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ABSTRACT 

The demand for water is rapidly growing, placing more strain on access to the 

resources and subsequently its management. For sustainable management, there is a 

need to accurately quantify the available water resources. Unfortunately, the data 

required for such assessments are frequently far from sufficient in terms of 

availability and quality, especially in southern Africa. In the absence of historical 

observed data, models are generally used to describe the different hydrological 

processes and generate data and information that will inform management and 

policy decision making. Ideally, any hydrological model should be based on a sound 

conceptual understanding of the processes in the basin and be backed by 

quantitative information for the parameterization of the model. Such data is 

however, often inadequate in many sub-basins necessitating the incorporation of the 

uncertainty related to the estimation process. Model parameter estimation and input 

data are significant sources of uncertainty that should be quantified. Also, in 

southern Africa water use data are unreliable because available databases consist of 

licensed information and actual use is generally unknown. In this study, the water 

resources of two sub-basins of the Limpopo River basin – the Mogalakwena in South 

Africa and the Shashe shared between Botswana and Zimbabwe – are estimated. The 

study assessed how uncertainties in the Pitman model parameterisation and input 

water use data affect the estimation of surface water resources of the selected sub-

basins. Farm reservoirs and irrigated areas data from various sources were collected 

and used to run the Pitman model. Results indicate that the total model output 

uncertainty is higher for the Shashe sub-basin which is more data scarce than the 

Mogalakwena sub-basin. The study illustrates the importance of including 

uncertainty in the water resources assessment process to provide baseline data for 

decision making in resource management and planning. The study reviews existing 

information sources associated with the quantification of water balance components 

and gives an update of water resources of the sub-basin. The flows generated by the 

model at the outlet of the basin were between 22.6 Mm3 and 24.7 Mm3 per month 
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when incorporating uncertainty to the main physical runoff generating parameters. 

The total predictive uncertainty of the model increased to between 22.2 Mm3 and 

25.0 Mm3 when anthropogenic water use data such as small farm and large 

reservoirs and irrigation were included. The flows generated for Shashe was between 

11.7 Mm3 and 14.5 Mm3 per month when incorporating uncertainty to the main 

physical runoff generating parameters. The predictive uncertainty of the model 

changed to 11.7 Mm3 and 17.7 Mm3 after the water use uncertainty was added. 

However, it is expected that the uncertainty could be reduced by using higher 

resolution remote sensing imagery. 

 

KEYWORDS: Data availability, Farm reservoir, Hydrological modelling, Irrigated 

areas, Mogalakwena sub-basin, Pitman model, Shashe sub-basin 
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CHAPTER 1 
Introduction and study overview 

1 Introduction and project overview 

1.1 BACKGROUND 

The continued socio-economic development of riparian countries of the Limpopo 

River basin increase pressure on water resources. The management of water 

resources is therefore critical to avoid conflict and ensure equity and accessibility for 

both urban and rural populations of the large basin. There are also various other 

competing water users such as the environment (environmental water requirements), 

livestock, irrigation, and mining operations. There are several challenges within the 

Limpopo River basin, including shortages of water caused by droughts (Gebre and 

Getahun, 2016), flooding that occur especially in the Mozambique part of the basin 

(Maposa et al., 2014; Manhique et al., 2015) and deteriorating water quality e.g. in 

the Oliphant’s sub-basin in South Africa (Thiam et al., 2015; Thomas, 2015). Climate 

change is an additional threat to water security within the River Basin (Conway et al., 

2015; Nkhonjera, 2017). An identification of key hydrological processes, water use 

and a better understanding of their linkages; will improve water resources estimation, 

a requisite for better resource management, and help solve these problems. 

However, in the absence of historical observed data (large parts of the basin are 

virtually ungauged) of the different hydrological aspects of the basin such as 

streamflow, hydrological models are used to generate data that will inform 

management and ultimately policies. 

Hydrological modelling should be based on sound conceptual understanding of the 

processes operating in the basin and should be backed by quantitative information 

that can be used for the parameterisation of the model (Hughes et al., 2006; Hughes 

et al., 2010). However, these data are often inadequate in most sub-basins, 
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necessitating the quantification of the uncertainty related to the estimation process. 

Given the diversity of data availability and quality between and across the four 

riparian countries, a framework that incorporates estimates of uncertainty must be 

applied to deal with this challenge. The Pitman model which has been widely used 

for water resources assessment in the southern Africa region since its initial 

development in the early 1970s (Wilk and Hughes, 2002) will be set up to quantify 

water resources of the transboundary Limpopo River basin. The model was used for 

three studies that looked at the main stem of the basin (Matji and Görgens, 2001, 

LIMCOM 2013) and this study would contribute towards the updating of the 

hydrology and water resources of the Limpopo basin, including estimates of the 

uncertainty related to the modelling process. 

1.2 PROBLEM STATEMENT 

Water resources estimation is the prerequisite for proper planning, development, 

distribution and optimum use. If water resources availability of a particular area is not 

quantified or at least estimated, its proper management thereof cannot be achieved. 

Currently, large gaps exist on the understanding of the processes affecting water 

availability and management. The lack of access to observations and models that 

allow water resource managers to monitor and eventually predict key hydrological 

variables affecting the countries sharing the Limpopo River basin has led to 

constraints in the estimations of the water resources of the basin. Although these 

constraints are evident in the entire basin, this study will focus on two sub-basins. 

The two sub-basins were chosen because they are: physically and socio-economically 

contrasting; located in different countries and subject to different data quality and 

accessibility. It is thus important to quantify the water resources uncertainties on 

Mogalakwena and Shashe to gain some perspective on how the availability and 

accessibility of data from various countries impact the resultant water resources 

estimations. 
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1.3 STUDY AIM AND OBJECTIVES 

1.3.1 Study aim 

The aim of this study is to provide improved estimates of the water resources of the 

Limpopo River basin that can be used as a basis for planning and management of 

the basin both for the present and future. 

1.3.2 Study objectives 

To address the above aim, the following objectives have been identified: 

 Estimate water resources using historical data 

 Estimate the uncertainty related to water use data 

 Quantify the uncertainties related to water resources estimation based on 

available water use data. 

1.4 STRUCTURE OF THE THESIS 

The dissertation is presented in seven chapters as summarised below: 

 Justification for the study is discussed in Chapter 1 including the aim and 

objectives. 

 Chapter 2 reviews input data needed to assess water resources of selectec 

basins. It further discusses hydrological models in general and the Pitman 

model in particular. 

 The third chapter describes the Mogalakwena and Shashe sub-basins and 

highlights their differences. 

 The methods, data collection process and a description of the model set up 

are presented in Chapter 4. The model runs consist of (i) water estimations 

based on current climate data; and (ii) water quantity estimations based on 

current climate and water use data. 

 A detailed discussion on the Pitman model is the focus of Chapter 5. 
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 In Chapter 6 the results are displayed and discussed in detail with the main 

focus on comparing the uncertainty results of the two sub-basins.  

Chapter 7 summarises the findings of the study and formulates recommendations 

for further work. 
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CHAPTER 2 
Review of Literature 

2 Review of Literature 

2.1 RAINFALL-RUNOFF MODELLING 

2.1.1 Classification of hydrological models 

Hydrological models are a mathematical representation of the processes involved in 

the transformation of climate inputs, such as precipitation, solar radiation and wind, 

through surface and sub-surface transfers of water and energy into hydrological 

outputs Hughes (2004). They are a simplified representation of the real world 

required to represent complex natural systems. However, many processes and 

interactions that occur in nature are lost when modelled (Davie, 2008). Rainfall-runoff 

models are classified based on their structure according to Clark (1973): 

 Empirical models (black box) which represents the relationships of input-

output observed data rather than physical principles and include antecedent 

precipitation (API) models, regression  models, time series models, artificial 

neural network (ANN) models, fuzzy logic models, and frequency analysis 

models (Xu et al., 2017). 

 Conceptual models (grey box) which include some understanding of 

hydrological processes in the model formulation and mimic the results of 

detailed hydrodynamic models. In conceptual modelling, mathematical 

relationships are used to explicitly represent the elements. The basin is 

perceived as consisting of several moisture storages through which rainfall 

inputs are routed by a process of moisture accounting which eventually 

produce a streamflow output (Beven, 2001a). These models are very well 
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suited for applications that require long term simulations or a large number of 

model iterations (Meert et al., 2016).  

 Physically-based models (white box) which are based on physical laws such as 

the laws of thermodynamics, conservation of mass, momentum and energy 

(Beven, 2002). 

Most rainfall-runoff models are used for research purposes, to deepen our 

understanding of hydrological processes that govern a real world system 

(Moradkhani and Sorooshian, 2008). 

2.1.2 Model development 

The history of rainfall-runoff models started in the 1880’s and models have evolved 

over the last few decades from simple empirical, through conceptual, to complex 

physically-based models (Dooge, 1959; Binley et al., 1991) and back to simpler or 

parsimonious models (Perrin et al., 2003). This was largely due to the search for 

appropriate modelling tools that can be used to develop models with a level of 

complexity that reflects the actual need for modelling results (Jakeman and 

Hornberger, 1993). Hydrological processes can only be understood if the model is 

able to describe them and a good fit of a model to observe data may be obtained by 

parameterisation of the different processes involved (Beven, 1989). The use of 

appropriate parameters that reflect the fundamental governing mechanisms involved 

in the basin is therefore important for the model to achieve reliable predictions 

(Perrin et al., 2003; Lazzarotto et al., 2006). The main problems seems to be related to 

model complexity relative to data availability, choice of objective functions and the 

associated difficulties in identifying the chosen model structure and estimating its 

parameters (Yew Gan, et al., 1997). Today, these issues still constitute the largest 

obstacle to the successful application of water resources estimation models for both 

gauged and ungauged basins (Sawunyama, 2008). This has led to the introduction of 

new modelling approaches and initiatives including fuzzy modelling techniques 
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(Kundzewicz, 1995), top-down uncertainty estimation in rainfall-runoff modelling 

(Beven, 2001a) and the Prediction in Ungauged Basins (PUB) initiative (Sivapalan et 

al., 2003). The new approaches and initiatives are being introduced in recognition of 

the difficulties and limitations to the successful application of the current 

hydrological models to aid in decision making. 

2.1.3 Model application 

The International Association of Hydrological Sciences PUB decade led to 

improvements in both the science of hydrological modelling and the tools and 

approaches needed for model applications in ungauged basins (Blöschl et al., 2013; 

Hrachowitz et al., 2013). Despite these achievements, the usefulness of a model’s 

ability to address water resources management problems under changing conditions, 

including land use, climate, and spatial variabilities, are still challenging (Montanari et 

al., 2013; Hughes, 2010; Hughes, 2013). Various rainfall-runoff models are available to 

compensate for the need to adequately model water resources. The Pitman, 

Agricultural Catchment Research Unit (ACRU) and the Soil and Water Assessment 

Tool (SWOT) hydrological models are some of the models that are widely used in 

southern Africa. Pitman is a conceptual, semi-distributed monthly time-step model 

whereas the ACRU model is a conceptual, physically-based daily time-step agro-

hydrological modelling system that has frequently provided information that is 

valuable for water managers (Sawunyama, 2008). These models vary in terms of the 

time-step, data requirements, the number of parameters, and at times the purpose 

that they serve (Sawunyama, 2008). SWAT is an agro-hydrological model designed to 

simulate the potential impacts of alterations on water fluxes and crop yields and it 

has been successfully applied in a wide range of scales and environmental conditions 

(Andersson et al., 2012).The selection of rainfall-runoff models depends on how 

processes are represented, the time and space scale that are used, and what 

methods of solution to equations are used (Singh, 1995). The most common rainfall-

runoff models are data driven. The representation of spatial variabilities in models is 
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achieved by using fully distributed models, which describe each hydrological 

response through parameters related to physical basin properties (Tumbo, 2014). 

These models tend to better simulate the hydrology off small watersheds. The 

difficulties in obtaining good quality data for large basins make these models more 

conceptual. Even so, data availability and quality for small watersheds can lead to 

model bias when the data does not provide an adequate representation of the 

physical system from the outset which may affect model predictability (Haerter et al., 

2010; Tshimanga, 2012; McMillan et al., 2013). In contrast to conceptual models, 

where observed data is used for parameter estimation, the parameters of fully 

physically-based models are expected to be directly measurable from basin physical 

characteristics. Lumped models treat the catchment as a single homogenous unit 

(catchment or sub-basin level). In this modelling approach, the modeller tries to 

relate the forcing data, mainly precipitation inputs, to system outputs without any 

consideration for the spatial processes, patterns, and organisation of the 

characteristics that govern the processes (Moradkhani and Sorooshian, 2008). 

However, according to Beven (2000), lumped models cannot be used for the analysis 

of event scale processes unless the focus is on discharge prediction only. Also, 

lumped models are inadequate for calibration in ungauged basins, due to the spatial 

variability of landscapes, mainly because the parameters used in lumped models are 

averaged and cannot be compared to field measurements (Beven, 2001b; Sivapalan 

et al., 2003; Tshimanga, 2012; Wang et al., 2012). Alternatively, the use of distributed 

models is an attempt to take into account the spatial variation of hydrological 

responses within a watershed, which is treated as a discrete unit (Abbott et al., 1986; 

Abbott and Refsgaard, 1996; Beven, 2001b).
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2.2 CALIBRATION AND VALIDATION OF RAINFALL-RUNOFF MODELS 

2.2.1 Model calibration approaches 

Manual and automatic calibration approaches are used to calibrate rainfall-runoff 

models (Sawunyama, 2008). Manual calibration requires an experienced user to 

adjust parameters interactively in successive model runs to improve results. The 

quality of the model fit to observed time series, human judgements, and one of more 

objective functions (e.g. the Nash-Sutcliffe Efficiency) is used during manual 

calibration (Nash and Sutcliffe, 1970). 

A computer algorithm is used during the automatic procedures to search the 

parameter space by performing multiple runs of the model for example the Shuffled 

Complex Evolution method (Duan et al., 1992; Vrugt et al., 2003). Ideally, this 

calibration approach should be able to define an optimum parameter set which 

normally cannot be achieved with manual calibration. Both the manual and 

automatic model calibration approach have advantages and disadvantages (Table 

2.1). 

Table 2.1. Advantages and disadvantages of model calibration approaches (Moradkhani 

and Sorooshian, 2008). 

Calibration approach Advantage Disadvantage 

Manual 

Parameter values can be 

selected so that they are 

hydrologically meaningful 

Inherent subjectivity, 

Derived parameters are biased with 

no clear point at which the calibration 

process is said to be complete 

Automatic 

Computer does most of the 

work  

Numerical exercise that produce 

parameters that may lack meaning 

The procedure is objective  
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2.2.2 Model validation approaches 

Hydrological model validation is the process where the calibrated model is run with 

an independent set of data or an independent period of the same data record, after 

the calibrated parameter values are generalised and assessed to find whether or not 

they are suitable (Kapangazwiri, 2008). The model is said to be validated when there 

is an acceptable fit between the simulated and the observed streamflow 

(Sawunyama, 2008). 

2.3 HYDROLOGICAL SIMULATIONS IN UNGAUGED BASINS 

2.3.1 Uncertainty in hydrological modelling 

Understanding, quantifying as well as reducing uncertainty are the three critical 

aspects to be considered in order to adequately address uncertainty in hydrologic 

modelling and prediction (Liu and Gupta, 2007). Uncertainty in hydrological 

modelling may arise from several sources, whether it is from only one source at a 

time or a combination of them all, they include: model structure, parameters, initial 

conditions as well as the input data used to drive and evaluate the model (Liu and 

Gupta, 2007). However, it is often difficult to separate model structure uncertainty 

from parameter value uncertainty because the parameters are not independent of 

the model structure (Beven and Binley, 1992). 

The use of extremely approximated information, future projections (specifically 

climate projections), lack of good observed data, a lack of a good understanding for 

reducing uncertainties as well as large basins with many sub-catchments are all 

causes of water resource assessments uncertainties (Kapangaziwiri, 2010). A major 

cause of uncertainty noticed in the available data is the uncertainty associated with 

scale. Raster format data (usually collected by satellites) have different resolutions 

and the data is usually shown at a global scale. Global scale data is usually shown at 

low resolution, therefore data quality is lost if the user decides to focus on a small 

area on that map. The user should therefore ensure that the data with the highest 
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resolution are used. Another reason for data uncertainty is the exclusion of some 

data layers during the initial creation of a specific data layer. However, this form of 

uncertainty is usually difficult to avoid due to the lack of data as well as the 

complexity of creating one data layer from various other data sources. Good quality 

observation data, or even just observed data in general, can be difficult to obtain. 

Missing data and gaps within data were also sources of uncertainty, but most of this 

data can be fixed through data processing, such as patching. 

2.3.2 A typology of uncertainty in hydrological modelling 

Uncertainties in hydrological modelling are a result of the natural complexity and 

variability of hydrological systems as well as a lack of knowledge of the hydrological 

processes (Kundzewicz, 1995). Uncertainty differs from error because; the latter 

represents a specific departure from “reality” (Beven, 2000). 

2.3.2.1 Definitions of uncertainty 

Various definitions of uncertainty have been proposed (Moellering, 1988; Taylor and 

Kuyatt; 1993; Goodchild, 1994; Klir and Wierman, 1999; Mowrer and Congalton, 

2000). However there has been little consensus on a universally accepted definition. 

Mowrer and Congalton (2000) defined spatial uncertainty as “the estimation of errors 

in the final output that result from the propagation of external (initial values) 

uncertainty and internal (model) uncertainty.” Zimmermann (2000) suggested 

“uncertainty is a phenomenon, a feature of real world systems, a state of mind or a 

label for a situation in which a human being wants to make statements about 

phenomena.” Another question is “whether uncertainty is an objective fact or just a 

subjective impression which is closely related to individual persons?” Sayers et al. 

(2002) defines uncertainty as a general concept that reflects our lack of sureness or 

knowledge about outcomes which may be important in decision making. This study 

will use the definition by Sayers et al. (2002) which is arguably less complex.  
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2.3.2.2 Types of uncertainties 

Plate and Duckstein (1987) classified uncertainties into data uncertainties (e.g. 

measurement errors), sampling uncertainties (e.g. sample size errors), parameter 

uncertainties or model structural uncertainty (empirical equations and scaling laws), 

while Bernier (1987) distinguished between natural uncertainty, technological 

uncertainty, sampling errors and model structure uncertainty. Melching (1995) 

distinguished between uncertainties related to: (1) natural variability of climate and 

hydrological data; (2) errors in input data including precipitation, evapotranspiration 

and temperature; (3) errors in data that was used for model calibration and 

validation; (4) use of inappropriate model parameters; and (5) making use of an 

incomplete or imperfect model structure. The source of uncertainties for (1), (2) and 

(3) is dependent on the quality of the data source and are independent of the model, 

whereas (4) and (5) are more model dependent (Sawunyama, 2008). All those sources 

of uncertainties influence the disagreement between the observed and simulated 

outputs in hydrological modelling. Another typology of uncertainty proposed by the 

Environmental Agency (as cited by Sawunyama, 2008) is shown in Table 2.2. 

. 
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Table 2.2. A simple typology of uncertainty (Sawunyama, 2008). 

Type of uncertainty Sources of uncertainty 

Real world environmental uncertainty 

 Randomness observed in nature 

 Inherent variation in natural hydrological response 

systems 

Knowledge uncertainty  

(this is a reducible form 

of uncertainty and is 

associated with 

ignorance or incomplete 

information) 

Model input data 

uncertainty 

Climate data and hydrological data 

 Missing/inaccurate records 

 Non-representative spatial and/or temporal data 

 Inappropriate spatial/temporal resolution 

 Data processing 

Model structural 

uncertainty 

Conceptual framework 

 Spatial and temporal averaging of a model 

 Ambiguous boundary conditions 

 Wrong process presentation 

Parameter 

uncertainty 

Lumping of parameters and scale issues 

 Parameter estimation process 

 Choice of objective functions 

 Use of inappropriate parameters 

 Parameter sensitivity and interactions 

 

A discussion of the main sources of uncertainty is presented in the next sections. 

2.3.3 Input data uncertainty 

Data sparse regions such as southern Africa have high levels of uncertainties 

associated with the main climate inputs to hydrological models (Görgens, 1983; 

Hughes, 1995; Sawunyama and Hughes, 2008). Unfortunately this is unavoidable to a 

large extent because of the low gauging densities and the rainfall gradients 

associated with the steep topography of mountainous areas (Hughes and Mantel, 

2010). Data scarcity as well as a decline in hydro-meteorological networks causes 

high uncertainty in regional hydrological predictions. This may also lead to the 

introduction of errors when interpolation methods are applied across space and time 

based only on data from a few available observation stations or periods (Jung et al., 

2012). Input data used to force (rainfall and evaporation) and calibrate (discharge) 

hydrological models are associated with errors due to measurement and estimation 

errors. 
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 Precipitation data - The spatial and temporal variability in rainfall contribute to 

uncertainty in precipitation data (Pechlivanidis et al., 2011). Generally, 

precipitation uncertainty is regarded as the dominant source of uncertainty in 

rainfall-runoff modelling (Gupta et al., 2005). 

 Evaporation input data - Potential evaporation is calculated from variables 

such as temperature, wind speed, relative humidity and radiation. In turn, 

uncertainties in the evaporation data arise from the data used in the 

calculations as well as the methods used for the calculation (Sawunyama, 

2008). However, uncertainties in precipitation are considered to be more 

serious than uncertainties in evaporation, in most of the applications used 

today (Gupta et al., 2005). 

 Discharge data - Even though discharge values are not direct measurement, 

but instead estimates of the real and unknown discharge values, their 

uncertainty in practical applications are rarely presented (Herschy, 2002). 

2.3.4 Model structural uncertainty 

Models are inevitably imperfect approximations of complex natural systems since 

they are a simplification of the real world (Liu and Gupta, 2007). Given that rainfall-

runoff models are simplified representations of the real world, the choice of model 

assumptions for process descriptions are often a key aspect in the model structure 

(Beven, 1989). The assumptions may exist in the conceptualisation and mathematical 

formulations of the model structures as well as the computer coding. 

Conceptualisation without appropriate approximations and omissions can result in 

large errors in the conceptual structure of a numerical model. These errors are 

usually also poorly understood. Structure errors are also caused by the mathematical 

implementation, such as spatial and temporal discretisation, that transforms a 

conceptual model into a numerical model (Neuman, 2003). 
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2.3.5 Parameter uncertainty 

Model parameters are often conceptual and must therefore be estimated indirectly 

(Liu and Gupta, 2007). Model parameters are classified as physical or process 

parameters (Sorooshian and Gupta, 1995; Figure 2.1). Physical parameters can be 

measured directly independent of the observable river basin responses while; process 

parameters cannot be measured directly and need to be inferred by indirect means 

(Gupta et al., 1998). The term parameter estimation is synonymous with other terms, 

such as model calibration, parameter optimisation, data assimilation, inverse 

problems and parameter tuning amongst others (Liu and Gupta, 2007). A model 

needs to be calibrated in order to simulate the observed response of a river basin for 

an historical period for which forcing data (rainfall) and system output data (runoff) 

are available (Moradkhani and Sorooshian, 2008). Even though a wide variety of 

model calibration techniques have been developed, the trial and error procedure, or 

so called manual calibration, is the most basic approach to obtain the model 

parameters (Moradkhani and Sorooshian, 2008). 
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Figure 2.1. Classification of model parameters (Source: Moradkhani and Sorooshian, 

2008). 

2.4 AN OVERVIEW OF UNCERTAINTY ESTIMATION APPROACHES 

2.4.1 Sensitivity analysis 

Sensitivity analysis is an attempt to identify the key parameters that affect model 

performance. It plays important roles in model parameterization, calibration, 

optimization, and uncertainty quantification (Sawunyama, 2008; Song et al., 2015); 

and it is used to decide where focus should be placed to reduce uncertainty. 

Sensitivity analysis studies of rainfall-runoff models assessed the sensitivity: (1) to 

rainfall input data (Andréassian et al., 2001; Fekete et al., 2004); (2) to potential 

evapotranspiration input data (Andréassian et al., 2004; Oudin et al., 2005; Xu et al., 

2006), as well as; (3) to model structure and parameter values (Butts et al., 2004; 

Vrugt et al., 2005). While uncertainties caused by input data and parameters seem to 

be the most important; model performance may be more influenced by model 

structure uncertainty (Sawunyama, 2008). Thus far, there are many studies of 

sensitivity analyses for the southern Africa region (see Montanari, 2007; Hughes et al., 

Model
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2010; Kapangazwiri et al., 2012), however, there is a need for further research by 

making use of models developed in the region that are applicable to a wide range of 

climate conditions and spatial scales. 

2.4.2 Approaches of estimating uncertainty in hydrological modelling 

Various approaches are used to quantify uncertainty in hydrological model outputs. 

They include (Sawunyama, 2008): 

 Monte Carlo Simulation (MCS) – uniform random sampling of parameters and 

the subsequent determination of model outputs (Beven and Binley, 1992). 

 Latin hypercube simulation (LHS) – a stratified approach that efficiently 

estimates the statistics of an output by dividing a probability distribution of 

each basic variable into N ranges with an equal probability of occurrence (1/N) 

(Helton and Davis, 2003).  

 Rosenblueth’s point estimation method (RPEM) – a point-probability 

distribution is used to estimate the statistical moments (mean and covariance) 

of an output (Rosenblueth, 1981; Binley et al., 1991). 

 Harr’s point estimation method (HPEM) – the estimation of the statistical 

moments of the model output for a given number of parameters and model 

runs (Harr Milton, 1989). 

 The first order uncertainty analysis method – a Taylor series expansion 

approximate linearization (MFORM) that uses the mean of a parameter range 

(Melching et al., 1990). There is also an improved approach (AFORM) that uses 

a ‘likely’ point and not the mean (Melching, 1992). 

 Bayesian uncertainty analysis methods – estimate model uncertainty by 

combining prior information regarding the uncertainty of model inputs with 

the ability of different parameter sets so that the available data on state 

variables can be described (Sawunyama, 2008). 
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 Multi-objective approaches – the evaluation of uncertainty by making use of 

predictions that are based on some Pareto “optimal” parameter sets (Gupta et 

al., 1998; Yapo et al., 1998).  

 The Generalised Likelihood Uncertainty Estimation (GLUE) – it rejects the 

concept of an “optimal” parameter set in favour of the equifinality concept 

(Beven and Binley, 1992). This allows for multiple acceptable models or 

parameter sets that is based on some likelihood measures and performance 

thresholds (Sawunyama, 2008). It has been developed in the context of 

multiple sources of uncertainty in real problems and an expectation that the 

structure of the errors is complex and non-stationary (Jin et al., 2010). 

Unfortunately, most of the aforementioned estimation methods do not separate the 

different sources of uncertainty in rainfall-runoff modelling because their primary 

emphasis is on parameter estimation uncertainty. However, appropriate procedures 

are being developed to estimate and capture the propagation of different sources of 

uncertainty into model output uncertainty (Sawunyama, 2008). They include: 

 Simultaneous data assimilation and parameter estimation (Moradkhani et al., 

2005); 

 Simultaneous uncertainty estimation of input data and parameter estimation 

(Kavetski et al., 2003); 

 Bayesian total error analysis to capture the combined impacts of input data, 

parameter and model structure uncertainty (Kavetski et al., 2006; Kuczera et 

al., 2006). 

 The Integrated Bayesian Uncertainty Estimator (IBUNE) approach to capture 

input, parameter and model structural uncertainties (Ajami et al., 2007). 



19 

2.5 REDUCING UNCERTAINTY IN HYDROLOGICAL MODELLING 

Uncertainty in rainfall-runoff modelling outputs can only be quantified and reduced 

once the uncertainty in all of the different uncertainty sources, as well as the 

relationships between them, are understood. There are three main areas where 

actions can be taken to reduce uncertainty in hydrologic predictions (Liu and Gupta, 

2007): 

i. Acquisition of more improved and higher quality hydrological data by 

developing improved measurement techniques and observation networks; 

ii. Development of improved hydrologic models by incorporating better 

representations of physical processes and using better mathematical 

techniques; 

iii. Development of efficient and effective techniques that can better extract and 

assimilate information from the available data via the model identification and 

prediction processes. 

2.5.1 Reducing input data uncertainty 

Spatial representation and point measurement accuracy is some of the critical issues 

with the most important hydrological inputs, such as rainfall (Sawunyama, 2008). 

Unfortunately, adding to the issues is the relative sparseness and continuous decline 

of observation networks in southern Africa (Hughes, 2004). Spatially averaged 

information should be improved to reduce uncertainty related to incomplete spatial 

coverage of in-situ measuring networks and accuracy methods of interpolating data 

from point observations. So far, several studies on the use of radar-based (Moore 

and Hall, 2000, Borga, 2002, Carpenter and Georgakakos, 2004) or satellite-based 

(Hsu et al., 1999; Koster et al., 1999; Sorooshian et al., 2000; Grimes and Diop, 2003) 

information to derive rainfall estimates have been reported. Satellite-based estimates 
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are particularly favourable because, they are generally freely available and, provide 

direct basin spatial averages in sparsely gauged areas.  

2.5.2 Reducing model structural and parameter uncertainty 

The dynamic multiscale interactions among different hydrological processes might 

not be captured adequately in any particular model structure. Displacement of errors 

from structure to parameters can occur when calibrating single models for dynamic 

catchments because of the multiple dominant processes that exist there. This will in 

turn lead to over-correction and biased predictions (Moges et al., 2016). Current 

hydrological research, such as the Prediction in Ungauged Basins (PUB) initiative of 

the International Association of Hydrological Sciences (IAHS), strongly focuses on the 

reduction of model structural and parameter uncertainty as part of any model 

evaluation (Refsgaard et al., 2006; Hrachowitz et al., 2013). It is necessary to go 

beyond finding justifiable assumptions about the model structure, to select a set of 

parameters that satisfy some conditions of model acceptability. It is, therefore, 

important to develop improved model structures that are based on a better 

understanding of physical processes and a better mathematical representation 

(Sivalapan et al., 2003). While a number of studies have quantified model structural 

uncertainty (Yapo et al., 1998; Vrugt et al., 2003), very few have attempted to reduce 

it (Sawunyama, 2008). Instead, a lot of effort has been put on reducing parameter 

uncertainty (Beven and Binley, 1992; Thiemann et al., 2001; Vrugt et al., 2003; 

Kapangazwiri et al., 2012). The approaches used to reduce parameter uncertainty are 

dependent on the methods of calibration or regionalisation (for ungauged basins) as 

well as the model structure and the objectives of a specific study (Sawunyama, 2008). 

The following methods are used to reduce parameter uncertainty: 

 Physically-based parameter estimation (e.g. Yadav et al., 2007; Kapangazwiri 

and Hughes, 2008); 
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 Using alternative information such as remote sensing (Franks et al., 1998; 

Boegh et al., 2004); 

 Data assimilation – using more information to constrain parameters 

(Moradkhani et al., 2005; Vrugt et al., 2005). 

 General Probabilistic Framework (GPF) for uncertainty and global sensitivity 

analysis of deterministic models – the results of the framework can be used in 

a loop for model improvement, parameter estimation or model simplification 

(Baroni and Tarantola, 2014). 

 The Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT) – 

an input error model and modified goodness-of-fit statistics to incorporate 

uncertainty in parameter, model structure, input data as well as the 

calibration/validation data in watershed modelling (Yen et al., 2014). 

2.6 THE PITMAN MODEL 

The Pitman model is a conceptual type that has been used extensively in southern 

Africa, and many studies have been published about the development and testing of 

the uncertainty approaches for the application of the model (Hughes, 2016). The 

model operates on a sub-basin or nodal distribution scheme and each of the sub-

basins have their own climate inputs and parameter sets (Hughes, 2013). The Spatial 

and Time Series Information Modelling (SPATSIM, Hughes and Forsyth, 2006) version 

of the Pitman model (Pitman, 1973) was used in this study. The modelling framework 

facilitates the storage and management of the types of data used in the 

environmental modelling and also provide direct links to various models and 

procedures for data analysis (IWR, 2017). 
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CHAPTER 3 
Study Areas 

3 Study Areas 

3.1 BACKGROUND 

The Mogalakwena and Shashe sub-basins are modelled at the quaternary catchment 

and sub-zone scale, respectively. A quaternary catchment, or fourth order catchment, 

is a hierarchal classification system in which the primary catchment is the major unit. 

They are on average approximately 650 km2 in size (Nel et al, 2011). It is the smallest 

operational unit and, until very recently, the finest spatial level of data resolution 

(Maherry et al., 2013). The sub-zone scale is generally used in Zimbabwe and refers 

to divisions within a planning area which are usually centred on a focal point 

(Data.gov.sg, 2014). In this case the focal point would be runoff stations. Both 

delineations are used for general planning purposes and the level of the quaternary 

catchments constitute the lowest, i.e. most detailed, level of operational catchments 

(Midgley et al., 1994). Unfortunately, only South Africa, together with the 

geographical enclaves of Swaziland and Lesotho has been delineated by the 

Department of Water and Sanitation (then the Department of Water Affairs and 

Forestry) into a hierarchical system of catchments, including quaternary catchments. 

Therefore, the same hierarchical system was not available for Botswana and 

Zimbabwe. Both sub-basins are therefore modelled at the lowest spatial level for 

water resources planning and management. However, even though these spatial 

units have different names, depending on the country in which they are situated, 

they will be referred to as catchments in this study. 

The Shashe sub-basin, which straddles between Zimbabwe and Botswana, is drained 

by the Shashe River, a left bank tributary of the Limpopo River (Figure 3.1). The 

Mokgalakwena sub-basin is entirely located in South Africa and is drained by the 
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Mokgalakwena River, a right bank tributary of the Limpopo River (Figure 3.1). 

Because the sub-basins are located in different countries, both data availability and 

accessibility differ. 

In South Africa, most hydrological data are freely accessible from the 1990, 2005 and 

2012 Water Resources Studies , the Department of Water and Sanitation (DWS) and 

the Department of Agriculture, Forestry and Fisheries (DAFF). In both Botswana and 

Zimbabwe, there is a cost for accessing hydrological data. Moreover, the data is often 

outdated, records contain missing values, and large areas do not have data. The two 

sub-basins were therefore chosen due to the difference in data availability, 

accessibility, and the impact that the lack of input data might have on the model 

outputs. 

 
Figure 3.1. Location of the Mogalakwena and Shashe sub-basins. 
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3.2 THE MOGALAKWENA SUB-BASIN 

The Mogalakwena sub-basin is located in South Africa and has an extensive drainage 

area of 19 400 km2. It rises as the Nyl River south of Mokopane and is joined by the 

Sterk River (itself rising in the Waterberg Mountains) and flows northwards into the 

Limpopo River (Busari, 2008). The sub-basin is densely populated and industrialised 

and includes the towns of Modimolle, Mookgopong, Lephalale and Mokopane 

(Figure 3.2). 

 
Figure 3.2. Location of the Mogalakwena sub-basin and its catchments (source: Bailey 

and Pitman, 2015). 
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3.2.1 Climate of the Mogalakwena sub-basin 

Mogalakwena falls within the summer rainfall region (October – March). The Mean 

annual precipitation (MAP) decreases in the Northern direction towards the Limpopo 

River main stem from 800 to 300 mm a-1 (Bailey and Pitman, 2015). The mean annual 

potential evapotranspiration (MAE) ranges between 1700 to 2050 mm a-1 (Bailey and 

Pitman, 2015; LIMCOM, 2013). 

The temperature correlates with the topography (Schulze, 1997). Summer and winter 

daily average temperatures decrease as the altitude increases. The summer 

temperatures range between 20 - 25oC for the upper catchment where the altitude is 

highest and increase between 25 - 29.5oC towards the Limpopo River main stem as 

the altitude decreases. Even though winter daily average temperatures are a lot lower 

than the daily summer temperatures, the same general pattern is observed. The 

mean winter temperature of the sub-basin ranges between 6.5 – 18oC (LIMCOM, 

2013). 

3.2.2 Hydrology of the Mogalakwena sub-basin 

3.2.2.1 Surface hydrology 

The area of the Mogalakwena sub-basin is drained by the Mogalakwena River along 

with its tributary streams, most notably the Nyl River that is located in the upper 

reaches. The river system flows in a northerly direction originating in the area around 

Modimolle (Nylstroom) and joins the Limpopo River downstream of the Laphalala 

River (Figure 3.2). The flow patterns are variable and are influenced by either rainfall 

(average 540 mm) or dry spells during the winter season. However, the rivers only dry 

up during severe droughts. Most of the tributary streams only flow during the 

summer months. The Nylsvlei is the most important wetland in the sub-basin and is 

situated between Modimolle and Mookgopong and is South Africa’s largest 

ephemeral floodplain. It has been declared a RAMSAR wetland site because of its 

international conservation importance and birdlife (Lombaard and Pieterse, 2015). It 
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plays an important role in attenuating the flows from the Nyl River to the 

Mogalakwena River (Ashton et al., 2001). 

The distribution of the runoff clearly reflects the distribution of the rainfall and 

evaporation of each catchment. The runoff is higher for the upper part of the 

Mogalakwena catchment. However, high variations are observed with some 

quaternary sub-basins experiencing very low runoff values with adjacent quaternary 

sub-basins experiencing much higher values (e.g. A62B and A62C). It is, therefore, 

important to model at a catchment scale because each catchment is influenced 

differently by natural and anthropogenic activities/processes such as dam 

constructions, agricultural activities, vegetation cover, rainfall, etc. These 

activities/processes will, in turn, affect the total amount of runoff that reaches the 

Limpopo River main stem. 

3.2.2.2 Subsurface hydrology 

Meyer and Hill (2013) calculated the percentage of the recharge capacity by 

considering the aquifer types within a catchment. The calculation was based on the 

assumption that the soil thickness is less than 5 m thick for 50% of the catchments 

and over 5 m thick for the remaining 50%. An average slope of 5% was used and the 

resultant recharge values were calculated as a percentage of the MAP (Meyer and 

Hill, 2013). Because groundwater recharge is dependent on rainfall volumes, a 

change in rainfall variability is therefore associated with an even larger variability in 

recharge volumes (Bredekamp et al., 1995). 

3.2.3 Geology of the Mogalakwena sub-basin 

The geology of the Mogalakwena sub-basin is complex and varies between different 

types of formations as well as age. The upper reaches of the sub-basin are mostly 

underlain by a variety of porous consolidated and partially consolidated sedimentary 

strata, predominantly sandstones, quartzites and felsites of the Waterberg and 

Soutpansberg Groups. Acidic and basic granites and lavas of the Bushveld Igneous 
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Complex and the Transvaal Sequence intruded the Waterberg and Soutpansberg 

Groups, which in turn overlie the crystalline rocks of the Basement Complex 

(Anderson et al., 2001). The upper reaches of Mogalakwena are, therefore, mainly 

underlain by harder igneous and volcanic rock. Areas of different types of sandstone, 

siltstones, and shales, which are favourable geology types for aquifer development 

and in turn, groundwater storage, are also present. 

The Karoo Sequence which is dominant further downstream, consists of sequences of 

silicified sandstones and quartzites, followed by carbon-rich mudstones and shales, 

and then basalts. Large areas of the central parts of the sub-basin are overlain by 

recent (Quaternary) deposits of unconsolidated or poorly consolidated sandy 

material (Ashton et al., 2001). 

3.2.4 Pedology, land cover and land use 

Soils in the sub-catchment can be divided into two distincts groups. Moderately 

deep sandy soils are found on the sloping and undulating terrain in the upper 

reaches of the sub-basin (Ashton et al., 2001). Relatively shallow, coarse-grained 

sandy soils and silt deposits in flat and undulating terrain in the lower reaches of the 

sub-basin, particularly along the flood terraces of streams (Ashton et al., 2001). 

Mosaic vegetation/croplands cover most of the sub-basin (
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Table 3.1, 45.4%), followed by closed to open grassland (29.6%) and closed to open 

shrubland (11%). Although there is no afforestation in the sub-basin (Bailey and 

Pitman, 2015), alien vegetation cover about 239.4 km2 of the total area. 
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Table 3.1. Land cover/use of the Mogalakwena catchment (Bontemps et al., 2011) 

Description % of total area 

Rainfed croplands 0.00 

Mosaic Croplands/Vegetation 0.00 

Mosaic Vegetation/Croplands 45.41 

Closed broadleaved deciduous forest 0.71 

Open broadleaved deciduous forest 8.17 

Open needleleaved deciduous or evergreen forest 0.00 

Mosaic Forest-Shrubland/Grassland 4.67 

Mosaic Grassland/Forest-Shrubland 0.07 

Closed to open shrubland 10.95 

Closed to open grassland 29.56 

Sparse vegetation 0.12 

Artificial areas 0.19 

Bare areas 0.00 

Water bodies 0.11 

3.2.5 Water use of the Mogalakwena sub-basin 

In Mogalakwena, additional water supplies include the Modimolle Urban Regional 

Water Supply Scheme (RWSS) that is used to supply water to Modimolle via the 

Magalies Water pipeline from the Roodeplaat Dam (located in the Crocodile West 

River catchment) and additionally by the Donkerpoort dam (located near Modimolle). 

Mookgopong is mainly supplied by water from the Nel well-field and the 

Welgevonden Dam as part of the Mookgopong RWSS. The Mokopane RWSS gets 

water from the Doorndraai Dam and groundwater resources and is used to provide 

water to Mokopane, Mahwelereng and the AMPLAT Mogalakwena Platinum Mine 

along with other denser settlements. The Roodeplaat Dam (situated in the Crocodile 

West River catchment) is used to transfer an additional 2 million m3/year to the 

Mogalakwena sub-basin, and approximately sixteen other smaller schemes are also 

identified (Lombaard and Pieterse, 2015). 
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3.2.5.1 Dams and water transfers of the Mogalakwena sub-basin 

Many dams are located in the Mogalakwena sub-basin, ranging from large dams to 

hundreds of small farm dams that are used to supply water for domestic and 

irrigation purposes as well as livestock watering (Görgens and Boroto, 1999). Despite 

their size, these small farm dams are responsible for most of the reduced flows that 

now characterise the Mogalakwena River (Ashton et al., 2001). 

Table 3.2. Characteristics of the large dams located in the Mogalakwena sub-basin. 

Dam name Closest Town watercourse FSC* (1000 m3) Source 

Doorndraai Mokopane Sterk river 46500 DWS 

Glen Alpine Tolwe Mogalakwena River 18900 DWS 

Haaskloof Naboomspruit Hanskloofspruit 20160 FAO 

Rooiwal Potgietersrus Sterk river - FAO 

Gert Combrink - - - DWS 

Donkerpoort Nylstroom Klein Nyl 34200 FAO 

* Full Supply Capacity 

The large dams that are located in Mogalakwena are listed in Table 3.2 and Figure 3.3 

shows several major dams and farm dams in the Mogalakwena catchment, mostly in 

the upstream areas. 
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Figure 3.3. Major and farm reservoirs of the Mogalakwena sub-basin. 

3.2.5.2 Irrigation in the Mogalakwena sub-basin 

Extensive irrigation areas along the Mogalakwena River consume most of the water 

used in the central and upper reaches of the sub-basin. Subsistence farming are 

dominant in the central and eastern portion of the sub-basin and they rely on 

boreholes and hand-dug wells for their water supplies (Ashton et al., 2001). 

The surface water resources in Mogalakwena are limited. Therefore the irrigation 

sector extensively exploits the large groundwater resources of the catchment. It has 

two large dams; Doorndraai Dam that supplies domestic and irrigation requirements 

and Glen Alpine Dam that supplies only irrigation water. Irrigation areas are 
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concentrated in the Moorddrift area near Mokopane, the central part of the 

catchment (Gillimburg area) and the areas surrounding the Glen Alpine Dam, and 

groundwater is used to supply water to approximately 60% of the irrigation in the 

catchment (Lombaard and Pieterse, 2015). The total irrigated area for Mogalakwena 

is 147.54 km2 (Bailey and Pitman, 2015), but these values differ between sources. 
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3.2.6 Catchment delineation of the Mogalakwena sub-basin 

The Mogalakwena has a total of 23 quaternary catchments (Table 3.3). 

Table 3.3. Characteristics of the catchments of the Mogalakwena sub-basin (after Bailey 

and Pitman, 2015). 

Sub-basins Area (km2) MAP 

(mm a-1) 

MAPE 

(mm a-1) 

MAR 

(mm a-1) 

Recharge as 4% of 

MAP (mm a-1) 

A61A 381 629 1700 22.01 25.16 

A61B 362 625 1700 11.11 25 

A61C 587 608 1741 7.84 24.32 

A61D 456 630 1734 11.89 25.2 

A61E 547 615 1738 11.23 24.6 

A61F 789 597 1800 16.72 23.88 

A61G 927 585 1800 16.05 23.4 

A61H 585 636 1700 29.94 25.44 

A61J 818 631 1750 33.36 25.24 

A62A 428 610 1800 17.56 24.4 

A62B 710 529 1850 16.31 21.16 

A62C 385 478 1900 5.8 19.12 

A62D 603 489 1900 9.11 19.56 

A62E 621 460 1850 5.51 18.4 

A62F 620 478 1850 3.35 19.12 

A62G 627 437 1900 6.22 17.48 

A62H 871 439 1900 5.88 17.56 

A62J 930 450 1950 6.25 18 

A63A 1928 433 1950 13.64 17.32 

A63B 1505 394 2000 9.01 15.76 

A63C 1323 378 2050 6.61 15.12 

A63D 1319 412 2000 5.57 16.48 

A63E 1992 358 2050 8.36 14.32 

 

The catchments represent different climate regimes and physical properties. 

However, some of the differences are very small due to the small size of the 
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catchments. Therefore, different hydrological response characteristics are considered. 

The main characteristics of the sub-basins that will be modelled is listed in Table 3.3. 

3.3 THE SHASHE SUB-BASIN 

The Shashe sub-basin (18 991 km2) is shared between Botswana and Zimbabwe, with 

the largest portion of the catchment situated in Zimbabwe (Figure 3.4). The Shashe 

River, also known as the Shashi River, rises on the border between Botswana and 

Zimbabwe. It flows south, past Francistown, and then southeast along the border for 

about 362 km until it flows into the Limpopo River where Botswana, Zimbabwe and 

South Africa meet. The confluence is at the site of the Greater Mapungubwe 

Transfrontier Conservation Area. Major tributaries of the Shashe River include the 

Simukwe, Shashani, Thuli, Tati and Ramokgwebana rivers. 

 
Figure 3.4. Map of the Shashe sub-basin and its catchments 

3.3.1 Climate of the Shashe sub-basin 
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Shashe is located in a low rainfall region especially the part located in Botswana 

which experience rainfall of around 400 mm a-1. In the Zimbabwean portion of the 

sub-basin, MAP varies between 350-600 mm a-1 (LIMCOM, 2013). The rainfall is 

highest in the upstream areas for both catchments and decreases towards the 

Limpopo River main-stem. The mean annual potential evapotranspiration (MAE) 

ranges between 1800 to 2600 mm a-1 (LIMCOM, 2013). Potential evapotranspiration 

rates are highest in the Botswana portion of the sub-basin which reflects drier 

conditions in that area. MAE exceeds rainfall which is typical of semi-arid regions. The 

sub-basin experiences temperature similar to those of the Mogalakwena sub-basin. 

3.3.2 Hydrology of the Shashe sub-basin 

3.3.2.1 Surface hydrology of the Shashe sub-basin 

The flow pattern in this river is variable as a result of the prevailing low and 

unpredictable rainfalls (average 540 mm) though the river is normally perennial and 

only dries up during severe droughts. Summer rainfalls cause a dramatic increase in 

the flows of this river, though most of the tributary streams are highly seasonal and 

tend to flow only during the summer months. The Mogalakwena sub-basin goes 

through a five-year rain cycle in which the river is virtually dry for five years, followed 

by another five years in which there is sufficient water flow. The Nylsvley floodplain, a 

242.5 km2 Ramsar site, attenuates the flows contributed by the Nyl River to the 

Mogalakwena River (Ashton et al., 2001). 

Major tributaries of the Shashe River include the Simukwe, Shashani, Thuli, Tati and 

Ramokgwebana rivers (Ashton et al., 2001). The Shashani is dammed at Gulameta, 

the Chavezi, a tributary of the Thuli, is dammed near Silobi, and the Ingwezi, a 

tributary of the Ramakwebana, is dammed near Domborefu. Small water supply 

dams on the Shashe River provide water for local communities and mining 

operations in Botswana, as well as small-scale irrigation farms (Ashton et al., 2001). 
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3.3.2.2 Subsurface hydrology of the Shashe sub-basin 

It is estimated that 65% of Botswana’s water resources are derived from groundwater 

due to limited surface water resources (FAO, 2004). 

3.3.3 Geology of the Shashe sub-basin 

The Zimbabwe Craton underlies most of the sub-basin, including the Botswana 

portion. Important formations include: Gwanda Greenstone Belt, Lower Gwanda 

Greenstone Belt, Mphoengs Greenstone Belt and granitic terrain. The south is 

underlain by Limpopo Belt gneisses, and the far south (Thuli Village area) by Karoo 

basalts. Archaean granites and gneisses are intruded by numerous Greenstone belts, 

with associated Karoo System rocks and silicified sandstones in the western 

(Botswana) portion of the sub-basin (Ashton et al., 2001). 

3.3.4 Pedology, land cover and land use 

Soils in the sub-basin can be divided into five groups ranging from moderate to very 

shallow depths: 

 Moderately shallow, coarse-grained kaolinitic sands, derived from the granites; 

 Very shallow to moderately shallow sandy loams, formed from gneisses; 

 Very shallow to moderately shallow clays, formed from the Greenstone Belts; 

 Shallow, clay soils with high sodium content in internally draining areas; and 

 Very shallow sands, derived from the basalts (DRSS, 1979).  

In the Shashe catchment (Table 3.4), mosaic vegetation/croplands has the highest 

surface area (34.81%), followed by closed to open grassland (33.1%) and closed to 

open shrubland (16.5%). 
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Table 3.4. Land cover/use of the Shashe catchment (Bontemps et al., 2011) 

Description % of total area 

Rainfed croplands 0.00 

Mosaic Vegetation/Croplands 34.81 

Closed broadleaved deciduous forest 2.82 

Open broadleaved deciduous forest 6.89 

Mosaic Forest-Shrubland/Grassland 5.37 

Mosaic Grassland/Forest-Shrubland 0.03 

Closed to open shrubland 16.52 

Closed to open grassland 33.01 

Sparse vegetation 0.04 

Artificial areas 0.07 

Bare areas 0.00 

Water bodies 0.43 

 

The Matobo National Park is located in the upper reaches of the Thuli River. 

Commercial farming, as well as private and resettlement land, is located south of the 

park. In the Botswana side of the catchment, land use consists of commercial farming 

of livestock and small irrigation areas along the rivers, with game ranching such as 

the Tuli Safari that is located in drier areas (Ashton et al., 2001). 

3.3.5 Water use in the Shashe sub-basin 

The Botswana’s North-South Carrier Water Transfer Scheme consists of two Phases. 

Phase-1 of the North-South Water Carrier Project transfers water from the Shashe 

Dam via Selebe-Pikwe to Gaborone (completed in 1999). Local water resources of the 

main towns including Palapye, Mahalapye, Palla Road and Mmamabula are 

supplemented on-route. Construction for Phase-II was estimated to start in 2012 and 

feeds on various dams, existing or newly emerging from the first phase. The pipeline 

is expected to deliver 45 Mm3 of water per year (Bigen Africa Services, 2012). 
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3.3.5.1 Reservoirs and water transfers in the Shashe sub-basin 

Shashe has predominantly large dams along with many small reservoirs and farm 

dams. The large dams, along with the smaller dams, supply practically all of the 

irrigation and urban water use (LIMCOM, 2013). Eight large dams are located in the 

Shashe catchment. However, even though these dams were identified, necessary 

information such as their purpose is not always available (Table 3.5). 

Table 3.5. Large dams in the Shashe sub-basin (after LIMCOM, 2013) 

Dam name 
Closest 

settlement 
Watercourse Purpose FSC (1000 m3) 

Botswana 

Shashe Tonota village Shashe Urban water supply 87.9 

Ntimbale - Tati Rural water supply 26.4 

Dikgatlhong Robelelavillage Shashe Urban water supply 400 

Zimbabwe 

Tuli Makwe Gwanda Tuli - 6.1 

Shashani - Shashani - 27.3 

* Full Supply Capacity 

Also, many of the small reservoirs and farm dams had to be captured by making use 

of remote sensing methods accompanied by manual digitizing. Unlike Mogalakwena, 

the farm dams in Shashe are dispersed all over the sub-basin (Figure 3.5). 
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Figure 3.5. Locations of the dams in Shashe. 
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3.3.5.2 Irrigation in the Shashe sub-basin 

In the Botswana portion of the Shashe catchment, some irrigation takes place along 

the Limpopo River main-stem. In Zimbabwe, irrigation water-use is shared by urban 

(towns), rural (primary) and industry (LIMCOM, 2013). The total irrigated areas for the 

Shashe catchments are listed in Table 3.6. 

 

Table 3.6. Total irrigation areas for Shashe (LIMCOM, 2013) 

Country Sub-basin Total Irrigated Area 

(km2) 

Zimbabwe  Ramakwebana 22.0 

Sansukwe 1.0 

Simukwe 11.0 

Shashani 30.0 

Tuli 36.8 

Botswana  Shashe Upper  0 

Shashe Middle 0 

Shashe Lower 21 

Dati Upper 0 

Dati Middle 0 

Dati Lower 0 

Ntse 0 
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3.3.6 Catchment delineation of the Shashe sub-basin 

The sub-basin is subdivided into 28 catchments. Table 3.7 shows the main 

characteristics of the catchments. 

Table 3.7. Characteristics of the catchments of the Shashe sub-basin (LIMCOM, 2013). 

Sub-basins 
Area 

(km2) 

MAP 

(mm a-1) 

MAPE 

(mm a-1) 

MAR 

(mm a-1) 

Recharge as 4% of MAP 

(mm a-1) 

Zimbabwe 

BR-B64/72 818.1 
537 1895 17.24 21.48 

BR-Rest 1471.2 

BS6 1090.1 492 1902 - 19.68 

BS5 1720.0 502 1904 - 20.08 

BS4 1459.6 495 1904 - 19.8 

BS3-Shashani 330.5 
553 1910 16.63 22.12 

BS3-B77 392.8  

BS2-B86 1582.4  
500 1906 44.87 20 

BS2-Kafusi 502.2  

BS1 408.3  415 1946 - 16.6 

BT3 525.1 559 1919 - 22.36 

BT4-B81 797.2 

584 1939 17.68 23.36 
BT4-B80 527.1 

BT4-B83 377.2 

BT4-B7 148.0 

BT5 766.5 582 1896 39.22 23.28 

BM 944.0 575 1861 - 23 

BT2-B87 877.4 

528 1897 25.46 21.12 BT2-B31 534.4 

BT2-B9 488.6 

BT1-B85 1843.3 
493 1912 193.7 19.72 

BT1-Rest 1446.7 

Botswana 

Shashe Upper 3753.1 500 

215.98 

37 20 

Shashe Middle 1021.7 400 -3 16 

Dati Upper 408.0 500 59 20 

Dati Middle 176.6 500 42 20 

Dati Lower 1648.4 420 15 16.8 

Ntse 840.7 500 34 20 
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CHAPTER 4 
Datasets and general methods 

4 Datasets and general methods 

4.1 INTRODUCTION 

There are many parts of the Limpopo River basin where both observed rainfall and 

stream flow data are limited in terms of spatial coverage and lengths of record. There 

is little that can be done about the stream flow data, and it is inevitable that 

hydrological simulations will be difficult to validate and are therefore highly 

uncertain. Over the years technological advances such as remote sensing have been 

made in the methods used to collect data; computers also became more powerful 

and are now able to process vast amounts of data. In turn, the amount of data 

available for hydrological modelling has increased dramatically (Hughes, 2004). 

Moreover, the availability and accuracy of the data utilised by models have not kept 

pace with recent model developments and models are frequently expected to 

produce predictions based on insufficient and flawed data (Tanner and Hughes, 

2015). With datasets originating from different sources, it is a daunting task to decide 

which one will provide the most accurate results when used in hydrological models. 

Input data uncertainties have been identified as a key problem in accurate modelling 

(Kleidorfer et al., 2009). 

This chapter discusses the various data collected and collated to set up and calibrate 

the Pitman model and the methods used to quantify uncertainties. The datasets used 

include climatic (rainfall and evaporation), hydrological (streamflow), physiographic 

(geology, soils, vegetation, and topography) and water use data (farm reservoirs, 

water abstractions, and irrigated area). Whenever possible, the data collection 

methods and sources will be identified and discussed. 
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Several organisations and private individuals provided data for the Mogalakwena 

sub-basin in South Africa. These include the South African Weather Service (SAWS), 

DWS, the Department of Agriculture, Forestry and Fisheries of South Africa (DAFF) 

and the Water Resources Studies of South Africa (WR2012, WR2005 and WR90). Data 

for the Shashe catchment, which straddles between Botswana and Zimbabwe, was 

inaccessible. Data from the Limpopo River Basin Monograph Study (LIMCOM, 2013), 

was assumed to be the least uncertain compared to data from other sources. 

There are many parts of southern Africa where both observed rainfall and stream 

flow data are limited in terms of spatial coverage and lengths of record. There is little 

that can be done about the stream flow data, and it is inevitable that many of our 

hydrological simulations will be impossible to validate and are therefore highly 

uncertain. 

4.2 HYDROLOGICAL AND CLIMATIC DATA 

Input data and model parameters used to set up the model for both Mogalakwena 

and Shashe (Table 4.1) were sourced from the Limpopo River basin monograph study 

(LIMCOM, 2013) and were already assessed. 

Table 4.1. Climatic and streamflow data analysed or used in this study. 

Data type Dataset Country Custodian Availability Used 

Climatic Rainfall ZA SAWS  No 

ZIM LIMCOM LIMCOM, 2013 Yes 

Evaporation ZA DWS  No 

Areal Rainfall ZA Public domain WR2012 Yes 

Stream flow Runoff ZA LIMCOM LIMCOM, 2013 Yes 

BOT Department of 

Water Affairs 

 No 

 

Nonetheless, not all of water use data including monthly irrigation demands and 

monthly water demands (e.g. for industrial/mining or domestic activities), was 

available and in turn the simulated flows are over simulated (Figure 4.1). Also, the 

only runoff station (A6H009) that provides adequate observed flow data is located at 
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a large dam and large irrigation areas which in turn will have an impact on the 

recorded observed data due to various water abstractions. As a result, the difference 

between the long-term mean monthly simulated flows and observed flows is quite 

significant. 

 
Figure 4.1. Monthly distribution of the Observed (blue) and simulated (black) flows for 

the Mogalakwena sub-basin. 

4.2.1 Observed streamflow of the Mogalakwena and Shashe sub-basins 

Monthly streamflow data required to calibrate the model is available from the DWS 

website. For modelling purposes, both WR2012 and LIMCOM (2013) downloaded the 

data and patched the missing values. They also discarded stations with too many 

missing values (Figure 4.2). 
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Figure 4.2. Streamflow stations in the Mogalakwena sub-basin 

The observed streamflow data for the Shashe sub-basin (Figure 4.3) was obtained 

from LIMCOM (2013) which was in turn collected from other sources namely: 

For Botswana: 

 Botswana Department of Water Affairs; 

 WR2005 Study (Middleton and Bailey, 2009); 

 Limpopo River Hydrological Model Study (Boroto and Görgens, 1999); and 

 Limpopo River Hydrological Model Update Study (Matji and Görgens, 2001). 
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For Zimbabwe: 

 Zimbabwe National Water Authority; and 

 Limpopo River Hydrological Model Study (Boroto and Görgens, 1999). 

LIMCOM (2013) found that many records contain excessive periods of missing data 

and can therefore not be used for model calibration. The records that were used for 

the LIMCOM study, and in turn this study, had to be patched.  

The observed flow data was patched by making use of Manual infilling of the 

streamflow records (where possible) followed by Statistical infilling/patching software 

for streamflow records (PATCHS) program on the aggregated monthly stream flows. 

The following general comments were provided for the Botswana part of the sub-

basin (LIMCOM, 2013): 

 The Shashe River was the only catchment where cross-patching of various 

sequences could be applied.  

 Wherever the patched value was lower than the observed value, the observed 

value was retained (LIMCOM, 2013). 
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Figure 4.3. Location of the streamflow stations in the Shashe sub-basin (source: LIMCOM, 

2013). 

4.2.2 Rainfall gauges of the Mogalakwena and Shashe sub-basins 

Spatially averaged monthly time series of rainfall data were obtained from the 

Limpopo River Basin Monograph study (LIMCOM, 2013). The rainfall database of the 

Mogalakwena sub-basin was constituted by extending rainfall files in the WR2005 

configurations (Middleton and Bailey, 2009) with rainfall files, for the period 2004 – 

2010, sourced from the DWS’ Water Resources Information Management System 

(LIMCOM, 2013). The locations of the rainfall stations used are displayed in Figure 

4.4. 
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Figure 4.4. Location of the rainfall stations in the Mogalakwena sub-basin used to 

produce catchment rainfall sequences. 

 

The average rainfall data the Mogalakwena catchments are presented in Table 4.2. 

. 
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Table 4.2. Long-term Mean Monthly Precipitation (MMP) for the catchments of the 

Mogalakwena sub-basin for the time period 1920-2010. 

Catch. 
MMP 

(mm a-1) 
Sub-basin 

MMP 

(mm a-1) 

A61A 52.6 A62D 41.3 

A61B 52.3 A62E 39.2 

A61C 50.8 A62F 40.8 

A61D 52.6 A62G 37.3 

A61E 51.3 A62H 37.5 

A61F 49.6 A62J 38.4 

A61G 48.6 A63A 36.5 

A61H 53.1 A63B 33.2 

A61J 52.5 A63C 31.8 

A62A 51.5 A63D 34.7 

A62B 44.6 A63E 30.1 

A62C 40.3   

 

Rainfall database of the Shashe sub-basin were assembled from a number of data 

sources (LIMCOM, 2013): (1) Botswana Department of Water Affairs; (2) WR2005 

Study (Middleton and Bailey, 2009); (3) Limpopo River Hydrological Model Study 

(Boroto and Görgens, 1999), and (4) Limpopo River Hydrological Model Update 

Study (Matji and Görgens, 2001). The spatial location of the rainfall station used is 

displayed in Figure 4.5. 
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Figure 4.5. Location of the rainfall stations in the Shashe sub-basin used to produce 

catchment rainfall sequences. 

 

The average rainfall data the Shashe catchments are presented in Table 4.3. 
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Table 4.3. Long-term Mean Monthly Precipitation (MMP) for the catchments of the 

Shashe sub-basin for the time period 1920-2011. 

Catch. MMP (mm a-1) 

BT1 41.8 

BT2 44.8 

BT3 47.5 

BT4 49.6 

BT5 49.4 

BM 48.8 

BS2 42.2 

BS3 46.6 

BS4 41.9 

BS5 42.5 

BS6 41.6 

4.2.3 Evaporation gauges of the Mogalakwena and Shashe sub-basins 

The locations of the four evaporation stations in Mogalakwena are displayed in 

Figure 4.5. Evaporation plays an important role in the water budget of a sub-basin, 

however, data regarding the water lost through vegetation cover and water surfaces 

is limited. The unavailability of data from each individual source that influence 

evaporation makes it difficult to provide adequately representative measurements of 

the potential evaporation demand for input in hydrological models (Sawunyama, 

2008). Only the data from two sources was used for this study (Table 4.4 and Table 

4.5). 
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Figure 4.6. Location of the evaporation stations in the Mogalakwena sub-basin (source: 

LIMCOM, 2013). 

 

Table 4.4. S-pan Mean Monthly Evaporation (MME) as a percentage of MAE for 

catchments of the Mogalakwena sub-basin (LIMCOM, 2013). 

Catch. Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

A61A-63E 11.1 10.3 11.0 11.0 9.2 8.9 6.9 5.7 4.7 5.0 7.0 9.3 
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Figure 4.7. Location of the evaporation stations in the Shashe sub-basin (source: 

LIMCOM, 2013). 

 

Table 4.5. Patched Mean Monthly Evapotranspiration (MME) as a percentage of MAE for 

catchments of the Shashe sub-basin (LIMCOM, 2013). 

Sub-basin Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

BT1 10.8 10.6 11.0 11.0 9.5 8.9 7.1 5.8 4.6 5.1 6.9 8.8 

BT2 9.5 7.6 7.9 9.5 7.6 7.9 9.5 7.6 7.9 9.5 7.6 7.9 

BT3 7.7 10.3 8.7 9.1 7.6 7.9 7.1 6.4 5.7 6.4 8.4 10.6 

BT4 11.8 10.3 8.7 9.1 7.6 7.9 7.2 6.4 5.7 6.3 8.5 10.6 

BT5 11.8 10.3 8.7 9.1 7.6 7.9 7.2 6.4 5.7 6.3 8.4 10.6 

BM 11.8 10.3 8.7 9.1 7.6 7.9 7.1 6.4 5.7 6.3 8.4 10.6 

BS2 9.6 7.6 7.9 9.6 7.6 7.9 9.6 7.6 7.9 9.6 7.6 7.9 

BS3 11.7 10.3 8.7 9.1 7.6 7.9 7.2 6.4 5.7 6.3 8.4 10.6 

BS4 9.6 7.6 7.9 9.6 7.6 7.9 9.6 7.6 7.9 9.6 7.6 7.9 

BS5 11.8 10.3 8.8 9.1 7.6 7.9 7.1 6.4 5.7 6.4 8.5 10.6 

BS6 9.6 7.6 7.9 9.6 7.6 7.9 9.6 7.6 7.9 9.6 7.6 7.9 
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4.3 WATER USE IN THE MOGALAKWENA AND SHASHE SUB-BASIN 

Anthropogenic activities can reduce or augment natural flows. Therefore, water use 

data is essential for water resources estimation of a catchment, but it is very difficult 

to assess due to the availability thereof. Collecting past, present and future water use 

estimates is thus important. Such water uses include land use modification including 

irrigation schemes, river abstractions and return flows (e.g. mining activities), and the 

distribution of small farm dams and large dams because they influence the amount 

of runoff that reach a river and evaporation losses of the catchment. Chapter 3 

describes the water transfer schemes and other water users in more detail. 

Since the Mogalakwena and Shashe catchments are located in different riparian 

countries of the larger Limpopo River Basin, different databases had to be used for 

this study. However, water use information for Zimbabwe and South Africa produced 

by the ZINWA and WARMS database is uncertain. Verification and validation of the 

agricultural water use had to be undertaken by making use of the WR2012 (Bailey 

and Pitman, 2015) study for Mogalakwena and LIMCOM, 2013 for Shashe. LIMCOM 

(2013) used remote sensing techniques to determine the extent of the cropped area. 

However, google earth, combined with data provided by ZINWA, had to be used to 

determine the crop type. Even though this approach is not without its own 

uncertainties, it is less time-consuming than visiting individual farms to collect data 

and the methods still provide reasonable estimates. 

Information regarding the irrigation water use for both sub-basins are also provided 

by the FAO GeoNetwork (http://www.fao.org/geonetwork) and FAO AquaMaps. 

However, this data is generally at a larger scale, therefore, it was only used as a 

guideline in determining the crop type and area of irrigation at a sub-basin scale. For 

example the gridded data from FAO GeoNetwork shows the area actually irrigated as 

a percentage of the area equipped for irrigation in a 5 arc minutes (0.833 decimal 

degrees) grid cell in the year 2005 (Siebert et al., 2013). 

http://www.fao.org/geonetwork
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4.3.1 Farms dams in the Mogalakwena and Shashe sub-basins 

Farm dam data was collected from sources such as Bailey and Pitman (2015), 

LIMCOM (2013), manual digitizing and remotely sensed imagery. Farm dams are 

generally less than 1 million m3 and large dams are larger than 1 million m3 (Bailey 

and Pitman, 2015). Many farm dams were identified and digitized in the upper and 

lower areas of the Mogalakwena catchment. Other sources such as the DWS’s Water 

Authorization and Registration Management System (WARMS) database had to be 

used to collect the water use data, where possible. At first, the data was collected at a 

catchment scale where after the areas of all of the dams for each sub-basin was 

added together and represented separately. The dam areas were then used to 

calculate the total dam capacity per catchment. 

Farm dams are mainly located in the upstream areas of the Shashe catchment. 

LIMCOM (2013) was the only source that provided farm dam data. However, they did 

not find any farm dams in the Botswana part of the catchment. The data was thus 

verified by digitizing Google Earth images and using remote sensing methods. It was 

found that there were farm dams in the Botswana part of the catchment. 

Unfortunately, the use of the dams could not be determined other than visual 

inspection which in itself does not provide a definite use for all the dams. 

4.3.2 Irrigation in the Mogalakwena and Shashe sub-basins 

The delineation of irrigated area and the irrigation water use for both sub-basins was 

obtained from the various sources, some of which are listed in Table 4.6. 

. 
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Table 4.6. Repositories used to determine irrigated areas and  

Repository Descriptio

n 

Relevant 

data 

Spatial 

resolution 

Sub basin Sources 

FAO 

GeoNetwork 

Global map 

of irrigation 

areas  

Irrigated 

areas, crop 

type and 

irrigation 

water 

demand 

± 10km 

grids 

Mogalakwena, 

Shashe 

Siebert et al., 2013 

FAO 

AquaMaps 

Global 

spatial 

database 

on water 

and 

agriculture 

 - Mogalakwena, 

Shashe 

FAO AquaMaps: 

http://www.fao.org/nr/

water/aquamaps/ 

Limpopo 

Managemen

t Information 

System 

Monograph 

Study of 

the 

Limpopo 

River Basin 

Rainfall, 

Evaporation, 

Observed 

Flows, Model 

parameters 

- Mogalakwena, 

Shashe 

LIMCOM, 2013 

WR2012 Water 

Resources 

Study 

(2012) 

Irrigation and 

farm dams 

- Mogalakwena Bailey and Pitman, 2015 

WARMS Water use 

registration 

Irrigated 

areas 

- Mogalakwena DWS, 2016 

DAFF Field Crop 

Boundaries 

Field Crop 

Boundaries 

- Mogalakwena DAFF, 2011 

USGS LandSat 8 

OLI images 

of study 

area 

Imagery 

(2015) 

30 m Mogalakwena, 

Shashe 

USGS, 2015 

 

The Primary water use datasets that was used in this study is the WR2012, LIMCOM 

(2013) and DAFF (2011). Irrigation datasets (2011 and 2015) was provided by the 

Department of Agriculture, Forestry, and Fisheries (DAFF) and was used as the 

preferred source for irrigation information since both the total irrigation area and the 

areas dependent on water from dams are included in the dataset. Both total 

irrigation area and the area from the dam (in km2) are requirements in the model. 

Other sources such as the WARMS database also provide irrigation data and it 

should be the most reliable source for information related to water used for 
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irrigation. Unfortunately, checks and balances are not effective. Secondary datasets, 

includes Global datasets such as FAO GeoNetwork and FAO AquaMaps and were 

only used as a guideline when the locations of the irrigated areas were identified. 

Google Earth images were also used for verification purposes and to identify irrigated 

areas, digitise polygons of irrigated areas and provide irrigation data at a quaternary 

catchment scale manual digitising of Landsat 8 OLI imagery and Google Earth was 

therefore used to collect irrigation data.  

The primary dataset for irrigation data for Shashe was LIMCOM (2013). The irrigated 

areas were originally identified by making use of maps, imagery and relevant reports. 

This data was verified in Google Earth and more irrigation areas were found. 

However, the irrigation areas dependent on water from dams was not provided by 

LIMCOM (2013) and Google Earth was used to make the best-educated guess. This 

was done by visually locating irrigation areas in the vicinity of farm and large dams. 

The same secondary data sources that were used for Mogalakwena was used for 

Shashe and the same digitizing methods were used. 

There will be a total of two datasets for both Mogalakwena and Shashe after 

verification, one mapping farm dams and the other one mapping irrigation areas. 

4.4 DESKTOP ASSESSMENT OF FARM AND OTHER SMALL DAMS 

Farm dams play an important role in farming businesses because they provide water 

for irrigation and other farming activities. Nevertheless, these dams intercept surface 

flows if they are constructed on a river course and in turn reduce the availability of 

water to downstream areas. However, even though some dams are not located on 

watercourses, the water that they hold still has to be considered in water resources 

studies since the volume of water they hold is part of the catchment’s water budget. 

It is, therefore, important to capture the volumes of all of the dams in each study 

area, but the data sources that provide information on the dams are often outdated 

or incomplete. Other data collection methods including remote sensing and manual 
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digitizing will be used in this study to find all possible small farm dams along with 

other dams that might have been left out in other studies. 

4.4.1 Scope of the assessment 

 All licensed and unlicensed water storages identifiable as dams on satellite 

images in both sub-basins.  

 Water storages not identifiable in the imagery due to the spatial resolution 

and dam delineations outside the defined boundaries.  

 Waterbodies such as wetlands were excluded. 

For over 30 years, Landsat imagery have been used to provide information for 

managing natural resources. Landsat 8 OLI imagery was therefore used in this study 

to delineate far dams (see Table 4.7 and Table 4.8). These images where acquired 

from USGS (2015). 

Table 4.7. The Landsat 8 OLI imagery that was used to collect farm dam data in the 

Mogalakwena sub-basin. 

 Path Row Date 

Main 170 77 14 July 2015 

Peripheral 170 76 12 June 2015 

Peripheral 170 75 12 June 2015 

 

Table 4.8. The Landsat 8 OLI imagery that was used to collect farm dam data in the 

Shashe sub-basin. 

 Path Row Date 

Main 172 74 12 July 2015 

Peripheral 172 75 12 July 2015 

Peripheral 171 74 5 July 2015 

Peripheral 171 75 5 July 2015 

Peripheral 170 75 12 June 2015 

 

There are several types of digitizing methods. The type of digitizing used in this 

study is known as heads-up digitizing, also referred to as on-screen digitizing. It is 
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the method of tracing geographic features from another dataset (in this case satellite 

imagery) directly on the computer screen. Google Earth was used to identify and 

digitize the dams (and irrigation areas). The dams identified through remote sensing 

methods were imported into Google Earth (dated between 2003 and 2016 for both 

Mogalakwena and Shashe) where after they were delineated according to the 

imagery and dams were identified and delineated if it was not identified through 

remote sensing methods. 

4.4.2 Identifying farm dams using remote sensing methods 

In recent years, remote sensing became a tool that is widely utilised for quantifying 

land surface water resources (Bastawesy et al., 2008). The advantage of remote 

sensing, when compared to in situ measurements, is that spatial and temporal views 

of the surface water are provided over large areas (Giardino et al., 2010). Even though 

imagery from Landsat satellites has a low spatial resolution (30 m) it has a higher 

spectral resolution than is obtained from other satellites. Therefore, Landsat imagery 

is the most common imagery used for the examination of natural phenomenon such 

as water bodies (Mustafa and Noori, 2013). A number of methods have been 

developed over the years to quantify water resources by using remote sensing 

(Wang et al., 2008; Ji et al., 2009; Jawak et al., 2015). However, problems such as not 

considering spectral characteristics (e.g. Wang et al., 2008) as well as accuracy and 

operational problems occur in the proposed methods (Malahlela, 2016). The 

algorithm most commonly used for quantifying dams is a multi-band index 

developed by McFeeters (1996) and later modified by Xu (2006). The algorithm is 

now known as the normalized difference water index (NDWI) and is designed to 

maximize water reflectance in the green and near-infrared bands as follows: 

NDWI =
RGREEN − RNIR
RGREEN + RNIR

 Equation 4.1 

where: RGREEN = the reflectance value of the green band (0.53-0.59 μm), and RNIR = 

the reflectance value of the near-infrared band (0.85-0.88 μm). 
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A modified water index by Xu (2006) was intended to reduce noise associated with 

the NDWI image, which is often mixed-up with built-up land features (Malahlela, 

2016). The following equation is used for the modified normalized difference water 

index (MNDWI): 

MNDWI =
RGREEN − RSWIR1

RGREEN + RSWIR1
 Equation 4.2 

where: RGREEN = the reflectance value of the green band (0.53-0.59 μm), and RSWIR1 

= the reflectance value of the shortwave infrared band (1.57-1.65 μm). 

Even though both algorithms can be used to identify water bodies from imagery on 

which water are not easily identified (see Figure 4.8 below), more misidentification 

took place when the MNDWI algorithm was used. MNDWI has been shown to 

subdue the confusion of water pixels by built-up areas (Xu, 2006); however, the 

algorithm did misclassify shadows (especially from clouds and mountains) for much 

larger areas than the NDWI algorithm (see Figure 4.9 for an example). The NDWI 

algorithm was therefore used to extract reservoir data for this study. It should be 

noted that even though other algorithms are also used to detect water bodies e.g. 

the simple water index (SWI) and automated water extraction index (AWEI), analysing 

each algorithm is beyond the scope of this study. 
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  NDWI      MNDWI 

Figure 4.8. Comparison between two of the different algorithms that can be used to 

extract dam data from remotely sensed imagery.  

 



62 

 
Figure 4.9. The difference between dams identified by manual digitizing (light blue) and 

remote sensing (dark blue). The areas identified by remote sensing methods 

are actually shadows of mountains and not dams. 

4.4.3 Comparison between data obtained from manual digitizing and remote 
sensing 

Even though remote sensing methods provide a quick and easy way to capture farm 

dams, issues such as misclassification do occur. Since the classification of farm dams 

is based on the thresholds that were manually selected, shadows are also classified as 

dams because their thresholds fall within the boundaries that were selected in the 

ENVI software. The remotely sensed data, therefore, had to be visually inspected and 

‘cleaned’ by removing misclassified areas. An area in Mogalakwena where dam data 

from remote sensing methods and manual digitizing is compared during the data 

cleaning process is shown in Figure 4.10. It was found that not only were there areas 

that were wrongfully classified as dams in the remotely sensed data; the dam areas 

are also different from the manually digitised dams. The difference in dam area is 

caused by the spatial resolution of the imagery that was used to classify the dam. The 

remote sensing software can therefore not be used to estimate the exact area of a 
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dam and manual digitizing is required. However, it was found that some dams were 

identified by remote sensing, but missed during the manual digitizing process. 

Remote sensing and manual digitizing were therefore used together to identify the 

number of dams in both sub-basin as accurately as possible. 

 

 

Figure 4.10. Water bodies identified in the Mogalakwena sub-basin by making use of the 

NDWI algorithm and Landsat 8 OLI imagery. The classified dams (a) are very 

different from the dams seen on satellite imagery (b) since remote sensing 

methods identify spectral signatures at a pixel level. 

4.5 HYDROLOGICAL MODELLING 

Identifying sources of uncertainty in hydrological modelling was the overall objective 

of this study. The objective, in turn, consisted of two sub-objectives: 

 To quantify the degree of uncertainty for individual sources; and 

 To assess their combined impact on the model outputs for each sub-basin.  
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The details of the methods are briefly discussed in section 4.3.2 and Chapter 5. The 

focus of this study is the uncertainty associated with simulations of the natural 

hydrology and water use. Therefore, additional sources found in water resources 

management, as well as operational planning, are beyond the scope of this study.  

4.5.1 Model selection 

SPATSIM (Spatial and Time Series Information Modelling) version of the Pitman 

model was the preferred software. The model input requirements such as rainfall and 

evapotranspiration have been taken from the WR2012 study and were fixed 

throughout the analysis. The two-steps model in SPATSIM was used for uncertainty 

analysis in this study. The first step of the model focuses on the parameters which is 

physically based and includes the natural hydrology of the Luvuvhu (e.g. runoff). The 

second step includes the impact of non-physical input data such as water use. The 

output model uncertainty is displayed for both the parameter and water use data 

separately and is compared to the actual flows obtained from WR2012. Chapter 5 

provide a more detailed description of the Pitman model as well as the model setup 

for this study. 

4.5.2 Quantifying uncertainty 

Several reported methods such as the Bayesian Total Error Analysis (Kavetski et al., 

2006) and the Integrated Bayesian Uncertainty Estimator (Ajami et al., 2007) have 

attempted to account for all sources of uncertainty. Unfortunately, these methods are 

not appropriate for data scarce regions such as southern Africa because they are 

statistical or data driven approaches (Sawunyama et al., 2011). In this study the 

uncertainty was quantified in two steps: 

Step One – the Pitman model parameters related to the physical processes of runoff 

generation are analysed;  
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Step Two – include the assessment of the contribution of anthropogenic water use 

data (farm dams and irrigation) uncertainty to the simulated runoff uncertainty. 

4.5.2.1 Analysis of the Pitman model parameters 

The parameters that were considered for uncertainty were restricted to ZMIN 

(minimum absorption rate in mm/month), ZMAX (maximum absorption rate in 

mm/month), ST (Maximum soil moisture storage capacity in mm a-1), FT (runoff rate 

at ST in mm/month) and POW (power of soil storage-runoff curve). The approach 

that was used to quantify parameter uncertainty involves using different assumptions 

about the physical properties of the basin to derive the ‘best guessed’ parameters as 

well as the lower and upper bounds for the sub-basins. It is based on physical basin 

statistics from which the parameter values were constrained.  Expected behavioural 

outputs are generated and compared to the actual flows from the WR2012 Study for 

Mogalakwena and the simulated flows from the Limpopo River Basin Monograph 

Study (2013) for Shashe. 

4.5.2.2 Assessment of impacts on uncertainty in water use data 

The extended version of the Pitman model includes several components that 

represent anthropogenic (i.e. water use) impacts such as small farm dams, large 

dams, water abstractions and return flows and irrigation. The focus was placed on 

farm dams and irrigation in particular because they represent important components 

of the present day water balance. Nevertheless, data on these water use components 

are very unreliable hence the need to estimate the uncertainty related to available 

data and to incorporate it into the model. 
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CHAPTER 5 
The Pitman model 

5 he Pitman model 

5.1 THE SPATSIM MODELLING FRAMEWORK 

In this Chapter, focus will be placed on the uncertainty approach of the Pitman 

model through the use of the SPATSIM software interface used to apply the model. 

The SPATSIM software incorporates a comprehensive data management system with 

a Geographical Information System (GIS) interface. Therefore, data can be used in a 

spatial context (Sawunyama, 2008). Management of the data is done through a 

spatial interface by using of GIS shapefiles (referred to as the features) which are 

linked to any number of data attributes. The user decides on the attributes which 

occur in a wide arrange of data such as text information, single values, tabular 

information and time series data. The SPATSIM software allows the user to import, 

view, graphically display and share different types of data as well as further 

processing of data to create new information. The SPATSIM software has been 

developed mostly by Prof. D.A. Hughes and Mr. D.A. Forsyth at the Institute for Water 

Research (IWR) at Rhodes University and is available for download at no cost from 

the website of the IWR (http://iwr.ru.ac.za/iwr/software/spatsimupdate.php). The 

Delphi programming language (Software Developing Kit) was used to write the 

model, and a Paradox database structure is used for data sorting (IWR, 2017). A large 

part of the structure of the original Pitman model is preserved in the SPATSIM 

version. Some recent developments that are designed to improve the general 

applicability of the model in different physiographic settings of the southern Africa 

region are included (Hughes, 1997; Hughes et al., 2006) and to handle multiple 

model runs that are required to consider uncertainty issues (Kapangaziwiri et al., 

2012). The version of the model used in this study has explicit surface-ground water 

interaction routines (Hughes, 2004) and a wetland function. Since it is a conceptual 

http://iwr.ru.ac.za/iwr/software/spatsimupdate.php
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type of model, parameters that are associated with components that represent the 

main hydrological processes (and human impacts) that operate at a sub-basin scale 

are included (Hughes et al., 2010). A flow diagram of the Pitman model used in this 

study is presented in Figure 5.1.  

PRECIPITATION

(RDF)

IMPERVIOUS AREA

(AI)

INTERCEPTION

(PI, AFOR, FF)

CATCHMENT ABSORPTION
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SOIL MOISTURE RUNOFF

(FT, POW)
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Figure 5.1. A flow diagram of the Pitman model, indicating the main components of the 

model including the parameters given in brackets (After Kapangaziwiri et al., 

2012). 

The SPATSIM software consists of internal facilities (routes for data viewing, graphical 

display, data editing etc.) and also has links with external models (Figure 5.2).  The 

models that are linked to SPATSIM have different purposes and are developed as 

separate computer programs and for this study the Global Options Threaded Model 
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was selected for the uncertainty analysis. An external time series analysis program 

known as TSOFT is also linked to SPATSIM (Hughes et al., 2000). TSOFT can be used 

to display all types of time series data graphically or statistically. The software is 

designed for the assessment of observed data, comparing observed and simulated 

data and the detailed investigation of model outputs. 

 

Figure 5.2. Screen shot of the SPATSIM software that also includes the model 

setup interface. 

5.2 UNCERTAINTY ANALYSIS 

The uncertainty analysis focused on the impact of parameters and water use 

uncertainties on estimated sub-basin water resources. The parameter uncertainties 

were modelled first, before the incorporation of water use uncertainties. The main 

parameters of the model are shown in Table 5.1. Runoff is mainly generated by two 

model functions. The first is an asymmetrical triangular distribution of catchment 

absorption rates defined by parameters ZMIN, ZAVE, and ZMAX. 
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Table 5.1. A list of the parameters of the Pitman model including those of the reservoir 

water balance model (Hughes et al., 2006). 

Parameter Unit Parameter description 

RDF - Controls the distribution of total monthly rainfall over four  model iterations 

AI  Fraction  Impervious fraction of sub-basin 

PI1 and PI2  mm Interception storage for two vegetation types 

AFOR  %  % area of sub-basin under vegetation type 2 

FF - Ratio of potential evaporation rate for Veg2 relative to Veg1 

PEVAP mm Annual sub-basin evaporation 

ZMIN mm month-1 Minimum sub-basin absorption rate 

ZAVE mm month-1 Mean sub-basin absorption rate 

ZMAX mm month-1 Maximum sub-basin absorption rate 

ST mm Maximum moisture storage capacity 

SL mm Minimum moisture storage below which no GW recharge occurs 

POW - Power of the moisture storage- runoff equation 

FT mm month-1 Runoff from moisture storage at full capacity (ST) 

GPOW - Power of the moisture storage-GW recharge equation 

GW mm month-1 Maximum ground water recharge at full capacity, ST 

R - Evaporation-moisture storage relationship parameter 

TL months Lag of surface and soil moisture runoff 

CL months Channel routing coefficient  

DDENS - Drainage density 

T m2 d-1 Ground water transmissivity 

S - Ground water storativity 

GWSlope % Initial ground water gradient 

AIRR km2 Irrigation area 

IWR Fraction Irrigation water return flow fraction 

EffRf  Fraction Effective rainfall fraction 

NIrrDmd Ml a-1 Non-irrigation demand from the river 

MAXDAM  Ml Small dam storage capacity 

DAREA % Percentage of sub-basin above dams 

A, B  - Parameters in non-linear dam area-volume relationship 

IrrAreaDmd km2 Irrigation area from small dams 

CAP  Mm3 Reservoir capacity 

DEAD % Dead storage 

INIT  %  Initial storage 

A, B - Parameters in non-linear dam area-volume relationship 

RES 1–5 % Reserve supply levels (percentage of full capacity) 

ABS  Mm3 Annual abstraction volume 

COMP Mm3 Annual compensation flow volume 
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The second function determines the drainage rate from the main moisture storage 

(S, with a capacity of ST, mm).  This storage is depleted by evapotranspiration, 

interflow and groundwater recharge. The maximum interflow (FT, mm month-1) and 

recharge (GW, mm month-1) rates occur at ST, while two power functions (parameters 

POW and GPOW) determine these rates at lower values of moisture storage (S, mm). 

Recharge is routed through a groundwater storage function that accounts for 

evapotranspiration losses, drainage to other sub-catchments and contributions to 

baseflow. The model also has functions to simulate the impact of human activities 

like small farms dams or large reservoirs and irrigated agriculture in managed basins 

(see Table 5.1). 

5.3 MODEL SETUP 

The general approach adopted in this study is illustrated in Figure 5.3 below and 

follows similar procedures as the ones discussed in Tumbo and Hughes (2015). The 

modelling used accounts for uncertainties arising from the quantity and quality of 

the input data in a two-step approach in the SPATSIM version. 

 

Figure 5.3. The process that was followed during the two-step uncertainty analysis 

modelling. 
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5.3.1 Analysis of the Pitman model parameters 

The first step involves the use of constraint filters to get parameter sets that could be 

considered behavioural in the simulation of the incremental natural flows of each 

sub-basin. The physical parameters for generation of runoff that were considered for 

uncertainty were restricted to ZMIN, ZMAX, ST, FT and POW.  The behavioural 

parameter sets are saved and then used with the uncertain water use data in the 

second step of the model when the cumulative flows were simulated. The first step 

(incremental uncertainty) runs the model 10 000 times (but can go up to 100 000 

times) only on the incremental sub-basins and compares the simulated output to six 

constraints ranges (see Figure 5.4): 

 Mean monthly streamflow (m3*106); 

 Groundwater recharge (mm); 

 Three points on the flow duration curve at 10%, 50% and 90% (FDC10, FDC50 

and FDC90); and 

 % time of zero flows. 

In this study, the parameter values for each run of the model are independently 

randomly sampled from the inputs by making use of a Normal (defined by the mean 

and standard deviation) frequency distribution. As soon as a parameter set generates 

a simulation that satisfies all of the constraints, it is saved to the SPATSIM database 

(Ndzabandzaba and Hughes, 2017). However, when 1 000 output behavioural 

parameter sets have been found the model terminates. Since the constraints define 

the uncertainty in the hydrological response behaviour of each of the selected sub-

basins (Yadav, et al., 2007; Westerberg et al., 2011;  Westerberg et al., 2014) all of the 

saved parameter sets represents behavioural responses (Beven, 2012). The 

parameters that were considered for uncertainty were restricted to: 

The surface runoff parameters (ZMIN, ZAVE and ZMAX mm/month), also known as the 

infiltration parameters, quantify the surface runoff/absorption capacity responses to 

rainfall. The model also makes use of a triangular distribution of catchment 
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absorption rates, hence why the parameter values will vary from a minimum value of 

ZMIN to a maximum value of ZMAX and an average value of ZAVE (Kapangaziwiri 

and Hughes, 2008). Therefore, areas with deep soils and low slopes will have a ZMIN 

of over 100 mm (lower than 100 mm occur in semi-arid regions) and more tropical 

areas will have a variation of between 200 and 1 200 mm for ZMAX and will 

experience very little runoff. ZAVE can be calculated as follows: ZAVE = 

(ZMAX+ZMIN)/2. 

The maximum moisture storage (ST in mm) represents the maximum storage depth of 

the unsaturated zone. All of the rainfall that does not get intercepted or diverted to 

surface runoff will be added to this storage. Evapotranspiration, drainage and 

groundwater recharge are outputs. The typical value ranges from 100 mm in arid 

areas where the soils are thin to over 1 000 mm in areas that contain deep soils or 

deep weathered rock material. 

The non-linear relationship between the interflow runoff and the relative moisture 

storage is defined by the interflow parameters (FT in mm month-1 and POW). The 

maximum runoff at ST is defined by FT and POW represents the power of the 

function. 

The groundwater recharge parameter (GW in mm month-1) represents the non-linear 

relationship between the groundwater and relative moisture storage by making use 

of the same type of function as for interflow. However, an additional parameter that 

defines the moisture content below which recharge ceases (SL) is added.  

The approach that was used to quantify parameter uncertainty involves using 

different assumptions about the physical properties of the basin to derive the ‘best 

guessed’ parameters as well as the lower and upper bounds for the sub-basins. It is 

based on physical basin statistics from which the parameter values were constrained.  

Expected behavioural outputs are generated and compared to the actual flows from 

the WR2012 Study (Bailey and Pitman, 2015) for Mogalakwena and LIMCOM, (2013) 
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for Shashe. Table 5.2 and Table 5.3 below list the parameter variations that were used 

for the uncertainty analysis. The assumption is that certain parameters cover the 

range of likely values for the sub-basins while other parameters such as the routing 

parameter (TL) remain fixed.  
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Table 5.2. Parameter ranges of the catchments in the Mogalakwena sub-basins. 

Catch.  ZMIN ZMAX ST POW GW RSF Catch  ZMIN ZMAX ST POW 

A93E MIN 40 950 180 2.9 32.5 0.1 A62B MIN 40 950 150 2.8 

MAX 60 1050 220 3.1 37.5 2.0 MAX MAX 60 1050 170 3.2 

A93C MIN 40 900 190 2.8 15 0.1 A62C MIN 40 950 150 2.8 

MAX 70 1200 220 3.2 18 1.0 MAX MAX 60 1050 170 3.2 

A61A MIN 0 0 140 2.8 18 0.1 A62D MIN 40 950 150 2.8 

MAX 0 0 160 3.2 22 1.0 MAX MAX 60 1050 170 3.2 

A61B MIN 0 0 135 2.8 13 0.1 A62E MIN 40 950 150 2.8 

MAX 0 0 155 3.2 17 1.0 MAX MAX 60 1050 170 3.2 

A61C MIN 50 500 180 2.8 23 0.1 A62F MIN 40 950 150 2.8 

MAX 100 1000 200 3.2 27 1.0 MAX MAX 60 1050 170 3.2 

A61D MIN 50 500 180 2.8 20 0.1 A62G MIN 40 950 150 2.8 

MAX 100 1000 200 3.2 24 1.0 MAX MAX 60 1050 170 3.2 

A61E MIN 50 500 180 2.8 17 0.1 A62H MIN 40 950 150 2.8 

MAX 100 1000 200 3.2 21 1.0 MAX MAX 60 1050 170 3.2 

A61F MIN 0 0 130 2.8 21 0.1 A62J MIN 40 950 150 2.8 

MAX 0 0 150 3.2 25 1.0 MAX MAX 60 1050 170 3.2 

A61G MIN 0 0 190 2.8 21 0.1 A63A MIN 40 900 290 2.8 

MAX 0 0 210 3.2 25 1.0 MAX MAX 60 1100 310 3.2 

A61H MIN 0 0 90 2.8 4.5 0.1 A63B MIN 40 900 290 2.8 

MAX 0 0 110 3.2 6.5 1.0 MAX MAX 60 1100 310 3.2 

A61J MIN 0 0 190 2.8 5 0.1 A63D MIN 40 950 190 2.8 

MAX 0 0 210 3.2 10 1.0 MAX MAX 60 1050 210 3.2 

A62A MIN 40 950 150 2.8 5 0.1       

MAX 60 1050 170 3.2 10 1.0       

*Riparian Strip Factor 

However, their values have to be restricted to sensible ranges that are based on 

previous experience and specific physical basin properties which, for this report, are 

mainly provided by the Water Resources Study of 2012 (Bailey and Pitman, 2015) and 

the Limpopo River Basin Monograph Study, 2013 (LIMCOM, 2013). 
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Table 5.3. Parameter ranges of catchments of the Shashe sub-basin that were modelled. 

Catch.  ZMIN ZMAX ST POW GW 

BS2 MIN 90 1150 500 3.1 2.5 

MAX 110 1250 600 3.3 30 

BS3 MIN 90 1150 400 2.1 2.5 

MAX 110 1250 500 2.3 3.0 

BS4 MIN 40 400 300 1.4 2.0 

MAX 60 500 400 1.6 2.5 

BS5 MIN 90 1150 650 2.9 5.5 

MAX 110 1250 750 3.1 7.5 

BS6 MIN 90 900 650 2.9 2.5 

MAX 110 1000 750 3.1 5.5 

 

The parameter ranges (excluding the Groundwater parameter) were used to produce 

10 000 ensembles each of which was constrained using MMQ, MMRchg, FDC10, 

FDC50, FDC90 and the % Zero Flows to determine behavioural ensembles (see Figure 

5.4). 
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Figure 5.4. An illustration of the parameter set tool that helps with the determination of 

appropriate parameter bounds. The graph in the top left corner shows the 

distribution of the six behaviour ensembles and the other graphs shows the 

parameter ranges. This is an example of a successful sub-basin where 1002 

out of 10000 behavioural ensembles was found, and both the constraints and 

parameter ranges are good. 

5.3.2 Assessment of impacts on uncertainty in water use data 

Adding the value for the water use parameters, with or without uncertainty, is the key 

issue of the second stage of the model. At this stage the results can be compared 

with available observed data that will inevitably include these impacts. However, in 

this study, uncertainty bounds will be added to the parameters. The extended version 

of the Pitman model includes several components that represent anthropogenic or 

water use impacts, such as small farm dams, large dams, water abstractions and 

return flows and irrigation. The focus was placed on farm dams and irrigation in 

particular because they represent important components of the present day water 

balance. A total of six water use related parameters can be used; however, only 
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irrigation area (km2), irrigation area from dams (km2) and maximum dam storage 

(m3*106) will have uncertainty bounds (minimum and maximum values). 

The Irrigation area (km2) parameter is used to represent direct abstraction from the 

river for irrigation purposes; and 

The irrigation area from dams (km2) parameter is used to represent the demands on 

the small dams for irrigation purposes. 

Maximum dam storage (m3*106) is the sum of the storage capacity of all of the small 

dams within a single sub-basin. 

The % catchment area above dams is a representation of the portion of the sub-area 

that can contribute to the small dam storage. 

A in area volume relationship is the constant parameter in the relationship between 

reservoir surface area. 

B in area volume relationship is the power parameter in the relationship between 

reservoir surface areas. 

The second stage of the model (cumulative uncertainty) samples from the saved 

parameter sets at random. They include parameters controlling the incremental sub-

basin natural response, as well as independent random sampling of the range of the 

other parameter. This stage generates 10 000 ensembles of cumulative stream flow 

at all sub-basin outlets. Therefore, all of the downstream ensemble outputs are made 

up of behavioural inputs (within the range of the constraints used in the first stage) 

of each of the sub-basins of a larger catchment. 
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5.4 LIMITATIONS OF THE PITMAN MODEL AND SPATSIM SOFTWARE 

One of the main motivations for using the SPATSIM approach in this study is because 

it has been adopted as the core modelling environment and used for the update of 

the South African water-resource information system (WR90 and WR2012). It also 

became one of the most widely used monthly time-step rainfall-runoff models within 

southern Africa (Hughes et al., 2006). However, the software and the Pitman model 

do have some limitations that had to be overcome. Model calibration is dependent 

on good quality data which is at times difficult to obtain due to, for example in the 

case of southern region, warfare and economic limitations of the present and past 

that have largely preluded the collection of spatially and temporally representative 

water resource information (Hughes, 1997). In turn, the model cannot be adequately 

optimised if good quality input data with associated observed flows are absent. 

Remote sensing methods were used to collect farm dam and irrigation data to 

compensate for the lack of data is some catchments of the Mogalakwena and Shashe 

sub-basins. Observed streamflow data was also missing for most of catchments for 

both Mogalakwena and Shashe, therefore, the model was set up for the gauged 

catchments where after the methods were applied to ungauged catchments. In 

conclusion, despite limited data access, the model were able to represent the 

hydrological responses of other basins like the Okavanga Delta (Hughes et al., 2006) 

which made it the ideal model to use for this study due to the lack of good quality 

data, especially for the Shashe sub-basin. 
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CHAPTER 6 
Results and discussion 

6 Results and discussion 

This chapter reports presents and discusses the results in the following order: 

 Estimate water resources using historical data; and 

 Quantify the uncertainties related to water resources estimation based on 

available water use data. 

The combined effect of sources of uncertainty in input data on total output 

uncertainty for the catchments of the Mogalakwena and Shashe sub-basins are 

explored. 

6.1 HYDROLOGICAL MODELLING AND UNCERTAINTY ANALYSES 

The farm dam and irrigation datasets developed in this study as well as the irrigation 

data collected from DAFF was compared to the LIMCOM Study, 2013. LIMCOM 

(2013) was chosen because the study used the latest data available e.g. the WR2012 

Study for South Africa. Therefore the data did not have to be sourced from various 

different sources. The data were collected at the sub-basin scale. For purposes of 

simplicity in this study and also based on the model to be used, the individual small 

farm dams in each quaternary sub-basin were added up to form one dam at the 

outlet of the quaternary, whose parameters (e.g. full supply capacity and area) were 

then subsequently specified and the level of uncertainty where necessary. Only the 

surface areas of the identified farm dams were estimated from the remote sensing 

and through the digitizing processes and dam capacities had to be calculated using a 

generalised relationship between capacity and area provided by LIMCOM (2013). 

While many approaches to the estimation of dam capacities could be used (e.g. Sayl 

et al., 2016; Hughes and Mantel, 2010 and Sawunyama et al., 2006) this equation was 
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chosen since it was applied successfully in the whole of the Limpopo basin, and is 

given as: 

A = 0.4 x C0.7 Equation 6.1 

where: A = Surface area of the farm reservoir [km2] and C = Capacity of the farm reservoir 

[m3] 

The volumes obtained from the equation were also compared to data from previous 

national regionalised databases and was found to be similar and was thus therefore 

adequate to use. The range of variation was then used in the Pitman model. 

Irrigation data for Mogalakwena sub-basin in South Africa was provided by LIMCOM 

(2013), which was in turn collected from the national water resources database 

(WR2012) and compared to the data received from DAFF. For the Shashe catchment 

data from LIMCOM (2013) was compared to areas that were digitized in Google 

Earth. A huge difference between the irrigation coverage was observed for the 

Mogalakwena quaternary catchments giving a relatively large uncertainty distribution 

(Table 6.2). However, the difference between the irrigated areas in Shashe which were 

also provided by the LIMCOM (2013) compared to the areas digitized in Google 

Earth is small. Nevertheless, the uncertainty still had an impact on the water 

resources availability especially the low flows (regardless of their size). 

In Table 6.1,Table 6.2 and Table 6.3 the uncertainty values represents the percentage 

differences between the minimum and maximum dam volumes or irrigation areas 

and is given by: [maximum average – minimum average)/maximum average value] x 

100 (Sawunyama et al., 2011). The total farm dam volumes (in Ml) and the range (min 

and max) of variability (uncertainty) used in the model simulations for the BS2, BS3, 

BS4, BS5 and BS6 subzones which are part of the  Shashe in Zimbabwe were so small 

that they did not impact the uncertainty of the model outputs. Therefore, their 

uncertainty % was not calculated. 

The uncertainty distribution for Mogalakwena is given in Table 6.1. The uncertainty 

distribution shows a high overall uncertainty, averaging over 50%, for the farm dam 
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data in Mogalakwena with relatively low uncertainty, averaging below 50%, for the 

irrigation data (except for a few catchments). 

Table 6.1. Total farm dam volumes (in Ml) and the range (min and max) of variability 

(uncertainty) used in the model simulations for each of the quaternary 

catchments of the Mogalakwena sub-basin  

Catchment LIMCOM 

(2013) 

Alternative 

source* 

Uncertainty % 

A63E 9310 15240 39 

A63C 1610 5870 73 

A61A - 7590 100 

A61B - 9740 100 

A61C 1210 1170 3.3 

A61D 1410 5230 73 

A61E 1320 12290 89 

A61F - 14450 100 

A61G 3220 5640 43 

A61H 8830 12040 27 

A61J - 12430 100 

A62A 460 4680 90 

A62B - - 0 

A62C - 540 100 

A62D 200 2150 91 

A62E - 6550 100 

A62F 390 4500 91 

A62G - - 0 

A62H - 1220 100 

A62J - 3950 100 

A63A 60 5120 99 

A63B 750 1620 54 

A63D 460 1900 76 

*Remote sensing, etc 

The uncertainty distribution for Shashe is displayed in  

 

 

 

 

 



84 

 

 

 

 

 

 

 

 

Table 6.3.  There is no uncertainty for most sub-zones and high uncertainty values for 

a small number of sub-zones for both farm dam and irrigation. However, in this study 

the uncertainty values are only based on comparing data from LIMCOM (2013) to 

remotely sensed data. Comparing other sources could have had completely different 

results, but that was beyond the scope of this study. 

 

Figure 6.1. Distribution of irrigated areas in the catchments of the Mogalakwena sub-basin. 
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Table 6.2. Total irrigated areas (km2) and the range of variability (uncertainty) for each of 

the quaternary catchments of the Mogalakwena sub-basin. 

Catchment LIMCOM, 2013 DAFF, 2011 Uncertainty % 

A63E 40 52.91 24 

A63C 2.67 7.28 63 

A61A 6.81 7.66 11 

A61B 3.34 5.59 40 

A61C 4.56 4.9 7 

A61D 2.93 3.35 13 

A61E 17.75 9.63 46 

A61F 8.6 5.41 37 

A61G 7 1.16 83 

A61H 8.38 33.63 75 

A61J 18.93 14.04 26 

A62A 3.54 2.28 36 

A62B 0 0 0 

A62C 0.1 0 100 

A62D 1.16 0.66 43 

A62E 1.49 0 100 

A62F 4.41 3.86 13 

A62G 0.74 0.04 95 

A62H 0.55 0.03 95 

A62J 0.53 0.53 0 

A63A 3.43 24.98 86 

A63B 8.7 6.25 28 

A63D 1.91 6.46 70 

 



86 

 

Figure 6.2. Distribution of irrigated areas in the Shashe sub-basin. 
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Table 6.3. Total irrigated areas (in km2) and the range of variability (uncertainty) for each 

of catchments of the Shashe sub-basin. 

Catchment LIMCOM, 2013 Manual digitising in 

Google Earth 

Uncertainty % 

BS1 - 0.71 100 

BS2 3.33 3.33 0 

BS3 0.08 0.21 62 

BS4 - - 0 

BS5 0.17 0.17 0 

BS6 - - 0 

BR 4.58 4.67 2 

BM 0.16 0.67 76 

BT1 0.003 0.003 0 

BT2 0.54 0.54 0 

BT3 - - 0 

BT4 0.38 0.411 8 

BT5 - - 0 

AW - - 0 

AE - - 0 

4321 - 0.448 100 

AO - - 0 

4411 - - 0 

4511 - - 0 

4351 - - 0 

4361 - - 0 
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6.2 QUANTIFY THE UNCERTAINTIES AND MODEL CONTRASTING OF THE 

LIMPOPO RIVER BASIN 

Three steps were taken to ultimately present the flow duration curves in Figure 6.3 

and Figure 6.4. Firstly, the naturalised flows were simulated based on the data 

provided by LIMCOM (2013). Secondly, naturalised flows were simulated for a range 

of model parameters related to natural processes and lastly, water uses (small dams 

and irrigation were added) with their ranges of uncertainty. The parameter 

uncertainty is mainly caused by uncertainty associated with the inability to accurately 

relate physical properties data to the parameter values and how the Pitman model 

responds to these effects. Water use uncertainty, will only be affected by the relative 

contribution of each source (as displayed in Tables 6.1 – 6.3). 

6.2.1 Results at the outlet of the Mogalakwena sub-basin, the A63D 
catchment. 

The simulated mean monthly flows were 22.6 Mm3 whereas the maximum mean 

monthly flows for the uncertainty related to the natural parameters were estimated 

to be at 24.7 Mm3 and a minimum of 21.5 Mm3. The results show that the whole 

range of flows (i.e. high, medium and low flows) is impacted when uncertainty related 

to natural parameters is considered (Figure 6.3). The minimum value for the expected 

total uncertainty when the natural and anthropogenic (water use) parameters are 

summed up together was the same as the natural parameters uncertainty only, but 

the maximum mean monthly flows were estimated to be at 25.0 Mm3 and the 

minimum flows were estimated to be 22.2 Mm3. The results show that the upper 

bound slightly increases once water use uncertainty is added, whereas the lower 

bound stays almost the same except for at the low flows where the bound increases 

slightly. 
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Figure 6.3. The variation of the flows at the outlet of the A63D catchment based on the 

uncertainty in the natural model parameters as well as total expected/calculated 

uncertainty range of both natural and anthropogenic water use (farm dams and 

irrigation) parameters. 

6.2.2 Results for the Shashe sub-basin 

The simulated mean monthly flows were 14.5 Mm3 whereas the maximum mean 

monthly flows for the uncertainty related to the natural parameters were estimated 

to be at 18.0 Mm3 and a minimum of 11.7 Mm3. The results show that the whole 

range of flows (i.e. high, medium and low flows) is impacted when uncertainty related 

to natural parameters is considered (Figure 6.4). The minimum value for the expected 

total uncertainty when the natural and anthropogenic (water use) parameters are 

summed up together was the same as the natural parameters uncertainty only, but 

the maximum mean monthly flows were estimated to be at 17.7 Mm3. The results 

show that the upper bound slightly increases once water use uncertainty is added, 

whereas the lower bound stays almost the same.  
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Figure 6.4. The variation of the flows at the outlet of the BR1 catchment based on the uncertainty 

in the natural model parameters as well as total expected/calculated uncertainty range 

of both natural and anthropogenic water use (farm dams and irrigation) parameters.  
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CHAPTER 7 
Conclusions and recommendations 

 

The purpose of this chapter is to summarize the main findings of the study and relate 

them to the study objectives. Some important recommendations for future research 

are also highlighted. The main idea of this study was to assess the impact of the 

addition of uncertainty related to generation of water resource estimates using 

available information since no formal recognition of uncertainty is used in the 

practical application of hydrological models in southern Africa. However, 

international research does provide many examples of different approaches that 

account for uncertainty in hydrological modelling. These approaches have not yet 

been used in practice in southern Africa mainly due to the differences in models 

calibration approaches, the willingness of practicing hydrologists to adopt new 

methods and the differences in the availability and quality of data in this region. 

While formal uncertainty analysis of rainfall and runoff data did not form part of this 

study, impacts on model results were clearly observed. In this study, and also in 

modelling applications in southern Africa, general modelling were hampered by 

several factors, which include: 

 A high degree of spatial and temporal variation in rainfall, evaporation and 

runoff data. 

 A lack of long or continuous time series records of rainfall, evaporation and 

particularly runoff stations, resulting in many basins being ungauged. 

 Uncertainty in the parameter estimation methods due to the high possibility 

of human error, especially in ungauged basins. 

 Poor quantification of land and water use changes, particularly dams and 

irrigation areas. Observed runoff data are therefore often residual record.  
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This study therefore provides a first step towards employing uncertainty principles in 

water resource assessment studies by looking at the expected uncertainty related to 

the natural parameters of flow generation and those related to anthropogenic 

activities in basins. 

6.3 CONCLUSIONS 

Much of the discussion in this study focuses on the uncertainty related to the input 

data, specifically parameters of physical and anthropogenic (such as farm dams and 

irrigation) processes, and how it affects the model outputs. The main objective was to 

be able to demonstrate that estimated water resources are thus capable of spanning 

a wide range of plausible or probable values. This study gives insight into how the 

water resources of the Mogalakwena and Shashe sub-basins would be expected to 

vary when such uncertainty is accounted for in the estimation process. It can be 

concluded that uncertainty (in this case related to natural parameters and water use 

data) plays an important role in the estimation of water resources as demonstrated in 

the sub-basins. The uncertainty related to the estimation of water use data tends to 

affect both the high and low flows when compared to only uncertainty related to 

natural flow generation processes. Farm dams would absorb the peak flows during 

the rainy season, whereas irrigation would be important during the low flow season 

as water is abstracted for irrigation to supplement drier low rainfall conditions. This 

study provides a limited illustration of how the identification and quantification of 

uncertainties can provide insight into the possible impacts of using a database such 

as the national water resources assessment study (WR2012) without further 

examining the quality of the data. This study also contributes by providing water 

resources estimations that include uncertainties based on the data that are routinely 

used in the modelling processes. 
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6.4 RECOMMENDATIONS AND LIMITATIONS 

6.4.1 Recommendations for the input data 

Comparing all data sources of input data for Mogalakwena and Shashe was beyond 

the scope of this study. Also, input data such as climate data and other water use 

data (e.g. mining activities, groundwater abstractions) were not analysed in this 

study. Future studies can include: 

 A comparison of other input data such as mining activities, industrial activities 

and other water abstractions to give an idea of the expected range of 

uncertainty related to these activities before the data could be used in water 

resources estimation studies.  

 Comparing the uncertainties of various sources to find the expected impacts 

on the simulation of water resources. These simulation results are used in 

policy making and day-to-day decision making in management, planning and 

development processes. It is therefore imperative to have a sense of how the 

data, tools and science used for information generation can be relied upon.  

6.4.2 Recommendations for the representation of the model outputs 

How to present the results to decision makers was beyond the scope of this study. 

However, the importance of incorporating uncertainty in estimating water resources 

cannot be ignored. Also, strong connections between decision making risks with 

financial implication exist. Further studies can include: 

 Analysing various methods in which the uncertainty can be presented. An 

important factor to consider is whether or not the decision maker will accept 

and be able to utilise data that show the upper and lower bounds of the 

estimated water or if they would prefer a single estimated value.  

 An evaluation of the impact of the presentation of the uncertainty results to 

decision makers of various sectors, e.g. how does the presentation of upper 
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and lower bounds of uncertainty impact the calculations of constructing a 

large dam compared to just using an average value of the estimated water 

resources that is available in a sub-basin? There are obvious financial 

implications related to over or under- designing such infrastructure.  

 Analysing how climate change, with its accompanying uncertainties, will 

impact the decision and/or policy making along with the uncertainties in the 

present day water resources estimation. 
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