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Abstract
A series of tailored novobiocin–ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer 
and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. 
While the target compounds displayed moderate anticancer activity against the breast cancer cell line with  IC50 values in the 
mid-micromolar range, compounds 10a–c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, 
the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90).

Graphical abstract A selection of tailored novobiocin derivatives bearing the organometallic ferrocene unit were synthesized 
and characterized by common spectroscopic techniques. The target compounds were investigated for in vitro anticancer and 
antimalarial activity against the MDA-MB-231 breast cancer cell line and Plasmodium falciparum 3D7 strain, respectively.
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Introduction

The development of resistance to clinically approved anti-
cancer and antimalarial drugs has intensified research 
endeavours towards the search for novel drug targets and 
bioactive compounds. Novobiocin (1) is an antibiotic iso-
lated from Streptomyces bacteria and is a weak inhibitor of 
the chaperone, heat shock protein 90 (Hsp90) [1]. Novo-
biocin derivatives have shown promise as anticancer agents 
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by inhibiting the function of this chaperone [2–4]. Within 
the cell, Hsp90 is responsible for the stabilisation and con-
formational regulation of polypeptides to support the attain-
ment of their functional forms [5]. Numerous proteins sta-
bilised by Hsp90, i.e., Hsp90 client proteins including cell 
signalling proteins, steroid hormone receptors and regula-
tory kinases, are involved in essential cellular processes [6]. 
Hence, Hsp90 is crucial for normal cell function as it medi-
ates these processes by maturing the proteins involved. As 
a result, the chaperone bears therapeutic potential as a drug 
target [7, 8].

In cancer, Hsp90 is associated with the manifestation of 
the oncogenic phenotype [9–12]. It is central to the hall-
marks pertaining the oncogenic phenotype as several of the 
corresponding client proteins are associated with each of 
these traits [11]. The research groups of Blagg and Alami 
have extensively explored the inhibition of the C-terminal 
domain of the Hsp90 by organic novobiocin derivatives 
and have demonstrated that these induce antiproliferative 
effects in cancer cell lines [13–16]. More importantly, these 
studies revealed that the replacement of the benzamide 
(RHS = right-hand side) and noviose (LHS = left-hand side) 
moieties of 1 with simpler structural motifs retains the anti-
cancer efficacy of the resulting compounds [13–16]. Some 
examples of tailored novobiocin derivatives with promising 
anticancer activity are displayed in Fig. 1 [13–17].

Similarly, Hsp90 has been shown to play a vital role 
in the life-cycle of the parasite, Plasmodium falciparum, 
which causes cerebral malaria [9, 10, 12]. Previous stud-
ies by Banumathy and co-workers revealed the signifi-
cance of P. falciparum Hsp90 (PfHsp90) in the develop-
ment of the parasite by demonstrating that the N-terminal 
Hsp90 inhibitor geldanamycin suppressed the growth of 
the parasite in vitro [10]. It has also been postulated that 
PfHsp90 mediates pro-survival mechanisms of the parasite 
in stressful environments like drug-induced stress, thereby 

potentiating drug resistance [12, 18]. PfHsp90 is consid-
ered to be an appealing drug target in malaria, and the anti-
malarial activity of a group of aminoalcohol-carbazoles 
and 7-azaindole compounds is due to their ability to inhibit 
this protein [19, 20]. In addition, selected analogues of 
the beta-carboline alkaloid harmine that bound PfHsp90 
inhibited the growth of P. falciparum W2 strain in vitro 
and were active against Plasmodium berghei in  vivo 
[21]. These compounds significantly increased the sen-
sitivity of Plasmodium parasites to the antimalarial agent 
dihydroartemisinin [21]. A significant number of studies 
have demonstrated 1 to modestly suppress the growth of 
selected strains of P. falciparum in vitro [22, 23]. Despite 
the evidence underpinning the importance of Hsp90 in P. 
falciparum growth and the antimalarial activity of 1, there 
are no reports in literature regarding the exploration of 
PfHsp90 as a therapeutic target of compounds based on 
the chemical scaffold of 1.

The incorporation of organometallic units into biologi-
cally active scaffolds has been hailed as an attractive strategy 
in the field of medicinal chemistry in the quest for novel 
compounds with efficacy against various diseases [24–26]. 
Most auspicious in this application is the organometallic 
unit, ferrocene, which has attracted great interest in drug 
discovery owing to its appealing medicinal attributes such 
as high aromaticity, lipophilicity, chemical stability, favour-
able redox behaviour, ability to form reactive oxygen species 
(ROS) and absence of cytotoxicity in human cells [27, 28]. 
The success of ferrocene in drug discovery is best repre-
sented by ferroquine (FQ, SSR97193), an efficacious chlo-
roquine–ferrocene conjugate currently in phase II clinical 
trials for treatment of malaria [29]. Moreover, the pioneering 
work of Jaouen and co-workers on anti-tumour ferrocifens 
which are modelled on the tamoxifen scaffold has led to the 
development of a substantial number of ferrocifen type anti-
cancer drugs possessing different modes of action against 

Fig. 1  Chemical structures of 
novobiocin (1) and its simplified 
derivatives 2–4 possessing anti-
cancer activity. LHS left-hand 
side, RHS right-hand side
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various cancer cells and, thus, bear potential of circumvent-
ing resistance [30, 31].

Previously, we demonstrated that the incorporation of the 
organometallic ferrocene unit into the novobiocin framework 
led to compounds such as 4 (Fig. 1) with enhanced activity 
against the HCC38 breast cancer cell line and chloroquine-
sensitive 3D7 strain of the P. falciparum parasite [17]. Fur-
thermore, the resultant ferrocenyl novobiocin derivatives 
contained phenyl substituents in lieu of the structurally com-
plex noviose appendage on the LHS. In an effort to further 
investigate the pharmacological profile of these derivatives, 
in this work we explored the potential activity of ferrocenyl 
derivatives of 1 containing simpler structural units (e.g., 
benzyl and piperidine) devoid of the complex noviose moi-
ety at C-7 of the coumarin core. We also sought to ascer-
tain if the observed anticancer and antiplasmodial efficacies 
of pursued compounds are attributable to inhibition of the 
chaperone Hsp90 by screening the inhibitory activity of the 
most promising compounds against human and P. falcipa-
rum Hsp90 isoforms, namely HsHsp90β and PfHsp90.

Materials and methods

Materials

All chemical reagents and solvents used in this study were 
sourced from Merck (Pty) Ltd. and were used without fur-
ther purification. The progress of each reaction was moni-
tored by analytical thin-layer chromatography (TLC) using 
Merck  F254 silica gel plates (supported on aluminium sheets) 
and the plates were visualised under ultraviolet light (UV 
254 and 366 nm) and in an iodine flask. Where necessary, 
the crude compounds were purified by silica gel column 
chromatography using Merck Kieselgel 60 Å: 70–230 
(0.068–0.2 mm) silica gel mesh.

Instrumentation

The 1H and 13C NMR spectra were recorded on Bruker Bio-
spin 300, 400 or 600 MHz spectrometers, and were refer-
enced internally using residual solvent signals of DMSO-
d6: 2.50 ppm for 1H NMR and 39.5 ppm for 13C NMR, 
or  CDCl3: 7.26 ppm for 1H NMR and 77.2 ppm for 13C 
NMR at ambient temperature. The high-resolution mass 
spectra (HRMS) were recorded on Waters Synapt G2 Mass 
Spectrometer (Central Analytical Facility, University of 
Stellenbosch) using electron spray ionization (ESI) in the 
positive ionization mode, and the IR spectra were recorded 
on PerkinElmer Spectrum 100 FT-IR Spectrometer in the 
mid-IR range (640–4000 cm−1). The melting points were 
determined using the Reichert melting point apparatus and 
were uncorrected.

Preparation of compounds: general procedure 
for synthesis of 10a–f [15]

An appropriate volume of diisopropryl azodicarboxy-
late (DIAD) (2.0 eq.) was added to a suspension of a rel-
evant phenolic substrate 8a–b (1.0 eq.), piperidinol (9a–d) 
(1.0 eq.) and triphenylphosphine  (PPh3) (2.0 eq.) in THF 
(20 mL) on ice. The reaction mixture was stirred at 0°C 
for 5 h followed by removal of the solvent under reduced 
pressure. The resulting orange residue was purified by silica 
gel chromatography (5% MeOH/DCM) to afford the desired 
product 10a–f.

7‑(N‑methyl‑4‑piperidinyl)‑O‑3‑ferrocenylcarboxamidocou‑
marin (10a)

7-Hydroxy-3-ferrocenylcarboxamidocoumarin 8a (0.100 g, 
0.26  mmol), 9a (0.030  g, 0.26  mmol),  PPh3 (0.135  g, 
0.51 mmol) and DIAD (0.104 g, 0.51 mmol) afforded 10a as 
a red solid (0.051 g, 41%). M.p.: 161–163°C. IR vmax/cm−1: 
3355 (N–H, amide), 3107 (C–H, pyrone HC = C), 2935 
(C–H, methyl), 1704 (C = O, lactone), 1659 (C = O, amide), 
1501 (C = C, aromatic), 1173 (C–O, aromatic ether); 1H 
NMR (600 MHz,  CDCl3): δ 8.68 (s, 1H, NH), 8.25 (s, 1H, 
− HC = C−), 7.40 (d, J = 8.6 Hz, 1H, ArH), 6.89 (dd, J = 8.6, 
2.4 Hz, 1H, ArH), 6.85 (d, J = 2.4 Hz, 1H, ArH), 4.82 (t, 
J = 1.9 Hz, 2H, FcH), 4.46 (t, J = 1.9 Hz, 2H, FcH), 4.39 (br 
s, 1H, CH), 4.26 (s, 5H, FcH), 2.73 (s, 2H,  CH2), 2.34 (br 
s, 5H,  CH2,  CH3), 2.09–2.04 (m, 2H,  CH2), 1.92–1.87 (m, 
2H,  CH2); 13C NMR (150 MHz,  CDCl3): δ 170.0, 159.5, 
159.1, 151.5, 128.8, 123.4, 122.1, 114.6, 113.6, 102.8, 75.4, 
71.5 (2C), 70.2 (5C), 68.6 (2C), 53.6 (2C), 46.1, 30.4 (2C), 
29.9; HRMS  (ESI+) m/z calcd for  C26H26FeN2O4: 486.1242; 
found: 487.1318 [M + H]+.

7‑(N‑methyl‑3‑piperidinyl)‑O‑3‑ferrocenylcarboxamidocou‑
marin (10b)

7-Hydroxy-3-ferrocenylcarboxamidocoumarin 8a (0.100 g, 
0.26  mmol), 9b (0.030  g, 0.26  mmol),  PPh3 (0.135  g, 
0.51 mmol) and DIAD (0.104 g, 0.51 mmol) afforded 10b 
as a red solid (0.046 g, 37%). M.p.: 161–163°C. IR vmax/
cm−1: 3380 (N–H, amide), 3068 (C–H, pyrone HC = C), 
2923 (C–H, methyl), 1706 (C = O, lactone), 1663 (C = O, 
amide), 1518 (C = C, aromatic), 1237 (C–O, aromatic ether); 
1H NMR (600 MHz,  CDCl3): δ 8.68 (s, 1H, NH), 8.25 (s, 
1H, –HC = C–), 7.40 (d, J = 8.6 Hz, 1H, ArH), 6.92 (dd, 
J = 8.6, 1.9 Hz, 1H, ArH), 6.89 (d, J = 1.6, 1H, ArH), 4.82 
(br s, 2H, FcH), 4.46–4.44 (m, 3H, FcH and CH), 4.26 (s, 
5H, FcH), 2.91–2.58 (m, 2H,  CH2), 2.32–2.17 (m, 5H,  CH3 
and  CH2), 2.05–1.84 (m, 2H,  CH2), 1.68–1.54 (m, 2H,  CH2); 
13C NMR (150 MHz,  CDCl3): δ 170.3, 159.8, 159.6, 151.7, 
129.1, 123.8, 122.3, 114.8, 113.9, 103.1, 75.7, 73.7, 71.8 
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(2C), 70.5 (5C), 68.9 (2C), 59.9, 55.8, 46.8, 29.3, 23.2; 
HRMS  (ESI+) m/z calcd for  C26H26FeN2O4: 486.1242; found 
487.1328 [M + H]+.

7‑(N‑methyl‑4‑piperidinyl)‑O‑8‑methyl‑3‑ferrocenylcarbox‑
amidocoumarin (10c)

7-Hydroxy-8-methyl-3-ferrocenylcarboxamidocoumarin 
8b (0.060 g, 0.15 mmol), 9a (0.017 g, 0.15 mmol),  PPh3 
(0.078 g, 0.30 mmol) and DIAD (0.060 g, 0.30 mmol) 
afforded 10c as a red solid (0.016 g, 22%). M.p.: 161–163°C. 
IR vmax/cm−1: 3363 (N–H, amide), 3079 (C–H, pyrone 
HC = C), 2921 (C–H, methyl), 1704 (C = O, lactone), 1658 
(C = O, amide), 1521 (C = C, aromatic), 1107 (C–O, aro-
matic ether); 1H NMR (600 MHz,  CDCl3): δ 8.67 (s, 1H, 
NH), 8.27 (s, 1H, –HC = C–), 7.29 (d, J = 8.6 Hz, 1H, ArH), 
6.87 (d, J = 8.6 Hz, 1H, ArH), 4.85–4.82 (m, 2H, FcH), 
4.49–4.43 (m, 3H, FcH and CH), 4.26 (s, 5H, FcH), 2.66 (s, 
2H,  CH2), 2.38 (s, 2H,  CH2) 2.35 (s, 3H,  CH3), 2.33 (s, 3H, 
 CH3), 2.07–1.99 (m, 2H,  CH2), 1.95–1.87 (m, 2H,  CH2); 
13C NMR (150 MHz,  CDCl3): δ 169.9, 159.7, 156.9, 149.5, 
125.5, 123.9, 121.7, 115.4, 113.6, 110.7, 75.4, 71.5 (2C), 
70.2 (5C), 68.5 (2C), 52.5 (2C), 46.4, 30.9 (2C), 29.8, 8.5; 
HRMS  (ESI+) m/z calcd for  C27H28FeN2O4: 500.1398; found 
501.1471 [M + H]+.

7‑(N‑methyl‑3‑piperidinyl)‑O‑8‑methyl‑3‑ferrocenylcarbox‑
amidocoumarin (10d)

7-Hydroxy-8-methyl-3-ferrocenylcarboxamidocoumarin 
8b (0.060 g, 0.15 mmol), 9b (0.017 g, 0.15 mmol),  PPh3 
(0.078 g, 0.30 mmol) and DIAD (0.060 g, 0.30 mmol) 
afforded 10d as a red solid (0.016 g, 38%). M.p.: 100–102°C. 
IR vmax/cm−1: 3361 (N–H, amide), 3088 (C–H, pyrone 
HC = C), 2925 (C–H, methyl), 1702 (C = O, lactone), 1660 
(C = O, amide), 1517 (C = C, aromatic), 1107 (C–O, aro-
matic ether); 1H NMR (300 MHz,  CDCl3): δ 8.67 (s, 1H, 
NH), 8.27 (s, 1H, –HC = C–), 7.31 (d, J = 8.6 Hz, 1H, ArH), 
6.97 (d, J = 8.7 Hz, 1H, ArH), 4.83 (t, J = 1.95 Hz, 2H, FcH), 
4.56 (br s, 1H, CH), 4.46 (t, J = 1.95 Hz, 2H, FcH), 4.2 (s, 
5H, FcH), 3.19–2.80 (m, 2H,  CH2), 2.42–2.32 (m, 3H,  CH3), 
2.30 (s, 3H,  CH3), 2.17 (s, 3H,  CH3), 1.90–1.80 (m, 3H, 
 CH3); 13C NMR (150 MHz,  CDCl3): δ 170.0, 159.7, 156.7, 
149.4, 125.7, 123.8, 121.8, 115.5, 114.0, 111.1, 75.4, 71.5 
(2C), 70.2 (5C), 68.6 (2C), 55.3, 53.6, 46.0, 31.1, 29.9, 22.1, 
8.6; HRMS  (ESI+) m/z calcd for  C27H28FeN2O4: 500.1398; 
found 501.1474 [M + H]+.

7‑(N‑Boc‑4‑piperidinyl)‑O‑3‑ferrocenylcarboxamidocou‑
marin (10e)

7-Hydroxy-3-ferrocenylcarboxamidocoumarin 8a (0.100 g, 
0.26 mmol), 9c (0.052 g, 0.26 mmol),  PPh3 (0.135 g, 

0.51 mmol) and DIAD (0.104 g, 0.51 mmol) afforded 10e 
as a red solid (0.055 g, 37%). M.p.: 159–161°C. IR vmax/
cm−1: 3399 (N–H, amide), 3089 (C–H, pyrone HC = C), 
2934 (C–H, methyl), 1692 (C = O, lactone), 1662 (C = O, 
amide), 1520 (C = C, aromatic), 1234 (C–O, aromatic 
ether); 1H NMR (600 MHz,  CDCl3): δ 8.69 (s, 1H, NH), 
8.26 (s, 1H, –HC = C–), 7.42 (d, J = 8.6 Hz, 1H, ArH), 
6.89 (dd, J = 8.6, 2.4 Hz, 1H, ArH), 6.86 (d, J = 2.3 Hz, 
1H, ArH), 4.82 (t, J = 1.8 Hz, 2H, FcH), 4.55–4.51 (m, 
1H, CH), 4.47 (t, J = 1.8  Hz, 2H, FcH), 4.26 (s, 5H, 
FcH), 3.73–3.69 (m, 2H,  CH2), 3.39–3.35 (m, 2H,  CH2), 
1.97–1.95 (m, 2H,  CH2), 1.81–1.77 (m, 2H,  CH2), 1.47 
(s, 9H, tert-butyl); 13C NMR (150 MHz,  CDCl3): δ 170.0, 
167.6, 159.4, 158.9, 155.0, 151.4, 128.9, 123.4, 122.1, 
114.7, 113.7, 102.8, 80.0 (2C), 77.5, 73.1 (2C), 71.6 
(2C), 70.3 (5C), 68.6 (2C), 28.6 (3C), 21.9; HRMS  (ESI+) 
m/z calcd for  C30H32FeN2O6: 572.1610; found 494.1045 
 [C25H23FeN2O4 + Na]+.

7‑(N‑Boc‑3‑piperidinyl)‑O‑3‑ferrocenylcarboxamidocou‑
marin (10f)

7-Hydroxy-3-ferrocenylcarboxamidocoumarin 8a (0.100 g, 
0.26  mmol), 9d (0.052  g, 0.26  mmol),  PPh3 (0.135  g, 
0.51 mmol) and DIAD (0.104 g, 0.51 mmol) afforded 10f 
as a red solid (0.060 g, 40%). M.p.: 112–114°C. IR vmax/
cm−1: 3384 (N–H, amide), 3056 (C–H, pyrone HC = C), 
2926 (C–H, methyl), 1698 (C = O, lactone), 1663 (C = O, 
amide), 1518 (C = C, aromatic), 1232 (C–O, aromatic ether); 
1H NMR (400 MHz,  CDCl3): δ 8.68 (s, 1H, NH), 8.27 (s, 
1H, –HC = C–), 7.41 (d, J = 8.6 Hz, 1H, ArH), 7.05 (d, 
J = 2.2 Hz, 1H, ArH), 6.99 (dd, J = 8.6, 2.2 Hz, 1H, ArH), 
5.14–4.94 (m, 1H, CH), 4.82 (t, J = 1.29 Hz, 2H, FcH), 4.46 
(t, J = 1.26 Hz, 2H, FcH), 4.26 (s, 5H, FcH), 4.08–3.95 
(m, 2H,  CH2), 2.31–2.09 (m, 4H, 2 × CH2), 2.04–1.94 (m, 
2H,  CH2), 1.47 (s, 9H, tert-butyl); 13C NMR (100 MHz, 
 CDCl3): δ 169.8, 159.3, 158.6, 151.0, 128.4, 123.3, 122.0, 
114.7, 113.9, 103.9, 102.6, 75.2, 71.3 (2C), 70.1 (5C), 68.5 
(2C), 68.4 (3C), 32.7, 28.4 (3C), 23.3 (2C); HRMS  (ESI+) 
m/z calcd for  C30H32FeN2O6: 572.1610; found 373.1765 
 [C20H15FeNO3 + H]+.

General procedure for synthesis of compounds 
10g–h [15]

A relevant NBoc-protected piperidinyl derivative 10e–f 
(1.0 eq.) was stirred in 10% TFA/DCM solution (2 mL) 
for 12 h at room temperature. The solvents were removed 
under reduced pressure to obtain a crude product, which was 
purified by silica gel column chromatography (10% MeOH/
DCM) to afford the desired product 10g–h.
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7‑(4‑Piperidinyl)‑O‑3‑ferrocenylcarboxamidocoumarin 
(10g)

7-(N-Boc-4-piperininyl)-O-3-ferrocenylcarboxamidoc-
oumarin 10e (0.045 g, 0.079 mmol) and 10% TFA/DCM 
solution (2 mL) afforded 10g as a light red solid (0.035 g, 
95%). Mp.: 76–80°C. IR vmax/cm−1: 3397 (N–H, amide 
and piperidinyl amine), 2931 (C–H, pyrone HC = C), 2708 
(C–H, methyl), 1658 (C = O, lactone), 1610 (C = O, amide), 
1530 (C = C, aromatic), 1131 (C–O, aromatic ether); 1H 
NMR (300 MHz,  CDCl3): δ 8.69 (s, 1H, NH), 8.26 (s, 1H, 
–HC = C–), 7.45 (d, J = 8.6 Hz, 1H, ArH), 6.90 (dd, J = 8.6, 
2.2 Hz, 1H, ArH), 6.85 (d, J = 1.7 Hz, 1H, ArH), 4.82 (t, 
J = 1.8 Hz, 2H, FcH), 4.72 (br s, 1H, CH), 4.47 (t, J = 1.8 Hz, 
2H, FcH), 4.26 (s, 5H, FcH), 3.31 (br s, 4H, 2 × CH2), 2.19 
(br s, 4H, 2 × CH2); 13C NMR (75 MHz,  CDCl3): δ 170.0, 
159.5, 159.3, 151.4, 128.8, 123.5, 122.1, 114.5, 113.6, 
102.8, 75.4, 73.4, 71.5 (2C), 70.2 (5C), 68.5 (2C), 59.6 
(2C), 55.5 (2C); HRMS  (ESI+) m/z calcd for  C25H24FeN2O4: 
472.1085; found 473.1156 [M + H]+.

7‑(3‑Piperidinyl)‑O‑3‑ferrocenylcarboxamidocoumarin 
(10h)

7-(N-Boc-3-piperininyl)-O-3-ferrocenylcarboxamidoc-
oumarin 10f (0.045 g, 0.079 mmol) and 10% TFA/DCM 
solution (2 mL) afforded 10h as a light red solid (0.036 g, 
97%). Mp.: > 300°C. IR vmax/cm−1: 3385 (N–H, amide and 
piperidinyl amine), 2920 (C–H, pyrone HC = C), 1702 
(C = O, lactone), 1607 (C = O, amide), 1607 (C = C, aro-
matic), 1533 (C–O, ether); 1H NMR (300 MHz,  CDCl3): 
δ 8.68 (s, 1H, NH), 8.26 (s, 1H, –HC = C–), 7.40 (d, 
J = 8.7 Hz, 1H, ArH), 7.04 (d, J = 2.3 Hz, 1H, ArH), 6.98 
(dd, J = 8.6, 2.4 Hz, 1H, ArH), 5.89–5.80 (m, 1H, NH), 
4.82 (t, J = 1.92 Hz, 2H, FcH), 4.46 (t, J = 1.92, 2H, FcH), 
4.34–4.31 (m, 1H, CH), 4.26 (s, 5H, FcH), 4.06–3.92 (m, 
2H,  CH2), 2.52–1.92 (m, 6H, 3 × CH2); 13C NMR (75 MHz, 
 CDCl3): δ 170.0, 159.5, 158.8, 151.1, 128.6, 123.5, 122.1, 
114.8, 114.0, 102.7, 75.3, 71.5 (2C), 70.2 (5C), 68.6, 
68.5 (3C), 32.9, 28.0, 23.5; HRMS  (ESI+) m/z calcd for 
 C25H24FeN2O4: 472.1085; found 473.3404 [M + H]+.

Biological assays

MDA‑MB‑231 breast cancer cell line toxicity and analysis 
of Hsp90 inhibition

The MDA-MB-231 human triple negative breast adeno-
carcinoma cell line (ATCC HTB-26) was maintained 
in culture in L-15 media supplemented with 10% (v/v) 
heat-inactivated foetal bovine serum (FBS), 1 mM l-glu-
tamine, 100 U/mL penicillin, 100 µg/mL streptomycin and 
12.5 µg/mL amphotericin (PSA) at 37 °C and 9%  CO2. 

The toxicity of novobiocin derivatives and the reference 
compounds (1 and Paclitaxel) was assessed in this cell line 
using a WST-1 cell proliferation kit (Roche, South Africa) 
conducted according to the manufacturer’s instructions. 
Cells were seeded at equal density (1.2 × 105 cells/mL at 
50 μL/well) in a 96-well plate and treated the following 
day with a range of compound concentrations (0, 0.32, 
1.6, 8, 40, 200, 1000 μM) in triplicate. After 96 h, media-
containing compounds were removed from the wells and 
5 μL of a 5-mg/mL WST-1 reagent in 100 μL of medium 
was added to each of the wells and incubated for 4 h prior 
to reading absorbance at 450 nm in a Powerwave spectro-
photometer (Biotek, South Africa). The dose response and 
half-maximal inhibitory concentrations  (IC50) were deter-
mined by non-linear regression using GraphPad Prism 4 
software.

For the mammalian cell line Hsp90 inhibition assay, 
MDA-MB-231 cells (5 × 105) were treated with vehicle 
control (0.1% DMSO), compounds 10a and 10g (100 µM) 
or Hsp90 inhibitors: 17-dimethylaminoethylamino-17-dem-
ethoxygeldanamycin (17-DMAG; Alvespimycin, 10 µM) 
or novobiocin (NOV, 100 µM) for 24 h. Equal amounts of 
cell lysates were resolved by SDS-PAGE and the levels of 
Hsp90, Hsp70 or cyclin-dependent kinase 4 (CDK4) deter-
mined by Western blot analysis according to standard pro-
tocols [32, 33]. Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) was used as a loading control.

In vitro antiplasmodial assay

The P. falciparum parasites (3D7 strain) were routinely 
cultured in a medium consisting of RPMI1640 containing 
25 mM HEPES (Lonza, South Africa), 0.5% (w/v) Albu-
max II (Thermo Fisher Scientific, South Africa), 22 mM 
glucose, 0.65 mM hypoxanthine, 0.05 mg/mL gentamicin 
and 2–4% (v/v) human erythrocytes and were maintained at 
37°C under an atmosphere of 5%  CO2, 5%  O2 and 90%  N2. 
The antiplasmodial activity of test compounds was assessed 
using a colorimetric assay as previously described [34].

In vitro HeLa cell cytotoxicity assay

HeLa cells (Cellonex, South Africa) were cultured in Dul-
becco’s Modified Eagle’s medium (Lonza, South Africa) 
supplemented with 10% foetal calf serum and antibiotics 
(penicillin, streptomycin and amphotericin B) in a 5%  CO2 
incubator maintained at 37°C. Following seeding of HeLa 
cells into 96-well plates and incubation for 24 h, the test 
compounds were added to a final concentration of 20 μM 
and cell viability was surveyed using a previously described 
resazurin fluorescence assay [35].
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Yeast assay for Hsp90 inhibition

Yeast strains lacking Saccharomyces cerevisiae Hsp82 
and expressing Homo sapiens Hsp90β (DP584) and P. fal-
ciparum Hsp90 (DP553) were donated by the laboratory 
of Prof. Didier Picard (University of Geneva, Switzer-
land) [36]. Strains were grown in YEP broth [10 g/L yeast 
extract, 20 g/L peptone, 2% (w/v) glucose and 40 µg/mL 
adenine] and on YEP agar [YEP broth supplemented with 
2% (w/v) agar] and maintained using standard techniques. 
For growth inhibition assays, YEP agar was supplemented 
with 1 mM of geldanamycin (GA), novobiocin (1), com-
pound 10a, compound 10g or dimethylsulfoxide (DMSO) 
as the vehicle control. Four tenfold dilutions were made 
with strains growing at mid-logarithmic phase (OD600 
of 0.8). Cell dilutions (undiluted, and  10−1,  10−2,  10−3 
and  10−4 dilutions) were spotted onto each of the com-
pound-containing YEP agar plates and incubated for 48 h 
(DP584) and 72 h (DP553) at 28 °C before the images 
were captured.

Results and discussion

Chemistry

As outlined in Scheme 1, the target compounds were effec-
tively prepared from hydroxycoumarins 5a–b, which were 
synthesized using methods reported in literature [37, 38]. 
The benzylated 3-aminocoumarins 6a–b were achieved by 
conventional benzylation of the hydroxyl group on C-7 of 
hydroxycoumarins 5a–b followed by acidic boc-deprotec-
tion of the benzylated intermediates to liberate the  NH2 at 
position 3 of the coumarin nucleus [38, 39]. Subsequently, 
ferrocenecarboxylic acid was appended to the RHS of the 
coumarin core via standard amide coupling reaction condi-
tions to generate amides 7a–b.

Initially, the amidation reaction of 6a–b was performed 
with the common coupling agent, 1-ethyl-3-(3-dimethylami-
nopropyl)carbodiimide (EDCI); however, the resulting yields 
were too low (10–18%) to progress to subsequent steps [3]. 
In attempts to improve the yields, we employed a modified 
procedure reported by Dunetz et al. that utilises a peptide 
coupling agent, n-propylphosphonic anhydride  (T3P®), for 
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the amidation of epimerization-prone substrates [40]. Thus, 
refluxing of equimolar amounts of amines (6a–b) and fer-
rocene carboxylic acid in 1:2 pyridine/chloroform solution 
in the presence of two equivalents of the commercially avail-
able 50%  T3P®/EtOAc solution yielded compounds 7a–b 
in yields of 68–80%, which was a fourfold improvement 
compared to the initial EDCI amidation protocol. Subse-
quently, the target benzylated compounds 7a–b were char-
acterized by 1H and 13C NMR spectroscopic techniques. 
From the 1H NMR data, the ferrocene protons of compounds 
7a–b appeared in the aliphatic region as two triplets and 
one intense singlet, respectively, at δ 4.84–4.47 ppm and 
δ 4.26 ppm, confirming successful coupling of ferrocene 
carboxylic acid to the coumarin nucleus to form the target 
compounds.

To access the 7-hydroxy novobiocin derivatives 8a–b, 
compounds 7a–b were stirred under hydrogen atmosphere in 
THF to remove the benzyl group using 10 mol % palladium 
on carbon (Pd/C) as a catalyst [39]. Successful benzyl depro-
tection was confirmed by the disappearance of the signals 
corresponding to the benzyl group in both 1H and 13C NMR 
spectra of the products, which were obtained as white solids 
in 33–96% yields. Having successfully achieved the phenolic 
derivatives 8a–d, the next step was to pursue the piperidi-
nyl variants 10a–f which were synthesized by coupling 
piperidinols 9a–d to C-7 of the coumarin nucleus under 
Mitsunobu reaction conditions [15]. The 3′- and 4′-NMe 
and -NBoc piperidinyl derivatives (10a–f) were achieved in 
one step and in modest yields (22–41%). Boc-deprotection 
of 10e–f by stirring in 10% TFA/DCM solution generated 
the corresponding NH variants (10g–h) in excellent yields 
(95–97%). The methylene protons of the piperidine skeleton 
were observed as multiplets in the aliphatic region of the 1H 
NMR spectra of 10a–h, whereas the proton on C-1′ appeared 
as a broad singlet or multiplet, thus confirming successful 
attachment of the piperidine unit.

Biological evaluation studies

The synthesized final novobiocin derivatives (10a–h) and 
key intermediates, the benzyl (7a–d) and hydroxyl (8a–d) 
series, were screened for in vitro anticancer and antimalar-
ial activity, respectively, against the breast cancer cell line 
MDA-MB-231 and the chloroquine sensitive (CQS) P. fal-
ciparum strain, 3D7. These compounds were also evaluated 
for general human cytotoxicity using the HeLa cell line. The 
Hsp90 inhibitory activity of the most promising compounds 
was investigated by means of a yeast assay employing Sac-
charomyces strains that express Hsp90 isoforms from human 
and P. falciparum [36]. Additionally, the effects of these 
compounds on the levels of Hsp90, Hsp70 (an indirect meas-
ure of Hsp90 inhibition) and an obligate Hsp90 client pro-
tein, cyclin-dependent kinase 4 (CDK4), were also assessed 

in MDA-MB-231 cells using Western blot analysis [32, 33]. 
The parent compound novobiocin (1) is not a potent Hsp90 
inhibitor, but was included in the biological assays together 
with the potent inhibitors 17-dimethylaminoethylamino-
17-demethoxygeldanamycin (17-DMAG; alvespimycin) 
and geldanamycin (GA) to determine whether the biologi-
cal responses of the derivatives are similar to novobiocin, 
or whether they gain activity more similar to higher affinity 
Hsp90 inhibitors.

Anticancer activity

In the assay for anticancer activity, paclitaxel, a known anti-
cancer drug, was used as a positive control whilst novobiocin 
(1) was included in the screening assays for reference pur-
poses. The activity of each compound against the MDA-
MB-231 breast cell line is presented as a concentration of 
the compound that suppressed the viability of the cells by 
half of their initial population, i.e., half-maximal inhibitory 
concentration  (IC50) value. The results are summarised in 
Table 1.

As illustrated in Table 1, the anticancer activities of 
compounds in the hydroxyl series (8a–b) were the most 
potent in the whole library. With the exception of 10h 
 (IC50 = 108.9 µM), the piperidinyl derivatives (10a–g) dis-
played moderate activity with  IC50 values ranging between 
11 and 51  µM. Within this class, the 3′-N-methyl ana-
logues (10b and 10d) were almost twice as active as their 
4′-N-methyl counterparts (10a and 10c), whilst the NBoc 
derivatives (10e–f) displayed comparable activities of 29.8 
and 30.0 µM, respectively. Zhao et al. noted similar trends 
for organic novobiocin analogues bearing the benzamide 
chain of 1, which were tested for antiproliferative effects 
against SKBr3 and MCF-7 breast cancer cell lines [41]. The 
NH group (10g) also appeared to be tolerated for activity. 
Methylation of position 8 of the coumarin nucleus is known 
to be favourable for anticancer activity of novobiocin ana-
logues [4]. This was similarly observed in our results as the 
8-methyl derivatives had slightly lower  IC50 values com-
pared to their variants devoid of the methyl group on C-8 
(Table 1). Overall, the derivatives pursued in this study were 
clearly superior to the parental compound 1 with approxi-
mately fourfold improvement in activity (Table 1). Addi-
tionally, the replacement of the noviose moiety at C-7 with 
hydroxy, benzyl and piperidinyl units retained the anticancer 
activity of the ferrocenyl novobiocin derivatives [16, 17].

Antiplasmodial assay

To establish their antiplasmodial activity, the target com-
pounds and the reference compound, novobiocin (1), were 
subjected to the malaria parasite lactate dehydrogenase 
(pLDH) assay that was performed in triplicate for each 
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compound at a concentration of 20 μM. The antiplasmo-
dial screening assay data for the screened compounds is 
presented in Fig. S1. The compounds were also investi-
gated for general human cytotoxicity using the HeLa cell 
line to determine if the observed antiplasmodial activity 
was independent of general cytotoxicity of the compounds. 
From Fig. S1, three ferrocenyl derivatives 10a–c, which 
all contain N-methyl substituents in the piperidine ring 
displayed desirable antiplasmodial activity with P. falci-
parum viability reduced to below 25% without substantial 
HeLa cell cytotoxicity. The data suggest that these com-
pounds were selective for the P. falciparum parasite. The 
rest of the compounds in this series, including parental 
novobiocin (1), were inactive with > 75% P. falciparum 
percentage viability often observed (Fig. S1). In addition, 
the N-methyl group seemed to be permissible for anti-
plasmodial activity since the three ferrocenyl analogues 
(10a–c) with this group exhibited favourable activity.

Following the initial screening data, the most active 
piperidinyl derivatives were further screened for antiplas-
modial activity at varying concentrations to determine their 
corresponding  IC50 values (Table 1, Fig. S2). Compounds 
10a–c were screened in conjunction with chloroquine (CQ), 
which was employed as a positive control. The compounds 
showed moderate activity with  IC50 values below 10 µM 
(Table 1, Fig. S2). Most importantly, compound 10c dis-
played significant potency in the sub-micromolar range with 
 IC50 value of 0.889 µM.

Hsp90 inhibition studies

Having evaluated the compounds for in vitro anticancer 
and antiplasmodial activity, the next step was to investi-
gate if these compounds act through inhibition of Hsp90. 
To realize this, Saccharomyces cerevisiae (yeast) strains 
expressing Homo sapiens Hsp90β (which is the essential 

Table 1  Anticancer and antiplasmodial activities of target compounds 
against the MDA-MB-231 cancer cell line and 3D7 P. falciparum 
strain, respectively

Activity of compounds is reported as  IC50 values representing concentrations of the compounds that effected 50% inhibition of cellular growth. 
Data are expressed as average µM concentration resulting from at least two independent experiments
na not active, nd not determined

Entry Compound R1 R2 R3 R4 IC50 (µM)

MDA-MB-231 3D7

1 7a H OBn ‒ ‒ 182.9 na
2 7b Me OBn ‒ ‒ 41.1 na
3 8a H OH ‒ ‒ 11.7 na
4 8b Me OH ‒ ‒ 29.3 na
5 10a H piperidine NMe CH2 51.4 7.06
6 10b H piperidine CH2 NMe 47.9 9.16
7 10c Me piperidine NMe CH2 36.8 0.889
8 10d Me piperidine CH2 NMe 13.8 na
9 10e H piperidine NBoc CH2 29.8 na
10 10f H piperidine CH2 NBoc 30.0 na
11 10g H piperidine NH CH2 11.8 na
12 10h H piperidine CH2 NH 108.9 na
13 Novobiocin ‒ ‒ ‒ ‒ 205.1 na
14 Paclitaxel ‒ ‒ ‒ ‒ 0.029 nd
15 CQ ‒ ‒ ‒ ‒ nd 0.0102
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isoform in humans) [32] and P. falciparum Hsp90 isoform 
were employed to probe the Hsp90 inhibitory activity of 
the compounds showing the most promising anticancer 
and antiplasmodial activities. The yeast strains employed 
were DP584 (expressing HsHsp90β) and DP553 (express-
ing Pf Hsp90). Compounds 10a and 10g were selected as 
they displayed superior activity against the P. falciparum 
3D7 strain and the MDA-MB-231 breast cancer cell line, 
respectively. The known Hsp90 inhibitor, geldanamycin 
(GA), was included as a positive control and the parental 
compound novobiocin (1) as a reference. For each com-
pound, different yeast densities were plated and incubated 
with 1 mM of the test compound dissolved in DMSO. The 
effects of the compounds on yeast growth were visually 
monitored and the results are presented in Fig. 2a. The 
white spots indicate the growth of the yeast, where density 
is proportionate to the growth.

As can be observed from Fig.  2a, GA repressed the 
growth of the yeast for both strains whereas 10a and 10g 
exerted effects comparable to DMSO, which was used as a 
negative control in the assay. As a modest Hsp90 inhibitor, 
novobiocin (1) exhibited poor activity against these strains 
(Fig. 2a). Although 10a might appear to be slightly effective 
against DP854 and 10g against DP553, these effects were in 

comparison less visible than that of the parental compound 
1 on both strains.

In addition, the effect of these compounds on the lev-
els of Hsp90, Hsp70 and kinase CDK4 in MDA-MB-231 
cells was compared to known Hsp90 inhibitors 17-DMAG 
(Alvespimycin) and novobiocin (NOV) (Fig. 2b). CDK4 is 
a validated Hsp90 client that undergoes degradation upon 
Hsp90 inhibition [42]. Furthermore, Hsp70 levels can be 
used as an indirect measure of Hsp90 inhibition due to 
activation of the heat shock response by N-terminal Hsp90 
inhibitors [43]. Treatment of cells with the Hsp90 inhibi-
tor 17-DMAG resulted in a significant loss of the obligate 
Hsp90 client protein, CDK4, and resulted in upregulation 
in Hsp70 levels without changing Hsp90 levels (Fig. 2b, c). 
Treatment of the MDA-MB-231 cell line with compounds 
10a and 10g did not significantly alter the levels of Hsp70 
or CDK4, although 10a appeared to increase the levels of 
CDK4, while 10g led to a minor reduction in CDK4 levels 
(Fig. 2c).

Taken together, and considering that these compounds 
were significantly more potent than 1, against the MDA-
MB-231 breast cancer cell line and the 3D7 P. falciparum 
strain, a similar trend would be expected against the pos-
tulated target Hsp90, as investigated in these assays, if the 

Fig. 2  Hsp90 inhibition assay results for compounds 10a and 10g. 
Analysis of anti-Hsp90 activity of compounds 10a and 10g assessing 
a yeast growth assay in strains expressing either Plasmodium falci-
parum or human Hsp90 (DP553 or DP584) in comparison to Hsp90 
inhibitors geldanamyin (GA) or novobiocin (NOV). b Western blot 
and c densitometry relative to loading control (GAPDH) of levels of 
Hsp90, Hsp70 or CDK4 in treated MDA-MB-231 cell lysates com-

pared to Hsp90 inhibitors 17-dimethylaminoethylamino-17-demeth-
oxygeldanamycin (17-DMAG; alvespimycin) or NOV. In all cases, 
DMSO was used as the vehicle control. Data are representative of 
two independent biological replicates. Statistical significance was 
determined compared to the DMSO control by two-way ANOVA; 
*p < 0.05
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observed activities of these compounds are primarily due 
to the inhibition of this protein. The data presented (Fig. 2) 
suggest that there is no correlation between the inhibition 
of Hsp90 and the observed in vitro anticancer and anti-
plasmodial activities of the ferrocenyl novobiocin deriva-
tives. The increased toxicity of the ferrocenyl novobiocin 
derivatives compared to novobiocin could not be explained 
by increased anti-Hsp90 activity, suggesting that this class 
of compounds may act on a target other than the Hsp90 to 
induce the observed activities. In view of the fact that all 
the organic novobiocin derivatives reported in literature are 
known to exert anticancer activity through Hsp90 inhibition 
[44], it is tempting to speculate from our findings that the 
presence of the ferrocene unit in the novobiocin scaffold 
switches the target of the derivatives from Hsp90.

Conclusions

Herein, we presented the synthesis of novobiocin–ferrocene 
conjugates containing simplified structural units (hydroxyl, 
benzyl and piperidine) in place of the complex noviose 
motif, which were obtained in moderate yields. The series 
was investigated for anticancer and antimalarial activity, 
respectively, using the MDA-MB-231 breast cancer cell 
line and P. falciparum 3D7 strain. In general, the presence 
of the ferrocene unit was found to favour high potency and 
selectivity to the novobiocin derivatives evaluated against 
the breast cancer cell line and the P. falciparum parasite. 
These findings appeared to assert our previous observa-
tion that the ferrocene unit imparts beneficial biological 
effects to novobiocin derivatives. The replacement of the 
noviose appendage of novobiocin with hydroxy, benzyl and 
piperidine units seemed to retain the efficacy of the ferro-
cenyl derivatives. Furthermore, the in vitro anticancer and 
antiplasmodial activity observed for these derivatives was 
found to be independent of inhibition of the proposed target, 
Hsp90.
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