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The orbits of neutral hydrogen (H i) gas found in most disk galaxies are circular and

also exhibit long-lived warps at large radii where the restoring gravitational forces

of the inner disk become weak (Spekkens & Giovanelli 2006). These warps make

the tilted-ring model an ideal choice for galaxy parametrisation. Analysis software

utilizing the tilted-ring-model can be grouped into two and three-dimensional based

software. Józsa et al. (2007b) demonstrated that three dimensional based software is

better suited for galaxy parametrisation because it is a�ected by the e�ect of beam

smearing only by increasing the uncertainty of parameters but not with the notorious

systematic e�ects observed for two-dimensional �tting techniques.

TiRiFiC, The Tilted Ring Fitting Code (Józsa et al. 2007b), is a software to con-

struct parameterised models of high-resolution data cubes of rotating galaxies. It

uses the tilted-ring model, and with that, a combination of some parameters such as

surface brightness, position angle, rotation velocity and inclination, to describe galax-

ies. TiRiFiC works by directly �tting tilted-ring models to spectroscopic data cubes

and hence is not a�ected by beam smearing or line-of-site-e�ects, e.g. strong warps.

Because of that, the method is unavoidable as an analytic method in future H i surveys.

In the current implementation, though, there are several drawbacks. The implemented

optimisers search for local solutions in parameter space only, do not quantify correla-

tions between parameters and cannot �nd errors of single parameters. In theory, these

drawbacks can be overcome by using Bayesian statistics, implemented in Multinest

(Feroz et al. 2008), as it allows for sampling a posterior distribution irrespective of its

multimodal nature resulting in parameter samples that correspond to the maximum

in the posterior distribution. These parameter samples can be used as well to quantify

correlations and �nd errors of single parameters. Since this method employs Bayesian

statistics, it also allows the user to leverage any prior information they may have on

parameter values.
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Chapter 1

Introduction

This Chapter is aimed at giving examples of ways in which TiRiFiC may be used to

advance the current knowledge base in astronomy as well as give the user a broad

overview in astronomy.

1.1 Astronomical and Theoretical Background

Before the 20th century, our stellar system, the Milky Way, was perceived to be the

entire universe, with extended sources thought to be stars in their early stages of for-

mation. However, Hubble (1925) used a Cepheid variable to �nd the distance to the

Andromeda galaxy and concluded that Andromeda existed outside the Milky Way

galaxy building on Shapley's �ndings on the Milky Way galaxy's diameter.

Since then, a huge number of galaxies were observed and were later broadly classi�ed

into elliptical galaxies and spiral galaxies. Elliptical galaxies were observed to have old

stars and less interstellar gas, and dust. They also have a higher velocity dispersion

ratio to rotation velocity whereas spirals have a disk and a central bulge. The disk

serves as the potential star formation region, while the bulge consists of older stars.

Rotation velocity studies of spiral galaxies have been made, an example being Freeman

(1970). Freeman (1970) compared the neutral hydrogen (H i) observations of NGC

300 and M 33 disk galaxies with the rotation curves expected after applying Newton's

laws to the visible component of a galaxy. He noticed that these rotation curves did

not match but were higher towards the edge than the model predicted given only the

visible light. With this, he concluded that there must be an additional mass that

remained undetected, at least as massive as the detected galaxy, and with a distribu-

tion that was di�erent from the observed exponential distribution of the optical galaxy.

These observations contributed to today's commonly accepted picture of our uni-

verse that everything we see consists of about 5% whereas about 95% of the universe

remains hidden, and this can also be split into 68% dark energy and 27% dark matter.
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Two forms of dark matter may contribute to the missing mass (Schneider 2006). As-

trophysical dark matter consists of massive, compact objects such as brown dwarfs,

white dwarfs and black holes whereas particle dark matter consists of elementary par-

ticles that have not been detected yet.

Figure 1.1: This is an image of a circular source shown in color, that
is lensed by a gravitationally compact object. (Image by Wambsganss

& Wambsganss 1998)

Astrophysical dark matter, due to its compact nature and mass, is expected to gravita-

tionally lens objects observed behind them, as shown in Fig 1.1. Using this e�ect, the

Massive Compact Halo (MACHO) and the Extremely Red Objects (EROS) surveys

in 1990 began to search for them in the direction of the Magellanic clouds, whereas

the Optical Galactic Lensing Experiment (OGLE) surveyed in the direction of the

galactic bulge.

After 1993, the MACHO survey found 20 microlensing events in the direction of the

Magellanic clouds, and some tens of thousands in the direction of the galactic bulge

(Alcock et al. 1995a). These results could be explained as resulting from the bar at

the centre of the Milky Way. Statistics of the lensing e�ects towards the Magellanic

clouds could be explained if 20% of the mass of the dark matter halo consisted of

MACHOs with a characteristic mass of about 0.5 solar masses.

The EROS survey used an observation technique slightly di�erent from that of MA-

CHO, and as a result, they observed fewer microlensing events (Beaulieu et al. 1998).

Neither EROS nor OGLE was able to reproduce the high count of microlensing e�ects

detected by MACHO, and OGLE (Alcock et al. 1995b; Udalski et al. 1994) put an

upper bound to massive compact objects in the halo at 2% of its total mass.

The MACHOS, EROS and OGLE surveys ruled out astronomical objects as candi-

dates for dark matter within the Milky Way halo.
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Dark matter by de�nition does not interact with the surrounding material electromag-

netically which makes it di�cult to observe directly. Therefore, in considering particle

dark matter as an alternative hypothesis, the particle candidate should be electrically

neutral, highly stable or with a lifetime longer than the age of the universe, and

contain mass to interact with the surrounding medium as observed gravitationally.

Neutrons and neutrinos are neutral particles in the standard model. However, neu-

trons are baryonic subatomic particles that are unstable, and their number density

is well constrained by the Big Bang Nucleosynthesis (BBN). If neutrinos constituted

dark matter, they would be hot dark matter, leading to a di�erent large-scale struc-

ture in the universe that would be di�erent from what we currently observe (Schneider

2006).

Since no particle could describe dark matter su�ciently, there was a need to search for

a particle unknown to the standard model, which is electrically neutral, has a �nite

mass and an extremely long lifetime and interacts only weakly. Such Weakly Inter-

acting Massive Particles (WIMPS), are the most promising dark matter candidates

and are ten to a hundred times more massive than a proton (Schneider 2006).

However, the Modi�cation of the Newtonian Dynamics (MOND) serves as an alterna-

tive to the Dark Matter model that has not been excluded as a theory yet (Milgrom

1983). MOND explains the observed rotation velocities in the outer regions of galax-

ies. It considers gravitational force on material in the outer regions to be proportional

to the square of the materials centripetal acceleration, or varies inversely with radius.

Continued observations of motions of galaxies are required to trace the distribution

of dark matter in- and around galaxies.

1.1.1 Galactic neutral atomic hydrogen H i

Galaxy motion manifests itself in the form of rotation, dispersion of material within

the galaxy, as well as the movement of the galaxy relative to earth. These forms of

motion can be in�uenced by dark matter and thereby aid in determining the distri-

bution of dark matter within galaxies. In particular, a galaxy's rotation velocity may

be in�uenced by the dark matter halo encompassing it (Begeman 1989). To study

this halo, astronomers need a tracer of galaxy motion that extends far into the out-

skirts of such a galaxy. Galactic neutral atomic hydrogen (H i) is known to extend

beyond the optical radius of galaxies and therefore, it is used as a tracer for galaxy ro-

tational motion and gives more details on its distribution in the outskirts (see Fig 1.2).
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Figure 1.2: Three-color image of NGC 3109 from the Digital Sky
Survey overlayed by green contour representing H i. It can be seen
that the H i extends beyond the size of the optically visible galaxy

several times. (Image by SKA/KAT-7)

Hydrogen forms about 90 % of the observable universe, followed by helium at about

9 % and the remainder constituting of heavier trace elements. In the cold interstellar

medium where high energy photons barely reach in su�cient intensities and densities

are low, hydrogen atoms exist in a neutral state, and since few photons would excite

these atoms, one usually �nds them at the ground state. However, the 1s ground

state can be split into two hyper�ne levels, parallel and anti-parallel spin between

the electron and nucleus of the atom (see Fig 1.3). This occurs as a result of the

electromagnetic interaction between an electron's and proton's spins.

Figure 1.3: Hydrogen spin-�ip transition occurs with a low probabil-
ity of 50% within 11 million years resulting in a change in the energy

state of the hydrogen atom (Image by Lockman 2017)
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The parallel spin state occurs at a higher energy state as compared to the anti-parallel

spin state, providing an opportunity for higher energy parallel state atoms to transi-

tion back to a lower energy state through a spin-�ip transition. This transition would

correspond to an energy di�erence of 5.9 × 10−6 eV, which would be released in the

form of radiation corresponding to the rest frequency of about 21.106 cm or in terms of

wavelength, that is 1420.4057 MHz. Such transitions occur at a very low probability

with the radiative half-life τ1/2 given as

τ1/2 = A−1
10 ≈ 3.5X1014s ≈ 11 million years (1.1)

and has an Einstein emission coe�cient of A10 ≈ 2.85 × 10−15 s−1 (Furlanetto et al.

2006).

This implies that observing such 21 cm line emission should be incredibly rare. How-

ever, hydrogen is by far the most abundant element in the universe. The number of

hydrogen atoms observed along the line of sight in the direction of high concentrations

of neutral hydrogen such as a galaxy, also called the column density of neutral atomic

hydrogen, is in su�cient quantities for there to be atoms at the excited state and

consequently, transitioning frequent enough for them to be detected on earth. This

column density NH (cm−2) can be quanti�ed as

NH ≡
∫

los
ηH(S)ds, (1.2)

where ηH(S) is the number of hydrogen atoms per cm3 and NH can be determined by

intergrating along the direction of the line of sight s.

Opacity τ is a quantity that enables us to determine what fraction of the emitted

radiation makes it to the observer without obstructions. This quantity is related to

the column density of an isothermal H i cloud by

NH = 1.823× 1018

∫
v
Tsτ(v)dv, (1.3)

where the spin temperature Ts is assumed to be constant along the line of sight and

the opacity τ(v) is integrated along the velocity axis instead of frequency axis (see

Verschuur et al. 1974).

The opacity τ is also related to brightness temperature TB by (Verschuur et al. 1974)

TBν = Ts(1− exp−τν ). (1.4)
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And by substituting Equation 1.4 into Equation 1.3 gives

NH = −(1.823× 1018)Ts

∫
v

ln

[
1− TB

TS

]
dv. (1.5)

If the cloud is optically thick, then TB = TS making the logarithm term in Equation

1.5 to be unde�ned. In this situation, the column density of the cloud can not be

obtained as only the front of the cloud is visible. However, if the cloud is relatively

transparent to the 21 cm radiation such that its opacity τ << 1, then Equation 1.5

evaluates to Equation 1.6 (Irwin 2007).

(
NH

cm−2

)
≈ 1.82× 1018

∫ [
Tb(v)

K

]
d

(
v

km s−1

)
(1.6)

The spin temperature Ts used in Equation 1.3 can be described by the relative pop-

ulations between the excited parallel state and the de-excited anti-parallel state, n1

and n0 respectively, using the Boltzmann distribution

n1

n0
=
g1

g0
exp

(
E21cm

kbTs

)
, (1.7)

where g1 = 3 and g0 = 1 are statistical weights forming g1/g0 = 3, E21cm the di�er-

ence in energy between the two states E = 5.9 × 10−6 eV, Ts the spin temperature

and Kb the Boltzmann constant.

1.1.2 Structure and mass of H i in galaxies

When a galaxy is optically thin, all 21 cm radiation emitted by the H i mass, irrespec-

tive of the depth of H i, can make it to an observer without being obscured. In such

a case, integrating this total emission gives the amount of H i mass in the galaxy (see

J. J. Condon & S. M. Ransom 2016)

(
MH

M�

)
≈ 2.36× 105

(
D

Mpc

)2 ∫ [S(v)

Jy

](
dv

km s−1

)
, (1.8)

whereMH is the total H i mass relative to the mass of the sunM�, D is the distance to

the H i mass in megaparsec (Mpc),
∫
S(v)dv is the total �ux 1 integrated over velocity.

Assuming that the distribution of mass within a galaxy were spherically symmetric,

the gravitational pull at any point r from the centre of the galaxy would be as a result

of the enclosed mass M(r), therefore,

1
�ux is discussed in Subsection 1.2.1
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GM/r2 = v2/r (1.9)

v2 = GM/r (1.10)

where v = vr/ sin(i) is the tangential velocity at a particular radius r, and i is the

inclination of the galaxy disk which can also be estimated from cos(i) = b/a where b

is the minor axis and a the major axis of the galaxy. This approximation is only valid

when a galaxy is assumed to be an in�nitely thin circular disk. From this, the total

mass of a galaxy dominated by a spherical mass distribution becomes Equation 1.11

(J. J. Condon & S. M. Ransom 2016)

(
M

M�

)
≈ 2.3× 105

( v

km s−1

)2
(

r

kpc

)
≈ 2.3× 105

[
(vr/ sin(i))

km s−1

]2( r

kpc

)
. (1.11)

However, this mass may be structured within a galaxy in such a way that it is ob-

served to form a warp in the H i distribution of NGC 5907 as has been shown by

R. Sancisi (1976). Rogstad et al. (1974) also showed that galaxies typically have a

warp starting at r25 from the galactic centre and can be approximated by a straight

line at r25 ≤ r ≤ r26.5 as shown in Fig 1.4. Beyond this point, the neutral hydrogen

is usually loosely wound and bound to the galaxy. This warp in galaxies originates

from the interaction between the H i content of the galaxy that is loosely attached,

and its environment (Józsa et al. 2007b; Briggs 1990). The Milky Way itself has been

observed to possess such warps in its H i content (KERR et al. 1957).
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Figure 1.4: H i for Galaxy NGC 2862 plotted as a contour over-
plotted over I-band image. The contours, hence H i, shows a warp in

the galaxy disk (Image from Spekkens & Giovanelli 2006)



Chapter 1. Introduction 9

The vertical pro�les of H i disks in galaxies can be modelled as a Gaussian with full

width half maximum values constrained at 500 to 700 pc (Peters et al. 2017) where

more massive galaxies have a thinner vertical pro�le than less massive ones, therefore

serving as a measure of a galaxy's gravitational potential. A galaxy's gravitational

potential seeks to constraint H i within its disk closer to the central plane of the galaxy.

This mass of neutral hydrogen increases in thickness the further out we get from the

centre of the galaxy as self-gravity decreases (Olling 1996).

H i can also act as a tracer to environmental e�ects such as gravitational tidal in�u-

ences in and around galaxies (Yun 1999) thereby providing an opportunity to learn

about the galaxy's interaction history with its environment and learn about its evo-

lution. The outer layers of H i in a galaxy may be loosely bound to the host galaxy,

resulting in tidal interactions disrupting their structure as shown in Fig 1.5.

Figure 1.5: Gravitational tidal in�uence on H i content of M 81 (Yun
1999)

1.2 Fundamentals of radio observations

1.2.1 Source intensity

In astronomy, we strive to measure signals emitted by a source in the sky. The source

intensity is thus de�ned as the amount of energy coming from a unit solid angle and

passing through a given unit area, which is perpendicular to the direction of radiation,
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per unit time.

Figure 1.6: In the �gure above, dA is the component of area whose
perpendicular is towards the zenith, dΩ represents the extent of the
source being observed in terms of solid angle, θ the direction towards
the source. The arrows show radiation coming from the source. (Image

by Irwin 2007)

A receiving element or telescope will only receive an amount of radiation proportional

to its collecting area. Therefore, this makes the speci�c intensity a quantity of inter-

est, which is de�ned as the intensity per unit area. We denote speci�c intensity as Iν .

It is measured in units of W m2 Hz−1 sr−1.

If we consider a source subtending a solid angle dΩ in the direction θ, radiating at

a bandwidth dν per unit time dt onto a receiving element area dA, then the energy

received is given by Fig 1.6 (see Irwin 2007)

dE = Iν cos(θ)dνdΩdAdt, (1.12)

where θ is the direction towards the source.

A detector pointed towards the source direction θ that extends a solid angle Ω would

measure �ux given by (see Irwin 2007)

Sν =

∫
Ωs

Iν cos(θ)dΩ. (1.13)

Therefore, the �ux density Sν and a galaxy's speci�c intensity Iν are related by Equa-

tion 1.14 (see Longair 2011)

Iν =
Sν
∆Ω

(1.14)

However, extraterrestrial sources usually have very weak �ux densities leading to the

introduction of another unit used in radio Astronomy called the Jansky (Jy), named

after Karl Jansky (Jansky 1933) who was the �rst to detect extraterrestrial radio

signals, where
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1 Jy = 10−26 W m−2 Hz−1. (1.15)

In the case of thermal radiation, the source-speci�c intensity, Iν , and the brightness

temperature Tb are related through the Plank's formula

Iν =
2hν3

c2

1

exp( hν
kTb

)− 1
, (1.16)

where h is the Plank's constant, k the Boltzmann's constant, ν the frequency and c

the speed of light. When the Rayleigh-Jeans relation hν << kTb holds, Equation 1.16

becomes

Iν =
2kTb

λ2
=⇒ Tb =

Iνλ
2

2k
, (1.17)

where λ is the wavelength of the radiation and Tb, the true temperature of a source

(Longair 2011).

1.2.2 Doppler shift e�ect

Given a source S, such as a mass of neutral hydrogen gas, moving towards point A

emitting radiation at wavelength λ0, an observer at A observes this radiation at a

shorter wavelength λ1, corresponding to a higher frequency. An observer at B ob-

serves this same radiation at a longer wavelength λ2 which corresponds to a lower

frequency (see Fig 1.7). This shift in wavelength and frequency depending on the

relative motion of the observer and source is referred to as Doppler shift.

Figure 1.7: Motion of object towards the left results in the frequency
of radiation at the front of the object increasing while reducing at the

back of the object.

For a source moving radially away from or towards an observer, the relationship

between the rest wavelength λ0 and observed wavelength λ is given by
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λ = λ0(
vs
c

+ 1), (1.18)

where vs is the systemic velocity of the source.

Once incoming radiation from such a source makes it to the ground, it can be observed

by astronomers using di�erent means, from dipole antennas to parabolic dishes and

interferometers.

1.2.3 Single dish antennas

A single dish antenna is an antenna consisting of a parabolic re�ector and a receiver

placed at the focus of the telescope. The receiver is usually placed either in front of

the parabolic dish, at the primary focus, or the base of the dish as shown in Fig 1.9

Figure 1.8: Left: A prime focus antenna where the receiver is rel-
atively light. Right: A cassegrain focus antenna with the receiver at
the base of the dish due to weight of the receiver. (Image by Miller

1998)

Within the receiver, the signal is captured, converted into current, ampli�ed and

mixed to a frequency convenient for further signal processing. In the end, power is

measured which is the voltage squared. Since signals coming from extraterrestrial

sources usually cover a broad range of frequencies, the detector either averages over a
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range of frequencies or gives a measurement of power for speci�c frequencies depend-

ing on its type.

Antennas, especially parabolic antennas, are not equally sensitive to radiation com-

ing from all directions but rather have a primary beam pattern which describes its

sensitivity per direction (see Fig 1.9).

Figure 1.9: An illustration of an antenna's primary beam pattern
with sidelobes. (Image by Chryssomallis & Christodoulou 2015)

The primary beam pattern usually has sidelobes which are responsible for ground

radiation leaking into the receiver contributing to data corruption. The main beam

can be characterised by its Half-power beamwidth (HPBW) which is a measure of

the �eld of view of the telescope. It is de�ned as the angular distance between two

opposite points in an antenna's beam where the power is half the maximum value (see

Fig 1.9).

The HPBW of a single-dish telescope is also measure of its resolution. Another way to

determine a telescope's resolution is the smallest angular scale at which the telescope

can distinguish structures. For a single dish antenna with diameter, D observing at

wavelength λ, its resolution θ′ is given as (Irwin 2007)

θ′ ≈ λ

D
. (1.19)

Equation 1.19 implies that optical astronomy enjoys higher resolution compared to
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radio astronomy for the same observing aperture diameter, due to the relatively small

wavelength of the visible light of about 380 nm to 740 nm compared to radio wave-

length of about 1 mm to 30 m.

As an example, a single dish telescope with a diameter of 100 m and observing the

21 cm radiation can resolve sources that are larger than 7 arcminute while an optical

telescope with an observing aperture of 100 m and observing incoming light of about

500 nm can resolve sources that are larger than about 0.001 arcseconds.

Nevertheless, single-dish telescopes are still useful for studying global H i properties

as they are sensitive instruments but they poorly resolve details in H i hence are not

preferred for kinematic studies of all but the closest galaxies.

1.2.4 Interferometers

To achieve high resolution, an alternative means to single-dish telescopes quickly

gained popularity from 1946 called interferometry. This method involves using multi-

ple telescopes that are spaced out at di�erent positions with di�erent telescope pairs

made to work as single units called interferometers (Thompson et al. 1986). Inter-

ferometers have a point-source response determined by combining multiple baseline

pairs called a synthesized beam.

The output measurements from an interferometer are called visibilities. Visibilities

are represented in a frame called the UV frame de�ned from antenna position and

with (u, v, w) coordinates. The u and v axes are in the antennas plane while the w

axis points towards the direction of the source from the antennas plane. The sky is

represented by (l,m, n =
√

1− l2 −m2) coordinates where l, m and n point in the

direction of the u, v and w unit vectors.

The visibilities are related to the sky brightness by the Van Cittert-Zernike theorem

(see Thompson et al. 1986) as shown in the equation 1.20.

V(u, v, w) =

∫ ∞
−∞

∫ ∞
−∞

A(l,m)I(l,m) exp−2πi[ul+vm+w(
√

1−l2−m2−1)] dldm√
1− l2 −m2

(1.20)

Where V(u, v, w) represents the measured visibilities in the co-ordinate (u, v, w),

A(l,m) representing the antenna response in di�erent directions and I(l,m) repre-

sents the sky brightness.

For simplicity, lets set A(l,m) to 1. Assuming a coplanar array, where measurements

are made in the plane that is normal to the direction to the source, then we set w = 0
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and Equation 1.20 becomes

V(u, v, w) =

∫ ∞
−∞

∫ ∞
−∞

A(l,m)I(l,m) exp−2πi[ul+vm] dldm√
1− l2 −m2

. (1.21)

Observing a very small patch of the sky, we set
√

1− l2 −m2−1 ≈ 1 which results to

V(u, v) =

∫ ∞
−∞

∫ ∞
−∞

I(l,m) exp−2πi[ul+vm] dldm. (1.22)

Under the above-mentioned assumptions, the resulting visibilities are related to the

true sky brightness through a Fourier transform relationship. The radio brightness

I(l,m) can, therefore, be recovered by taking an inverse Fourier transform of the vis-

ibilities as

I(l,m) =

∫ ∞
−∞

∫ ∞
−∞

V(u, v) exp2πi[ul+vm] dudv. (1.23)

1.3 H i Spectroscopic data cube

H i in galaxies is observed in the 21 cm signal and stored as visibilities after corre-

lating the output voltages as discussed. These visibilities are later converted to data

cubes by imaging, with the x, y and z-axis being the right ascension, declination and

velocity or frequency axis as shown in Fig 1.10.

Figure 1.10: A spectroscopic data cube with the wavelength axis,
right ascension, x and Declination, y. (Image by Harrison 2016)

In the regions covered by the galaxy, every pixel, observed in the z-axis, gives the

spectral line pro�le or the velocity pro�le. This velocity pro�le provides information

about the velocity distribution of the galaxy along one dimension.
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Single dish telescopes are usually used to observe the global properties of H i as dis-

cussed. Given su�cient spectral resolution of the telescope, they can be used to

determine the velocity pro�le of the galaxy. Interferometric observations enable the

user to also spatially resolve more distant galaxies, which makes them the preferred

instrument where the resolved kinematics of a galaxy is of interest.

1.3.1 Moment maps

Many useful quantities can be derived from spectroscopic data cubes that may give

insight into the structure and kinematics of a given galaxy. The zeroth moment or

moment 0 maps can be created by summing the product of the channel width ∆V

and Si, the intensity for the ith channel in the units of Jy beam−1, across the velocity

axis as shown in Equation 1.24

IH i =
∑
i

Si ×∆V, (1.24)

Where IH i represents the value of a single pixel in a moment 0 map. Equation 1.24

is used to form the integrated H i map with units of Jy beam−1 km s−1.

Figure 1.11 shows this integrated H i emission map or moment map, and is useful to

show the total quantity of neutral hydrogen, assuming the galaxy is optically thin to

H i.

Figure 1.11: a) represents the total H i column density. b) represents
the intensity weighted velocity c) represents the intensity weighted

velocity dispersion. (Image by Frusciante et al. 2012)

From the data cube, velocity �elds may be extracted using a variety of techniques.

One technique involves selecting the peak velocity in the spectral axis for every pixel
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in the spatial coordinates. However, when the velocity pro�le is noisy, the selected

maximum velocity may be merely an artefact of the noise and therefore, incorrect.

One way around this is calculating the intensity weighted mean (IWM) of every pixel

in the spatial axes and use them to make velocity �elds.

The IWM is calculated as

< V >=

∑
i
Si × Vi∑
i
Si

, (1.25)

where < V > is the intensity-weighted average velocity (see Fig 1.11 (b)).

This means of computing intensity weighted mean, however, may su�er from sys-

tematic errors (Swaters 1999). In the case where the velocity pro�le is skewed, the

calculated IWM will be o�set from the actual maximum value towards the skewed

side (see Fig 1.12).

Figure 1.12: The intensity weighted mean, IWM, is compared to the
gaussian �t of the same velocity pro�le in the velocity axis. In both
the skewed, a), and noisy, b) velocity pro�les, Gaussian �t is more
accurate than IWM and determines the correct peak velocity value.

(Image by Swaters 1999)

However, when a Gaussian is �tted to the same velocity pro�le, the gaussian's peak

coincides better with the peak of the velocity pro�le, as compared to the Intensity

Weighted Mean (IWM) calculation (Swaters 1999).

The intensity weighted mean technique may also be a�ected by noise in the velocity

pro�le. When the velocity pro�le is ridden with noise such that the signal to noise

ratio is low, IWM techniques will still derive a value, as shown in Fig 1.12 (b). How-

ever, this value may not be correct and may be far o� from the actual value. Fitting
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a Gaussian pro�le allows for a much more accurate determination of the peak value

of the velocity pro�le.

These systematic errors appear when using IWM, especially in low signal to noise

regions of the data cube. However, if the signal to noise is considerably high, and

the velocity pro�le follows a simple pro�le structure, then the di�erences between the

Gaussian �tted velocity pro�le and the IWM derived values become small.

A Gaussian �t works well only for certain cases and is superseded by Gauss-Hermite

curve �tting in the case where the velocity pro�le is skewed or has elongated tails.

Moment 2 maps are used to give an impression of the total velocity dispersion of

the galaxy, which can also be seen in the velocity width in the velocity pro�le of the

galaxy. This quantity is calculated from

σ =

√√√√√
∑
i
Si × (Vi− < V >)2∑

i
Si

, (1.26)

where σ is the velocity dispersion, as shown in the Fig 1.11 (c).

1.4 Galaxy parametrisation

Some properties uniquely identify a galaxy such as brightness, orientation and kine-

matics. The orientation and position of a galaxy form its geometrical characteristics

through which it may be classi�ed. A galaxy observed face-on is said to have an incli-

nation angle of zero, whereas a galaxy observed edge-on is said to have an inclination

angle of 90◦. Position angle is another measure that is ascribed to a galaxy. It refers

to the angle between a galaxy's major axis and the North, measured counterclockwise

as shown in Fig 1.13.



Chapter 1. Introduction 19

Figure 1.13: The �gure represents Position angle as measured in a
galaxy from the North counter-clockwise (Image by Józsa et al. 2007b).

1.4.1 Deriving galaxy kinematic parameters

One can determine a galaxy's recession velocity from the spectrum obtained at the

center of a galaxy's velocity �eld. Recession velocity refers to the velocity at which a

galaxy is moving relative to us, the observer. Hubble (1929) was able to show that the

universe is expanding by observing the redshift of galaxies with distance. Hence, in

general, galaxies are moving away from us. However, there are exceptions to this rule.

An example of such an exception is the Andromeda galaxy. The Andromeda galaxy

has been observed to be on a collision course with our galaxy and should happen in

about 5.86 billion years (van der Marel et al. 2012).

The spectra of a galaxy can be used to determine the velocity dispersion of the galaxy

as well as the galaxy's rotation velocity. Velocity dispersion refers to the random mo-

tion that is observed in galaxies, whereas the rotation velocity refers to the tangential

velocity of the material orbiting about the centre of a galaxy. The rotation velocity is

usually measured from a galaxy's centre in steps to its edge, where the signal to noise

ratio becomes too low that reliable measurements can no longer be made.

1.4.2 Velocity measure by spectral line Doppler broadening

Ideally, an observed spectral line, such as that of H i, should have a �nite width due to

quantum mechanical e�ects. This �nite line width is attributed to the quantum me-

chanical e�ect of knowing both the position and energy of an electron simultaneously.

This uncertainty allows for a margin of error in determining its energy that manifests

as the line width whose line pro�le that has a Lorentzian shape, determined by the

line shape function.
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However, the line width is usually more extensive than that determined by quantum

mechanical limits. This line-width broadening e�ect is brought about by a variety of

processes such as Doppler broadening as well as pressure broadening.

Doppler shift broadening happens when the individual particles that are emitting the

spectral line are all moving. This motion may be either thermal, tidal �ows, or may

even be systematic such as rotation, contraction or expansion as well as movement

related to shock-waves from events such as a supernova. The Doppler shift e�ect

depends on the motion of each particle, resulting in di�erent doppler shifts that col-

lectively combine resulting in line broadening. An example of thermal line broadening

is shown in Fig 1.14.

Figure 1.14: Thermal motion in a gas cloud at rest results in
Gaussian-shaped spectral line. a) represents such a gas, where bold
arrows represent velocity vectors of particles within the gas whereas
thin arrows represent components of these velocity vectors, in the line
of sight, that contribute to spectral line broadening. b) The marked
o� area represent particles with the same radial velocity, while the
larger curve represents emission from an optically thick H i cloud that
is denser. The smaller curve in (b) represents emission from an opti-

cally thin H i cloud. (Irwin 2007)

When a galaxy's size is comparable to the beam size such that it becomes encompassed

inside the beam, the galaxy's rotation serves to increase the Doppler line broadening

e�ect, in such a way that the di�erence between the approaching and receding sides

of a galaxy de�ne the width of the spectral line. The same can be said when there

is an expanding shell of gas, from a supernova explosion, caught within the beam.

Therefore, the expansion velocity of the galaxy can be determined by taking half the

spectral line width.
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The other form of broadening, pressure broadening, result from collisions happening

between particles emitting the line spectra. These collisions serve to `interrupt' the

spectra bringing about a change in the amplitude and phase of the emitted radiation.

With time, this results in a broader frequency response hence this e�ect is called col-

lision broadening.

1.4.3 The tilted-ring-model

Wide-�eld H i surveys such as WALLABY (Du�y et al. 2012) will provide observations

of a large number of resolved galaxies. These can be used to derive kinematic models

in the hope to constrain the evolution of both dark and baryonic matter distribution

in and around galaxies as well as to study environmental e�ects. On H i scales, the

orbits in most disk galaxies are circular, but they also exhibit long-lived warps at large

radii where the restoring gravitational forces of the inner disk become weak. These

warps make the tilted-ring model an ideal choice for galaxy parametrisation.

The tilted-ring model was �rst introduced by Rogstad et al. (1974) to explain the

peculiar velocity �elds observed in Messier 83 by simulating its H i structure using a

model consisting of concentric, circular rings which are mutually inclined and rotating

at di�erent velocities. By implementing this model, Rogstad et al. (1974) were able

to show that M83 most likely has a warped disk. Since then, the tilted-ring model

has become a standard tool to parametrise the H i disk of galaxies.

The tilted-ring model is based on the assumption that matter is distributed in a disk,

and the majority motion is rotation. It also assumes that the rotation velocity varies

only with radius. These assumptions approximately hold for spiral galaxies without a

bar at their centre in contrast to stars in elliptical galaxies where the majority motion

is random velocity dispersion and not con�ned to a disk.
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Figure 1.15: The tilted-ring-model as a set of concentric rings ro-
tating at di�erent rotation velocities and inclination angles (Image by

Rogstad et al. 1974)

There are two approaches in making a tilted-ring model, the two- and three-dimensional

approach. The �rst approach involves forming a velocity �eld, and later �tting a tilted-

ring to this kinematic map as is being done in 2DBAT. The second approach entails

making a parameterised data-cube model, which is a simulation of reality, and then

comparing this directly to the observations. The second approach forms the basis of

three-dimensional �tting techniques, an example being TiRiFiC.

Typically, most tilted-ring algorithms only search for a local minimum, and full sta-

tistical error estimation is not done. The Fully automated TiRiFiC (FAT), as an

automation wrapper for TiRiFiC, uses the deviation from a smoothed model, while in

2DBat the attempt being made is to use Bayesian statistics to derive errors, but this

su�ers from the fact that the errors of points in the velocity �elds are ill-determined.

There is, therefore, need for the three-dimensional based �tting algorithm, TiRiFiC,

to be able to �nd the correlation between parameter values, estimate errors in pa-

rameter values as well as �nd the global minimum in the Chi-Squared value. These

requirements form the basis of this thesis as it documents an attempt to meet them

by using a Bayesian inference engine, Multinest.

1.4.4 Two dimensional �tting

Using the methods discussed in 1.3.1, a velocity �eld map can be made. Each point

within the velocity map can be represented as the line of sight velocity Vlos(x, y) at

each point (x, y) in a rectangular coordinate system. The line of sight velocity repre-

sents the velocity an observer observes in the line of sight towards the direction of a

galaxy. This line of sight velocity can be decomposed into harmonic terms, and the

�rst approximation which ignores any non-rotational motion besides the recessional
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velocity is described as

Vlos(x, y) = Vsys + Vrot(r) cos(θ) sin(i) (1.27)

while including expansion velocity, Vexp, leads to

Vlos(x, y) = Vsys + sin(i)(Vrot(r) cos(θ) + Vexp(r) sin(θ)) (1.28)

where Vsys is systemic velocity representing the line-of-sight velocity of the centre of

the galaxy, θ represents the (x, y) pixel coordinate of the galaxy given by

cos(θ) =
−(x− xc) sinφ+ (y + yc) cosφ

r

sin(θ) =
−(x− xc) cosφ− (y − yc) sinφ

r cos i

(1.29)

Equation 1.29 represents the conversion from (x, y) pixel coordinates to polar coordi-

nates given by (r, θ). In polar coordinates, r is the distance from the centre, (xc, yc),

and θ, the azimuthal angle measured counter-clockwise from the major axis in the

disk's plane. φ represents the position angle of the galaxy and is measured from the

north to the semi-major axis in the counter-clockwise direction, and i represents the

inclination angle of the galaxy.

Along the minor axis of the galaxy, the component of the rotation velocity Vrot along

the line of sight is zero resulting to the observed velocity or the line of sight velocity

Vlos being minimal and dominated by non-circular motion (Schmidt et al. 2016), bars

(Sellwood & Sanchez 2009) and warps (Józsa et al. 2007b).

From Equation 1.28 when the inclination angle, which is the angle between the galaxy

disk's normal and the observer is zero, the component of rotation velocity along the

line of sight goes to zero, and so does the component of the expansion velocity, Vexp,

along the line of sight. The line-of-sight velocity, Vlos, ends up representing the sys-

temic velocity, Vsys, and the velocity dispersion width. The velocity pro�le of such

a galaxy that is face-on looks like Gaussian with the mean representing the systemic

velocity and the width representing the average velocity dispersion in the galaxy as

shown in Fig 1.16



Chapter 1. Introduction 24

Figure 1.16: Global H i pro�le of galaxy DDO 53 as observed face
on or very low inclination angle. (Image by Walter et al. 2008b)

As the inclination angle increases, the contribution from rotation velocity to the mea-

sured line of sight velocity also increases, leading to the development of a double-

horned velocity pro�le, with one horn representing the approaching velocity and the

opposite horn representing the receding side (see Fig 1.17).

Figure 1.17: Global H i pro�le of galaxy NGC 3198 as observed
edge-on or very high inclination angle. (Image by Walter et al. 2008b)

However, bodies with a solid body rotation curve do not have this double-horned pro-

�le but rather a pro�le as shown in Fig 1.18.
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Figure 1.18: Demonstration of a solid body global H i pro�le. (Image
by Skillman 1996)

Once a velocity �eld map has been derived, a Chi-Squared �t is done with a tilted-ring

model to derive both the kinematics and orientation of the model.

Two dimensional based tilted-ring �tting techniques bene�t from their low computa-

tional cost while deriving kinematic parameters but at the same time, are susceptible

to the e�ects of beam smearing (see Fig 1.19). Projection e�ects such as observing a

galaxy that is completely edge-on also do in�uence the accuracy of these kinematic

parameters determined. Such projection e�ects can be noted where the line of sight

crosses the galaxy more than once like in galaxies observed to have a thick disk as

well as those observed with extremely high inclination angles such that they appear

near edge-on as well as outer �ares.

Some publicly available software that takes advantage of this 2-dimensional �tting

technique are available, and these include but not limited to ROTCUR (Begeman

1989) and 2DBAT (Oh et al. 2018).

Di Teodoro & Fraternali (2015) made a comparison between low-resolution H i galaxy

velocity �eld maps, also called H imoment maps, observed with a single dish and High-

resolution H i moment maps seen by an interferometer and found that 2-dimensional

galaxy parametrisation approaches were not suitable for low-resolution single-dish ob-

servations due to beam smearing. Beam smearing a�ects the data by making the

velocity gradients, towards the centre of the galaxy, a little bit �atter while at the

same time, converting bits of the rotation velocity to high-velocity dispersion or larger

velocity width as shown in Fig 1.19.
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Figure 1.19: The �gure above shows the velocity dispersion, bot-
tom, vs velocity �elds, top, for single dish telescope, Right GBT, and
interferometer VLA, left. (Image by Di Teodoro & Fraternali 2015)

Figure 1.19 shows that the central regions of the velocity �eld of the low-resolution

data mimic that of solid body rotation. In comparison, the velocity dispersion of the

low-resolution data increases by a factor of 3 to 4 throughout the whole disk.

This, therefore, calls out for either the use of three-dimensional techniques to analyse

low-resolution single dish data and observing galaxies at high resolution using inter-

ferometers.

1.4.5 Three-dimensional based �tting

H i galaxy observations made by interferometers are typically imaged into data cubes

with right ascension, declination and velocity axes. Deriving parameters that describe

a galaxy from such a cube directly can be done through the three-dimensional based

�tting. In general, 3D �tting algorithms take in a set of supplied parameters that

describe the tilted-ring model's geometric and kinematic parameters. From this, they

construct a simulated data cube. This data cube is convolved with a beam, approx-

imated as Gaussian with the major and minor axes similar to the observations, and

later compared to the model using Chi-Square. A variety of �tting techniques and

algorithms are then applied, such as the Golden Section algorithm in TiRiFiC (Józsa

et al. 2007b), to minimise this Chi-Squared value. In the process, a new model data
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cube is constructed for every iteration of the �t, where each cube consists of millions

of point sources with independent position and motion parameters, making a total of

6 parameters per point source.

With the higher �exibility a�orded by the method and a larger number of parame-

ters to be �tted comes the computational cost for the �t to be complete. Unlike the

two-dimensional based �tting techniques, three-dimensional �tting does not have an

analytic function to �t for but instead, rely on Monte-Carlo techniques. These tech-

niques make 3D �tting algorithms complex as well as susceptible to convergence to a

local minimum in the Chi-Square plane. Another drawback to such �tting techniques

is that they are not well equipped to handle inhomogeneities in the gas distribution

(Józsa et al. 2007b).

Such a �tting technique has advantages over both the two dimensional and one di-

mensional techniques as it is less a�ected by both projection e�ects as well as beam

smearing e�ects. The advantage comes about as a result of performing a direct Chi-

Squared �t of the tilted-ring model to the spectroscopic data cube, where parameters

describing the ring model are derived. Since this process does not involve the con-

struction of velocity �elds, where data compression happens resulting in a loss of

information, it becomes a more reliable �tting method.

This method also leads to the possibility for modelling kinematic asymmetries, warps

in galaxies even those that are nearly edge-on or face on, as well as gas residing away

from the plane of the galaxy.

1.4.6 Distance measure by the Tully-Fisher Relation

Cepheid variables can be used to measure the distance to a galaxy. However, these

cepheid variables become too faint to be measured past distances of 20 Megaparsecs

(Mpc). This makes it necessary to use a di�erent technique to measure the distance

to a given spiral galaxy.

There exist a correlation between the intrinsic luminosity of a spiral galaxy and its

rotation velocity, which is known as the Tully-Fisher relation (see Fig 1.20). Using

this relation, one can determine the intrinsic luminosity of a disk dominated galaxy

by measuring its rotation velocity and using the apparent magnitude of the galaxy,

be able to determine the distance to a given galaxy.
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Figure 1.20: The Tully-Fisher relation. Galaxies from 5 separate
clusters were used to make this �gure, the small symbols of various
shapes, as well as galaxies that were relatively close to us with indepen-
dently known distances to each of them, the open symbols. The y-axis
represents the absolute magnitude in the Ith band centred on 820 nm
whereas the x-axis represents the logarithm of the H i linewidth. This
linewidth is approximately twice the rotation velocity of the galaxy.

(Image by Tully 2007)
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Tully-�sher relation gives the relationship between the rotation velocity of a disk dom-

inated galaxy V , and its intrinsic luminosity L as

L ∝ V 4. (1.30)
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Chapter 2

Bayesian statistics

2.1 Probability

There are two views on probability theory. The frequentist view of probability and

the Bayesian outlook. In the frequentist point of view, the probability of an event

occurring depends on how frequent the event has occurred in the past out of a given

number of trials. This observed frequency of occurrence may be from experimenta-

tion or observations. In contrast to this view, the Bayesian approach can be used even

in situations where there is limited number of trials and hence limited information.

This approach involves formulating the "degree of belief" of an event occurring based

on background knowledge. The "degree of belief" can be represented as a probability

distribution and event as a random variable. The Bayesian approach allows for updat-

ing this "degree of belief" or distribution with the addition of new data or information.

An important attribute of Bayesian statistics used in this thesis is it's inherent ability

to treat parameter values as random variables. In parametrising a given data set,

the objective of Bayesian statistics is to determine the posterior distribution of the

"best-�t" parameter values. However, when approaching the same parametrisation

problem using the frequentist approach, the objective shifts to determining the maxi-

mum likelihood values of the �tted parameter values. Therefore, in the Bayesian point

of view, parameter values are treated as random variables.

A random variable θ is a function whose values are a result of a random phenomenon.

The random phenomena, and consequently, the random variable, may result from

an underlying distribution function that is referred to as the probability distribution

function (pdf). The pdf of θ is de�ned as a function that gives the relative likelihood

of obtaining an instance of the random variable θ. θ, as a random variable, can either

be continuous or discrete giving rise to the probability density function or probability

mass function respectively.
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2.1.1 Conditional Probability

In formulating Bayesian statistics, the �rst step is to take a look at conditional prob-

ability. In conditional probability, A given B is the conditional probability that A

happens given that B has already happened and some given information I is true.

This conditional probability is denoted by P (A|B, I) . The joint probability, or con-

joined probability, of A and B , given by P (A,B|I) is the probability of A and B

happening together where

P (A,B|I) = P (A|I)P (B|I) (2.1)

if A and B are independent, and

P (A,B|I) = P (A|B, I)P (B, I) (2.2)

if A and B are dependent.

2.1.2 Bayesian Statistics

To determine the probability of B alone from the joint probability P (A,B|I) , a sum

over all possible outcomes of A is carried out in a process called marginalization.

P (B|I) =
∑
A

P (A,B|I) . (2.3)

The resulting quantity P (B|I) becomes the marginal probability of B (refer to Equa-

tion 2.3). From the product rule of dependent parameters P (A,B|I) = P (A|B, I)P (B|I) ,

inverting the order of A and B gives

P (B,A|I) = P (B|A, I)P (A|I) . (2.4)

Equating P (A,B|I) = P (B,A|I) results to

P (A|B, I)P (B|I) = P (B|A, I)P (A|I) (2.5)

and �nally forms the Bayesian Equation 2.6

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I)
(2.6)

Replacing A with parameter θ and B with the observed data D, Equation 2.6 becomes

P ( θ|D, I) =
P (D|θ, I)P ( θ, I)

P (D, I)
, (2.7)
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where P ( θ|D, I) is the posterior distribution, P (D|θ, I) = L( θ) the likelihood,

P ( θ, I) = π(θ) the prior and �nally P (D, I) the evidence. Bayesian statistics en-

ables inferences of parameter θ, for a given data D with background knowledge I to

be obtained as shown in Equation 2.7

The posterior distribution P ( θ|D, I) of θ represents all the possible values the ran-

dom variable θ could take, given the observed data D and background information

I. This random variable's initial distribution is described by the prior P ( θ, I) . The

Prior also represents any background information one has on the parameter of interest

θ and can be from experience or scienti�c theory. New data from experimental runs

are acquired and used to �nd the most probable values for θ, that is, the probability

of getting the parameter θ given the observed data P (D|θ, I) and this is called the

likelihood. Taking this newly found data represented in the likelihood, and updating

the prior results in the un-normalised posterior given as

P ( θ|D, I) ∝ L( θ|I)π( θ|I). (2.8)

With the addition of more data, the posterior eventually converges to an objective

inference on the parameter θ. However, in the case where there is not enough data,

the resulting posterior may be signi�cantly in�uenced by the prior. Therefore, as-

suming di�erent priors would result in di�erent posterior samples, and this leads to

the conclusion that the information gained is not informative enough to completely

override the prior state of knowledge.

One particularly useful property of Bayesian statistics that is applied to this thesis

is the ability to utilize prior information on parameter values. The parameter values

that need to be optimized are constrained to physically meaningful values before opti-

mization starts. This is particularly useful because it makes the minimizing algorithm

implemented, MultiNest (Feroz et al. 2008), spend as little time as possible in search

of the most optimum parameters in the given parameter space, by avoiding the space

that would otherwise be physically meaningless.

Another useful property of Bayesian statistics that is needed for this work is the fact

that the parameter of interest is described as a probability distribution, that is, the

posterior distribution. This posterior gives parameter samples which are needed to

quantify correlations between parameters as well as determine an error estimate.

It is also worth noting that the evidence, given by Equation 2.9, is used as a normal-

ising constant in Equation 2.7.
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z = P (D, I) =
∑
θ

P (D|θ, I) P ( θ, I) (2.9)

The evidence is particularly useful for model selection problems where it is used to

select the best model among other competing models. It automatically implements

Occam's razor principle, where models that are simpler and more compact are pre-

ferred over more complex models unless the latter can explain the data better. Se-

lecting between two models, I1 and I2 requires evaluating the ratio of their relative

probability distributions, given the data D as shown in Equation 2.10

Pr(I1|D)

Pr(Io|D)
=
Pr(D|I1)Pr(I1)

Pr(D|Io)Pr(Io)
=
Z1

Z0

Pr(I1)

Pr(I0)
, (2.10)

where the prior probability of the two models, Pr(I1)/Pr(I0) can be set to one.

Numerically deriving the evidence can be a daunting task. However, some algorithms

have been developed to sample the posterior of the Bayesian equation, as well as derive

the evidence for model selection purposes. Such algorithms will be discussed in the

following sections.

2.1.3 Ellipsoidal nested sampling

In the process of sampling, a new point is drawn from a region with higher and higher

likelihood hence satisfying the condition that Li > L where L is the likelihood of the

point last sampled. Sampling from the prior with this constraint faces the challenge

of the acceptance rate steadily decreasing as the prior volume decreases.

Ellipsoidal nested sampling attempts to solve this problem by drawing a multidi-

mensional ellipsoidal bound with its likelihood equal to the likelihood of the lowest

point that is, Lbound = L (see 2.1). However, the ellipsoidal bound is usually enlarged

slightly by some prede�ned factor to ensure it encloses the entire isolikelihood contour

of the lowest point. Samples are later drawn from this ellipsoidal bound until a sample

is found that satis�es the condition Li > L as above. When this multidimensional

ellipsoidal bound coincides with the exact iso-likelihood contour, the acceptance rate

becomes one, meaning that all points sampled are accepted or the �rst point sampled

is used for further sampling.

Ellipsoidal nested sampling works well for gauss-like modes with only one peak. How-

ever, it encounters a challenge when it has to evaluate multiple modes. Its e�ciency

consequently goes down with time as the sampling rate reduces due to the limited

regions satisfying the constraint Li > L. This dip in sampling e�ciency implies that

the probability of getting such a point that satis�es the likelihood constraint goes
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down, and therefore the algorithm has to go through numerous likelihood evaluations.

Figure 2.1: The ellipsoidal bound in a) ensures high e�ciency due to
a high sampling rate. But as the likelihood value increases, b) through
d), the sampling rate decrease owing to separate modes within a single
ellipsoidal bound. e) experiences an increase in the sampling rate as

the two modes are separated.(Image by Feroz et al. 2008)

Shaw J R et al. (2007) suggested a technique that would allow for the sampling e�-

ciency to be substantially improved by identifying individual modes and constructing

ellipsoidal bounds around these modes. However, this technique, among others, still

faces the challenges of handing pronounced curving degeneracies. One can `picture'

such degeneracies as multidimensional bananas.

Additionally, Ellipsoidal nested sampling still performs poorly especially in regions

where the ellipsoidal bounds overlap, resulting in lower sampling e�ciency and this

issue is addressed in the MultiNest algorithm.

2.1.4 MultiNest algorithm background

MultiNest (Feroz et al. 2008) implements Bayesian statistics within it and aims at

determining the evidence value in a model which may be used for model comparison.

MultiNest also generates samples for the �tted-for parameters which may be used to

reveal the underlying distribution of the sampled parameter values and perhaps be

used as an error estimate.

To determine the evidence and also generate these samples, MultiNest starts as a D

dimensional unit hypercube, where D is the number of parameters being �tted for

where each parameter varies from 0 to 1. Transforming a point u in the hypercube to

a physical parameter θ requires that

∫
π(θ1, θ2, ..., θD)dθ1dθ2...dθD =

∫
du1du2...duD. (2.11)

However, should the prior be separable, then it is described by Equation 2.12 such that

π(θ1, θ2, ..., θD) = π1(θ1)π2(θ2)...πD(θD). (2.12)
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Combining equations 2.11 and 2.12 gives

πj(θj)dθj = duj (2.13)

uj =

∫ θj

−∞
πj(θ

′
j)dθ

′
j . (2.14)

Calculating Equation 2.14 may be computationally expensive. However, there are

ways around this computational overhead. For instance, if the prior function for the

parameter values is uniform, converting between the parameter space and the prior

volume becomes trivial. Also, one can decide to recast the problem such that a new

likelihood is de�ned where L′(Θ) ≡ L(Θ)π(Θ) and the prior π(Θ) ≡ constant. This

method, however, may be ine�cient, and it does not use the true prior in the sampling

process. Whereas other problems allow for Equation 2.14 to be calculated analyti-

cally or through the use of look-up tables in an attempt to reduce the computational

overhead.

Once a unit hypercube has been uniformly populated with points, an expectation

maximisation scheme is applied to cluster or decompose these points into the optimal

number of subclusters as described below.

Starting from a set S bounded by an ellipsoid E with a volume V (E) and containing

N active points in the unit hypercube, the set S = {u1, u2, . . . , uN}, is partitioned
into k clusters, {Sk}Kk=1, where K ≥ 1. From this, the bounding ellipse Ek for these

subclusters is de�ned by Equation 2.15

Ek = {u ∈ RD | uT (fkCk)
−1u ≤ 1}, (2.15)

where

Ck =
1

nk

nk∑
j=1

(uj − µk)(uj − µk)T (2.16)

is the covariance matrix of Sk and µk =
nk∑
j=1

uj is the center of mass. These ellipsoids

Ek enclose a subcluster whose volume V (Ek) ∝
√
det(fkCk). If we de�ne another

quantity, F (S) such that

F (S) ≡ 1

V (S)

K∑
k=1

V (Ek), (2.17)
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minimising this quantity within the constraint F (S) ≥ 1 results in an optimal decom-

position of the initially sampled region into k ellipsoids. After every iteration, the

remaining volume of the entire prior region V (S) is updated as V (S) = exp(−i/N).

It is usually computationally expensive to calculate the ellipsoidal volume due to the

number of eigenvector evaluations needed. Consequently, MultiNest doesn't actively

partition the live points at each iteration but rather scales the ellipsoids mentioned

above. However, as the number of iterations increase and the algorithm moves to-

wards regions of higher likelihoods, the previously calculated ellipsoids become less

optimal, and the active points are repartitioned again.

In essence, the MultiNest algorithm builds upon the idea of ellipsoidal sampling, with

the bene�t of correctly accounting for curving degeneracies while also working well

for simpler cases. MultiNest identi�es isolikelihood contours and attempts to enclose

them with ellipsoids. It does so under the constraint that the sum of their volume

exceeds that of the prior volume X.

However, these ellipsoidal bounds may not enclose the entire isolikelihood contour

because the ellipsoidal approximation to a region in the prior space may be incorrect.

As a result, it is usually desirable to enlarge the ellipsoidal bound, such that the region

bounded by the ellipsoids is larger than that of the prior volume. Enlargening the

ellipsoidal bound is achieved by setting X/e as the minimum volume, where X is the

prior volume, and e is the e�ciency, making 1/e an enlargement factor. Setting e > 1

makes the prior to be undersampled, and this may be useful for someone interested

in sampling parameter space only and not interested in calculating the likelihood value.

Placing ellipsoidal bounds on isolikelihood contours leaves MultiNest with a set of el-

lipsoids that possibly overlap with each other, from which a live point with the lowest

likelihood is drawn, removed and replaced by a new point from the enclosed volume

with higher likelihood value, correctly accounting for any overlaps present. This re-

placed point becomes inactive but is however stored in MultiNest despite not playing

any role.

An example of this ellipsoidal sampling is shown in Fig 2.2. MultiNest algorithm

breaks up a posterior approximating a Gaussian into relatively few ellipsoids. In con-

trast to this, it breaks a mode with a pronounced curving degeneracy into a large

number of overlapping ellipsoids as shown in Fig 2.2
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Figure 2.2: a) and b) illustrates how ellipsoidal decomposition is
used to sample di�erent distributions. a) has two non-intersecting
ellipsoidals while b) is a torus sampled by many ellipsoids. (Image by

Feroz et al. 2008)

Once an optimal number of ellipsoidal bounds has been recovered, at iteration i, a

given ellipsoid is chosen with a given probability

pk = V (Ek)/Vtot, (2.18)

corresponding to the ratio of its volume to the total volume Vtot, where Vtot =

Σk
k=1V (Ek). Later, samples are selected from within the ellipsoid with a uniform

probability distribution until one is found which satis�es the condition L > Li where

Li is the lowest likelihood value of a point within the ellipsoidal bound.

For highly multimodal problems, a large number of active points are required to en-

sure that all the modes are detected. However, this will slow down the algorithm. To

handle this, MultiNest takes advantage of the fact that the number of active points

should decrease with increasing likelihood. This reduction in the number of active

points occurs because the number of these multiple modes decreases with increasing

likelihood, an analogue being lower hills �ooded by water as the water levels rise.

It is usually necessary to identify which live point belongs to which mode and also

determine the total number of modes as described in the procedure below.

At the very beginning, all active points are placed in one group, say G1. However,

these points are later split into k di�erent ellipsoids Ek and k subsets, Sk in the process
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described above. From these subsets Sk, one is chosen at random, where its members

become the members of a new set τ and the associated ellipsoid becomes a member

of a set of ellipsoids ε. Later, the chosen ellipsoid Ek is checked for intersection with

other ellipsoids. If some ellipsoids are found to have intersected with this ellipsoid,

they are added to the set of ellipsoids and their corresponding members added to the

new set τ . This merger happens until all ellipsoids are evaluated for an intersection.

Once this process completes, the points in the set τ are set as the new group G1

assuming all ellipsoids are found to intersect with each other. However, we may �nd

an ellipsoid that is isolated, and these isolated ellipsoids may intersect with each other

forming altogether a di�erent set of ellipsoids ε and a di�erent set of live points τ . In

this particular situation, two groups are formed, G2 and G3, where G1 is `left behind'

as a group that does not have active points.

This group formation process occurs to separate modes as the algorithm �nds points

with higher and higher likelihood values, thereby splitting into more and more groups

depending on the number of sub-clusters and intersections found. The groups that

survive this process of splitting are later promoted to mode category. Groups with

no live points would still be called modes at this time because such groups were not

split. In an attempt to minimise the computational cost, there is an assumption that

is applied in the algorithm, and that is the prior volume, and consequently, ellipsoidal

bounds only grow smaller and smaller with increasing likelihood values. Consequently,

ellipsoidal values that have been found not to intersect at any point in time are not

checked for an intersection at any later stage in the iteration process. Fig 2.3 illus-

trates the procedure described in this Section but for a two-dimensional uniform prior

distribution.

Figure 2.3: The dotted larger ellipsoidal bounds represent old
groups, that have now been separated into newer groups, smaller ellip-
soidals enclosing solid dots which represent current live points (Image

by Feroz et al. 2008.)

In Fig 2.3, the solid dots represent active points while inactive points are represented
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by open circles. At the current iteration I = i2, group G2 becomes inactive, as it

drowns at iteration i1 while group G3 splits into groups G5, G6, G7 and group G4

into G8 and G9. If these groups make it through successive iterations, they become

promoted into modes.

It was advised by Feroz et al. (2008) that a large number of points ensure that all the

modes have points and are therefore resolved, resulting in correct evidence evaluation.

The maximum e�ciency parameter, e, controls the sampling volume at each iteration,

which is the sum of the volume of the ellipsoids enclosing the active set. For param-

eter estimation, e is recommended to be set to 1 whereas, for evidence evaluation, it

should be set to 0.3.

There are challenges that come with MultiNest. Firstly, the ellipsoidal approximation

to the true isolikelihood contour may not be perfect as a result of the misalignment

between the ellipsoidal bound and the true isolikelihood contour. This misalignment

results in a portion of the ellipsoid that is outside the isolikelihood contour. While

sampling a point from within such an ellipsoid, the acceptance rate becomes less than

unity and points lying in the region are declined. This situation worsens exponentially

as the number of dimensions grows, as a result of an increase in the ellipsoidal volume.

This exponential increase in the number of likelihood evaluations with dimensions be-

comes a potential problem as this work attempts to �t a high number of dimensions,

typically ≥ 19 parameters aimed for, after �xing other parameters hence minimising

parameter �exibility.

Secondly, there may also be a region where ellipsoids intersect, while at the same

time, the region lies inside the true isolikelihood contour. A point selected from this

region will be accepted only with a certain probability 1/ne as discussed above. These

two shortcomings make the sampling e�ciency of points for astronomical and parti-

cle physics problems to be about 20-30 %, despite setting the enlargement factor or

e�ciency, e, as discussed.
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Chapter 3

TiRiFiC-MultiNest

3.1 TiRiFiC

TiRiFiC (Józsa et al. 2007a) is software that directly �ts galaxy models to spectro-

scopic data cubes without the intermediate step of constructing velocity �elds, hence,

a three-dimensional �tting technique. The software generates model data cubes from

the tilted-ring parameterisation of a rotating disk, which is automatically adjusted to

reach an optimum �t via a Chi-Square minimisation method to an observed data cube.

A direct �t to the data cube is implemented to overcome �tting challenges associated

with velocity �elds and to ultimately provide a tool for galaxy parameterisation in

large spectroscopic sky surveys.

TiRiFiC's model has sets of parameters at user-de�ned radii, a ring or a set of nodes,

plus a set of global parameters. A model is calculated by interpolating these rings to

form sub-rings with a width speci�ed by the user. All parameters within a sub-ring

stay constant, making these sub-rings represent the actual rings in the model. Monte-

Carlo integration is then used to model each sub-ring, resulting in a list of point

sources depending on the parameters for the speci�c sub-ring. These point sources

are distributed in the Cartesian phase space with equal total �ux and well-determined

position.

The point sources are later gridded onto a data cube identical to the input data cube.

This gridding process assumes that the material through which the �ux transverses

is optically thin where the �ux density, or intensity after gridding and convolution,

along the line-of-sight is the sum of the single sources of emission. The �nal step

involves arti�cially observing the gridded point source cloud by convolving it with an

instrumental function.

TiRiFiC is sensitive to very faint structures because it �ts many data points in a data

cube simultaneously. Therefore it can be used to derive tilted-ring models signi�-

cantly extending in radius beyond those obtained from a velocity �eld. The software

is also able to parametrise H i disks of galaxies which are heavily warped and have

been intersected by the line-of-sight or seen edge-on, and those whose projected centre
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of rotation been shifted signi�cantly.

3.1.1 TiRiFiC parameters

A set of parameters that describe the model include:

• Radius from the centre of the model, for each ring, given in units of arcsec.

• The radius dependent inclination and position angle which determines the orien-

tation of the model once constructed by TiRiFiC, given in degrees, and allowed

to vary with radius to account for warps in the galaxy observed.

• The radius dependent surface brightness distribution given in Jy km s−1 arcsec−2.

• The central coordinates, given as right ascension and declination and allowed to

vary from ring to ring.

• The radius dependent systemic velocity in km s−1.

• The radially dependent velocity dispersion in km s−1.

• The constant total �ux of a point source.

TiRiFiC takes these parameters and constructs a model with the procedure described

in Fig 3.1, and compares this simulated model to an actual observation by Chi-Square

minimisation technique.



Chapter 3. TiRiFiC-MultiNest 42

Figure 3.1: Flow chart diagram detailing how TiRiFiC works.

3.1.2 TiRiFiC Chi-Square evaluation

The convolution step in TiRiFiC serves to reduce the resolution of the model cube

to that of the observed galaxy. The fastest means of convolving and the most com-

putationally friendly way is using Fast Fourier Transform (FFT) convolution, where

the FFTW library (Frigo & Johnson 2005) is used within TiRiFiC (Józsa et al. 2007b).

Once convolved, TiRiFiC compares the two images, simulated and observed, using a

Chi-Square minimisation technique as shown in Equation 3.1

χ2 =
∑
k

(Mk −Ok)2

σ2
k

=
∑
k

(Mk −Ok)2

wk
, (3.1)

where k runs across all pixel values, M represents the simulated and O the observed

cube, whereas σk represents pixel noise in the original cube. The weight parameter,

wk can be given by Equation 3.2

w(k) = σ2
rms + (σqk)

2, (3.2)

provided that the quantisation noise, σqk has been correctly accounted for. It is given

by Equation 3.3
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wk =
σ2

rms.W
2 + (σqk)

2

W 2
, (3.3)

where wk is evaluated for each pixel. Setting theW parameter to∞ means the weight

map has a constant pixel value RMS2. However, setting W to 1 makes it possible to

calculate the noise correctly.

To produce the model cube, a Monte-Carlo sampling technique is used.

A minimising algorithm, the Golden Section algorithm, has been applied to �nd the

minimum in the Chi-Square, as described in Section 3.2. This algorithm has the ben-

e�ts of not strictly requiring the Chi-Square to be normalised, and therefore, the rms

in the image does not contribute a lot to the minimisation process. However, the

algorithm �nds only local modes and is unable to �nd global modes in a multimodal

Chi-Square environment.

Concerning �tting parameter values, TiRiFiC a�ords the user an option for �tting

parameters with multiple radial points as a single value. It also has the option for

splitting the �t into multiple radial nodes, or rings, �tting each ring independent of

all others.

3.2 Fitting Algorithms in TiRiFiC

3.2.1 Golden selection method

Figure 3.2: The Golden Section minimization (Press et al. 2007).

Figure 3.2 is used to illustrate how the Golden Section method works. Taking a func-

tion and de�ning intervals a0 and b0 such that they enclose a single minimum, the
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second selection of points a1 and b1 is made such that the ratio of

(a1 − a0)

(b0 − a0)
=

(b0 − b1)

(b0 − a0)
= 0.618, (3.4)

which is the golden ratio. Later on comparing f(a1) and f(b1) if f(a1) > f(b1), then

the interval a1 to b0 is discarded making a0 and a1 the new interval range from which

the whole process is repeated. This happens for minimizing case. However, for max-

imizing, if f(a1) > f(b1), then the range a0 to b1 is discarded and the new interval

becomes b1 to b0 from where the process is repeated until the algorithm converges

either to a maximum or minimum depending on the objective (Press et al. 2007).

In TiRiFiC, this algorithm is selected using the parameter FITMOD and setting it

to 1. When all parameters have been iterated over, and a minimum in each has been

found in one cycle, this forms a loop in TiRiFiC. The step width is varied by changing

the search direction or multiplication with a factor de�ned as (1 − w)/w ≈ 2 where

w = (3 −
√

5)/2, when enlarging the step width or w/(1 − w) ≈ 0.62 when reducing

the step width. The key words DELSTART, DELEND and MODERATE control the

step width.

The stopping condition is de�ned such that the minimising algorithm will be satis�ed

and stop only if the maximum number of loops has been reached, only applicable to

FITMODE=1, and the parameter change is less than a predetermined value given by

SATDELT if using FITMODE=1 or SIZE if using FITMODE=2.

3.2.2 The Simplex Algorithm

A simplex is a geometrical object with N+1 points for N dimensions. A good example

of such an object is a triangle in two dimensions or a multidimensional triangle in

many dimensions. A simplex also has vertices, faces joined by the vertices.

The downhill simplex method is only concerned with non-degenerate simplexes, that

is, those that enclose an N-dimensional volume. Taking any point as the origin, the

other N points de�ne vectors pointing towards these N points.

For multidimensional minimisation, the simplex algorithm is given an N-vector of

points as an initial guess or starting point, and from this, it proceeds to make its way

downhill through many complex topologies in N-dimensional space, until it encoun-

ters a local minimum. In the process, the simplex method makes a series of steps,

where each step takes a point within the simplex, where its function evaluation is

largest, to the opposite facet of the simplex where its function evaluation becomes

low. Whenever possible, the simplex expands taking large steps, where the steps are
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called re�ections, in one direction until it reaches the valley �oor where it contracts

transversally, minimising its volume up to an allowed threshold as shown in Fig 3.3

Figure 3.3: The simplex method follows a series of steps as shown. a)
is a re�ection away from the high point, b) is the re�ection and expan-
sion away from the high point, c) is a contraction along one dimension
from the high point, and d) is a contraction along all dimensions to-

wards the low point. (Press et al. 1992)

It is generally a good practice to restart a multidimensional �t of the simplex algo-

rithm where it claims to have found a minimum. This is because it may be `fooled'

when one of the steps did not work.

TiRiFiC uses the version of the simplex algorithm implemented in the GSL library

function and allows a user to select the simplex algorithm by setting FITMODE = 3

in its input. The size of the simplex within the algorithm is given as the rms of the

distances between the barycenter and the points or vertices of the simplex.
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3.2.3 Pswarm minimizer

The Pswarm (Vaz & Vicente 2007), or particle swarm minimiser, is built upon the

concept of a swarm of particles where each particle has a given velocity that de�nes

its trajectory. Assuming the current particle i is located at position xi(t) at time t, at

time t+1, the particle shifts to position xi(t+1) where this new position is computed

as Equation 3.5

xi(t+ 1) = xi(t) + vi(t+ 1) for i = 1, ...s, (3.5)

where i runs from 1 to population size s. This particle at the new position has an

associated velocity vector given by Equation 3.6

vij(t+ 1) = τ(t) vij(t) + µ ω1j(t) (yij(t)− xij(t)) + v ω2j(t) ((̂y)j(t)− xij(t)), (3.6)

where j runs from 1 to n. i(t) is the weighting factor, µ and v are positive real param-

eters or the cognition and social parameters, ω1j , and ω2j are randomly drawn from

the uniform distribution within the range (0,1). While yi(t) is the position with the

best objective function found so far.

The algorithm is a hybrid of both pattern search methods and a swarm search step.

Pattern search methods usually achieve convergence for the local minimum. However,

certain parameter choices can enable the pattern method to jump from one local min-

imum to another that is hopefully better.

The idea behind the partial swarm search method is to start with an initial population

and apply one step of particle swarm at each step. Whenever the search step succeeds,

the swarm step searches the local neighbourhood of the minimum. However, when

the search step fails, a polling step is applied to the best point out of all particles,

and a local search is applied to the poll centred at this point.

TiRiFiC implements the c version of the code as part of its minimisers. However, it

does not use the parameters ITESTART, ITENEED, SATDELT, DELSTART, DE-

LEND and MODERATE, but instead, some new parameters are used as described in

the TiRiFiC website.

3.2.4 Selecting TiRiFiC minimizer

Currently, TiRiFiC is running with an option of selecting among the three minimisers

as described above. It runs some model evaluations per loop in the minimisation pro-

cess until a stopping criterion is met. The details about loops and model evaluations

vary from minimiser to minimiser, and the user has the option of specifying the total
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number of loops they wish in the input. The user can choose the total number of

iterations using the keyword MAXITER while CALLITE is another keyword which

speci�es how many models are formulated at each iteration. However, this is only

applicable to FITMODE = 2. Implemented minimisers in TiRiFiC require a search

direction. The search direction is supplied using MODERATE, DELSTART and DE-

LEND, where DELSTART needs the user to provide a starting step width at the

beginning of the �rst loop.

3.3 TiRiFiC-MultiNest General description

When a galaxy is �tted with TiRiFiC, the �rst check usually is to compare the ob-

served and simulated cube visually. After visual comparison, a more rigorous inspec-

tion is done on the di�erent output parameters, i.e. the variation of rotation velocity,

inclination, position angle and surface brightness with radius.

There may be deviations on these output parameters from what is expected from

theory. These deviations result from parameters associated with the minimum Chi-

Square, which is a local minimum instead of a global minimum.

It is usually a challenge for �tting algorithms, including the currently implemented

TiRiFiC's minimisers, to �nd an optimal value in the multimodal Chi-Square environ-

ment. Monte-Carlo based �tting algorithms are prone to get stuck in a local minimum

resulting in wrongly derived parameter values. A means to combat this in TiRiFiC

is to adjust parameter values after each TiRiFiC �t and re-run the �t. This ensures

that parameters conform to what has been found previously and peer-reviewed.

However, the problem of multimodal chi-square minimisation can be solved using

Bayesian statistics. This solution would involve transforming the Chi-Square problem

into that of maximum likelihood. Priors on parameter values can then be used to

determine the posterior distribution. It is this posterior distribution that would be

sampled by Bayesian-based samplers, where a maximum in the posterior would cor-

respond to the best �t parameter values.

An ideal Bayesian sampler would need to have the ability to sample from a multimodal

distribution and return parameters corresponding to the optimal mode. The sampling

process would ensure a cluster of points per parameter values. These points would

be used to determine errors of single parameters and quantify correlations between

parameter values. The Bayesian approach using ellipsoidal sampling techniques im-

plemented in MultiNest o�ers an opportunity to determine parameters corresponding

to the optimal mode (see Chapter 2.1.3). MultiNest was chosen over other samplers
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due to its ability to sample multimodal distributions that may have curving degen-

eracies, as well as its ease of use as it does not have tuning parameters that would

need to be adjusted for every galaxy.

MultiNest requires a prior and likelihood function. The prior function is executed

�rst, followed by the log-likelihood function for every iteration as illustrated in the

�ow chart diagram in Fig 3.4.

Parameters

Prior

Loglikelihood

Yes?

No?
Threshold
Loops

Parameter
Samples Evidence

Figure 3.4: Flow chart diagram of the MultiNest algorithm.

MultiNest applies prior values to TiRiFiC's �tting parameters. Prior values repre-

sent background knowledge of the distribution of these parameters. In the case of

total ignorance, a uniform prior which is non-informative may be used. However, a

non-uniform prior may also be applied. Once the constraints on these parame-

ters are set by the prior, the log-likelihood is calculated as shown in Fig 3.4 and the

evidence value determined. The assumption made with this Chi-Square value, and

hence the log-likelihood value is that the di�erence between the data cube and model

cube leaves behind gaussian distributed residuals. This process is repeated until the

threshold criteria are met.

Implementing MultiNest as a sampler for TiRiFiC requires an interpretation of pa-

rameters described in TiRiFiC and MultiNest. These parameters would have to be

translated into prior values and supplied to MultiNest con�guration �le. A uniform

prior was used, requiring parameter ranges to be speci�ed in MultiNest con�guration

�le. In the usual sense, an analytical likelihood function is �tted for by MultiNest,
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and consequently, �nding optimal parameter values.

However, TiRiFiC has no analytic function describing the tilted-ring-model but in-

stead employs Monte-Carlo simulation to make a new model and uses Chi-Square

minimisation. It is this Chi-Square value from TiRiFiC that is translated into log-

likelihood value and supplied to MultiNest during �tting. MultiNest calculates the

evidence value and supplies posterior samples. The resultant posterior values are the

best �t parameter values for TiRiFiC with a cluster of points around each of them.

These clusters of points were used to show the correlation between parameter values

as well as quantify uncertainties in the form of error bars. The assumption made was

that the central limit theorem was obeyed on convergence.

To combine TiRiFiC with MultiNest, TiRiFiC has to provide the Chi-Square value

as shown in Fig 3.5. The process acts as a cycle. The user starts by selecting which

TiRiFiC parameters they will �t as well as the number of radial nodes n needed for

each parameter (see Fig 3.5). They later proceed to set the prior ranges or boundary

values of these parameters. In specifying the boundary values, the user may decide

to provide a distribution corresponding to any of these parameters and the default

uniform distribution. The default uniform distribution allows a user to supply the

maximally allowed parameter ranges.

Once these parameters are set, and the algorithm starts running, TiRiFiC is loaded

into memory waiting for a change in its con�guration �le. The algorithm moves onto

applying prior constraints to these parameter values in such a way that each group of n

radial nodes is subject to the same prior values where n is the number of radial nodes.

This process results in new parameter values generated within the constraints of the

prior values. Later, these parameter values, corresponding to TiRiFiC's parameters,

are rearranged in a way that will be understood by MultiNest as an N -dimensional

array called a cube.

Parameter values within the cube are written onto TiRiFiC's con�guration �le trig-

gering TiRiFiC to generate only one model to calculate the Chi-Square value from the

cube parameters. This single run results in TiRiFiC using the parameters, written to

the con�guration �le, to model a simulated galaxy and from it, calculate the corre-

sponding Chi-Square value which is passed on back to the algorithm. The algorithm

calculates the log-likelihood value and later generates the evidence and checks for

convergence. If convergence is not reached, the whole process is started by generating

cube values of length N = n× 4 + 3, whereby the algorithm has the same prior con-

straints (refer to Fig 3.5). This process continues until convergence is reached where

the best-�t parameters, as well as the weighted parameters and other relevant �les,

are written to a folder.
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3.3.1 Cube layout details

In an attempt to reduce the number of likelihood evaluations undertaken by TiRiFiC-

MultiNest, rotation velocity (VROT), inclination angle (INCL), position angle (PA),

surface brightness (SBR), right ascension (XPOS), declination (YPOS) and recession

velocity (VSYS) were chosen to be �tted for, as they are the most important pa-

rameters without which you do not have a tilted-ring-model. However, it is possible

for TiRiFiC-MultiNest to solve for more parameters than mentioned above. The

cube parameter in MultiNest represents an array of numbers interpreted and ar-

ranged as shown in Fig 3.5 with VROT in km s−1, INCL in (◦), PA in (◦), SBR

in Jy kms−1 arcsec2, XPOS in (◦), YPOS in (◦) and VSYS in km s−1 following each

other successively. The �rst VROT value at radial node zero belongs to the �rst index

value, zero, whereas the last variable, VSYS, was set to a single variable at the last

index, (n× 4 + 3)− 1, where n is the number of radial nodes (see Fig 3.5).

The cube's length is given by N = n × 4 + 3 and greatly in�uences MultiNest's ex-

ecution time as it's length increases. Since it's length is connected to the number

of radius points along the major axis of the galaxy, and hence, the total number of

parameters being simultaneously �tted, the convergence speed is greatly in�uenced

by the number of points being �tted for. This increase in the execution time happens

because of the misalignment of the ellipsoidal bound, within MultiNest, that results

in an exponential increase in volume with increasing dimensions. Points that fall be-

low the lowest likelihood contour but inside the imperfect ellipsoidal bound reduce

the sampling e�ciency as sample points drawn from this `extra' volume are rejected

slowing down the algorithm. The full TiRiFiC-MultiNest algorithm is shown in Fig

3.5.
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Consequently, the experiments done in the thesis used n = 4 and n = 7 radial nodes.

The �tted points for each parameter value can later be interpolated to get more data

points per parameter value.

3.3.2 Parallelisation

MultiNest is MPI parallelised and handles the entire process from spawning mul-

tiple processes to combining them at the end. In the TiRiFiC-MultiNest algorithm,

TiRiFiC supplies the likelihood value to MultiNest. Consequently, TiRiFiC-MultiNest

is also parallelised, where multiple TiRiFiC instances supply the loglikelihood values

needed by the di�erent instances of MultiNest as shown in Fig 3.6.

start

end 

process2 process3 process4process1

Figure 3.6: TiRiFiC-MultiNest parallelization process.

In details, the following sequence is followed.

First,m copies of MultiNest are determined and launched. Next,m copies of TiRiFiC's

folder containing TiRiFiC's con�guration �le and observed cube are made where a suf-

�x number is attached to each copy of the folder name di�erentiating them from each

other. The su�x number represents the rank number of the parallelization process.

For example, tiri�c0, tiri�c1 and so on.

Later, each instance of MultiNest starts a corresponding instance of TiRiFiC using

the Linux screen command and appends to it a su�x representing the rank number.

Each instance of TiRiFiC works on a correspondingly named copy of TiRiFiC folder.

For example, TiRiFiC0 works from the folder tiri�c0 and so on.

Finally, each copy runs as described above (see Fig 3.5), determining its prior values

and getting its likelihood value from the corresponding TiRiFiC launched, which is

di�erent from all the other copies. Once the �tting is done, MultiNest handles all the

merging and eventually, outputs the best �t parameter values.
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Chapter 4

Tests and Results

4.1 Testing

The galaxy NGC 4062 was observed with the Westerbork Synthesis Radio Telescope

(WSRT) in the scope of the HALOGAS project (Heald et al. 2011). Experiments

1 through 10 were made based on this observation. A simulated cube with a known

parametrisation based on the observation of NGC 4062 was used to simulate a realistic

galaxy. Additionally, a �nal �t was performed on the original data cube of a di�erent

galaxy, NGC 3198.

4.1.1 Reducing the prior range using SoFiA

As mentioned previously, the dimensionality of the problem, and hence the number of

parameters to be �tted for increases with an increase in the radial node number as well

as the total number of TiRiFiC parameters to be �tted for and the sampling volume

to be covered, which depends on the prior supplied. Consequently, there is a need

for reducing the prior volume to be sampled by reducing the parameter constraints or

ranges.

One attempt at this is to run a �t for the galaxy using SoFiA (Serra et al. 2015) in the

�rst stage to derive the best-�t parameters and use them as the central values from

which a new range is de�ned. SoFiA is a software used to detect and parametrize

sources detected in three-dimensional spectral line cubes. To run this �t, SoFiA was

set using the parameters described in Appendix A.3 Parameters set for SoFiA run.

The inclination value was later roughly estimated according to Equation 4.1 using the

best-�t values from SoFiA,

incl = arccos

(
ellmin− beamsize

ellmaj− beamsize

)
, (4.1)

where
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beamsize =
beamsizemaj + beamsizemin

2
, (4.2)

and ellmin and ellmaj are the �tted ellipse's major and minor axis values, while

beamsizemin and beamsizemaj are the beam's minor and major axes in pixels, as

determined from the header of the �ts �le and converting the �ts �le's degrees units

to pixels units. This derived inclination value is used to �nd rotation velocity by

applying Equation 4.3

vrot =
channelwidth× w20

2 sin(incl)
(4.3)

where the channel width is the width of a single channel in km/s determined from the

�ts �le header and w20 parameter in channels from SoFiA. Vrot is in km s−1 and the

inclination angle in degrees.

SoFiA also gives the parameter fint, in Jy Beam−1, representing the integrated �ux

derived from Busy Function �t. The parameter fint was converted to Jy kms−1 using

Equation 4.4

F (Jy km s−1) =
fint(Jy beam−1)×∆x×∆y ×∆v

1.13309×HPBWmin×HPWBmaj
, (4.4)

where HPBWmin is the Smaller Half-Power-Beam-Width (bmaj), HPWBmaj is the

larger Half-Power-Beam-Width (bmin), ∆x is the Pixel size in the right ascension

direction (|cdelt1|), and ∆y is the Pixel size in the declination direction (|cdelt2|).

To convert from Jy km s−1 to Jy km s−1 arcsec−2, ellmaj and ellmin values were con-

verted from pixel to arcsec units using header information. The galaxy area was

assumed to approximate an ellipse and calculated as shown in Equation 4.5.

GalaxyArea(arcsec−2) = ellmin(arcsec)× ellmaj(arcsec)× π. (4.5)

The value F (Jy km s−1) was divided by the galaxy area, GalaxyArea(arcsec−2) to give

SBR(Jy km s−1 arcsec−2) as shown in Equation 4.6.
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SBR(Jy km s−1 arcsec−2) =
F (Jy km s−1)

GalaxyArea(arcsec−2)
(4.6)

4.1.2 SoFiA best-�t parameter values

On running SoFiA, the �rst best-�t parameter values were recovered from the data

cube and later, fint parameter was converted to sbr according to the procedure de-

scribed in Subsection 4.1.1 resulting in the values shown in Table 4.2.

Once the best �t values were determined, the prior ranges were later made from these

values as follows

VROT max = VROT best-�t value ×3.00 km s−1

VROT min = 0

SBR max = SBR best-�t value ×10.00 Jy beam−1

SBR min = 0

INCL best-�t value ±20.00 ◦

PA best-�t value ±20.00 ◦

XPOS best-�t value ±0.01 ◦

YPOS best-�t value ±0.01 ◦

VSYS best-�t value ±20.00 km s−1

4.1.3 Fits �le data preparation

For the �rst data cube, using NGC 4602 as a rough template, a simulated data cube

was made to act as a proof of concept, that the algorithm can determine the global

minimum in the Chi-Square value and hence the corresponding best-�t parameters.

This simulated cube was made by editing TiRiFiC's con�guration �le, the de�le,

with parameters VROT, PA, SBR, XPOS, YPOS and VSYS and setting the number

of radial nodes to four, the number of disks to one, loops to zero and the error pa-

rameter RMS to 0.99 mJy beam−1. Later, TiRiFiC was run using this con�guration

�le resulting in an output cube and a corresponding new con�guration �le exactly

describing this new cube. This new cube was used in experiments 1 through 5 and 7

that had one and four radial nodes.

Experiments 6, 8 to 10 were made in such a way that TiRiFiC's parameters VROT,

PA, SBR, XPOS, YPOS and VSYS had seven nodes each, with the number of disks

set to one and the error parameter, RMS, set to 0.19 mJy beam−1 which was derived

from the datacube by calculating its mean absolute deviation.
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When it came to testing with the real galaxy NGC 3198 instead of using a simulation,

there was a need to reduce the size of this cube so that the Chi-Square calculation

time for every iteration could also be reduced, and also so that the galaxy could com-

fortably �t into memory as the original cube was 500 MB in size. The �rst step in

reducing this galaxy's size was to convolve it with a Gaussian beam, representing low-

resolution observation, then later binning the convolved cube in such a way that there

are at least 3 pixels per HPBW. This task was accomplished using the Groningen

Imaging Processing SYstem (GIPSY) (van der Hulst et al. 1992) tasks SMOOTH and

REPROJ. The �nal reduced data cube had a size of 1.8 MB.

4.1.4 Error calculation and correlation plots

TiRiFiC-MultiNest algorithm samples the posterior distribution resulting in samples

generated for each TiRiFiC parameter value per radial node such that VROT for ra-

dius one has samples with its best �t value, which is di�erent from VROT for radius

two or any other parameter speci�ed within TiRiFiC's con�guration �le. On conver-

gence, these samples are used to derive the marginalised standard deviation and the

error bars shown are at a level of 3 × σ where σ is the standard deviation of each

TiRiFiC parameter per radial node.

It is from these parameter samples that the correlation plots are also derived, allowing

identi�cation of any correlations between TiRiFiC's parameters.

4.1.5 Experiment 1

Experiment 1 was carried out using a real data cube for NGC 4062. TiRiFiC's VROT,

PA, INCL, SBR, XPOS, YPOS and VSYS parameters were set as constant values

across the four radial nodes hence e�ectively �tting a �at disk. MultiNest's cube

parameter used a single copy of each parameter in each radial node resulting in a

cube parameter of length seven as shown in Fig 4.1
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Figure 4.1: Cube parameter as seen and used by MultiNest.

The prior values applied on these parameters are shaded grey in 4.2 and can also

be found in Appendix A.4 Minimizing Prior Values Experiment 1, were prepared as

described in Section 4.1.1 above. Care was taken to ensure that the positional pa-

rameters that constrain the dimensions of the galaxy within the data cube, namely,

XPOS, YPOS and VSYS, were given realistic constraints. This constraint meant

that their maximum and minimum values were observed not to exceed the dimensions

of the data cube used, and this condition was applied to all experiments that followed.

This experiment gave the best �t value for every parameter as shown in Table 4.2

Table 4.1: Comparison between SOFIA and TIRIFIC-Multienst

Software VROT INCL PA SBR XPOS YPOS VSYS

TiR-Mult 151.8 72.6 100 0.0002 181.016 31.895 764
SoFiA 174 72 100 0.00015 181.017 31.895 767
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Figure 4.2: The Figures above represent the rotation velocity, in-
clination angle, position angle and surface brightness �ts. Green line
represents TiRiFiC-MultiNest �t whereas red line represents SoFiA

�t. Error bars are shown at 3σ but very small.
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4.1.6 Experiment 2

Experiment 2 used a simulated data cube of NGC 4062 (see 4.1.3) to �t for more pa-

rameters, 13 in total. Rotation velocity (VROT) and surface brightness (SBR) were

�tted for with their radius points allowed to vary independently across the four radial

nodes, whereas all other parameters were set to constant values and also �tted for.

This led to a cube of length 13 as shown in Fig 4.3.

Figure 4.3: MultiNest cube of length 13, where TiRiFiC parameters
PA, INCL, XPOS, YPOS, VSYS, are taken as constants across the

four radial nodes.

The prior ranges, shaded grey (see Fig 4.4) and shown in Appendix A.5 Minimizing

Prior Values Experiment 2, were reduced as compared to Experiment 1 in an attempt

to reduce the prior sampling volume for MultiNest.
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Figure 4.4: The Figures above represent the rotation velocity, in-
clination angle, position angle and surface brightness �ts. Green line
represents TiRiFiC-MultiNest �t whereas red line represents TiRiFiC

�t. Error bars are shown at 3σ but very small.
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As can be seen in Fig 4.4, an incorrect �t was made. This was attributed to having

prior values that were not inclusive of the actual parameter values at some of the

radial nodes, which shows the importance of setting prior values that are inclusive of

the actual values. To be speci�c, VROT parameter had a prior range of 169 to 136

km s−1 which excluded the �rst radial node that had been set to a much lower value.

For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.5

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.5: Comparison between NGC 4062 TiRiFiC simulated cube,
green, and TiRiFiC-MultiNest best �t parameter values, white

4.1.7 Experiment 3

Taking lessons from Experiment 2, the next test sets the prior values to their maxi-

mally allowed values as shown in 4.6 and also shown in A.6 Minimizing Prior Values

Experiment 3, ensuring that no parameter will be left outside the prior value and

result in an incorrect �t. Experiment 3 also used a simulated data cube of galaxy

NGC 4062 as described in subsection 4.1.3.

The SBR and VROT parameters were set to vary, at four radial nodes, while the

rest were set to a constant value, as shown in Fig 4.3. This resulted in the following

best-�t plots
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Figure 4.6: The Figures above represent the rotation velocity, in-
clination angle, position angle and surface brightness �ts. Green line
represents TiRiFiC-MultiNest �t whereas red line represents TiRiFiC

�t. Error bars are shown at 3σ but very small.
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Parameter plots in Fig 4.6 hint at the possibility of the �t going wrong because of

not varying PA and INCL with radius. The reason for the obvious failure of this �t

could not be established. While in a long-slit experiment we would see the observed

degeneracy between inclination and rotation velocity this would not be expected for

our applied �tting technique.

For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.7

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.7: Comparison between NGC 4062 TiRiFiC simulated cube,
green, and TiRiFiC-MultiNest best �t parameter values, white.

4.1.8 Experiment 4

Later, a real data cube of galaxy NGC 4062 was �tted for using both TiRiFiC and

TiRiFiC-MultiNest. The rotation velocity and surface brightness parameters were

varied across the four radial nodes whereas all the other parameters were kept con-

stant. Prior values were set as described in Appendix A.7 Minimizing Prior Values

Experiment 4 and shaded grey in Fig 4.9. In determining the priors for the rotation

velocity from SoFiA, the minimum in rotation velocity was set to zero whereas the

maximum in rotation velocity was determined from SoFiA. SoFiA's best �t vrot value

of ∼ 174, calculated as described in Equation 4.3, was �rst doubled then incremented

by a small value, 50 km s−1, in such a way that the �nal result, 347.6 + 50 km s−1,
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would not exceed the velocity range spanned by the position velocity diagram shown

in Fig 4.8.

Figure 4.8: The range spanned by the PV slice of the galaxy shows
that it was less than 400km s−1. From this, the observed rotation
velocity of either the approaching or receding side of the galaxy should
be less than 200km s−1/ sin(inclination) whereas the observed velocity

range was less than 400km s−1/ sin(inclination)

Other parameters had their prior values set as detailed in Appendix A.7 Minimizing

Prior Values Experiment 4, and the run gave plots shown in Fig 4.9.
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Figure 4.9: The Figures above represent the rotation velocity and
surface brightness �ts. Green is TiRiFiC-MultiNest �tted values
whereas red is TiRiFiC �tted values for a real galaxy NGC 4062. Error

bars are shown at 3σ but very small.
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For visual comparison between the actual and TiRiFiC-MultiNest derived data cube

representing these best-�t parameters shown in the Figures above, the Fig 4.10 was

made using SlicerAstro (Punzo et al. 2017).

Figure 4.10: Comparison between NGC 4062 observed cube, white,
and TiRiFiC-MultiNest best �t parameter values, green.

4.1.9 Experiment 5

The simulated data cube for galaxy NGC 4062 was used in this experiment (see 4.1.3).

Prior values as derived and used in Experiment 4 above were also used for this ex-

periment and parameters for all radial nodes were set to vary, apart from position

parameters, XPOS, YPOS and VSYS. Consequently, the length of the cube param-

eter became n × 4 + 3 where n was the number of rings or nodes or radial points

to use, which, in this experiment, was 4, giving a total of 19 parameters. The �rst

four parameters described VROT, then PA for the second four, followed by INCL and

SBR. The other parameters, namely XPOS, YPOS and VSYS assumed that all the

rings representing the galaxy shared a common centre in the data cube hence these

were the only parameters that were left as single variables, therefore, duplicated four

times to represent the four radial nodes. The cube is as shown in Fig 4.11
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Figure 4.11: The cube parameter with VROT, INCL, PA and SBR
set to vary with 4 nodes whereas XPOS, YPOS and VSYS are set to
a constant value, which translates to one value in the cube array that

is dublicated 4 times per parameter value.

The prior values are shaded grey in Fig 4.12 and also detailed in Appendix A.8 Min-

imizing Prior Values Experiment 5 were used with the runs producing the following

best �t values
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Figure 4.12: The Figures above represent the rotation velocity, in-
clination angle, position angle and surface brightness �ts. Green line
represents TiRiFiC-MultiNest �t whereas red line represents TiRiFiC

�t. Error bars are shown at 3σ but very small.
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For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.13

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.13: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

From this experiment, it was observed that having prior values general enough to

include the actual parameters describing a galaxy resulted in good �ts. This exper-

iment also showed that setting the four parameters' radial nodes free resulted in a

much better �t as compared to �xing the radial nodes of some parameters as done in

Experiments 3 and 4 above.

4.1.10 Experiment 6

Experiment 6 �tted for seven radial nodes instead of four using a real observed data

cube. TiRiFiC and TiRiFiC-MultiNest were both used in the �tting process and their

results compared as red and green lines in the plots respectively. The �rst step used

VROT and SBR as free parameters with seven radial nodes whereas the rest of the

parameters were set to a constant value resulting in a cube of length n× 2 + 5 where

n is seven which becomes 19.

To obtain the prior values used, the following procedure was used on the best �t values

derived from SOFIA

SBR max = SBR best-�t value ×10.00 Jy km s−1

SBR min = 0.00 Jy km s−1

INCL best-�t value ±20.00 ◦

PA best-�t value ±20.00 ◦
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XPOS best-�t value ±0.01 ◦

YPOS best-�t value ±0.01 ◦

VSYS best-�t value ±20.00 km s−1

Whereas the VROT value was taken directly from SoFiA best �t value and added to

it 50 km s−1 as described in Experiment 4. This resulted in the prior values detailed

in Appendix A.9 Minimizing Prior Values Experiment 6 and also shaded grey in the

parameter plots below.

And on running, produced the following best �t results
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Figure 4.14: The Figures above represent the rotation velocity and
surface brightness �ts. Green line represents TiRiFiC-MultiNest �t
whereas red line represents TiRiFiC �tted values for a real galaxy

NGC 4062. Error bars are shown at 3σ but very small.

It was noted that there was a considerable increase in the amount of time needed for

MultiNest to reach convergence, ∼ 5 500 000 likelihood iterations, parallelized with

number of processors at 5, as compared to Experiment 5 above which converged at

∼ 760 000 likelihood iterations, also using 5 processors. It was also noted that the �ts

produced were not accurate. The suspected cause for this inaccurate �t was the use

of the default number of live points, 500. This suspicion is tested in the subsequent
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experiments.

For visual comparison between the observed and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.15

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.15: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

4.2 Further Attempts at reducing the number of likeli-

hood evaluations

4.2.1 Experiment 7

While attempting to reduce the number of likelihood evaluations for the runs, the

same simulated data cube as well as MultiNest cube structure de�ned in Fig 4.11 was

used, but this time, the evidence tolerance was increased to 1000, constant e�ciency

mode set to true and sampling e�ciency set to 1 as shown in Appendix A.10 Mini-

mizing Prior Values Experiment 7

The same algorithm was run using the same prior values as shaded grey in the pa-

rameter plots below. This run resulted in the following best �t values, reducing the

number of likelihood evaluations from ∼ 760 000 in Experiment 5 to ∼ 250 000 in the

current Experiment 7.

Setting these parameters as described resulted in the �ts shown in Fig 4.16
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Figure 4.16: Comparison between simulated parameter values, red,
Vs MultiNest �tted values, green, for TiRiFiC-MultiNest �t with sam-
pling e�ciency = 1; const e�eciency mode = True; evidence tol =
1 000. Best �t plot for rotation velocity. Error bars are shown at 3σ.
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For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.17

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.17: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

From this run, it was observed that with the evidence tolerance parameter set so high,

the �t was not good enough. One possibility for these wrong results was missing the

maximum likelihood mode.

To test if this was an e�ect of a mode being missed as a result of 'low resolution' in

the number of live points, the number of live points were increased from 500 to 5 000,

and the experiment run again to give the following result



Chapter 4. Tests and Results 74

0 60 120 180
radial nodes in arcseconds

0

50

100

150

200

250

300

350

400

Ro
ta

tio
n 

Ve
lo

cit
y 

km
/s

Radial Node vs Rotation Velocity
Simulated Values
MultiNest Values 3 

0 60 120 180
radial nodes in arcseconds

10

20

30

40

50

60

70

80

90

In
cli

na
tio

n 
An

gl
e 

De
gr

ee
s (

)s

Radial Node vs Inclination Angle

Simulated Values
MultiNest Values 3 

0 60 120 180
radial nodes in arcseconds

50

60

70

80

90

100

110

120

130

Po
sit

io
n 

An
gl

e 
De

gr
ee

s (
)s

Radial Node vs Position Angle

Simulated Values
MultiNest Values 3 

0 60 120 180
radial nodes in arcseconds

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Su
rfa

ce
 B

rig
ht

ne
ss

 Jy
km

1 a
rc

se
c

2

Radial Node vs Surface Brightness
Simulated Values
MultiNest Values 3 

Figure 4.18: Comparison between simulated parameter values, red,
Vs MultiNest �tted values, green, for TiRiFiC-MultiNest �t with sam-
pling e�ciency = 1; const e�eciency mode = True; evidence tol =
1 000; live points=5 000. Best �t plot for rotation velocity. Error bars

are shown at 3σ.
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Parameter plots in Fig 4.18 con�rm that the correct mode was being missed. Com-

paring increasing the number of live points and setting the parameters as described

in the beginning of this Experiment 7 to the previously run Experiment 5, there was

a decrease in the number of likelihood evaluations from ∼ 760 000 in Experiment 5 to

∼ 720 000 in the current Experiment 7.

For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best �t parameters shown in the Figures above, the Fig 4.19

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.19: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

4.2.2 Experiment 8

The next test involved running all parameters as free parameters with seven radial

nodes for the simulated galaxy NGC 4062, apart from XPOS, YPOS and VSYS as

shown in the cube Fig 4.20. Parameters used to construct the simulated data cube

were derived from a �t to a real data cube of the same galaxy, and are represented as

red lines in the plots.
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Figure 4.20: The cube parameter with VROT, INCL, PA and SBR
set to vary with 7 nodes whereas XPOS, YPOS and VSYS are set to
a constant value, which translates to one value in the cube array that

is duplicated seven times per parameter value.

To begin with, a simulated data cube was made by setting parameter values in

TiRiFiC's de�le this time with seven radii nodes. This simulated cube was later

�tted for using SoFiA according to the procedure described in Section 4.1.1 above

producing the prior values detailed in Appendix A.11 Minimizing Prior Values Exper-

iment 8 and also shaded grey in the parameter plots below.

Since this experiment involved more parameter values, 31 in total, that would be

�tted simultaneously by MultiNest, an attempt was made to reduce the number of

likelihood iterations by setting the following parameters.

sampling e�ciency = 1

const e�eciency mode = True

evidence tol = 1 000

n live points = 500

The number of live points was kept as low as possible in an attempt to reduce the

number of likelihood evaluations. The new approach was also taken to divide the

resultant log-likelihood value by 50 to further reduce the number of likelihood evalu-

ations. On running the test, parameter plots in Fig 4.21 were derived.
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Figure 4.21: Best �t plot for rotation velocity, inclination angle,
position angle and surface brightness. Error bars are shown at 3σ.
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For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.22

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.22: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

The �ts showed bad results, but with Experiment 7 as proof of live points resolution

playing a major role in �nding the correct mode, the next Experiments 9 and 10 in-

creased their number of live points in an attempt to derive correct �ts by ensuring

MultiNest has enough resolution to �nd the maximum mode, despite increased cube

length.

4.2.3 Experiment 9

The next experiment took Experiment 8 and modi�ed it such that there were 2 000

live points. To compensate for an increased number of live points as well as more

parameters to �t for, 31 in total as Experiment 8, a larger log-likelihood dividing

constant of 500 was used. The same prior values were also used and this resulted in

the best �t plot as shown in Fig 4.23
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Figure 4.23: Best �t plot for rotation velocity, inclination angle,
position angle and surface brightness. Simulated data cube parameters
derived from a �t to a real data cube, and are represented as red lines
whereas green lines are TiRFiC-MultiNest �ts. Error bars are shown

at 3σ.
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These plots were much better than those in Experiment 8 but were still inaccurate.

This inaccuracy hinted at the fact that 2 000 live points were still not enough owing

to a larger cube length that was being �tted for in MultiNest, resulting in the next

Experiment 10.

For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.24

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.24: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

4.2.4 Experiment 10

The suspected cause for the inaccuracy experienced in Experiment 9 was the number

of live points being insu�cient and hence missing the maximum likelihood mode as

the live point resolution was not enough. To further test this, Experiment 9 was mod-

i�ed by adding 3 000 more live points making a total of 5 000 live points, but this time

with the log-likelihood divided by 2 000 in an attempt to compensate for an increased

number of live points and this resulted in the following best �t values.
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Figure 4.25: Best �t plot for rotation velocity, inclination angle,
position angle and surface brightness. Simulated data cube parameters
derived from a �t to a real data cube, and are represented as red lines
whereas green lines are TiRFiC-MultiNest �ts. Error bars are shown

at 3σ.
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With an increased number of live points, MultiNest was able to sample the entire

multimodal distribution and end up with the best �tting parameter value.

For visual comparison between the simulated and TiRiFiC-MultiNest derived data

cube representing these best-�t parameters shown in the Figures above, the Fig 4.26

was made using SlicerAstro (Punzo et al. 2017).

Figure 4.26: Comparison between NGC 4062 TiRiFiC simulated
cube, green, and TiRiFiC-MultiNest best �t parameter values, white.

4.2.5 Experimental runs summary

The lessons learned from the experimental runs detailed above are as follows.

• The number of live points used in MultiNest has a direct in�uence on the �t

obtained. This is because the number of live points determines the 'resolution'

of the sampling region. The higher the number of live points, the higher the

resolution and consequently, the higher the chance that the optimal mode in the

log-likelihood distribution will be found.
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• The higher the number of parameters �tted for, the more the number of likeli-

hood evaluations needed before MultiNest converges.

• Attempts at reducing the number of likelihood evaluations have been made to

increase the �tting speed. This was done by increasing the evidence tolerance,

setting e�ciency to 1 and setting the constant e�ciency mode to True as well

as dividing the log-likelihood value by a constant value in extreme cases.

Most experimental runs were also parallelized by setting a certain number of

Nodes as detailed in Table 4.2.
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4.2.6 Test with real galaxy NGC 3198

The THINGS galaxy NGC 3198 (Walter et al. 2008a) was reduced in size as described

in Section 4.1.3. SoFiA was then used to derive the best-�t parameters, from the

reduced data cube, using the procedure described in Subsection 4.1.1 from which the

prior values shown in Appendix A.14 Minimizing Prior Values Test with real galaxy

N3198 were derived. Later, TiRiFIC-MultiNest algorithm was used to �t the reduced

NGC 3198 galaxy cube using only four radial nodes, making a cube length of 19. This

reduced and �tted THINGS datacube was compared to a �t by Gentile et al. (2013),

made to a HALOGAS datacube of the same galaxy.
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Figure 4.27: Best �t plot for rotation velocity, inclination angle,
position angle and surface brightness. Error bars are shown at 3σ.

As can be seen in Fig 4.27, the TiRiFiC-MultiNest �t was compared to Gentile et al.

(2013) parametrisation.

For visual comparison between the real and TiRiFiC-MultiNest derived data cube

representing these best-�t parameters shown in the Figures above, the Fig 4.28 was
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made using SlicerAstro (Punzo et al. 2017).

Figure 4.28: Comparison between NGC 3198 observed cube, green,
and TiRiFiC-MultiNest best �t parameter values, white.

4.2.7 Test with real galaxy NGC 4062

Galaxy NGC 4062 (Heald et al. 2011) was �t for using both TiRiFiC and TiRiFiC-

MultiNest resulting in the red and green �ts, shown in Fig 4.29. These �ts were made

using 1 disk and 7 radial nodes as described in 4.20 making the total cube length

become 31. SoFiA was used to derive the best-�t parameters using instructions de-

tailed in Subsection 4.1.1. From these best-�t parameters, the prior values for NGC

4062 were derived as shown in Appendix A.15 Minimizing Prior Values Test with real

galaxy N4062. Running this resulted in the following best-�t plots.
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Figure 4.29: Best �t plot for rotation velocity, inclination angle,
position angle and surface brightness. Error bars are shown at 3σ.
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For visual comparison between the real and TiRiFiC-MultiNest derived data cube

representing these best-�t parameters shown in the Figures above, the Fig 4.30 was

made using SlicerAstro (Punzo et al. 2017).

Figure 4.30: Comparison between NGC 4062 observed cube, white,
and TiRiFiC-MultiNest best �t parameter values, green.
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Chapter 5

Summary and Conclusion

5.1 Implementation Summary

TiRiFiC is a HI galaxy parametrisation software that does a direct �t to data cubes

using Chi-Square minimisation. However, the currently implemented minimising algo-

rithms do not have a way of quantifying errors or estimating the correlation between

parameter values. These minimising algorithms may also get stuck in a local mode

when the Chi-Square is multimodal, leading to incorrect parameters being returned

by the software. To navigate this multimodal Chi-Square space, a Bayesian-based al-

gorithm, MultiNest, has been implemented in combination with TiRiFiC and acts as

a minimising algorithm for TiRiFiC. The Bayesian-based sampler, MultiNest, also en-

ables estimation of parameter values and correlations between parameters to be found.

Since TiRiFiC-MultiNest algorithm is Bayesian-based, it takes a default �at prior

which de�ne the possible ranges of TiRiFiC's parameter values. The likelihood is

calculated from TiRiFiC's χ2 value and later converted to log-likelihood value with

every likelihood evaluation from MultiNest.

A Python wrapper around TiRiFiC was written to work together with the python

based Bayesian inference engine, PyMultiNest (Buchner & Johannes 2016), which is

a python wrapper around the c code, MultiNest. Together, the TiRiFiC-MultiNest

combination is parallelised to speed up the �tting process

To test the implementation, a simulated observation, i.e. a data cube with known

parameter values using TiRiFiC, was made. The simulated data cube was then �tted

using TiRiFiC-MultiNest. It was shown that the �t results agree with the simulated

parameters (to within two standard deviations (σrms) while providing plausible errors

and showing correlations between parameter values. It was also noted that in the

event a bad �t is recovered, it is advisable to try increasing the number of live points

which would result in a better �t. This evidence was supported by Experiment 7,

which showed the bene�ts of having a su�cient number of live points. A �t to a real

galaxy NGC3198 VLA observation was also made.
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It was also observed that by dividing the log-likelihood by a large constant value, the

number of likelihood evaluations decreased, making testing and or �tting for a galaxy

to happen in a much shorter timeframe. A similar reduction in MultiNest running

time was observed by increasing the evidence tolerance and setting the constant e�-

ciency mode parameter to true. However, this also required an increase in the number

of live points to derive the best �t value.

A comparison between the non-accelerated �t Experiment 5 and the accelerated �t

Experiment 7 is made.
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(a) rotation velocity Exp 5
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(b) rotation velocity Exp 7

(c) Inclination angle Exp 5
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(d) Inclination angle Exp 7

(e) position angle Exp 5
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(f) position angle Exp 7

(g) surface brightness Exp 5
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(h) surface brightness Exp 7

Figure 5.1: Experiment 5 had the parameters sampling e�ciency =
1; const e�eciency mode = True; evidence tol = 1 000; live points=500,
while Experiment 7 had the parameter sampling e�ciency = 1; const

e�eciency mode = True; evidence tol = 1 000; live points=5 000
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From Experimental runs 5, the non-accelerated, and 7, the accelerated version, there

seem to be a reduction in the error magnitude with acceleration as shown in the Figs

5.1a to 5.1h above. This seems counter-intuitive and implies that the acceleration

attempts made in�uence the spread of posterior samples coming from MultiNest and

consequently, the error values obtained. The cause of this reduction in error values

with acceleration will be investigated as part of the future work.

The sampling e�ciency parameter was set to 1 in experiments 7 through 10 as ad-

vised by Feroz et al. (2008) to reduce the number of likelihood evaluations by roughly

sampling the posterior as the primary interest is the parameter samples and not nec-

essarily the evidence value.

The constant e�ciency mode was set to True in an attempt to maintain the sampling

e�ciency as close to unity as possible as speci�ed by MultiNest README instructions.

Having a high evidence tolerance value had the e�ect of reducing the number of like-

lihood evaluations despite a required increase in the number of live points needed to

resolve the posterior.

Correlation plots between TiRiFiC parameters were also recovered and are shown in

Appendix A. An example of such correlation plots is shown in Fig 5.2 below.
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Figure 5.2: Plots showing the correlation between rotation velocity
and Inclination angle.
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From Fig 5.2, it can be seen that the rotation velocity is negatively correlated to the

inclination angle at the same radial node as was show by Begeman (1989). Interest-

ingly, the plots show also that some parameters are correlated to neighbouring data

points of the same parameter type. Prominently in Fig 5.2 this is the case for the

rotation velocities VROT at radii 6 and 12. It has often been remarked (Józsa, priv.

comm.) that TiRiFiC tends to settle on a sawtooth pattern for some parameters,

i.e. inclination and rotation velocity. These plots show the reason for this, that is,

correlation between parameters of the same type. Apparently, it is possible to balance

the deviation of a parameter from the optimal �t through implementing a deviation

in the opposite direction of a neighbouring parameter of the same type (e.g. two

adjacent rotation velocities). Within the scope of the experiments performed in this

thesis, there was no minimum issues encountered, that would manifest as two island

of solutions in the chi-squared.

5.2 Conclusion

TiRiFiC-MultiNest at its current state, can reach a very good result when �tting a

data cube resulting from a galaxy observation. However, its �tting time increases

exponentially with an increase in parameters to be �tted for.

The next step for TiRiFiC-MultiNest algorithm involves determining the point of �t-

ting breakdown and in�uence in error magnitude of parameter values as the evidence

tolerance is increased.

TiRiFiC-MultiNest would also need to take into account the correlation between pixel

values. It is also important to note that a potential barrier to this technique of Chi-

Square minimization is that the calculated value of the Chi-Square is dependent on

the size of the cube.
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Appendix A

Software Documentation

A.1 TiRiFiC Usage

In n4565 hi.def �le, The variables used are as follows.

PROGRESSLOG: The �le name used to record tiri�c's calculated chisquared after

every loop.

INSET : The input �ts �le.

OUTSET : The output �ts �le.

NDISKS= 2 : We are �tting 2 disks.

NUR= 11 : Represents all 11 radial nodes.

LOOPS=4 : Total number of loops to run.

VARY= ! VROT 1:11 VROT 2 1:11 : Vary was set to only vary rotation ve-

locity, varying VROT and VROT 2 as a group for each and every of the 11 parameters.

To run, on the terminal, execute the following command after ensuring n4565 hi.�ts

and n4565 hi.def are on the same folder as your terminal path.

tiri�c de�le=n4565 hi.def

A model datacube n4565 hi out01.�ts is produced along with ps �le inside the same

directory.

A.2 Multinest Example

An example problem solved with Multinest is as follows:

The �le example data.txt contains data whose �rst column is x values, the second

y values and the third the error on each data point.

The function used to �t is of this form:

y = a× x× sin( b× x+ c)
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Multinest was used to �nd the best �tting parameters a, b and c and their uncertain-

ties.

A.3 Parameters set for SoFiA run

SOFiA was used to get the best-�t parameters for the galaxy, with the following pa-

rameters

Source �nding

Smooth + clip �nder

Enable: Yes

Threshold - 4.0

Edge mode: Constant

RMS mode: Gaussian �t to negative �uxes

Kernel units: Pixels

Kernels: �[[ 0, 0, 0,'b'],[ 0, 0, 3,'b'],[ 0, 0, 7,'b'],[ 0,

0, 15,'b'],[ 3, 3, 0,'b'],[ 3, 3, 3,'b'],[ 3, 3, 7,'b'],[ 3,

3, 15,'b'],[ 6, 6, 0,'b'],[ 6, 6, 3,'b'],[ 6, 6, 7,'b'],[ 6,

6, 15,'b']]�

Merging

Merging of Detectors

Enable: yes

Radius X, Radius Y, Radius Z = 3

Min size X, Min size Y, Min size Z = 4

Parametrization

Source parametrization

Enable: Yes

Optimise mask(Ellipse): yes

Fit Busy Function: yes

Reliability calculation: selected

A.4 Minimizing Prior Values Experiment 1

Prior values used for this experiment are as follows:

vrot max = 1042.8 km s−1

vrot min = 0.0 km s−1

incl max = 92.4 ◦

incl min = 52.4 ◦

PA max = 200.0 ◦

PA min = 0.0 ◦
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SBR max = 0.002 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.02671 ◦

XPOS min = 181.00671 ◦

YPOS max = 31.905 ◦

YPOS min = 31.885 ◦

VSYS max = 787.31 km s−1

VSYS min = 747.31 km s−1

The following parameters were also set

Multinest Parameters:

n live points = 35

evidence tolerance = 0.5

sampling e�ciency = 1.0

const e�ciency mode=True

TiRiFiC Parameters

CFLUX= 1e-04

Number of multinest processes run = 5

Number of likelihood evaluations = 14868

A.5 Minimizing Prior Values Experiment 2

The prior ranges were adjusted as follows

VROT1, VROT2 best-�t value from the run before ± 15

SBR1, SBR2 best-�t value from the run before ± 90

INCL (best-�t value from run before) ± 20

PA (best-�t value from run before) ± 20

XPOS (best-�t value from run before) ± 0.005

YPOS (best-�t value from run before) ±0.005
VSYS (best-�t value from run before) ±5

Prior values used for this experiment are as follows.

vrot max = 166.83 km s−1

vrot min = 136.83 km s−1

incl max = 92.65 ◦

incl min = 52.65 ◦
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PA max = 120.04 ◦

PA min = 80.04 ◦

SBR max = 0.00047 Jy km s−1 arcsec−2

SBR min = 2.5e− 05 Jy km s−1 arcsec−2

XPOS max = 181.02 ◦

XPOS min = 181.01 ◦

YPOS max = 31.90 ◦

YPOS min = 31.89 ◦

VSYS max = 769.16 km s−1

VSYS min = 759.16 km s−1

The following parameters were also set

Multinest Parameters:

n live points = 500

evidence tolerance = 0.5

sampling e�ciency = 1000.0

const e�ciency mode=False

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 82799

A.6 Minimizing Prior Values Experiment 3

Prior values used for this experiment are as follows.

vrot max = 800 km s−1

vrot min = 0 km s−1

incl max = 90 ◦

incl min = 0 ◦

PA max = 359 ◦

PA min = 0 ◦

SBR max = 0.002 Jy km s−1 arcsec−2

SBR min = 0 Jy km s−1 arcsec−2

XPOS max = 181.021 ◦

XPOS min = 181.011 ◦

YPOS max = 31.901 ◦

YPOS min = 31.891 ◦
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VSYS max = 769.164 km s−1

VSYS min = 759.164 km s−1

The following parameters were also set

Multinest Parameters:

n live points = 500

evidence tolerance = 0.5

sampling e�ciency = 1000.0

const e�ciency mode=False

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 156193

A.7 Minimizing Prior Values Experiment 4

Prior values used for this experiment are as follows.

SBR best-�t value × 10

INCL best-�t value ±20

PA best-�t value ±20

XPOS best-�t value ±0.01

YPOS best-�t value ±0.01

VSYS best-�t value ±20

vrot max = 397.584 km s−1

vrot min = 0.000 km s−1

incl max = 92.377 ◦

incl min = 52.377 ◦

PA max = 120.619 ◦

PA min = 80.619 ◦

SBR max = 0.002 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.02671 ◦

XPOS min = 181.00671 ◦

YPOS max = 31.90526 ◦

YPOS min = 31.88526 ◦

VSYS max = 787.3097 km s−1
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VSYS min = 747.3097 km s−1

The following parameters were also set

Multinest Parameters:

n live points = 500

evidence tolerance = 0.5

sampling e�ciency = 1000.0

const e�ciency mode=False

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 379179

A.8 Minimizing Prior Values Experiment 5

Prior values used for this experiment are as follows.

vrot max = 397.584 km s−1

vrot min = 0.0 km s−1

incl max = 92.377 ◦

incl min = 52.377 ◦

PA max = 120.619 ◦

PA min = 80.619 ◦

SBR max = 0.0021 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.02671 ◦

XPOS min = 181.00671 ◦

YPOS max = 31.90526 ◦

YPOS min = 31.88526 ◦

VSYS max = 787.3097 km s−1

VSYS min = 747.3097 km s−1

The following parameters were also set

Multinest Parameters:

n live points = 500

evidence tolerance = 0.5

sampling e�ciency = 1000.0



Appendix A. Software Documentation 101

const e�ciency mode=False

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 759179

And their corresponding correlation plots
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Figure A.1: Plots showing the correlation between position angle
and inclination angle.
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Figure A.2: Plots showing the correlation between position angle
and surface brightness.
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Figure A.3: Plots showing the correlation between rotation velocity
and position angle.
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Figure A.4: Plots showing the correlation between rotation velocity
and surface brightness.
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Figure A.5: Plots showing the correlation between rotation velocity
and inclination angle.

A.9 Minimizing Prior Values Experiment 6

Prior values used for this experiment are as follows.

vrot max = 397.584 km s−1

vrot min = 0.0 km s−1

incl max = 92.376836365

inclmin =52.376836365

PA max = 120.6192

PAmin =80.6192

SBR max = 0.0021 Jy km s−1 arcsec−2
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SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.02671 ◦

XPOS min = 181.00671 ◦

YPOS max = 31.90526 ◦

YPOS min = 31.88526 ◦

VSYS max = 787.3097 km s−1

VSYS min = 747.3097 km s−1

The following parameters were also set

Multinest Parameters:

n live points = 500

evidence tolerance = 0.5

sampling e�ciency = 1000.0

const e�ciency mode=False

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 5502746

A.10 Minimizing Prior Values Experiment 7

Prior values used for this experiment are as follows.

vrot max = 397.585 km s−1

vrot min = 0.0 km s−1

incl max = 92.377 ◦

incl min = 52.377 ◦

PA max = 120.619 ◦

PA min = 80.619 ◦

SBR max = 0.0021 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.02671 ◦

XPOS min = 181.00671 ◦

YPOS max = 31.90526 ◦

YPOS min = 31.88526 ◦

VSYS max = 787.3097 km s−1

VSYS min = 747.3097 km s−1
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The following parameters were also set

Multinest Parameters:

n live points = 500

evidence tolerance = 1000

sampling e�ciency = 1

const e�ciency mode=True

TiRiFiC Parameters

CFLUX= 2e-06

For 500 live points

Number of multinest processes run = 5

Number of likelihood evaluations = 249544

For 5000 live points

Number of multinest processes run = 5

Number of likelihood evaluations = 719621

These 5000 live points had the following corner plot �gures
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Figure A.6: Plots showing the correlation between Rotation velocity
and Inclination angle.
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Figure A.7: Plots showing the correlation between rotation velocity
and position angle.
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Figure A.8: Plots showing the correlation between rotation velocity
and surface brightness.
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Figure A.9: Plots showing the correlation between position angle
and inclination angle.
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Figure A.10: Plots showing the correlation between position angle
and Surface brightness.
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A.11 Minimizing Prior Values Experiment 8

Prior values used for this experiment are as follows.

vrot max = 439.415 km s−1

vrot min = 0.0 km s−1

incl max = 95.6 ◦

incl min = 55.6 ◦

PA max = 140.1 ◦

PA min = 60.1 ◦

SBR max = 0.002 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.026 ◦

XPOS min = 181.006 ◦

YPOS max = 31.90 ◦

YPOS min = 31.89 ◦

VSYS max = 784.7 km s−1

VSYS min = 744.7 km s−1

The following parameters were also set

Multinest Parameters

n live points = 500

evidence tolerance = 1000

sampling e�ciency = 1

const e�ciency mode=True

log-likelihood dividing constant = 100

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 108929

A.12 Minimizing Prior Values Experiment 9

Prior values used for this experiment are as follows.

vrot max = 439.4 km s−1

vrot min = 0.0 km s−1



Appendix A. Software Documentation 114

incl max = 95.6 ◦

incl min = 55.6 ◦

PA max = 140.1 ◦

PA min = 60.1 ◦

SBR max = 0.002 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.026 ◦

XPOS min = 181.006 ◦

YPOS max = 31.905 ◦

YPOS min = 31.885 ◦

VSYS max = 784.7 km s−1

VSYS min = 744.7 km s−1

The following parameters were also set

Multinest Parameters

n live points = 2000

evidence tolerance = 1000

sampling e�ciency = 1

const e�ciency mode=True

log-likelihood dividing constant = 500

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 385,713

A.13 Minimizing Prior Values Experiment 10

Prior values used for this experiment are as follows.

vrot max = 439.4 km s−1

vrot min = 0.0 km s−1

incl max = 95.6 ◦

incl min = 55.6 ◦

PA max = 140.1 ◦

PA min = 60.1 ◦

SBR max = 0.002 Jy km s−1

SBR min = 0.0 Jy km s−1
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XPOS max = 181.026 ◦

XPOS min = 181.006 ◦

YPOS max = 31.905 ◦

YPOS min = 31.885 ◦

VSYS max = 784.7 km s−1

VSYS min = 744.7 km s−1

The following parameters were also set

Multinest Parameters

n live points = 5000

evidence tolerance = 1000

sampling e�ciency = 1

const e�ciency mode=True

log-likelihood dividing constant = 2000

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 890,314

These 5000 live points had the following corner plot �gures
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Figure A.11: Plots showing the correlation between rotation velocity
and inclination angle. The inclination angle at radius 0 is spread over

the entire prior range and hence unreliable.
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Figure A.12: Plots showing the correlation between rotation velocity
and position angle. The position angle at radius 0 is spread over the

entire prior range and hence unreliable.
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Figure A.13: Plots showing the correlation between rotation velocity
and surface brightness.
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Figure A.14: Plots showing the correlation between position angle
and inclination angle. The position angle and inclination angle at
radius 0 is spread over the entire prior range and hence unreliable.
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Figure A.15: Plots showing the correlation between position angle
and surface brightness. The position angle at radius 0 is spread over

the entire prior range and hence unreliable.
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A.14 Minimizing Prior Values Test with real galaxy N3198

Prior values used for this experiment are as follows.

var par = 4.0

vrot max = 198.7 km s−1

vrot min = 0.0 km s−1

incl max = 95.8 ◦

incl min = 55.8 ◦

PA max = 257.5 ◦

PA min = 177.5 ◦

SBR max = 0.00009 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 154.986 ◦

XPOS min = 154.966 ◦

YPOS max = 45.562 ◦

YPOS min = 45.542 ◦

VSYS max = 783.8 km s−1

VSYS min = 583.8 km s−1

The following parameters were also set

Multinest Parameters

n live points = 5000

evidence tolerance = 1000

sampling e�ciency = 1

const e�ciency mode=True

log-likelihood dividing constant = 2000

TiRiFiC Parameters

CFLUX= 1e-04

SBR max = 0.0006

SBR min = 0.0

Number of multinest processes run = 5

Number of likelihood evaluations = 463,799
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A.15 Minimizing Prior Values Test with real galaxy N4062

Prior values used for this experiment are as follows.

var par = 7.0

vrot max = 439.4 km s−1

vrot min = 0.0 km s−1

incl max = 95.6 ◦

incl min = 55.6 ◦

PA max = 140.1 ◦

PA min = 60.1 ◦

SBR max = 0.002 Jy km s−1 arcsec−2

SBR min = 0.0 Jy km s−1 arcsec−2

XPOS max = 181.026 ◦

XPOS min = 181.006 ◦

YPOS max = 31.905 ◦

YPOS min = 31.885 ◦

VSYS max = 784.7 km s−1

VSYS min = 744.7 km s−1

The following parameters were also set

Multinest Parameters

n live points = 5000

evidence tolerance = 1000

sampling e�ciency = 1

const e�ciency mode=True

log-likelihood dividing constant = 2000

TiRiFiC Parameters

CFLUX= 2e-06

Number of multinest processes run = 5

Number of likelihood evaluations = 961,324
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