Rhodes Thesis

RHODES UNIVERSITY

whearcorrou

CI. No. T. 1263

Acc. No. A 11722 nan
b1004508

INT RRRLATIONS BETIEEA

LEARNING ABIITIES IN VARIOUS
sxruaprons.

Carol Frances Lundie. '

Thesis submitted in part fulifinent of the requirements for the degree of Master of Arts, in Psychology.

Rhodes University College, Grahamstown,

January 1942.
The writer wishes to thank Professor
 Rhodes University College, for his patient ascistance and constant guldance. While engaged In this research the writer held a Mirhead Bursary, for which she acknowledges her indebtedness.
She al ao expresses her appreciation to the seventy women students at Rhodes University College, who, by their willing co-opertion to act as subjects, made the execution of this Investigation possible.

NOTE.

The numbers given in brackets, after the names of the various authors, relate to the alphabeticsi 11 st of references at the end of the study.

In this 11 st of references, in the case of journals, the name of the journal is given first, then the date of the journal then the volume, page number, and finally the title of the study referred to.

Bras
 52
A. Tho Aetunl Toeto. 58
Totst Z. The Linoar llamo 52
Toet II. The Mootr Palitis Teat 55
Tost IIIGubntatution 耳eet A. 59
 60
 65
Tent VI. The Cond Somtang Tont. 7
Tectvix Subatlantion Foct D. 7
Testvixillonsone Eyllable Haso 1 Ts
3. Guttraten of the Resta. 7
 02
A. Snºjooty ct
3. Whan toate mere fermen. 6t
C. Instructions. 8
 55
Ametme.
A. Proviour llothods of Honareling 65
lenaming Abllity.
B. Sumpersod Imswoyenter on 00thons Modurucs.
(n) Ayce trien oume, betroon 89 longest and shorteot tutaln.
(b) $\frac{\text { ap }}{\mathrm{T}}$ Sommata. 90
(a) $\sqrt{\frac{x^{2}}{2}}$ 02
 93
(o) Pommis 90 Sonat ama.
0. Thin Oarnon Pefabs di Mastory 100Soein 1 qque.
D. Honcuring Imawints Abslisty 104

5v.Page．107RESYMS OR马ATNED．

B．The full table of corselettons 106and asamplbution of $00-$erctetente．
Q．Interoomelations amons liotor， 100 Mental and I dentional 官eothe．
D．Interacroviationa anong 111 Facilltation and Aohlevem ment westo．
R．Comparinon of powults 113 obtainge by uelng the wis nind taz fomuleo．

 \(x I\)
 T．Corvelations between the corresponatne testas，in the Feolistation and Achlevem114ment troups．
O．Awe the 1 or ormelations 115dut to enotional faotore？
H．Elingnation of eubjoota， 122 with diffownoes in affeot－ Lve attitudo．
x．Bimination of aubjeotes 131 with alpporencee in
J．General．Dinaustion on the 333 Rocults Poush by theBidnation tochniquen．
K．Summary． 136
 136
FRK hed wowne bavioplnave．
A．Goneral Conolualons． 136
B．Recent Nor＇s on the Froblca． 115
C．Auture Devolomments． 143
AFPMNIX I：Rampes of Becond rimes， 154 3nortest 41 me and IImopitcononoes．
APRIMDIX IL．霑ables of scores from which the 155ogleviated．

		Page
APPMTDIX TIT .	Hethod of enlouinting comselation coepticients.	260
APPRIDIX IV.	Hethod of oalowating the aignilicance of a differmence betwoen tro oompelation coesficients.	162
APPIMDIX Y ,	(a) Krample of applioation os Speaman's $2-$ Factor theory, to mohlewanent 	163
	(b) Example of appituation of Sponman's 2-Factor thaory, to fous comelation coorficiontv.	164
REPGTMCSE.	...	166.

INTRODUCTIOM,

It is a metter of considerable theoretical and practical importance to deternine whether learning abllity is general or specific. In everyday iffe one often hears remark of the following nature; Hy niece will pick that up very easily, she is such a quick learner", or "Poor Johnnie has failed his clase this year, but then he weys did lack learning ebllity". These remaris are occasionally qualified by such statements as : Sh is such a quick leamer where anything involving neealevoyk is concernes", or "He alway did lack learning ability in school sublecte". These qualifications, although they may cover a large rage of activities, as in the aecond example, imply that the individual referred to has a different degree of learning ability in another sphere.

Not only do the majority of doting aunts and disappointed parents apoak of learning ablility as if individuals differed conelstently in amount thereof, irreapective of what is lasined, and the oircumstonces under which the learning occurs; but the existing laws of learning, fomulated by some eminent paychologists, tacitly assume that there is a leaming process, not different learning processes for different tasks. These psychologista 1 mply by their statements an underlying general learning ability. There is a corresponaing assumption of a general learning ability behind the practice of

Intelligence tebting; Thorndike (58 p.258), however, has pointed out that it is not known to what extent any test of intelligence is a measure of the ability to learn the elementary school subjeots, or to learn to add better, or to learn a code, or anything ise; that is, it is not known exactly to what extent learning ability is general or apecific.

An individual can loan a great veriety of things at different tiaes, and under difforent olrcumstances. What we would like to know is whether leaming ability is general in the sense that individuals differ consistently in respect to rate of learning, irrespective of what is leamed, and of the circumstences under which the process occurs. Can one spoak of quick learners and slow learners, without the qualification of mentioning what is being quickly or slowly learned? Is leaming ability general or speoffio to the partioular task boing learned?

The problen can be compared with that of intelligence. It usea to be assuaed that there wat a general ability celled intellisence, but wuch work has been done of recent years, by spearman, Thomson, Thornalke, Thurstone and others, on this problew, so that with regard to intelligence, there are now three theories; (a) that intelligence is a general ablility; (b) that abilities mun in groups; and (c) that one's abilities are highly specifio. Present opinion seems to favour the general and group factor theories. Educational psyehologists seem to sseume that learning sbility is as general as intellectual abillty was assumed to be, and speak of fast and slow learners, without mentioning what is being learnea. (Kusbana 30.)

Interest in the nature of learning ability is now appearing to develop, and the work that has s.lresidy been done on this problem does not support the assumption of a general learning ability. The investigators concemed, however, seem aissatiafled with their resulte. They write as if there should have been higher correletions between learning abllities than they found, and it was this disEatisfaction on their part which stimulated the writer to undertake this preeent research. The repetition of an earlier investigation has usually been considered beneath the dignity of a self-respecting Master of Arts canaldate! In fact psychological research generally has over emphasized exploration and under exphesized verification. What is needed in pachology is not mere blind repetition, but repetition with insight: A return to the original meaning of the word regearch. We might well heed the appeal of Ross (49), who writes: "Psychology has had too much search, and not enough re-. Novelty may be noteworthy, but let us make repetition also respoctable". If methods oan be designed to overoome some of the defects in previous investigatione, then this repetition will be valuable. In fact psyohologists should give un their present tendency to accept the results of investigators before they have been corroborated by the results of repetition by other researchers.

Before giving a survey of the work cone by evious investigators in the field of leaming ability, the writer would like to quote Pyle(47p.155),

```
to show that the theorlsts are wanting, and walting for information on the relationships between various kinds of laming abilities. He asks the following ohallenging questions: "To what extent is learning capacity general, and to what extent is it specific? What evidence is there that there is a general factor In learning? What evidence is there that there is alwaye a specific factor? How can the general factor be best measured? Few peple have followed up these questions and the evidence which has been forthcoming has been far from decisive, as will be seen in the following chapter. Hence this research is justified if it can throw further light on some of these questions, even if it only corroborates the results of the few previous investigatore into this field.
```


CHAPTETE I.

A SURVEY OF פRUVIOUS SHUDT 8 IN2O

 It is necessary to mak a critioal aurvey of available ILtareture bearing on the problem of interrelations between learnine ability in various situations, so that one an propit by previous investigetora' experianee, and innd out aspects of the problem whioh nead special attention.

A. Early Invertigations.

Hall (23) summanises the work of former Invastigatoxa into the fleld of human laarning, wish ytelag some eviance which might suggegt answers to the question of generality or gpecificity in leaming ability. More particularly this summay beaxe on the question: are the correlations between different measures of improvability of high os low magnitude? Hall obteined correlation cocffiolente between scoxes obtained on various I caming tasks from Brooks (4) Chapanan (11), Garrett (17), Gates (18), Gunlach (22), Haught (24), 靼eron (25), Race (48) and Thorndike (57) the variety of tasks included colourmaning, oncellation, opposites, addition, mental multiplioation, typewsiting, adsit-gymbol aubstitution, Iurkish Eng11sh vocabulary, code leaming, mational leaming, cheoker purzie, etylus maze, inverted vxiting, number completion, tapping and word bullalng. Five of the Inveatigators messured learning in texms of the Inprovement or gain from the initial to the inal trial,
while the remaining four used scores based on the total practice priod. The eighty-four correlation coefficients found by these investigetors, Hall arranges in tabular fom, showing their alstribution. They range from one which lies between $\cdot 70$ to $\cdot 79$, to one between -.40 and -49 . The majority of coefficients lie between. 00 and 39 ; the median lies between - 20 and $\cdot 29$, and the median of the positive coeficients $18+\cdot 25$. Only one-third of the total number of coefficients is significantly different from zero (taking the difference between the ooefficient and zero as four times its probable error), and about fourteen peroent are greater than $\cdot 5$. From these resulte it would seem that a general leaming ablility if such existe, is of slight importance in ©etermining learning performance. However, it is necessary to differentiate between perfornance in the learning situation and the actual learning process. Learning abllity has to be measured in terms of leaming performance, and the seore obtained on such a. performance is doubtless contaminated by many factors extraneous to the leaming ablilty or abilities of the subject. Therefore, to aome extent, the lowness of the correlations may be due to the influence exerted upon the scores by these extraneoue factors. hall enumerates eome of the irrelevant factors which may raise or lower inter correlations between learning tasks. As the part played by these factors on the size of the correlations, is vital to the problem, a summary of Hall's list follows.
B. Irrelevent Fectors which may rat so or lover inter-corcelation: between Lorming Taskg.

1. Range of Talent. It is well-known
statistieal principle that the correlation coefficient is systeratically lowered by restrioting the range of telent sampled. If representative sumple of the total population were tested, inatead of college gtudenta, who have been used as subjects in most of the previous investigations, higher correlations would probably be obtained. How auch the $\mathrm{r}^{\prime} \mathrm{g}$ would increase by doing this, is highly speulative.
2. Correlation due to irrelevant factore.

If variable, such as age, sex, potionality, aducation or boclo-economic status, be correlated with several learning performancea, the intercorralatione betwean the leaming soores will be spuriously inoreasea.
3. Inrelisbility of veasurement.

The orude r^{\prime} obtained can be oorrected for attenuation, If the reliability coefficients of the leaming tasks sre known. In Fiell's Table I, taking the crude r^{\prime} s for which "true" r ts can be alculated, he finds an increase in the median value from 29 to .47. Hall concludes from this that the unreliability of aeasurement is an important cause of low inter-correlations. However the methods employed in calculating the rellability coefficienta of measures of learning tasks can be severely criticisea, which means that the r^{\prime} s tay have been spuriousiy increased by correcting for attenuation In this way. For further discussion on this topic see page 19.
4. Number of Sublacts.

The stability of the obtained $r^{\prime} s$ is in part a function of the number of subjects used. Correlations based
on fewer than thirty to fifty subjects are inconclusive, because of the large probable errors, and because the usual probable error formulae do not hold when applied to less than twenty-five cases.

5. Keasure of Learning.

Difference in the magnitude of the r's reported in Hall's Table I, may be due in part to variation in the methods employed for measuring the results of practice. As has already been stated, five of the investigators measured lesming in terms of improvement or gain from the initial to the final trial, the remaining four using scores based on the total practice period.
6. Number of triale.

Intercorrelations between scores on a battery of leaming teats are affected by the number of trials on which the scores are based. Acoording to Hollingworth (27), the correlation between two tasks worked on for five trials will be lover than the correlation for the game task worked on for ten trials.

\%. Types of learning takke used.

A critical test of the existence of a general learning ability would consist of an investigation employing a ample of learning tasks representative as to content and complexity. By judioious ampling of leaming tasks with very similar content, it should be possible to obtain x^{\prime} of a high magniture, but one could not argue therefrom for a general learning ability. on the other hand one could moke out a very good case for specialised leaming abilities if low correlations were obtained between very similar learning tasks.

8. Previous Prection.

The ability evidenced by an individual in a learning task will depend on the amount of previous practice he has had on the task. If one individual has had one unit of previous practioe on Task A, and two units on Task B, and a second individual has had two units of practice on A, and one unit on B, their relative indtial position on the two tasks will be reversed. Should this condition of varying amounts of earlier training prevall for all subjects on the saine task, and for the same individual on airferent tadikg, the correlatione between the several measures will be lowerea. Numerous ttampts have been made to devise task which will eliminate the influence of previous training, elther by starting all individuals at zero ignorance, or at sose common point on the leaming curve; but none have been really succeasful. Some traks, such $2 s$ wazes, seen to minimise the influence of past experience.
9. Rositive and Negative rransfer of Iraining. Positive transfer is on increase in efficiency in learning Task B as a result of heving learned Task A previousiy. Negative transfer of training is defined as a decrease in efficiency in leaming Task B, 28 reault of having learned Task A . Therefore having learned Task A may afiect the results on Task either favourably or unfavourably, and it is probable that subjeots will be differentialiy affected by tranefer, in which case the true relationships between the learning tasks will be meskea.
10. Understanding of the direations.

11. Eqotionni Aaluefrnent to the Jeoxaincs stivantron.
 12. Motivation.
 13. Inruonee of other extmneove finctove on the I caming nmooge.

A 1.1 roly reatut of fative to control ona or all of thede factore ia that they will have a atrforentiel effect on the same inatvitual in airfowent Ieaming siturtions, oonsequantly his powtomanco will vary from task to takt and the oompletsons between pewtomannees vili be xeduoed.

Heving elaboteted theee thimben factors which influence the intercorpelatlona betweon leamang performanoe, Hall saye that an individuni'a leaming seore maty be repremented by the following equation: Boowe on Ioaming task = P(Jeaming ability, involovant factors, unpelablitity of measurament, poaitive or negntive omanser, previout praotiae, type of matemal usoc, mensures of learning employed, number of trials, underntanding of direotiong, emotional aduetmont, motivetion, and alaly varistlons.) Anothes important, nut often negiaeted varinble arfecting the moome obtained on leaming taske in a dirforentin manner, is vamation in rovt mothodfe Attention has beon dmem to this by Seashore (5l) and van Dusen (16).
ot these fourteen variables, ten probably 1ower the cormelation between leanimg tant: one ratren the coppilitton, and three my ofthem wise or lower the interoompolattone. Accoviling to this analysia there is every reason to belleve that the
inter-correletions would rise, should these irrelevent variables be eliminated.

In his investigation Hall states that some, but not all of these factors were controlled. A sumary of his investigation follows.
C. Hell's Investigation.

The four learning tasiks chasen were;
A stylus meze (SM); the Petersen rationsi learning test (RL); a 11st of nonsense syllables (NS); and a punchboard meze (PB); ohosen because of the frequency with which they had previously been used, known relfability, and apparent dinsimilarity of content. As subjects a hundred first year college women, who volunteered to act as subjects, were usea. They reported once a week on the same day and at the same hour, to practise one task each week; each task being practised for fourteen trials. Errors, or in the case of the nonsense syliables, the number right, for each trlal were the only records kept. Expliolt verbal directions, and thereafter a short forepractice on each task was edministered. No attempt was made at motivating the subjects, beyond asking them to do as well as they could. The measures of learning employed were total errors or number right for the fourteen trials, and improvability or leaming ablility was measured by the difference between the score on the first two triale and the last two. $(1+2)-(13+14)$.

The rellability coefficients for the total error score were obtained by suming the errors made on the odd and even triale, and correlating these scores. The Brom-Spearwen formula was applied to

Give the reliability of the entire fourteen trials, the coeffiolents obtained in every case being above -9. The reliability cooffiolenta for gains wore obtained by correlating the gain from trial one to thirteen with the gain from trial 2 to 14, but the reliebility coefficients with the exeeption of that found for nonsense syllables, were low in this sase. For further aisoussion on reliability see page 19.

The intercorrelations for total error scores, and for improvoment are as followe:

Total exrorg.
Crude Corrected for attenuation.

PB v $3 . \mathrm{KL}$	- 38	- 40	- 21
P8 \% 0.5 Sm	- 28	- 30	- 20
PB VG.NS	. 33	- 34	. 03
	- 27	. 29	-.02
RL Ve.NS	.18	.18	-. 12
SM va. ${ }^{\text {WS }}$.11	. 11	. 07

TABLE 1.HALL'S INTEHCORRILATIONS EOR TOTAL ERROKS \& GAINS
None of the coerficients using gains as the meegure of learning is significantly different from zero. The intercorrelations using the total error score as the eriterion are all positive. Two are not $81 g n i f i c a n t l y$ different from zero, and the remeinIng four do not indicate a very large comeunity of function between the performances.

Fisll attemptis to show in how far the thirteen irrelevant factors have been controlle a in his investigation. Unreliability of measurement, number of abjects, type of material used, measure of learning and number of trials, he maintains, were
so controlled as to constitute a sair teat of the existence of a general learning ability. Correlation aue to irrelevant factors, positive and negative transfer, understanding of directions, emotional adjustment and daily variatione, were partially controlled. However, previous practioe and motivation were definitely not controlled. In apite of the low correlation coefficients obtained, Hall believes it highly probable that a general leaming sbility a indicated by the presence of positive correlation between pure teasures of leaming, would appear, were one able to aevise at of task free from the differential effects of previous practice, and in the learning of which motivation could be made the same for all subjects. In conclueion Hall writes: "An original investigstion in which some of the factors irrelevant to the learning procese vere eliminated, yielda oorrelations of no greater aagnitude than those obtained by the former investigators. Although the present and previous studies point to a high degree of epecificity in learning, the writer believes that a general learning ability of sone importance might be discovered were we able to control the aifferential influence of motivation and previous pratice in the learning eituation".

D. Husband's Investication.

Husband (30), following up the work done by Hall, caxried out an inventigation involving many more teets than Hall's. The tests utillsed were the following: (1) Leaming naxes and faces; (2) Spoolpacking; (3) memory for names and faces; (4) rational

```
learning (a mental maze test); (5) Kirror dreving;
(6) Auditory prose; (7) canocllation; (B) maze
learning; (9) Peralan-English vooabulary, visual;
(10) memory for prose pasaage; (11) visual prose;
(18) code substitution; (1z) purgu{t rotor; (14)
Incidental memory for code; (15) card-sorting;
(16) Mindu-mgissh vocabulsry, auditory; and (17)
visual prose memory.
    On most of the tests only five practice trials
were given. One hundred college gtudents vere used
as gubjects, being individually tested in three
sessions of an hour splece, one week apart.
                    The correlations obtained from this in-
vestigation are shown in rable 2. As can be seen
they are all extremely low. They woge from --16 to
+.53, With a median coefficient of .13. Two-thirds
of the coefficients 11e between -.20 and+.20, and are
not significantly different frow zero.
```

3 Soct To.	3	3	4	57	8	0	10	13	13	24	15	316	17
3	. 19												
${ }^{4}$. 26	. 04											
3	. 04	. 11	.02										
7	. 00	. 04	. 10	. 38									
8	. 06	.00	+38	. 25 -. 13									
9	. 27	. 20	-28	. 13 -.05	. 33								
10	*.06	*27	$\cdot 77$	-.04 -.06	. 08	-2							
13	. 35	.05	, 2	- 213 . 07	-. 05	+35	+63						
13	- 16	. 03	. 03	.278		- 06							
14	. 03	. 23	. 68	. 05.06	-2	. 26		.04	. 23				
15	-36	. 25	. 23	-54 -0.04	-04	. 20	-20	- 15		. 16			
16	. 06	- 25	. 25	.00-.04	. 23	. 58	.08	.17	- 23	. 20	. 10		
17	. 04	- 26	-36	$\text { -23 -0 } 08$		-3)		$.21$					
$\begin{aligned} & \text { Yn- } \\ & \text { tole } \\ & \text { semen } \end{aligned}$	L^{20}	-01	. 02	.23 - 13	+20	- 10	-.05	. 19	. 05	-. 15 -	-. 06	-. 26	$\cdot 20$

2704 2. 2F mabers inlianthic the tores seres to the minions of the tent cuotod on pargel3 \& 14).

Husband sub-divides his intercorrelations into three groups, composed of test of somewhat similar demands. The median exong the motor teste $18+\cdot 19$, among the roite learning tests is $+\cdot 20$, and it rises to $+\cdot 25$ with the three correlations anong 1deational tests.

Examining Hall's ilst in terms of this investigation, Husband regards the following points as relevant: (a) Limited range of tolent certainiy applies to this investigation. College students of the same age, educational background etc., were used as subjects, which probably lowers the correlation coefficients obtained. (b) Similarity in age and culture possibly serves to raise the correlations. (c) Unrellability of measurement applies, as doing seventeen tests in three sours demanded shortening many to an undesirable degree. (d) The measure of learning used was the total scores in all trials, on the ssumption that everyone started with an equal sicill, and the faster learners had better scores as time went on, hence thelr totals should have been lower in time or greater in quantity than those who did not improve so much. Husband admits that this reasoning is theoretical rather than petioal, and points out that aome subjects caught on to the nature of the test earlier than others, and ame were aided by thore rapld eye or hand co-ordination, which raitted better scores due to native or previously acquired akill, and not necessarily through leaming.

Husband concludes his article by saying: "The whole trend of evidence is such as to suggest very strongly that we must peak of leaming abilitios (plural) and not of loaming ablilty (singular), as
if it were a general ability. Unless there is a great deal of overlapping in the nature of the tasks, interrelationships are very low".

Before this statement cen be accepted further experimentation is necessary, and the theorists are not likely to give up apaking of "Ieaxning ability", until conolusive evidence has been put fowward that a general leaming ability doeg not exist. It must ala be remembered that even with a relatively low range of correlations, general factors may present themselves if factorial analyals is applied to the teble of intercorrelations.

E. Critiolsmg of these two investigationg.

(a) Hal1's studx.
(1) The Tests used. Hall states thet one of the reasons for chooaing the four learning tasks used in his inveetigation, was their apparent dissimilarity of content in order to samplo as widely as possible the variou so-called types of learning.

On looking at the tests it is found that they consiat of a $40-\mathrm{T}-\mathrm{unit}$ stylue aaze; a rational learning test requiring the subject to associate numbers with letters; a list of nonsense ayllables to be memorised; and punch-board maze into the face of whioh are bored thirty paire of holes, the subject being required to go through the thirty pairs with a stylus, selecting the one of each pair which counded a buzzer. These tasks, in the writer's opinion, seem to have a certain gimilarity of content. There are two mazes, neither of whioh allows of much spatial relation eduotion. In the punch-board maze the
subject must learn the correct holes by repetition 1,e. the task is one involving mainly "facilitation" (See Chapter YI, page 26). The sene applies to a T-maze. The nonsense syllable test involves rote nemory, a knowledge of the syllables being obtained by repetition -i.e. it is also a "facilitation" task. The so-called rational learning test probably gives more roon for forming associations between the letters and the numbers, sat more room for relation eduction; but subjects need not necessarily adopt such woris wethods, and the task oan probsbly be done largely by repetition, especially as there ere only sixteen pairs to be assochated. Thus it would seem that the tasks are all of the kind that Hubbana would call "rote-nemory" tests, anc of the type which bave been called "facilitation" taks in this stualy. The two "aotor" taske seem to Eive little opportunity for motor leaming of a manipulative kind, and none or the tests seem to give muck opportunity for learning involving relation or correlate eduction. The nature of Hall's taske probably aocounts for the fact that his correlation coeficiente are on the whole higher than those found by Husband.
(ii) Measures of learning. In computing the Intercorrelations between the performances, Hall employed two measures of learning: Iotal errore or number right for the fourtoen trials, and improvabllity as measured by the difforence between the score on the first two trials and the last two $(1+2)-(13+14)$. The former measure assumes that all subjects started with about on equal skill, and that the faster learners
had better soores es time went on，hence their totals should have been lower than for those who did not 1mprove so much．From this invegtigator g experience she knows that subjecta start with anything but equal akil．（as revreaented by the score on the initial
 taking socount of sctual staxting performance on the色解，as well as of Iearning ability．（See Chepters IT and VI．）

The gecond mescure is better one for guaging Iearning ab111ty＂，except that the firet score should perhazs not have been taken into consideration， as 却1．himself writes concerning the notorious un－ relisbility of initial soores on leamang taska． Why not use $(2+3)-(13+14)$ \％ 3 ha measure can be cwitLoised on the grounds that it does not take into account the way in which the time raduction has taken place，whother regularly or irregularly，more quickiy at the beginning．or at the end of fourteen trials etc．More diggussion on this point wil be found in Chaptex VI ．

It is from the correlations found by using the ifret measure that Hall draws noet of his con－ clusions，anc the size of these correlations are in part deteminea by the subjects＂actual ability＂on the tack，as alstinot from＂Iaming 2o111ty＂．It would geer，from a comparigon of the corzelations obtnined by using gaing as the oriterion of leaming ab111ty，with those obtained by using total time， that the Istter measure tends to ralse the correlation coefficients．As this meagure does not take only learning ability into account，the corselations obtainea
do not give a true reflection of the interrelationships of learning abilities, as they have been spurioualy increased by taking "actual ability" into account, and its use can be orlticised.

(1i1) Method of mescuring relisbility and correcting for attenuetion.

To find the reliablilty coerfiolent for the total error score, the errora made on the odd trials, and the errors made on the even trials were sumed, and these scores correlated. This method of measuring rellability in the field of learning has been neverely critcleed by H. A.Carr (5). He points out that if the aistribution of the scores for each of the trials is ontirely a function of chance factors, the inter-trial correlation will approximate zero. If the distribution is wholly a function of the constitutional differences of the individuals; the correlation will be 1.00 . He continues: "The logical valldity of this method is based upon a tacit assumption 1.e. that the size of the correlation is an exclusive function of these two opposite influences. In other woras it is based upon the ascumption that there is no third factor present which will account in part for the aze of the correlation.
"What is a learning process? It is a process in which the performance of an individual on the tenth trial is a function of the prooeding trial. It is a process in which the incividual's performance ohanges from trial to trial in Virtue of the preceding trials. It is a pocess in which the scores for the successive triale are so casually tied together that the scores
for the odd and even trials must necessarily exhibit some sort of correlation with each other. In all learning situations, the size of the obtained correlation must thus be a function, in part of what I shall hereafter call 'the leaming function'."

By this method Hall finds high reliability coofficients, all being sbove 9 . It is interesting to note that when rellability coefricients for gains were obtained, they prove to be low. Now this secona method of finaling the reliablisty of the tests, seman a more valid one to the writer. It is entirely arbitrary and a matter of expediency to the investigator, whether one takes the subjecte' learning ability as improvement made from trials 1 to 13 , or trials 2 to 24, or say 3 to 21 for that patter. If the test is reliable as a test of the leaming proosse, the correlations between these methods should be fairly high; therefore the fact that Hall obtained low intercorrelations by this method, secal to indeate that the tests are not as reliable 28 one may be led to belleve by using the odd and even trial mothod. A mistake Hall made, however, was in taking the initial score into conalderation. He admits that the first trials of almost any learning task are notoriously unreliable. If he had taken as his oriterion for leaming abllity $(2+3)-(13+14)$. and correlated the gain from trial two to trial thirteen with the gain from trial three to fourteen, (2-13) vs. $(3-14)$, he would probably have obtained higher reliablity coerfleients.
(b) Husband's stucy.
(i) The Tests used. Husband uses more

```
tests than Hall, ana the variety 1a also greater.
Some of the toetg are purposely made very similar,
such as the "ergian-English, visual", and the "Hindu-
English, auditory" vocabulary tests. The teats are
divided, rather arbitrarily into potor, rote leamning
and Ideationsl teets, but they do seem to cover more
different types of leaming than Hall's Tests do.
Testa IO and 27, the writer thinks, can be oriticised
as being of rather a different type from the other
tests used. They tegt the subject'g memory for a
plece of prose, snd do not lena themselves for measure-
ment in tems of improvability; therefore she does
not think they should be olaseed as "learning" tasks,
but rather as "menory" teats.
It is siso doubtful whether a cancellation test teets learning eblisty, or merely the powers of attention of the aubject. If ruch improveaent takes place, it probably soints to the fact that the subject was not sttending closely enough auring the firet trials, and is improving in this respoct. (Whipple 60).
(11) Number of trisis. Doing seventeen tests in three hours meant shortoning the tests to an undesirable dagree. On many of the teste the subject Was only given five trials, and as Hall points out from Hollingworth ( 29 ), the correlation between two tasks worked on for five trials will probsbly be lower than the correlation for the same tagks woriced on for ten periods. (For further alscussion on this point, see Chapter VIII, Pg. 145 ).
(111) Heasure of bearnink. The seasure of lenving used by Husbend wes also the total scores of
```

the subjects in all trials, which has already been critiolaed.

Abstract

F. Sumnary.

Earilor studies of the relationships between meacures of learning give surprisingly low correlations, from which the conclusion has been drawn that perfomanoe in the learning situation seems to be very largely apecific to the type of task employed; but later investigatore felt that the subject ${ }^{\prime}$ performance had in pert been detemined by factors other than their loarning ability. In apite of improved althode of technique, and attempts to control various of these irrelevant factors, correlations readned low. Hall belleves that a general leaming ability of some importence might be discovered were we able to control the differential influence of motivation and previous practice in the learning stituation.

On examining both investigations criticaliy the following main points emerge :
(1) The choice of tests in an investigation of this nature is hard to make, and is an important part of the investigation. One must be extremely careful how a given set of correlation coefficients sre interpreted, and must investigate the nature of the taske from which they were obtajned carefully.
(2) There is an urgont need for an improved wegaure of learning ability, as both total score and inprovability as xeasured by the difference between inttial and final trials, have very serious drawbacks.
(3) Finding the roliability of a learning tasi by correlating the sum of the soores found on odd
and even trials, is a procedure which can be severely criticised.
(4) Before accepting any conclusions on the toplo of interrelationshipe between learning abilities, further data is urgently needed. In order to obtain sone such data, this investigation was undertaken, the pectifio aims of which will be set forth in the following chapter.

THE ATM OF THE INVESPIGARION, AND

DTSCUSSION OF THE CONGEPTS INVOLVED.
A. The Problem atated briefly.

The alm of the investigation can briefly be stated as being : to find out to what extent various learning abllities are correlated. In developing a method of investigating the problem, it is first necessary to make a survey of the avallable literature bearing on the subject. This has been done in the previous chapter. Secondly it is necessary to devise methods of overcoming aericiencies of previous investigations. This includes
(a) Selecting or devising leaming tasks specially suited to the problem.
(b) Finding or devising improved methods of measuring leaming ability.
(c) Planning the investigation so that it will yield data that can be submitted to statistical analysia.

The rest of the investigation will consist In carrying out the learning experiments on a sufficlent number of subjecte, to enable one to use the correlation technique (that is well over fifty); and In making a statistical and psyohologioal analymis of the resuits obtained.

Befor selecting or deviaing learning tasks, or improving previous methods of measuring learning
ability, let us exanine sone of the concents used In forxulating the problem. How is one to define Learning? What kinds of leaming are to be considered? What is ability? How can learning ability be meagured?

B. The Nature of Lenmins.

the tern leaming vill first be consicerea. As used in psyohology it seems to cover almost any form of adaptation to a situation whioh an organisu acçures. In spite of the fact that learning rates In different situations appeat in many instsnces to show only slight correlation, many peyohologiats continue to uee the tarm ios all situations, and treat learning as a single function. Maier, (43) however, suggeste that there are several separate proceseve which make up the leaming function. To him it seems that the study of leaming has reached a point where further analysis is sorely needed. Correlations between different learning problems领谒 one nothing but oorrelations, be seys, and it 18 time that attention be turned to the functioning mahaniams nesponsible for the size of the corm relations. To the oresent writer the fact that correlations are 1ow, sugesets that the supposition that learning is the resultant of geveral difierent processes, may be correct. If leaming oan be broten up into different meanansame whoh constitute the leaming prooess, then a leaming situation in Which one of the mechaniams is mainly brought into play, may give migh comrelation with another Ieaming problen in which the same mechanisum is Iunctioning.

HoDougall (42) discusees whether learning is all of one type, and comes to the conclusion that there are two distinet typer of lesrning process: inteligent learning involving gohievement through relevant insight, foresight and feeling, and unintelligent learning through mere repetition. Concerning this latter, he writes: there is a kind of learning whioh consists merely in the fixation or Eacilitation of a series of activities through repetition. He does not maintain that such learning is purely a mechanical process, but holds that it is a conative activity, and if this conative element were lacking, Goubts whether mere repetition of a movement sequence would result in faclitation. Spearman (53, page 284) also points out how laprovement may be derived from two entirely alsparate sources: "first, there is bare retentivity...., and then, there is such improvement as derives from ohange in mode of operation, and therefore is not explicable by retentivity at all, but solely by eauction". Xoffka (38) seems to make a similar division, when discuasing the prita played by achievement and menory in learning. He holds that all learning requires the arousal of configural patterns, and that before such a pattern has been achieved, mere repetition does not aid the leaming process. Rovever, after the configuration has onoe been construoted (achievement), repetition serves to make the behaviour appreciably firmer and easier. Upon repeating the objective conditions, the configuration will arise muoh more easily and more swiftly than it did the first tise (memory). Thus "memory" (Koffka) appoars very similar to "racilitation by repetition" (McDougall).

One method of dividing learning into
different processes would therefore seem to be into "achievement" and "faclittation" processes.

Facilitation can be regarded as being a retentivity phenomenon. It refers to improvements produced by sheer repetition, as alstinct from relation and correlate eduction (Spearman), or configuration construction (Koffka). It fallo in line with Spearman's principle of retentivity, about which he writes: "The other way in which the retentivity Aisplays itself is as facilitation: cognitive events by occurring tend to re-occur more easily". Frow this facilitation in leaming is a corollary. (Spearman: 52. Chap.IX.) As KoDougall (42) points out, something may be learned so that further repetitLons produce no improvement of an observable kind; yet if it is repeated for more trials after this, then after an interval of twelve monthe, say, it will be found to be better remembered, then if it had not been repeated in this manner. Therefore there must have been some improvement in retention due to the extra repetitions. This is improvement due to pure fsolifation.

Achjevemont is that type of learning whioh dependa upon the aduction of relations and correlates (Spearman). Reaboning enters into $1 t$, and it may be idestional, although in some cases the eduction of relations and correlates probably takes place subconsciously. Koffas (38) points out how the problem of learning has often been identified with the problem of memory, and omphaises the importance of anievement, which is generally the process whereby the first
performance oomes about, especkally in leaming of the problem-solving type. To him this involves the power to form the required conriguration to solve the problam. In learning of the habituation type, he holds the funotion of repetition ia to prepare the ground for the construction of an appropriate figure, thich ifst occurs by chance. It is only after the configuration has once been constructed, that repet1tion gerves to make the behaviour firaer and easier. One may not agree with all the theoretical Limplicationg in the discussione of Koffke, MoDougall, or Speaman, but all three authors regaxd achlevement and racilitation as two very different procesaes, whioh oocur in the leawning aitustion, and this is the point the writer wishes to stress. Leeper (40) in aiscuesing future work on leaming which he would like to see undertaken, also geyo that it would be desirable to akke a division between the different phases of laarning. The acquisition phase of learning (as distinct from utilization) needs to be recognised as composed partly of disoovery of the solution (compere with achievement), and partly of the Exation or implanting of the disoovered solution (compare with faoilitation). In all notual instances of Ieaming the two processeg, facliltation and achlevementi, are probably intimately blended in various proportions. In many learning stituations, st the beginning achievement is chierly responatble for proauaing the improvement; in others the parts played by achievement and fecilitetion may be equally important, wile in some perhaps facilitation is the important factor. In all leaming there 1s the soquisttion of a new mode of reaction or
adjustment (achievement) and al so the retining of it. (Iacilitation).

C. The Choten of Testa according to the analysis of Legraing into Eacilitition and Achievement Processes.

Were the low correlation coerficients, reported by previous investigators, perhape due to the inclusion of these two very different processes in varying ganounts, in the learning required by the task they usedi In order to find out whether this were so, it was decided to try and choose eight testsfour of whioh, as fer as possible, would involve facilitation prominently in the leaming process required, the other four involving achievement in a more marised degree. (Achievement meaning the opportunity to educe relations and correlates, uge ressoning, etc.) If the two groups of tegts could be kopt very similer, apart from the amount of facilitation and achievement that oould be used in the respective sets, this would make the correlations found easior to interpret. For example, if a fairly high correlation were found between the results obtainea from the various problems devised as facilitation learning taks, and also a high correlation between the achlevement tasks, but a low correlation between similar taske in the two. groups, then the reason for the sizes of these correlations, would be that alfferent processes are required to make a good racilitation leamer, and a good achievement learner.

In an investigation such as this, where the elght tests chosen must be easy to compare with each other, it was round difficult to devise tests in which

Abstract

the proportion of ahievement, or facilitation 1 s great in one group of tests, and not in the other. If four testa, where the procese required for learning is ohlefly achievement, are chosen, these would give curvee of the typical puzzle-box variety, that 1s, a long initial time, followed by a sudden drop and flattening out of the leaming curve. In regard to meagurement of improvement such curves would be difficult to compare with ones in which the improvement is steadier and more gradual; that 2s, the type of curve one woula expect to obtain from esas involving rainly facilitation. In making two sets of teste, very almilar for the reasons atated above, the invest1 gator found that the anounts of achlevement and facilitation involved in both sets ala tended to become fairly similar. In the end, two sets were docided upon in which a greater opportunity for using achlevement leaming was offered by the second group of tests, but the one set does not involve purely facilitation processes and the other only achiewement as we would have wished; the difference betwean the two sets is only one of degree.

Another consideration is that due to the similarity of the tests, some subjects may in learning the second batch of tasks, designed as achievement tagks; actually use mainly the facilitation method, While others may as intended make use of the opportunities afforded for utilising achievement in the learn1ng. Seashore (51) points out that one cannot simply control amount of training, and attribute all elae to blological oapacities, as the work method employed 18 a third variable. Therefore it 1 s neceasary to word

the instructions very carerully, to try and ensure that subjects will use the aohlevement methods of learning as wuch as possible in the second group of tasts. Dashiell points out that subjeots often change "seti in spite of inatruotions, therefore one cannot be sure that subjecta are using the achievenent methoa. They may also alternate betveen the two methods. (13).
D. The Concent of Leaming Ability.

Having aisouased learning ve now come on to a consideration of "learning ablifty". The tera ability is one thich 12 coning to be used more and more frequently in psychology, since the old faculty psychology has fallen into diesavour. When we speak of a person having an abllity, we infer the existence of it from an observed act. However the ability is sonething different from the act. The act is something whion the individual doee, whereas the ability 2s something which the individual possesses. When one speaks of an individual having a certain ability, for example alming abllity, one boes not imply that the pergon did well in an aiming experiment on one speeific oocasion, but the term abllity would seem to refer to the poselbility of repeating the act on a subsequent date. If the act an be repeated in this way, ita occurrence must be dependent on something whioh endures for some tiae, therefore ability would seew to be dependent on the constitutional nature of the orginisus. Ability sema to define the reactive nature of the individual regarding his possession of the constitutionsl factors upon which the occurrence of the act is dependent, both now and in the future.
(Carr and Kingabury. 7.)
A person can be sald to possess the abllity to do whatever he 18 observed to do. The chief question of pyohological interest is the relative amount of ability possessed by different individuals, and any judgment of amount of ablilty is necessarily bsaed upon some quantitative feature of the corresponding act. The relative amounts of ability possessed by the members of a group of individuals are indirectiy measured by means of the alatribution of efficiency scores that is known to be a functionof the constitutional differences of these individuals. Leaming ability is distinctive from other abilities, in that it is a developmental concept, as contrasted with other abilities which may be called "Performance Abilities". Learning ability differs from these in respect to the goal wich the individuals are striving to attain when the ability expresses itself, and in terms of whioh their efficienoy is messured. The goal of learning is future efficiency, not present performsnoe, therefore learning ability is a developmental concept. Thus one may have a certain ability now in dart throwing (performance ability) but one also has an ability to improve in dart throwing with practice (learning ability). Hence learning ability can be defined as the power to 1pprove on one's arformance of a task which is repeated a number of times. Guilford (21) writes that certain studies lead one to the conclusion that practice in teats does not augment the fundemental abilities, but changes their relative importance in performing those taske. In this case learning
ability would be the ability to change the relative importance in a task of the various fundamental abilities. For the present purpose the power to improve in the performance of a given task seeme the best definition of leaming ability as this investigation is not particularly concemed with the way in which this inproverent ocours.

Learning ability and intelligence quotient (I.G.) are concepts which have been closely related. I. Q. is often defined as a measure of leaming abll1ty, meagure of intelligence, and a measure of mental growth (Carr \& Kingsbury, 7.) This definition implies that general learning bility exists. Quilford points out that recent investigations ghould be sufficient to do serious damage to the definition which identifies intelligence with learnIng ability. If learning abilities do not correlate highly with each other, it is not likely that they will correlate with I.Q. Evidence on this point 1s given in Husband's investigation. (30). The range of correlation coefficiente between the various tests and intelligence is from -.16 to + . 29 , with a median coerficient of .005. Seven of the coefflolents are negative, and gevan poltive. Considering these figures it would seem dangeroun to identify leaming ablilty with intelilgence.

In the reala of cognitive ablifties
Spearman (53) has revolutionised our thinking on the subject by his two-faotor theory. He maintains that a certain amount of g for the general factor ooman to all promance abllitien) is neceseary for success in every cognitive activity, whioh is
not so purely habitual or innate as to proceed unconsciously. However in every distinot ablilty there is also a specifio factor or factors, S or $S^{\prime} s$. Activities which resemble each other very closely indeed, usualiy have some of their S's in common. There has been a tendency recently to refer to these examples of s-overlap as the "group factors" of ability. In order to find out whether certain abilities are divisible into g and independent $S^{\prime} \mathrm{s}$, or to find out whether s-overlap occurs, factorial analyais is applied to the table of intercorrelations obtained between the verious tests. However the time does not seem ripe for the application of factorLal analysis to the intercorrelations found between leaming tasks, as the measures of learning ability need to be purified before the results of factorial analysis can be satisfactorily interpreted. As will be pointed out in the next section, the scores made on a learning task are contaminated by cany variables extraneous to the learning process. Therefore we cannot be sure that the relation between learning tasks are solely due to leaming ability, and therefore not much oan be gained by applying factorial analysis at this stage.

Frow this disussion it can be seen that ability, and learning ability in particular, is an important concept, both for systematic and educational psychology, and both these departments of psychology are in need of data concerning the nature of learning ability, the main problem being to find out whether a general leaming ability exists, whether leaming abilities are specific to the material being leamed,
or whether there are group learning abilities.
E. Kessuxing leeming Ability.

As has already been pointed out any measurement of mmount of ability 1 s necessarily based upon some quantitative feature of the corresponding act. But an efficiency score obtained from a given performance is a function of many other factors than ability, the chief of these being objective conditions, volitionsi attitude and motivation of the individual, fluctuating mental and organic conditions and chance faotors (Carr and Kingsbury, 7.). When dealing with the learning situation the case is further complicated by the faot that an individusi's scores are influenced by previoue pectice, positive end negative transfer of training, the number of triale given on the specific task (Hall 23), and work methode (Soashore 51; and van Dusen, 16).

As a first step in measuring ablilty the experimenter mist secure a group of scores under suoh conditions that their distribution cannot be explained in terws of any of these factors, but only in terms of constitutional differences. The difficulties in the way of doing this with regard to learning ability are mode clear by Hall (discussed in Chapter I). An attempt has been made in this investigation to overcome at least some of these difficulties, and to study the effects of eliminating some extraneous factors, on the intercorrelations found between various learning abilities.

Due to the fact that leaming ability is a Gevelopmental concept, one must also decide how to
measure it from the set of geores obtained from a number of trials on some learning anterial. Leaming ability is the power so inprove on the tiae taken, on the number of errors wade, or on the anount done in a given time, in a given tesk. Most people have the nower to improve in this way when repestedly parforming a task. To guage a person's learning ability, one must find some teans of messuring the increase in efficiency. It is difficult to know what the best measure of 1 mpovement is. The following methods have been used in the past: the aboolute gain method (found by subtracting final from initial score); the pe reentage improvement (found by representing final score se a mecentage of initial seore), coman points of mastery technique (taking either the number of trials required to improve from the initial cominon point, to the final common point chosen; or amount of gain which occurs in a certain number of trials after the subject has passed through the initial common point of mastery ohosen); rate of improvement (ropresented by the gradient of the ourve); and total time taken to do a certain number of trials (which involves the assumption that overyone starts with about equal ability on the task). It was found that each of these methods had its arawbecks and could be oriticised on various grounde. A discussion of these methods will be found in Ohapter VI.

It was felt by the present investigator that one must take as many aspects as possible of the learning curve obtained, into conalderation, before trying to estimate person's learning ability from it. A part of this investigation has therefore
been devoted to trying to find some formula which will sarve as a better means of measuring the aegree of learning ability which the individuals tested exhibit on various leaming taske.

F. Summary.

The aim of the inveatigetion an now oe restated: to find out to what extent various learning abilities are oorrelated. Having discubsed tho meaning of such concepts as "leaming" and "ability", the writer can be more explicit as to how she intends carrying out the investigation.

As there seems to be a growing feeling anong theoristg, that the learning process is made up of different mechanisme, it was falt that the low correlations roportod by previous investigators may have been due to the inclusion of the facliltation and "sohleverent" processes in varying amounts, in the different learning tasks they used. In order to find out whether this is the reason for the low correlations it was decicked to choose olght tests, four of whioh, as far as possible involve facilitation prominently in the learning process required, and the other four involving aohievement in a more marised degree. The two groups of test are intended to be as similar as possible, apsert from the fact that a greatiar amount of achievement can be ueed in one set, in order to make the onrrelations found easier to interpret.

From the discussion of "ability" and
Heaming ability", the importance of aiming at the construction of learning tasise in which the soores
obtained would be se free as possible from the influence of objective conditions, volitionsl attitude and rotivation, fluctuating aental and organic conditions, previous practice, positive and negative transfer, and work methods, was realised. It is also felt to be neceserry to ind an improved method of neasuring leaming abillty from the set of scores obtained by giving an individual a number of trials on a learning tsek.

In our discussion of eblilty, the possibility of applying factorial analyais to the intercorrelations between learning tasks was conslderea, but it was deciaded that before this could be done with profit, it must be ensured that the scores obtained on the leaming tasks are not conteminated by variables extraneous to the learning rocess.

The final solution of these problems will
require the application of factorial analysis, but until that is cone, it must be remembered that relatively low intercorrelations do not forthwith prove the absence of group or 8 eneral factors. Once the taske have been selected, and a formula for measuring learning ability has been devised, the investigation will consist of giving the learning tasks to sbout seventy subjecta individually, applying the "Jeaming ebllity formula" to the results, and then finding the intercorrelations between the taske. The fing? pert of the investigation will entall a psychologtcel analysis of the results, for as Bartlett ($2, \mathrm{pg} .8$) so strongly emphasises, if statistical applications in the field of psyohology are to have any velue whatsoever, they must be both preceded by\&also supplemented by observation and interpretation.
39.

CHAPGER III.

THE CHOICE OF LEARNING MASKS.
A. Division into "Facilitation" and

Achlevement" Tasks.
The previous chapter dealt with the theoretical considerations which led to the decision to choose the leaming tasks in two groups, one group to be comprised of four tasks involving, as much as possible, facilitation in the learning process by which the takk can be mastered; the other to contain four teste, as aimilar to the tasks in the first group a possible, except for the introduction of certain elements which would allow of more achievement learning. It may be argued that if evidence for general learning ability is being sought, and if high correlations are found by this method, this may be due to the similarity of the tasks ohosen. However one task is similar to only one other, and if these are the only two tasks which correlate highly with each other, then obviously a oase cannot be made from this for a general learning ability. High correlations between disparate tests are being sought, and therefore the four individual tasks within each group were made as different from each other as possible.

The first division within each group was Into "motor", and, what for lack of a better tem the writer has called "mental" tasks. Two motor and two mental tasks were chosen in each group, the type of operations involved in the motor tasks and mental tasks being as different as possible. If any correlation is found between the different taske

In the facilitation group, say, it must be assured that this correlation is not merely due to the aimilarity of the leaming tasks chosen for that section.

Considering these points a scheme was draw up into which the tasks chosen had to fit before being deemed suitable.
A. Facilitation Taske.
B. Achlevement Tasks.

1) A. motor task.
2) Another motor task, involving as different as possible a type of operation from A 1).
3) A mental task.
4) Another mental task, involving a different type of operation from A 3).
(Achlevement Tasks being as similar to the facilitation tasks as possible, except for the fact that they offer more opportunity for educing relations and correlates).
5) Motor task similar to A 1), giving an oppor tunity for relation eduction.
6) Motor task similar to A 2).
7) Mental task similar to A 3).
8) Mental task similar to A 4),

A scherse for the choice of Learning Tastat.
Pour facilitation tasks were then sought, in which no "system" was present ace an ald to learning, so that the learning would be largely dependent on retention, obtained by repeating the task, until such retention wes acquired.

In the achievoment tasks an attempt was made to introduce a definite but fairly complex "system" into the material to be learned. The learning would
then depend on relation and correlate eduction (plus retention). The learning however should be gradual, therefore the system was not to be of such a nature that onoe it had been deteoted, the task could almost intediately be periectly performed. If this had occurred, curves of the type indicated in Figure 1 would have been obtained - a curve in which the initial time was long, but once this had been completed the subsequent times were near the physiological init.

FIG. 1. SHOWIIG TYPICAI LEARNING CURVE FOR PROBLEK-BOX MAFERIAL.

As has already been pointed out in the previous chapter, this type of curve would be very hard to compare with the type of ourve expected from the facilitation tasks, where the times would be reduced gradually - a bit more rapidly at the beginning than the end, but etill gradually. As Hall (23) points out that the first trials of alrost any learming tasks are notoriously unreliable, it was decided to ignore the gcores obtained on the initial trials in this investigation. If the initial time were ignored in a curve, such as shown in Fig. 1, the curve would become meaningless, and could not be compared With a more gradual type of curve. It was therefore felt to be important that the achievement takis be
41.
ones which could only be learnt gradually. This meant that perhaps more than one "syetem" had to be introduced into a task, so that the subjects' time would not drop too suddenly, once the system had been educed.

The experimenter tried to guard against the possibility of the achievement tasks being done by the facilitation method, by pointing out that there was a system, and that if this could be educed the improvement that would show up would be greater than otherwise. As the facilitation and achlevement takk were being rept as similaw as possible, it was found to be almost impossible to devise tasks that must perfore be performed by the achievement method.
B. Tests all measurable in Time Units.

The tests were all chosen so as to be measurable in tems of the same unit, as it was felt that the low correlation coefficients found by previous investigators, may have been partly due to differences in the unit of measurement used for the different tests; for example, decrease in the number of errors may have been taken as the indication of learning in one taek, end in another time may have been used as the unit of measurement. The correlation between these two tacks may be lower than thet found by using the same unit of measurement for both tests.

It was considered that time would be a suitable unit, as tesks could be devised, in which, by merely lengthening or shortening the amount to be done in each trial, the time taken for a trial on one tesk could be directly compsred with the time taken on a similar trial, for another task. This could not be done so easily using errors, or amount done
42.
per trial as the unit of neasurement.
Time affords a finer measure of the leaming going on, than does number of errors, or even amount done per trial. One can see how the gradations are finer, using tine rather than erpors, if one considers a hypothetioal subject's performance on a maze. She may go into sight blind alleys on three suocessive trisis, but the time taken for those three trials may be 34 seconds, 29 seconds end 25 seconds, which shows that although actual errors were not being eliminated, improvement must have been taking place in the subject's method of running the maze, which should surely be accounted for, in the measure used, and time is the neasure which would socount for this, while number of errors would not.

There are certain objections to using time as a unit of measurement. A subject may take such a long time over a certain trial that for purposes of comparison it is hard to know how to deal with her; whereas if number of errors is the unit to be taken, a subject cannot make more errors than the nature of the test material affords. This applies particularly to mazes. Also, if animals are being used as subjects, time is a very unreliable measure to take, as the animals may curl up and go to sleep âuring a trial, and time telten would be no indication of its knowledge of the maze.

The amount done in a certain time is only applicable to certain kinds of material and could not very well be used in such a task as a maze. Even in test material, such as a fommoard, time taken for a complete trial is a better unit to use than amount done In a certain time, as certain pleoes may be more difficult to fit in than others, and therefore a
record of the number of pieces fitted in, may not always be a true record of the improvement which has taken place.

Using time as the unit of measurement meant that all the tests had to be given as individual tests. From the point of view of amount of time taken for testing: this is a drawback. In this investigetion two hundrea and ten hours of testing had to be done. It may al so be argued that conditions cannot be kept as constant for a large number of people as they could $1 f$ the tests were given to that number as a group. This argument can be outweighed by the fact that people respond very differently to the group situation, and, while everyone is being treated in objeotively the same way, this way may stimulate some people to react to the best of their sbility, wille others may become over-raotivated and not show their true amount of leaming ability, due to emotional factors. In the individual teating situation the experimenter oan often do much to calm down an over-exoited subject, and without the presence of other people doing the same task, exceasive oonation coes not so often oocur, and prove an interfering factor.
C. Choice of Tests.

Mony tests were considered and tried out on a. few subjeots, Defore eight teats, which seemed suitable, wem chosen. Much difileulty was experienced In getting tests that were not too difficult, and jet not too sasy; tests in which aufilcient improvement occurred for most of the subjects, over ten trials, and tegtg which enabled a subjeot vo do ten trials on two testif, within a fortyilve minute period. In choosing the facilitation test , a consideration

Which influenced the oholoe a great deal, was that the tests chosen had to be convertible into task e involving more achievement by the introduction of a syater that would make learning possible by the eduction of relations and correlates, and not so dependent on repetition.
a) Motor task involving facilitation.

Following the plan on page 40 , the invegtigator first tried to lind a suitable motor task, Involving mainly facilitation. It was thought that tracing a simple figure, perhaps blindfolded would be suitable. The subject could be given a board. In which a groove, ouch as shown in Fig. 2, had been out, and be required to trace this with a stylus in the shortest possible time.

FIG. 2. STMPLE GROOVE FIGURE.
There are no blind alleys into which the subject can go, therefore improvement will be due to increased facilitation in tracing the figure acquired by mere repetition. Thy appeared to be an admirable test in which facilitation would have been mainly involved in the learning process required, achievement probably only playing \& part in the first trial. It was felt however that the task was of such a simple nature that improvement would not show up over ten or fifteen trials. From this idea of a simple figure groove, evolved the idea of having a maze. The maze had to be
one which dic not ellow of much spatial relation eduction thereiore a linear maze was dooided upon. The maze took the fom of a croove cut in wood, the subject being required to trace the maze blindfolded
 leam a sequence of rovemente, in which there was littie spetial relationship to be educed. Further nore there wes no system such as two moves to the right, followed by two mover to the left which would help the aubject in learning.

The unit of measurement would be time, and improvement Ehowed up until the end of fifteen trials in the subjeot upon whom this test was tried out. B) Second Motor Task, involving Pacilitation. For the second motor task, in order to get a test involving a cifferent type of operation from maze tracing, a task involving more manlpulation was chosen.

In this connection marble sorting, binding Mecono bars together with sorewa and nutb, the Witmer cylinder teat, and the Cornell Rom-board were all considered and trited out on a fow oubjeots. None of these seemed suitable as the testa either offered too groat an opportunity for relation eduction or else improvement ceased to show up after the third or fourth trial. One of the teste used by Husbana was spoolpaoking, in which the subject picked up one spool with each hand and placed them on a tray. 䵟elve spools filled one tray and five trays constituted one trial. Husbend only gave his aubjecte five triele ond it was felt that if ten trials were given improvement might cease as in marble-sorting. Spool-packing suggested block-packing, and the block-packing section of the

Detroit Manual Ability test was tried as a learning experiment, the subject packing the blocks blindfolded and using her leit hand. Although a fairly steady improvement showed up, it was very slight. The idea of having different sized block then ocourred to the writer, the blockg always to be placed in the same position on a shallow tray. Achievement would probably play quite a large part in this test during the first couple of trials, but once the positions had been memorised the improvement would be due to the facilitation taking place in repeating a sequence of movements in a certain order.
o) A Mental Ts.sic-Facilitation.

Learning some meaningless material by mere repetition seemed the obvious test to give for a facilitation leaming task involving mental activity. Nonsense syllables appeared to be useful material of this meaningless type. Leaming a list of nonsense syllables by repeating the list a number of times would not give a curve, with time as the measure of improvement. In order to convert the material into a task, such that time could be used as the measure of learning, a mental maze was devised. The syllables vere arranged In sets of four, one syllable in each set being the correct one, which the subject would learn by repetition. The fom of presentation and the form of reaction required of the subject proved to be problems. Visual presentation on typed sheets waw innally decided upon. As regards the subject's reaotions, a board arrangement was considered in which holes were bored, four holes representing the four syllables in each set, the subject being required to stick a stylus into the
hole oormesponding to the poestion of the eomect syllable. If this were done an electrio ciroust Would comploted and a bell would ring. Aa a tabit Involving menipulative sbly tity was to be avolded 1t was deaided that this scheme meroly gave the test a preudo-sotentific ais and that the soheme of letting the subject read the syllables sloud, the experinenter Beying "Yes" aftor the oorrect syllable in each line had beon read, be adopted. The eritiolsm of this procedure which may be put forvand is that the subjeot Will inowease her weaing-rate, so that the tines recorded will not be a true recond of the leaming taring plaae. However in leaming a maze the subjeot improves in her manipulation of tho stylus wound pathe, 30 well as in her knowledge of the diroction of the oorrect psth, therefore inerease in realing rato in a nonsense syllable maze oan be ormpared with increase in rate of moving a stylus in a groove maze.

In oreler to obviato the pousibility of the subject merel.y leaming the place locetion of the syllables and not the actual syllable oomeot in each Itne, 价 wat aectied thet the syllables showla be aifferently arranged in eaoh line from trina to trial. Further detaile as to how the test was dram up will be found in the next chaptes.
6) Seoond Mental rad - Feolistation.

For this purpose a substitution test was ohosen, as in such a test a subject leams whoch numbers represent which letters, and does bo manly through mepeatedly wmiting them down. of courge a substitution gest invelves mome than this type of facilitation, 38 at the boginning of the test the
subjeot is isainly leaming the positions of the Iettern and numbors, so that he can pefer to then quickiy othout looking rischt elong the ine of the key, each time ho wishes to pina a given Iettor. Other types of mental facilitation taske seaned too almilay to the mental maze test and therefore a substytution test was doclded upon.
e) A lfotor Pack, Involvins Achlevement. To corrempond with the 13 nem maze, a maze having more spatial relationship wes ohosen. The passages were of varying leagthe and the genexal direction of the oorreot path changed sonsiaerably, eo thet spetial and direotional relationships may be eduos, and the eduction of the relationahtpe would mainly oonstitute the leaming required.
i) A Second Yotor ilets, envolving Achlevement.

For the second notor tesk on the achievenent Elde, it was decided not to have a tamk too ainilax to the blook-packing, 38 a.ll the other taake on both aldes corresponded very olosely. The Comell Form-board and Mirrox-draving were both considerec, but it ceemed very hapd to decide whether the anount of aohtevenont possible In these two testa was any greater than that utilised in Leaming to pabl blooks, and thererore these tests ata not soom buitable,

A oar-sorting experiment, os sugge ated by Woodworth (61, pg. 160), in which the axde have to be sorted into pigeon-holes, wes considered an an suitable motor tadic involving achievemont. The arraxgenent of the numbers of the plgeon-holes should have a syetem
and the cards should always be stacked in a definite order. This task involves a somewhat similar manipulative ability to block-packing; the improvement in the card-sorting need not be mainly dependent on the improvement in manipulative ability and memory of positions, as in block-packing, but could be due to educing the relationships afforded by the arrangement of the numbers and the oards.
g) A Mental Task, involving Aohievement. Corresponding to the nonsense syllable mental maze, it was quite easy to devise a almilar maze, in which a system whereby the correct syllables are to be ohosen was introduced - for example, every correct syllable could start with the same consonant. In order that the improvement would not be too sudden once the syster had been educed, it was decided that a different syatem for each set of four line should be introduced.

h) A Second Mental Task, involving

 Achieverent.Corresponding to the first substitution test another substitution test was devised with e system that could be educed. It was difficult to find one eystem long enough to cover more than nine figures, and it was felt that if only nine figures were used, these might bo learnt by the facilitation method before the system had been deteoted. It was again deoided to introduce different systems, four ifgures having one system, the next four another, and so on. The systems which were inally devised for 18 figures, Which were not exactly "systems" in the truest sense of

GHAPMER TV．

DSGARPMTON of yegeys．

A．the Acturl Testa．
The following $5 . \operatorname{th}$ the not of elght teats
finalily decided upon：

Beonstation 學aks．

Fest x．Lineas Maze（Maze A）．
Teat II．Blook－paoking 䛼ont．
Fest III．Substitution 學est（A）．
Test 7y．Noncence syluable liaze（A）．

Achtevement gotk．
殔动 V．Jaze（B）．

Test VIX．Subetitution Test $^{2}(B)$ ．

登还 I．The I．inear Maye．
Thin consisted of a groove in ahope and alse
oxactily the amp as the alagran chose in Fige 3．out out of a moctanguln plece of threemply wood， $1.5^{\prime \prime} \times 8^{\prime \prime}$ $x 2^{\prime \prime}$ ．Thie plece of wood was then gived to a ohoet of glass to ensupe that the rloor of the nase would be mooth，and that groover would not develop in the oorrect path an ofton happens in mase having wooden floore．

The＂nty2us＂with phich the subjeotes wore required to treae the maze conskted of a vooden pon－ holdas，to be held upstde－dom．The tunal halt inoh
of the perholaos had beon thitcled and nand-pmperod to moke it orlinamont, boing appooxtratoly . 1^{n} in alanotos. Thon the aubjeat enterpol the tonting roon, after sone preyerntoxy monntis (ooe Chaptor V), the following ingtrsetione weve woed to the etbloet:
"The mase oonatsta of a crovvod path out into a plese of wood. It oonsiata of a semten of fommand moves, intorspersed whth turns to the wheth and to the lett. You axo soquised to rand your way through the mase, blinafolded, in the ahorsont posestio time, by puoting the atylus alonc tho groowo. Dy kooping to ono stae of the groevo you miche ovontually got

 mathe

Do not be atatrumod if the atylue malcos a squenting
 guptroes.

Hoth the atilut now ce lent romstoni utth rour
 termet the actury mare.

Tou will be given a muboy of thinale, in oxter so

 not atruy untaz you have heast 90 . Whon you aone to the ond I shail say "hetght ":

The mbjoot wal then bisndfoldod, and megutrod to swos the nase ton trnes. She timo tatron for dotrg
 Anto blend arters por thit. The aquentity of the stylus wae einminatod by oonetant sandpapering of the tip, so that it atd not boenne tho mooth.

The apparetus sor thit keat aonsistea of a wooden boswa, 9^{*} square, asound the aides of \#tach weve nailed stripe of wood, the upper and lower stmps being $2^{4} \times 7^{7 \prime} \times \cdot 2^{\prime \prime}$, and the lide pleses beine
 snd $\cdot 2^{\prime \mathrm{in}} \mathrm{in}$ depth, wae Pomed, Tnto thia frome fltted rectangulaz blook in ohmpe, olse and arrangenent oompesponaing to the aizgxan ahom in Pisure 4. The subject, before abing the veat, is alked is she $4 s$ left or mght hunded. The Rolloulng Inatructsons are then read:
"You will be given ${ }^{\text {en }}$ bonm, in whioh theme is a square dopression of this elze (chowing plan (Figuza 5) of a gimilar form-boanti), into mith sixteon reatangular hooke are to be paoked. They are not to bo packed in axactly the asme wey at in the diagrea I have chom you - that ia mevely to give you an laen of what to do. x will give you the blooka one at a time, always in the some ertier. Whon you have put the blook in ite compot position I will say "Yeg". The blooks muet be packed approxitutitely incu the right to the lefthand side of the boz. Eech bloak must alway be put in the gane posttion as it sas on the 5 swat trilal. If you ame richthanded peek with your left hand, rooping your moht hand over the brootcs alwady paoked to prevent them fron becoming asplaced.

I will ploce each blook funt heve (indteating spot on the table) with my hond Junt beline 2t, so thet your hand will be stoppod if it moves too
much sowanto the left.
You will be eiven a number of trial. to see how much you onn wedvee yous time with practioc. I will atart you in tho wevil way by buying "Resdy - © "."

If the subjoot is lett-handed, the blook ave plaved on the with-hna site, and the se wegniwed to pack with how meght hatu.

The evblect is then blindfolacd, sna allowed to handle the boasd for a few ceaondm. Fon tritle ave given in the manner outlined in the Instruations, the twe fretron po paoe all the blooke in thats oowrect positions on the boand being waocrded for each trial.

The appended shoet of lettems wad given to asoh subject. This bheet of lettere wat dram up so that each letter should oceus ampoxirately the sane number of times in exoh trinl (i.e. eet of three 1ines). This was done by plotetng the letteve into equare (23 squares comse and 3 dom). In the arwengement each letter thould ocour foup thee in each trial, bas truee lettert. Fabh lettar, tiken at mandom was plotted haphasarily in the squames, each letter being plothed fouk tines, exeont for trweo.

The following key ses typed on white paper and pasted onto a pleoe of araboand $8.2^{\prime \prime}$ y 3.5^{n}.

 This candoom was moved atom aftas eaoh twial so that the key wall alwas the mane alstence awny from the lettere during ach triaz.

The folloring inatimettions wero roed to esch ubject:
"You heve before you a lict of letrem of the alphabet. Below each letter write the comeesponding number from the key - e.e. A, w, J - As you prooeed you will leam the nuxberg oopregoonding to ecoh letter, and mo sill be asle gracually to make the mubethtutione Whthout referming to the rey. This learning will ahow itselt in grostor spoed. I will take the tine you require to ao throe kinet of lettors. I will give you the went stignal "Roady - con, end you vill stop at the end of each three 1 ines. After a Bhort reet I will.
give you the signal to start the next theee lines and so on.

You must work stemaly nowose the pase from left to releht."

Ton twiels were given, the tiro taken for exoh twal boing reeorded.

Thia tent oonstats of eleven pages of nongense cyllables, two of thich ave inoluied here
 In the inatruotsons, whioh ave :
"I will give you a theot of papor on Whtoh ase 20 lines, anoh conalating of 4 nonsence sylimbles. You zuet reed alowd from lett to rimbt the ayliahle in etah set of rour. When you have womohed and meld the corroct one, I phall sxy "Yes", after whioh you dicsegnpit the remednder of that line, proceeding Imediately to the next line. On the second and lator twials, each $11 n$ will vontain the sane syllables at before, but exrmanged in a different order. The oorpect syllable in a givon Iine in always the gave fron trial to trial, but it vill cooue in iliffoment position in the isne. You muet try too leaxn to fnov the commot yilable for each 14ne. Zs you ronembor whot swishle in the line is the comrent one, uav it thmicht arex. int thout firgt rendtre the rwageding arilibies in the same line. If you mike a mistale in thus ploking out a mylable, try

```
        the othorg in tum as bofowe. Work thwough
        each page of syllables in thie way - obvioumly
        the move of the oomveot ayllables grom momembor,
        the lese time it wivl take you to wowk thwough
        the 11:$t, fow you will meed out fewer innorwent
        cyliabies. In the last few tricla you wilz
        probnbly know most of the corpoct syllables,
        and be thle to plok them out almootly.
        As umnl mast for the slgmal "Roady - 00".0
        The nonsense syllablea were obtninea from
G1are 'allata of noneonse gyllablem; to be found in
the Journal of Cenetlo Payorology, Vol. 35, page 2655.
The majomity of the syIlablas were chosen from the
0.67% + .00/ "Aenooiation Value" columan*
    The following is tho Ilet of aorpeet
gyllables:
    zOv; 拃; बIX; kXa; s\3; vum; NXT; JuO;
    ger: YNV; CAC; CrS; DAE; YOV; 2x%; MxV;
    &AZ; गXO; J\K; WН要,
    The oomreet syllables wowe exwangod so that
they foll in a esfrement position in the line an often
```



```
Mny that if the subleet merely wond from left to wight
each trinx, the wouta always nitro se emwowe. In
armanglng the bylinbles, the soveme phow in FIgume 6
wats wherea to, the numbers inctoatine the posttion
of the oowsect gylleble in the leno.
```

No. of 14ne	Ho. of Sxat.								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(2)
1	2	3	3	2	4	3	3	2	4
2	3	4	2	4	3	2	2	3	4
3	1.	4	3	2	2	3	4	4	3
4	2	3	4	3	8	4	2	4	1
5	3	2	4	4	4	2	3	3	2
6	4	1	3	2	3	4	4	2	2
7	2	4	2	3	4	3	2	4	3
8	4	2	4	1	3	4	3	2	4
2	3	2	2	4	2	3	4	3	2
10	4	3	2	3	1.	4	3	2	3
12	4	2	3	4	2	5	2	4	2
12	3	4	2	3	4	1	2	5	4
13	2	3	4	2	3	2	4	1	3
14	1	4	2	3	4	2	3	3	4
25	4	2	3	4	2	3	4	2	1.
18	4	3	2	1	3	4	2	4	2
37	2	4	3	8	1	4	3	2	3
18	3	3	4	3	4	1	2	3	4
19	2	3	1.	4	3	2	1.	4	2
20	8	2	3	2	2	5	3	1	3

FTank 6. Scy or posxicone of che commag sxa able

For trinls 10 and 11 tho arrangemente for 1 and 2 were zupented.

The the thken for each sheet of syllables was reconded.

Thy maze also consintin of a groove, in chape and aise the sance an tho diogxam show in Figue 7, cut out of a plece of threemply wood 8.8" Bquare. This yieee of wood was set on glage in the same way as the 1 ineas maze, and the sane stylus wem used for tracing the nate.

The following inetruetiong were given: "This maze, 11ke the othe one you aid, oonclats of a grooved path out into a plece of wood. It 18 unitike the other maze in that the general Atroction of the path is not aivaye many twom you, but vawies.

Xou exe again requived to pind your may through the mage, blindrolded, in the ohortest posesble tine by puehing the stylus along the egrooves. You plll be given ten tulald to nee how much you tmpove.

Do not bo disturbed if the stylue matrea a squeaking nolse, and hold the stylus in a nove on lese verthoal posttion, not allowing your hand to touch the aotual saze.

I will start you off by the ueual \#Ready Go elemat, and when you oom to tho end I thell ary "Atght", after Which I shall retam your hand to the starting point."

Again the subject is requireat to do ten trinis blindfolded, the time for each twinl belng weoorded.

As wall as mocoving the tifroe, the anvwerve to the following set of question vere weonded fow the Maze weet D , the cart-soxting teat, the substitortion

sent 3 and the Honeonae Bylinble 霓ost B.

1. Do you 3 ike dolny this tont?

Vexy muoh indoed

Fairty woll
Hodementy
llot vory muoh
\#lot at aly
Aotively eisaltro antng $\frac{14}{4}$
(a) Apter tathet 1.
(b) Artoy timat 10.
2. Sgac. Be Bo you mind seing bitnaroliad?

inwolving sletreat

Mongense fytrole Seat In Do you atelthe woalth a.ouat

Versy muh	(4) pounte)
Moss very muoh	(3 pointa)
Yot at all	(2 pointa):
bina it qutte plensent	(1. poant).

(a) Artow trmal 1.
(b) Apter falal 10.

Canges Heve you hed mach pmotice in ohutring and aoniling oexda?
(The followirg sueationa wore swica artier Trinl 10.)
3. (a) Hote whothor anbleot gets wory upset whon alo meker at mistate.
(b) Lare B. Doen it upsot you wew truoh then you matro a alatitice zot wown't expeeting to make?
Gavia. Doen mating one mivtetce poen gou and mite Fou note otheres?
 when gou atmig oantot thinik which ilgus goes wh mintoh letter and you do not neen to be nble to Pind them in the koy?

Monsense 3ylleble fort B. Doos getting one

 gylleble wrong upset you and mako you Porget othewe thet you know?1. (a) Fore you seen on doing werl on thia tost, of aldn't you eave whethor you ald well or not at the baginning?
(b) Did yourattituade ohange auning the teat?
2. (a) Mote whether subjeot in pepectally coutious.
(b) Were you boing extm aapofut auring the firet cormle of triale?
(o) Were you a bit nerwous at the beginning of this tent?
3. Kaze nna Gaxt Soxtinis.
(a) . 耳ne thib teet medn you teol tired?
(b) Were you tired berore you started dokng the te 蝶 $^{\text {? }}$

Subutitution Soat B and Nonanene 5yizhie Tost B. Do sou feol that dolng the other sest firet impaised your ability on this teat?
7. Maye B.
(a) buA you fina thia maxe eanioy to leam than the one you leaynt provtounly?
(b) That do you thinte made 1 t aifferentiv from the 1nst?
(o) Bo you think this maze was easlez to leam becouse ther war a felviy cefintte dirootion that could be leame (pare spotial melation(8)

Corile.
(a) pra you find this tost eenter to to than the blook-packing teets
(b) Did you notico that the enede wowe alveyo pronenged in the ame order each trital?
(a) D1a nuy amangenents of the why the numbeve vere placed help you?

Subethtuty

(a) D1a you ina this subntibution tent eneser to to than the one you ald proviovely?
(b) Do you think this vos due to having done a substitutzon test proviously?
(c) Do you thank it wan due to the pact that it The estier to fom assuolatione between thems Letters and mubers then 统 wa betwen thove presented in the prevtoun key?
(a) D1a the Pact that I tola you there ves aome soxt of syatem in the my the fey ung oompiled, rincer your leaxitwy?
(o) Which eymtems ase you doteot?

Honacose 8xilble Tegt. 3.

(s) Dia you find thete nonsense wyllable vasler to loam than those you leawt proviously?
(b) Do you thint thite me due to having cone a noneanse ayllable tect befowe?
(o) Vas it beonuse the cyllables 2 ill into grotpes, ehosen bocsuse of ourtivin principles such as inttial lettera belng the same?
(d) Dla the fact that I cold you that the comrect gyllablee had been chosen accowaling to nous principle, hinder your leaming aty all
(e) Whoh symtome cid you detoet?

TSY VI. Cort-mortine Segt.

Ths tont is adaptea fron st temt devised by Kiine and quoted by Fooãworth (6x page 160). . The apparatue fow $4 t$ conntate of a carl-towting box oontaining 12 pigeon-holet, three nows of four hoige seh; each prgeon-hols being $4^{n} \times 4^{n} \times 4^{n}$.

18	26	14	8
20	65	30	53
10	12	12	23

The boros were inbeyled vith blaok nuabere about ${ }^{3}$ " high, peeted the the innew asdo of enoh pigeonhole foolng the extject, the ammengenant of the muibex: boing that inalontred in FHgux 8 .

The vubleote wero given a peot of anvas froon which the eoes had beon removed and in whith there weye only throe cende of sch cort instend of Pous. The colleving inctruetiong trepe then rea to the subjoot.
"Thes pnot of anxis is to be eomted into the plge on-holes of the esmi-sorting bot. Into the top wow of pigeon-holes you axe required to put the oardis whioh are hois the number of that Inalosted on the box. In the aeoond yow you are wogusped to put ants which are tha anne as the instini ajelt indioated on the box. Into
 Inte the pimeon-hoten marina $10,12,12,13$ wempectively.

There ane athor simplifiontions in the teat,

> which, if you can "epot", should holp yous leaming.

The 1dea, of coures, 2 , to weavee your thme an much as posalble over ten triala." The cards wore alwaye stacked in the sama oraer. The following diagrert (PIguxe 9) show in whit oxder the oarde slways appeaved, the Black number: indicating the ordor, the red number indioatIng the caxds.

9	8	3	4
2	5	3	2
12	6	3	5
10	11	9	
10	J	2	K
4	7	6	3

9	8	7	4
27	13	14	20
2	6	3	5
21	23	28	24
10	J	Q	K
19	16	15	28

3	80^{8}	30	35^{4}
2	6	3	5
25	27	33^{2}	28
10	J	2	K
35	32	31^{2}	34

CARDS ㅌETE ALMAYS EMACKSD.
(Blaoli rigures indtente the oxter, Red Isguves Indicate the oaxde).

Anarove to the questrons and firee foy each trial wewe wooorded.

The aypended sheet of letters, armm un in the nome way as the sheet ros Subetitution Tent A, was given to each subjeot.

The key was scein typed on shite paper pested onto a pieoe of asmboard $8.2^{\prime \prime} \times 3.5^{\prime \prime}$, the key in this ease being :

the firat grow the letterg were chomen because each letter had the number of stroke in it indtonted by 1te corresponaling number, for exanple, it has two 12 tite ctroke in it, therefore ite cowesponding number is 2. V and x as 5 and 6 wew ohotes on the bassis of soma similarity, and also because of the aspoelations of V as Roman Pive. SMy as $7,8,9,10$ wewe ohosen beonuse asoh letter was the inttial lettow of the comesponding number. Hz月 an 11, 12, 13, 14 wero ohosen beontuse of the almilawity in shepe exietting between the lettere and the number. wonl ac 25,16 , 17. 18 weme chosen becsuef of the gegumee of lottery spolling "wowd", and thia being plaoed nt the ond of the sey. shoula prove to be an nid to the aubjeat in loceting the lettergit.

The anwtbosra key wad scain noved com aftev each tritel, so that the key was aiweym the same asetance from the letters auming onch twinl.

The following inotwoetions were woad to the

aubjeet :

"You have berore you a 11 nt of letteve of the alphebet. In the same way an in the other Substitution Teet you aze reguised to write the corresponding nunber from the ley below esoh letter. In thite cese the key has been so gompiled that aertain melationchips exiet betweon the numbem and lettox: whioh might help you romerbe then more oneliy. Thuc a ooptain group of lettere night be given numbers comporm ponalng to the number of IInes in the letter,
 are solected with other welationmipa, e.8.
atmilamity in mhape between letters and nubera, Don't devote all your fime to looking fos suoh "ystons; concentrote on leaming at quiokly at posalble, gottine as muoh holy an you can from the atcoolathone you on df moover.

Again 3 lines of letters will oonetitute a tridal. I will give the uetal elemal "Rendy GO" and you vill btop at ond of each 3 Iinos. Hemember to woxt steatily aoroge the page from lest to wight."

Fen trinla were given, sha the thmo recomded for esch trial. The snewew to the guestione wew also meormea.

95S VII. Honeance Syllable Maze (B).
 elevon pages of nonsenee syllablen, fwo of whick axe included here. The materlal is coalt vith in the manner denoribed in the ingtrustions, whioh ave : "I will give you a sheet of papes on which are 20 1tnea, sach oonststing of fous nonsence हylhables. Again you are requived to woad thom aloud from left to might, When you have moached and sald tho comeot ono I thall way "Xes". aiter wioh you will diomgard the mentincer of thet line, prooceding imsoatately to the next ine. On the scoond and aubsequent trinis. enoh Line vill contain the come syltables an beroves but asmanged in a difterent oxder. The oorweot -yllable in a given ithe ie always the jove tron trial to trial, but it will oouve in different postwions in the line. Xou numt try
to leam to inow tho oomeot sylubles for each inne. If you womenbes whtoh syluable in the isne Is the cosweot one, say it streight awry pithout 2lvet meading tho preceding syllablea in the ame Ine. If you mble a matatedce in thus ploking out a syllable, twy the othera in twon as befove. The correct ayllables in enoh set of fouk lines heve beon ohosen for some particulex reason. If you notioe what the prinolple id on wion a cet hes been ohosen, 1 theuld prove eseter to zremember."
the nonsense syllables Fore again obtainea
 In the Jcurmal of Genetise Payohology, woz. 35 , page 265. Agatn the majority of the aylabloe were chosen fron

the posittions of the oompeot sylleble were byins arranged socording to the snoe pian as that used in Honsenge Sylleble Tost A. The oomeot byllableg in的10 test are ;

$\begin{aligned} & \text { Brp } \\ & \text { prg } \end{aligned}$	Ohosen beasum the letters of the ceaond
$\begin{aligned} & \mathrm{OAX}) \\ & \mathrm{KAG}) \end{aligned}$	
$\begin{aligned} & 1 \mathrm{ECZ} \\ & \mathrm{MOX} \\ & 1 \mathrm{MB} \\ & \mathrm{MAF} \end{aligned}$	Chomen beouuse each syllable in thin spoup has the ane inttial letter (il).
$\begin{aligned} & \mathrm{zeg} \\ & \mathrm{mg} \\ & \mathrm{vad} \\ & \mathrm{KES} \end{aligned}$	Chomen beosuse enoh nyllable in the greup hat the acre vovel (B).
$\begin{aligned} & \text { TIV } \\ & \text { JUW } \\ & \text { TTV } \\ & \text { CAF } \end{aligned}$	Ghosen becaute exch sylisble in this group ha the eane final letter (F).
$\begin{aligned} & \text { FVY } \\ & \text { VEQ } \\ & \text { QOB } \end{aligned}$	Chosen beanva the Inci letter of one sylieble is alwaye the inttal letter of

Again the then taken for ach sheet of
syllables is reoomed and the snewop to the quentions ere reooxdec.

Oux	3 x	WE\%
Wos	20V	P78
G4K	xyy	57x
wor	Kag	20
518	Qr	95\%
as	2\%	271
\$00	198	32x
ant	cux	\% 5
kx\%	2xe	zea
\$00	258	Wx
2AF	508	Yot
Kxp	Tiv	XEX
Vur	MI\%	ar2
สบร	7xX	Fin
cII	vux	840
208	Qust	2 LD
W0.	TVY	202
\%oc	\%Ex	vad
278	9064	N00
rom	\% 2×3	พบ3

J24	Wอz	BIP	cus
\％rs	泉	ตอ¢	P13
KEV	xyy	＊xx	OHK
cres	wor	Kif	\％บร
Fuv	382	314	4x
Mox	xov	GEx	2Tn
Sez^{2}	BEX	WU6	IMT
X23	MA\％	93	cux
280	KY\％	X 76	J\％
400	829	WE\％	6x\％
2䜿	Vac	504	Yos
F\％e	ICIF	\％x	KEX
ขบร	（x）	15\％	20\％
WUE	HEP	Yxx	งข้
5\％	T18	vUz	Cx
839	808	OAF	Qus
9x\％	3\％1	ve\％	FYV
vat	Yoe	\％ra	xur
MxF	\％［1］	Q0\％	Wบ0
， 13	TAT	NY8	Yom

B4马
5. Cuttretere of the Teatis
a) Opthtatant of the thme Fontts.

Whate watioh tng the eoventy subjocte Lonwating
 often atruot by the thet that toe neny ohanoe frotoms affeoted the woculta obtnined to mako than a good tent of Lecminty absyty.

In tha socow of ruant to of the 13 near naze are munswows kotas suek ate the folloutre:
(4) ablogoet got 3 nto a sisnd alley duming the
 Sečow, The tercer hos out Fow muth: ths went buthraxis prentionlly to the boctuntreg,
 onvanis the chow the tho geremat atsootson of the maso wes that shom in Fig. 10 and

F20. 10 (see Fosth). 2acularly wont batmonts of point A.
(*) Another exbjeet alumeng month twint mates a mistake not mnde provicusly. Thes thapose है out vow muoh, nsi puta hor tnto an omotionat atate.
(441) 5xto conaltombly, ewon though the 18 untry the oounttre mothod.

Some cubjocts ucea the methot of puahing styius in ons alpeotion untel stopped, and then ohanging direotion. 對his mothod, nithoun it gave the subject little liea of the compeot path through the mase, gemed about an effeotive an sny othey in reaucing time.

The only oubjeote whe wanly knew the rase by the ond of ten trimle were those wo uned the counting method, or sald to thembelves, "Lest, left, righti, eto. Out of the soventy subjecte bested, there were only ifve who leamt the nare in this way.

A ahort indtund tine on the maze often proves to be a difadvantage, not oniy fron the point of viev that it is have to Laprove upon thite tine in subsequent trinle, but aleo beonuec the athleet is often unamave of many of the Dtind alxegs, and then eho geta into them inter on, an emotionel. upset is eaused, shoh may peres.et throughout the remeinting practioe powiods.

Wase 8 provec to be a mowe satiefactoxy leaming task, in that noat of the subjeets vepe ablo to fom a futry good thon of the comreet path by tho end of ten trlats. The exoensively loug inithtat and becond billats ofton made it hemd to know how to dest. wt the wesulis. A subjeot with along neoond brlat would often show im as a good lemmer by the fowntae we used, evon though suoh a subjeot ald not know the mase very well by the anc of ten frisx with thit type of maction in that in which the subject tmoes the meze qufokly the zixat couple of triale, then realteas that she is not manlly getting to tenou tha comect path, atter whith the setid about learning the mage, goneraily wosuiting in sh inemense in tine.
 14es of the aomwoet peth thoougit the maze, sun yot the
 was no timo werboticn artor tho second tritat, and yot thit eubjoot know the oompot pnth thatough the msec Well at the end of ten twinle. Whte also points out one of tho dinatyartugat of wefig tine diftemeneo as the owitemion for juactug frymovomont (See Ghapter VI).
b) 0x4kiater of the oand-axtins teat. Anothar te whtoh the inveetigator toes
 cam-borting test. In thes moen of the subjects leamed the oorreot pigeon-hole for the oawts, and
 quitokly than wes anttotpated, and therofore the improvementa in thrig betweon the second ana thortest trials were genemally not gxont. Woreover nearly all the subgeats aeomea to obtain vory nimilar time soomen on the test, and vexy sindles time atforonces, so thet the test wns not a good one for diviaing the quiok learnew stroa the slow. Tho inventigntov feelo thet if a nore complicated synton reve intro-
 1emming takik.

A poactivle cetticita of the noneonge syllable
test in that a culbject may take an excesnively long thime cureng one of the intind twale, ond dueng that that be ropeating the foregolng comwat noneense eyllwlas to haraelis in osdes to memosizo thent. Aotrasty this oniy happerea cage on the fimet nonsenee syliable test, and nots at all on the ceaona. She

Abstract

pexsonal influenoo of the experinonter in probahly sufftelently strong to stop exblectic from dotwe fila. a) Gxitsolen of the substitution Serth.

In thin type of torat, the subjoot acgetimo Mowovew oush ganes awe falrily zare, and thooe which do. oocur ame probnbly fusthy ponalisod, ns gureiy its 14 a parvon with litcle loeming abllity who woula weact in thica way.

CHAPTIR V.
 ADMIMISTRATION OF TESTS.

A. Subjeots.

As abjects in this research 70 women students of Rhodes University College between the ages of seventeen and twenty-three, were used. The se students were all volunteers. Forty-two of them were following the first year course in Psychology, and the majority of other subjects were also undergraduates.
B. When Tests were tsken.

Fach subject came to be tested individually In a mall room $7^{\prime} 6^{\prime \prime} \times 9^{\circ}$, which contained two chairs and a table. The room was bright and well ventilated. Each subject was required to come to be tested four times for a 45 minute period. Two tests were administered to each subject during each testing period. A "mental" and a "motor" task were always given during the same testing poriod, to minimise the effects of boredom and fatigue on the results. The tests were given in the following order:

During Testing Period I Test I - The Linear Maze. Test III - Substitution Test A. During Testing Period II Test II - Blook-packing Test.
(One week later). Test IV - Nonsense syllable Maze A.

Forty students were tested during the pirst two weeks, namely May 5-10 and May 12-17, 1941 and thirty during the weeks May $19-23$ and May $26-30$, 1941.
about three and a half months later, in the following manner :

During Testing Perlod III - Test V - Maze B.
West VII - Substitution Test B.

During Testing Period IV Test VI - Gard-sorting Test.
(One week later). Test VIII - Nonsense syllable Maze B.

Again forty students were tested during the first two weeks, namely August 25-30 and September 1-6, 1941 and the remaining thirty during the weoks September 15-19 and September 22-26, 1941.

As far as posalble subjects came on the same day of the week, and at the some time for successive testings.

C. Instructions.

At the beginning of Testing Period I the following general preparatory remarles were made to each subject :
"This investigation is designed to stuaty the relationships between various kinds of learning. If the results are to be any good, you must apply yourseli serlously to learning each of the tasks set you. You must understand that none of these are tests of intelligence, and that we are not interested in comparing your learning ability as a person, with any other student's leaming ability. A person who shows a low learning ability in one tasis may show high learning ability in another; and low learning ability in any task does not indicate low intelligence. Therefore approach these

tasks simply as studies of your progress in

 learning, in a number of different situations. We are concerned with discovering certain general theoretical relationships, not with discovering the best or poorest Iemers.Listen aarefully to the instruotions in all cases, and try to follow ther as closely as possible. In all case you will be given the signal "Ready - con; start as soon as you hear GO.

Please do not discuss or even mention any of the tests to anyone, as this might invalidate someone else's results."

The actual instructions for each test are quoted in full in the previous ohapter.

Apart from akking each subject to apply herself seriously to leaming each of the casks, no Incentives were used and the times reoorded for each trial were always hidden from the subject until the completion of the test.
D. Reconding of Resulys.

For reoording results it was found most convenient to use cards $6^{\prime \prime} \times 4^{\prime \prime}$ which were net out in the following manner :

In the way amplo woon was leit on the easd pow onloulntions and momavte which were not eovomed by the quettions.

The next atep to be considerod is hon to uan this anta to measum seaming ablitity.

GHAPTER VI.

METHODS OF MTASURING LEARNING ABILITY.

A. Previous Methods of Heasuring Leeming

Ab111ty.
In the previous studies into the inter correlations between learning abilities, the investigatore do not appear to have paid much attention to the way in which they judged such ability. Hall (23) in his study used the total time taken and also the time difference between the first plus second and the thirteenth plus fourteenth trials; while Husband (30) took as his criterion of learning ability the total time taken on the assumption that everyone started with about an equal skill. Both these measures certainly give some idea of the leaming baking place, but a very sketchy idea, stressing aifferent aspecte. One need oniy thinix of a few hypothetical cases in order to see the many factors whioh both investigators are ignoring.

When time-difference alone is being taken as the measure of leaming ability, the way in which that time has been reduced over ten trials, say, is not taken into account. Surely a person who reduces his time greatly auring the first couple of trials is a better learner than one who takes nine or ten trials to reauce his time the same anount,

Diggramatically represented (see Fig. 12), surely A is a better leamer than B.

By merely taking Time Difference into account, they would both be regarded as having equal leaming ab111ty.

Using Time Difference (TD), also favours the person with a poor initial (high time) score, "as the person whose first trial happens to be good is nearer to his ultimate IImit, and later inorements are achieved only with extreme difficulty." (Husband 30),

Hunter (29 p.554) eraphasises the same point when he writes: "As the Iimits of achievement are reached, and partioularly as the performance approximates a physiological limit, the additional increments of accomplishment become more and more difficult to attain."

Husband's method of using the total time teken, overcomes some of these difficulties, but there are also eriticisms to be levelled against this method.

In effect what Husband 13 doing, is taking the total area under the curve, and saying that the smaller this area the better the learning ability.

No. of triels.

FIGURE 13. DIAGRAM SHOWING TEE AREA BETNG CONSIDERED BY HUSBAND.

If taking TD favours the person with a poor infitial score (high time score), this method certainiy does not; in fact, the better the initial score (low time score), the smaller the total area is likely to be. This method of measurement does not soen to measure learning ability solely, as one's initial performance on the tack (which has nothing to do with learning ability) affects the results very greatly, as can be seen by regaraing the curves shown in Figure 14..

No. of trials.
 trials.

FIGURE 14.
By using as the oriterion of learning ability total time taken, A would be the superior learner because the area under the curve is smaller than $B^{\prime} \mathrm{s}$. But far more improvement has taken place in $B^{\prime} s$ case.

87.

He has nedueed his tine by 45 unsten, wherons A has mowoly weduced his by 80 . Tt may be axpuod that A atarted with an inititaity low doow and themorowe it
 but thow is a dufindte rapld inpwovenont theling plaeo in B, whion in not in \boldsymbol{A}, and this tuprovemont muet cureiy be mgaxied at an inlloatton of loaming ability.
B. Sugrantad mmovononta on thate manavred.

Beosuse of these eonstiometrons the wnitor mpent a grent denl of the hrying to woxte out Eenc Eothod whiloh would nove sathermotorily noame leaming abutity. The following axe some of the nethods acriend.
(a) Aren undat oumo botweon Jonceati and ghouteet suratas.

It was Pelt that in cacos $14 t 0$ the aboves, a Twer moacuw of loaming mbllity ooutd bo obtained it tho axee uncow the ourve betwon the longeet snd the shortent trink wose tetron.

In Figux 15 the aistance "R" wepposente the initial tire, and "b" the showtent tins* The aron under the ourve in found in the usunl shy by caling als
the times taken. The arpa X is found by witiplyinc "be by the number of tritela. subtract X fron the totas. area under the curvo, zeaving the axen A. The ancilor the eron A, the better the leaming ability.

Inmediately many objections to this method apring to one's mind. If all the curves gtarted from a oomon point, and ended at a oomon point, the s method would be applicable; for examis, in rigure 16. A vould be rogarcec as a better Iemernes than B and C, anc. 2 at a better lemxer than 0.

PG4ara 26
Hovever is the lover point were not comon to the three ourves, this fomule woula not give a true intication of the relative learning ablitites. Consider the curves show in Figure 17.

Applying the fomma, A woutd be sergoted
at a better leamer than B. Yot hapdy any fuprovement hos token plaoe in A and the totral time taken is vory great. In suoh osses this mearure would be muoh now Knecourste than liueband's.

The aifrioulty lies in the fact thet no scoount is being taken of the tine weduction. For example (aee Figuxe 18) the analle pt posalble swea obtainable couia be pepwesented by astracht litne curve, corpesponding to " a^{\prime}. the aroa of mich would be sewo. Yet in auch a sase no smpwoversent has taken piace at all, but aocording to the formula such a person would be rogarded as a good leamezt

FToune 18.

Could a may out of this diffloulty be found
 fornula $\frac{1}{\mathrm{~h}}$; (A being the area shown in 14\%- 15) ?
(b) $\frac{\text { 留 }}{\mathrm{A}}$ Yoraula.

The larger thin watio, the better would the leaming abllity be, as a lamg maduotion in time, and a minall area under the ourve indleates that a large time reduotion hat foken place duming a fow friels.

There are, however, cames wioh this fommin does not oover, sas oan be seen in Pigure 10.

Applying this foxmula to the eumvee (a) and (b) $\frac{T D_{2}}{\mathrm{~A}_{1}}$ would be greater than $\frac{T D_{2}}{\mathrm{~A}_{2}}$; and yot (b) has been able to weance his tima mowe dusing ten briale, starting from the some intitial soore than has (a), and theretore his Lemming ability should be greetsr. In onder to wenedy this, the value given to wh ahould be weighted. $\frac{\mathrm{g}^{2}}{\mathrm{~S}}$ my give the desirea reault.
(0) $\sqrt{\frac{y^{3}}{2}}$

After trying many hypothetloal ourvee, It wan found that $\sqrt{\frac{\mathrm{mO}^{3}}{A}}$ gnve the mont velisale vemult, the fypothetionl oseen taken not only appeaming in their aorreot orler when thes fomula wac applied but the spaoing betwoen them being approximataly what one woula expect, judeturg leaming abllity from the khape and position of the ourves.

ITGURE 20.
Gonslder the hypothettaal ourves show in
Figuxe 20.
Learning ability meacured by 10 would be $A(20) ; 8(30)$; $\begin{array}{ll}A(20): & \frac{1}{c}(30) ; \\ C(40) ; & D(50):\end{array}$
*
.
*

- $\frac{9}{4}$
-

" $\begin{gathered}\text { A }(: 20) ; \\ \mathrm{d}(.22): \\ \mathrm{B}(\cdot 20) ;\end{gathered}$

In thls ouse 1 ahows up as the poovest learnes, yot he has been sble to woduce his tine most oves ten tmincs and thould be given orodit for thit. Therefore try welghting tine aiforonce, by tquaking wis.

Leaming sbulitiv, measuxed by $\frac{y^{2}}{A}$ would be
$A(4 \cdot 0) ; B(9.0) ; C(3.9) ; D(9.6)$. In this seve 0 show up as a pooper loarmer then B, but 0 has been able to reduce hig time mow than B ovev ten twiala. Using $\frac{9 p^{3}}{A}$, the resulte are $A(80), B(270), C(355)$ D(482). Now the four cases scen to obour in tho is oovect ordew of ability, but B does not, froa inepeetion of the ourver, seen to be thye times ac good a leamer sa A, nud D doen not seen to be six timee $2 s$ good a learmer as A; thet $3 .{ }^{2}$, the mpead has been inereased too much by using thid fomule. By uatng $\sqrt{203}$, the following woulte are givent $A(8 \cdot 9), 5(16.4)$ C(18.8)
and $D(22 \cdot 0)$, which would seem a falrly acourate plaing and spacing of the respective learning abilities represented by the four curves.

The critiolm that can be levelled against this formula is that TD has now been weighted to such an extent that applying this formule to the results makes little difference to the rank order of the subjeote, from that obtained by using TD as the criterion of leaming ability. The Rank Coefficient wes found between the two methods of measurement using the first twenty subjects. Using the substitution test A, ρ was $\cdot 98$, and on the blook-paoking test ρ was 95 , which seems to show that this criticism is Justiflable.
(d) $\frac{q D^{2}}{A \times I}$ formula.

Neither TD nor $\sqrt{\frac{T D^{3}}{A}}$, seems to get over the difficulty quoted by Husband. Both measures seem to favour the person with a poor initial score (long initial tine), and the parson whose first trial happene to be good, does not have a chance of showing up as a grod learnes, as he is neas to his ultimate limit, and leter incremente are achieved only with extreme difficulty. It wes therefore felt that the initial (or secona) score should somehow be introduced into the fomula, in such a manner that the person with a short initial time would gain by the introduction, and one with a long initial time would suffer. If initial time (represented as I below, and meaning in each case the time for the second trial on each test as the first trials have been ignored throughout) could be introduced into the denominator of the formula, this
would mean that the maller initial time would give a larger ratio and therefore a person with a low initial time would have more chance of showing up as a good learner. In this conneotion the fomulae $\frac{T^{2}}{A+I} \frac{M D}{A+I}$ and $\frac{\text { PD }^{2}}{A X I}$ were considered.

Before deciding which of these formlae would be the best to use, elght subjects were chosen from Substitution Test A, on qualitative grounds, and ranked in learning ability, judging this from an inveatigation of the learning curyes obtained and from observations made while they were performing the tests. By this method they were ranked in the following order.

Sub- jects	Qualita- tive Estimation	Using $T D$	$\frac{U s i n g}{\frac{T D^{3}}{A}}$	$\frac{T_{D}{ }^{2}}{A+I}$	$\frac{T D}{A+I}$	$\frac{T D^{2}}{A X I}$
K	1	1	1	1	3	1
R	2	5	5	5	1	2
P	3	4	2	2	2	3
M	4	2	3	3	5	5
U	5	3	4	4	4	4
F	6	6	6	6	6	6
H	7	7	7	7	7	7
W	8	8	8	8	8	8

TABLE 3. RANK ORDERS OF EIGHT SUBJECTS, USING DIFPEFEM FORLILLE.

Using these eight subjects $\frac{1 D^{2}}{A X I}$ raniks them more closely to the quailtative estimation than do the formulae $\frac{T^{2}}{A+I}$ and $\frac{\text { mid }}{A+I}$

The Rank doefiloient was Iound between the $\frac{T D^{2}}{A X I}$ and TD methode of measurement, using the first twenty subjects on the substitution test A. On this
test fwas .93 and on the blook-packing test \int was. 73. P was also calculated between $\frac{T D^{2}}{A X I}$ and $\sqrt{\frac{T^{3}}{A}}$, being - 96 on the substitution test, and 87 on the blockpacking test. In both cases the Rank Coefilcient is highest between TD and $\sqrt{\frac{T D^{3}}{A}}$, being in one case $\cdot 98$ and in the other.95, while it is lowest between TD and $\frac{\text { TD }^{2}}{\mathrm{AXI}}$, being $\cdot 93$ and. 73 .

Can we conclude from this that $\sqrt{\frac{T D^{3}}{A}}$ does not differ greatiy fron plain 1 as a neasure of leaming ability anc that ranking subjeots by this rethod will give virtually the same resulte as using Tine DIfferenoe? The fact that $\frac{T D^{2}}{A X I}$ does not correlate so highly with either of these measures may mean that it is taking account of more factors, suoh as the shape and position of tha learning ourves obtained, and in therefore a better neasure of learning abllity.

To shom the improvement of the $\frac{T D^{2}}{A X I}$ formula over TD, conelder the folloving two sete of results which were obtained on the Maze B test.

		B
1.	34.8	213.7
2.	20.8	221.9
3.	24.3	190.8
4.	23.0	105.1
5.	21.7	39.5
6.	18.0	64.4
7.	16.3	48.0
8.	16.1	91.7
9.	15.5	32.0

TABLE 4. RESTHTMS OF TWO SURJECTS ON MAZE B.
(The first scores in each case have been omltted.)

A has a TD of 19.3 seconds, while B has a TD of 81.7 seconds. From this oriterion it mould seem as if B were a better leamer than A; jet from observations made by the investigator while watohing the two subjects doing the test, it was obvious that A very soon formed an idea of the correct path through the maze, while B had ifttle idea of the true path, even after ten trials. If the $\frac{\mathrm{q}^{2}}{A X I}$ formula is applied to these two sets of results, $\frac{\text { TD2 }}{A X I}$ for A comes to 2099 , while for B it is -0948. This seems to be a more just reilection of the relative learning abilities of the two subjects than the results obtained by uaing TD.

Are the correlation coefficients low due to the fact that the TD method is an unsatisfactory means of measuring learning ability? The present investigator
thought that this might partly account for the small size of the correlations obtained as very often someone would get s. large TD on one test due to the fact that the time taken for the first couple of trials is so long that without really eetting to know the task much bettex, she would be able to reduce her time oonsiderably. This type of beheviour occurred frequently in the maze tests. On another test suoh people's reactions were generally rather different. For example, poor leamers on the substitution test generally showed littile recuotion in time, and therefore obtained a small TD. In this connection consider the lecults of the following two subjects, C and D.
0.
D. 0 to 256;

A few such subjeots would immediately lower the correlation betweon the two teats and quite unjustifiably, as such people in reality poscess poor learning ability on both tasks.

The $\frac{T D^{2}}{\pi X I}$ fomula does not seem very suitable for such extreme cases as these, for A X I in such cases is not large enough to compensate for the extremeIy large proportion which $T \mathrm{~T}^{2}$ assumes. For example, taking the two reculta just quoted, and applying the $\frac{T D^{2}}{A X I} \times 1000$ formula, they become
c. 603) Range from 0 to 634.
34) Range from
) 22 to 203
D. 471) Moan 191.
70) Mean 91.

This shown that applying this formula has not improved
the poaition materially. After considering cases such as this, it is perhaps not surprising that the correlation found using the $\frac{T D^{2}}{A X I}$ fomula do not differ much from those found when using TD as the criterion of leaming abilitiy. (See Chapter VII).

It also occurred to the writer that working from a moothed curve might be an advantage, but when considering ourves suoh as A and B, quoted previously, It is doubtivl whether this would make much difference. Dealing with curve B, the difference between the average of the first three trials and the last three trials is $118^{\circ} 2$, end on ourve A this diference is 10\%. Here the position has been aggravated, not improved by using smoothed curves. In A^{\prime} s case, Where the improvencat has boen steady at the beginning, thin smoothing of the curve has penalised the subject for the initial time is made lower and therefore TD is reduced from 19.3 to $10 . \%$. In $\mathrm{s}^{\prime} \mathrm{s}$ esse, where the time has increased auring the is.rst three triala, the initial tifue is incressed and TD is inereased from 81.7 to 118°. The only cases in which moothing the curve would be of some adrantage, are those where only the second (regarded as initial) time has been long, due to chance factors. The alsadvantages outweigh the possible advantage of working from smoothed curves, and thls teohnique was therefore not adopted.

An A X in the fomula $\frac{r D^{2}}{x X I}$ did not prove to be large enough to compensete for the proportions which TD ${ }^{2}$ assumed, when TD happened to be large, due to an extremely Iong initial time, perhaps using the
total aroa under tha ourve (in the mannoy ltubland cta), end oombining thta in some way with cime Difresonon,
 on the reenits A and B quoted previoumy. A beocnes
 nati.afactory in that the oxtor of the two mbeotis ic revereod. Iven though this fomuls may in preotloo eftive one a falyly good ooncoption of people"e polativo loaming ablitition, thow are erve opltholem whol oan the levellou meatnet it on thoorethoal grounds. Conct dex two oupros, in whape exnatily cinclan, the one (x) comenoing and enaing with a lawger titne goowe than the othor (y), es ohown in Frgure 22 .

 ability on the tratri The thape of the two curwee in exuotily the mane, and the than diffewence ie the cone. The apronont in fovowe of penalsining X in that X 46 Foxking neames to hata ultimate 212 k t, and the time woduotion is botng aohtewa sith now deffloulty than X^{\prime} g. Mut thet evilunoe have we that this Is sof
 and it is only if we aseuno that ovowyone has the mane
phymiologiont itnit that wo onn apply thie forvita. This oritiolem seemed suoh a grove one that thie forauta wer not used.
C. The Cormon Folnth of Hnstexy Thoint cuns In an aptiole by Rloya k. much (5o) entioloa
 In human loavning oxposimentation", bo polnats out that a comparition of groxps or individun? vith mognta th Iomming ability is spoquently rondowal pocutiarly astrtoult boonsse of the thot that inttiat allelity varies botwon the groupe or inatviduris. Fos oxmplo, one subjoct sthwsm at a level of ablyity indoatal by a soore of 40 unite of wort pew trink and trprovel ower the pertiot of praction to a easw of 60 unitis; Another subloct strarta at 30 unt 6 a and Amprover in the gane number of triale to 50. Both
 exprose trpyovonont at a percentage of the insting soove (which in one tractitionnl mothou of finding leaming ability), wo mut elve the tarot aubjoct a mating of 50, , and the swoond a mating of $66-2 / 3$. If we amploy the wime Dxtrownoe or abrolute grin method, we must conerute that the subjecte amo squal. Both methods ape invalit. the poreontirge nethod is so because it aasumes that tho axbstway samo posnt of the tof eotnoilo exnetiy with the absolute zow point of the abslety botig coneldewat. gho mathod of Gorining leaming abllity se tho atfforotne botwoen the Initiel and finct porvomanne of the oubjoct is mondered 2nvalia, as we hove mlwenty shown, by the thot that unter at alfforent lew is of portormenoo probesly have ditfownt values. A mwe scone atiforonco of 20 polnts at one ond of the enale 10 not noconcovily equal to a
raw score difference of 10 points at the other end of the scale. The elimination of the first error in a learning experiment does not have the same signiflcance as a measure of ability as the elimination of the last error.

Ruch holde that the nethod of common points of mastery will sumpont these difficulties. Trere are two methods which he advocates. Preliminary to using either method the learning ouwves based on the trial scores for cach subject are moothed by a muning average covering enough pointa to elininate serious chance fluctuations in the scorea. Then a partiovar level of performanoe common to the early trials of 0.11 subjects is detemined by ingpection.

In Method A a second or ilnal common point of mastery is selected. 留his point must also be common to the curves of all subjects. Learning ability is then defined an the number of trials or number of errors or anount of tine required to inprove from the initial to the inal comon point of mastery. "等he only assumption that need be made here", ays Ruch, "is that ten trials represent more effort than nine trials."

In Method B the initial common point of mastery in estsblished in the sone way a before and learning ability is defined as the amount of iraprovement in the first segment of trials beyond this common point.

Preliminary Investigationa Indicate that the method of common points of mastery has conslderable promige in the study of the intercorrelations between the abilities to leam different tasks. Applying this method to the results obtained by Hollingworth
(27) for his sixteen subjeots who learned three-hole motor co-ordination and opposites, the intercorrelation using the common points technique was found to be $+\cdot 59$, While uฮing the methods "Difference between first and fourth blocks of five trials", "First and second blocks of five trials", and "Third and fourth blocks of five trials", the correlation coefficients were respeotively --14, --17 and -•11.

Ruoh aocounts for this inorease in the Pollowing way: "To make the explanation simple, let us assume that there is a correlstion between Innate ability to learn two different takk. In the typioal leaming experiment the subjects are far from unpractised at the moment the conations of a formal leaming experiment are imposed thon them.... What we know definitely is that gubjects show individusi differences in performance on the very first trial of the formal experiment. One subject might have a high initial status beoause he has had much unrecorded prifor practice though he may be only average in native leaming oapacity. Another subject might make a low initial score beause he is average in native capaoity and has had but a mall amount of prior practice. A third subject may stand high on the firet trial by virtue of great native capacity even though he has had little unrecorded prior practice. These are just a few of the combinations of prior practioe, native ospacity and inftiel performance. Add to this motley of varlable unknown the further fact that absolute gains have alfierent meanings in terms of abilitty.at different ranges of the scale, and it would appear that In the treditional method we are dealing with enough attenuating and distorting factors to conceal a fairly
sisonble corvelation. The nethod of oomson petinta elininates vaplable initial nbility and allowi gitn to be cetemanned aystomationliy by native oapionty beyona thet point. " (Rwoh 50).

Thume axe, hewower, sone owitlotems whtoh asn be levelzed againet this toohnique, partioutarly In Ito appliontion to matering of the kind belng doalt with in this tavestigetion. In almple leavning fantes owh as were usod, it would be havt to $\$ 1 x$ a eormon point ac that the poopite who paneed theoyph it wowld all atill be howing fniviy rapla happovenont. For exmple let un agaln thake two ousven of emotly the

A and 3 both pass throuch the oommon point of mastory x, A on hat thist Bmax , and 3 on his secona. Fotking leaming astlity an the frpmopenant owew the noxt thwoo tmalit, $A^{\prime \prime}$ s leaving ability oan bo mepwosontad by the asatmee "a and s^{2} a by "b". By thte orstertion A hate
 may be poos, but ha has leame just as guicily ne bo Ghta coes not show wh, horeway, beostue the ooneon

In worts sechulving prolonged practice ent in

Which improvement is stieady and gradual, this method would probably be satisfactory, but it could not be used in this investigation as the subjects vere only given ten trials on each of the various tasics, and the results of nurerous subjecte would have had to be eliminated, due to the fact that no common point of mastery was resched. In this connection consider Table A in Appendix I, where it can be seen that the highest chortest-times are in every tost greater than the lowect initial (second) times, which means that no comon point of mestery could be obtained from these ourves.

A slight improvenent on Kuch's method A. might be suggested. Constacr the curves shown in Figure 16. ${ }^{89}$ These three curves all pass through the cormon points of mastery X and Ψ, and each subject takes four trial fror the intitial point to reach the final. If only the number of trial were being oonsidered as the criterion of learning ability, all three subjects would be considered to have equal ability. A, however, has reduoed his time more quickly, than B and O, and B more quicisly than C; therefore area under the curve, or total tine taken between the two points should also be taisen into consideration. Perhaps this is what Ruch means when he writes: "Learning ability is then defined as the number of trials or number of errorg or gmount of tine required to improve from the initial to the final coman point of mastery", but the point is not elaborated.
D. Measuring Learning Ability by Retentivity.

It is perhaps not necessary to define learning ability as progress, or pate of learning. Thornaike
(50 psege 5) think of leaming as aoquiming reaponses and changing the Etrength of thets comnoctiong with the situntione of life, therefore laaming ability oould perhaps be regarded in temn of the greatest stetnablo exflalensy of the conneotions, and not as the whe at when comnoctions ape fomzed. As a comollawy of this, leamning abllity could perhaps be dertned in negative way in texns of the mato jom of efficiency, after lenming to a eestaln utage has tation place. It will be aygued that this meaturea movely retentivity. Dut loaming ability is not colely the gpeed of eaving relatton - that 48 what is testedin an intelligence tert - it is sumely the abllity to educe relationahipe whlewant to some goal, and to retaln them so that they follow raplaly in a oeruain secquence. If one ic propared to acoept this as a cefindtion of losaming, why not trwin all subjeets to a sertnin ntindayd of exfletency (1.0, to a final oumon point of manterys, but not beyona), thon iet a Qefluthe poriod of trae, say a woek, olepne, nfter which the subjeot ts required to do a triak, or a fov triald on the same taik, to sec how much ho has wetainea auring the intewal.

In Figure 24 A and B are both trained to reach the standard of efficiency indicated by the common point of mastery X. After a week's interval they both do another trial on the task, their respective powers of retentivity being represented by the lines "a" and "b", A being classed as the poorer leamer because he has lost in efflciency more than B; that 1s, his powers of retentivity, on that particular test, are less.

This method was not used in this investigation, due to practical dificulties in the way of training all subjects to a common point of mastery, in a limited length of time. It was often difficult to fit two teste into a forty-five minute period, giving only ten trials on each task, and the unpredictabllity of the length of time it would take to train a given subject to the final common point of mastery, made this suggestion impracticable for use in this investigation. However the writer has outlined this teohnique here as she thinks some use of the method may open up interesting avenues of research into a slightly different aspect of learning ab111ty.

In the following chapter the results obtained from the application of certain of the fomulae discussed here, will be given.

Chapter vix.

TREATMENT OF DATA, AND RESULTS OBTAINED.

In the previous chapter various methods of measuring learning ability were ilsoussed. On theoretleal grounds the $\frac{\text { sp }}{}{ }^{2}$ fomula seemed as if it would be most satisfactory. This formula, well as the $5 D$, has been applied to the data, to IInd out which formula would give the higher correlation coefficient.
A. TD and $\frac{x^{2} D^{2}}{A X I}$ Formulae applied

Firstiy the TD's vere oslculated for the 70 subjects, on each of the elght tests. TD in each case being taken as the aifforence in time between the second trial, and the shortest trial.
$\frac{\pi D^{2}}{A X I}$ was then calculated for everyone on each of the tests. $T D^{2}$ is self-explanatory. A is found by adding the times taken for trials 2 to 10 and subtracting from this the shortest time multiplied by 9 (1.e. the number of trials). Diagramatically represented it is the area shown in Fig .25 ; shaded area being A, the 6th trial being the shortest.

EIG.25. SHOVING AREA CONSIDEAED AS A.

I is always the time taken for the second trial as the first trials on learning tasks are notoriously unreliable (Hall, 23). For convenience sake these resulte were all multiplied by 1000 , to avoid working with decimals.
B. The full table of correlations, and aistribution of coefficients.

Using TD as the oriterion of leaming ability, the following is the full table of correlations among the learning tests. The method used for oalculating " r " is that outilned by Holizinger (28) and shown in Appendix III.

Maze A. Sub, A. Blocks. Mon A. Mage B. Sub, B. Cards.
Sub. A. $\quad+\infty$
Bloaks +15 *. 06
Non A. $+.08 \quad 2.04 \quad-.15$
Maze म. $\quad+03 \quad 4.09 \quad-.02 \quad-.07$
Sub.B. $+08 \quad+.26 \quad .09+.14 \quad$ t. 2 Cards 3 $-.20 \quad+26 \quad \$ 05 \quad . .06 \quad \$ 05 \quad \$ 18$ Mon.B. $\quad-01 \quad-.07 \quad-.11+40 \quad+02+34+.13$

The size of these correlation coefficients is remaricably similar to the size of those obtained by Husband (30). The median coefficient found by Husband was $+\cdot 13$, whioh led him to the conclusion that learning was not a single function, but rather existed in the plural. The median of the correlations tabulated above is 4.05 (Mean .06), which seems surprisingly low, considering that the tests were longer than those used by Husband, and also considering the great similarity of the tests in the Facilitation and Achievement groups.

TABLE 6. DISTRIBUTION OF COEFFICIENTS

Corre	at	n renge.	No. of $r^{\prime} s$ found from this investigation.	No.of r's found in Husband's investigetion.
- 50	to	- 59	0	1
-40	to	-49	1	1
- 30	to	- 39	1	6
- 20	to	- 29	3	26
- 10	to	- 19	4	19
. 00	to	-09	9	23
- -10	to	-. 01	7	14
-. 20	to	-. 11	3	1

The distribution of coefficients found from this investigation coincides almost exactly with that quoted by Husband, except that the majority of these correlations are even lower than his. The few slightly negative coefficients can be considered inconclusive, as can those which are slightly positive. Those which fall within the range of -.10 to $+\cdot 10$, and even up to ±-20, are so near their P.E's that the trends prove ifttle. Four-fifths of our correlation coefficients lie within the range $\pm .20$.

Taking the oriterion that an r to be significant, should be at least thwee times its P.E, it can be seen that only five figures attain the required magnitude.
C. Intercorrelations among Motor, Mental, and Ideational Tests. Husband divides h1s correlations into three groups. The median between the motor tests $18 \$ 19$, among the rote learning tests is $+\cdot 20$, and it rises to

```
+.25 with the three correlations between Ideational
tests.
The results of this investigation have also been divided into those between motor, "mental" and Ideational tests, so that they may be compred with Husband's three groups. The only correlation coefficient that is comparable with the median of those between Husband's Ideational tests, is that between Nonsense Syllables B, and the substitution test \(B\), as these are both mental tasks, involving relation eduction.
```

TABLE 7. INTERCORRELATIONS AMONG MOTOR TESTS.

	Maze A. Blocks. Maze B.	M	
Blocks	+.15		
Kaze B	+.03	-.02	
Cards	-.20	+.05	$+.05 \quad$ Median +04

TABLE 8. INTERCORRELATIONS AMONG MMENRAL TESTS.
Sub.A Non.A. Sub.B.
Non.A. -.04
Sub.B. $+26+.14$
Non.B. $-.07 \quad 4.40 \quad+.34$ Median 20

TABLE 9. INTERCORRELATION BETWEEN IDEATIONAL TESTS.
Sub.B
Non. B. $\quad+.34$

The median correlation between the motor
tasks is much lower than that obtained by Husband, 1.e. +04, as compared with his t19. The median of the mental tasks $18+20$, which is the same as Husband's median between his rote learning tasks. The correlation obtained between substitution test B, and nonsense syllables B, is +34 , which can be compared With his median of to 25 among ideational tests. Thus

It would seom that correlations are slightly hicher anong the moning tasks involving more complex functions, than among almple motor tasts.

D. Intercorceiations Amons Eacilitation, And Achievement Festig.

The correlation coefficients obtained for the Eacilittion tests, using both the TD, and $\frac{\text { IDE }}{\text { A }}$ I $\times 1000$ criterla of leaming ability, are shown in fable 10.

TABLE 10. INTERCORRULATIONS BETVEN THE FACILITAETION
TASKS.

Using ${ }^{\text {P }}$			Uaing $\frac{9 D^{2}}{A X I}$		
M vs. S	$\underset{-003}{r}$	P.E	3 va. 3	$\frac{r}{r}+03$	$\begin{aligned} & \mathrm{P} \cdot \mathrm{Z} \\ & \pm .08 \end{aligned}$
M v8. $\mathrm{B}^{\text {c }}$	+ 15	$\pm .08$	\% vs. 3	+.16	$\pm .08$
M vs. N	+ +08	$\pm .08$	\% vs. N	-. 09	$\pm .08$
S vs. B	+.08	$\pm .08$	S vs. B	+.02	\$.08
s vs. N	-. 04	$\pm .08$	3 vs. N	4.08	$\pm .08$
B vs. N	-. 15	*.08	B va. ll	+.11	\$.08
Average	+.02		Averase	+.05	
Meäさan	+.04		Median	+.055	

The highest correlation obtained is +16 , which is only twice its P.E., therefore none of the correlation coefficients found between the Facilitntion testa, is significantly alfferent from zero. Mefther are any of the correlations significantly chance by using the TDZ formula, instead of TD. The mean correlation uaing TD is +02 , and using $\frac{M D^{2}}{A X I} 15 \% .05$.

Correlations computed in the same manner, using the Achievement tests, are shom in Table 11.

TABLE 11. INTMCORRELATIONS BETWEEN THE
ACHIEVGIINT TASKS.

Using TD		
	r	P. P $^{\text {c }}$
M ve. 8	+•25	$\pm .08$
[7 *.0	+.05	$\pm .08$
M VE.N	+.02	$\pm .08$
S v8.0	+.18	$\pm .08$
S vs.N	+.34	± 07
- Vs.N	+. 13	$\pm .08$
Average	+•16	
Median	-165	

M vs.s.	-. 02	$\pm .08$
[4. ve.0	+.18	$\pm .08$
4 ve.v	-. 13	$\pm .08$
\$ 78.0	--08	$\pm .08$
\$ vs.N	+.06	$\pm \cdot 08$
$0 \mathrm{vs} . \mathrm{N}$	--18	$\pm .08$
Average	-. 04	
Median	-. 05	

The highest correlation obtained is $+\cdot 34$, which is neariy five times ita P.E., and therefore significantly different from zero; while the r of - 25 is three times its P.E. The average correlation using TD is $+\cdot 16$, while using $\frac{T D^{2}}{A X I}$ it is -.04.

Using the TD oriterion secms to bear out the statement made previousiy, that correlations are slightly higher between the learning tasks involving more complez functions, (achievement tasks) than between simple facilltation tasks.

However using the TD ${ }^{2}$ oriterion, this does not seem to be bome out. In both cases the difference is so small, and the median correlations themselves differ insignificantly from zero, that the mall trends cannot be regarded as meaning much.

It was pointed out in the previous chapter how the $\frac{\text { TD }}{} \frac{1}{x}$ fomula oould be a more inacourate criterion of judging learning ability than plain TD, and after the following points had been considered,
the $\frac{T D^{2}}{A I I}$ formula was no longer used.
E. Comparison of results obtained by using
the TD and $\frac{T D^{2}}{A X I}$ formulae.
Correlations were caloulated between TD
and $\frac{T^{2}}{A X I}$, using the same testa, and all ro subjects.
The following r's were found :

PABLE 12. SHOWING CORRELATTONS BETWEEN THE TD AND
TD ${ }^{2}$ MTEHODS OF MEASUREMENT.
Using Subgtitution Test A. $4 \cdot \frac{\mathrm{P}}{\mathrm{B}} \underset{\mathrm{P}}{\mathrm{P} \cdot \mathrm{E} .} \mathrm{OB}$
Nonsense syllables A. $+\cdot 76 \pm .03$
Black Packing. $+\cdot 77 \pm .03$
Maze A $\quad 4.70 \pm .04$ These onrrelationg are all high, therefore it would seem that it does not matter very much whether one uses the TD formula of the $\frac{T D^{2}}{\frac{A X I}{I}}$ formula as the criterion for judging learning ability. On inspection it would seem that the $\frac{q^{2}}{A X I}$ formula affected the resulta of the Maze Test more than eny of the others, in that the complation between $\frac{T D^{2}}{A X I}$ and $T D$ on this test was the lowest. The significance of the difference botween the two correlations found on the substitution test (the highest correlation) and on the maze test (the lowest correl ation), was caloulated in the manner outilned by Shepherd Dawson (14 pg.138). $\frac{X}{2 \mathrm{~L}}$ in this case vas 2.5, and not 3, which it must be to reach the 5 per cent level of significanae.

Therefors, 2 s the correlations between the two methods are all high, and as the $\frac{T D^{2}}{}$ formula

```
does not affect the correlation coefficient in a
signiflcantly different manner when applied to
different tests, it was decided from this stage
onwards, only to use TD as the criterion for judging
learning ability, as it involved less calculation,
and would indicate as well as the other formula any
clegr trends.
```


F. Correlations between the corresponding tosts, in the Facilitation and Achievement groups.

TABLE 13. CORRELATIONS BETVEEN CORRESPONDING TESTS.
$\underline{\mathrm{E}}$. E .

Sub. A va. Sub.B.	+.26	$\pm .08$
Non A vs. Non S.	+.40	$\pm .07$
Maze A va. Maze B.	+.03	$\pm .08$
Blocks vs. Cards.	+.05	$\pm .08$

Even these correlations are surprisingly
low, considering the great similarity of the operations involved in both substitution tests, both nonsense syllable tests, and both mazes. The correlations between the two nonsense syllable tests, and between the two substitution tests, are signigicantly different from zero.

The extremely low r between the two mazes is of partioular interest, in view of the statement made by Hall (23 pg .185) "It would appear as though a rather important general maze learning ability ald exist". The lowness of the way in part be accounted for by the fact that iaze A seemed to be rather an unsatisfactory learning task (See Chapter IV), to leam in ten trials. However mazes of this type
are fairly well standardized, and the correlation which is viptually zero, between the two stylus mazes, must be accounted for by the fact that the opportunity to educe relations afforded by Maze B, affected the results so materially, that no correlation, due to the similarity in manual operation involved, could show up; or because Maze A in particular, or mazes In general are unreliable as tests of human learning ability; or because learning abilities are specific to the material being learnt.

Another statement made by Hall comes to mind when considering these low oorrelations - namely, "one could make out a very good oase for specialized learning abilities if low correlations were obtained between very similar learning tasil su". In our case the correlations between similar motor tasks are very low, but between the mental tasks, although certainly not In the neighbourhood of 1 , the correlations are significantly different from zero. This again seems to give evidence in support of the statement that correlations are higher among learning tasks involving more complex functions, than among simple motor tasks. The highest correlation is between the two nonsense syllable tests, which involve the least motor activity. The other fairly high correlation exists between the two substitution tests, in which the learning which ocours is probably mainly "mental", but which involves a fair amount of motor response, in the form of writing down the requisite numbers.

The low correlations between the motor tasks may be due more to differences in work method than to differences in learning ability. In an article by van Dusen (16 pg.225), the significance of worlk methods in
learning the motor skill of card-sorting, is made olear.

At the begiming of this investigation (see Chapter II) it was decided to try and choose eight tests, four of whioh, as far as possible, involved pure faolitation prominentiy, in the learning process required, and the other four involving achievement prominentiy. If the tro groups of tasts aould be kept very gimilar, apart from the amount of achievement that could be used in one set (achievement always meaning ability to educe relations, reasoning, etc.) this would rake it easier to interpret the correlations found.

If a falrly high correlation were found between the various problems devised as facilltation taske, and also a high correlation between achievement learning tasks, but not a very high correlation between the two sets of tests, then the reason for this correlation would be the difference between the processes required to make a good facilitation, and a good achievement learner. Looking at the correlation coefficients obtained between the various eacilitation tasks, it seems as if there is vistually no correlation at all. Three of the coefficlents are slightly positive, and three are slightiy negative, the median coellicient being +.04 , With a P.E. of $\pm .08$.

The achievement tagks correlate a bit more highly, all the coeffiolents being positive, and the median being +17. One of the correlations is five times its P.F., and another three times.

From this it might be inferred that the abilities needed to make an achievement learner, are
more generalised, than the abilities used in learning the facilitation tasks. It would be interesting to know how the learning abilities on the various tasks correlate with intelilgence. Would the abilities on the achievement tasks correlate more highly than those on the facilitation tasks?

The theoretical considerations of the correlations found between the similar tests in the facilitation and achievement groups, have been discussed and it was pointed out how extremely hard it was to know whether the low correlations obtained between the similar motor tasks, were due to the fact that the B tests gave an opportunity to educe relations. The interpretation of these low correlations is made even more difficult by the fact that the blook-packing, and card-sorting testa differed more in the type of operation involved, than did the other three pairs of similar tests.

In the two pairs of tests which do show a fairly high correlation: is the size of this correlation, and the faot that it does not approach 1, due to differences in amount of facilitation and achievement used; or due to the fact that learning ability is spooific to the particular task being learnt; or perhaps due to differences in emotional attitude? In scme subjecta there may have been a positive transfer, and doing a test of a similar nature has aided their leaming of the second test. In others there is a negative transfer. Several subjects told me thoy could still remember the numbers and letters of the first substitution test, although several months had elapsed before the second one was given. Many

1
subjects who had evoked interest on the first test were bored by having to do another test of a similar nature. From questions asked the subjects, as to their work methods on the second batch of tests, the large mafority of people, did, at least in part, use the "aohievement" method of learning. Which of these factors is the important one, or whether they are all important in keeping the correlation coefficient fairly low, on two very aimilar tests, it is hard to say. A fruitful line of research would be an attempt to isolate such factors, and this could be done more easily by using very similar tasks. Previous investigations using very different learning taske, have not been successful in demonstrating the existence of a general learning ability. When dealing with such a question it is the obvious thing to try to inind a correlation between tasks that are ad different as possible; but since this has not been found, it is time that people tried working from the inside outwards, in an attempt to isolate disturbing influences in the learning situation.

Summary.

1. 28 correlation coefficients between eight tests of learning were calculated. The median ooefficient was +.05 .
2. The intercorrelations were all very Iow, only 5 out of 28 being significantly different from zero, and four-filths of the $r^{\prime} s$ being so near their P.EIs that the trends prove ilttle.
3. Considering the correlations obtained between motor, "mental" and "ideational" tasks, it would seem
that correlations are slightly higher among learning tasks involving more complex functions, than among simpler motor tasks.
4. This statement also seems to be borne out by the correlations found between corresponding tests in the "facilitation" and "rohieverment" groups. The r^{\prime} s found between corresponding mental tasks were significantly different from zero, while the motor taske virtually showed no correlation at all.
5. Evidence in support of this statement is also found by comparing the correlations obtainea between the "Pacilitation" tasks, and the "achlevement" tasks, the median for the latter being +.17, and therefore higher than for the former, which is +.04 . These resuits are very inconclusive, but it might be argued from them that the processes needed to make an achievement leamer are more generalised than those needed to make a facilitation learner.
6. The results obtained in this investigation are very similar to those obtained by Hall (23) and Fusband (30), the correlation coefficients in this case being even lower than those reported by them.
G. Are the low correlationg due to Rmotional

Fretors?

Is the lowness of these correlations due to the fact that some subjects reaot peculiarly to the testing situation In other words, are the low correlations perhaps due to the fact that emotional factors are causing the subjects to react in peouliar ways to the testing situation, rether than due to differences in learning ability? This point occurred to the writer as a result of observations made while
testing the subjects on the set of facilitation tasks.
In order to try and get some qualdtative evidence on this problem, the 11sts of questions, quoted in Chapter IVfwere asked tho subjocts, when they came to be tested on the achievement tasks. By this method it could be seen who reaoted in an extraordinary emotional manner to a civen teat, and people tho had been affected in this way could be eliminated, and correlations calculated only using the remaining subjects. This elimination must be done solely on the basis of angwerg to the questions, and observations of the experimenter, recorded while the subject 10 performing. It would be quite ungustifiable to eliminate subjects by an examination of their scores.

To do this the following technique vas applied. Using the substitution test B, and the Nonsense Syllable test B, all people wore eliminated tho either actively disliked the test or Ilked it very much indeed; who disliked tests involving ingures, or disliked reading aloud; who were over-cautious and nervous; and who found that doinc the previous test first was a disturbing factor. Regarding the IIst of questions asiked, this meant eliminating ses pbl

On Question 1) All $O^{\prime} \mathrm{s}$ and $\mathrm{B}^{\prime} \mathrm{s}$.
On Queation 2) All HYeses"
On Question 5) a)
b) Those who had "yes" for all

On Question 6) All Heres".

After this had been done, the r was calculated
between the two tests, using the 39 subjects who remained. It oame to $+\cdot 22$.

The same procedure was then appllod to the
maze B and card-sorting teats, eliminating from the maze test those who actively disliked the teft, or I1ked it very much indeed; who were vexy much upset by being blindfolded; and tho were nervous or overcautious at the beginning of the test. In the card-soxting test, due to so many people liking the test very much indeed, this tas not regarded as being a peculiar mode of reaction to the test, and these people were not eliminetad, but those who "dian't 1ike it very muohn, as mell as those wo"actively dislikedf it were eliminatgd. Using the 44 subjeots who remainea, the correlation between the two tests came to +13 .

Correlations were then worised out between oach of the various tests, using only the 23 sublects who remained in all four testg, on the grounds that these people seemed to be leest affected by emotional factors. If the corelations were raised, when using only thess subjects, it would suggest that learning ability might be a general factor, but that It was obscured when making large scale suwveys, and using all subjects' Iosults indiseriminately, by variations dexiving from varying emotional and attitudInal factorg. The oorrelation, coefficionts caloulated, using the twenty-three $k u^{*}$ jectis vilo remained, are these ghown in table I4.

TABIE 14.

Using $233^{2} g$.09	.35	.15	.41	.27
Using 70sis.	.05	.25	.02	.18	.34

Exeept for the correlation between the substitution and nonsence syllable tegts, the coefficients have been raised in every case. The greatest increase is
that found in the correlations between the substitution and card-sorting testa, whioh has been raised from +.16 to $+\cdot 41$. However the difference between the two r's does not reach the 5 per cent Level of significance $\frac{x}{P}$ being 2.0\%, instead of 3 (Shephord Dawson 14 pg .138). In spite of this, the fret that all the correlations, except one, heve been raised by applyIng the foregoing procedure, and that the mean has been raised from $\cdot 16$ to $\cdot 27$, does seem sugcestive, and tends to aupport the theoretical reasons for which the elimination teohnique wes applied. One oannot infer from these result that a general learning ability of any importance exists, but one can argue that the extremely low correlation found in the past, hay heve been aue in part to emotional factors exexting a diferential influence in the learning situation, and that this might be worth investigating more precisely than has been done here.

H. M1tination of subjeats, with differences In affective attritude.

It war deciaed to oliminate subjects specifo Loally on theip likes and dislikes of the test. It Was felt that if a su"blect liked one test very much Indeed, and disliked another, this might interfore whin her relative abllitty on the two tests, and a number of such subjectis tight be lowering the correlation coefficient, đue again to their enotional attitude, rather than to dirferences in leaming abllity.

Perhaps the orsticiam will be levelled
that the aubjecta who disiked a teat had this
affective attjtude towards it, due to the Pact that their learning ability on the test was low. As the questions were asked after the lat. trial, and again after the loth. trial, this orltiolsm would apply only to the answers received after the 10th. trial. After the Ist. trial the subjects have Iftile 1dea as to what their learning ability for that task will prove to be. The fact that they feel they dislike the test, may hinder them from learning the task to the best of their ability, but their inability to learn the task will not influence the answer they give after the ifrst trial. For this reason it was the first set of answers that was oonsidered.

Each subject wan askea after the first trial, whether she
(a) liked the test very much indeed... 5 points.
(b) falrly well 4 points.
(c) moderately 3 pointo.
(d) not very much 2 points.
(e) not at all 1 points.
(f) actively alsliked it ... 0 pointg. She was rated according to a G-point soale; if she answered (a) she obtaineci 5 points, (b) 4 pointe, (o) 3 points, (d) 2 points, (e) 1 point and (f) 0. In eliminating poople acoording to their likes and dislikes of two tests, everyone was eliminated who differed by more than one point, on the answers given to the first asking of the questions. For example, if a subject liked one test "fairly well" (4 points), and the other test "not very much" (2 points), she was eliminated. If however she like the one test "fairly well" (4 points), and the other moderately (3 points) or "very much indeed" (5 points), she was retained. Of course all people
who gave the same answer for both tests were not eliminated.

Perhaps a qualltative analysis of some of the subjects' results, whioh were eliminated by this procedure will explain:
(1) How suoh people, due to factors other than differences in leaming ability, can upset the correlations;
(11) certain deficienoies in using time difference as the criterion for measuring learning ablility, and
(ii1) the unsuitability of mazes as tests of human learning ablility. Considering Maze B - people who dislike the test, seem to get either poor results, due to the fact that their time does not decrease much after the second trial, or they may get good results due to the fact that the time taken for the first couple of trials is so long that, even without getting to know the correct path through the maze much better, they are able to reduce their time oonsiderably.

Compare the results of the following two subjects, who both said they "actively dialiked" the test.

TABLE 15. RESULTS OF TWO SUBJECTS WHO A CTIVELY DISLIKED MAZE B.
A. 1. $190 \cdot 0$
2. 30.0
3. 61.4
4. $64 \cdot 2$
B. 1. $105 \cdot 5$
2. $115 \cdot 5$
3. $177 \cdot 6$
4. 23.9

TABLE 15. (0ontinued)
A. 5. 236.5
B. 5 . $53 \cdot 6$
6. $93 \cdot 3$
6. $76 \cdot 8$
7. $30 \cdot 4$
7. $59 \cdot 3$
8. $42 \cdot 2$
8. $27 \cdot 2$
9. 74.8
9. $35 \cdot 4$
10. 33.9
10. $40 \cdot 0$

A gets a TD of 0 , as the second trial happens to be her shortest, while B gets a TD of 98.3, although from observation it was noted that neither subject was very confident, or had a very good idea of the maze at the end of ten trials. This shows that TD is an unreliable ortterion by which to juage learning abllity.

Of the 0 's, 1 's and 2's (1.e. people who disliked the test) eliminated from Maze B.
A.) 4 were of the A type, (13.0; 29.0 and 18.2) getting low MD'
B.) 6 were of the B type, (252.8; 215.7\% 140.2; getting high tils. (98.3; 101•6; and 116.9)

These A \& B types of subjects have all got scores well below and above the mean (47.5) for the Maze Test. Comparing their results on this test with those obtained on the substitution test, we find that on this test all the subjects have TD's near the mean (45.4), therefore it can be seen how these subjeota will tend to lower the correlation coeffleient between the two tests. If their exteemely high or low TD's on the Raze are due to their dislike of the test, and not due to lack of larming ability, surely we are justified in eliminating them.
0.) Two other people eliminated were noted as being poor learners, obtaining fluctuating ourves, and not
really knowing the maze by the end of 10 trials. These had TD's of 48.4 and 61.5

The writer would olass these three types of people as poor learners, although some had high, some average and some low TD's.
D.) 3 subjects, though from TD's alone one would not say so, the would class as good learners, although they disllked the test. These subjects all knew the maze well by the end of ten trials, and were tracing 1t quickly. Their TD's were $66.0,32.5$ and 20 , as compared with the mean (47.5), which shove that 2 would be consldered below and one above average in learning ability.
T.) The four subjecta who "liked the test very much" all obtained low TD's, yet the writer would class them all as good learners. The low TD's can be accounted for by the fact that after the first trial they had such a good idea of the maze, that it was very hard for them to improve much upon the time taken to do trial 2. The TD's obtained by these subjects were $31 \cdot 8 ; 26 \cdot 5 ; 12 \cdot 3 ; 10 \cdot 0$. Comparing these results with those obtained on the substitution test, one aubject got well above the mean on this test 1.e. 86, the others were all slightly below. Such individuals probably do not lessen the size of the correlation coefficient as much as the A \& B types.

The remaining eleven people eliminated all got ${ }^{31} \mathrm{~s}$ and 41 s . One of the eleven had a very long 2nd trial, and consequently a T of 255.5 , but the other results were not exceptional.

From this analysis of results, it would seem that like and dislike of the testis, did not go
consistently with high or 20w TD. Dislike of the test wont more consistentiy zith learners, wholl, on a qualitative basis, were classed as poor, and like of the teats with leamers gualitatively regarded as good. Hagh and Iow Tix' do not go consiatently with gooc or poos leamers, which showe elther the unpeliablilty of the time difference oriterion of judging learning abslity, or the unsuitability of the maze as a test of human learning abllity.

To see which of these two alternatives is mainly responsible for the inconsistency, consider the Substitution Test B. The same type of thing oceurs here, but not to such a marked degree. Only two of the subjeots who disliked the test obtained high ID's, due to having exceptionally long second trials. Hostly the 期's of those poople who dism likod the test were smail, but comparing the results WIth Tin's of people getting affective scores of 3 , 4 and 5 (i.e. who 1iked the test), there seems to be little differenoe. There is one person comparable to the \mathbb{Z} clags of maze leamers, who, liking the test very much, took only $87 \cdot 8$ soconds for the secons trial. She reduced her time to 68.4 seconds, whioh is unusually low, but thle only gave her a low TD of 19.4.

As the same kind of inconsistencles occur In the substitution test results, it would seem that the unvellablity of the time difference method is partiy responsible, but the greator frequency of such inconsistencies in the maze results, perhaps points to the undesirability of using a maze as a learning task.

In the card-sortinc test the large
majority of people were not able to reduce their times very much, and no exceptional trends were noticed in the results of those people eliminated from this test.

In the Nonsense syllable test \bar{B} most people had very similar times for thelr gecond trials, as it seems very hard to improve much on this test during the early trials, and it is also difficult to spend an exceptionally long time on any particular trial, therefore those people who disliked the test tended to have short D's, and those who liked the vest had large D's as one would expect. Again a few subjects could be classed as good learners in spite of the fact that they disliked the test, and therefore they had shorter TD's.

Returning to the correlation coefficients obteined by this elimination technique, they were found to be those shown in Table 16.

MEM 16

 $+.50\left(40 \mathrm{~s}^{\prime} \mathrm{s}\right)+.24\left(43 \mathrm{~g}^{\mathrm{s}} \mathrm{s}\right)-.08\left(47 \mathrm{~m}^{\prime} \mathrm{s}\right)+.33\left(47 \mathrm{~s}^{1} \mathrm{~s}\right)+.34(42 \mathrm{f} 8)-.17\left(29 \mathrm{~s}^{1} \mathrm{~g}\right)$

Using 70 s!s
$+.25+.05+.02+.18+.34+. .33$
(Using this technique the same gis are not used in the correlations of the difforent tests as they were in the previous method.)

From these results $1 t$ wil2 bo seen that using only those subjects who were similar in their likes and dislites of the test, makes quite a large difference to two of the coofficients. It raises the x between Maze B and substitution west B from $\cdot 25$ to .50. The difference between the two correlations
does not reach the 5 per oent level of significance, as $\frac{x}{P 5}=2 \cdot 27$, instead of 3 (Shepherd Dawson. 14 pg.138). It also raises the r between Maze B and card-sorting from . 05 to $\cdot 24$, but this rise is not signifioant elther. The other correlations all become lower, or pemain unchanged. The ooefficient between cards and nonsense sullables is changed from $+\cdot 13$ to -17 . Why is this correlation so considerably lowered? Firstly, only 29 subjecta were left in for this correlation, and statistically this number is too small a one on which to base any conolusions. The second reason that can be suggested for the lowering of this correlation is that subjects who liked doing the eard-sorting test improved so much between trials 1 and 2, that little improvement showed up between trials 2 to 10 , and hence small CD's were obtained. On the other hand the nonsense syllable test is the test in which this type of behaviour occurs least frequently, and therefore a subject who liked the test, would probably still have a pairly high time score during the second trial, which can subsequently be considerably reduced and a large ${ }^{\text {ID }}$ obtained. Many people did react to the two tests in the manner outlined above and the writer considers this partiy accounts for the fact that the correlation was lowered by using only subjects who differec by 1 or less, on their lifes and dislikes of the tests. Those who did not like the ifret test, often had high TD's on 1t; and often also high TD's on the second test. Eliminating these left a greater proportion of those with low TD's on one test and high TD's in the other.

From considerations such as this, it was felt that too many people were being eliminated by thls rather stringent mothod. It was therefore decided to eliminate only those peoplo who differed by more than 2 points. for example, if a subjeot 11ked one test "very much indeed" (5 pointe) and the other "not very muoh" (2 points), "not at all" (1 point) or "actively disliked it" (0 points), she was eliminated. If ahe 11tred the other test "moderately" (3 points), "faicly woll" (4 points) or also Inked 1t "very muoh incead" (5 pointa), she was retained.

Working on this new basia the following correlations were tound.

9ABLI 17.
Linination tecintcrue
 $+.36\left(58 s^{\prime} n\right)+.10\left(62 s^{\prime} s\right)+.06\left(61 s^{\prime} s\right)+.20\left(60 n^{\prime} \mathrm{g}\right)+.27\left(56 s^{\prime} \mathrm{s}^{2}\right)+.12\left(53 \mathrm{~s}^{1} \mathrm{~s}\right)$

	10. St				
+.25	+.05	+.02	+.18	+.34	$+.13$

From thd: it will be seen that using aublects tho diffared by an Iess, on their Ilkes and dislites of the two tests compared, there is a more eneral tendency for the correlationg to be slightly raised. Again the greatest difference is made in the correlations between Maze B and substitution B, and between Ilaze B and Cand-soxting: but this Itffergnes is not as great as that found when using gubjeots who differed by one or less. The corseletions between meze and nonsense syllables, and between substitution and card-sorting, are reisod very slightiy (by . 04 and by .02), whlle those between nonsense aythytes and substitution, and between nonsense syllables and cords are Iowered slightly (by 04 and .01).

Abstract

No very definite oonclusions can be drawn from these resulta. Using subjects who have a similar sttitude of like or dislike towarde two terts doed tend to raise the oorrelation coefriolent in some oases, and only in one case has it been appreciably lowered. Differenees in like or dislike of the testa moy not be the main factor in lowering correlations between learning tasks; perhaps a factor such as motivation makes a greater difference to the results. Motivation 10 a factor which Hall (23. $\mathrm{pg} .194)$ believes may be of rime importance. He concludes his article by saying: "the writer believes that a general learning ability of some importanoe might be discovered, were we able to control the aifferential influence of motivation and previous practice in the learning situation. ${ }^{\text {a }}$

I. glimination of subjects with differences
 in Motivation.

For this reason it was deoided to see what the effect on the correlations would bo, of ellminating those aubjects who were differently motivated on the two tests being oorrelated. This was dons by ellminating those people who answered "yes" for Question 4. (Were you iseen on aoing well on this test, or didn't you care particulanly whether you did well or not? on one test, and "no on the other. Those people who answered "yes" on both tests, or "no" on both teste ware kest in. As it may again be argued that the subjeot's statement at the end of the test that she wad keen to do well on the test mlght have been due to the fact that she had been doing well, the answers to question 4 a) only
were the ones considered - 1.e. the answers referring to the subjects' motivation at the beginning of the test.

It was found that the people eliminated by this procedure, were not necessarily those people who had differed on their likes and dislikes of the test, see Table 18. In this Table column A gives the numbers of the subjects eliminated by the motivation technique. Column B gives the numbers of these subjects, who were among the people eliminated on the grounds that they differed by more than 1 , on their likes and dislikes of the Test. Colum B gives the numbers of subjects from column A who differed by \ddagger or less than I on likes and dislikes of the testa.

TABLE 18. TESTS BEING CORRELATED.

	Col.A.	CoI. B.	Col.c.
	Subjects eliminated by motivation.	No. of A eliminated by att1tudes.	No. of A retained by att1tudes.
Cards vs. Sub.	20	11	9
Haze vs.Non.	23	9	14
Maze vs.Sub.	17	5	12
Maze vs.Cards	14	4	10
Sub. Ve.Non.	24	8	26
Gards ve. Non.	21	11	10
Therefore it would seem that motivation at the			
beginming of these tests was not intimately connected			
With the subjeots' like or dislike of the test and			
that one should consider "motivation" and "affective			
attitude ${ }^{\text {n }}$ towards the test as two distinct factors			
in the learning	situation		

The correlations found between the
varioue tests using only S's who were aimilarly motivated, are show in Table 19

TABLE 19.
nimination tochnioue.

4 78.S.	4	14.73. ${ }^{\text {H }}$	B 70, 8		Cre. H
+ 33 ($53 \mathrm{~s}^{18}$)	+008(56s's)	+07(47 s ${ }^{\text {s }}$ s)	+09(50 s^{18})	+ $444\left(46 \mathrm{~s}^{\prime} \mathrm{s}\right)$	$+15\left(4988^{18}\right)$
		Usin	70 stg		
* 25	+.05	+02	+.18	$+34$	+.13

These correlations show a fairly consistent rise on the original correlations, although none are raised significantly. Only one r is lowered and that by +.09. The others are raised on an average by +00 . It is interesting to note that the correlation between the aubstitution and nonsense syllable teste has been raised by $\cdot 10$, as this correlation had not been much apfected by the previous three methods of elimination. This would suggest that differences in different factors may have varying effects on the intercorrelations found between the results obtained in different test situations. Using a certain two tests it may be aifferenoes in motivation which are masking the correlation which exists between the learning abilities of subjects on the two tests; using two other tests, differences in like and alslike of the teats, may be the chief factor.
J. General Discugsion on the results found by
the elimination techniques.
Other investigators have been surprised at the low range of correlations obtained among various tests, and the fact that theoriats assume that there is a general learning ability, caused the

Writer to wonder if certain other factors might not be responsible for the low correlations, and to try to eliminate these factors. One might do this by trying to get all people equally motivated and to like the test equally, etc., but another method of eliminating such factors is by eliminating the people in whom differential factore were operative during the learning situation. For this reason introspective reports in the form of answers to set questions regarding various reactions of the subject to the testing situation, were obtaineç, and it was purely by regarding answers to these questions that any elimination was made. An elimination technique which took into account the results obtained by the subjeots, would be unjustiflable. A Suramary of the results obtained by the various elimination teohniques, follows in Table 20.

TABLE 20. CORRELATTONS OBTAINED FHOM THE VARIOUS ELTMINATION TECHNIQUES.

Tests	70 sig	$\begin{aligned} & 23 \text { s' } \\ & \text { after } \\ & \text { firat } \\ & \text { olinin- } \\ & \text { ation. } \end{aligned}$	S's difforing by 1 or less on 1ikes.	$\begin{aligned} & \text { To. of } \\ & \text { Eis } \\ & \text { Iont } \\ & \text { in. } \end{aligned}$	Sta difforing by 2 or less on 13kes.	$\begin{aligned} & \text { No. of } \\ & S^{\prime} \mathrm{g} \\ & \text { loft } \\ & \text { in. } \end{aligned}$	$\mathrm{S}^{5}{ }_{5}$ hav- ing some noti- ve- tion	$\begin{aligned} & 310.0 f \\ & s^{2} \% \\ & \text { loft } \\ & \text { in. } \end{aligned}$
M vs. ${ }^{\text {a }}$. 25	. 33	- 50	(40)	.36	(58)	- 33	(53)
\% vs.c	. 05	. 09	. 24	(43)	.10	(62)	. 08	(56)
M vs.w	. 02	.15	-. 08	(47)	. 06	(61)	. 07	(47)
S vs. 0	. 18	.41	.13	(47)	. 20	(60)	. 09	(50)
S vs. T	- 34	. 27	- 34	(42)	. 27	(56)	. 44	(46)
C va.	.13	. 35	-. 27	(29)	. 12	(53)	. 15	(49)
Mean	. 16	- 27	. 16		. 18		. 19	

It would appear from Table 19 that taking Into account as many disturbing factors as possible and eliminating those subjects who were affected by these factors, makes the most difference to the
general trend of the corvelations. When this procedure was applied, all the correlation coeffichents, except one, vere ralsed and although the new oorrelations obtained were not significantly different from the others, some of the correlations Were jetsed as much $2.8 \cdot 1.3$ and 12 . ghe average oopxelation was raised from . 16 to $\cdot 27$.

A slight but falrly oonsistent trend ${ }^{\text {Pas }}$ also noticed in the correlations obtained, using gubjects with gimilar motivation. All the cosrelations, exaept one, werg ralsod ajthough agein not to a statistionliy gignificant degree. The average corxelation was ra1sed fron 16 to 19. Thig would seom to show thet differences in motivation do tend to Lower intercorrelations between learning abl11t1es, but this facton does not eam to be as Important as Kall belleved it woula be.

The resulta obtasnod wlaen eliminating people who had different attituces of ilke and dialike towards the test, are rather more diffeult to interpret. Two of the correlations are quite appreosably raised, but the effect it has on the other coxpelations is negligible. The qualitative analysis of the type of people eliminated from the maze gives one one 1des of why the two eoryelations that are betwean the maze test and something elae.] are the onea that are considerably maiaed. me same type of बualitative analysis helps one to undergtand the Lowering of the correleston coeflocent botween cards and nonsense syluabes.

Throughout this investigation the need for qualitative treatment of data has struok the writer
very forcibly.
The chief difiliculty encountered in this investigation, using the elimination technique, is that so few subjeots are left after it has been applied, that the correlations obtained cannot be regarded as statistically reliable. However a small number of subjects tends to lower a correlation coefficient, and the fact that in nearly every case the correlations found after elimination were higher than the original ones, must indicate that the factors which we were trying to eliminate, by eliminating the people in whom they were operative, are real factors which tend to mask the correlations that exist between various learning abilities.
K. Summary.

1. The mean correlation coefficient of the 28 obtained was $+\cdot 06$; the mean for the 6 obtained on the facilitation tasks was +.02 , and the mean for the Achievement tests was +.16. It was decided to see what the effect would be on the correlation coefficients of eliminating people in whom differential emotional attitudes were operative at the time of the learning situation.
2. By eliminating all those subjects who had an extreme attitude of like or dislike towards the test; who were upset by the type of material used in the test; who were nervous or over-cautious; and who found that doing another test previously had been a hindrance, all the r^{\prime} e except one were raised; and the mean correlation was raised from $\cdot 16$ to $\cdot 2 \%$.
3. Eliminating those people who differed in
their attitudes of like or dialike towards the tests being correlated, affected two of the corm relations appreciably. Using subjects who differed by 1 or less on their answers to question 1 a), the mean correlation was unchanged; using subjeots who differed by two or less, the mean was raised from .16 to 18.
4. Biminating those subjects who were differently motivated on the two tests being correlated, raises all the $\mathrm{r}^{\prime} \mathrm{s}$ except one, and raises the mean from $\cdot 16$ to $\cdot 19$.
5. Motivation and emotional attitude towards the tests does not seem intimately connected, as the people who were eliminated on the grounds of differ ences in motivation, do not coincide with those eliminated because of differences in affective attitude.
6. One cannot infer from these results that a general learning ability of any importance exists, but one can argue that the extremely low correlations found in the past, may have been due in part to factors such as emotional attitude and motivation exerting a differential influence on the results, since nearly all the correlation coefficients have been raised by our attempt to eliminate people in whom differential factors of this nature were operative during the learning situation.

GIAPME VII.

A. Onemp Conclustone.

As there is a general asumption made by theorlate that leaming ability 18 a croneral and not a epeotitc factor, experimental evidence on this matter seens well wowth obtaining. On eccount of the low interoorrelationt that had been obtained between varlous leaming abilities by early investigators and more recently by Hall (23) and Iusbend. (30), the present pisee of researeh was undertaken to find out whether \& repetition of auch an investigation would give analogous resulte. The ohtef difficulties In the way of getting conclusive avidence on this subject are :
(1) That an indivicual's performanoe on a given leaming task, is a function of many other faotors bestie leaming abilitw, Chiex among these are the objeotive conditions, volitional attitude and motivation of the indivitual, fluotuating mental and orgenic conations, previous pratice, postulve and negative trancfer of training, work methodw, and the number of trials given on the apeoific tank,
(11) That the inalviaual'g leaming ability cannot be measured direatly by a single performanoe score, but must be deduced in some way from the set of soores obtained by
sepeating the leaming tatir a number of
times.
In this invectigation much time was apent In trying to devise a method of measuring leaming ability from the set of ten performence soores obtained, but without very satisfactory resulte. It was felt thet the low interoomeltations between leaming sbilities Pound in the past, may have been due to the fact that methods of meacuring suci ability had boen uneatisfaotory. A fomala for meacuring leaming ablitity, wich on empirical grounds seemed to take acoount of nore factors going towards making a good learner than either the measure used by Hall or Husband, was devised. The application of the fomula to the data hovever produced intercorvelations which were not eignificantiy aifferent from those obteined by using the time afference between the second and the shortest trials (this latter method is somewhat similar to Hall's method of taking time difference between the first two trials and the lagt two triols). The fomala devised, in fact, tended to make the comelations even lower than those obteined by using the time afiference method, although very slightly, and not signifiosntly. The sause of this seemed to be that the new fomula was not very well sulted to oovering extreme onses.

As regards the first diffloulty, these extraneous factorg wore controlled as much as possible. The objective condition were stomaralized to a oertain extent by the subjeotes alwnys being teated in the seme room at the same time of day. The effect of previous practice Mas minimized by ohoosing task in which none of the vubjects had had apeofic practice before.

Abstract

Fositive and negative tranafer of training wes guarded against by epacing the tents, particulariy those of a Bomewhat airilax nature. In spite of this spacing sowe negative and poeltive transior of training and enotlonal sttitude did aeen to ocour, partioularly in the second substitution test, and to a leaser extent in the cocond nonsense syllable teat (see Chapter VxI, pagelir). One of the main aims of the inveatigation was to find out whether tasks involving facilitation leaming correlated nore highly with each other than Wh the theice offering a greater opportunity for uelng achlevement in the leeming. When it was found that the correlation between the task ohosen in the facilitation group were vory low, it was decidad to try and get some asta on the disturbing effeots of motivation, attitude, fatigue factore, nervounnese e合., by crawing up a guestionmatre to be used when the mbjeots came to bested for the achlevenent taste. By uning this questionnalre the investicgator Wes to eliminato people from the two testa being cormelated in whom diferentigl ractors of an enotional type were playing a paxt. Although the inalvidual corvelation ooeffiotente were not statistioally significantly raised by this procedure, yet the correlations an a whole were falrily consiatently raised, which suggesta thet whoh feotoms are making a difference to the oorrelations obtained, and therefore every attempt should be misde in any future inve etigention of this sort to control the motivation and other emotional factore operative in the zubjecta be ing tegted.

this invertifation are that :

(1) The trens of evidenoe nems to sugcest that leaming abtilties as measured in this Investigntion snd in prewiou inventrantions are not hiphly correlated. the evidence for this arises from the fact that only two out of twenty-oight correlation coerficients found in thif investication sre sbove +30 , and elgnificantly aifferent from zero. Eight out of ninety-one were sreater than +30 in Husbenct ε investigetion; twentynine out of the efghty-four guoted by hoil from early investigatogs vere freater than $+\cdot 30$, and two out of six of his own erute x^{2} s.
(11) It would aeen thet oorrelations aro bigher among loaming tnels involving aove complex functions than among elmpler tasks. This is borne out by s oonsidexation of the cooffici.nts obtatned between motos, nental and Adeational tasks, both in thes investigation and in Musbana' 3 , as well as by a comparison of the correlattions obteined for the feollitation tasics, with chose obtained for the aohievement tasks. Thege differences sme not statistioally signsfioant, but they sem to show a oortain trend.
(tui) The Lowness of the present coefficients may be in part due to Paotorn muoh as emotionel attituce and motivation exerting e duffemontial Influence on the results. Again the soefilolenta were not waised Elenifioantly by the elimination teohniques which were used to

> try and find out how great an effeot such emotional factors exert on the retults, but the finciy oonsistent raising of the ooefflelents does seon suggestive. Hall (23) and Humend (30) have tended to concluce that the low correlations show absence of a general leaming abiluty. On the Spearmin (53) theory, this does not neaessarlly follow. Acooring to him it is the relationship between interoorrelations that determines the presence or nbeence of general factors, not the mere lomess of the oomelations. In order to find out whether a general factor could be diboovered, Sperman's criterton of tetred aifferences was applied to the intercomelation obtained between the achievement tacke, as the largeat correlations found oocurred between these tests and the coesficients were all positive. The median of the tetrad aifferences all taken as positive oomes to -0255, while the theoretical p.e. (53 page xi. Formula 16A) is -02732. (Soe Appendix V). The median observed tetrad difference for the table of oorrelations is lean than the probable error, therefore, according to Spearman, this proves the existence of a "g" factor and "s" frotors in the leaming abilitie used on the four tests being correlated. However the anount of such a comon factow would probably be very anall, due to the lomess of the correlation ooefficienta being ueed, the mean of which is only + '16.

In the oase of a single tetrad difference, the tetrad alfference shoula be leas than five times 1tif P.E., calculated acoraing to Pomala 16 (Speamtan 53). Taking one of our tetrad differences, namely :

However Thonson (56 pg .149 onwavas) has levelled oertain criticims against Spearnan in this connection. Spoavian has acsumed thet the totred difierences aro zew in the wholo population. In actual exariples what Spearnan's teonnique does, is decido whether the actual tetred difference pound, is compstible 7 ath the true tetrad alfference being zexo. As the actual tetrad difference will very ramely be exactly zero, it is assumed that it deviater fron zewo, due to sampling exrors. Its theoretical probable error is therefore worked out by fomula 16 , and if the tetred difforence is found to be less than idve thmea the p.e., it is nssumed thet the actual tetrad aleference is oompetible mith the true tetrad alfferenoe being zero. Thomson points out that it is also necessary to consider whether the sample is inoomotible Fith the opposed hypothesis that the true fotrad difference for the whole population wot zero. In order to do this we can take a region round zero which for practioal purposes we are $\begin{gathered}\text { Nilling to accept as }\end{gathered}$ zero. Thomson takes 05 at the discrepanoy from zero which he is willing to accept. He holas that it is not a very rigorous demand to make, that the tetrad
afferonce observed should be tnoorapetible with a bypothosis that the the value is Ereater than 05 . before we definitely namit the theory that it it really zewo.

Whis nedne that for a gingle grovy of Pous
 p.e. must be within the Iinit of .O5, if we ase to accept the exfatenco of genemel Pactor muming theough the foux abllitieg, along with inalvidual
 1.t is compatiole with the hypotheste that the true value is zero, snd ciso conpetible with the hypothesid
 common faoter in not proved; all shat is proved acorilig to shomoon in that thewe the ohances agringt the speerman hypothesis swe not mow than 1000 \$0 1 (Thomson 56 page 151).

Applying thomson ${ }^{\text {a }}$ oxtiterion that the tetrad
 Iimit of 05 , to the tetren dafterence quoted Boove, WV find that
 $=.169$,
and Thomson's oxitewton 1s obviounly not Eutpalled, and on hls vien the facts do not yrove that one common Pactor extsto between the leaming abilitior axhibitea on the four tester (viz. Subotitution Teat B, caxdm

 method of factomial analysia ia the noet moliable. However due to the great mount of caloulation involved In this pethod, it wag deoided not to apply it to the fesults. Furthemore own oorrelations mee all so near
their probable exrore, and in the majority of cases do not differ significantly from zero, that elthough the importanoe of mploying factorial anatysin is realised, it was pelt thet 11 ttie could be gained by applying it to the present resulta.

In the following geotion $1 t$ will be soen that Husband has pecently tried applying fatomel analysis to his reevlte.

B. Recent Fors on the Problem.

Since the oommencoment of this stualy two articles reporting further investigations carried out by Husbana $(31,32)$ on this subject have appearea in the Joumal of Genetic Psyohology. In the Pirest article (31), Husband deals with the effeot of Iength of teets upon intereorveintions. In order to cheols the possibility that shortening the testr had boen the osuce of the 10 correlations obtained in his first invertigation, he ohose six of the original teate anc. inoreasea them to four tines their original length. In spite of quadmpling the length of the teste, the median correlation is only +20 , as comparea with the median of tl3 obtained originally. Phif ficure is a trifle higher than the median for the orlginal sertes, but so little higher that one mould hesltate to sugge it that quadrupling the length of the tests had produced any naterial differonces. However the fat that the nedian coefficient has been raised, pointe to the desirability of using Ionger tosts than Husband aid in his original invertigation. Perhons quadruping the teate (whiah meant giving about twenty trials Inatead of five)) Increased the length of the tests too greatly, so that the leaming curver were flattening
out too muoh towards the end of the practioe period. In the aecond artiole (32), Hugband deals with the offect of are and apyes of intellitenot on the intergorrelations. tit has been suggented that one of the reatong for the extremely low intercorpelations obtained betwen aiffor"once nearures of leaming may be the fact that most toats hove been performed on college studenta who repretent a homogencoun population, eapecially in texag of intellifence, but aiso in range of talent and education.

A namov range of talent operates to reduce any corvelation coeffiosent, beoange differences in sheer ability are so small that personnlity factory mioh sis persevemane, enthusisn and conciontioumess; ohencing on an efficient mode of attack and slight
 position within the group. If the spread of abilitites happened to be vider avoh istnor pactors oannot make up for atacepanoien in true ability.

To seo what differenoe a $\begin{gathered}\text { tider range of }\end{gathered}$ talent would rake on the interoomelations, Husband obtained thirty children each from two of the junior high achools in Malison, one the univerat ty operated sohool and the other a sohool located closex to the bualness and indumbicil areas. The totai I.Q. range was from 81 to 162, gith a median of 100•6. The ohilaren wer in the geventh and eighth gredes (the etate Iaw necescitating that virtually everyone will still be in achool in these grades) and the age range was from $11 \frac{1}{2}$ to $16 \frac{1}{2}$ years, Fith a nedtan of 15 .

The tents used were nix from Husband's original battery, which vore deemed espealally sultea
for Junior hish sohool studente.
The median corrolation of the ititeen oorrelations obtained fron these testa, wes $+\cdot 10$, Which is virtually insignificant.

Husband soneldered the pogatbility that a higher range of intelligence might have produced a greater differentiation anong qubjocts of different degrees of innate ability which moula mean that even If learning and aptitude were not perfectiy correlated, at the same time the best leamers may have on above average in all performanaes, and the poor learners below average. Such wat not found to be the сяธe.

Most of the highest comelations sppeared between leaming task and. Intellifence. The hichest single ooefficient was between ideationel menory for a reeding passege and intelisgence, being +52. Correlations involving the more motor faeks et ther smong each other or between themgelves and complex leaming or intelifgence, in general panged much lower.

From the reaults found on these two further atudies Kusband concluaten onoe nowe that learning abilitiea swe specifle mather than genemal.

Clyde Coombs and Husband have an axticle, now in prees, which gitves an eccount of the applioation of fectoriel analysis to Husband'a oricinal table of Intercorreletions. About this luaband moiten (31) : "In spite of the Iow range of correlations, at leaet four more or leas goneral factorg presentec themelves. In adaltion there may be a number of apeolal ablilties. Unfortunatiely this atatement is not elaboratod,
therefore the method of factomial analydiz applied and the noture of the genomal factor it not knom st present.
C. Futuxs Dsvelomants.

Mumbnd's findinc of four more or lest general factors, leade the writer to stress the fact that the time is not yet ripe for fowing the oonolusion that learning mbilities ave mpecific rather than general. There are many sopecta of the problem that are etill in need of intenalve stuafy, sna which, if investigated thoroughly, mey show thet learning ability 18 mome general than $1 t$ would seen to be from this and previous date on the subject.

An extensive investigetion should be onrmied out on learning tafter alone, so that takes could be found which do not give such fluctuating ouxves as were obtained on the raze teste, for example. The tades should also be of suoh a nature that previous practice plays a mininum part in cetemining the subjocts' soores. In order to ind such testa much ingenuity will have to be used, and muoh patient experimentation is neoegsary.

Although the results obtainea by trying to devise tests requiring more facilltation leaming and others involving nore nohlevemont leaming, do not seen to have been particulariy fruitrul, yet this approach to the gtudy of loamings, may be usefully developed further in future investigations. An interesting methoa of atruaying learning aceoriling to the process required in the partioular leaming situation, may be to take two leaming taks which
swe virturily the same (auch at two nonsense-cyliable mazes, using afferent sylables in ocoh but othervise drewn up in exaotly the same nanner), and gee whe ther the resulte obteined from two buch teste oorrelate highly. If this proves to be so, then build up a afferent test by introducing an opportunity to educe relations and comelates, sey, and see whether the test continues to cormelate hifhly or whether, by the Introduction of an opportuntity to use a aterement proces in learninc the raterial. tho oorrelation becomes muoh zower. If such an introduction ati not moke a great deal of alsferenoe to the comelations between two mentel tasks, would it male a greater difforence in motor tasks? One could pewhap talie two very uinilar directional nazes (or perhapa the same maze leamed from diffemont ends) and see whether the reaults correlate highly. when change the maze ec that there sre exactly the same number of pascmece and of the same length, but amanged in a linear fashion, so that the oubject can no Ionger educe d.motetonal, snd fower matial, wolationthips. Would the resulte obtained on suoh a mase still comelate With thase pound for the original maze?

The main dificulty in such an invostigation would be the negative and positive transfor of training that would be Ikkely to occur. If gufilictent tine olapsed between the two teeting periods, thit: exfeot may be lessenea. Suoh a procedure nay also yiela asta useful for finaing the geltabllity of a Ioaming task. A maze leamt from both ends involves the same distence to be covered by the subjeot and the arme

Abstract

arount of motilal relation equetton, thew fome if all the extojeets' percomanneeg on the mone letumed perhep be regeried ae rolinble and the oompinttion coeffrcient thue obtainod may fer ued as the wolkabitity affremont in the wownad proeens, to that a Jow corvelation ocerfictent woula not prove wwollandlity. this vexed guestion of finding relinithity eoepplotents Is an important one an Intoz-tent oormiation oom orreciente cennot bo comeotod for aftenuation untona the relinbllity coofftoienter of the tont matorist are Tenown.

Onoc ouitable and metiable Leawing taglas had ben ferteed, the nort problen rould to to dovtee
 acoree obtasned on the teat materink. A for tontativo mergestions on this toplo have beon rade at tho one of Chapter VI. If the teot materlay. is auoh that a Inrge ritubur of triale oan be given, the eomot pointe of mastery teointque moy bo appiled to adrantage. Some inventigetion into moasuafing Ieaming ablity Dy rotentivity tisy prove fruttirt. Ac thie mil2 onompo that subjeots yase thwough a Ptnal comon point of mastery, moh an myentigetion may be outbinod with one etruating the oommon pointe of mnatoxy toohnalque. Apart tron the mose oomplitanfed pwobren of
 mongumont to the on tho Lonmang tartt - timo, number of exross, on atount cone in a cowtern tive? On theoretical grounte the presont invegtigetiore thowitt time mould be the nost oulteble meenure, abc Yet asces lept coureing whore it seomed as if time
hod not been a wise meature to choose, ss the per trial can vary so coneldermbly that for purposes of comparison it is hard to know how to deal with the
 xesults whtoh are not so extrome. If extrenes thow up here, they will be ones of effletenoy, not inefflefency; that is, a perton who hat ane a great deal in tho given perloa, will be one showing extreme sblutity on the task; while a person whe takes an extremely long time 18 ono who seems to laok suoh ability.

One of the thing which seruck the writer most forolbly in this investigation is the need for qualitative enolyats of data. Pooplo may continue to work out interompelations between various taske ad infinitum, but such investicntong will. give us nothing but correlation coefriotentr. It in time that experimenters triod to get evidence from the oubjecte themselve on some of the factore which 11e behind and cause the size of the commation oom efflctents obtained. Sone sttempt mas maco at getting gualitative infomation from the subjecta in this invectigation. A muoh more oomprehensive queetionnaire could be drewn up inoluding quentions abling the subjects phether they felt they hai leamt laste A more
 for this had been. A direct queation such 88 this would perbaps be very uecful, followod by quentions asking whether the subject had 14red tavk A better than tatik B, had been keener to do well on Tant A, etc. Agking questions in this comparative wey will probably be more useful than merely alking the subject whether she was zeen on doing well on a teet or not. A
abject may be enthusiastio on both Takk A and B, and yetmay be more hichly motsvated on A than B; this goes not show up in the diroct questioning method used in this Investigation.

By thas gethod further investigations could be camried out on the effect: of motivation and attitude towarde the test on intercomrelations. If a large onough grow could be tested and then - comelations be wosked out only using thote people Who wero actusliy equally motfyoted and 71 ked the tasta the same amount eto., periaps higher inter cormelations between lesmang bblyties woula be found.

Even if the intercoweletsons found by this procedur were not wery larec, one could at last be farrly nuxe thet the bate of the orrelatsons found in thic vay was due to the leaming ablilties of the aubjocts and mot to footors extroneous to the leaming process. One mould therefore be justifled In apolying foctorial onolygite to the data found by this procedure, and it memg desireble that factorlal analyali bhould be applied to intercormelationa botween loaming abilitites befome sny conclustons as to the generality ow peciflolty of leaming abiltty ean be dram.

In conolusion st may be streased that in soite of the low intercormelations found between leaning abllitiee (as messured by the variou inveatigatore) in this and previcus stuctes, the problem hog by no means yet been fully investiseted. Before any ooncluatona oan be drem an to the nature of leaming ability or leaming abilities, extensive worl

must ho done :

(1) on devising suitable leaming tade for an inveretigetron of this nature;
(1i) on methods of finding the reliability of a. learning task;
(iti) on methods of masuring loaming ability;
(iv) on the units of masumement to be used for measuring fraprovability on a tabk.
(v) on a qualitative analysia of data.
(vi) on factorial analysis of data which has been obtained in such a way that the resulte are aue to aifferences in learning abilities of the subjoots, not to fectorn extwaneous to the learning process.

2avil A．gate thativerace of thas thrmon the
 natho dithorgug．

licus of Tort．	Renco of 数品等 toy gopend 65sen．		Rango of tinen Tos blortoat野教．		Ranco of Mino Mifferoncoo．	
	Thenent	Iovert		Tovost	IT1． chent	3owoot
－taso A．	58.3	29.15	71.4	30.5	2420	2．1
2ocluyadilice	204.4	$46 \cdot 8$	48－7	23.2	$256 \cdot 7$	25－6
anbotit tution A	2306－7	$205+4$	33000	00.0	1346？	6－9
Honempllablos A	238． 3	70－2	$117 \cdot 2$	$35 \cdot 6$	230．6	24．3
7080 ${ }^{8}$	273－0	22.0	34.5	C． 15	2005－5	$0 \cdot 0$
Oapthonowtine	$76 \cdot 0$	$36 \cdot 2$	34－7	17．3	5－0	5.4
	209.3	\％ 7600	120．3	50.6	109－3	12．7
Hon． H2 $^{\text {geblee }}$ \％	$200 \cdot 7$	C3t 6	$53 \cdot 9$		34．3	$3 \cdot 3$

莐		
		號
		F
		䢸
		Pr
		¢！${ }^{\text {\％}}$

30. of	\% 3				$\frac{5 y^{2}}{1 \times 1000}$			
Suly	Hasie 3.	$\begin{gathered} \text { Sulb. } \\ 3.1 \end{gathered}$	Curle	Illon. 3.	$\begin{aligned} & \text { Haso } \\ & \mathrm{B}_{\mathrm{o}} \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \mathrm{~min} . \\ & 3 . \end{aligned}\right.$	Serts.	Hols. 3.
1	Ca	53	31	38	354	135	210	256
2	50	69	31	n	20%	95	105	200
3	20	35	23	6	08	97	233	208
4	35	23	20	3	16	56	237	24
5	9	10	23	37	84	4	123	00
6	17	6%	10	4	101.	179	300	56
7	30	05	24	30	183	356	148	\%
0	30	(25	3	57	17	103	133	275
9	9	30	20	55	103	e7	200	138
30	20	0	14	27	129	142	1.45	5
21	102	67	23	40	050	120	150	232
23	127	57	21	40	cos	08	156	225
13	19	15	31	50	20	$\%$	104	303
14	356	102	9 c	$\%$	372	140	350	126
15	0	19	16	38	-	5	155	
16	23	3	12	33	506	46	100	\%
37	140	[2)	13	4	50	127	75	127
38	26	\approx	10	47	309	34	7	250
19	10	65	15	69	25	107	98	201
20	10	36	20	35	38	cs	148	135
28	74	ER	12	75	3\%	87	7	200
2	27	3	30	68	203	\%	176	2es
33	42	3	15	40	108	103	150	153
23	32	32	10	84	183	64	195	123
25	50	69	30	73	303	308	$\%$	175
36	20	12	6	5	14	25	45	253
7	33	10	12	55	23.	4	93	301
${ }^{28}$	216	30	30	58	003	34	T	220
29	5	30	8	02	35	121	46	376
30	66	42	12	55	35	\%	95	232
33	55	45	13	33	305	231	205	78
33	353	33	14	35	412	7	163	104
${ }^{38}$	25	38	16	35	13	125	200	\%
34	63	38	13	10	123	30	88	107

	$\begin{array}{ll}\text { 等 } & 5 \\ \frac{8}{8} & 8 \\ 8 & 8\end{array}$
	, 3_{3}
	है
	${ }^{4}$
	\% $\begin{aligned} & \text { ¢ } \\ & 8\end{aligned}$

2ayil. Hidikavina

APPEMDIX TI.

Found by Sethod outiinod by Molsinger
"Statistical Hethode for stuxents in
Jueation ${ }^{\text {S }}$ ((Oimn A Gomynny) pare 152.
for calculating a comelation coetictent for
a aistribution table, the following forman is usel :

The oonplete caloulation with this fowula 1 s Illustreted In 縕ble D. Appendix I for the data obtained from Woneenee syluablen (B) and substitublon (B)

$$
\begin{aligned}
& b^{-}=\sum_{x x_{x}}-\frac{\left(\sum_{x} d_{x}\right)^{2}}{1}=210-\frac{(10)(10)}{70}=187.1 \\
& \text { c }=\sum^{1} \mathrm{y}_{\mathrm{y}}{ }^{2}-\frac{\left(\mathcal{E}_{\text {fyay }}\right)^{2}=275-(3)(3)}{70}=274.8
\end{aligned}
$$

Dy four-place logarithme,

The computation down to the valuem $\sum_{x} a_{x}{ }^{2}$ and $\sum_{f_{y} a_{y}}{ }^{2}$ is the some as for the standart deviation, so that the values Por b and o may be readily obtained.

The calmintion for a pesents a litta nore difficulty. The quantity Exy dxay is the result of multiplying each oell freçuency by 1 te dx and dy and then aading all the proaucts so fomaed.

A more convenient method of calculation, however, is to mitiply the oell frequencies in a partloular colum by the appropriato dy values, add the results found, and multiply thin mun by the a_{x} value of the colmm. Continuing in thia way for all the column and sdaing the produets thus found gives the required ε fry dxay.

The aymbol ε has bean used to indteate sumation over the whole table, $1 . e$. over 簛 iters. In order to distinguish gunnation over the colums, this has been dealgnated in the table by \mathcal{E}^{\prime}. Thut, $\varepsilon^{\prime} f x y$ dy menns the sum for one colvm of fxy multiglied by the eorrerponding values dy.

A ueotul cheot on the computation of a is shom by the double arpow in 解ble D. The sum of the
 $\varepsilon\left(\varepsilon^{\prime} \mathrm{fxya}_{y}\right)=\varepsilon_{\varepsilon_{y}} a_{y}$.

The oorrection $\frac{\left(\text { Eraxx }^{2}\right)\left(\Sigma y^{4} y\right)}{H}$ appliod to Efrydyy vill sometimet be positive and sonetimea negative, and it ghould be remerbered that it in to be subtrnoted algebraically.

When appreolably fewar subjecta than fifty were being used in calculating the correlation coefriokentss Pearaon's product-moment coerfioient of eompelation wat uaed, as outlined on page 10 in "Row to oaloulat6 Correlations" (0.1. Thonson. 55).

 Confrucrems. (Shepherd Dawson "An introduction to the computation of 耛atistics" pg. 138.)

To ebtinnte the algnificanes of a difference between two comelation coeritutents, find the probable ergor of this afferenoe and find wht multiple the difference in of 1 te prohable erros. a.f. Sea whether difference is atcmificant between correlations found betweon maze and substitution test ($\cdot 25$) using 70 subjects and between maze and subntitution uning 40 subjeetes, who differed by one or less on thetr likes and dislike of the teat (.50).
$r_{1}=.25$ whth as. ${ }^{2}$ of .0月.
$r_{2}=.50$ * p_{0} of .00.
P. $\frac{\text { alf. of }}{} r_{1}$ and $r_{2}=\sqrt{P \cdot x_{n} y^{2}+P \cdot x_{2}^{2}}$

$$
=\sqrt{.08^{2}+.00^{2}}
$$

$$
=\sqrt{.0128}
$$

$$
=.1132
$$

$$
\frac{x_{1}-r_{2}}{P_{1} \cdot r_{2}-r_{2}}=\frac{.50-.25}{.113}=\frac{.25}{.11}=2.27
$$

So soach the 5 per eont level of aignificance $\frac{x}{2}$ must be 3, hence these coeflictents are not signiryeantly aifferent.

 (The correction for attenuation is not necessary - if Spearman's criterion is passed by the correlatione when they are corpected for attonuation, then it must also be jased whon they are not so. (Bpeaman 53. pg. vi Appendix).

To see whether there is a "g" and "e" factors in a battery of tests Te calculate all the tetrad differences for the correlations we have.

Haze B. Sub. B. Gaxtg. Mon. S. B.
Maze B. - . 25 .05 .02
Sub.3. $25 \quad-\quad .20 \quad .34$
Cards .05 . 18 - . 13

Non.s.3. .02 .34 . 13 -
Four teste give 6 interoorrelstions, and 6 inter correlations give 3 tetrad difforence.

.05	.18	.25	.18	.34	.25
.02	.34	.08	.13	.13	.05

Totrad diff.-0134 Fetradatf. .0290 Totradatif.0055

Taking all the tetind aiferences as positive, Fe compare that median with the theoreticel probeble error, (calculated f rom fomula I6A Spearman 53. pg.xi Appendix)
$P_{*} E_{*}=\frac{1-340}{W^{\frac{1}{2}}}\left[r^{2}(1-x)^{2}+(1-N) E^{2}\right]^{\frac{1}{2}}$
Where $n=3$ r $\frac{n-4}{n-2}-2 r^{2} \frac{n-6}{n-2}$
Where $F=$ mean of all the correlations concerned.

$n=$ number of difiterent test used to obtain the correlations.
$8=$ Standard deviation of correlation ooeffereients from 5 .

In this example

$$
\begin{aligned}
& R=(3)(.16)(4-4)-(2)(.0256)(4-6) \\
&(4-2) \\
&=0-.0512\left(\frac{-2}{4-2}\right) \\
&=0.0512
\end{aligned}
$$

$p \cdot 0 \cdot=\frac{1 \cdot 349}{\sqrt{10}}\left[\cdot 0250(1-\cdot 16)^{2}+(1-0512)(\cdot 0122)\right]^{\frac{1}{2}}$
$=\frac{1.349}{\sqrt{7}}[(\cdot 0256)(\cdot 7056)+(.9480)(\cdot 0122)] \frac{\frac{1}{2}}{2}$
$=\frac{1 \cdot 349}{\sqrt{70}}[\cdot 0181+\cdot 0106]^{\frac{1}{2}}$
$=1.349(-0287)^{\frac{3}{2}}$
$\sqrt{70}$
$=.02732 \longrightarrow$
The modian of the totrad aifferencen is
.0255, whioh is therefore Iness than the theoretioal P.E, and therefore antisties Speaman's ortterion.

Taking the following 4 sorrelation cosffolonts aub.B.(1) Gaxts (2)

Haze B. (3)
Mon. 3. $5 .(4)$
.25
.34
.05
.13

The tetrad difference is -025s.
The probable error of this dificeronce is workod out by the foxmia 18 (53. p/s. 2t . Appendix), which 1 s p. 0. $=\frac{1 \cdot 349}{x^{1}}\left[x^{2}\left(1-512-x_{3}+x^{2}\right)+\left(1-2 x^{2}\right) e^{2}\right]^{\frac{2}{2}}$

When z mean of all oorrelatione conoerned.
N $=$ number or subgects tested.
s = gtandard deviation of correlation coatifew
1,ents frem r .
$\mathrm{H}_{2}=$ comelation coeprial ent betweon tepte 1 , 2 found from another part of the Sable.

In this example
p.e. $=\frac{1.348}{\sqrt{70}}[.0361(2-.18-.024-0361)+(1-.0722)(.0123)]^{\frac{1}{2}}$
$=\frac{1.349}{\sqrt{70}}[.0302+.0114]^{\frac{3}{2}}$
$=1.349(04.16)^{\frac{1}{2}}$ $\sqrt{70}$
=.03299
Therefore fetrad dipference of -0255 in less than five times itg P.. , and Speaman's orftem on holds.

(References which are marked with an asteridic, are onas which ware not obtainablo, but which heve a bearing on the aublect, and have been refarred to by other nuthors.)

F
 menory .
 pordnentel and Bocial peycholory". (Cembw上áce Intv. Prees.)

 zroeens - (A roply to Prof. ©abon)"

3
 p. A8cmace. alearning in the case of thepe diegtmilas functions".
 "The Sesmah for Bertantuty".
6. Caw , H. A. Fgydi.Rev.1030. 45. 1.435. The Rellability ve. the valicity

7. Garr, 基. A. and Fsyoh. Rev. 1933. 45. p.354-376

S. Geson, H. Diyyh. Rev. 1937. 44. p.54-6al "The concopta of leaming and nemory".
9. Casony H. Psyah. Rev.1939. 45. p.101-10 DP. kalloge on the derinitton of Inming."
10. Gason; F. $^{\text {. }}$
21. ©hayman, t.0.

Faych. Rev. $1039.45 . p .441-443$ Dr.inritt on the concopts as Ieamine, petontsion and

"Inctvidum atrierences in ability and $5 m p r o v e m e n t$ and their cor-
 ©ollege, 1914.

12. Chappell, \%.N.	Peyoh.Rev.1910. 47. p.90-94. The inadequacy of the KellougBritt Definition of Leaming .
13. Dathielı, J. ${ }^{\text {a }}$	Peyoh. Rev. 1940. 47. p. 250-306. "A Heglected Fourth Dinension to Rsyohological Research".
14. Dawson, 3.	"An introduetion to the oonm putation of statieties" (university of Lonaton press 1933) p.129-139.
15. Dunoker, X and Krechevaky, I.	Faych. Rev.1939. 46. p.176-185. "On solution-Aehs.gvenent".
16. Van Dusen, A.c.	Jr.or Bep.payoh.1941. 29. p.225-236. "Woxt Methode and Leamang ${ }^{9}$.
17. Gamptt, H.	Jw. Duc. Pgyohoi.1928. 19. p.601-613. "hine relation of testa of memory and learning to each other and to genaral intelligence in a highly seleoted adult group".
28. (\%ates, 0.5.	Arch. Faychol.1922. 58. p.74. "Individual elfferences as affected by prettoen.
19. Glases J.A.	Jx.0enat. Pryohol.1328. 35. p.225-269. "The Ansoclative Value of Nongente syllablen".
20. Cuilfort, J.P.	"Payohomatrie Methods" (MeGme H211 sook Company.)
21. cuilfor, J.P.	PBych, Rev. 1940. 47.p.367-393. "luman Abilities."
22. Gunlach, R.	J., FIue. Psychol.1926. 17. p.387401. "The Iffeots of Practioe on the interoorvelations of three mental test B^{4}.
23. Hall, C.5.	Paych.lev.1936. 43. p.179-196. "Intereorelations of Yeasures of liman Leaming*.
24. Hzught, B.F.	Peychol. llonog.1921. 30.No.139, 7. "The intereorrelation of some highor lensing procesges."

37. Kelloge, W.N.	Paych.Rev. 1940.47. p.95-97. "The Superiluity of the Chappell Critique - A Reply".
38. Koffkr, K.	"Growth of IKind". Chap, IV and V. (Kegan Paul.1924).
39. Krechevsky, I.	Paych.Rev.1932. 39. p. 516-532. "Hypotheses in Rats".
40. Leeper, R.	Jr. Genet. Fsyzch.1935. 46.p.3-40. "The role of motivation in learning: a study in the phenomenon of differential motivational control of the utilization of habits".
42. Lynch, J.M.	Peych. Rev.1939. 46.p.485-438. "A note on Kellogg's Ireatment or Skillan.
42. McDougall, W.	"Snergies of Men". (Methuen) Chap. XXIIII.
43. Maier, N.R.F.	Psych.Rev.1939. 46. p.241-251. \#The Specific Processes Constituting the Learning Function"
44. Maier, N.R.F.	Psych.Rev.1940. 47. p.43-58. "The Behaviour Mechanisms Concerned with Problem Solving ${ }^{1}$.
45. Muenzinger, K.F.	Psych.Rev.1931. 38.p.347-358. HThe Frimary Factors in Learning".
46. Pyle, W.H.	Jr. Fduc.Psychol.1919. 10. p.121-128. "Is individual learning capsoity constant for different types of material?"
47. Pyle, W.H.	"A Laboratory Manual in the Psychology of Learning". (Warwlok \& York.Inc.1923)
48. Rrce, H.V.	"Improvability; its intercorrelations and its relations to initial ability." New York: Teachers College, 1922.
49. Ross,0.0.	psych.Rev.1936. 43. p.197-205. "A Needed Fmphasis in Psychol- ogical Research".

50. Ruoh, F.L.	Psych.Rev.1936. 43. p.229-234. "The liethod of Gomen points of liastery as a peohrique in Humsn Learmsing Experineqtition".
51. Seashore, R,H.	Payeh, Rev. 1939. 46. p.123-140. "Worle lethods: An of ton nagleeted fiator underlying incividum esprerences"
52. Spearman, G.	${ }^{4}$ The Hature of Intelligence, and the Principles of Cognttion ${ }^{\text {a }}$ (Iccallian) Chap. IX.
53. Spearman, c.	*The Abilstien of Man: Thes.s Witure and ileasurement". (Inomillan)
54. Thomas, T.C.	"Abllity and Knowledge". (Itaem11Ian)
55. Thomson, O.H.	"How to caloulate correlations" (George C. Herrap a Co.lta.)
56. Thomson, G.ll.	"The Factorial Analyale of Fiuman Abllity (Univeralty of London prexs.)
57. Thomatke, E.L.	Aner.Jr. Fsycho1.1916. 27. p,550-565. "Notes on praotioe, inprovablility, and the ourve of wowk .
59. Thornalke, zoL.	"Adult Lesaming". Pub, Hey 1928 (Kacmillan)
59. Thornatke, E.L.	"Fuarn Learning" (The Century Co.New York: Lonaion 1931)
60. Whipple, 4.1s.	*Tanual of Mental and Physicel Tests. (Farviok and Yoris) p.305-329 (Cancellation) p.490-525 (Bubstitution)
62. Toodvorth3, 3.5 .	"Experimental Payohology" (Methuen) Mr. 160.

