, Samira Abuelgasim
- Authors: Aigbedion-Atalor, Pascal O , Hill, Martin P , Zalucki, Myron P , Obala, Francis , Idriss, Gamal E , Midingoyi, Soul-Kifouly G , Chidege, Maneno , Ekesi, Sunday , Mohamed, Samira Abuelgasim
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423859 , vital:72099 , xlink:href="https://doi.org/10.1093/jee/toz220"
- Description: Following the arrival of Tuta absoluta Meyrick in the eastern African subregion in 2012, several studies have shown numerous ecological aspects of its invasion. We investigated the impact of T. absoluta on people’s livelihoods across four counties of Kenya. Here, 200 farmers in the country were interviewed in person using semistructured questionnaires. In addition to livelihood surveys, T. absoluta distribution was mapped between 2016 and 2018 to determine its current distribution across four countries (Kenya, Sudan, Tanzania, and Uganda) in the subregion. Albeit a recent invader, T. absoluta is abundant and distributed throughout the subregion and is viewed as the worst invasive alien species of agriculturally sustainable livelihoods by tomato farmers. The arrival of T. absoluta in the subregion has resulted in livelihood losses and increased both the cost of tomato production and frequency of pesticide application. We recommend the implementation of biological control along, with other control measures in an integrated approach, against T. absoluta in the subregion, where its impact on sustainable livelihoods is serious and long-term control strategies are required to curb its detrimental effects.
- Full Text:
- Date Issued: 2019
- Authors: Aigbedion-Atalor, Pascal O , Hill, Martin P , Zalucki, Myron P , Obala, Francis , Idriss, Gamal E , Midingoyi, Soul-Kifouly G , Chidege, Maneno , Ekesi, Sunday , Mohamed, Samira Abuelgasim
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423859 , vital:72099 , xlink:href="https://doi.org/10.1093/jee/toz220"
- Description: Following the arrival of Tuta absoluta Meyrick in the eastern African subregion in 2012, several studies have shown numerous ecological aspects of its invasion. We investigated the impact of T. absoluta on people’s livelihoods across four counties of Kenya. Here, 200 farmers in the country were interviewed in person using semistructured questionnaires. In addition to livelihood surveys, T. absoluta distribution was mapped between 2016 and 2018 to determine its current distribution across four countries (Kenya, Sudan, Tanzania, and Uganda) in the subregion. Albeit a recent invader, T. absoluta is abundant and distributed throughout the subregion and is viewed as the worst invasive alien species of agriculturally sustainable livelihoods by tomato farmers. The arrival of T. absoluta in the subregion has resulted in livelihood losses and increased both the cost of tomato production and frequency of pesticide application. We recommend the implementation of biological control along, with other control measures in an integrated approach, against T. absoluta in the subregion, where its impact on sustainable livelihoods is serious and long-term control strategies are required to curb its detrimental effects.
- Full Text:
- Date Issued: 2019
Simulated global increases in atmospheric CO2 alter the tissue composition, but not the growth of some submerged aquatic plant bicarbonate users growing in DIC rich waters
- Hussner, Andreas, Smith, Rosali, Mettler-Altmann, Tabea, Hill, Martin P, Coetzee, Julie A
- Authors: Hussner, Andreas , Smith, Rosali , Mettler-Altmann, Tabea , Hill, Martin P , Coetzee, Julie A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419388 , vital:71640 , xlink:href="https://doi.org/10.1016/j.aquabot.2018.11.009"
- Description: Current global change scenarios predict an increase in atmospheric CO2 from the current 380 ppm to a value ranging from 540 ppm to 960 ppm by the year 2100. The effects of three air CO2 levels (400, 600 and 800 ppm) on five submerged aquatic plants that utilize HCO3− were studied, using the elevated CO2 Open Top Chamber facility at Rhodes University (Grahamstown, South Africa). Plants grew in water with two different initial dissolved inorganic carbon (DIC) concentrations of 1.5 and 3.0 mM. Overall, the growth rates and biomass allocation to roots were not affected by the initial DIC and air CO2, even though differences between the species were found. Furthermore, no overall effects were found on net photosynthesis, chlorophyll and starch content, even though significant effects of CO2 and DIC were observed in some species. In contrast, with increasing DIC and air CO2 a significant global decline in leaf nitrogen content linked with an increased C:N molar ratio was observed. The results indicate that submerged aquatic HCO3− users will be less affected by atmospheric CO2 increases when growing in DIC rich waters, in comparison to obligate CO2 users growing under CO2 limiting conditions as documented in previous studies. However, the changes found in plant nitrogen illustrate that atmospheric CO2 increases will affect nitrogen absorption by submerged plants, with subsequent ecosystem level effects.
- Full Text:
- Date Issued: 2019
- Authors: Hussner, Andreas , Smith, Rosali , Mettler-Altmann, Tabea , Hill, Martin P , Coetzee, Julie A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419388 , vital:71640 , xlink:href="https://doi.org/10.1016/j.aquabot.2018.11.009"
- Description: Current global change scenarios predict an increase in atmospheric CO2 from the current 380 ppm to a value ranging from 540 ppm to 960 ppm by the year 2100. The effects of three air CO2 levels (400, 600 and 800 ppm) on five submerged aquatic plants that utilize HCO3− were studied, using the elevated CO2 Open Top Chamber facility at Rhodes University (Grahamstown, South Africa). Plants grew in water with two different initial dissolved inorganic carbon (DIC) concentrations of 1.5 and 3.0 mM. Overall, the growth rates and biomass allocation to roots were not affected by the initial DIC and air CO2, even though differences between the species were found. Furthermore, no overall effects were found on net photosynthesis, chlorophyll and starch content, even though significant effects of CO2 and DIC were observed in some species. In contrast, with increasing DIC and air CO2 a significant global decline in leaf nitrogen content linked with an increased C:N molar ratio was observed. The results indicate that submerged aquatic HCO3− users will be less affected by atmospheric CO2 increases when growing in DIC rich waters, in comparison to obligate CO2 users growing under CO2 limiting conditions as documented in previous studies. However, the changes found in plant nitrogen illustrate that atmospheric CO2 increases will affect nitrogen absorption by submerged plants, with subsequent ecosystem level effects.
- Full Text:
- Date Issued: 2019
Invasive alien aquatic plant species management drives aquatic ecosystem community recovery: An exploration using stable isotope analysis
- Motitsoe, Samuel N, Hill, Jaclyn M, Coetzee, Julie A, Hill, Martin P
- Authors: Motitsoe, Samuel N , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423527 , vital:72069 , xlink:href="https://doi.org/10.1016/j.biocontrol.2022.104995"
- Description: The socio-economic and ecological impacts of invasive alien aquatic plant (IAAP) species have been well studied globally. However less is known about ecosystem recovery following the management of IAAP species. This study employed a before-after study design to investigate ecological recovery following the management of Salvinia molesta D.S. Mitchell, at four field sites in South Africa. We hypothesized that the presence of S. molesta would have a negative impact on the ecosystem food web structure, and that following S. molesta control, the systems would show positive ecosystem recovery. Aquatic macroinvertebrate and macrophyte samples collected before and after mechanical or biological control of S. molesta, were analysed for δ13C and δ15N stable isotopes. Salvinia molesta infestations negatively impacted the food web structure, indicated by reduced food chain length, trophic diversity and basal resources. This represented an altered aquatic food web structure, that in some cases, led to the collapse of the aquatic community. In contrast, after either mechanical or biological control, there were increases in food chain length, trophic diversity and abundance of energy resources accessed by consumers, indicating improved food web structure. Although the study showed positive ecosystem recovery following control, we noted that each control method followed a different recovery trajectory. We conclude that S. molesta invasions reduce aquatic biodiversity and alter ecosystem trophic dynamics and related ecosystem processes, necessitating control.
- Full Text:
- Date Issued: 2022
- Authors: Motitsoe, Samuel N , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423527 , vital:72069 , xlink:href="https://doi.org/10.1016/j.biocontrol.2022.104995"
- Description: The socio-economic and ecological impacts of invasive alien aquatic plant (IAAP) species have been well studied globally. However less is known about ecosystem recovery following the management of IAAP species. This study employed a before-after study design to investigate ecological recovery following the management of Salvinia molesta D.S. Mitchell, at four field sites in South Africa. We hypothesized that the presence of S. molesta would have a negative impact on the ecosystem food web structure, and that following S. molesta control, the systems would show positive ecosystem recovery. Aquatic macroinvertebrate and macrophyte samples collected before and after mechanical or biological control of S. molesta, were analysed for δ13C and δ15N stable isotopes. Salvinia molesta infestations negatively impacted the food web structure, indicated by reduced food chain length, trophic diversity and basal resources. This represented an altered aquatic food web structure, that in some cases, led to the collapse of the aquatic community. In contrast, after either mechanical or biological control, there were increases in food chain length, trophic diversity and abundance of energy resources accessed by consumers, indicating improved food web structure. Although the study showed positive ecosystem recovery following control, we noted that each control method followed a different recovery trajectory. We conclude that S. molesta invasions reduce aquatic biodiversity and alter ecosystem trophic dynamics and related ecosystem processes, necessitating control.
- Full Text:
- Date Issued: 2022
Advances in the regulation of weed biological control in South Africa
- Ivey, Philip J, Hill, Martin P, Zachariades, Costas
- Authors: Ivey, Philip J , Hill, Martin P , Zachariades, Costas
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416819 , vital:71388 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a24"
- Description: Regulation of biological control (biocontrol) is essential to ensure its continued safety and to enhance its acceptability as a key contributor to the management of damaging invasive alien plants in South Africa. Local researchers were concerned that regulators may become risk averse and over-cautious, thus preventing introductions of safe biocontrol agents, as bureaucratic impediments have contributed to the decline in the number of biocontrol releases in several other countries. In South Africa, the introduction of a transparent and inclusive review process has averted these concerns. Legislation in South Africa enables departments concerned with protecting environmental and agricultural resources, to work together to regulate potential risks. An interdepartmental committee, advised by independent specialists, facilitate the review of research into the safety of potential biocontrol agents. Regulators have reviewed and timeously assessed 26 potential biocontrol agents between 2013 and 2020. This has ensured that the considerable benefits from safe biocontrol agents are available for management of some of South Africa’s worst invasive alien plants. We review the system in South Africa and suggest possible improvements to the regulatory framework.
- Full Text:
- Date Issued: 2021
- Authors: Ivey, Philip J , Hill, Martin P , Zachariades, Costas
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416819 , vital:71388 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a24"
- Description: Regulation of biological control (biocontrol) is essential to ensure its continued safety and to enhance its acceptability as a key contributor to the management of damaging invasive alien plants in South Africa. Local researchers were concerned that regulators may become risk averse and over-cautious, thus preventing introductions of safe biocontrol agents, as bureaucratic impediments have contributed to the decline in the number of biocontrol releases in several other countries. In South Africa, the introduction of a transparent and inclusive review process has averted these concerns. Legislation in South Africa enables departments concerned with protecting environmental and agricultural resources, to work together to regulate potential risks. An interdepartmental committee, advised by independent specialists, facilitate the review of research into the safety of potential biocontrol agents. Regulators have reviewed and timeously assessed 26 potential biocontrol agents between 2013 and 2020. This has ensured that the considerable benefits from safe biocontrol agents are available for management of some of South Africa’s worst invasive alien plants. We review the system in South Africa and suggest possible improvements to the regulatory framework.
- Full Text:
- Date Issued: 2021
It's a numbers game: inundative biological control of water hyacinth (Pontederia crassipes), using Megamelus scutellaris (Hemiptera: Delphacidae) yields success at a high elevation, hypertrophic reservoir in South Africa
- Coetzee, Julie A, Miller, Benjamin E, Kinsler, David, Sebola, Keneilwe, Hill, Martin P
- Authors: Coetzee, Julie A , Miller, Benjamin E , Kinsler, David , Sebola, Keneilwe , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417749 , vital:71483 , xlink:href="https://doi.org/10.1080/09583157.2022.2109594"
- Description: Classical biological control of water hyacinth in South Africa has been constrained by cool winter temperatures that limit population growth of the biological control agents, and highly eutrophic waters which enhance plant growth. However, inundative releases of the control agent, Megamelus scutellaris (Hemiptera: Delphacidae), at the Hartbeespoort Dam, South Africa, suggest that water hyacinth can be managed successfully using biological control as a standalone intervention for the first time in the absence of herbicide operations, despite eutrophication and a temperate climate. Sentinel-2 satellite images were used to measure the reduction in water hyacinth cover from over 37% to less than 6% over two consecutive years since M. scutellaris was first released on the dam in 2018, while site surveys confirmed a corresponding increase in M. scutellaris population density from fewer than 500 insects/m2 in October 2019, to more than 6000 insects/m2 by March 2020. Inundative release strategies are recommended for the control of water hyacinth in South Africa at key stages of its invasion, particularly after winter, and flooding events.
- Full Text:
- Date Issued: 2022
- Authors: Coetzee, Julie A , Miller, Benjamin E , Kinsler, David , Sebola, Keneilwe , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417749 , vital:71483 , xlink:href="https://doi.org/10.1080/09583157.2022.2109594"
- Description: Classical biological control of water hyacinth in South Africa has been constrained by cool winter temperatures that limit population growth of the biological control agents, and highly eutrophic waters which enhance plant growth. However, inundative releases of the control agent, Megamelus scutellaris (Hemiptera: Delphacidae), at the Hartbeespoort Dam, South Africa, suggest that water hyacinth can be managed successfully using biological control as a standalone intervention for the first time in the absence of herbicide operations, despite eutrophication and a temperate climate. Sentinel-2 satellite images were used to measure the reduction in water hyacinth cover from over 37% to less than 6% over two consecutive years since M. scutellaris was first released on the dam in 2018, while site surveys confirmed a corresponding increase in M. scutellaris population density from fewer than 500 insects/m2 in October 2019, to more than 6000 insects/m2 by March 2020. Inundative release strategies are recommended for the control of water hyacinth in South Africa at key stages of its invasion, particularly after winter, and flooding events.
- Full Text:
- Date Issued: 2022