Melatonin alters the photodegradation of paracetamol
- Anoopkumar-Dukie, Shailendra, Glass, Beverley D, Walker, Roderick B, Daya, Santylal
- Authors: Anoopkumar-Dukie, Shailendra , Glass, Beverley D , Walker, Roderick B , Daya, Santylal
- Date: 2000
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184357 , vital:44211 , xlink:href="https://doi.org/10.1211/146080800128735755"
- Description: The effects of melatonin, a known free-radical scavenger, on paracetamol in the presence of UV irradiation was studied by use of HPLC. The experiments were performed in air and nitrogen. The results show that the rate of photodegradation of melatonin is faster in air than in nitrogen whereas that of paracetamol is similar in air and nitrogen. When the two drugs were combined, melatonin retarded the degradation of paracetamol for up to 6h in the presence of nitrogen. However, in the presence of air melatonin rapidly enhances the photodegradation of paracetamol. This study shows that a combination of melatonin and paracetamol in the presence of air and UV irradiation can lead to rapid inactivation of both agents, thus raising important concerns about the possible use of melatonin as sunscreen
- Full Text:
- Date Issued: 2000
- Authors: Anoopkumar-Dukie, Shailendra , Glass, Beverley D , Walker, Roderick B , Daya, Santylal
- Date: 2000
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184357 , vital:44211 , xlink:href="https://doi.org/10.1211/146080800128735755"
- Description: The effects of melatonin, a known free-radical scavenger, on paracetamol in the presence of UV irradiation was studied by use of HPLC. The experiments were performed in air and nitrogen. The results show that the rate of photodegradation of melatonin is faster in air than in nitrogen whereas that of paracetamol is similar in air and nitrogen. When the two drugs were combined, melatonin retarded the degradation of paracetamol for up to 6h in the presence of nitrogen. However, in the presence of air melatonin rapidly enhances the photodegradation of paracetamol. This study shows that a combination of melatonin and paracetamol in the presence of air and UV irradiation can lead to rapid inactivation of both agents, thus raising important concerns about the possible use of melatonin as sunscreen
- Full Text:
- Date Issued: 2000
An artificial neural network approach to predict the effects of formulation and process variables on prednisone release from a multipartite system
- Manda, Arthur, Walker, Roderick B, Khamanga, Sandile M
- Authors: Manda, Arthur , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183237 , vital:43933 , xlink:href="https://doi.org/10.3390/pharmaceutics11030109"
- Description: The impact of formulation and process variables on the in-vitro release of prednisone from a multiple-unit pellet system was investigated. Box-Behnken Response Surface Methodology (RSM) was used to generate multivariate experiments. The extrusion-spheronization method was used to produce pellets and dissolution studies were performed using United States Pharmacopoeia (USP) Apparatus 2 as described in USP XXIV. Analysis of dissolution test samples was performed using a reversed-phase high-performance liquid chromatography (RP-HPLC) method. Four formulation and process variables viz., microcrystalline cellulose concentration, sodium starch glycolate concentration, spheronization time and extrusion speed were investigated and drug release, aspect ratio and yield were monitored for the trained artificial neural networks (ANN). To achieve accurate prediction, data generated from experimentation were used to train a multi-layer perceptron (MLP) using back propagation (BP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 57 training algorithm until a satisfactory value of root mean square error (RMSE) was observed. The study revealed that the in-vitro release profile of prednisone was significantly impacted by microcrystalline cellulose concentration and sodium starch glycolate concentration. Increasing microcrystalline cellulose concentration retarded dissolution rate whereas increasing sodium starch glycolate concentration improved dissolution rate. Spheronization time and extrusion speed had minimal impact on prednisone release but had a significant impact on extrudate and pellet quality. This work demonstrated that RSM can be successfully used concurrently with ANN for dosage form manufacture to permit the exploration of experimental regions that are omitted when using RSM alone.
- Full Text:
- Date Issued: 2019
- Authors: Manda, Arthur , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183237 , vital:43933 , xlink:href="https://doi.org/10.3390/pharmaceutics11030109"
- Description: The impact of formulation and process variables on the in-vitro release of prednisone from a multiple-unit pellet system was investigated. Box-Behnken Response Surface Methodology (RSM) was used to generate multivariate experiments. The extrusion-spheronization method was used to produce pellets and dissolution studies were performed using United States Pharmacopoeia (USP) Apparatus 2 as described in USP XXIV. Analysis of dissolution test samples was performed using a reversed-phase high-performance liquid chromatography (RP-HPLC) method. Four formulation and process variables viz., microcrystalline cellulose concentration, sodium starch glycolate concentration, spheronization time and extrusion speed were investigated and drug release, aspect ratio and yield were monitored for the trained artificial neural networks (ANN). To achieve accurate prediction, data generated from experimentation were used to train a multi-layer perceptron (MLP) using back propagation (BP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 57 training algorithm until a satisfactory value of root mean square error (RMSE) was observed. The study revealed that the in-vitro release profile of prednisone was significantly impacted by microcrystalline cellulose concentration and sodium starch glycolate concentration. Increasing microcrystalline cellulose concentration retarded dissolution rate whereas increasing sodium starch glycolate concentration improved dissolution rate. Spheronization time and extrusion speed had minimal impact on prednisone release but had a significant impact on extrudate and pellet quality. This work demonstrated that RSM can be successfully used concurrently with ANN for dosage form manufacture to permit the exploration of experimental regions that are omitted when using RSM alone.
- Full Text:
- Date Issued: 2019
The use of experimental design for the development and validation of an HPLC-ECD method for the quantitation of efavirenz
- Makoni, Pedzisai A, Khamanga, Sandile M, Kasongo, Kasongo W, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
The use of experimental design for the development of a capillary zone electrophoresis method for the quantitation of captopril
- Mukozhiwa, S Y, Khamanga, Sandile M, Walker, Roderick B
- Authors: Mukozhiwa, S Y , Khamanga, Sandile M , Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183828 , vital:44073 , xlink:href="https://doi.org/10.1691/ph.2017.7071"
- Description: A capillary zone electrophoresis (CZE) method for the quantitation of captopril (CPT) using UV detection was developed. Influence of electrolyte concentration and system variables on electrophoretic separation was evaluated and a central composite design (CCD) was used to optimize the method. Variables investigated were pH, molarity, applied voltage and capillary length. The influence of sodium metabisulphite on the stability of test solutions was also investigated. The use of sodium metabisulphite prevented degradation of CPT over 24 hours. A fused uncoated silica capillary of 67.5cm total and 57.5 cm effective length was used for analysis. The applied voltage and capillary length affected the migration time of CPT significantly. A 20 mM phosphate buffer adjusted to pH 7.0 was used as running buffer and an applied voltage of 23.90 kV was suitable to effect a separation. The optimized electrophoretic conditions produced sharp, well-resolved peaks for CPT and sodium metabisulphite. Linear regression analysis of the response for CPT standards revealed the method was linear (R2 = 0.9995) over the range 5-70 μg/mL. The limits of quantitation and detection were 5 and 1.5 μg/mL. A simple, rapid and reliable CZE method has been developed and successfully applied to the analysis of commercially available CPT products.
- Full Text:
- Date Issued: 2017
- Authors: Mukozhiwa, S Y , Khamanga, Sandile M , Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183828 , vital:44073 , xlink:href="https://doi.org/10.1691/ph.2017.7071"
- Description: A capillary zone electrophoresis (CZE) method for the quantitation of captopril (CPT) using UV detection was developed. Influence of electrolyte concentration and system variables on electrophoretic separation was evaluated and a central composite design (CCD) was used to optimize the method. Variables investigated were pH, molarity, applied voltage and capillary length. The influence of sodium metabisulphite on the stability of test solutions was also investigated. The use of sodium metabisulphite prevented degradation of CPT over 24 hours. A fused uncoated silica capillary of 67.5cm total and 57.5 cm effective length was used for analysis. The applied voltage and capillary length affected the migration time of CPT significantly. A 20 mM phosphate buffer adjusted to pH 7.0 was used as running buffer and an applied voltage of 23.90 kV was suitable to effect a separation. The optimized electrophoretic conditions produced sharp, well-resolved peaks for CPT and sodium metabisulphite. Linear regression analysis of the response for CPT standards revealed the method was linear (R2 = 0.9995) over the range 5-70 μg/mL. The limits of quantitation and detection were 5 and 1.5 μg/mL. A simple, rapid and reliable CZE method has been developed and successfully applied to the analysis of commercially available CPT products.
- Full Text:
- Date Issued: 2017
Design, evaluation and optimization of taste masked clarithromycin powder
- Ntemi, Pascal V, Walker, Roderick B, Khamanga, Sandile M
- Authors: Ntemi, Pascal V , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183503 , vital:44001 , xlink:href="https://doi.org/10.1691/ph.2019.8116"
- Description: Clarithromycin (CLA) is an extremely bitter macrolide antibiotic used to treat paediatric and adult infections. The bitter taste affects patient adherence and may compromise therapy. This research developed a taste masked CLA resinate using Indion® 234, a weak acidic cation exchange resin. The factors affecting formation of the CLA-resin complex were assessed. Design of experiments was used to optimize response while evaluating input variables such as temperature, CLA-resin ratio,stirring time and pH. CLA loading efficiency was determined spectrophotometrically and CLA release using USP Apparatus II. Differential Scanning Calorimetry (DSC), Scanning Electron Microscop (SEM), Fourier Transform Infrared (FT-IR) Spectroscopy and X-ray Diffraction (XRD) were used to confirm complex formation. A spectrophotometric method was used to assess taste evaluation. The optimum CLA-resin ratio, temperature, and stirring time were 1:4, 80 °C, 3 hours, respectively, at pH 8. Characterization techniques revealed that CLA was crystalline and the complex amorphous in nature. FT-IR spectra of resinate revealed the absence of resonance due to the tertiary amine functional group that is responsible for the bitter taste of CLA. CLA was stable in simulated salivary fluid and was released within 3 hours in gastric fluid. All CLAresin batches revealed complete taste masking. Taste analysis highlighted the improvement of taste masking properties of the resinate as the CLA to resin ratio, increased.
- Full Text:
- Date Issued: 2019
- Authors: Ntemi, Pascal V , Walker, Roderick B , Khamanga, Sandile M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183503 , vital:44001 , xlink:href="https://doi.org/10.1691/ph.2019.8116"
- Description: Clarithromycin (CLA) is an extremely bitter macrolide antibiotic used to treat paediatric and adult infections. The bitter taste affects patient adherence and may compromise therapy. This research developed a taste masked CLA resinate using Indion® 234, a weak acidic cation exchange resin. The factors affecting formation of the CLA-resin complex were assessed. Design of experiments was used to optimize response while evaluating input variables such as temperature, CLA-resin ratio,stirring time and pH. CLA loading efficiency was determined spectrophotometrically and CLA release using USP Apparatus II. Differential Scanning Calorimetry (DSC), Scanning Electron Microscop (SEM), Fourier Transform Infrared (FT-IR) Spectroscopy and X-ray Diffraction (XRD) were used to confirm complex formation. A spectrophotometric method was used to assess taste evaluation. The optimum CLA-resin ratio, temperature, and stirring time were 1:4, 80 °C, 3 hours, respectively, at pH 8. Characterization techniques revealed that CLA was crystalline and the complex amorphous in nature. FT-IR spectra of resinate revealed the absence of resonance due to the tertiary amine functional group that is responsible for the bitter taste of CLA. CLA was stable in simulated salivary fluid and was released within 3 hours in gastric fluid. All CLAresin batches revealed complete taste masking. Taste analysis highlighted the improvement of taste masking properties of the resinate as the CLA to resin ratio, increased.
- Full Text:
- Date Issued: 2019
Formulation and Characterisation of a Combination Captopril and Hydrochlorothiazide Microparticulate Dosage Form
- Chikukwa, Mellisa T R, Walker, Roderick B, Khamanga, Sandile M
- Authors: Chikukwa, Mellisa T R , Walker, Roderick B , Khamanga, Sandile M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183200 , vital:43926 , xlink:href="https://doi.org/10.3390/pharmaceutics12080712"
- Description: Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution.
- Full Text:
- Date Issued: 2020
- Authors: Chikukwa, Mellisa T R , Walker, Roderick B , Khamanga, Sandile M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183200 , vital:43926 , xlink:href="https://doi.org/10.3390/pharmaceutics12080712"
- Description: Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution.
- Full Text:
- Date Issued: 2020
Evaluation of rate of swelling and erosion of verapamil (VRP) sustained-release matrix tablets
- Khamanga, Sandile M, Walker, Roderick B
- Authors: Khamanga, Sandile M , Walker, Roderick B
- Date: 2006
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184232 , vital:44192 , xlink:href="https://doi.org/10.1080/03639040600599822"
- Description: Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.
- Full Text:
- Date Issued: 2006
- Authors: Khamanga, Sandile M , Walker, Roderick B
- Date: 2006
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184232 , vital:44192 , xlink:href="https://doi.org/10.1080/03639040600599822"
- Description: Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.
- Full Text:
- Date Issued: 2006
Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets
- Chaibva, Faith A, Khamanga, Sandile M, Walker, Roderick B
- Authors: Chaibva, Faith A , Khamanga, Sandile M , Walker, Roderick B
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184139 , vital:44177 , xlink:href="https://doi.org/10.3109/03639045.2010.488648"
- Description: Background: Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Method: Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. Results: The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. Conclusion: The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.
- Full Text:
- Date Issued: 2010
- Authors: Chaibva, Faith A , Khamanga, Sandile M , Walker, Roderick B
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184139 , vital:44177 , xlink:href="https://doi.org/10.3109/03639045.2010.488648"
- Description: Background: Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Method: Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. Results: The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. Conclusion: The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.
- Full Text:
- Date Issued: 2010
Drug transport mechanisms from carbopol/eudragit verapamil sustained-release tablets
- Khamanga, Sandile M, Walker, Roderick B
- Authors: Khamanga, Sandile M , Walker, Roderick B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184801 , vital:44273 , xlink:href="https://doi.org/10.14227/dt180311p30"
- Description: The objectives of this study were to compare dissolution profiles of a verapamil (VRP) formulation manufactured inhouse and Isoptin SR using USP Apparatus 2 and 3 and to elucidate drug release kinetics of these dosage forms. Eudragit NE 30D (ethyl acrylate–methyl methacrylate copolymer in a 2:1 ratio) aqueous dispersion was used as a granulating binder for the manufacture of VRP mini-matrix sustained-release tablets. The wet granulation process was performed to prepare free-flowing granules that were blended with Carbopol. The tablets were manufactured using a single-punch press by compression of the granules with magnesium stearate as a lubricant. Drug release was determined in phosphate buffer solution using USP Apparatus 2 and 3. Dissolution data were fitted to zero- and first-order models; in addition, the kinetic data were determined by evaluation of Higuchi release kinetics. The mechanism of drug release was established using the Korsmeyer–Peppas model. In general, all tablets showed high mechanical resistance with less than 1% friability. There was no significant difference between the dissolution profiles of the formulation manufactured in-house and the commercially available product. The release mechanism of the formulated and marketed products was controlled by anomalous non-Fickian diffusion. VRP release was prolonged for 12 h indicating the usefulness of the formulation as a twice-daily dosage form. The mechanism of drug release for the dosage forms was unaffected by the choice of apparatus.
- Full Text:
- Date Issued: 2011
- Authors: Khamanga, Sandile M , Walker, Roderick B
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184801 , vital:44273 , xlink:href="https://doi.org/10.14227/dt180311p30"
- Description: The objectives of this study were to compare dissolution profiles of a verapamil (VRP) formulation manufactured inhouse and Isoptin SR using USP Apparatus 2 and 3 and to elucidate drug release kinetics of these dosage forms. Eudragit NE 30D (ethyl acrylate–methyl methacrylate copolymer in a 2:1 ratio) aqueous dispersion was used as a granulating binder for the manufacture of VRP mini-matrix sustained-release tablets. The wet granulation process was performed to prepare free-flowing granules that were blended with Carbopol. The tablets were manufactured using a single-punch press by compression of the granules with magnesium stearate as a lubricant. Drug release was determined in phosphate buffer solution using USP Apparatus 2 and 3. Dissolution data were fitted to zero- and first-order models; in addition, the kinetic data were determined by evaluation of Higuchi release kinetics. The mechanism of drug release was established using the Korsmeyer–Peppas model. In general, all tablets showed high mechanical resistance with less than 1% friability. There was no significant difference between the dissolution profiles of the formulation manufactured in-house and the commercially available product. The release mechanism of the formulated and marketed products was controlled by anomalous non-Fickian diffusion. VRP release was prolonged for 12 h indicating the usefulness of the formulation as a twice-daily dosage form. The mechanism of drug release for the dosage forms was unaffected by the choice of apparatus.
- Full Text:
- Date Issued: 2011
Development and assessment of a USP Apparatus 3 dissolution test method for sustained-release Nevirapine matrix tablets
- Mwila, Chiluba, Khamanga, Sandile M M, Walker, Roderick B
- Authors: Mwila, Chiluba , Khamanga, Sandile M M , Walker, Roderick B
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184779 , vital:44271 , xlink:href="https://doi.org/10.14227/dt230316p22"
- Description: Dissolution testing is a quality control tool used to assess batch-to-batch performance of dosage forms, thereby providing continued assurance of product quality. Analytical methods for the assessment of pharmaceutical product quality must be validated according to regulatory guidelines to ensure that tests are reliable and valid. Agitation rate, mesh pore size, surfactant concentration, and dissolution medium molarity are experimental parameters that may affect nevirapine (NVP) release and were investigated and optimized to ensure that consistent, reliable, and valid results using Apparatus 3 were produced. Agitation rate was investigated to establish an equivalent response to that observed for NVP release using Apparatus 2 at 50 rpm. A reciprocation rate of 5–10 dpm produced dissolution profiles that were similar to those observed using Apparatus 2. An increase in the molarity of the dissolution medium slightly increased the release rate of NVP, and a 50 mM buffer maintained at pH values mimicking gastrointestinal tract (GIT) conditions was selected for all experiments. With the addition of 2% sodium lauryl sulfate (SLS) to the dissolution medium, >80% NVP was released from the tablets over the test period. The NVP release rate increased with an increase in the mesh pore size; however, the extent of release was not affected by this parameter. Dissolution test samples were analyzed using HPLC, and dissolution methods were validated for NVP stability in the dissolution medium, specificity, linearity and range, repeatability, intermediate precision, and accuracy as defined by ICH. The dissolution method used for testing NVP tablets can be regarded as an appropriate tool for the evaluation of sustained-release (SR) NVP formulations and the impact of formulation composition and product quality attributes on drug release.
- Full Text:
- Date Issued: 2016
- Authors: Mwila, Chiluba , Khamanga, Sandile M M , Walker, Roderick B
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184779 , vital:44271 , xlink:href="https://doi.org/10.14227/dt230316p22"
- Description: Dissolution testing is a quality control tool used to assess batch-to-batch performance of dosage forms, thereby providing continued assurance of product quality. Analytical methods for the assessment of pharmaceutical product quality must be validated according to regulatory guidelines to ensure that tests are reliable and valid. Agitation rate, mesh pore size, surfactant concentration, and dissolution medium molarity are experimental parameters that may affect nevirapine (NVP) release and were investigated and optimized to ensure that consistent, reliable, and valid results using Apparatus 3 were produced. Agitation rate was investigated to establish an equivalent response to that observed for NVP release using Apparatus 2 at 50 rpm. A reciprocation rate of 5–10 dpm produced dissolution profiles that were similar to those observed using Apparatus 2. An increase in the molarity of the dissolution medium slightly increased the release rate of NVP, and a 50 mM buffer maintained at pH values mimicking gastrointestinal tract (GIT) conditions was selected for all experiments. With the addition of 2% sodium lauryl sulfate (SLS) to the dissolution medium, >80% NVP was released from the tablets over the test period. The NVP release rate increased with an increase in the mesh pore size; however, the extent of release was not affected by this parameter. Dissolution test samples were analyzed using HPLC, and dissolution methods were validated for NVP stability in the dissolution medium, specificity, linearity and range, repeatability, intermediate precision, and accuracy as defined by ICH. The dissolution method used for testing NVP tablets can be regarded as an appropriate tool for the evaluation of sustained-release (SR) NVP formulations and the impact of formulation composition and product quality attributes on drug release.
- Full Text:
- Date Issued: 2016
The use of response surface methodology in the evaluation of captopril microparticles manufactured using an oil in oil solvent evaporation technique
- Khamanga, Sandile M, Walker, Roderick B
- Authors: Khamanga, Sandile M , Walker, Roderick B
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184221 , vital:44191 , xlink:href="https://doi.org/10.3109/02652048.2011.629744"
- Description: Captopril (CPT) microparticles were manufactured by solvent evaporation using acetone (dispersion phase) and liquid paraffin (manufacturing phase) with Eudragit® and Methocel® as coat materials. Design of experiments and response surface methodology (RSM) approaches were used to optimize the process. The microparticles were characterized based on the percent of drug released and yield, microcapsule size, entrapment efficiency and Hausner ratio. Differential scanning calorimetry (DSC), Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and in vitro dissolution studies were conducted. The microcapsules were spherical, free-flowing and IR and DSC thermograms revealed that CPT was stable. The percent drug released was investigated with respect to Eudragit® RS and Methocel® K100M, Methocel® K15M concentrations and homogenizing speed. The optimal conditions for microencapsulation were 1.12 g Eudragit® RS, 0.67 g Methocel® K100M and 0.39 g Methocel® K15M at a homogenizing speed of 1643 rpm and 89% CPT was released. The value of RSM-mediated microencapsulation of CPT was elucidated.
- Full Text:
- Date Issued: 2012
- Authors: Khamanga, Sandile M , Walker, Roderick B
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184221 , vital:44191 , xlink:href="https://doi.org/10.3109/02652048.2011.629744"
- Description: Captopril (CPT) microparticles were manufactured by solvent evaporation using acetone (dispersion phase) and liquid paraffin (manufacturing phase) with Eudragit® and Methocel® as coat materials. Design of experiments and response surface methodology (RSM) approaches were used to optimize the process. The microparticles were characterized based on the percent of drug released and yield, microcapsule size, entrapment efficiency and Hausner ratio. Differential scanning calorimetry (DSC), Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and in vitro dissolution studies were conducted. The microcapsules were spherical, free-flowing and IR and DSC thermograms revealed that CPT was stable. The percent drug released was investigated with respect to Eudragit® RS and Methocel® K100M, Methocel® K15M concentrations and homogenizing speed. The optimal conditions for microencapsulation were 1.12 g Eudragit® RS, 0.67 g Methocel® K100M and 0.39 g Methocel® K15M at a homogenizing speed of 1643 rpm and 89% CPT was released. The value of RSM-mediated microencapsulation of CPT was elucidated.
- Full Text:
- Date Issued: 2012
The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations
- Fauzee, Ayesha F B, Khamanga, Sandile M, Walker, Roderick B
- Authors: Fauzee, Ayesha F B , Khamanga, Sandile M , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183872 , vital:44077 , xlink:href="https://doi.org/10.3109/03639045.2013.842579"
- Description: The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 24 full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer–Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.
- Full Text:
- Date Issued: 2014
- Authors: Fauzee, Ayesha F B , Khamanga, Sandile M , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183872 , vital:44077 , xlink:href="https://doi.org/10.3109/03639045.2013.842579"
- Description: The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 24 full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer–Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.
- Full Text:
- Date Issued: 2014
Development, manufacture and characterization of niosomes for the delivery for nevirapine
- Witika, Bwalya A, Walker, Roderick B
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183514 , vital:44002 , xlink:href="https://doi.org/10.1691/ph.2019.8168"
- Description: Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.
- Full Text:
- Date Issued: 2019
- Authors: Witika, Bwalya A , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183514 , vital:44002 , xlink:href="https://doi.org/10.1691/ph.2019.8168"
- Description: Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.
- Full Text:
- Date Issued: 2019
Syntheses, protonation constants and antimicrobial activity of 2-substituted N-alkylimidazole derivatives
- Kleyi, Phumelele, Walmsley, Ryan S, Gundhla, Isaac Z, Walmsley, Tara A, Jauka, Tembisa I, Dames, Joanna F, Walker, Roderick B, Torto, Nelson, Tshentu, Zenixole R
- Authors: Kleyi, Phumelele , Walmsley, Ryan S , Gundhla, Isaac Z , Walmsley, Tara A , Jauka, Tembisa I , Dames, Joanna F , Walker, Roderick B , Torto, Nelson , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184066 , vital:44165 , xlink:href="https://www.ajol.info/index.php/sajc/article/view/123858"
- Description: A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus and Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 µg mL–1) and B. subtilis subsp. spizizenii (5–20 µg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 µg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).
- Full Text:
- Date Issued: 2012
- Authors: Kleyi, Phumelele , Walmsley, Ryan S , Gundhla, Isaac Z , Walmsley, Tara A , Jauka, Tembisa I , Dames, Joanna F , Walker, Roderick B , Torto, Nelson , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184066 , vital:44165 , xlink:href="https://www.ajol.info/index.php/sajc/article/view/123858"
- Description: A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus and Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 µg mL–1) and B. subtilis subsp. spizizenii (5–20 µg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 µg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).
- Full Text:
- Date Issued: 2012
Academy of Pharmaceutical Sciences
- Authors: Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184768 , vital:44270 , xlink:href="https://hdl.handle.net/10520/EJC-98c37d47c"
- Description: It is an honour and a pleasure to report on the activities of the Academy of Pharmaceutical Sciences since the PSSA AGM in 2016. The Academy of Pharmaceutical Sciences of the Pharmaceutical Society of South Africa (APSSA) held their 37th Annual Conference and 38th Annual General Meeting at the All African Congress on Pharmacology and Pharmacy. The conference was jointly organised by the Academy of Pharmaceutical Sciences of South Africa (APSSA), the South African Society for Basic and Clinical Pharmacology (SASBCP) on behalf of Pharmacology for Africa (Pharfa) and the Toxicology Society of South Africa (ToxSA). The annual APSSA conference was hosted by the Department of Pharmaceutical Sciences, Tshwane University of Technology under the leadership of Dr Ilze Vermaak and was held from 5-8 October 2016 at Misty Hills Conference Centre, situated close to the Cradle of Humankind.
- Full Text:
- Date Issued: 2017
- Authors: Walker, Roderick B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184768 , vital:44270 , xlink:href="https://hdl.handle.net/10520/EJC-98c37d47c"
- Description: It is an honour and a pleasure to report on the activities of the Academy of Pharmaceutical Sciences since the PSSA AGM in 2016. The Academy of Pharmaceutical Sciences of the Pharmaceutical Society of South Africa (APSSA) held their 37th Annual Conference and 38th Annual General Meeting at the All African Congress on Pharmacology and Pharmacy. The conference was jointly organised by the Academy of Pharmaceutical Sciences of South Africa (APSSA), the South African Society for Basic and Clinical Pharmacology (SASBCP) on behalf of Pharmacology for Africa (Pharfa) and the Toxicology Society of South Africa (ToxSA). The annual APSSA conference was hosted by the Department of Pharmaceutical Sciences, Tshwane University of Technology under the leadership of Dr Ilze Vermaak and was held from 5-8 October 2016 at Misty Hills Conference Centre, situated close to the Cradle of Humankind.
- Full Text:
- Date Issued: 2017
Development and Validation of a Stability-indicating RP-HPLC Method Using Quality by Design for Estimating Captopril
- Veerubhotla, Krishna, Walker, Roderick B
- Authors: Veerubhotla, Krishna , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183525 , vital:44003 , xlink:href="10.4172/pharmaceutical-sciences.1000478"
- Description: The applicability of a quality by design framework for the development of a sensitive, simple and selective, stability-indicating reversed-phase high-performance liquid chromatography analytical method for the analysis of captopril was investigated. Design of experiments using a central composite design approach was used for method development. Twenty experimental runs were performed with acetonitrile content ranging between 28 and 36 % v/v, pH from 2.8 to 3.6 and temperature between 22° and 32°. The experimental data obtained was used to derive a quadratic model for the retention time of captopril. The optimized method produced sharp peaks with good resolution (>2) for captopril and the internal standard with retention times of 3.1 and 6.2 min, respectively. The experimental data revealed that acetonitrile content in the mobile phase and pH are significant factors that affect the retention time and resolution of captopril. Normal probability plots revealed that the residual and predicted data fall approximately on a straight line, indicating that the experimental error for these studies was evenly distributed suggesting that the model could be used to navigate the design space. This approach is useful to expedite method development and optimization activities in analytical laboratories.
- Full Text:
- Date Issued: 2019
- Authors: Veerubhotla, Krishna , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183525 , vital:44003 , xlink:href="10.4172/pharmaceutical-sciences.1000478"
- Description: The applicability of a quality by design framework for the development of a sensitive, simple and selective, stability-indicating reversed-phase high-performance liquid chromatography analytical method for the analysis of captopril was investigated. Design of experiments using a central composite design approach was used for method development. Twenty experimental runs were performed with acetonitrile content ranging between 28 and 36 % v/v, pH from 2.8 to 3.6 and temperature between 22° and 32°. The experimental data obtained was used to derive a quadratic model for the retention time of captopril. The optimized method produced sharp peaks with good resolution (>2) for captopril and the internal standard with retention times of 3.1 and 6.2 min, respectively. The experimental data revealed that acetonitrile content in the mobile phase and pH are significant factors that affect the retention time and resolution of captopril. Normal probability plots revealed that the residual and predicted data fall approximately on a straight line, indicating that the experimental error for these studies was evenly distributed suggesting that the model could be used to navigate the design space. This approach is useful to expedite method development and optimization activities in analytical laboratories.
- Full Text:
- Date Issued: 2019
Electropolymerized Fluorinated Aniline-Based Fiber for Headspace Solid-Phase Microextraction and Gas Chromatographic Determination of Benzaldehyde in Injectable Pharmaceutical Formulations
- Mohammadi, Ali, Mohammadi, Somayeh, Moghaddam, Bayandori A, Masoumi, Vahideh, Walker, Roderick B
- Authors: Mohammadi, Ali , Mohammadi, Somayeh , Moghaddam, Bayandori A , Masoumi, Vahideh , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184120 , vital:44175 , xlink:href="https://doi.org/10.1093/chromsci/bmt152"
- Description: In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography–flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50–800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n 5 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms.
- Full Text:
- Date Issued: 2014
- Authors: Mohammadi, Ali , Mohammadi, Somayeh , Moghaddam, Bayandori A , Masoumi, Vahideh , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184120 , vital:44175 , xlink:href="https://doi.org/10.1093/chromsci/bmt152"
- Description: In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography–flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50–800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n 5 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms.
- Full Text:
- Date Issued: 2014
HPLC method for simultaneous analysis of ranitidine and metronidazole in dosage forms
- King'ori, Loti D, Walker, Roderick B
- Authors: King'ori, Loti D , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184790 , vital:44272 , xlink:href="https://doi.org/10.14233/ajchem.2014.15432"
- Description: A simple, rapid, precise and accurate stability indicating HPLC method for the simultaneous analysis of metronidazole and ranitidine in dosage forms has been developed and validated. Calibration curves for metronidazole and ranitidine exhibited linearity (R2 = 0.9995 for both compounds) over the concentration ranges investigated. The method was sensitive, selective and accurate for both compounds. Both drugs were found to be stable following acid hydrolysis studies. However, following alkali hydrolysis degradation of both compounds was observed. Furthermore metronidazole appeared to be stable following oxidative studies however ranitidine underwent complete degradation under these conditions. Both drugs were well resolved from the degradation products. The stability indicating chromatographic method has the necessary precision and accuracy for the simultaneous analysis of metronidazole and ranitidine in dosage forms.
- Full Text:
- Date Issued: 2014
- Authors: King'ori, Loti D , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184790 , vital:44272 , xlink:href="https://doi.org/10.14233/ajchem.2014.15432"
- Description: A simple, rapid, precise and accurate stability indicating HPLC method for the simultaneous analysis of metronidazole and ranitidine in dosage forms has been developed and validated. Calibration curves for metronidazole and ranitidine exhibited linearity (R2 = 0.9995 for both compounds) over the concentration ranges investigated. The method was sensitive, selective and accurate for both compounds. Both drugs were found to be stable following acid hydrolysis studies. However, following alkali hydrolysis degradation of both compounds was observed. Furthermore metronidazole appeared to be stable following oxidative studies however ranitidine underwent complete degradation under these conditions. Both drugs were well resolved from the degradation products. The stability indicating chromatographic method has the necessary precision and accuracy for the simultaneous analysis of metronidazole and ranitidine in dosage forms.
- Full Text:
- Date Issued: 2014
Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Mweetwa, Larry L, Shandele, Ginnethon C, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Mweetwa, Larry L , Shandele, Ginnethon C , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183161 , vital:43917 , xlink:href="https://doi.org/10.3390/molecules26144244"
- Description: There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Mweetwa, Larry L , Shandele, Ginnethon C , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183161 , vital:43917 , xlink:href="https://doi.org/10.3390/molecules26144244"
- Description: There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
- Full Text:
- Date Issued: 2021
Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment
- Witika, Bwalya A, Makoni, Pedzisai A, Mweetwa, Larry L, Ntemi, Pascal V, Chikukwa, Mellisa T R, Matafwali, Scott K, Mwila, Chiluba, Mudenda, Steward, Katandula, Jonathan, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020