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Abstract 

Dysfunction of central dopaminergic systems has been implicated in neuroendocrine, 

neurodegenerative and psychiatric disorders. Monoamine oxidase and catechol-O

methyltransferase represent the key catabolic enzymes of dopamine, terminating 

neurotransmission following synaptic release of this catecholamine. Thus, both enzymes have 

been associated with the pathology of dopaminergic systems and represent therapeutic targets elf 

enormous clinical importance. Some neuroendocrine and circadian effects of melatonin have been 

attributed to an antidopamimetic effect of this pineal hormone in the hypothalamus and pituitary. 

Furthermore, both melatonin and dopamine modulate the behavioural output of the mesencephalic 

dopaminergic pathways of the basal ganglia, including movement disorders. However, the 

biochemical basis for the tonic inhibitory effect of melatonin in the nigro-striatal pathway has 

been poorly delineated. Thus, this study determined whether melatonin influences dopaminergic 

function in the corpus striatum of the Wistar rat by modulating monoamine oxidase and catechol

O-methyltransferase activity. Reciprocally, the putative existence of an intrapineal dopaminergic 

system was investigated by determining the effect of selective dopaminergic agents, R-( -)

apomorphine, haloperidol and dopamine, on indole metabolism of the pineal gland. The akinetic 

state of drug-induced catalepsy was employed as an animal model of Parkinson's disease to probe 

the neurotransmitter systems involved in the behavioural effects of melatonin. 

Indole metabolism was a reliable indicator of state-dependent metabolic fluxes in pineal gland 

function. These included a robust diurnal and seasonal variation in N-acetylserotonin and 

melatonin biosynthesis, and photoperiod- and drug-induced alterations of Inftabolism. The 

predominant changes could be attributed to an effect on serotonin N-acetyltransferase activity 
I 

and/or the melatoninl5-methoxytryptophol ratio. Pineal 5-methoxyindole biosynthesis was 

determined primarily by the bioavailability of the corresponding 5-hydroxyindole and its affinity 

for hydroxyindole-O-methyltransferase. Evidence was found for the negative feedback or 

paracrine control of pineal indole metabolism by melatonin. A high inter-individual variability 

was observed in the biosynthesis of N-acetylserotonin and melatonin biosynthesis, and the weight 

of the pineal glands. Accordingly, the rats could be classified as either high or low capacity 

producers of these two indoles. R-(-)-apomorphine and dopamine in vitro, but not acute 

haloperidol in vivo, had dose- and phase-dependent effects on pineal indole metabolism. The 

predominant effect was a suppression of the scotophase-dependent induction ofN-acetylserotonin 

and melatonin biosynthesis by dopamine and R-( -)-apomorphine. It is postulated that these 

agonists inhibited nocturnal N-acetyltransferase activity via postsynaptic pineal D2 or D2-like 
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receptors. The observed modulatory nature of the intrapineal dopaminergic system suggests that 

dopamine may be involved in the long-term regulation of pineal indole biosynthesis. 

Several lines of evidence are presented that the activity of striatal monoamine oxidase A and 

catechol-O-methyltransferase, represented predominantly by the soluble isoform, is state

dependent and regulated in vivo by endogenous melatonin. Firstly, both enzymes showed a day

night variation in activity. Secondly, acute and subchronic administration and photoperiod 

manipulation studies indicated that both exogenous and endogenous melatonin inhibited each 

enzyme in a chronotypic fashion, with a more robust effect against catechol-O-methyltransferase. 

The intensity of the in vivo effects was critically dependent on the dose, duration, route and the 

phase-timing of administration during the light dark cycle, and the length of the exposure to 

constant light. Melatonin in vitro had no effect on basal or Mg2+ -induced catechol-O

methyltransferase activity. Thus, it is proposed that the in vivo effects of the hormone can be 

attributed to a time-dependent change in the amount of active molecules of this enzyme. In 

contrast, melatonin and numerous other endogenous indolic compounds were found to be 

reversible inhibitors of striatal monoamine oxidase A in vitro. Structure-activity modeling 

revealed that the 5-methoxy moiety on the indole nucleus and substitution of the free primary 

amine of these compounds were the principal determinants of the potency and time-dependency of 

inhibition. Thus melatonin most likely has a direct inhibitory effect in vivo at the level of the 

active site of monoamine oxidase A. 

Exogenous melatonin alone had no cataleptogenic potential whereas a variety of behavioural 
~ 

responses were observed following intraperitoneal administration of y-hydroxybutyrate. The latter 
! 

responses were state-dependent with day-night variations in intensity. Furthermore, y-

hydroxybutyrate stimulated melatonin biosynthesis during the photophase both in vitro and in 

vivo. These results point to a possible involvement of melatonin in the behavioural and 

neurochemical effects of y-hydroxybutyrate. 

Thus the general conclusion is that dopamine and melatonin display functional antagonism at the 

level of the pineal gland and corpus striatum of the Wistar rats. Therefore melatonin may be an 

important homeostatic modulator of dopaminergic neurotransmission throu~out the central 

nervous system. Furthermore, the putative existence of a functional pineal-striatal axis would 

greatly strengthen the argument for a holistic concept of brain homeostasis. The ability of 

endogenous melatonin to regulate monoamine oxidase A and catechol-O-methyltransferase may 

represent an alternative strategy for the treatment of disorders associated with these enzymes. 
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"no vestige of a beginning, -no prospect of an end" 
James Hutton (1788) 

"The seat of the passions is not the heart ... 
There is a little gland in the brain where the 
soul exercises its functions more especially 

than in other regions ... This gland is regarded 
as the principal seat of the soul." 

Rene Descartes (1649) 
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Chapter 1 

Literature Review 

1.1 Introduction 

The 1990s were declared the "Decade of the Brain" in recognition of the accelerating impact of 

brain-related disorders on society and national economies. As the average life-span of more 

affluent populations increases in response to modern medicine, age-related neurodegenerative 

diseases are becoming more common, especially the terribly debilitating Parkinson's and 

Alzheimer's disease. In further response to the modern lifestyle, stress- and anxiety-induced 

affective disorders are becoming widespread, with depression as the most ubiquitous psychiatric 

malady of the 1990s. This has resulted in a growing public awareness and concern regarding 

mental health. This can be attested to by the fact that numerous neuropharmaceutical agents have 

become household words and a part of the normal contents of the average medicine cabinet. 

Neuroscience represents a multidisciplinary approach uniting scientists of disparate fields in an 

attempt to unravel the mysteries and workings of the brain. A final goal has been to explain 

complex neural problems such as consciousness, self-awareness and memory. Research has 

ranged from extreme reductionism on one hand, to treating the brain as a "black box" on the other, 

where only the inputs and outputs or emergent properties of the brain are considered. Now as the 

"Decade of the Brain" closes and the new millennium approaches, some researchers have 
~ 

expressed a concern that neuroscience has become stagnant and has failed to deliver an unified 

concept of brain function, especially of consciousness. However, this pessimistic vdw and 

preoccupation with the neural version of the "theory of everything", should not detract from a key 

concept that has developed in the field of neuroscience: brain homeostasis. 

Typically, brain function has been delineated from an understanding of brain dysfunction. Now 

there is a growing appreciation that brain disorders or diseases are functional entities in their own 

right, and not merely abnormal versions of normal brain functioning. Neural systems are in 

permanent dynamic flux and their plasticity and ability to self-adjust is well-known. They can 

respond to perturbations by establishing a new steady-state or equilibrium, and even take over 

functions normally assigned to other neuronal circuits, following damage to the latter. This 
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concept was eloquently demonstrated for encephalitic Parkinsonism patients in the Oliver Sacks 

book Awakenings (1973). Virally-induced damage to the basal ganglia resulted in an inability to 

process sensory information into a motor response that was appropriate for real-time conditions. 

Closer inspection, however, revealed that these patients had different perceptions of space and 

time that helped to create and shape their own virtual reality. For example, the inability to initiate 

movement in a plain hospital corridor was overcome by painting white and black blocks on the 

floor. Inappropriate processing of sensory information is a hallmark of what is termed "disorders 

of impulse control", and includes schizophrenia and other affective disorders. Impulse control and 

motor co-ordination are regulated by the dopaminergic limbic system and nigro-striatal pathway 

of the basal ganglia, respectively. Behaviour represents an obvious manifestation of brain 

function. Thus the abnormal behavioural repertoires associated with dysfunction of the basal 

ganglia are one reason why this brain system is a fascinating and topical area of research. 

The neuronal circuits of the basal ganglia involved in impulse control also represent an ideal 

system for investigating the importance of homeostasis or balance in brain function. Dopamine 

(DA) is the key neurotransmitter of the mesolimbic and nigro-striatal pathways (Graybiel, 1990). 

Most disorders of impulse control are associated with a dysfunction or imbalance of dopaminergic 

function, for example schizophrenia and Parkinson's disease. In a highly simplified model, 

schizophrenia and Parkinson's can be viewed as the opposite manifestations of a "DA see-saw". 

Parkinson's disease is characterized by hypoactivity of the dopaminergic neurons, whereas 

schizophrenia is a hyperactive state (Goldstein and Deutch, 1992; Greenfield, 1992). The modem 

therapeutic approach is thus to rectify this imbalance with the aid of selective dopaminergic 

agents. The DA precursor 3,4-dihydrox-L-phenylalanine (L-Dopa) and selecti* DA receptor 

agonists are used in the treatment of Parkinson's disease, whereas the antipsychotic drugs lised in 

the treatment of schizophrenia are DA antagonists (neuroleptics). However, chronic administration 

of these agents can over-correct the imbalance, swinging the "see-saw" in the opposite direction. 

For example, neuroleptic-induced Parkinsonism and other movement disorders are common in 

treated schizophrenic patients. In turn, L-Dopa can induce hallucinations and dyskinesias in 

Parkinson's patients that are reminiscent of the psychotic episodes of schizophrenia (Jankovic, 

1995). These drug-induced side-effects represent the major cause of poor patient compliance with 

the current therapeutic approach. 

2 
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Even local neuronal circuits, such as those involved in impulse control, constitute a complex 

interaction between several pathways employing a number of different neurotransmitter systems. 

It is naive to believe that therapeutic agents will only target the specific neuronal circuit in 

question or that a complex disease state can be cured by selectively targeting only one 

neurotransmitter. A similar argument can be used against the "pill-popping" philosophy of treating 

disorders such as depression or eating disorders. Rather a holistic view is needed to appreciate the 

new homeostatic state of a specific neuronal system following a perturbation. The contribution of 

each component of the neural system to the new equilibrium must be ascertained. 

A holistic view of brain function cannot ignore the growing awareness of the role of the pineal 

gland in homeostatic control of the body and brain. Historically, the 17th century philosopher Rene 

Descartes, who helped shape the Western paradigm of thinking, supported and extended Plato's 

proposal that the pineal is the seat of the soul (Miles and Philbrick, 1988). There has also been a 

movement to equate the pineal gland with the "third eye" of Hindu religion, which is believed to 

represent "the seventh chakra" or the gateway to full spiritual enlightenment. Although too 

esoteric for scientific objectivity, this way of thinking appears to have preempted the current 

awareness of the pineal. Initially, science saw the pineal gland as a vestigial organ with no 

function. It was only after the isolation of melatonin (5-methoxy-N-acetyltryptamine; MEL) from 

the bovine pineal gland by Lerner et al. (1958) that the current explosion in pineal research began. 

The following literature review will clearly show that MEL is an important neuromodulator of 

several key neurotransmitters and thus influences numerous brain functions. Neuroscientists, or 

pineal researchers at least, have now gone as far to state that the pineal may indeed be a "master 

gland" or the principal homeostatic regulator. One apparent mechanism involves aJ effect of MEL 

on well-defmed neuronal circuits and assemblages, such as the hypothalamic-pituitary-aflrenal 

axis. Hypothalamic DA appears to be the key· point at which MEL regulates the latter axis. This 

raises the question of whether MEL may be a key component of homeostatic regulation of 

dopaminergic function of the basal ganglia and thus disorders of impulse control. Indeed the 

corpus striatum of the basal ganglia has the richest dopaminergic innervation of any brain region 

(Moore and Bloom, 1978). 

Thus it is hypothesized that a functional interaction may exist between the pin~al gland of the rat 

and the corpus striatum, i.e. a pineal-striatal axis. A reciprocal or feedback relationship may exist 

between pineal MEL and DA. Briefly, it is postulated that a dopaminergic system may modulate 

3 
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pineal function and, in turn, MEL may modulate dopaminergic activity and behavioural output of 

the rat corpus striatum. 

The main objectives of the present thesis can be summarized as follows: 

(i) To determine the effect of dopaminergic agents on pineal indole metabolism. 

(ii) To determine the effect of MEL on striatal dopaminergic function at the level of the enzymes 

monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). 

(iii) To determine the interaction of MEL and dopaminergic agents on behaviour employing 

catalepsy as a model of Parkinson's disease. 

1.2 The Pineal Gland 

The rat pineal complex, or epiphysis cerebri, consists of the superficial pineal gland and the deep 

pineal (Reiter, 1989; Zhang et a!., 1991). The superficial pineal gland is located on the surface of 

the brain at the junction of the cerebellum and cerebral hemispheres in close association with the 

third ventricular region. The deep pineal is located in the diencephalon on the dorsal part of the 

brain stem between the habenular complex and posterior commissural areas. The two components 

are connected via a pineal stalk or peduncle (Reiter, 1989; Zhang et a!., 1991). Unless otherwise 

specified, the term pineal gland will be used to refer to the superficial pineal. The word "pineal" is 

derived from the Latin pinealis, pinea meaning pine cone, as this is the shape resembled by the 

human pineal gland. The term epiphysis means "what is grown on something" (Erlich and 

Apuzzo, 1985). 

The pineal is an endocrine gland ideally situated anatomically to receive, integrate and cbmpare 

information from both the external envir6nment and the internal physiological milieu. By 

transducing photoperiodic information into a hormonal signal, the pineal plays an integral role in 

the temporal organization of numerous metabolic, physiological and behavioural processes. For 

this reason, the pineal has been defined as a "neuroendocrine transducer" (Axelrod, 1974) with the 

indoleamine MEL as the principal hormone secretion (Erlich and Apuzzo, 1985). 

The mammalian pineal gland itself is not photoreceptive. In these animals, the: pineal is connected 

to the phototransducing ganglion cells of both retinas through a specific polyneuronal pathway 

(see Figure 1.1). An independent retinohypothalamic tract connects these ganglion cells to the 
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paraventricular nucleus and suprachiasmatic nucleus (SCN) of the anterior hypothalamus. From 

here, the fibres run through the brainstem and the medial forebrain bundle, terminating on pre

ganglionic sympathetic neurons in the intermediolateral cell columns of upper thoracic cord. 

Efferent axons pass in the cephalid direction via the sympathetic trunk to synapse in the superior 

cervical ganglia (SCG). Post-ganglionic fibres of the sympathetic nervous system (SNS), known 

as the nervi conarii, enter the cranial cavity via the internal carotid plexus and terminate primarily 

on the perivascular processes of the pinealocytes. In this way, the parenchymal cells of 

mammalian pineals are unusual in that they receive direct sympathetic innervation, mediating 

pineal responses to environmental lighting (Erlich and Apuzzo, 1985; Moore, 1993). 

,I 

Figure 1.1: Diagrammatic representation of the mUlti-synaptic connection between the 

retina and a pinealocyte of the pineal gland. The pineal indole biosynthesis pathway is depicted 

in the pinealocyte (Reproduced from Reiter, 1988). 

The hypothalamic SeN represents the site of the endogenous "biological clock" or internal 

"zeitgeber". The SCN is an intrinsic pacemaker, which generates a free-running rhythm of pineal 

MEL synthesis with a periodicity of slightly greater than 24h (ca. 25 hrs). Light acts as an 

entraining agent to readjust the clock to a period of 24 hrs (i.e. a circadian rhythm) in response to 

daily and seasonal shifts in the photoperiod. Light holds the SCN under tonic inhibition thereby 
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reducing circadian output. The onset of darkness (i.e. the absence of light) results in the 

disinhibition of the SCN triggering a surge in the synthesis and release of MEL at night 

(Annstrong, 1989; Reiter, 1989; Moore, 1993). For this reason, MEL has been called the 

"chemical expression of darkness" (Reiter, 1991). By means of MEL, the pineal can provide 

information about both the absolute daylength and whether the photoperiod is increasing or 

decreasing. Numerous animals, described as photoperiodic, utilize the seasonal change In 

daylength as an environmental cue to regulate circannual fluctuations in internal physiology, 

especially reproduction. After pinealectomy, most mammals are either totally aseasonal or revert 

to inherent free-running annual cycles. Indeed, the two main functions attributed to MEL include: 

(a) The timing of the annual rhythm in reproductive function in seasonally breeding animals. MEL 

has both pro- and anti-reproductive effects, depending on the stage of the circannual rhythm, and 

also influences pubertal development (Reiter, 1991; Waldhauser et al., 1993). 

(b) Circadian entrainment. MEL acts as an entraining agent capable of gating and synchronizing 

the daily rhythms of other circadian oscillators, especially the SCN. In this way, MEL is 

responsible for phase-shifting numerous biochemical, physiological and behavioural processes to 

the prevailing light dark cycle (Reiter, 1991). 

The pineal gland is also one of eight extra-blood-brain structures collectively named the 

circumventricular organs (CVOs) in mammals (Johnson and Gross, 1993). The other members 

include the subfornical organ, organum vasculosum of the lamina terminalis, median eminence, 

pituitary intermediate lobe, pituitary neural lobe, sub commissural organ and area postrema. These 

are small midline structures bordering the third and fourth ventricles, generally displaying sensory 

and neuroendocrine characteristics. Seven of the eight CVOs, including the p~neal gland, are 

blood-brain-barrier-deficient regions, although they have extraordinarily high capillary 1ensity 

(high vascularization). The typical tight junctions between endothelial cells lining the capillaries 

are lacking, resulting in fenestrated vessels, and the glial cells which are normally tightly wrapped 

around the vessels abluminally are more loosely opposed, resulting in relatively large perivascular 

spaces. These morphological features are very favourable for high permeability :fluid-brain 

exchange, allowing even large and polar substances to readily move between blood and 

perivascular spaces. CVOs also possess specialized ependymal cells called tanycytes, which have 

multiple processes that contact the cerebrospinal fluid (CSF) and others that extend into the CVO 

body. Thus CVOs have cellular contacts with two fluid phases - blood and CSF. Furthermore all 

appear to have neural connections with strategic nuclei, as discussed above for the pineal gland 

(Johnson and Gross, 1993). It must be noted that these physical properties of the pineal have 
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important implications for pharmacological manipulation studies. Firstly, the pineal gland can 

potentially be influenced by peripheral neurochemical agents that cannot enter the central nervous 

system (CNS). Secondly, the high degree of vascularization could increase contact time due to 

accumulation of the agent. 

It has also been proposed that the pineal meets all the criteria to be classified as a part of the 

APUD (Amine Precursor Uptake and Decarboxylation) system (Leong and Matthews, 1979; 

Erlich and Apuzzo, 1985). The latter represents a diffuse neuroendocrine system of widely 

dispersed, apparently unconnected series of glandular structures linked by a common 

embryological derivation from the neural crest and secretion of closely similar functional 

(hormonal) products. Some other members include pituitary corticotrophic cells, pituitary 

melanotrophic cells, pancreatic islet cells, thyroid C cells, argyrophilic G cells of the stomach and 

intestinal enterochromaffin cells. Hormonal secretory products of these tissue would then include 

insulin, melanocyte-stimulating hormone and thyrotropin. 

Thus reciprocal interactions may exist between the pineal and other members of the CVO and 

APUD systems. In this way, the pineal may represent a "master gland", facilitating co-ordination 

between diverse structures both peripherally and centrally. Su'ch a diffuse network would expand 

the possible regulatory aspects of the pineal and MEL. 

1.3 Pineal Indole Biosynthesis 

The functional endocrine cells of the pineal gland are known as pinealocytes (Reitet, 1989). These 

parenchymal cells possess one to several processes that terminate near capillaries or in pro,imity 

to nerve endings present in the perivascular spaces. The nerve endings are predominantly of the 

sympathetic postganglionic fibres originating from the SCG. Connective tissue septae divide 

groups of pinealocytes into cords and lobules or follicles. The pinealocytes are the hormone 

producing cells of the pineal producing a number of biologically active compounds in a~dition to 

MEL, including proteins and neuropeptides. Of current importance, the pinealocyte is also the 

cellular site for the biosynthesis of MEL and other indoles (Figure 1.1). Pineal indole metabolism 

is very similar to that seen in the brain as summarized in Figure 1.2. The shaded area in the latter 

figure depicts those biosynthetic steps that are unique to the pineal and certain other tissues and 

will be discussed below. Due to some species-related differences in the regulation of pineal indole 

and MEL biosynthesis, the following description will be limited mostly to the rat (Reiter, 1989). 
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Circulating plasma L-tryptophan is taken up by pinealocytes and hydroxylated to 5-

hydroxytryptophan by tryptophan hydroxylase. The enzyme is typically the rate-limiting step in 

serotonin (5-hydroxytryptamine; 5HT) synthesis (Naoi et at., 1994). However, the low levels of 

tryptophan in the pineal suggest that this enzyme may normally be unsaturated and thus substrate 

bioavailability would determine the rate of hydroxylation (Reiter, 1989). Tryptophan hydroxylase 

shows a clear diurnal rhythm, with peak activity in the dark-phase and decreasing towards the end 

of the dark-phase (Reiter, 1989). 5-Hydroxytryptophan is in turn decarboxylated by 5-

hydroxytryptophan decarboxylase (aromatic L-amino acid decarboxylase; L-Dopa decarboxylase) 

to produce the indoleamine 5HT. It appears that there are two distinct pools of 5HT within the 

pinealocyte, a vesicular and a cytoplasmic pool (Racke et at., 1991). The vesicular pool includes, 

in part, the storage of 5HT in dense-core vesicles (Juillard and Colin, 1979), where the 

indoleamine is protected against degradation by MAO. There appears to be preferential release of 

newly synthesized cytosolic 5HT, whereas the vesicular store does not appear to be released via a 

exocytotic secretion mechanism, but rather an efflux dependent on a permanent de novo synthesis 

of 5HT. Released 5HT can be taken up by the nerve terminals of the SNS innervating the pineal 

gland (Axelrod, 1974; luillard and Collin, 1979). Indeed pineal SNS nerve terminals contain more 

5HT than noradrenaline (NA), but there is no evidence for co-release of 5HT and NA from these 

nerve terminals upon activation of the neuronal tract during the dark-phase. 

The newly synthesized 5HT undergoes a three-fold metabolic fate. The main route involves 

oxidative deamination of 5HT by MAO, which is highly concentrated in the pineal gland (Muller 

and Da Lage, 1977; luillard and Collin, 1979). The deaminated intermediate 5-hydroxyindole 
~ 

acetaldehyde (5HlAL) is unstable and either oxidized to 5-hydroxyindole acetic acid (5HIAA) or 
I reduced to 5-hydroxytryptophol (5HTOH) by aldehyde dehydrogenase and alcohol dehydrogenase 

respectively. The relative production of 5HIAA and 5HTOH is largely dependent on the prevailing 

NAD+/NADH ratio (Wainwright, 1977). Catabolism by MAO is believed to occur largely within 

the cytosolic compartment of pinealocytes (Muller and Da Lage, 1977; luillard and Collin, 1979), 

such that most of the 5HIAA efflux (unlike 5HT) appears to arise from a single compartment 

within the pinealocytes (Racke et at., 1991). However this may be debatable considering that 

MAO is present within the pinealocytes, interstitial cells of the pineal and within in the SNS nerve 

terminals. Indeed it is reported that the pineal tissue itself contains 30% of measurable MAO 

activity, whereas the SNS nerve terminals account for 70%. Thus considering that released 5HT is 

taken up by these nerve terminals, it is feasible that this represents the main site of oxidative 

deamination. 

9 



Chapter 1: Literature Review 

A second metabolic route involves the conversion of 5HT to N-acetylserotonin (NAS) by the 

enzyme serotonin-N-acetyltransferase (NAT) during the scotophase. This represents the rate

limiting enzyme in the biosynthesis of MEL. The vesicular 5HT, protected against deamination, is 

preferentially utilized (Racke et al., 1991). Daytime 5HT content is crucial for determining the 

amount of NAS synthesized. Thus, although tryptophan hydroxylase activity is high at night, 

conversion of 5-hydroxytryptophan to 5HT by the decarboxylase enzyme is highest during the 

light-phase. This explains the inverse relationship of pineal 5HT and MEL levels, with high levels 

of 5HT during the photophase. The synthesized 5HT is only converted to NAS the following 

night, explaining why the synthesis of MEL from tryptophan can be expected to cycle through 36 

hrs (Reiter, 1989). 

Another important pineal enzyme is hydroxyindole-O-methyltransferase (HIOMT). This cytosolic 

enzyme is the most abundant protein in the pineal, representing about 2-4% of the total soluble 

protein (Jackson and Lovenberg, 1971). This enzyme catalyses the O-methylation of 5-

hydroxyindoles to their corresponding 5-methoxyindoles utilizing S-adenosyl-L-methionine 

(SAM) as the methyl donor. In other words, 5HT is converted to 5-methoxytryptamine (5MT), 

NAS to MEL, 5HIAA to 5-methoxyindole acetic acid (5MIAA), and 5HTOH to 5-

methoxytryptopho1 (5MTOH) [Reiter, 1989; Morton, 1990]. In addition to the pineal, the retinas, 

harderian glands, extra-orbital lacrimal glands, erythrocytes, mononuclear leucocytes and various 

areas of the gastrointestinal tract also contain HIOMT and thus are capable of synthesizing MEL 

(Reiter, 1989; Finocchiaro et al., 1991). It is still disputed whether pineal HIOMT activity is also 

under noradrenergic control and circadian in nature with peak activity during the scotophase as 

seen for NAT. 

I 

The circadian rhythmicity in pineal indole' biosynthesis and MEL secretion is determined 

primarily by the noradrenergic secretory drive (Deguchi and Axelrod, 1972a; Axelrod, 1974; 

Reiter, 1991). NA is stored in the postganglionic sympathetic nerve terminal innervating the 

pineal gland and is strictly released only at night. The production of NA is controlled by tyrosine 

hydroxylase (TH) in the SNS nerve terminals, the activity of which increases at night (Craft et al., 

1984). NA release is sustained for the whole duration of the scotophase, which is determined by 

the prevailing photoperiod. It is believed that light via the retina is responsible for the inhibition of 

SCN metabolic function and that the onset of darkness (i.e. the absence of light) is responsible for 

disinhibition, allowing flow of action potential. For this reason MEL biosynthesis by pinealocytes 

occurs primarily during darkness (Reiter, 1991) 
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The postsynaptic signal transduction events following NA release are mediated via 13- and a

adrenergic receptors located on the pinealocyte membrane (Deguchi and Axelrod, 1972a; Reiter, 

1991). Stimulation of these receptors results in a cascade of specific chemical events leading to 

enhanced MEL biosynthesis. The cyclic nucleotide adenosine 3':5'-cyclic monophosphate 

(cAMP) is the essential intracellular second messenger. Both receptor subtypes are coupled, via a 

stimulatory guanine nucleotide binding protein (G protein), to the enzyme adenylate cyclase that 

converts adenosine-5'-triphosphate (ATP) to cAMP. 13-Adrenergic receptor stimulation is the 

primary and essential signal leading to a rise in pineal cAMP during the scotophase. Stimulation 

of the a-adrenergic receptors alone has no effect, but potentiates cAMP accumulation when co

stimulated with the 13-receptor. This dual receptor regulation of cAMP translates into a similar 

pattern of receptor-induced stimulation (by 13-receptors) and augmentation (by a-receptors) of the 

activity of NAT and MEL production (Klein et al., 1983). 

The increase in cAMP levels is responsible for the induction of NAT activity during the dark

phase by increasing mRNA synthesis and translation of de novo protein. The timing and 

magnitude of NAT induction following the onset of darkness appears to be species-specific. In 

particular, a very robust induction of NAT activity and MEL biosynthesis is seen in the rat pineal. 

These differences in NAT induction characteristics may explain the different patterns of MEL 

production between species. Three patterns have been provisionally defined: Type A = discrete 

peak in the late scotophase (e.g. Syrian hamster, Mongolian gerbil, House mouse); Type B = peak 

near mid-scotophase (e.g. albino rat, Richardson's ground squirrel, human); Type C = prolonged 

peak during majority of the scotophase (e.g. white-foot mouse, domestic cat, sheeW. Regardless of 

the pattern involved, there are some basic similarities: the magnitude of the nocturnal MEt- peak 

in blood is comparable in all species so far investigated, regardless of magnitude of NAT activity; 

the peak always occurs in the dark-phase, irrespective of the locomotor activity pattern i.e. diurnal 

vs. nocturnal species; the duration of the MEL peak is proportional to the duration of the dark

phase, i.e. the light:dark ratio or photoperiod (Reiter, 1988). In other words, the duration of 13-

adrenergic stimulation determines the length of the MEL peak and not its magnitude 

(Simmoneaux et al., 1989). The drop in MEL production near the end of the dark-phase is 

probably due to down-regulation of adrenergic receptors. 
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1.4 Melatonin 

Although some important physiological effects have been attributed to 5MT and 5MTOH, MEL is 

regarded as the principal hormonal secretory product and "chemical transducer" of the pineal 

gland. For this reason, further discussion will be limited to the pleiotropic nature of this simple 

indoleamine. It can be argued that since the pineal 5HT content is 100-fold greater than that in the 

brain, the MEL rhythm must be of some considerable physiological importance. 

1.4.1 DISTRIBUTION AND METABOLIC FATE 

The secretion of pineal MEL shows a surge during the scotophase. Apparently, MEL is not stored 

in the pinealocytes, but is rapidly secreted as a direct consequence of its increased biosynthesis at 

night (Reiter, 1991; Follenius et al., 1995). MEL is primarily released into the vascular system via 

the confluens sinuum or into the CSF via the cisterna magna (Chan et al., 1990). Due to its 

hydrophobic nature, the secretion of MEL is believed to involve simple passive diffusion. 

However, there is some tentative evidence for an active transport system (e.g. Mauviard et aI., 

1991). Two distinct secretory modes have been characterized in several species, including man. 

Episodic secretion, characterized by ultradian pulses, is superimposed on the circadian pattern of 

tonic basal secretion (Chan et al., 1990; Follenius et al., 1995). 

Due to its rapid release, plasma and body fluid MEL levels parallel its pineal production rate 

(Reiter, 1986; Reiter, 1988; Reiter, 1990). By virtue of its lipophilic nature, MEL can penetrate the 

blood-brain barrier and cellular membranes (Vitte et al., 1988). For this reason, ef'ery body fluid 

has proven positive for MEL, including cerebrospinal fluid, saliva, ovarian follicular fluid, male 

seminal fluid, fluid of the anterior chamber of the eye, milk and amniotic fluid (Reiter, 1988). 

Thus every cell in the body can be informed of the current photoperiodic state via the hormone 

MEL. In this sense, the pineal gland serves as the "eyes" of all organs. Researchers are now of the 

opinion that no organ or tissue may escape the influence of MEL (Reiter, 1988). Uptak~ of MEL 

into these fluids may be mostly via passive diffusion or in some cases an active uptake 

mechanism. There is evidence that the uptake of MEL into the brain appears to be both saturable 

and region-specific, suggesting the existence of active transport systems (Anton-Tay et al., 1988; 

Vitte et al., 1988). 
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On a day-to-day basis under specific photoperiodic conditions, the circadian MEL rhythm is very 

reproducible and is thus a reliable index of pineal MEL synthesis (Reiter, 1988). However, in 

mammals, the ratio of trough to peak MEL levels may vary between species. By convention, a 

doubling of the basal daytime level is considered a physiologically relevant change (Reiter, 1988). 

The main catabolic route of MEL occurs peripherally in the liver. Hepatic microsomal enzymes 

catalyze the 6-hydroxylation of MEL to produce 6-hydroxymelatonin (Kopin et at., 1961). 

Phenobarbital, which induces microsomal enzymes, significantly lowers plasma and brain levels 

of systemically administered 3H-MEL (Wurtrnan et at., 1968a). 6-Hydroxymelatonin is 

subsequently conjugated with sulphuric or glucuronic acids and excreted (K veder et at., 1961). 

This rapid route of metabolism is responsible for the short half-life of MEL. In the CNS, MEL is 

typically degraded to N-acetyl-5-methoxykynurenamine through cleavage of the indole ring 

(Hirata et at., 1974). Other minor catabolic routes are also evident. For example, the enzyme aryl 

acyl amidase can deacetylate MEL to 5MT or NAS to 5HT (Finocchiaro et al., 1991) and in rats, 

MEL can be demethylated to NAS (Leone and Silman, 1984). 

1.4.2 MELATONIN RECEPTORS 

The advent of the selective and highly potent radioligand e2I]-iodomelatonin (Laudon and Zisapel, 

1986) resulted in the identification and characterization of two types of high affinity MEL binding 

sites. These were designated MELIA and MELIB (Dubocovich, 1988). Subsequently, molecular 

biology has confirmed the existence ofthese two receptors and a third subtype, designated MELle, 

in several vertebrate species (Reppert et al., 1995a and 1995b). There is also~ a preliminary 

indication of a MELJD receptor (Shiu et al., 1996). All the MEL receptors belong to the 
I 

superfamily of G-protein coupled receptors (Stankov and Reiter, 1990; Morgan et ai., 1994). The 

aforementioned MEL receptor subtypes are' associated with the plasma membrane, but high 

affmity MEL receptors have also been identified in the nucleus in association with large amounts 

of MEL (Acuiia Castroviejo et al., 1994). This nuclear MEL receptor was subsequently found to 

repress expression of the 5-lipoxygenase gene through association with the orphan receptor RZR 

(Carlberg and Wiesenberg, 1995). 

Radioligand binding studies, autoradiography and in situ hybridization have confirmed a wide 

distribution of MEL receptor subtypes throughout the periphery and CNS. The MELIA receptor is 

predominantly found in the hypophyseal pars tuberalis, with moderate expression in the SCN and 
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a restricted distribution elsewhere in the brain and body. This subtype is believed to mediate the 

circadian and some of the reproductive effects of MEL. Other brain regions that express the 

MELIA subtype include the median eminence, hypothalamus, medulla pons, hippocampus, 

cerebellum, parietal cortex, striatum, amygdala and medial basal hypothalamus. Peripheral tissues 

include the arteries, harderian gland, adrenal gland, heart and lungs, gastrointestinal tract, kidney, 

testes, ovary, uterus, mammary glands, liver and dermal melanophores (Morgan et at., 1994; 

Reppert et at., 1994; Reppert et at., 1995a). The MELlB subtype is very abundant in the 

mammalian retina and shows very low expression in the brain (Reppert et at., 1995a). 

An important feature of MEL receptors is that, in most tissues, they exhibit a circadian rhythm in 

density. This most likely represents the basis for the chronotypic responsiveness of numerous 

tissue biochemical and physiological responses to MEL. Pinealectomy and MEL administration 

are capable of phase-shifting this day-night rhythm and also alter the density of the receptors 

(Stankov and Reiter, 1990; Morgan et at., 1994). Characterization of the different MEL receptor 

subtypes has led to the design of selective and potent agonists and antagonists, including S-20098, 

luzindole and ML-23 (Dubocovich, 1988; Zisapel and Laudon, 1987; Cajochen et at., 1997). 

These and other synthetic ligands will circumvent the problems associated with using an 

endogenous ligand, such as MEL. They are thus likely to be useful chronobiotics in circadian 

research and in delineating the receptor-mediated effects of MEL. 

1.4.3 MELATONIN AND SIGNAL TRANSDUCTION 

An understanding of the signal transduction events underlying the receptor-mediated effects of 

MEL may help clarify the cellular mode of action of the hormone. In this regard the cyclic 

nucleotides cAMP and guanosine 3':5' -cyclic monophosphate (cGMP) appear to be th<t most 

important second messengers. Both the MELIA and MELlB receptor subtypes are negatively 

coupled to adenylate cyclase through a pertussis toxin-sensitive Gj protein (Carlson et at., 1989; 

Reppert et at., 1995). Characteristically, activation of these receptors results in an inhibition of 

adenylate cyclase and a reduction in cAMP accumulation in all tissues expressing the receptors, 

including the hypothalamus, pituitary and retina (Vacas et at., 1981; Iuvone and Gan, 1994; 

Vanecek, 1995). In contrast, MEL in vitro potently enhanced cGMP accumulation in the medial 

basal hypothalamus of rats (Vacas et at., 1981). This is consistent with the ability of MEL to 

induce both central and peripheral guanylate cyclase activity (Vesely, 1981). Indeed it is proposed 

that the inhibitory effect of MEL on Ca2+ entry into neurons may be related to its effect on 

intracellular cGMP levels (Vanecek, 1995). The intracellular levels of cAMP and cGMP of several 
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brain regions exhibit circadian rhythms that are endogenous by nature (Nagayama, 1993). 

Typically, the nucleus accumbens, SCN and amygdala show such a rhythm for both cyclic 

nucleotides, whereas the olfactory tuberculum and caudate-putamen only have day-night 

variations in cGMP levels. A more recent study has confirmed the existence in circadian 

fluctuations of cAMP content in the SCN and anterior hypothalamus (Yamazaki et al., 1994). 

Preliminary studies have also found a circadian rhythm in adenylate cyclase and 

phosphodiesterase activity of some brain regions (Nagayama, 1993) 

Several other minor, but potentially important, signal transduction systems have been associated 

with MEL. Vanecek and Vollrath (1990) have presented evidence that, in the anterior pituitary of 

the rat at least, diacylglycerol and arachidonic acid may be second messengers of MEL, also 

through a pertussis toxin-sensitive mechanism. Cardinali et al. (1980) reported that nanomolar 

concentrations of MEL suppress prostaglandin E2 release from the medial basal hypothalamus. 

Finally, MEL was found to stimulate phosphatidyl inositol turnover in the chicken brain (Popova 

and Dubocovich, 1995). 

Besides events mediated by nuclear and plasma membrane receptors, MEL also exerts direct 

cytosolic effects that could potentially modify enzyme activity or the signal transduction events of 

other receptor systems. The amphiphatic nature of MEL allows it to cross all morphophysiological 

barriers and to enter every cell and all subcellular compartments, including the nucleus (Acuna 

Castroviejo et al., 1994). Thus the potential targets of MEL are numerous. Through its action as a 

direct antagonist of calmodulin (CaM), MEL can also inhibit several key neuronal enzymes that 

display Ca2+/CaM dependent activities. These include Ca2+/CaM-kina~e II, cAMP 

phosphodiesterase and Ca2+/Mi+ ATPase (Benitez-King et aI., 1996). In particular, Ca21/CaM

kinase II is abundant in the nervous system where it regulates neurotransmitter synthesis and 

release, axonal transport, and receptor mobilization. 

Pozo et al. (1994) found that physiological concentrations of MEL inhibited the activity of nitric 

oxide synthase in rat cerebellum in vitro and in vivo. The enzyme product, nitric oxide (NO), is 

believed to be a diffusable secondary messenger capable of retrograde transmission. NO has been 

shown to play an important role in memory process of hippocampal long t~.rm potentiation. In 

addition, this effect of MEL on NO synthase was blocked by CaM, consistent with the ability of 

MEL to bind to this protein. Finally, much current investigation has focused on the powerful 

antioxidant capacity of MEL. This hormone is a potent scavenger of the cytotoxic hydroxyl 
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radicals and other reactive oxygen species, and influences numerous enzymes and factors 

associated with the intracellular antioxidative defense system, such as glutathione (Reiter, 1995). 

In summary, MEL is a ubiquitous hormone displaying a distinct functional pleiotropy and 

multiple sites of action. 

1.4.4 EVIDENCE OF MELATONIN IN DOPAMINERGIC SYSTEMS 

The uptake and accumulation of plasma MEL has been observed in several important 

dopaminergic areas of the rat and human brain. These regions include the caudate nucleus, 

substantia nigra, nucleus accumbens, amygdala, arcuate nucleus of the hypothalamus, habenular 

complex and the hippocampus (Kopp et al., 1980; Sequela et aI, 1982; Zisapel and Laudon, 1982; 

Vitte et al., 1988). 

The rat striatum expresses a high density of high affinity 125I_MEL binding sites. However, unlike 

other brain regions, a day-night variation in the density and affmity of these sites was not evident 

(Laudon et al., 1988; Zisapel et al., 1988). For this reason, any receptor-mediated effect of MEL 

in the striatum is not likely to be chronotypic or display refractory periods. To add to the paradox, 

striatal 125I_MEL binding sites are also insensitive to the age-related decrease in MEL receptor 

density seen in other brain regions, especially the hypothalamus (Laudon et al., 1988). This has 

led to the following statement by Zisapel et al. (1988): "The role of the striatal 125I-MEL-binding 

sites is still an enigma." Ten years later, this statement still rings true. 

1.5 Evidence for Dopaminergic Modulation of the Pineal Gland , 
Numerous neurotransmitter systems modify pineal function through a plethora of recept6r types 

that have been identified on membrane preparations of pineal glands (Cardinali et al., 1987). 

These include, inter alia, adrenergic, cholinergic, serotonergic and opioidergic receptors, and 

binding sites for gamma-aminobutyric acid (GABA). In contrast, evidence for the modulation of 

pineal and MEL function by dopaminergic systems is rather sparse and fragmented. An attempt to 

compile all such relevant information will be made presently. 

A circadian rhythmicity in TH activity and DA and NA content, with peak,timing in the dark

phase, has been well established ill the pineal gland (Craft et al., 1984; Abreu et at., 1987; Hermes 

et al., 1994; Miguez et al., 1995). This increase in catecholamine synthesis is temporally 
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correlated with the pineal noradrenergic secretory drive. To reiterate, the nocturnal surge in MEL 

synthesis is dependent on increased release of presynaptic NA vesicular stores during the dark

phase. Of particular importance is the observation that the DA turnover rate, which also peaks in 

the dark-phase, shows a more apparent and robust unimodal rhythm than the NA turnover rate 

(Craft et at., 1984; Hermes et at., 1994). This is a consequence of the fact that DA serves as a 

precursor ofNA during catecholamine biosynthesis. The synthesis ofDA and NA both require the 

rate-limiting enzyme TH, whereas dopamine-~-hydroxylase (DBH) catalyses the conversion of 

DA to NA. A scheme of catecholamine biosynthesis is shown in Figure 1.3. Thus the day-night 

variation observed for pineal DA and TH is typically seen as a consequence of the rhythmicity in 

the NA secretory drive. 
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Figure 1.3: Biosynthesis of the catecholamines DA and NA. 

For this reason, the existence of an independent dopaminergic system within the pineal has to be 

experimentally delineated from the noradrenergic system before pineal DA can be seen as a 

neurotransmitter in its own right. Indeed, the failure of earlier studies can be attributed to their 

inability to successfully distinguish between the two neurotransmitter systems due to lack of 

specificity of agents employed. For example, both L-Dopa and amphetamine were found to induce 

pineal NAT activity, in synergism with NA (Deguchi and Axelrod, 1972a; Altar et at., 1981). L-
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Dopa is a precursor of both DA and NA, and amphetamine is a releasing agent of the vesicular 

stores of both monoamines. Thus the observed induction may have been mediated by either 

catecholamine or both. 

Initially, attention will be paid to immunohistochemical studies with antibodies directed against 

the catecholamine-synthesizing enzymes TH and DBH. Synthesis of DA requires only TH, 

whereas synthesis of NA would require the presence of both enzymes. Several studies (Jin et a!., 

1988, Shiotani et al., 1989, Hermes et al., 1994) have confirmed the existence of TH

positive/DBH-negative immunoreactive neuron-like cell bodies in the pineal gland of adult golden 

and Djungarian hamsters, but not of rats and gerbils. These cells were unaffected by bilateral 

superior cervical ganglionectomy, whereas TH-positive/DBH-positive (noradrenergic) neurons 

were clearly reduced, as expected. Thus it was proposed that these TH-positiveIDBH-negative 

cells are dopaminergic neurons, intrinsic to the pineal gland. They exhibited close proximity to 

pinealocytes cell bodies and processes, though no typical synapses were seen. It remains unclear 

whether these cells have axons projecting outside the pineal gland. Intrapineal neurons are 

generally considered to be uncommon (Shiotani et al., 1989). 

In another study on the Wistar rat, TH-immunoreactive fibres, but not cell bodies, were found in 

the superficial pineal, pineal stalk, deep pineal and the habenular complex and posterior 

commissures. Following bilateral superior cervical ganglionectomy, TH-fibres were completely 

abolished except in the deep pineal, pineal stalk and rostral part of the superficial pineal (Zhang et 

aI., 1991). This would suggest an extra-sympathetic origin of these fibres. Indeed a similar pattern 

of TH-immunoreactivity was found to remain after incubating intact rat pineal g\ands for 72 hrs 

(Hernandez et aI., 1994). Prolonged incubation degenerates the presynaptic noradrenergi'1 nerve 

terminals (Klein et al., 1983), without damaging the pinealocytes (Santana et al., 1994). 

Additionally, bilateral superior cervical ganglionectomy and 72 hr incubation only caused a partial 

reduction in TH activity, whereas NA content was reduced by 99% (Schwarzchild and Zigmond, 

1989; Hernandez et al., 1994; Santana et al., 1994). On the otherhand, dispersion of pi~ealocytes 

completely abolishes both TH-immunoreactivity and TH activity (Hernandez et aI., 1994). TH

positivelDBH-negative immunoreactive nerve fibres, but not cell bodies, have also been identified 

in the porcine pineal (Kaleczyc et aI., 1994). All these studies point to the existence of fibres of 

extra-sympathetic origin. 
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It is well-established that the mammalian gland, in addition to direct projections from the SCG, is 

also innervated by central nerve fibres via the pineal stalk. These pinealopetal fibres originate 

from several forebrain and midbrain structures and peripheral ganglia. These include the 

habenular complex, posterior commissures, the lateral geniculate body, stria medullaris thalami, 

the periventricular gray of the mesencephalon, and the pterygopalatine and trigeminal ganglia 

(M0ller and Korf, 1983; Matsuura et at., 1994). Thus it is proposed that in the rat (and porcine) 

pineal gland some of these fibres are dopaminergic in nature with cell bodies located outside the 

pineal gland. This is in contrast to the hamster, where the putative dopaminergic neurons appear to 

be intrinsic to the pineal. 

It now remains to try and clarify the nature and function of these dopaminergic fibres of the rat 

pineal gland. For example, following bilateral superior cervical ganglionectomy, the remaining 

TH activity did not exhibit the typical circadian rhythmicity seen in the intact pineal, with a peak 

in the dark-phase (Hernandez et al., 1994). This would suggest that the pineal dopaminergic 

system is not influenced by photoperiod. 

Govitrapong et at. (1989) found that DA in vitro had bi-phasic effects on the NAT activity of rat 

pineal glands. As it was unstated, it is presumed that this study was performed during the light

phase. At a concentration of 0.1 ~M, DA inhibited, and at concentrations between 0.1 /lM and 

10.0 /lM had no effect, whereas 100 /lM stimulated basal NAT activity. The latter response was 

partially reversed by the f3-adrenergic antagonist, propranolol and supports the finding of an 

earlier study. DA (30 IlM) doubled the in vitro synthesis of [14C]MEL and C4C]5HT from 
~ 

C4C]tryptophan by rat pineals (Axelrod et at., 1969). Govitrapong et at. (1989) also reported that 

relatively high concentrations of the selective D2 agonists bromocriptine and L Y -17155 5 i~ vitro 

prevented NA-induced NAT activity, an effect blocked by preincubation with the D2 antagonists 

domperidone and haloperidol (HAL). Acute in vivo administration of HAL and the atypical 

neuroleptic sulpiride increased both pineal NAT activity and MEL content. However, chronic 

administration of bromocriptine to rats failed to alter basal pineal NAT activity. These results 

suggest that the stimulatory effects of high DA concentrations were mediated by the f3-adrenergic 

receptors, whereas the inhibitory effects were independently mediated by putative postsynaptic Dz 

receptors. The latter also appeared amenable to down-regulation (Govitrapong et aI., 1989). This 

would appear to confirm an earlier finding by Govitrapong et al. (1984). Radioligand binding 

studies with eH]spiroperidol revealed specific low and high affinity sites on synaptic membranes 
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of bovine pineal glands. The former site showed relatively high affmity for HAL, cis-flupenthixol, 

chlorpromazine (CPZ), domperidone and (+)-butaclamol, but low affmity for (±)-sulpiride, DA 

and apomorphine (APO). These authors argue that this pharmacological profile is consistent with 

the D2 receptor subtype. 

The D2 receptor is negatively coupled to adenylate cyclase (Niznik, 1987; Strange, 1987). Ligand

induced activation of this receptor results in an inhibition of adenylate cyclase and, thus, 

decreased cAMP levels. Govitrapong et al. (1989) propose that this is consistent with the 

inhibitory effects of DA observed at low concentrations of the catecholamine. Stimulation of 

postsynaptic D2 receptors located on pinealocytes will result in a reduction of cAMP-dependent 

activity of pineal NAT. 

It is unfortunate, however, that Govitrapong et al. (1989) did not use a more selective D2 

radio ligand, as the concomitant high-affinity binding of eH]spiroperidol to putative 5HT receptors 

undermined the conclusiveness of these results. Furthermore, both bromocriptine and quinpirole 

have weak agonist activity at a-receptors. Zawilska and Iuvone (1990) have strongly contended 

that the ability ofbromocriptine and quinpirole to suppress the nocturnal increase in NAT activity 

and MEL content of chicken pineals are mediated by a 2-receptors, and not by D2 receptors. This 

may simply reflect species-specific differences in the receptor-mediated regulation of pineal 

function or a possible problem with the interpretation of the results of Govitrapong et al. (1984 

and 1989). Indeed the reported effects ofbromocriptine and quinpirole (Govitrapong et at., 1989) 

occurred at relatively higher concentrations than expected for D2 receptors. In another study DA 
~ 

(30 J..LM), but not APO (30 J..LM) increased phosphatidyl inositol turnover in the rat pineal, an effect 
I 

clearly mediated by a-adrenergic receptors (Nijjar et ai., 1980). In contrast, D2 receptors are also 

coupled to an inhibition of phosphat idyl- inositol turnover (Niznik, 1987; Strange, 1987). 

Further clarification can be sought through pharmacological studies with other dopaminergic 

agents. Particular focus will be placed on the effect of D2 receptor antagonists, commonly referred 

to as antipsychotic drugs or neuroleptics, on pineal function. 

Generally, acute administration of HAL, (±)-sulpiride and CPZ to rats has been reported to 

dramatically increase the MEL content of pineal glands during both the light- and dark-phases 

(Gaffori et al., 1983; Govitrapong et al., 1989; Srinivasan, 1989; Ozaki et ai., 1976). HAL and 
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sulpiride also induce a concomitant increase in pineal NAT activity during the light-phase, an 

effect consistent with their ability to antagonize the inhibitory effect of DA, putatively mediated 

by postsynaptic D2 receptors (Govitrapong et at., 1989). This profIle is consistent with the in vitro 

effects of CPZ and HAL on the metabolism of C4C]tryptophan by rat pineal glands cultured during 

the dark-phase (Nir and Hirschmann, 1983). HAL increased the synthesis of [14C]MEL, [14C]5HT, 

decreased [14C]5HIAA levels and had no effect on [14C]NAS. This suggests that HAL may have 

increased HIOMT activity without an effect on NAT activity, and inhibited MAO activity. The 

increase in [14C]5HT levels would be consistent with an inhibition of MAO, but perhaps also a 

potentiation of tryptophan hydroxylase activity or tryptophan uptake. In turn, CPZ increased both 

[14C]NAS and [14C]MEL and decreased C4C]5HIAA and [14C]5HTOH without influencing 

[14C]5HT levels. Thus CPZ may have stimulated either NAT or HIOMT activity or both, and 

inhibited MAO activity. The effects of CPZ were potentiated by NA in vitro, consistent with the 

known ability of CPZ to enhance NA release from presynaptic nerve terminals. In contrast, HAL 

differentially reversed or potentiated the effects of NA in vitro (Nir and Hirschmann, 1983). 

However, Wakabayashi et at. (1989) demonstrated a dose-dependent decrease in the MEL content 

of rat pineals during the dark-phase following acute administration of either HAL or CPZ. The 

pineal content of 5HT and NAS were unaffected, which is consistent with an inhibition of HIOMT 

and not NAT activity by the neuroleptics. 

Certain DA antagonists can also influence pineal function and MEL levels by direct, non-receptor

mediated mechanisms. HAL and CPZ, but not fluphenazine, in vitro dose-dependently inhibited 

both crude and purified HIOMT activity, isolated from bovine pineal glands (Hartley et at., 1972; 
~ 

Cremer-Bartels et at., 1983). On this basis, these neuroleptics would be expected to decrease 

pineal MEL synthesis as reported by Wakabayashi et at. (1989), but contested by l'fir and 

Hirschmann (1983). It is possible that there'are species-specific differences in pineal HIOMT, 

resulting in a differential susceptibility to direct inhibition by certain neuroleptics. 

Ultimately plasma and brain MEL levels, and thereby the function of this indole, are determined 

by both synthesis and metabolism. Acute administration of the phenothiazine neuroleptics CPZ, 

promethazine or promazine dose-dependently and time-dependently increased the plasma and 

tissue half-life of exogenous [3HJMEL, following intravenous, but not intraventricular 

administration of the indole (Wurtman et at., 1968a). Furthermore CPZ in vitro dose-dependently 

inhibited the catabolism of eH]MEL by liver slices (Wurtman et at., 1968a). This suggests that 

phenothiazines increase plasma MEL levels by inhibiting the catabolism of MEL in the liver by 
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microsomal enzymes, and not via an effect on pineal MEL synthesis. Indeed hepatic 

hydroxylation to 6-hydroxymelatonin is the main route for peripheral metabolism of MEL (Kopin 

et at., 1961). Ozaki et at. (1976) have confIrmed that the administration of CPZ increases the 

plasma half-life of both exogenous nonlabelled MEL, administered intravenously, and endogenous 

MEL present in plasma and the pineal gland during the light-phase. These authors propose that the 

increase in pineal MEL is consistent with an additional effect of chlorpromazine on MEL 

synthesis. Interestingly, they attribute this to an antagonism of pineal a-receptors, thereby 

increasing NAT activity (Ozaki et at., 1976). 

Similar results have been found in human beings. Chronic administration of CPZ dose

dependently elevated serum, but not CSF, MEL levels in psychiatric patients, whereas the 

antipsychotic drugs flupenthixol and fluphenazine had no effect (Smith et at., 1979). Furthermore, 

the phenothiazine derivative pipotiazine failed to alter the amplitude, waveform or timing of 

plasma MEL levels when administered to schizophrenic patients (Loloum et at., 1993). These 

studies clearly indicate that an inhibitory effect on MEL catabolism in the liver is not a general 

characteristic of neuroleptics, but shows specifIc structure-activity relationships that can be 

partially classifIed according to the class of antipsychotic drug. 

Finally, strong evidence for dopaminergic control of MEL function is also seen at the level of 

other components of the retinohypothalamic tract, including the photosensory retina and SCN, and 

other types of pineals. Unlike mammalian species, the pineal gland of a poikilothermic animal, 

such as the rainbow trout, is photoreceptive. A circadian intrapineal dopaminergic system has 

been characterized in the trout pineal. Inhibitory effects of DA on MEL release an~ neural activity 

of this gland appear to be mediated by DJ and D2 receptors, respectively (Martin and Meissl, 

1992). An endogenous MEL-generating system, similar to that of the pineal gland, is also present 

in the chick and mammalian retina (Dubocovich, 1988; Zawilska and Iuvone, 1990). NAT activity 

and MEL biosynthesis peak during the scotophase. Several circadian oscillators appear to be 

operating in the mammalian retina and can be entrained directly by the light:dark cyCle (Tosini 

and Menaker, 1996). In turn, the retinal amacrine cells are dopaminergic in nature (Dubocovich, 

1983). In contrast to a suppression of retinal NAT activity, a light stimulus induces TH activity 

and thus DA biosynthesis (Iuvone et at., 1978). Retinal DA D4 receptors mediate the ability ofDA 

and agonists to inhibit NAT activity through a negative effect on the cAMP cascade (Dubocovich, 

1988; Zawilska, 1994; Zawilska et at., 1995). Thus it has been proposed that, within the retina at 

least, DA is the chemical expression of the onset of the photophase. Finally, a dopaminergic 

22 



Chapter 1: Literature Review 

system is also operative within the mammalian SCN. For example, DJ and D2 agonists influence 

the period and amplitude of the rest-activity cycle mediated by the SCN (Yamada and Martin

Iverson, 1991). In particular, D j receptor-mediated events are very robust in the fetal SCN, but 

photic control may be transferred to a glutamatergic system with ontogenic development of the 

retinohypothalamic tract (Weaver et al., 1992; Viswanathan et al., 1994). 

1.6 Evidence for Dopamine-Melatonin Interactions in the eNS 

1.6.1 DOPAMINERGIC SYSTEMS 

Dopaminergic innervation in the brain is widespread and diffuse. This is consistent with the 

modulatory nature of DA, behaving more like a hormone than a neurotransmitter. This is 

consistent with DA acting on metabotropic receptors rather than iontotropic receptors, the latter 

being responsible for rapid and direct excitatory or inhibitory effects on cells (Cohen and Servan

Schreiber, 1993). DA represents more than 50% of the total catecholamine content of the CNS of 

most mammals with highest levels being found in the caudoputamen, nucleus accumbens and 

tuberculum olfactorium. The main dopaminergic pathways are found in the basal ganglia (Moore 

and Bloom, 1978). 

The basal ganglia are subcortical structures that are involved jn the initiation and co-ordination of 

movement. The two main mesencephalic dopaminergic pathways arise from cell bodies in the 

midbrain. The nigro-striatal (or meso striatal) pathway originates from the pars compacta zone (A9 

cell group) of the substantia nigra and terminates in the caudoputamen. Indeed the neostriatum 

receives the richest dopaminergic innervation of any brain structure. It must be\pointed out that 

the term neostriatum refers to the caudate and putamen in primates. In the case of rod)nts, the 

term corpus striatum encompasses the cau~te, putamen and an additional subcortical area, the 

globus pallidus. The meso limbic pathway originates in the ventral tegmental area (AIO cell group) 

and sends axons to the nucleus accumbens, lateral septal nucleus and amygdala. In turn, the 

olfactory tubercle is targeted by both the mesostriatal and mesolimbic pathways. In, addition to 

modulating locomotion, the mesolimbic pathway also controls emotive behaviour, such as 

grooming and sniffmg. Thus the meso limbic pathway is often referred to as the reward system of 

the brain and has been implicated in affective disorders. A second system, the mesocortical 

pathway, also originates in the AIO cell group and projects to parts of the cerebral cortex, 

including the cyru cinguli and entorhinal and prefrontal cortices. The entire ascending forebrain 
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projection of the mesencephalic dopaminergic system makes up the mesotelencephalon (Moore 

and Bloom, 1978). 

Input structures of the basal ganglia, including the caudoputamen receive projections from the 

frontal, parietal and temporal lobes of the cerebral cortex. In tum, output of the basal ganglia is 

sent via the thalamus to motor areas of the frontal and prefrontal cortices and visual areas of the 

inferotemporal cortex. Thus, in summary, the basal ganglia "funnels" information from diverse 

areas of the cortex in order to direct motor output (Middleton and Strick, 1996). This "funneling" 

process arises through a functional interaction between glutamatergic, GABAergic and 

dopaminergic pathways and local cholinergic interneurons (Graybiel, 1990). Of particular 

importance is the high expression of Dl and D2 DA receptors in the striatum, with a predominance 

of the Dl subtype (Camps et aI, 1990). GABAergic interneurons in the striatum and globus 

pallidus send descending projections with nerve terminals located in both the pars compacta and 

pars reticulata zones of the substantia nigra. This is known as the striato-nigral pathway. Input to 

the striatum from the cortex activates this pathway, inducing the release of GABA in the pars 

reticulata zone. GABA receptors are located on the cell bodies or dendrites of dopaminergic 

neurons in the pars reticulata zone, and in the corpus striatum. Activation of the GABA receptors 

decreases the firing rate of the dopaminergic neurons and thus inhibits DA release. In this way, the 

substantia nigra pars reticulata, and thus the output to the thalamus, is held under tonic inhibition 

by the cortical inputs. 

The nigro-striatal pathway serves to reverse the inhibitory output of the pars reticulata zone and 

thereby initiates movement by enhancing impulse flow to the subthalamic pucleus. This is 

achieved by the release of DA in the corpus striatum, which results in an inhibition of the 
I 

GABAergic neurons via an effect on the cholinergic interneurons (Graybiel, 1990). The release of 

dendritic DA from nigral neurons also plays a crucial modulatory role on the activity of the nigro

striatal pathway and the pars reticulata neurons. The striatal outputs are segregated with respect to 

D1- and D2-dependent behaviours. This occurs as a result of the differential distribution of these 

subtypes in the striatum and substantial nigral zones, especially with respect to postsynaptic and 

presynaptic location in relation to the doparninergic neurons (Graybiel, 1990; Camps et at, 1990). 

It is proposed that postsynaptic Dl receptors mediate the direct stimulation of striatonigral 

GABAergic neurons, which co-express substance P. Whereas inhibitory D2 receptors located on 

striatal GABAergic neurons form an indirect pathway. The latter neurons express enkephalin and 

project to the globus pallidus (Graybiel, 1990; Camps et aI, 1990). 
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Another interesting feature of the nigro-striatal pathway is that the dopaminergic fibres show a 

slow rate of spontaneous firing. For this reason, the release of DA at presynaptic nerve terminals is 

generally steady and uniform, and not quantal like acetylcholine. An increase in the firing rate of 

these neurons is only seen after pharmacological manipulation. In contrast, the mesocortical 

dopaminergic neurons have an unusually high rate of firing, similar to the retina (Tam and Roth, 

1997). 

Two other very important pathways, mediating the neuroendocrine effects of DA, are the 

tuberoinfundibular (TIDA) and tuberohypohyseal (THDA) dopaminergic pathways. Both originate 

in the arcuate nucleus (A12 cell group) of the medial basal hypothalamus (MBH) sending 

projections to the neurointermediate lobe (NIL) of the posterior pituitary and the median eminence 

(Moore and Bloom, 1978). DA released from the median eminence enters the hypophyseal portal 

system and is transported to the anterior pituitary. 

1.6.2 NEUROENDOCRINOLOGY 

Of all the main dopaminergic systems, it will become apparent that the strongest evidence for DA

MEL interactions is seen at the level of the hypothalamic-pituitary axis. This is consistent with the 

fact that this axis mediates the main antigonadotrophic and counter antigonadotrophic effects of 

MEL (Reiter, 1989; Reiter, 1995). Although species-related differences are apparent, both MEL 

and DA are known to modulate the synthesis and release of numerous hormones in the rodent. 

These include prolactin, somatostatin, growth hormone, thyroid-stimulating hormone, follicle

stimulating hormone, gonadotropin-releasing hormone, luteinzing hormone, oxytocin and 

vassopressin. Furthermore, both MEL and DA have been implicated in the ~athogenesis of 

numerous neuroendocrine and chronobiological disorders associated with the hypothj.lamic

pituitary axis (Sandyk, 1990a). Whether this js a causal or a coincidental relationship would make 

for interesting research. 

A direct interaction between MEL and DA is believed to exist, particularly, at the level of 

prolactin. DA is a well known prolactin-inhibiting factor. The release of DA from the TIDA and 

THDA systems results in an inhibition of the synthesis and release of prolactin. In turn, MEL 

appears to be responsible for the circadian rhythm of plasma prolactin levels, evident as an 

afternoon surge in the release of the hormone. Pinealectomy and in vivo administration studies 
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suggest that MEL synchronizes the prolactin surge through modulation of the dopaminergic 

systems (Mai and Pan, 1995; Steger et at., 1995; Alexiuk et aZ., 1996). 

1.6.3 BIOCHEMISTRY AND PHARMACOLOGY 

Evidence for day-night variations in DA function, particularly circadian rhythmicity, and 

modification by photoperiod manipulation, pinealectomy and MEL administration are taken as 

being possible indicators of modulation by MEL. Brain DA function shows considerable dynamic 

fluctuations through the light-dark cycle. In fact, several brain regions that do show diurnal 

variations in DA function are innervated by efferent projections from the SCN, e.g. the 

hypothalamic paraventricular nucleus which regulates the hypothalomo-pituitary-adrenocortical 

axis, and the medial preoptic area which contains thermo sensitive neurons responding to local 

brain temperature (Ozaki et aZ., 1993). Conflict, however, arises in the nature of the temporal 

characteristics of this flux. This dispute may be attributed to several factors, including: whole 

brain vs. region-specific determinations; strain- and species-specific differences, particularly 

diurnal vs. nocturnal species; ontogenic development and aging; and, finally, methodological 

differences. In this review, consideration will be paid mostly to brain region-specific studies, 

particularly the main dopaminergic systems of the cortex, hypothalamus and basal ganglia. Whole 

brain determinations will tend to mask or average any differences in the temporal characteristics 

ofDA function between specific regions of the brain. In addition, attention will be focused mostly 

on the brain of rodents, especially rats. 

1.6.3.1 Levels of Dopamine and Metabolites 

Early studies typically observed a unimodal rhythm of DA content in the striatum of nocturnal 

species such as rats, hamsters and gerbils. The content peaked in the mid-scotophase and efhibited 

a trough in the light-phase (Bobillier and Mpuret, 1971; Friedman and Piepho, 1979; Matsumoto 

et aZ., 1981; Basharan and Radha, 1984). The unimodal DA rhythm in the rat hypothalamus, 

cortex and striatum also exhibited age-dependent phase characteristics: peak amplitude in the 

photophase for young (21 day old) rats, but a dark-phase peak in adults (Basharan ,and Radha, 

1984). 

More recently, Pietila et al. (1995) confirmed a unimodal rhythm in the mouse striatum. The 

content of DA and 3-methoxytyramine (3MT), an O-methylated metabolite of DA, showed a 

synchronous peak in the scotophase and a trough in the early photophase. The other DA 

metabolites, homovanillic acid (HV A) and 3,4-dihydroxyphenylacetic acid (DOP AC), did not 
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exhibit any day-night variation. Schade et al. (1993a and 1993b) demonstrated more complex 

time-dependent variation in DA content in the rat striatum, substantia nigra and nucleus 

accumbens of rats. A normal circadian rhythm was coupled to additional ultradian (5-6 and 10-12 

hr) and infradian (7-10 day) rhythms. The most robust peak occurred at mid-photophase for all 

three regions. Of additional interest, this DA rhythm was found to be out-of-phase with a similar 

rhythm in the neuropeptide cholecystokinin, which is known to co-exist with DA in these brain 

areas and displays neuroleptic properties. On the otherhand, Ozaki et al. (1993) failed to observe 

day-night variations in DA content of the caudate nucleus, substantia nigra, nucleus accumbens 

and ventral tegmental area of the golden hamster. 

An analysis of extracellular levels of DA and its metabolites by in vivo microdialysis may help 

point to the origin of the flux of DA function. O'Neill and Fillenz (1985) found a robust circadian 

rhythmicity in extracellular HV A levels in the frontal cortex, striatum and nucleus accumbens of 

rats. Peak levels were found in the scotophase and correlated with peak motor activity in these 

nocturnal animals. In another study, the extracellular concentrations of DA and the metabolites 

DOP AC and HV A increased significantly at night in the dorsolateral caudate nucleus of rats 

(Paulson and Robinson, 1994). Whereas in the nucleus accumbens only DA metabolites, and not 

DA, exhibited circadian variation with a dark-phase peak. A lack of day-night variation in 

extracellular levels ofDA in the nucleus accumbens of rats was confmned by Piazza et al. (1996). 

It must be noted that the observed flux of DA is a consequence of complex functional interactions 

between synthesis, storage, release and degradation. For this reason the in vivo turnover rate of 

DA is accepted as an ideal index of the functional state of the neuron. It representt the overall rate 

at which the whole amine store of a given tissue is replaced, and is not necessarily identi<}al with 

biosynthetic rates. This index is measured fQllowing inhibition of either catecholamine synthesis 

or degradation. 

Kempf et al. (1982) found distinct strain-specific differences in striatal DA turnover rates of C57 

and BALB mice. Only the C57 strain exhibited distinct day-night variations in striatal DA 

turnover, with a peak in the dark-phase, and the rhythm was found to persist under conditions of 

constant light. Unfortunately, limited studies have assessed DA turnover rates in rats under a 

normal light-dark cycle. Lemmer and Berger (1978a) reported a bimodal rhythm of DA turnover 

in the whole brain of rats, with peaks in the late-photophase and early scotophase. In contrast, DA 

turnover in the lateral ventricular fluid of Rhesus monkeys peaks in the photophase (Perlow et al., 
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1977). This correlates with the time of greatest arousal (activity) in this diurnal species. Lastly, a 

circadian rhythmicity in the DA turnover rate of the median eminence has been well-established 

for the rat TIDA pathway. The turnover rate is high during the early-photophase and low by late

photophase (Mai and Pan, 1995). This contrasts with the fmding of Alexiuk et al. (1996) that the 

DA content of the MBH peaked in the dark-phase, whereas no rhythm was observed in the NIL of 

the pituitary. 

In conclusion, the main dopaminergic pathways all show day-night fluctuations in DA activity as 

reflected by DA turnover and concentrations of DA and its metabolites. However, the phase 

characteristics of this rhythm are distinctly region-specific. There is strong agreement that, in 

nocturnal species, the dopaminergic activity of the striatum, substantia nigra, nucleus accumbens 

and ventral tegmental area increases with the onset of the scotophase. The initiation and control of 

locomotor activity and behaviour is mediated by these subcortical structures of the basal ganglia 

(Graybiel, 1990). 

It is thus argued that the parallel increase in dopaminergic activity of these areas and spontaneous 

locomotor activity (SLA) over the light-dark transition is to be expected in nocturnally active 

species. In other words they are considered to be mutually inclusive (Lemmer and Berger, 1978b; 

O'Neill and Fillenz, 1985; Pietila et al., 1995; Piazza et aI, 1996). Indeed the strain-specific 

differences in striatal DA turnover of C57 and BALB mice discussed above were also manifested 

in differences in motor activity. A circadian rhythmicity in wheel-running activity, with peak 

activity correlating with peak DA turnover in the dark-phase, was observed in both strains. 

However, both rhythms persisted under constant light conditions in the C57 mic~ only (Kempf et 

at., 1982). Dopaminergic activity of the nucleus accumbens also appears to further incljease on 

initiation of behavioural activities such as ~g and eating (Piazza et al., 1996). Furthermore, 

rats can be divided into high and low respondents on the basis of novelty-seeking behaviour. High 

respondent rats show higher than average exploratory behavior, SLA and DA levels (Piazza et at., 

1996). However, Paulson and Robinson (1996) have argued strongly that the regulat~on of SLA 

per se is not a primary function of these dopaminergic pathways. They found a positive, but weak, 

correlation between DA neurotransmission in the dorsolateral caudate nucleus (as assessed by in 

vivo micro dialysis) and SLA of freely-behaving rats. An even weaker correlation existed between 

activity and DA function in the nucleus accumbens. 

28 



Chapter 1: Literature Review 

Photoperiodic manipulation has marked effects on DA metabolism of several brain regions. This 

is particularly true for the THDA and TIDA pathways, which mediate the neuroendocrine effects 

of DA. Both Bobillier and Mouret (1971) and Friedman and Piepho (1979) and found that 

although reversal of the photoperiod significantly enhanced striatal DA levels of rats, the 

unimodal rhythm of DA still peaked in the subjective dark-phase. This would suggest that this 

rhythm is exogenous, most likely entrained by light and related to motor activity. Steger et al. 

(1995) investigated changes in DA turnover following the transfer of golden hamsters from long 

photoperiod to short photoperiod conditions. Both short- and long-term exposure to the shortened 

daylength enhanced DA turnover of the NIL of the posterior pituitary, without an effect on the 

steady-state DA content. Concomitantly, there was a decreased DA turnover in the hypothalamus 

and median eminence without an effect in the anterior pituitary. This NIL-associated increase in 

DA turnover was correlated with a short photoperiod-induced reduction in plasma prolactin. In a 

similar study, hypothalamic DA turnover was decreased in the MBH, but increased in the medial 

preoptic-suprachiasmatic nuclei. These effects were reversed by pinealectomy, indicating that 

MEL may mediate the effects of photoperiodism on hypothalamic DA (Steger et aI., 1984). This 

would then suggest that the various dopaminergic systems are independently and differentially 

phase-shifted by MEL, if at all. 

Indeed, the circadian rhythmicity of tuberoinfundibular dopaminergic activity and the prolactin 

surge is abolished by bilateral superior cervical ganglionectomy (Mai and Pan, 1995), further 

suggesting a role for MEL. However, Shieh and Pan (1995) have demonstrated an endogenous 

cholinergic system that reverses the rhythm in DA activity and attenuates the afternoon surge in 

prolactin. It is unclear whether this cholinergic system acts independently of MEL ~r the SCN. 

J 

In other studies, short-term pinealectomy was found to have a minor or no effect on cortical DA 

levels of male rats during the light-phase (Sugden and Morris, 1979; Niles et al., 1983), though 

there was some evidence for a gender-dependent effect (Sugden and Morris, 1979). However 

chronic blinding has been shown to decrease striatal DA levels in both sham-operated and 

pinealectomized male rats (Niles et al., 1983). The known ability of pinealectomy to induce 

kindled seizures in rats was not associated with changes to DA content or turnover of several brain 

regions (Philo and Reiter, 1978; Stockmeier and Blask, 1986). 

Changes induced by photoperiod manipulation and pinealectomy only offer indirect, but 

suggestive, evidence for modulation by MEL. Cotzias et al. (1971) found that a large single 
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intraperitoneal (i.p.) dose of MEL (400 mglkg) to mice failed to increase whole brain levels ofDA 

or to prevent the increase induced by L-Dopa. This suggests that MEL does not decrease the 

uptake of L-Dopa or act as a L-Dopa decarboxylase inhibitor. On the other hand, administration of 

smaller doses of MEL (250 ~g/day, i.p.) over 5 days resulted in a significant rise in whole brain 

DA levels in rats exposed daily to a novel environment (Datta and King, 1979). Wendel et al. 

(1974) demonstrated that intra-arterial (250 ~glkg) and intracisternal (40 ~glkg) administration of 

MEL at mid light-phase almost doubled whole brain DA levels of male rats. It must be noted that 

i.p. administration of MEL results in rapid conversion of MEL to 6-hydroxymelatonin in the liver 

(Kopin et ai., 1961). This will minimize the efficacy of the administered MEL, whereas 

intracisternal injection would circumvent the blood-brain barrier and peripheral metabolism. 

Several studies investigated the effect of chronic subcutaneous (s.c.) administration of MEL (25 

I-Lg/animal) to golden hamsters during the late photophase on the DA content of the median 

eminence/arcuate region of the MBH, and the NIL (Alexiuk and Vriend, 1991; Alexiuk and 

Vriend, 1993; Alexiuk et al., 1996). The DA content of both areas was consistently reduced in 

castrated males, ovariectomized females, and sham-operated and control animals of both sexes. 

This indicates that the effect of MEL was not modified by or dependent on gonadal steroids. 

However, the MEL-induced reduction in amine content was more marked and consistent 

following 10 weeks administration of MEL, compared to 1,3 or 5 weeks administration (Alexiuk 

and Vriend, 1993; Alexiuk et al., 1996). Following the longer administration period, MEL 

abolished the circadian rhythm seen in the DA content of the MBH. It must be noted that these 

results contradict the short photoperiod-induced increase in DA content of the NIL reported by 

Steger et al. (1995). The latter authors argue that MEL should basicall)! mimic short

photoperiodism and contend that the results of Alexiuk and Vriend (1993) are )lue to 

methodological differences. 

Intranigral administration of ng quantities of MEL to mice dose-dependently decreased striatal 

dopaminergic function as reflected in an increased DA content and a reduced DOPAGIDA ratio 

(Bradbury et al., 1985). Identical results were obtained following bilateral injection of MEL into 

the nucleus accumbens. Functionally, these biochemical changes were associated with significant 

changes in SLA and behaviour (see section 1.6.4). Both the behavioural and biochemical effects of 

intranigral MEL administration were partially reversed by sulpiride, a selective D2 receptor 

antagonist. This suggests that MEL may have a modulatory effect on presynaptic DA 

autoreceptors located on dopaminergic cell bodies in the substantia nigra. However, the partial 
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reversal by sulpiride suggests a possible interaction of MEL with other neurotransmitter systems, 

for example 5HT and opioids, as reported in the nucleus accumbens (Gaffori and Van Ree, 1985a 

and 1995b). 

The above discussion has established the existence and phase characteristics of temporal variation 

in DA levels and turnover rates in several brain regions. Evidence has also been presented for a 

region-specific modulation by MEL. It will now be determined whether MEL modulates 

monoamine synthesis, metabolism or induces changes in the rate of release of DA or a 

combination of these processes. 

1.6.3.2 Dopamine Release 

The day-night variation in the tissue content or extracellular levels of DA and its metabolites 

discussed above is most commonly attributed by researchers to a rhythm in DA release. Following 

the release of presynaptic DA stores, the catecholamine is postsynaptically O-methylated to 3MT. 

DA can also be oxidatively de aminated to DOPAC either postsynaptically or presynaptically 

following re-uptake into the presynaptic nerve terminal. For this reason, extracellular levels of 

both HV A and 3MT, but in particular 3MT, are taken as reliable indicators of DA release (Kehr, 

1976). 

In vitro superfusion studies have consistently shown that picomolar concentrations of MEL inhibit 

the Ca2+-dependent release of 3H-DA evoked by electrical field stimulation and K+-induced 

depolarization, but not spontaneous Ca2+-independent release (Zisapel and Laudon, 1982; Zisapel 

et aI., 1982; Dubocovich, 1983, 1984 and 1988; Zisapel and Laudon, 1983; ~owak, 1988). 

However, the aforementioned inhibitory effect appears to be distinctly region-specific. ,t was 

observed in the following areas: hypothalamic preoptic area, median and posterior hypothalamus, 

ventral hippocampus and medulla pons of female rats in oestrus (Zisapel et al., 1982), and retinas 

of the rabbit (Dubocovich, 1983; Nowak, 1988) and chicken (Dubocovich, 1984). Within the 

hypothalamus, the greatest effect was seen in the preoptic area including the SeN (Zisapel et al., 

1982). No effect was found in the dorsal hippocampus, cerebellum, cerebral cortex and the 

striatum of rats (Zisapel et al., 1982). More recently, MEL has also been shown to regulate 

endogenous DA release in the amphibian retina (Boatright, 1994). Furthermore MEL in vivo dose

dependently inhibited the amphetamine-induced increase in extracellular DA levels, an indication 

of release, in the anterior hypothalamus of male rats, which incorporates the SCN (Exposito et aI., 

1995). 
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Radioisotopic studies with 45Ca2+ and a calcium ionophore have further clarified that MEL exerts 

this effect by reducing maximal presynaptic Ca2+ entry following a depolarization stimulus 

(Zisapel and Laudon, 1983; Vacas et at., 1984). The ability of MEL to inhibit 3H-DA release is 

also definitely mediated by specific MEL receptors (Dubocovich, 1983, 1984 and 1988; Zisapel 

and Laudon, 1987). Thus it is proposed that these receptors are located presynaptically and either 

directly coupled to presynaptic Ca2+ channels or regulate these channels through a sequelae of 

signal transduction events. 

The predominance of this effect of MEL in the hypothalamus is consistent with the well

established anti-gonadal, entraining and neuroendocrine effects of the hormone. However the 

distribution reported above is more region-specific than the distribution of high affmity MEL 

receptors. In particular, the apparent lack of effect of MEL on DA release in the striatum is 

paradoxical and requires due consideration. 

The striatum receives the richest dopaminergic innervation and expresses high affinity MEL 

receptors (Moore and Bloom, 1978). In vivo microdialysis studies of the rat striatum have 

demonstrated a distinct and robust circadian rhythm in the release of endogenous DA, with peak 

release correlating with increased motor activity in the dark-phase (O'Neill and Fillenz, 1985; 

Pietila et al., 1995; Piazza et ai, 1996; Paulson and Robinson, 1996). Furthermore, this 

spontaneous rhythm is modified by the oestrus cycle in female rats (Dluzen and Ramirez, 1985). 

Here it must be noted that the original study of Zisapel et al. (1982) used female rats in oestrus 

during the early photophase. A subsequent study with female rats revealed that the inhibition of 

3H-DA release by MEL in the hypothalamic preoptic area was dependent on the stage of the 

oestrus cycle (Zisapel et al., 1983). The greatest effect was seen at the oestrus stage al1d the 

weakest at the diestrous stage. In male rats th~inhibitory effect of MEL was constant, but weaker 

in all hypothalamic areas (Zisapel et aI., 1983). This is consistent with the finding that the sex 

steroid estradiol alone can modify MEL-induced inhibition of hypothalamic DA release (Zisapel, 

1987). However the apparent lack of an in vitro inhibitory effect of MEL on striatal 3H-DA release 

during the photophase has been confmned in both male and female rabbits (Dubocovich, 1983; 

Nowak, 1988). 

Zisapel et al. (1985) also found that the effect of MEL on hypothalamic 3H-DA release was 

circadian in nature with inhibition maximal in the early light-phase and minimal in the late light

phase. This parallels the circadian rhythmicity of hypothalamic MEL receptors and coincides with 
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the chronotypic counter-anti gonadotrophic response to MEL administration. All the above studies, 

including those on the striatum, were performed during the light-phase. Therefore it is possible 

that the previous studies missed the "circadian window" of maximal effect in the striatum. DA 

turnover and release peaks in the photophase within the hypothalamus, but within the striatum it is 

maximal in the scotophase. In other words, peak DA release in the striatum coincides with the 

timing of the nocturnal surge in plasma MEL levels. This in itself would tend to support the 

results that MEL does not inhibit striatal DA release. Apparently there is no circadian rhythm in 

the density of striatal MEL receptors (Laudon et al., 1988; Zisapel et al., 1988), indicating a 

possible lack of chronotypic and state-dependent responsiveness to MEL. Thus the striatal MEL 

receptor may represent a different subtype, be functionally coupled to an alternative signal 

transduction system, other than the Ca2
+ channel, or be located postsynaptically rather than 

presynaptically. Presynaptic DA release is regulated by multiple types of Ca2
+ channels (Turner et 

al., 1993). Perhaps different channels regulate release in the hypothalamus and striatum. 

However, MEL may inhibit DA release in the substantia nigra and nucleus accumbens. The 

reduced DOPAC/DA ratio reported in these areas of mice following direct application of MEL is 

consistent with an inhibition of DA release (Bradbury et al., 1985). Indeed, unlike the striatum, 

there is no indication for increased DA release in vivo in the nucleus accumbens during the dark

phase (Paulson and Robinson, 1994; Piazza et al., 1996). This may indicate inhibition by 

endogenous MEL. 

1.6.3.3 Dopamine Uptake 

Re-uptake by the presynaptic DA transporter represents the main route by whifh the synaptic 

function of DA is terminated. In preliminary in vitro studies, MEL inhibited DA uptake in the rat 
I 

hypothalamus (Cardinali et al., 1975; Zisapel and Laudon, 1982). This effect was noncompetitive 

and may be non-specific in that the synaptosomal uptake of 5HT, NA and glutamate was also 

impaired (Cardinali et al., 1975). A parallel study confirmed that pinealectomy, superior cervical 

ganglionectomy and in vivo MEL administration modified hypothalamic DA uptake (Cardinali, 

1975). 

Morisette and Dipado (1993) found that striatal DA uptake sites vary with sex and the oestrus 

cycle. Additionally, the circadian nature ofDA uptake in adrenal chromaffm cells was found to be 

dependent on a circadian rhythmicity in the surge of glucocorticoid release from the adrenal 
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cortex (Hirano et al., 1995). Both these studies confirm the role of steroids in the observed day

night variations in dopaminergic function discussed above. 

1.6.3.4 Dopamine Receptors 

Several studies have shown distinct day-night variations in [3H]spiroperidol binding in the rat 

striatum and forebrain, which has been attributed to the D2 receptor subtype (Naber et al., 1981; 

Wirz-Justice et al., 1981; Nagayama, 1993). In all cases, the rhythm was at the level of the density 

of binding sites (Bm.oJ and not affInity (KD) for the radioligand. Generally, a bimodal rhythm was 

observed with peak binding approximating mid-light and mid-dark phases. However, phase 

characteristics (including wave-form, phase (peak timing), amplitude and 24 lrr mean binding) 

were observed to be tissue-specific within the same animal and varied with age (Jenni-Eiermann et 

al., 1985), season (Naber et al., 1981), and between strains of rat (Jenni-Eiermann et aI, 1986). 

This day-night variation in binding also persisted under conditions of constant darkness, indicating 

that the rhythm is most likely free-running and endogenous (Naber et al., 1981). 

1.6.3.5 Dopamine Biosynthesis 

(i) Tyrosine hydroxylase and Tyrosine aminotransferase 

TH is the key regulatory enzyme in catecholamine biosynthesis (Ribeiro et al., 1992). It catalyses 

the hydroxylation of L-tyrosine to L-Dopa, the rate determining step (See Figure 1.3). The extent 

to which L-tyrosine bioavailability is a crucial determinant of the synthetic rate is dependent on 

the physiological state of the neuron. Normally, TH is believed to be saturated with L-tyrosine 

with substrate supply only being limiting under conditions of enhanced neuronal activity (Tam 
\ 

and Roth, 1997). Plasma and brain tyrosine levels do show daily variations, which in mice show 
! 

strain-specific phase characteristics (Calcet-Veys et al., 1978). 

However, less than 2% of the free, circulating L-tyrosine is utilized for brain catecholamine 

biosynthesis. The majority of the amino acid is degraded to p-hydroxyphenylpyruvate in the liver 

by the cytosolic enzyme tyrosine aminotransferase (TAT) [Zigmond and Wilson, 1973]. A 

mitochondrial form of the latter enzyme is also homogeneously distributed in the brain, including 

the striatum. Considering the high capacity of TAT for L-tyrosine, the catabolism of this substrate 

may be important for catecholamine biosynthesis. In other words, the metaboltc fate of L-tyrosine, 

and thus DA, may depend on the relative activity of TH and TAT. In this regard, a circadian 

rhythmicity in the activity of both enzymes has been characterized. 
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Cytosolic TAT exhibits a robust unimodal rhythm in the rat liver, kidney and thymus, with peak 

activity at early scotophase (Zigmond and Wilson, 1973; Scalabrino et al., 1979). This rhythm was 

not affected by pinealectomy (Sca1abrino et al., 1979). No day-night variation in mitochondrial 

TAT was seen in the whole brain (Zigmond and Wilson, 1973). Cahill and Ehret (1981), however, 

observed a unimodal rhythm with a peak in the late photophase in a brain area defined as the 

"brain stem". The latter comprised the medulla oblongata, pons, thalamus and the midbrain, 

excluding the striatum. In contrast, "brain stem" TH activity exhibited a bimodal rhythm. Peak 

activity occurred at mid-photophase and mid-scotophase, with a trough at the light-dark transition. 

The effects of a-methyl-p-tyrosine, a TH inhibitor, were chronotypic, only decreasing enzyme 

activity at the dark-light transition (Cahill and Ehret, 1981). Interestingly, the rhythms ofTH and 

TAT activity in the "brain stem" are out-of-phase by about 180°. This fits expectation with regards 

to the regulation of catecholamine biosynthesis. 

Natali et al. (1980) found strain-specific differences in the day-night variations of TH activity in 

the locus coeruleus, the major noradrenergic centre of the brain. A unimodal rhythm was found for 

all three inbred strains of mice, but with differences in the peak timing. Further studies with F 1 

hybrids clearly suggest that TH activity and catecholamine biosynthesis are genetically controlled. 

Alexiuk et al. (1996) found that in situ TH activity of the MBH, but not the NIL, exhibited a 

circadian rhythm in sham-operated and castrated mice. Peak activity occurred in the dark-phase. 

In an initial study, chronic administration of MEL (25 ~g/animal) to male golden hamsters during 

the late photophase appeared to have time-independent effects on in situ TH activity of the NIL 

(Alexiuk and Vriend, 1993). Enzyme activity was reduced after 3 weeks of MEL \administration, 

but no different to controls after 5 weeks. In a subsequent study, chronic administration 01 MEL 

for 9 weeks increased in situ TH activity of the MBH, but not the NIL (Alexiuk et al., 1996). The 

effect in the MBH was not chronotypic in that MEL increased TH activity over the whole 24 hr 

period. As discussed above, this increase in synthetic rate was associated with a MEL-induced 

decrease in DA content in these brain areas. The authors propose that this reflects a stimulatory 

effect of MEL on DA release. They further argue that this is consistent with the ability of MEL to 

inhibit the afternoon prolactin surge, as DA is a well known prolactin-inhibiting factor. However, 

these results contradict those published by Steger et al. (1995) and Zisapel et ai. (1982) discussed 

above. 
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It is important to note that several studies have found that the peak TH activity does not 

necessarily correlate with peak DA content or turnover in most brain regions investigated (Cahill 

and Ehret, 1981; Alexiuk and Vriend, 1993; Alexiuk et at., 1996; Lemmer and Berger, 1978a). 

This is because other parameters, including release, other enzymes and cofactors, may themselves 

be circadian in nature, contributing to the overall rhythm in DA. 

Both pineal and retinal TH activity show a robust unimodal rhythm. Pineal TH exhibits peak 

activity in the dark-phase (Craft et at., 1984; Abreu et at., 1987), whereas retinal TH activity is 

low and constant during darkness with a rapid increase with the onset of the light phase (Iuvone et 

at., 1978). This phasing of TH is perfectly correlated with peak NA and DA synthesis and 

turnover in the pineal gland and amacrine cells of the retina, respectively. 

(ii) Pyridoxal phosphokinase 

Administration of MEL (i.p.) to female Wistar rats induced a very significant dose- and time

dependent increase in the activity of pyridoxal phosphokinase, but in vitro MEL had no effect on 

the enzyme. This enzyme also exhibited peak activity at mid-dark phase, paralleling peak MEL 

levels (AnUm-Tay et at., 1970). Thus MEL may enhance the de novo synthesis of the enzyme. 

Pyridoxal phosphokinase catalyses the formation ofpyridoxal-5'-phosphate, which is an essential 

co-factor of numerous decarboxylase and transaminases. The nonspecific enzyme aromatic L

amino acid decarboxylase is necessary for catecholamine and indole amine biosynthesis and 

glutamate decarboxylase is required for GABA biosynthesis. On the other hand, a transaminase 

like tyrosine aminotransferase will influence the bioavailability of L-tyrosine for catecholamine 

biosynthesis. Thus through an effect on pyridoxal phosphokinase, MEL may indi}ectly exert both 

a positive or negative effect on neurotransmitter synthesis, including DA. J 

(iii) Aromatic-L-amino acid decarboxylase 

Exposure of male Syrian hamsters to a short photoperiod (i.e. decreased daylength) was found to 

reduce aromatic-L-amino-acid decarboxylase immunostaining in the arcuate nucleus and median 

eminence (Krajnak and Nunez, 1996). This would suggest an inhibitory effect of MEL on the 

amount of enzyme present. 
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1.6.3.6 Dopamine Catabolism 

In mammals, catecholamines such as DA are metabolized by three distinct enzymes: COMT, 

MAO and phenolsulphotransferase. MAO and COMT represent the main two catabolic enzymes 

influencing dopaminergic neurotransmission (Napolitano et al., 1995). The catabolic pathway of 

DA by MAO and COMT is shown in Figure 1.4. 

(i) Phenolsu Ifotransferase 

Although phenolsulfotransferase represents a minor degradative pathway, relative to MAO and 

COMT, it has been suggested to account for 15% of total DA metabolism in the brain (Marazziti et 

aI., 1995). This enzyme catalyses the transfer of sulphate from 3'-phosphoadenosine-5'

phospho sulphate to exogenous and endogenous phenols, including catecholamine neurotransmitters 

and their metabolites. The thermolabile isoform in particular displays substrate preference for DA. A 

distinct seasonality has been reported in platelets for this isoform with peak activity in summer and a 

definite reduction with decreasing daylength (Marazziti et aI., 1995). It remains to be determined 

whether there is day-night variation in activity and possible modulation by MEL. 

(ii) Monoamine oxidase 

Unless the specific isoform is designated, e.g. MAO-A, the term MAO will be used to designate that 

a combination of the two isoforms was assayed. Distinct day-night variations exist in brain MAO 

activity (Olcese and Devlaming, 1979; Chevillard et al., 1981; Bhaskaran and Radha, 1984; 

Nagayama, 1993). However phase characteristics of this rhythm were dependent on brain region, 

age and MAO isoform investigated. Bhaskaran and Radha (1984) investigated age-dependent 

changes in the rhythm of brain MAO in male albino rats using a substrate common to both MAO-A 

and -B isoforms. In very young (21 day old) rats, combined MAO activity peaked roughly ¥ mid

light phase in the cortex, cerebellum and medl!l1a oblongata, but at approximately mid dark-phase 

in the hypothalamus, midbrain and striatum. In contrast, for rats older than 21 days, combined 

MAO activity consistently peaked in the early light phase in the cortex, cerebellum, medulla 

oblongata, hypothalamus, midbrain and striatum. These results clearly indicate the age-dependent 

increases in MAO activity of different brain regions with full synchronization of the rhythm by 3 

months of age. The ontogeny of MAO-A and -B progress at different developmental rates 

(Lewinsohn et al., 1980; Garrick and Murphy, 1982) and thus synchronization of the rhythm 

reported in this study may result from both isoforms reaching adult levels. Bhaskaran and Radha 

(1984) concomitantly investigated rhythms in DA levels as discussed above. Of importance here, is 
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the observation that in adult rats the circadian rhythmicity of MAO and DA levels were out of phase, 

with the latter peaking in the dark-phase. 

With more specific attention to the MAO isoform, Chevillard et al. (1981) reported that within the 

locus coeruleus of the brainstem, MAO-A peaked 7 hrs after the onset of dark and 3 hrs after dark for 

MAO-B. Although the isoforms differed in the exact timing of peak activity, both occurred in the 

dark-phase. 

j)-HO ~ !J CH2CH2NH2 ~ 
catechol-O-methyItransferase 

HO 

Dopamine 
(DA) 

H~ }CH2CH2NH2 

H3CO 

3-~ethoxytyramine 
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~ mouoamm.o"""'" I monoamine oxidase I 
~ aldehyde dehydrogenase 

H~ }CH2CHO 

HO 
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aldohyd. d.hydrog .... ~ /""O<hOI_o_mothylt.-au""a" 
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Figure 1.4: Catabolism ofDA in the corpus striatum by MAO and COMT. 

J 

Urry and Ellis (1975) found that the effect of photoperiod manipulation and pinealectomy on rat 

brain MAO activity, presumably MAO-A, was region-specific. MAO activity of the whole 

hypothalamus was unaffected by photoperiod, but increased by pinealectomy. Pituitary MAO 
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activity was increased by constant light and pinealectomy and decreased by constant darkness. In 

addition, MEL in vitro was a weak but dose-dependent inhibitor of MAO activity regardless of 

brain region. These results all suggest that endogenous MEL may inhibit MAO activity in vivo. In 

confirmation, a significant daily variation in MAO activity was observed in the hypothalamic 

basal medial lobe of the goldfish exposed to a long, but not a short photoperiod (Olcese and 

Devlaming, 1979). Indeed MAO activity was depressed by a short photoperiod, whereas 

pinealectomy only increased activity in fish exposed to a short photoperiod. 

Esquifmo et al. (1994) demonstrated the chronotypic effects of MEL administration on adrenal 

medullary MAO and COMT activity. Male Syrian hamsters received chronic administration of 

MEL (25 flg/animal) during the early morning (08hOO) or later afternoon (16hOO) for 60 days and 

were sacrificed during the early light-phase. Adrenal medullary MAO was significantly reduced 

by MEL administration at both time periods with a greater effect in the 16hOO-treated animals 

compared to the 08hOO-treated animals 

There is also evidence of an ontogenic effect of MEL administration on MAO activity. Neonatal 

administration of a single dose of MEL to neonatal male rats on postnatal day 5 increased 

hypothalamic MAO-A at day 30 and 45, but decreased activity on day 60 of age, whereas MAO-B 

was only increased at day 45. These changes were related to changes in plasma prolactin and 

luteinizing hormone levels (Moreno et al., 1992). Thus neonatal MEL administration, through its 

effect on hypothalamic MAO activity may induce earlier sexual maturation in male rats. 

(iii) Catechol-O-methyltransferase 

In the study by Esquifino et al. (1994) described above, adrenal medullary COMT activiJy was 

significantly reduced by MEL administration at both time periods with a greater effect in the 

16hOO-treated animals compared to the 08hOO-treated animals. Thus the inhibitory effect of MEL 

in vivo on COMT activity would appear to be chronotypic. 

1.6.4 ELECTROPHYSIOLOGICAL STUDIES 

The anti-motor and anticonvulsant properties of MEL are attributed to a hyperpolarization of 

neuronal membranes. Administration or iontophoretic application of MEL results in the inhibition 

of spontaneous and evoked neuronal activity of several important brain nuclei, including the rat 

suprachiasmatic nucleus amygdala, reticular formation and striatum (Stehle et al., 1989; Naranjo

Rodriguez et al., 1991; Rusak and Yu, 1993; Escames et al., 1996). In tum, pinealectomy, through 
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depolarization, induces paroxysmal outbursts of slow wave, high amplitude kindled seizures in 

several rodent species, which may lead to death by tonic-clonic convulsions (Philo and Reiter, 

1978; Stockmeier and Blask, 1986). MEL administration can counteract the resultant cerebral 

hyperexcitability and reduce the convulsive threshold in animals and humans (Ant6n-Tay, 1974; 

Golombek et al., 1992). Thus MEL may be beneficial in the treatment of temporal lobe epilepsy 

(Ant6n-Tay, 1974). 

Several mechanisms have been proposed to explain how MEL can suppress neuronal electrical 

activity. These include modulation of the inhibitory GABAibenzodiazepine complex (Acuna 

Castroviejo et al., 1986a and 1986b) and altering Cl· and Na+ influx via an effect on the neuronal 

Na+ /K.+ - ATPase pump (Rosenstein et al., 1989; Acuna Castroviejo et al., 1992). 

A paradoxical pineal-dependent effect of MEL on the electrophysiology of the rat striatum has 

been reported (Castillo Romero et al., 1993 and 1995). In sham-operated rats, MEL typically 

inhibited the spontaneous firing rate of responsive striatal neurons. In pinealectomized rats, MEL 

had biphasic effects, but was predominantly excitatory. Pinealectomy alone had no effect on the 

mean firing rate. Subsequent studies showed that the inhibitory effects of MEL are potentiated by 

the pineal peptide arginine8-vasotocin. This dependence on other components (e.g. intact pineal 

gland) is consistent with the role of MEL as a neuromodulator. Alone MEL may have opposite or 

weak effects. Further studies also observed an age-related decrease in the electrophysiological 

responsiveness of rat striatal neurons to the MEL administration (Castillo Romero et al., 1995). It 

is unfortunate that the authors did not determine identity of the striatal neurons investigated. 

Furthermore it would also be informative to compare these results to a study wrformed in the 

dark-phase, when a dissociation between the circadian rhythms of plasma MEL and striata} MEL 

receptors may exist. In another study, acute MEL administration at low doses increased electrical 

activity of the caudate nucleus, whereas a high dose was inhibitory (Naranjo-Rodriguez et at., 

1991). 

1.6.5 BEHAVIOUR 

The mesencephalic dopaminergic systems of the basal ganglia are intimately involved in the 

affective, motivational and motor components of behavioural processes (see section 1.6.1). In 

particular the striatum is involved in modulating behavioural subprograms, such as learning, 

avoidance behaviour and food-hoarding behaviour. 
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1.6.5.1 Dopamine and Behaviour 

In a nocturnal species such as the rat, the period of activity occurs with the onset of the 

scotophase, whereas rest is associated with the photophase. This is true for SLA, eating and 

drinking, and exploratory, novelty-induced and self-stimulation behaviour. As discussed in section 

1.6.2.1, the onset of activity is strongly correlated with an increase in nigro-striatal and 

mesolimbic dopaminergic activity. This is evident in the increase in DA release and extracellular 

levels ofDA, 3MT and HV A in the striatum and nucleus accumbens (Kempf et at., 1982; Lemmer 

and Berger, 1978b; O'Neill and Fillenz, 1985; Paulson and Robinson, 1996; Piazza et at., 1996; 

Pietila et at., 1995). 

Removal of an entraining agent such as light results in free-running activity rhythms. Following 

long-term exposure to constant darkness, clear onsets and offsets of activity phases are still 

evident with peak activity in the acrophase (subjective night). In contrast, distinct activity phases 

are no longer apparent under constant light and the amplitude of acrophase activity is decreased 

(Yamada and Martin-Iverson, 1991). The phase characteristics of the activity-rest cycle can also 

be modulated by DA. Disorganization of the circadian rhythm with dopaminergic agents indicates 

that independent components of the rhythm are differentially controlled by DA receptor subtypes, 

possibly in the SCN. Chronic administration of D2 agonists increases only the amplitude of 

activity under conditions of constant darkness or light. In contrast, DJ agonists had no effect on 

amplitude, but prolonged the period length of the activity rhythm under constant darkness 

(Yamada and Martin-Iverson, 1991). The DA releasing agents amphetamine and metamphetamine 

increase the amplitude and period of activity under an entrained lighting schedule of 12L: 12D 

(Honma et at., 1985; Martin-Iverson and Iversen, 1989). This is consistent with an indirect effect 

on both D J and D2 receptors. I 

At this point it must be noted that MAO inhibItors have potent effects on the phase characteristics 

of the activity-rest cycle. For example, administration of the MAO-A selective inhibitor clorgyline 

delays the onset and offset of activity, increases the intrinsic period of the rhythm and slows the 

rate of re-entrainment of the activity-rest cycle to a shifted light-dark-cycle (Duncan et at., 1988). 

These effects are likely to be related to the ability of clorgyline to phase-shift the day-night 

variations ofDA, NA and 5HT in various discrete brain regions (Ozaki et at., 1993). 
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It is well known that acute, sub chronic and chronic administration of dopaminergic agents, 

neuroleptics in particular, induces severe movement disorders ranging from bradykinesia and 

akinesia to dyskinesia. Some examples are Parkinsonism, akathisia, neuroleptic malignant 

syndrome and tardive dyskinesias. The latter comprise dystonia, tics, stereotypy, tremor, 

myoclonus and chorea (Jankovic, 1995). These side-effects represent a major source of poor 

compliance to the use of DA agonists and antagonists in the treatment of Parkinson's disease and 

schizophrenia. 

1.6.5.2 Melatonin and Behaviour 

Both endogenous and exogenous MEL or MEL agonists can entrain and synchronize the circadian 

rhythmicity of locomotor activity and behaviour in a wide-range of animal species. The latter 

include lizards, birds, fish, amphibians and mammals, including humans (Redman et at, 1983; 

Armstrong, 1989; Underwood, 1990). 

Of particular importance here is the observation that in all species studied MEL levels consistently 

peak in the dark-phase regardless of whether the species is diurnal or nocturnal. Thus the timing of 

peak MEL levels may be either positively or negatively correlated with the species-specific 

activity-rest rhythm. As one suggestion, MEL may serve as an endogenous signal of the onset of 

darkness, that, through a "gating mechanism", times the switch from behavioural quiescence to 

activity or vice versa (Redman et at., 1983; Armstrong, 1989). This limitation of a behavioural 

effect of MEL to a critical point in the circadian cycle arises through changes in responsiveness of 

certain biochemical parameters, such as receptors, to MEL. This is consistent with the modulatory 

role of MEL, potentiating or attenuating the prevailing "tonus". 

I 

MEL can also have a direct effect on behayiour independent of its role as a "zeitgeber". For 

example, the sleep-inducing or soporific effects of MEL are well-known. Oral administration of 

MEL or the MEL agonist 8-20098 dose-dependently increased sedation, sleep duration, the 

duration of rapid eye movement (REM) sleep and decreased latency of sleep-onset in humans 

(Dollins et at., 1994; Cajochen et al., 1997). Pinealectomy tends to increase 8LA, wheel-running 

activity and exploratory behaviour in rats, whereas MEL administration has an inhibitory effect 

(Armstrong, 1989; Chuang and Lin, 1994). Reiss et at. (1967) reported that rats could be divided 

into high and low spontaneous runners on the basis of treadwheel activity. Furthermore, the cell 

density of the pineal glands was markedly greater for the slow runners. 
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Direct administration of ng quantities of MEL into the substantia nigra and bilaterally into the 

nucleus accumbens of mice both result in dose-dependent decreases in SLA and rearing (Bradbury 

et al., 1985). Intra-accumbenal application also resulted in an increase in emotive behaviours such 

as grooming and sniffmg. These behavioural changes were associated with a reduction in 

dopaminergic transmission in both the striatal and limbic regions. Only the intranigral effects of 

MEL were partially reversed by the selective D2 antagonist sUlpiride. Identical behavioural 

responses following bilateral administration of MEL into the nucleus accumbens have been 

reported by Gaffori and Van Ree (1985a and 1985b) and Durlach-Misteli and Van Ree (1992). In 

these studies, however, the effects of MEL were blocked by 5HT, antidepressants of various 

classes and by ~-endorphin-(10-16), but not by the DA antagonists HAL or su1piride. The 

behavioural effects of intra-accumbenal administration of APO are dose-dependent. Low doses 

induce hypo locomotion whereas high doses induce hyperlocomotion (Kendler et al., 1982). These 

effects are mediated by presynaptic and postsynaptic DA receptors respectively. The 

hyper10comotion induced by APO in the nucleus accumbens was only blocked by HAL and 

sulpiride (Gaffori and Van Ree, 1985a and 1985b). However only chronic administration of 

antidepressants results in. a potentiation of APO-induced hyperlocomotion and antagonism of 

APO-induced hypolocomotion in the nucleus accumbens (Durlach-Misteli and Van Ree, 1992). 

This is believed to arise through the known ability of antidepressants to induce presynaptic DA 

receptor sub sensitivity and postsynaptic DA receptor supersensitivity. 

This suggests that the behavioural effects of MEL are mediated by DA in the nigro-striatal 

pathway and additionally by serotoninergic and/or opioidergic systems in the meso1imbic system. 

Furthermore MEL and APO in the nucleus accumbens may mediate exploratory behaviour 

through independent systems. I 

1.6.5.3 Melatonin and Movement Disorders 

The effects of MEL on behaviour can also be investigated after creating animal behavioural 

models of dopaminergic function. In other words, the tone of the relevant pathways is primed by 

pharmacological manipulation with dopaminergic agents. For example, catalepsy is a drug

induced akinetic state reflecting dopaminergic hypofunction. A single dose of MEL (1 mg/animal 

i.p.) was found to markedly reduce reserpine-induced catalepsy in intact fem,ale rats during the 

late photophase. This effect of MEL was potentiated by nalbuphine, an opiate agonist, and 

partially reversed by naloxone, an opiate antagonist (Sandyk and Mukherjee, 1989). In a parallel 

study, naloxone only prolonged reserpine-induced catalepsy in pinealectomized rats when the 
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animals were pretreated with MEL, and not when administered alone (Sandyk and Fisher, 1989a). 

The latter authors proposed that these results indicate a mutual inclusiveness or co-dependence of 

MEL and the striatal opioid system on motor behaviour. This is consistent with the known 

cataleptogenic ability of the endogenous opiate j3-endorphin-(10-16) which is also capable of 

antagonizing the behavioural effects of MEL in the nucleus accumbens (Gaffori and Van Ree, 

1985b). Unfortunately, Sandyk and Fisher (1989a) failed to make the necessary comparison of 

reserpine-induced catalepsy and its modulation by MEL administration between pinealectomized 

and sham-operated rats. 

The Ungerstedt model of rotational behaviour is routinely used as an animal model of Parkinson's 

disease and dyskinesias (Ungerstedt, 1971). Selective unilateral lesioning of the nigro-striatal 

pathway with the dopaminergic neurotoxin 6-hydroxydopamine (60HDA) results in a 

supersensitive DA receptor model. DA agonists are characterized by their ability to induce 

contralateral turning (rotational) behaviour in lesioned rats by stimulating the supersensitive 

receptors in the denervated striatum. Typically the mixed D/D2 agonist APO is used at a dose 

sufficient to stimulate postsynaptic receptors. An additional model involves the selective unilateral 

lesioning of the corpus striatum with the neurotoxin quinolinic acid (QA) [Schwarcz et ai, 1983]. 

This results in normosensitive DA receptors, with APO inducing ipsilateral rotational behaviour. It 

is used as an animal model of Huntington's chorea, a genetic movement disorder characterized by 

hyperkinetic choreiform movements. 

In an early model of rotational behaviour or adventitious turning, Cotzias et al (1971) produced a 
\ 

partial lesion of the right caudate nucleus of male mice by physical ablation, causing the animals 
I 

to turn towards the side of the lesion. Administration of MEL dose-dependently inhibited L-Dopa-

and APO-induced dyskinesias in both intact antllesioned mice. This suggests a possible effect of 

MEL on postsynaptic DA receptors. Burton (1989) and Burton et al. (1991) observed that prior 

administration of MEL significantly reduced APO-induced stereotypy, hyperlocomotion and 

rotational behaviour in both 60HDA- and QA-lesioned rats. MEL alone had no effect in the 

lesioned animals. Exposure of rats to bright light during the dark-phase increased these 

behaviours, again suggesting that endogenous MEL can modify APO-induced behaviour. 

Paradoxically, MEL also antagonized the ability of sulpiride to block APO-induced behaviour. 

This is of interest considering that Bradbury et al. (1985) showed that sulpiride, in turn, partially 

reversed the inhibition of SLA by intra-nigral MEL administration. This lends further support to 

the proposal that within the nigro-striatal pathway MEL exerts effects on the dopaminergic 
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system. Alone MEL has an "antagonistic" effect, but in the presence of D2 antagonist displays 

"agonistic" effects. 

More recently, the results of Burton et al. (1991) have been confIrmed and extended by Tenn and 

Niles (1995). Both MEL and the central-type benzodiazepine agonist clonazepam dose

dependently suppressed APO-induced rotational behaviour in 6-0HDA-lesioned rats. In addition, 

MEL decreased turning induced by the D\ agonist SKF38393 and the D2 agonist quinpirole, but 

was more potent against the D\ agonist. Furthermore, both the central-type benzodiazepine 

antagonist, flumazenil, and the GABAA receptor antagonist, bicuculline, attenuated the above 

effect of MEL (Tenn and Niles, 1995). 

Pinealectomy has also been shown to have marked, but differential effects on movement 

disorders. For example, pinealectomy failed to alter the time-course or intensity of APO-induced 

stereotypy in noIi-lesioned rats (Arushanyan and Ovanesov, 1986), but increased amphetamine

induced stereotypy and lessened HAL-induced catalepsy (Arushanyan et aI, 1992). Also, 

pinealectomy markedly increased the incidence and severity of HAL-induced oro-facial 

dyskinesias in male rats (Sandyk and Fisher, 1989b). Subsequent MEL administration only caused 

a nonsignifIcant reduction, which the authors attribute to the lack of a functional opioidergic 

system. Indeed, MEL does augment the antidyskinetic effects of naloxone in HAL-induced oro

facial dyskinesias in the rat (Sandyk and Fisher, 1989c). 

These studies clearly indicate that MEL exerts antidopaminergic effects on behaviour and can 
\ 

modulate the motor side-effects of neuroleptics and other dopaminergic agents. These behavioural 

effects would appear to be differentially facilitated by several neuronal systems. These incldde the 

dopaminergic, serotonergic and opioidergic systems of the basal ganglia and the inhibitory striatal 

GABAergic system through central-type benzodiazepine (BZ) receptor. Studies with MEL analogs 

and various indoles suggest the above effects of MEL are receptor-mediated (Tenn and Niles, 

1995). It is unclear whether this reflects an involvement of specifIc MEL receptors or a direct 

allosteric modulation of BZ receptors by MEL. Central-type benzodiazepine (BZ) receptors are 

linked to GABAA receptors in the CNS, the BZ/GABAA receptor complex. Benzodiazepines and 

related ligands act as allosteric effectors of GABA binding, thereby increasing the frequency at 

which the associated chloride channel is opened. The resultant hyperpolarization effectively 

inhibits DA release in the striatum and nucleus accumbens. Furthermore the mechanism 

underlying the apparent differential interaction of MEL with D1 and D2 pathways is unclear. There 
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is a higher density of Dl than D2 receptors on striatal neurons (Camps et al, 1990), and the latter 

may also express BZIGABAA receptor complexes or MEL receptors. The mechanism may lie at 

the level of a common signal transduction system, such as adenyl ate cyclase and cAMP or 

phosphoinositol turnover. 

1.6.5.4 Melatonin and Psychiatric Disorders 

Both DA and MEL have been implicated in numerous psychiatric disorders, including several 

affective disorders (Erlich and Apuzzo, 1985). Studies on manic-depression have consistently 

found an association with a marked reduction in the amplitude of plasma MEL, a failure to exhibit 

a normal circadian secretory rhythm, phase-advances in the secretory onset and a super-sensitivity 

to light-induced suppression of the output of MEL (Miles and Philbrick, 1988; Waldhauser et at., 

1993). This has led to the formal categorization of hypomelatoninemia or the "low melatonin 

syndrome" in this affective disorder. 

There is also considerable indirect or anecdotal evidence for a role of MEL in winter seasonal 

affective disorder (SAD) and the major depression syndrome. SAD is characterized by regularly 

occurring autumn and winter depressions, alternating with nondepressed periods in spring and 

summer (Partonen, 1994). This suggests a strong causal relationship with seasonal changes in the 

prevailing photoperiod (light dark cycle), with diminished light exposure in winter. Indeed 

phototherapy, by employing controlled light exposure regimes, does improve the clinical picture 

of SAD and other forms of depression (Lewy et al., 1987; Miles and Philbrick, 1988; Waldhauser 

et at., 1993). This suggests that a suppression or phase-shifting of pineal MEL biosynthesis may 

be involved in the therapeutic efficacy of light. Several biochemical, behaviodral and clinical 

studies seem to confirm that MEL may worsen depressive symptoms. Firstly, <ihronic 

administration of lithium and antidepressants, such as desmethylimipramine, induces a 

suppression of pineal NAT activity and MEL biosynthesis (Miles and Philbrick, 1988). Secondly, 

the MEL antagonist luzindole shows antidepressant activity in the behavioural despair test (or 

Porsolt's swim test), which is counteracted by MEL itself (Dubocovich et at., 1990). 

In its initial form, the DA hypothesis of schizophrenia proposed that the pathogenesis of the 

disease arose through the hyperactivity of central dopaminergic systems. Morerecent studies have 

led to a revision of this simple hypothesis. Regionally restricted changes in the dopaminergic 

systems of the basal ganglia towards either hyperactivity or hypoactivity appear to be the 

causative factors. The mesolimbic and mesocortical DA pathways and the prefrontal cortex appear 
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to be particularly prone. There is also a growing recognition that other neurotransmitters, 

including 5HT and glutamate, may contribute to the disease pathology (Goldstein and Deutch, 

1992; Cohen and Servan-Schreiber, 1993). Historically, extracts of the pineal gland have been 

used to treat several mental illnesses including schizophrenia (Miles and Philbrick, 1988). Modem 

biochemical approaches have indeed implicated the pineal gland, mOMT activity and MEL 

production in a subgroup of chronic or paranoid schizophrenic or schizoaffective patients (Sandyk 

and Kay, 1990). The nocturnal surge in plasma MEL levels is dramatically phase-shifted, 

suppressed or even absent in drug-free subjects (Robinson et al., 1991; Monteleone et al., 1992; 

Rao et al., 1994). This particular group is characterized by a well-defmed symptomology, 

including ventricular enlargement, negative symptoms, impaired cognitive function, increased 

susceptibility to drug-induced movement disorders, and poor response to neuroleptic treatment 

(Sandyk and Kay, 1990). The lower efficacy of D2 antagonists suggests that excess dopaminergic 

activity is less prominent in this subtype of schizophrenia, as indicated by Goldstein and Deutch 

(1992). This reduction in nocturnal MEL is interesting in the light that several D2 antagonists are 

known to increase the plasma levels of the hormone, as discussed in section 1.5 (Wurtman et al., 

1968a; Ozaki et al., 1976; Smith et at., 1979; Loloum et at., 1993). 

The "transmethylation hypothesis" has made several come-backs as a contending etiology for 

schizophrenia (Miles and Philbrick, 1988). In its original form, this hypothesis proposed that 

schizophrenia is caused by the build-up of abnormal 0- or N-methylated metabolites in the brain, 

several of which are related the hallucinogenic ~-carbolines. A more recent contention states that 

the pathogenesis may be related to an abnormal ratio of para- to meta-O-methylated products due 

to abnormal SAM-dependent transmethylation reactions (Da Prada et at., 1994). in this regard, it 

is interesting that MEL and other 5-methoxyindoles represent O-methylated products of m~MT. 

1.6.5.5 Melatonin and Parkinson's Disease 

Parkinson's disease is one of the most common age-related neurodegenerative diseases. The 

pathogenesis is characterized by the progressive cell death of the dopaminergic neurons of the pars 

compacta zone of the substantia nigra. This results in a parallel loss of DA content in the 

caudoputamen (Greenfield, 1992; Naoi and Maruyama, 1993). Sandyk (1990a) provides a 

thorough review and hypothesis of the current evidence for a role of the pineaJ gland and MEL in 

Parkinson's disease. Most of the evidence is indirect or anecdotal and based on the purported 

antidopamimetic effects of MEL seen in biochemical and behavioural studies. In addition, it is 

interesting that most, if not all, ofthe chronobiological and neuroendocrine disturbances observed 
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in Parkinson's patients are known to be regulated by both DA and MEL. It is also argued that the 

progressive nature of the disease is paralleled by the well-established age-dependent decrease in 

MEL biosynthesis and plasma levels. In this regard, one hypothesis claims that the DA neuronal 

cell death is a consequence of oxidative stress by free radicals (Greenfield, 1992; Naoi and 

Maruyama, 1993) and the potent radical scavenging and antioxidative capacity of MEL is well 

known (Reiter et at., 1995). 

An additional hallmark of Parkinson's disease pathology is a deficiency of specialized APUD 

cells in the hypothalamus (Sandyk, 1990a). It has already been discussed in section 1.2 that the 

pineal gland also represents a part of the APUD system, and may actually be the "master gland" 

(Leong and Matthews, 1979). Sandyk et al. (1992) reported that magnetic fields are therapeutic in 

the management of Parkinson's disease, effectively reducing the clinical dose of L-Dopa required. 

This in turn lessened the incidence and severity of L-Dopa-induced dyskinesias or motor 

fluctuations. The authors attributed this to the known ability of magnetic fields to suppress pineal 

MEL biosynthesis (Reiter and Richardson, 1992). In another intriguing hypothesis, Sandyk 

(1990b) proposed that the spontaneous blink rate may reflect the status of central dopaminergic 

function and its modulation by MEL. For example, the lack of the blink reflex in Parkinson's 

patients is postulated to reflect the hypodopaminergic state of the basal ganglia, whereas the 

paroxysmal blinking seen in psychotic episodes of schizophrenia is associated with a 

hyperdopaminergic state. Blink rate has indeed been shown to alter the activity of the neostriatum 

(White et al., 1994) and pupil size regulates the threshold of light-induced suppression of pineal 

MEL levels (Gaddy et al., 1993). This hypothesis elegantly demonstrates the importance of 

balance in dopaminergic function and the potential role of MEL in maintaining hOmeostasis. 

I 
It must be noted that the above hypotheses are all theoretical and do not allow for the formation of 

one central argument. Some require that Parkinson's disease be associated with elevated MEL 

levels, whereas others necessitate a "low melatonin syndrome" as seen in schizophrenia. Only 

limited studies have actually investigated the status of MEL or the pineal in Parkinson's disease. 

Fertl et al. (1993) found a normal circadian rhythm and nocturnal amplitude in plasma MEL levels 

of de novo Parkinson's patients that could be phase-advanced by L-Dopa therapy. The finding of 

Anton-Tay (1974) that 1.2 g/day of MEL improved the symptoms of Parkinson's patients has not 

been confirmed by other studies (Sandyk, 1990a). In fact, the behavioural studies of Burton et at. 

(1991) and Tenn and Niles (1995) discussed above suggest that MEL would worsen the clinical 

picture. 
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1. 7 Monoamine oxidase 

The enzyme monoamine oxidase [monoamine:oxygen oxidoreductase (de aminating) (flavin

containing); E.C. 1.4.3.4; MAO] is an intrinsic flavoprotein of the outer mitochondrial membrane 

(Abell et at., 1994; Singer and Ramsay, 1995). Utilizing molecular oxygen as an electron acceptor, 

MAO catalyses the oxidative deamination of endogenous, dietary and xenobiotic amines to their 

corresponding aldehydes both in the eNS and periphery. A generalized reaction scheme for MAO 

is shown below: 

The substrate may be a primary, secondary or tertiary amine and the substituents R. and ~ may be 

either hydrogen or methyl groups. Typically, deamination of a primary amine produces an 

unstable imine intermediate which spontaneously hydrolyses to give the corresponding aldehyde 

and ammonia (Abell et ai., 1994; Singer and Ramsay, 1995). MAO is also the prime generator of 

hydrogen peroxide, which can be converted to cytotoxic hydroxyl radicals in the presence of 

transition metals by the Fenton reaction. MAO is also responsible for the bioactivation of selective 

dopaminergic neurotoxins such as isoquinolines and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) and 60HDA (Naoi and Maruyama, 1993). 

Endogenous biogenic amines include the neuroactive and vasoactive monoamine 

neurotransmitters DA, NA, adrenaline (AD) and 5HT, and the dietary or trace amines, namely, ~

phenethylamine, tyramine and octopamine. Thus the physiological functions bf MAO can be 

summarized as follows (Luque et ai., 1995): I 

(i) maintenance of low cytosolic amine concentrations in monoaminergic neurons and other cells 

(e.g. glia) in order to enhance uptake ofmonoamines by respective transporters following synaptic 

release of the said monoamine. In other words, presynaptic MAO activity is essential for 

terminating synaptic signal of a neurotransmitter by enhancing presynaptic uptake. 

(ii) prevent accumulation of substrates that could interfere with the uptake, storage and release of 

neurotransmitters. 
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1. 7.1 MAO ISOFORMS 

MAO occurs as two well-characterized and pharmacological distinct protein isoforms, designated 

MAO-A and MAO-B (Weyler et at., 1990; Singer and Ramsay, 1995). This original classification 

is based on substrate specificity and sensitivity to low concentrations of the irreversible acetylenic 

inhibitors pargyline, clorgyline and L-deprenyl (Johnston, 1968; Yang and Neff, 1973; Fowler et 

at., 1978). MAO-A preferentially deaminates 5HT, NA and AD and is selectively inactivated by 

clorgyline. MAO-B preferentially catabolizes ~-phenylethylamine and benzylamine and is 

selectively inhibited by L-deprenyl. The amines tyramine, tryptamine, telemethylhistamine, 

kynuramine and, more importantly, DA are common substrates for both isoforms. 

It is important to note that the aforementioned substrate specificity's are not absolute, but show 

important tissue- and species-specific variations (Fowler et at., 1978; Garrick and Murphy, 1982; 

Weyler et at., 1990). For example, although purified MAO-B from bovine liver preferentially 

deaminates e4C]~-phenethylamine, C4C]5HT can be utilized as a substrate to a lesser extent (Chen 

et at., 1987). In contrast, in the rat brain 5HT is exclusively de aminated by MAO-A (Fowler et at., 

1978; Garrick and Murphy, 1982). Furthermore, species-variations are seen in the inhibitory 

potency of oxadiazolone and oxadiazothione derivatives towards MAO-B, suggesting differences 

in the structure of the substrate binding site (Singer and Ramsay, 1995). Ultimately, substrate 

selectivity is dependent upon the Kcat IK", ratio for each isoenzyme (Palfreyman et at., 1987). 

These discrepancies have lead to the suggestion that there may be other MAO isoforms, requiring 

revision of this, perhaps simplistic, binary classification. Thus it is proposed that a consideration 

of inhibitor sensitivity is more reliable and consistent than substrate specificity for isoform 
\ 

characterization. 
J 

1. 7.2 PROTEIN STRUCTURE 

The above binary classification of MAO isoforms was confirmed when the eDNA-derived amino 

acid sequences (primary structure) were obtained for human liver MAO-A and MAO-B (Bach et 

at, 1988). Each isoform is a distinct homodimeric protein, but they differ in physical (e.g. 

molecular size), biochemical and immunological properties (Chen et at, 1987; Weyler et at., 1990; 

Abell et al., 1994; Singer and Ramsay, 1995). 

It is proposed that the active site of MAO is composed of two domains, one housing the obligatory 

flavin adenine dinucleotide (FAD) prosthetic group, and the other comprising the substrate 
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binding site. The flavin binding site is situated in the carboxyl terminus of the polypeptide. In each 

isoform, this site is associated with the conserved pentapeptide, Ser-Gly-Gly-Cys-Tyr, producing 

the covalently bound 8-S-cysteinyl FAD. The AMP binding site is situated in the N-terminus, 

displaying sequence identity with the AMP sites from other flavoproteins (Singer and Ramsay, 

1995). Unfortunately, precise knowledge regarding the amino acid sequence and catalytic nature 

of the active site and the substrate binding site remains unclear. Preliminary studies with 

photoaffmity labels such as 4-fluoro-3-nitrophenylazide (Chen et al., 1987; Hsu and Shih, 1988) 

showed clear differences in the degree of photo-dependent inactivation of MAO-A and MAO-B. 

This provided strong evidence for the existence of conformational or structural differences in the 

active sites of the isoforms. The results further suggested that the substrate and inhibitor 

selectivity between MAO-A and -B can be attributed to differences in the substrate binding site 

and not the FAD binding site (Chen et al., 1987). This can be further delineated once labeled 

probes that bind preferentially or exclusively to the substrate binding site have been found. 

Further, it is known that cysteine residues are the source of thiol groups essential for the catalytic 

activity of both isoforms. Site-directed mutagenesis revealed that human liver MAO-A and -B 

catalytic activity were completely dependent on one and two cysteine residues, respectively, in 

addition to a cysteine residue associated with the FAD moiety (Wu et al., 1993). Although it is 

unclear whether these essential cysteines are involved in forming the active site or an appropriate 

enzyme conformation, this illustrates a further structural difference between MAO-A and -B. 

Hydropathy plots indicate a greater hydrophobicity in human MAO-B than -A, which may explain 

why apolar amines are better substrates for MAO-B (Singer and Ramsay, 1995). Until the 3-

dimensional shape of the tertiary and quaternary structures of the isoforms can be obtained from 

X-ray crystallographic data, SAR studies will remain limited. 

I 

Little is known regarding the biosynthesis~ post-translational modification and transport of the 

MAO enzyme. An uncleavable targeting sequence in the 29 residues of the COOH-terminus is 

known to be responsible for insertion into the outer mitochondrial membrane (Singer and Ramsay, 

1995). 

1. 7.3 MOLECULAR BIOLOGY 

MAO-A and -B are encoded by two distinct cytoplasmic genes and the cDNA for both isoforms 

has been cloned from tissue of several species, including the livers of humans and rats (Bach et 

al., 1988; Ito et al., 1988). There is enormous conservation of predicted amino acid sequence 
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identity between isoforms and species, especially for the FAD binding domain. In humans, both 

genes are located on the short arm of chromosome X (Bach et al., 1988; Ozelius et al., 1988; Lan 

et al., 1989; Grimbsy et al., 1991). The human isoforms share 73% nucleotide sequence identity 

and exhibit identical intron-exon organization (Bach et al., 1988; Grimbsy et al., 1991), 

suggesting that they probably arose from duplication of an ancestral gene. The core promoters of 

both genes show major differences in organization and activity (Zhu et al., 1992; Zhu et al., 1994; 

Ekblom et al., 1996). The human MAO-A gene is under the regulation of a bi-directional 

promoter and transcriptional activity is chiefly governed by Sp I-like transcription factors. The 

MAO-B gene is regulated by Spl-like and other unidentified transcription factors. 

Chen et al. (1994) cloned a novel MAO cDNA from the trout liver and Zhang and McIntire (1996) 

reported the cloning and sequencing of a copper-containing, topa quinone-containing monoamine 

oxidase from human placenta. It is highly probable that molecular biology will expose further 

novel MAO isoforms and thus help clarify the pharmacological and biochemical debate (Johnston, 

1968; Knoll and Magyar, 1972; Garrick and Murphy, 1982). 

Several DNA polymorphisms have been characterized for both isoforms (Ozelius et al., 1988; 

Hotamisligil and Breakefield, 1991; Grimbsy et al., 1992; Girmen et al., 1992; Kurth et al., 1993). 

In the case of MAO-A, three polymorphisms which do not affect the amino acid sequence of the 

MAO-A protein are significantly associated with enzyme activity (Hotamisligil and Breakefield, 

1991). For example, the EcoRV polymorphism arises from a nucleotide substitution in the third 

base of a codon located within the non-coding regulatory region of the MAO-A gene. Since 

differences in MAO activity arise from differences in amount of MAO enzyme, knd not catalytic 

properties of the enzyme, EcoRV controls the amount of enzyme translated. Segregation Jnalyses 

have confirmed that MAO-A activity is regalated by a single major locus, the MAO gene itself, 

and represents a stable characteristic of an individual with a high heritability factor (Rice et al., 

1984). Furthermore, Schalling et al. (1987) found clear evidence of low, intermediate, and high 

platelet MAO activity in human subjects, with an apparent relation to psychopathology. In the 

case of MAO-B, no correlation has yet been found between specific alleles/polymorphisms, e.g. 

the intronic MaeIII polymorphism (Kurth et al., 1993), and activity levels (Girmen et al., 1992; 

Grimbsy et al., 1992; Ho et al., 1994). 
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1. 7.4 TISSUE DISTRIBUTION 

MAO is distributed throughout the CNS and periphery. The ratio of MAO-A to MAO-B 

expression is distinctly cell-, tissue- and species-specific and shows ontogenic development. This 

differential expression of A and B isoforms in CNS and peripheral tissues may be regulated 

independently by tissue-specific factors (Zhu et al., 1992; Zhu et al., 1994; Ekblom et al., 1996). 

MAO-A is expressed before MAO-B in fetal brains (Lewinsohn et al., 1980), but MAO-B activity 

is higher than MAO-A in the adult human brain (Garrick and Murphy, 1982). Good agreement in 

the tissue distribution of MAO-A and -B in several species (including rats, monkeys and humans) 

was seen following quantification of enzyme activity, protein levels and mRNA expression by a 

variety of techniques. Typically, MAO-A is expressed in catecholaminergic neurons, with highest 

levels in adrenergic and noradrenergic neurons, and moderate to low expression in dopaminergic 

neurons. Thus the noradrenergic system, particularly the locus coeruleus, is the main component 

of MAO-A in the rat, guinea pig, Mongolian gerbil, monkey and human brain (Grimsby et aI, 

1990; Luque et al., 1995; Jahng et al., 1997). MAO-B distribution is more discrete, with highest 

expression in non-neuronal glial cells (astrocytes), circumventricular organs (e.g. pineal organ), 

serotonergic (particularly the raphe nuclei) and histaminergic neurons (Levitt et ai., 1982; 

Westlund et aI, 1985; Jahng et al., 1997). Human placenta express only MAO-A, whereas platelets 

and lymphocytes express predominantly MAO-B (Garrick and Murphy, 1982; Hsu et aI, 1988; 

Grimsby et aI, 1990). 

The abundance of MAO-B, rather than MAO-A, in serotonergic neurons is paradoxical 

considering that 5HT is preferentially catabolized by MAO-A. A good case in point is the pineal 

gland, which contains 50 to 60 times more 5HT than the rest of the brain. The ~ineal expresses 

both MAO isoforms, although MAO-B is distinctly the predominant isoenzyme. None'theless, 

oxidative deamination represents the main metabolic fate of 5HT. A model has been proposed that 

MAO-A is responsible for the normal in vivo deamination of 5HT, whereas MAO-B only 

metabolizes this indoleamine under conditions of low or inhibited MAO-A activity (Luque et al., 

1995). Further, serotonergic neurons may contain a non-vesicular pool of 5HT requiring low 

levels of MAO-A activity to be functional. Serotonergic MAO-B may playa scavenging role by 

catabolizing trace amines (e.g. tryptamine) and other neurotransmitters (e.g. DA), and xenobiotics 

that could interfere with 5HT uptake, storage and metabolism. Indeed ttyptamine is closely 

associated with 5HT pathways, possesses a high turnover rate and is known to elicit LSD-like 

hallucinations and amphetamine-like motor activation (Luque et al., 1995). 
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1. 7.5 RELATION TO DOPAMINE METABOLISM 

Although DA is a common substrate of MAO-A and -B, the relative abundance of MAO-A in 

dopaminergic systems is strongly debated. Protein and activity studies indicate that the ratio of 

MAO-A to MAO-B in the rat striatum is 3:1, whereas for the guinea pig and human striatum the 

ratio is 1 :3, favouring MAO-B (Juorio et al., 1994). In addition, Juorio et al. (1994) reported a 

strong level of expression of MAO-A mRNA in the guinea-pig nigro-striatal pathway. On the 

other hand, Luque et al. (1995) found that although MAO-A mRNA and protein is present in the 

rat striatum, MAO-B was more abundant. In contrast, only MAO-A mRNA was expressed in the 

rat substantia nigra pars compacta zone (Luque et al., 1995; Jahng et al., 1997). This supports the 

fmding that mouse striatal MAO-B is localized to postsynaptic cholinergic intemeurons, 

particularly in the dorsal caudate putamen, which receives input from the ventral pars compacta 

zone (Nakamura et al., 1995). In the case of humans, MAO-B is present in the caudate nucleus, 

whereas neither MAO-A nor -B are found in the substantia nigra (Naoi and Maruyama, 1993). 

It is proposed that MAO- A mRNA is translated in cell bodies of the substantia nigra and the 

protein is conveyed by axonal transport to the presynaptic nerve terminal and inserted into the 

outer mitochondrial membrane, explaining the relative distribution of MAO-A mRNA and 

protein. In contrast, MAO-B mRNA and protein are abundant in the cell body of post-synaptic 

cholinergic intemeurons in the striatum. Indeed it is well established that in the rodent brain, 

released DA is principally metabolized by MAO-A following neuronal reuptake under 

physiological conditions. Minor amounts of DA will be deaminated by glial MAO-A and -B 

following diffusion of the neurotransmitter away from the synapse (Berry et al., 1994; Juorio et 

al., 1994; Luque et al., 1995). In the case of the primate brain, MAO-B may 1le the neuronally 

important isoform for DA metabolism (Garrick and Murphy, 1982; Grimsby et aI, 1990; Jporio et 

al., 1994). 

1.7.6 PATHOLOGY AND CLINICAL SIGNIFICANCE 

MAO has been implicated in numerous brain diseases and psychiatric disorders. This is attested to 

by the vast amount of literature published on this topic, but the following only represents a brief 

overview of the material. Although human platelets contain exclusively MAO-B and MAO-A is of 

primary importance for the metabolism of central 5HT, there is a strong positive correlation 

between central serotonergic turnover (e.g. 5HIAA levels in CSF) and platelet MAO-B activity. 

For this reason, platelet MAO activity has been suggested as a trait-dependent indicator of 
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vulnerability to psychopathology, which implies a stability of the enzyme m an individual 

irrespective of changes in mood, season and symptoms (Schalling et ai., 1987). 

Low platelet and lymphocyte MAO-B activity has been found in chronic and paranoid 

schizophrenic patients (Wyatt et ai, 1980; Zureick and Meltzer, 1988). The influence of the MAO

A EcoRV polymorphism has also been reported (Hotamisligil and Breakefield, 1991). Low 

platelet MAO activity and low 5HT turnover have also been associated with eating disorders, 

impulsivity, novelty seeking, substance abuse, aggression, borderline personality, antisocial and 

recurrent suicidal behaviour and type II alcoholism (Sullivan et ai., 1979; Moss et ai, 1990; 

Yerkes et at, 1996). Ekblom et al. (1996) found that ethanol caused a 2-fold increase in MAO-B 

gene expression and activity. This effect may be cell-type specific and involve ethanol-induced 

changes in the binding of the transcription factor to the core promoter of the gene. Point mutations 

in the MAO-A gene have also been associated with impulsive aggression in some men of a Dutch 

family (Brunner et al., 1993). In this regard, transgenic mice lacking the MAO-A gene show 

abnormal levels of 5HT and NA and aggressive behaviour (Cases et at., 1995). Furthermore, the 

loss of both the MAO-A and MAO-B genes has been implicated in the severe mental retardation 

of some patients with Norrie disease (Lan et ai., 1989). 

Parkinson's disease is also associated with low platelet MAO-B activity, whereas there is evidence 

for very high levels of MAO-B in plaque-associated astrocytes in the brains of Alzheimer's 

patients. (Williams et aI, 1991; Saura et al., 1994). Studies have failed to find an association 

between the intronic MaeIII polymorphism of MAO-B and Parkinson's disease (Kurth et al., 

1993; Ho et ai., 1994). 

I 

1.8 Catechol-O-methyltransferase . 

Catechol-O-methyltransferase (S-adenosyl-L-methionine; catechol-O-methyltransferase; EC 

2.1.1.6; COMT) is an important phase II metabolic enzyme involved in transmethylation 

reactions. In the presence of Mg2+ ions, COMT catalyses the SAM-dependent O-methylation of a 

variety of exogenous and endogenous catechols, including catecholamine neurotransmitters, 

catechol steroids (e.g. estrogen) and xenobiotics, including APO (Axelrod, 1966). Thus COMT 

has a broad substrate specificity, but with a strict requirement for the catechol functionality. The 

mechanism involves the transfer of methyl group from SAM to primarily the m-hydroxyl group 

55 



Chapter 1: Literature Review 

(position 3) of catechols, although a minor proportion of the 4-0-methylated product is also 

produced. In turn, S-adenosyl-homocysteine (SAH) is formed as the demethylated co-product. 

Important catecholamine substrates include DA, NA and AD, and the precursor L-Dopa. Thus the 

physiological functions of COMT can be summarized as follows (Tilgmann and Ulmanen, 1996): 

(i) inactivation of neurotransmitters following synaptic release. For example, extraneuronal or 

interstitial DA (3-hydroxytyramine) in the synaptic cleft is O-methylated to 3-methoxytyramine 

(3MT). Thus the extracellular levels 3MT are often used as an index ofDA release (Kehr, 1976). 

(ii) role as a barrier enzyme regulating the access of catechols to biological compartments. For 

example, COMT associated with the blood-brain-barrier can limit the uptake of xenobiotics into 

theCNS. 

(iii) regulation of catecholestrogens and catabolism of xenobiotics, especially m the liver, 

including toxic and potentially carcinogenic compounds. 

1.8.1 COMT ISOFORMS AND SUBCELLULAR DISTRIBUTION 

COMT occurs as two distinct monomeric protein isoforms, which differ in molecular mass: 

soluble COMT (S-COMT) [24KD], and membrane-bound COMT (MB-COMT) [28KD] 

(Grossman et al., 1985; Karhunen et al., 1994; Tilgmann and Ulmanen, 1996). The MB-COMT 

isoform contains the S-isoform and an additional hydrophobic N-terminal anchor segment. MB

COMT is an integral membrane protein with most of the protein (including the catalytic domain) 

orientated towards cytoplasmic side of membrane (Ulmanen and Lundstrom, 1991). Cell 

fractionation (Tilgmann et al., 1992) and immunohistochemical studies (Lundstrom et ai., 1995) 

confirm the localization of MB-COMT to plasma membranes and rough endoplasmic reticula 
~ 

(RER). In contrast, S-COMT is distinctly cytosolic (Karhunen et al., 1995a and 1995b; Lundstrom 

et al., 1995) and is the more abundant isoform. Even though MB-COMT represents la minor 

proportion of total enzyme, it is considered the neuronal and functionally important isoform 

(Tenhunen and Ulmanen, 1993). MB-COMT has a several-fold higher affmity for substrates than 

S-COMT, and is capable of metabolizing low concentrations of catecholamines (Rivett et at., 

1983; Lotta et aI., 1995; Borges et al., 1998). 

There is some evidence for species- and tissue-specific heterogeneity of S-COMT, suggesting the 

existence of isoenzymes. Multiple forms of S-COMT have been isolated that differ in primary 

structure, molecular mass, isoelectric points and number of cysteine residues, especially those 

associated with the active site (Lotta et ai., 1995; Tilgmann and Ulmanen, 1996). 
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The cloning and expression of the COMT gene (see below) in a variety of vector systems has 

allowed production of large quantities of recombinant proteins of both isoforms (Malherbe et ai., 

1992; Tilgmann et ai., 1992). This, coupled to successful purification protocols, has resulted in the 

crystallization and resolution of the atomic structure of S-COMT (Tilgmann and Ulmanen, 1996). 

This has allowed accurate determination of the kinetic parameters and substrate selectivity of S

COMT. Clarification of the structure and kinetic reaction mechanism will ultimately lead to the 

design of more potent and clinically useful COMT inhibitors. 

1.8.2 MOLECULAR BIOLOGY 

The cDNAs and genes for rat and human S- and MB-COMT have been cloned and characterized 

(Salminen et ai., 1990; Bertocci et al., 1991; Tenhunen et ai., 1993 and 1994; Lundstrom et ai., 

1995). Only one gene directs the synthesis of both S- and MB-COMT proteins in rats and humans. 

Two distinct promoters and initiation codons regulate the translation of two mRNAs from the 

same gene. A proximal promoter (PI) gives rise to S-COMT mRNA (1.3 kb transcript) and a 

distal promoter (P2) gives rise to MB-COMT mRNA (1.5 kb transcript) [Tenhunen and Ulmanen, 

1993; Tenhunen et ai., 1993 and 1994]. Further characterization of the proximal promoter has 

helped to explain the tissue-specific regulation of S-COMT gene expression in mammalian tissues 

(Tenhunen, 1996). 

Human COMT activity is inherited as an autosomal co-dominant trait (McLeod et ai., 1994). 

There are numerous polymorphic variants of the gene. The most common polymorphism results in 

high, low and intermediate levels of COMT activity and influences enzyme stability (Aksoy et al., 
\ 

1993; Kunugi et ai., 1997). Photo affinity and Western blot analysis of human hepatic COMT 

reveals three proteins of different isoelectric points, but the same molecular mass, regardIess of 

phenotypic category (Aksoy et al., 1993). 'This is consistent with the existence of S-COMT 

isoenzymes, but implies that COMT genetic polymorphism must be reflected at some other level 

of the protein structure, e.g. the active site. The frequency of each COMT allele also shows 

distinct ethnic differences, but no variations between gender. For example, an analysis was 

performed on erythrocyte COMT activity of American whites and blacks (McLeod et aI., 1994). 

Caucasians are 25% homozygous for the low activity allele, 50% heterozygous for intermediate 

activity, and 25% have the high activity allele. In contrast, Afro-Ameri'Cans have a higher 

frequency of the high-activity allele. In another study, a Saami (Lapps) population was found to 

have lower erythrocyte COMT activity than a non-Saami Norwegian population. This is also the 
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fIrst report of a population having a lower activity level than a Caucasian population (Klemetsdal 

et a!., 1994). 

1.8.3 TISSUE DISTRIBUTION 

COMT is an ubiquitous enzyme, widely distributed peripherally and in the CNS. Good agreement 

on the distribution of the enzyme has been obtained from determination of activity levels, 

immunohistochemistry, and mRNA levels. Peripherally, strong expression is seen in mammalian 

placenta, erythrocytes, thyroid, adrenal cortex, liver, kidney, stomach, duodenum, ileum and 

pancreas, with highest S-COMT activity found in the liver and kidney (Karhunen et al., 1994; 

Karhunen et a!., 1995; Tilgmann and Ulmanen, 1996). 

In the CNS, COMT activity is spread relatively evenly and exhibits both a neuronal and 

extraneuronal distribution, without following the distribution of catecholamines and 

catecholamine synthesizing enzymes (Rivett et ai., 1983; Kaakola et ai., 1987; Karhunen, et ai., 

1994; Karhunen et ai., 1995a and 1995b; Lundstrom et ai., 1995). Using a polyclonal antibody to 

both isofonns, weak to moderate COMT expression was found in the molecular layer of the 

cerebellum, neostriatum, parietal cortex, pituitary glands, and scattered small neurons in spinal 

sensory ganglia. In these CNS regions, COMT-immunoreactivity is associated with the cytoplasm, 

large tubular structures and near the plasma membranes of dendritic processes and spines. 

Typically, COMT was distributed in or around the synapse. Thus COMT is clearly located post

synaptically, with no evidence for its presence in neurons presynaptic to the dendritic processes 

(Karhunen et ai., 1995a and 1995b). The post-synaptic neuronal localization of the neuronal high

affmity MB-COMT has also been confrrmed by lesion studies (Kaakola et aI., 1987; Naudon et 

ai., 1992). In the case of non-neuronal glial cells, strong COMT expression is seen,;in the 

cytoplasm of type-l and type-2 astrocytes qud oligodendrocytes (Karhunen et ai., 1995a and 

1995b). The strongest COMT-immunoreactivity in the CNS is observed in the choroid plexus, 

leptomeninges, ependymal cells lining the lateral and third ventricles, astroglial end feet around 

capillaries and tanycytes in the median eminence (Karhunen et ai., 1995a). This is consistent with 

the proposal that COMT serves a barrier function in the blood-brain-barrier. In summary, on the 

basis of the distribution reported here, the inactivation of catecholamines by COMT may occur 

primarily in post-synaptic dendritic and/or astrocytic processes around synapses and capillaries. 
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1.8.4 PATHOLOGY AND CLINICAL SIGNIFICANCE 

Inhibitors of COMT are of enormous clinical potential in the treatment disorders associated with 

aberrant catecholamine function and metabolism. This is particularly true for Parkinson's disease, 

for several reasons (Da Prada et al., 1994). Firstly, the progressive loss in DA levels can be 

retarded by inhibiting the O-methylation of the catecholamine. Secondly, the movement disorders 

and "on-off' fluctuations observed with L-Dopa therapy may be minimized by enhancing the 

bioavailability and delivery of L-Dopa to the CNS. Peripherally, COMT is responsible for 

converting L-Dopa to 3-0-methyldopa, which also competes for L-Dopa uptake into the brain. 

Finally, COMT inhibitors, such as tolcapone and entacapone, have "SAM-sparing effects", 

making more SAM available for other transmethylation reactions (Da Prada et al., 1994). 

COMT may also be important in certain psychiatric disorders. An abnormal meta/para ratio of 0-

methylated products and abnormal SAM-dependent transmethylation reactions have been 

implicated in several disorders (Da Prada et al., 1994). The possible association of COMT gene 

polymorphism and brain diseases is also being actively investigated. Initial studies have found an 

association with alcoholism, aggression and antisocial behaviour, bipolar affective disorder, and 

possibly with Parkinson's disease, but not with schizophrenia (Lachman et aI., 1996; Kunugi et 

al., 1997; Strous et al., 1997). 

1.9 Gamma-hydroxybutyrate 

1.9.1 STATUS AS A NEUROTRANSMITTER 

y-Hydroxybutyrate (GHB) is an endogenous short chain 4-carbon fatty acid found in the blain of 

mammals (Roth and Giarman, 1970). It is derived in vivo from the metabolism of the inhibitory 

neurotransmitter GABA and 1,4-butanediol, and thus represents a structural analog of GABA 

(Snead et al., 1989) Reciprocally, GHB may be converted back to GABA (Vayer et al., 1985). 

Although endogenous levels are very limited, there are several lines of argument that GHB may 

playa role as a neuromodulator and even a neurotransmitter (Vayer et al., 1988; Cash, 1994). 

There is a discrete subcellular anatomical distribution for GHB and its synthesizing enzymes 

(Rumigny et al., 1981; Snead, 1987; Vayer et al., 1988), with highest CNS levels occurring in the 

hypothalamus and substantia nigra. Peripherally, highest levels are found in the kidney, heart, 

skeletal muscle and brown fat. There is evidence of a Ca2
+ -dependent release mechanism (Maitre 

et al., 1983) and a Na+-dependent uptake mechanism (Hechler et al., 1985). Specific GHB binding 

59 



Chapter 1: Literature Review 

sites, unrelated to GABA receptors, have been identified. There is a good correlation between 

GHB distribution and that of [3H]GHB binding sites, except the substantia nigra, which is 

relatively poor in specific GHB binding sites (Benavides et at., 1982; Maitre et at., 1983; Heeher 

et ai., 1992). Maximal eH]GHB binding is found in the hippocampus and cerebral cortex. 

1.9.2 BEHAVIOURAL AND BIOCHEMICAL EFFECTS 

Endogenous GHB is believed to serve as a relatively specific, state-dependent regulator of central 

DA neurons, particularly ofthe basal ganglia. Numerous biochemical studies conducted in vivo, ex 

vivo and in vitro have confirmed that GHB and its prodrug gamma-butyrolaetone suppresses the 

spontaneous firing rate (impulse flow) of midbrain DA neurons (Walters and Roth, 1976; Alter et 

ai., 1984; Howard and Feigenbaum, 1997). This results in an increase in brain DA levels through a 

concomitant inhibition ofDA release and increase in the activity of presynaptic TH activity. 

Consistent with an inhibition of DA release, GHB is known to induce antidopamimetic 

behavioural responses, including akinesia, hypokinesia, sedation, catalepsy, loss of the righting 

reflex, absence-like seizures, hypoventilation and anaesthesia (Cott and Engel, 1977; Ellinwood et 

a!., 1983; Tunnicliff, 1992; Howard and Feigenbaum, 1997). Moreover, GHB inhibits the DA

release dependent behaviours induced by indirect DA agonists irrespective of whether they are 

impulse-independent (e.g. d-amphetamine) or impulse-dependent (e.g. methylphenidate). In turn, 

the effects of GHB can be reversed by drugs stimulating DA release (Cott and Engel, 1970; 

Ellinwood et ai., 1980). 

\ 

More recent studies have actually shown that the dose-dependent effects of GHB are bi-phasic 
I 

(Engberg and Nissbrandt, 1993; Howard and Feigenbaum, 1997). High doses of GHB (~ 400 

mg/kg) inhibited the spontaneous firing rate of substantia nigral DA neurons and regularized the 

firing rhythm. In contrast, low doses of GHB « 200 mg/kg) increased the spontaneous firing rate, 

regularized the firing rhythm and converted burst firing neurons to non-burst firing (Engberg and 

Nissbrandt, 1993). The low doses of GHB employed in the latter study are more in line with 

endogenous GHB levels in the substantia nigra (Vayer et ai., 1988). This suggests that endogenous 

GHB may actually have stimulatory effects and pacemaker potential in midbrain DA systems. 

This may help explain why some authors found a stimulation of central DA release following 

GHB administration (e.g. Diana et at., 1991; Howard and Feigenbaum, 1997). 
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Initially it was believed that GHB had a direct effect on DA release. However, very strong 

evidence now exists that the central effects of GHB, including the inhibition of nigro-striatal 

function, is due to agonistic activity at the GABAB receptor (Waldmeier, 1991; Xie and Smart, 

1992; Engberg and Nissbrandt, 1993; Williams et aZ., 1995; Snead, 1996). Indeed the effects of 

GHB are consistently blocked by the GABAB receptor antagonist CGP 35348 and mimicked by 

the selective GABAB agonist baclofen. In contrast, GHB has no effect at the GABAA 

Ibenzodiazepine receptor complex (Serra et aZ., 1991). Inhibitory GABAergic nerve terminals 

terminate in both the pars compacta and pars reticu1ata zones of the substantia nigra. GABAB 

receptors are located on DA cell bodies in both areas and are known to regularize the fIring pattern 

and to prevent burst fIring of these nigra1 neurons (Engberg and Nissbrandt, 1993). In contrast, 

specifIc eH]GHB binding sites are relatively sparse in the substantia nigra (Benavides et aZ., 

1982; Hecher et al., 1992). It has even been proposed that the eH]GHB binding site and the 

GABAB receptor are one and the same (Snead, 1996). However, this is unlikely considering that a 

selective GHB antagonist has been designed (Maitre et al., 1990; Wa1dmeier, 1991). Finally, it 

must be noted that GHB may exert its effects on a system downstream and common to the GABAB 

receptor, without a direct effect on the latter receptor. Some evidence has also been found for an 

interaction of GHB with opioidergic systems (Feigenbaum and Howard, 1997). 

I 
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Experimental Procedures 

2.1 Animals and Housing Conditions 

All studies were perfonned using adult male albino rats of the Wistar strain obtained as an outbred 

colony from a single breeder, the South African Institute for Medical Research (SAIMR, 

Johannesburg). Unless otherwise stated, all animals were ca. 3 months old with body weights 

between 200 and 300 g. Rats were maintained in a windowless, well-ventilated constant 

environment room (CER) under an automated I2L: I2D light-dark cycle (lights on at 06hOO, 

Central African Time [CAT]). Artificial lighting was provided by standard cool-white fluorescent 

bulbs (75 W) with an intensity of illumination of 250 /-LW/cm2. Ambient temperature was 

regulated at 22 ± I 0 C. 

Animals were housed 5 or 6 per cage to minimize stress (Gambardella et at., 1994). Standard 

laboratory chow and tap water were available ad libitum. Cage cleaning and feeding were 

perfonned randomly, and only in the photophase, to avoid induction of secondary exogenous 

rhythms. All animals were given a one week acclimatization period prior to experimental 

manipulation. Every effort was made to minimize stress to the rats, including experimental 

handling time. The housing conditions and all experimental protocols were approved by the 

Rhodes University Ethics Committee for Animal Research. 

I 

Experimental manipulation and decapitation in the scotophase were perfonned under a dim red 

photographic safety light (wavelength> 620 nm; intensity = 0.8 /-LW/cm2). Red light does not 

influence pineal indole biosynthesis (Cardinali et al., 1972; Reiter, 1985). 

2.2 Tissue Preparation 

Rats were sacrificed at designated times by cervical dislocation and decapitation. Using a pair of 

scissors, an incision was made through the bone from the foramen magnum to near the orbit of each 

eye. The top of the skull and the meninges were removed. The pineal gland was rapidly excised from 

the meninges with a sterile microforceps and immediately explanted for organ culture studies. The 
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whole brain was removed, placed on a chilled glass plate on crushed ice, and rinsed in ice-cold saline 

[0.9% (w/v) NaCI]. The cerebellum and corpus callosum were removed and the corpus striatum 

exposed by separating the cerebral hemispheres. Both the right and left corpora striata were 

microdissected by undercutting the paleostriatum, and pooled. Following a rinse in ice-cold 0.32 M 

sucrose containing 0.1% (v/v) dimethylsulphoxide (DMSO) as a cryoprotectant, the striata were 

slowly and uniformly frozen in the vapour-phase of liquid N2. Samples were stored at -70°C until 

further use. 

2.3 Crude Enzyme Preparation 

The following protocol was used to prepare crude fractions of MAO and COMT from the same 

tissue source by differential centrifugation and subcellular fractionation. 

The pooled striata were slowly thawed on ice and suspended in ice-cold 0.32 M sucrose to give a 

5% (w/v) total homogenate, based on the original fresh wet weight of the tissue. This suspension 

was manually homogenized on ice with a fixed number of strokes using a glass-tephlon 

homogenizer. The total homogenate was then centrifuged at 2000 rpm for 10 min at 4 °C (Selecta 

Mixtasel benchtop centrifuge). The supernatant (Sl) was centrifuged at 16500 rpm for 30 min at 4 

°C (Beckman L-70 Ultracentrifuge). The resultant supernatant (S2) represents the 

cytosolic/microsomal fraction. The sedimented pellets PI and P2 were resuspended in 0.32 M 

sucrose by gentle agitation and re-homogenization to give a 5% (w/v) nuclear/cell debris fraction 

and a 4% (w/v) mitochondrial/lysosomal fraction, respectively. For each fraction the % (w/v) was 

based on the original fresh wet weight of the striata. The nuclear/cell debris fractidn was only used 

in the case of subcellular enzyme distribution studies. All fractions were stored at -20°C un'til use. 

2.4 Protein Determination 

Protein concentrations were determined by modification of the F olin-Lowry assay (Lowry et al., 

1951), relative to bovine serum albumin (BSA) as the standard protein. Determinations were 

performed in triplicate and the mean value used in subsequent calculations. A protein standard 

curve is presented in Figure 2.1. 
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Figure 2.1: Protein standard curve with BSA as the standard protein. (Data represents mean ± 
SEM Cn = 5); r = 0.9995 P < 0.0001) 

2.5 Liquid Scintillation Spectroscopy 

2.5.1 CHEMICALS AND REAGENTS 

Emulsifier Scintillator Plus TM scintillation cocktail and 8 ml capacity scintillation vials were 

purchased from Packard Instrument Company (Netherlands). 

2.5.2 EXPERIMENTAL PROCEDURE 

Only C4C]-labeled radioisotopes were used for experimental work. This allowed quantifi5ation of 

~-emissions by liquid scintillation spectros,?oPY in a Beckman LS2800 scintillation counter at a 

counting efficiency of 96% for the full 14C window (0-1000). Samples were added to 8 ml 

scintillation vials containing 3 ml scintillation fluid and counted. Quench correction was 

automated by the external channel ratios method and the data converted to disintegrations per 

minute (DPM). 
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2.6 Behavioural Studies: Catalepsy 

2.6.1 INTRODUCTION 

The ability of DA agonists and antagonists to alter DA-mediated behaviour arises primarily from 

an effect on dopaminergic striatal, limbic and cortical projections (Moore and Bloom, 1978; 

Jankovic, 1995). A behavioural model was required to help delineate the potential 

antidopamimetic effects of MEL. 

Catalepsy is a drug-induced akinetic state, believed to reflect altered striatal function (Sanberg et 

aI., 1988). It is commonly used as a rodent model of drug-induced Parkinsonism. By definition 

catalepsy represents the ability of an animal to maintain an abnormal posture for prolonged 

periods of time. Most commonly used cataleptogenic drugs include the monoamine depletor 

reserpine and neuroleptics such as HAL. 

Typically, catalepsy is assessed by the duration of immobility after placing the animal in an 

abnormal posture (Yurek and Randall, 1985). This has led to a wide diversity of tests, restricted 

mostly to the imagination of the researcher and the physical possibility of the abnormal posture. 

Examples of exotic tests include the "four-cork test" and "Buddha position". This enormous 

variation in test design does not facilitate the comparison of the cataleptogenic potential and 

intensity of drugs between laboratories. This has led to the design of the Standardized Horizontal 

Bar Test (Sanberg et al., 1988), which was routinely employed in this study to test the 

cataleptogenic potential of MEL and other drugs. 

2.6.2 METHODOLOGY 

(i) Testing Environment 

I 

The catalepsy apparatus comprised a 1 cm diameter wooden bar supported 9 cm above the floor of 

a testing arena. The testing arenas consisted of the plastic cages (35 x 35 x 26 cm) used to house 

the animals. The cages were placed on bench tops and the wire-floor removed. Animals were 

tested individually with the walls of the cages preventing visual contact between adjacent test 

subjects. All experiments were performed in sound-attenuated CERs. Testing in the dark-phase 

was performed under red photographic safety lights. Every precaution was taken to minimize 

handling-induced stress in the animals. 
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(ii) Testing Procedure 

Following a 5 min habituation period in the arena, both the forepaws of an animal were placed on 

the bar while the hindpaws remained firmly on the floor. The height of the bar (9 cm) was 

matched to the average size of the animals to minimize discomfiture of the upright posture. 

Animals were placed on the bar by neck-pinching induced immobilization. The time taken to 

remove either of the forepaws from the bar was manually timed with a stop-watch and constituted 

the catalepsy score in seconds (s). A maximum "cut-off' time of 300 s was employed. The final 

catalepsy score per animals represents the mean ± SEM of three separate trial sessions (n = 3). The 

presence of catalepsy was occasionally confirmed by the righting reflex test. The latter involves 

placing the animal on its back and recording the time taken to right itself. 

2.7 Data and Statistical Analysis 

All raw data were converted to a mean ± SD or SEM, with the sample size (n) specified for each 

sample group. Statistical comparison of mean values was achieved by the parametric, unpaired 

Student t-test or by the nonparametric, ordinary one-way analysis of variance (ANOV A). In the 

case of parametric tests, the data was continuous with a normal distribution around the mean. The 

Student t-test was used to compare two mean values within a treatment group (e.g. control vs. 

experimental data) and generated a two-tailed P-value. More complex interactions between 

multiple (i.e. more than two) mean values were analysed by ANOVA, generating a P-value by the 

F-test. Main interactions of the ANOV A were further analysed by the Bonferroni multiple 

comparisons test. Where specified, the less stringent Student-Newman-Keuls was also employed 

as a post test for comparison. Significant events were then confirmed by the Stu~ent t-test. In all 

cases, a P < 0.05 was accepted as being significant. 
I 

Simple linear regression was performed by the least squares method, generating a correlation co

efficient (r), r, and a P-value. The P-value determines whether the slope is significantly different 

to zero. Non-linear regressions were performed by plotting the data as a rectangular hyperbola 

(binding isotherm) or as a sigmoidal curve. An r value was generated as a measure of "goodness

of-fit". A F-test to compare two non-linear curves was used to determine whether the data fitted a 

single or mUltiple binding site model. 
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Pineal Organ Culture Studies: 
Characterization and Optimization 

3.1 Introduction 

The robust diurnal rhythm in pineal indole metabolism is a reliable index of the functional state of 

the pineal gland (Drijhout et al., 1996). The most direct and popular method of assessing indole 

biosynthesis in circadian research is at the level of the pineal itself. Organ culturing offers a more 

physiological assessment of tissue biochemistry than homogenate preparations. The large size of 

most organs in fact necessitates the use of tissue slices. In contrast, the accessibility and small size 

of the rat pineal gland is convenient for easy culturing in an intact state. Thus the organ culture 

system would allow for the pharmacological and biochemical manipulation of pineal indole 

biosynthesis free from hormonal, neuronal and other complicating influences of the in vivo milieu. 

This has led to the development of a radiometric technique capable of monitoring the in situ 

biosynthesis of p4C]indole products from a radiolabeled precursor by a single pineal (Wurtman et 

al., 1968b; Klein and Notides, 1969; Klein and Rowe, 1970; Daya and Potgieter, 1982; Morton, 

1990). Essential biosynthetic enzymes remain stable and active for at least 48 hrs in culture. 

Degeneration of presynaptic sympathetic elements is evident after 48 hrs, but the pinealocytes 

apparently remain morphologically sound (Klein et aI., 1983; Santana et al., 1994). 

3.1.1 PRINCIPLE OF THE PINEAL ORGAN CULTURE TECHNIQUE 
I 

Pineal glands in culture readily take up an exogenous radiolabeled precursor and synthesize 

C4C]indoles during a 24 hr incubation period~ Approximately 98% of the [14C]indole products are 

secreted into the culture medium, apparently by passive diffusion (Klein and Rowe, 1970; Morton, 

1990). The relative amounts of each indole are similar in the pineal and medium. Thus the culture 

medium is considered a good reflection of pineal indole biosynthesis (Klein and Notides, 1969; 

Morton, 1990). Previously, multiple organ solvent extraction systems were required to separate, 

identify and quantify the C4C]indole products (e.g. Wurtman et al., 1968b; Axelrod et al., 1969). 

A better approach is to analyze the culture medium directly by thin layer chromatography (TLC), 

without the need for prior sample treatment. 
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The profile and number of C4C]indoles formed is dependent on the nature of the chosen 

radiolabeled substrate, for example C4C]tryptophan vs. C4C]SHT (Olivieri et at., 1990; Morton, 

1990). This in turn determines the nature of the TLC system to be employed. In the present 

studies, [14C]SHT was employed as the exogenous substrate. The metabolic products derived from 

SHT in the pineal are depicted in Figure 1.2 and include SMT, NAS, SmAA, SHTOH, MEL, 

SMlAA and SMTOH. This necessitates use of the bi-dimensional TLC system of Klein and Notides 

(1969) and Morton (1990), employing two distinct mobile phases. A typical chromatogram is shown 

in Figure 3.1. Excellent resolution is achieved for the following indoles: NAS, SmAA, SHTOH, 

MEL, SMlAA and SMTOH. A disadvantage is that both SHT and SMT remain at the origin. An 

additional TLC system would be required to separate these two indoles. Screening of the remaining 

TLC plate revealed no radioactivity that could be attributed to an unidentified [14C]indole product 

(Morton, 1990) . 
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Figure 3.1: Schematic of a typical bi-dimensional thin layer chromatogram of the pineal 

indoles tested. (. : origin). 
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The isolated [l4C]indoles are then quantified by liquid scintillation spectroscopy. Thus a combination 

of the radiometric pineal organ system with TLC analysis represents a reliable, reproducible and very 

sensitive technique. It is capable of separating and quantifying trace amounts of C4C]indoles 

(~l pmol/IO J.LI culture medium). 

It must, however, be stressed that this radiometric technique determines the in situ biosynthesis of 

exogenous C4C]indoles and not endogenous indoles. The concentration of intermediates derived 

from endogenous substrates is supposedly negligible compared to those derived from the 

radiolabeled precursor (Morton, 1990). In other words, the radioactive products represent an 

approximation of the absolute quantities of metabolites formed. However, it is possible that the 

[l4C]indole biosynthetic profile may be influenced by differential compartmentalization of the 

radioisotopic and non-radioisotopic (cold) substrates and their competition for the same metabolic 

pathway. A more modem approach is to determine the pineal content of endogenous indoles by 

high performance liquid chromatography (HPLC) coupled with fluorometric and electrochemical 

detection (Chin, 1990). Unfortunately, practical and cost considerations prohibited the use of this 

technology. 

Thus the main objective of this chapter was to determine whether the radiometric organ culture 

technique can reliably monitor the functional state of the pineal gland. The robust difference between 

the basal and induced NAS and MEL biosynthesis during the photophase and scotophase, 

respectively, represent two such ideal and opposite states. In the process, this allowed for 

characterization of untreated rat pineal indole biosynthesis prior to the studies with dopaminergic 

agents. 

3.2 Materials and Methodology 
I 

3.2.1 CHEMICALS AND REAGENTS 

The radiochemical 5-hydroxy-(side-chain-2-14C)tryptamine [SHT] creatinine sulphate (specific 

activity 56 mCilmmol) was purchased from Amersham International [Amersham, United Kingdom 

(UK)]. The synthetic indoles SHT, SMT, 5HIAA, SHTOH, NAS, MEL, SMIAA and SMTOH were 

obtained from Sigma Chemical Company [United States of America (USA)]. 

4-Dimethylaminobenzaldehyde (DMABA) was also obtained from Sigma; aluminum TLC plates 

pre-coated with silica gel 60 F254 (0.2 rom thickness) from Merck (Darmstadt, Germany), BGJb 

culture medium (Fitton-Jackson Modification) from GibcoBRL Life Technologies (Paisley, 

Scotland), HPLC grade ethyl acetate and methanol from LAB-SCAN Analytical Sciences 
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(Saarchem), HiPerSolv® chloroform for HPLC from BDH Laboratory Supplies (Poole, England) 

and analytical grade glacial acetic acid from uniV AR® (Saarchem, SA). All other chemicals and 

reagents were purchased from local commercial sources and were of the highest purity available. 

3.2.2 ANIMALS 

Male Wistar rats were maintained as described in section 2.1. For all studies, the animals were 

acclimatized for 1 week to the prevailing light-dark cycle prior to commencement of the 

experiments. 

3.2.3 TISSUE PREPARATION 

Intact pineals were rapidly excised as described in section 2.2 and immediately explanted. An 

attempt was made to remove the pineal stalk under a light microscope prior to culturing. 

3.2.4 EXPERIMENTAL PROCEDURE 

The organ culture technique and TLC analysis must be performed under subdued light to minimize 

photo-oxidation of the indolic compounds. For scotophase studies, the removal of the pineal gland 

was performed under a dim red photographic safety light. 

(i) Organ Culture 

Prior to the experiment, the BGJb culture medium (Fitton-Jackson Modification) was fortified with 

Ilg quantities of the antibiotics sodium benzylpenicillin (Novopen), streptomycin sulphate and 

amphotericin B (Fungazone~ under sterile conditions. 

The pineal glands were placed individually in sterile Kimble glass culture tubes (borosilicate 112 mm 

x 75 mm) containing 52 III culture medium. The reaction was initiated by adding 8 Illof[14C]5HT 

(0.4 IlCi/tube). The atmosphere within the culture tubes was then saturated with carbogen [95% 

O2:5% CO2 (v/v)), the tubes immediately sealed and incubated in darkness at 37°C for 24 hrs. 

Following the incubation period, the pineals were removed and the culture medium stored at -20°C 

until further analysis by TLC. It must be noted that the default total reaction volume is 60 III and the 

final concentration of C4C]5HT was ± 120 IlM. A control blank was obtained by omitting the pineal 

gland. 
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(ii) TLC Analysis of Indoles 

A standard solution of non-radiolabeled ("cold") indoles was freshly prepared in 1 ml 95% (v/v) 

ethanol containing 1% (w/v) ascorbic acid to minimize oxidation and was stored in the dark at 4 °C 

until use. This solution contained 4 Ilg of each of the following synthetic indoles: 5HT, 5MT, 

5IDAA, 5HTOH, NAS, MEL, 5MIAA and 5MTOH. 

A 10 III aliquot of the sample culture medium was loaded onto a lOx 10 cm TLC plate at a 

demarcated origin. The spot was dried with a gentle stream of nitrogen to minimize auto-oxidation of 

the indoles. To ensure good resolution of the indoles, the spot should ideally be no more than 4-5 rom 

in diameter. A 10 III aliquot of the standard indole solution was also spotted onto the origin and again 

dried with nitrogen. The plates were then developed in saturated TLC tanks according to the scheme 

outlined in Figure 3.1. First the plates were run twice in the same direction in a mobile phase of 

chloroform:methanol:glacial acetic acid [93:7:1 % (v/v)]. The solvent front was allowed to move ± 9 

em. The plates were then developed once in ethyl acetate at 90° to the first direction until the solvent 

front had moved about ±,6 em. After each run the plates must be thoroughly dried with nitrogen. 

The location of each indole was visualized by spraying the plate with van Urk's reagent (lg DMABA 

dissolved in 50 ml of 25% v/v HCI, followed by the addition of 50 ml of 95% v/v ethanol). The 

plates were dried in a 60°C oven for 5 min to allow colour development of the indole spots. With 

time, all the plated indoles become a blue-green colour. Once dry, each spot was cut out and the 

associated silica scraped into a scintillation vial containing 1 m1 absolute ethanol. The vials were 

vigorously shaken for 20 min to facilitate extraction of the indoles into the ethanol. The relative 

amount of each [14C]indole was quantified by liquid scintillation spectroscopy as described in section 
\ 

2.5. 

3.2.5 EXPERIMENTAL DESIGN 

I 

Preliminary studies indicated a large inter-individual variation in pineal indole biosynthesis and 

the possibility of annual fluctuations, in addition to the expected day-night variations. The 

following experiments represent steps to delineate and control the sources of variation in an 

attempt to fully characterize and optimize the organ culture technique. 
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(i) Seasonal Variations 

The months of the year were broadly divided into two equal groups, representing "summer" and 

"winter" months of the southern hemisphere. The six summer months included mid-September to 

mid-March. The six winter months included mid-March to mid-September. The in situ 

biosynthesis of p4C]indoles by pineals cultured at mid-photophase (l2hOO) was determined 

throughout the summer (n = 2S) and winter months (n = 2S). The monthly data within each group 

was then pooled and statistically compared. 

(ii) Day-Night Variations 

A comparison of in situ biosynthesis of pineal [14C]indoles during the photophase (n = 2S) and 

scotophase (n = 2S) was performed in the winter months of mid-March to mid-September. Pineals 

were explanted and cultured at mid-photophase (12hOO) or mid-scotophase (24hOO). Experiments 

were performed throughout the winter months and pooled for statistical analysis. 

(iii) Inter-Individual Variation in r'C]NAS and [14C]MEL Biosynthesis 

The previous studies revealed large inter-individual variation in indole biosynthesis. This was 

particularly true for the biosynthesis of [14C]NAS and [14C]MEL. It was also noted that some pineal 

glands were visibly larger to the naked eye than others. Furthermore, within a given group of all 

animals, body weight appeared to be a potential determinant of the observed biosynthetic variability. 

Therefore the potential inter-individual variation in [14C]NAS and C4C]MEL biosynthesis was 

investigated in the winter months of mid-March to mid-September for both the photophase and 

scotophase. 

All rats weighed approximately 2S0 g at the time of being assigned to groups (n = 5Igroup). Animals 

were left free to interact, feed and drink for at least two weeks. Groups of rats were then rindomly 

sacrificed throughout the winter period at eitlier mid-photophase (l2hOO) [n = SO] or mid-scotophase 

(24hOO) [n = SO]. Body weight was recorded just prior to sacrifice. Following incubation, the pineal 

glands were washed in saline and weighed twice on a micro-balance. Good consistency was found 

for each weighing attempt and an average pineal weight was recorded. For both the photophase and 

scotophase studies, the [14C]NAS and [14C]MEL data were pooled separately for analysis. In each 

case, evidence for high and low production of the indole was determined using the nonparametric 

One Sample Runs Test which divides the data around the sample median .. This allowed for the 

construction of a High-Low plot of each indole. The potential correlations between body weight, 

pineal weight, C4C]NAS and C4C]MEL were determined by simple regression analysis. 
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3.2.6 DATA AND STATISTICAL ANALYSIS 

Each TLC plate was assessed for quality of separation and % recovery of total radioactivity. The 

latter was calculated by comparing the total plated radioactivity (sum of all C4C]indo1es) to the 

expected total radioactivity present in 10 ).11 medium (after correction for quenching). Generally, 

98-100% recovery was obtained for the blank (lacking a pineal) and samples. Radioactivity in the 

blank is attributable to non-metabolized [14C]SHT. A comparison of blank values at zero-time and 

following a 24 hr incubation period confirmed that there was no apparent non-enzymatic 

conversion of C4C]SHT. There was no evidence for radioactivity above background counts in the 

rest of the plate, excluding the origin. 

To improve the reliability of the TLC system, each sample (for all pineal organ culture studies) 

was plated in duplicate, and sometimes triplicate. Data was only used for analysis if there was 

good resolution of the indoles. Typically, the consistency between consecutive plates was 

excellent. Thus the data for each [14C]indole of an individual sample was pooled to produce a 

single mean value, expressed as DPM/lO ).11. These individual means were then used to calculate a 

group mean ± SEM. The sample size (n) depends on the study. Group means were statistically 

compared by the Student t-test. 

It must be reiterated that the present TLC system is incapable of separating SHT and SMT. Both of 

these indoles remain at the origin (Figure 3.1). Further analysis by an alternative TLC system 

revealed that only trace amounts of SMT are produced by O-methylation of SHT under the present 

conditions (data not shown). Practically, this did not warrant the complication of an additional 

experimental step. For this reason, data obtained from the origin of the present TLC design is 

referred to as SHT and not "SHT+SMT". Besides quantification of the C4C]indoles sbpwn in 

Figure 3.1, the following metabolic indicys were introduced to aid in data analysis: total 

methylation, total monoamine oxidase products (MAOP) , SHT/MAOP ratio and the 

SHIAAlSHTOH ratio. Total methylation is the sum of the S-methoxyindoles [14C]MEL, 

e4C]SMTOH and r4C]SMIAA and represents an estimation of O-methy1ation and thus HIOMT 

activity in the pineal. This index does not include SMT. Total MAOP is the sum of the de aminated 

indoles C4C]SHIAA and r4C]SHTOH. SHTIMAOP is the ratio of C4C]SHT levels to total MAOP. In 

combination with total MAOP, this ratio is an indication of pineal MAO activity. The production of 

C4C]SHIAA and [14C]SHTOH is largely dependent on the ratio ofNAD+INADH and typically shows 

a value of ± 2.0 in the rat pineal. Thus the SHIAAlSHTOH ratio can be used as an indicator of the 

oxidative state and, thus, the health of the pineal gland. 
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3.3 Results 

(i) Seasonal Variations 

Evidence for seasonal variation in the photophase biosynthesis of pineal [14C]indoles is presented 

in Figure 3.2. Compared to the winter months, there was a substantial decrease in ['4C]NAS and 

[14C]MEL biosynthesis in summer (P < 0.001 in each case). Conversely, there was a slight 

increase in [14C]SMIAA (P < O.OS) and a large elevation in [14C]SMTOH levels (P < 0.001). This 

translated into a small increase in total methylation in summer (P < O.OS) [Figure 3.2A]. There 

was no difference in the levels of [14C]SHT, [14C]SHIAA, [14C]SHTOH and total MAOP between 

the winter and summer months (Figure 3.2B). It must be noted that the compilation of monthly 

data into two groups tended to dampen the observed trends. For example, the altered S

methoxyindole biosynthesis and decreased [14C]NAS levels were more pronounced around mid

summer (December) when compared to mid-winter (June). Furthermore, the data was notably 

more variable at this time, especially with regards to [14C]SHT, C4C]5HIAA, [14C]SHTOH and 

totaiMAOP. 

(ii) Day-Night Variations 

A marked difference was observed in the in situ biosynthesis of S-hydroxyindoles and 5-

methoxyindoles by pineals cultured at mid-photophase and mid-scotophase (Figure 3.3). There 

was a dramatic induction in the biosynthesis of [14C]NAS and [14C]MEL during the scotophase 

(P < 0.001 in each case). This was associated with a significant and substantial decrease in 

[14C]SMIAA and [14C]SMTOH levels, but an increase in total methylation (P < 0.001 in all cases) 

[Figure 3.3A]. [14C]SHT levels were elevated in the scotophase, whereas [14C]SHIAA, 

[14C]SHTOH and total MAOP were reduced (P < 0.001 in all cases). This was f'llrther reflected in 

an increased SHTIMAOP ratio (P < 0.001) [Figure 3.3B]. I 
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Figure 3.2: Seasonal variation in the in situ biosynthesis of [14C]indoles by pineal glands 

cultured at mid-photophase [12hOO]. (A) NAS and 5-methoxyindoles. (B) 5HT and 

deaminated indoles. [Data represents mean ± SEM (n = 25); P-values (compared to winter): 

* < 0.05; , < 0.001] 
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(iii) Inter-Individual Variation in [14C]NAS and [14C]MEL Biosynthesis 

The inter-individual variation in the biosynthesis of [14C]NAS and e4C]MEL during the winter 

photophase and scotophase is evident in Figures 3.4 and 3.5 respectively. The data range, median 

and mean ± SEM for each condition, expressed as DPMlI0 III medium, is summarized below: (a) 

photophase e4C]NAS: range = 422.08 to 1526.83; median = 917.221; mean = 954.81 ± 39.5984 

[Figure 3.4A]; (b) photophase e4C]MEL: range = 524.01 to 1877.26; median = 911.351; 

mean = 980.70 ± 41.059 [Figure 3.4B]; (c) scotophase [14C]NAS: range = 1279.21 to 5230.87; 

median = 2989.826; mean = 2970.039 ± 139.776 [Figure 3.5A]; (d) scotophase [14C]MEL: 

range = 1203.57 to 4196.35; median = 2757.454; mean = 2757.542 ± 104.393 [Figure 3.5B]. 

In all cases the [14C]indole biosynthetic data could be significantly divided into two distinct groups 

around the median (One Sample Runs Test: P < 0.0001) or the mean ± SEM (data not shown). 

These two groups were designated the high and low production groups. It must be noted that the 

median consistently falls within the range of the mean ± SEM for each data group confirming the 

significance of the finding. 

A large variation was seen in the weight of the destalked pineal glands, ranging from 0.64 to 1.87 

mg (Figure 3.6). There was no relationship between pineal weight and e4C]NAS levels (Figure 

3.6A; correlation co-efficient, r = -0.0963; P = 0.5824) or [14C]MEL levels (Figure 3.6B; 

correlation co-efficient, r = -0.0158; P = 0.9284). There was a significant, but weak correlation 

between pineal weight and body weight (Figure 3.6A; correlation co-efficient, r = 0.4627; 

P = 0.0051). In some cases, the latter relationship was substantially stronger (e.g. r> 0.70) when 

the data from groups of co-habiting animals (n = 5) was analysed in isolation, rather than being 
1 

pooled. 
I 
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Figure 3.4: High-Low plots showing inter-individual variability in NAS (A) and MEL (B) 

biosynthesis in the photophase of winter months. 
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Figure 3.6: Simple regression analysis of pliotophase data (n = 35) during winter months. (A) 

[14C}NAS biosynthesis vs. pineal weight. (B) [14C}MEL biosynthesis vs. pineal weight. (C) 
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80 



Chapter 3: Pineal Organ Culture Studies - Optimization and Characterization 

3.4 Discussion and Conclusion 

The present results conflrm that cultured rat pineal glands are capable of taking up exogenous 

[14C]5HT and synthesizing the various [14C]indoles in situ from the radiolabeled precursor during 

a 24 br incubation period. Furthermore, the radiometric organ culture technique is capable of 

detecting fluxes in the metabolic state of the pineal, namely photophase vs. scotophase, and, 

paradoxically, winter vs. summer months. The maintenance of laboratory animals under the stable 

conditions of a CE room and a regulated light dark cycle constitutes an environment very different 

to natural conditions. In the absence of environmental cues such as temperature and changing 

daylength, the rats would be expected to be aseasonal. However, there is widespread agreement 

that the MEL rhythm under these artiflcial conditions is still similar to that seen in the fleld 

(Brainard et al., 1982), conflrming the present evidence for seasonality in pineal indole 

metabolism .. 

The indole biosynthetic proflle observed during the photophase and scotophase was consistent 

with that routinely reported for the rat pineal gland (Wurtman et ai., 1968b; Juillard and Collin, 

1979; Daya and Potgieter, 1982; Olivieri et ai., 1990; Morton, 1990). During both phases, the 

de aminated metabolites of [14C]5HT were the major products, with [14C]5HIAA as the 

predominant metabolite followed by [14C]5HTOH. In contrast, the major metabolite of cultured 

chick pineal glands is e4C]5HIAA followed by [14C]5MIAA with negligible amounts of 

p4C]5HTOH being detected. In the case of the pigeon pineal, [14C]5HTOH is the major metabolite 

followed by e4C]5HIAA (Wainwright, 1977). Thus in the rat, chick and pigeon pineals, 

deamination by MAO represents the main metabolic fate of [14C]5HT, but the ratio of 

C4C]5HIAA:[14C]5HTOH differs between the species. This is consistent with the abundance of 

MAO in the pineal gland (Muller and Da Lage, 1977; Juillard and Collin, 1979). The difference in 

the [14C]5HIAA:C4C]5HTOH ratio may reflect the relative prevalence of alcohol dehydrogenase 

and aldehyde dehydrogenase in the pineal or differences in the NAD+/NADH ratio (Wainwright, 

1977). In contrast to 5HT, MEL represents the major metabolite when tryptophan is used as the 

radiolabeled substrate (Wainwright, 1977; Olivieri et al., 1990). The use of tryptophan also allows 

for the monitoring of tryptophan hydroxylase and L-Dopa decarboxylase activity. For these 

reasons, it is typically considered more physiological to use tryptophan than 5HT as the substrate 

(Klein and Notides, 1969; Morton, 1990). 
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In comparison to the photophase, three main differences were seen in the indole biosynthetic 

profile during the scotophase: 

(i) An induction of C4C]NAS and C4C]MEL production. 

(ii) An increase in total methylation and a change in the relative contribution of each [14C]5_ 

methoxyindole. 

(iii) A decrease in [14C]5HIAA and [14C]5HTOH production, indicative of a reduction in pineal 

MAO activity. 

The increase in C4C]NAS and [14C]MEL production correctly reflects the well-established 

induction of pineal NAT activity during the scotophase due to activation of the noradrenergic 

secretory drive (Deguchi and Axelrod, 1972a; Axelrod, 1974; Reiter, 1991). The increase in 

C4C]MEL biosynthesis may also be a consequence of an increase in HIOMT activity at night. As 

shown in Figures 1.2 and 3.1, every 5-hydroxyindole can be O-methylated to a corresponding 5-

methoxyindole by HIOMT. The biosynthesis of the 5-methoxyindoles is dependent on three 

factors: (i) the activity of HIOMT; (ii) the bioavailability of each 5-hYdroxYindole; (iii) the 

affinity of each 5-hydroxyindole for HIOMT. Overall methylation is described by the following 

theoretical equation: Total methylation = I( Cj.Aj); where Cj = concentration of the 5-

hydroxyindole and Aj = affinity of the 5-hydroxyindole for HIOMT. This results in the following 

expression for pineal O-methylation: Total methylation = 0.6868 [NAS] + 0.2151 [5HTOH] + 

0.0341 [5HIAA] + 0.0640 [5HT] (Morton, 1990). This shows that HIOMT has a preference for 

NAS, the product of NAT activity. Thus an increase in NAS levels could result in increased MEL 

levels without an elevation ofHIOMT activity. In addition, this equation indicates why 5MTOH is 

more abundant than 5MIAA, second to MEL. Strong linear relationships were found between each 

5-hydroxyindole and its 5-methoxyindole, and between actual and theoretical Jl1ethylation for 

cultured rat pineal glands (Morton, 1990). In the present studies, the total methylation indcr does 

not include [14C]5MT and thus it is only a1'!approximation of total pineal O-methylation. The 

equation indicates that on the basis of affinity for HIOMT the amount of [14C]5MT produced 

would be comparable to that of e4C]5MIAA, which was only present in trace amounts compared 

to [14C]5HT. Nonetheless, this index did succeed in highlighting state-dependent alterations in 0-

methylation and the relative contribution of each C4C]5-methoxyindole. In the case of the present 

scotophase studies, the increase in [14C]MEL levels and decrease in e4C]5MlAA and e4C]5MTOH 

levels supports the bioavailability argument. However, the change in the 5-methoxyindole profile 

still translates into a significant elevation in total methylation. The latter is highly suggestive of an 

increase in pineal HIOMT activity during the dark-phase, although the existence of a diurnal 

rhythm in the activity of this enzyme has been strongly debated (Reiter, 1991). 
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Several papers have suggested that pineal MAO activity, in addition to NAT, may be under 

noradrenergic control (Axelrod et al., 1969; Olivieri et al., 1990). However, it is more likely that 

the apparent decrease in MAO observed during the scotophase is a consequence of differential 

uptake of exogenous [14C]SHT and its competition with endogenous SHT and NA. There are two 

distinct pools of SHT within the pinealocyte, a vesicular pool and a cytoplasmic pool (Rack6 et 

al., 1991). During the photophase, the high SHT content of the pineal is associated with the 

vesicular pool, where it is protected from deamination by MAO. At night, this pool is 

preferentially utilized for the synthesis of NAS. In vitro studies with isolated bovine pinealocyte 

suspensions have demonstrated the existence of two independent uptake systems for 3H-SHT: a 

high affmity/low capacity system and a low affmity/high capacity system (Ducis and DiStefano, 

1980). The fIrst system is a temperature- and sodium-dependent carrier mediated system highly 

specifIc for SHT, showing a high affInity with a K.n of 200-700 nM. The second system is a non

specifIc temperature-dependent system, showing a low affInity for SHT (K.n i'::l 200 ~M). Although 

the second system is most probably not of major physiological importance, it may be responsible 

for the uptake of SHT into the SNS nerve terminals innervating the pineal gland (Juillard and 

Collin, 1979). In the current radiometric organ culture technique, [14C]SHT was added to the 

culture medium at a fInal concentration of i'::l 120 !J.M. Thus both transport systems are likely to 

have been operative during CUlturing. 

The pinealocyte contains 30% of measurable pineal MAO activity, whereas the SNS nerve 

terminals contain 70% (Rack6 et al., 1991). Furthermore, NA is also a substrate of MAO (Garrick 

and Murphy, 1982). Thus it is proposed that following uptake into the pinealocytes and the SNS 

nerve terminals, [14C]SHT has to compete with SHT and NA respectively for deamination by 

MAO. During the photophase, NA levels are low and the access of [14C]SHT to the vesicular pools 
~ 

is limited as they are saturated with endogenous SHT. Thus C4C]SHT is preferentially metabolized 
I 

by MAO, resulting in high C4C]SHIAA and [14C]SHTOH production. Conversely, during the 

scotophase, the increased NA levels out-compete exogenous C4C]SHT for deamination by MAO, 

and the radioisotope also has increased accessibility to the vesicular stores. 

A comparison of the summer and winter studies showed that pineal [14C]indole biosynthesis also 

displays seasonal variations. It is arguable that the decrease in [14C]NAS and C4C]MEL 

biosynthesis reported here for the summer months mimics that which would be seen in the wild in 

response to increased daylength. The decrease in [14C]MEL was associated with a dramatic 

increase in C4C]SMTOH levels, and a slight increase in C4C]SMIAA synthesis and total 

methylation. This profIle is very similar to that reported by Balemans et al. (1979), who found that 

the MELiSMTOH ratio, but not total methylation, shifted during the year in rat pineal glands. In 
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their analysis, the ratio was inverted in spring and autumn months. The authors proposed that the 

observed profile was due to a differential preference or affmity of HIOMT for endogenous 

substrates, as argued by Morton (1990) and discussed above. In other words, this would suggest a 

seasonal rhythm in "the production of methylated hydroxyindoles" rather than HIOMT activity 

(Balemans et al., 1979). Furthermore, the seasonality was attributed to an influence of endogenous 

pteridines, which have been shown to regulate retinal and pineal HIOMT activity (Cremer-Bartels 

et al., 1983). The current results also suggest that the basal NAT activity was lower during the 

summer months. It is speculated that the pineal may be sensitive to fluctuations in geomagnetic 

fields, from which the gland would not be effectively shielded in a CER. The ability of magnetic 

fields to suppress pineal MEL biosynthesis has been demonstrated by Reiter and Richardson 

(1992). 

The biosynthetic capacity and secretory output of pineal MEL is known to be highly variable in 

rodents. Besides distinct species-specific variations, there are large differences between strains 

and breeding stocks of a given species. For example, pigmented rats (e.g. the Wistar strain) appear 

to have larger pineal sizes, 5HT and MEL contents, and NAT and HIOMT activities than 

pigmented rats (Vollrath et al., 1989). In other words, the activity of the pineal seemed to be 

positively correlated to the size of the gland, at least between strains. In the present studies, there 

was a large variation in the production of e4C]NAS and e4C]MEL during both the photophase and 

scotophase within the same strain of rat, namely the Wistar strain. Extensive inter-individual 

variability has also been observed in the synthesis, secretion and excretion of MEL by humans. 

The latter subjects could subsequently be divided into distinct groups of high and low MEL 

secretors/excretors (Follenius et al., 1995). Statistical analysis of the current data suggests that 

Wistar rats can similarly be divided into a high and low producers on the basis of [14C]NAS and 
~ 

[14C]MEL biosynthetic capacity. . 

I 

Multiple variables are likely to be responsible for the observed inter-individual variability in 

indole biosynthesis. As a first approximation, a relationship between pineal size and MEL 

production would appear to be an obvious candidate. The mammalian pineal is highly variable in 

gross-anatomic structure and size. In rodents, the volume of the pineal can differ by 300-fold 

between species. Furthermore, the pineal weight of male Sprague-Dawley rats can vary 

considerably from 0.4 to 1.85 mg (Vollrath et al., 1989). A similar range in pineal weight was 

found for adult male Wistar rats in the current study. However, there was no relationship between 

pineal weight and e4C]NAS or [14C]MEL production during the winter photophase. It is possible 

that the density of the pinealocytes, the MEL synthesizing and secretory cells, within the pineal 
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may be more important than the absolute weight of the gland. Reiss et al. (1967) did report that rat 

pineal glands could be divided into two distinct groups on the basis of pineal cell density. 

The circadian rhythm in pineal MEL production is the most reliable hormonal rhythm in 

vertebrates (Drijhout et al., 1996). Irrespective of the inter-individual variability in humans, the 

rhythm and amplitude of MEL is highly robust and stable within a given individual (Follenius et 

al., 1995). Thus the variability in MEL biosynthesis may reflect individual variations in the 

genetic control of the pineal noradrenergic secretory drive and/or the activity of the two rate

limiting enzymes, NAT and HIOMT (Ebihara et al., 1986). An understanding and consideration of 

this variability may help explain the high inter-individual variability observed in certain brain 

functions and behavioural responses known to be modulated by MEL. 

Alternatively, the variability may be due to environmental factors such as handling-induced stress 

and social interactions between the animals. Stress is known to induce pineal MEL synthesis in 

rats (Oxenkrug and McIntyre, 1985), but in the present studies all attempts were made to 

standardize the handling of the animals. Interestingly, there was a trend towards a positive 

correlation between pineal weight and body weight for the sample group as a whole. When the 

analysis was extended to animals that were housed together, the strength of the latter correlation 

was significantly stronger for certain groups. Vollrath et al. (1989) found that within a strain of rat 

there was no correlation between pineal protein content and body size, but between strains these 

two parameters showed a positive correlation during both the day and night. A preliminary 

working hypothesis proposed here is that this phenomenon may be related to the dominance 

hierarchical structure within the cage. All animals weighed approximately the same (250 g) when 

they were first housed together. It is thus proposed that the resultant difference ih body weight 

with time could be due to differential access to food and water, which in turn is determined ley the 

dominance of an animal. Reciprocally, the l1eavier body weight of the rat will reinforce its 

position in the hierarchical structure. This model is consistent with the fact that MEL regulates 

growth hormone secretion, appetite and body metabolism (Reiter, 1989). Interestingly, Kozlova et 

al. (1996) reported that brain MAO activity of male rats varied with the social dominance'status of 

the animal. 

In summary, the in situ radiometric organ culture technique coupled to TLC analysis does allow 

for the sensitive and reproducible quantification of pineal [14C]indole biosynthesis. The reliability 

of the technique as an index of the functional state of the pineal was confirmed by the day-night 

and seasonal studies. At the same time, the successful identification of potential sources of 
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variation will allow for improved experimental design to further minimize variation and optimize 

the technique. For example, pineal organ culture studies should be performed in winter months. 

However, the apparent day-night variation in pineal MAO activity does highlight a potential 

problem with using exogenous [14C]5HT rather than quantifying endogenous indole content of the 

pineal gland. 

Furthermore, two other problems may exist with the static nature of the pineal organ culture 

technique. Firstly, the viability of the cultured pineal cells must be considered. The outer cells 

may be healthy, but more central cells may suffer from hypoxic injury and thus be metabolically 

different. Alternatively, the outer cells are more likely to be prone to physical damage. Sampling 

of the culture medium also poses problems. For example, there is the possibility that the build up 

of indoles in the non-renewed medium around the pineal may induce end-product feedback 

inhibition of indole biosynthesis (Trentini et al., 1982; Morton, 1990; Yanez. and Meissl, 1995). 

Under in vivo conditions, MEL is continuously drained away from the pineal gland by blood flow 

of the venous sinus. Furthermore, the organ culture technique does not allow for the study of 

variations in indole biosynthesis and MEL secretion over short periods. This has led to the 

argument that the medium content of MEL is not a reliable index of pineal MEL biosynthesis due 

to the lack of change in rate of MEL release. Both these problems could be overcome by time

dependent sampling, but this is time-consuming and adds further complications. Alternatively, 

endogenous indole content of the pineal should be assessed, or their release determined by in vivo 

micro dialysis (Drijhout et al., 1996). 

I 
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Chapter 4 

The Effect of Dopaminergic Agents on Pineal 
Indole Biosynthesis 

4.1 Introduction 

Immunohistochemical studies have suggested that the nature of the mammalian pineal 

dopaminergic system is species-specific. This has been extensively reviewed in section 1.5. In 

summary, the pineals of Syrian and Djungarian hamsters contain intrinsic dopaminergic neurons 

(Jin et al., 1988, Shiotani et ai., 1989; Hermes et al., 1994). In contrast, rat, gerbil and porcine 

pineal glands appear to be innervated by dopaminergic fibres arising outside the gland, mostly 

from central structures such as the habenula complex and the posterior commissure (Zhang et at., 

1991; Kaleczyc et al., 1994). However, the function of the dopaminergic system in each case is 

unclear, particularly since it does not appear to be influenced by photoperiod. 

The biochemical and pharmacological evidence for an independent dopaminergic system within 

the rat pineal is often conflicting and contentious. The lack of a systematic experimental approach 

has resulted in a mass of confusing data that is difficult to unravel. Mostly, there has been a lack 

of consideration for dose-dependent and state-dependent effects, poor specificity of neurochemical 

agents and species- or strain-specific variations. For example, Govitrapong et al. (1984) presented 

evidence for a D2 receptor in the bovine pineal gland. However, the effects ofDA and D2-selective 

agonists and antagonists on NAT activity and MEL biosynthesis were investigate~ on rat pineals 

(Govitrapong et al., 1989). In addition, the latter study investigated the effect ofDA on basal NAT 
I 

activity, but the effect of D2 agonists on NA-induced NAT activity. Likewise, numerous studies, . 
including the latter two, also failed to state whether the experiments were performed during the 

photophase or the scotophase. Furthermore, the neurochemical agents employed must be able to 

delineate between noradrenergic and dopaminergic systems. The noradrenergic secretory drive of 

the pineal is well characterized (Deguchi and Axelrod, 1972a; Axelrod, 1974; Reiter, 1991), 

whereas DA may simply serve as a precursor of NA or be a neurotransmitter in its own right. In 

either case, the enzymes TH and L-Dopa decarboxylase are common to the biosynthesis of both 

DA and NA. The similarity between pineal indoleamine and catecholamine biosynthesis 

complicates the picture even further (see Figures 1.2 and 1.3 for comparison). 
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The main objective of this chapter was to clarify the presence and nature of a dopaminergic 

system capable of modulating indole biosynthesis in the pineal glands of adult male Wistar rats. 

To this end, the dopaminergic agents DA, APO and HAL were employed (Figure 4.1). 

Dopamine 

R(-)-Apomorphine R( -)-Apocodeine 

Haloperidol 

Figure 4.1: Structures of some dopaminergic agents. I 

Particular attention was paid to possible dose-dependent and chronotypic effects. DA is the 

endogenous ligand for the DA receptor, regardless of the receptor subtype. The synthetic drug 

APO occurs as two stereoisomers, R-(-)-APO and S-(+)-APO. R-(-)-APO is generally defmed as a 

mixed D/Dz agonist. More specifically, it is a partial agonist or antagonist at DJ receptors, but a 

potent full agonist with high intrinsic activity (nanomolar potency) at the D2 receptor (Kebabian 

and Caine, 1979; Niznik, 1987; Strange, 1987). In contrast, S-(+)-APO is pharmacologically a full 

DA antagonist. The R-(-)-stereoisomer was employed for these studies. HAL is an antipsychotic 

of the butyrophenone class. This drug is a typical neuroleptic and acts as a relatively specific 
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antagonist at both presynaptic (autoreceptor) and postsynaptic D2 receptors (Kendler et at., 1982; 

Creese et at., 1984; Lidsky and Banerjee, 1993). Furthermore, the radioligand 3H_HAL has been 

shown to only label D2 receptors (Creese et al., 1984). The main neurochemical effects and the 

therapeutic efficacy of HAL in affective disorders such as schizophrenia is directly related to its 

blockade of the postsynaptic D2 receptor. 

4.2 Materials and Methodology 

4.2.1 CHEMICALS AND REAGENTS 

The chemical inventory for the pineal organ culture technique is listed in section 3.2.1. DA HCI, 

R-(-)-APO HCI and HAL were purchased from Sigma. 

4.2.2 ANIMALS 

Adult male Wistar rats (200-300 g) were housed for 1 week prior to the studies, as previously 

described (see section 2.1). Animals were randomly sacrificed by cervical dislocation at either 

12hOO (mid-photophase) or 24hOO (mid-scotophase), depending on the study. All scotophase 

studies were performed under a red photographic safety light. Unless otherwise specified, all 

experiments were performed in the winter months of mid-March to mid-September. 

4.2.3 PINEAL ORGAN CULTURE TECHNIQUE 

The standard organ culture technique and TLC analysis of [14C]indoles was performed as 

described in 3.2.4. Following excision of the pineal gland, an attempt was made to rapidly remove 

the pineal stalk prior to incubation. 

I 
(i) In Vitro Studies 

Fresh working solutions of DA HCI and R-(-)-APO HCI were prepared in culture medium 

containing 1 mg/ml ascorbate as an antioxidant. The solutions were stored in brown borosilicate 

bottles in the dark until use to reduce auto-oxidation. 

Pineals were randomly placed in individual Kimble tubes. The test drugs or vehicle were added in 

a volume of 10 j.Ll to give the desired final concentration of the agent. Pineal indole biosynthesis 

was initiated by the addition of r4C]5HT immediately thereafter. Thus, for an practical purposes, 

there was no preincuabtion period with the test drug. The final total volume of all samples was 70 

j.Ll for the in vitro studies, giving a final concentration ~ 100 j.!M e4C]5HT. 
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(ii) In Vivo Haloperidol Administration 

The acute administration of HAL was performed at two doses: 2.5 mg/kg and 5.0 mg/kg body 

weight (bwt). In both cases, the vehicle comprised: 5% (v/v) benzyl alcohol, 30% (v/v) propylene 

glycol, 65% (v/v) deionised Hp. A single dose of HAL or vehicle was administered i.p. 90 min 

prior to sacrifice at 12hOO. The behavioural responses of the animals were recorded prior to 

sacrifice. Pineals were rapidly transferred to the corresponding pre-labeled Kimble tubes. The 

final total volume of all samples was 60 ~l for the in vivo studies, giving a final concentration >::; 

120 ~ [14C]5HT. 

4.2.4 DATA AND STATISTICAL ANALYSIS 

Data is expressed as DPM/10 ~l medium and graphically represented as mean ± SEM. The sample 

size (n) for each study is recorded in the figure captions. Mean experimental values were 

statistically compared to their respective control mean values by the Student t-test. 

4.3 Results 

4.3.1 DOPAMINE ORGAN CULTURE STUDIES 

(i) Photophase 

At final concentrations of 100 nM, 1 f.LM and 1 0 ~M, DA in vitro had no significant effect on the 

in situ biosynthesis of any [14C]indole by the pineal glands explanted and cultured during the mid

photophase (12hOO) [Figures 4.2, 4.3, and 4.4]. In the presence of 1 11M DA, a slight decrease in 

C4C]5HT levels (P = 0.0836) was accompanied by a small, but nonsignifiqant increase in 

[14C]5HIAA levels (P = 0.1302) and total MAOP (P = 0.085) [Figure 4.3B]. This would sUfogest a 

possible effect on MAO activity, but there ,,:as no similar trend with 10 11M DA. It must also be 

noted that the 1 ~M DA study was performed in early summer (February). This is evident in the 

lower [14C]MEL and [14C]5MIAA levels and higher C4C]5MTOH levels obtained for the control 

samples (Figure 4.3A) as discussed in section 3.4 (see Figure 3.2). Furthermore, it has been argued 

that intra- and inter-assay variation appears to be higher for studies performed in summer months, 

and thus the putative effects of 1 ~M DA on MAO may be an artifact. 
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Figure 4.2: The in vitro effect of DA Hel (100 nM) on the in situ biosynthesis of [14C]indoles 

by rat pineal glands cultured during the mid-photophase [12hOO]. (A) NAS and 5-

methoxyindoles. (B) 5HT and de aminated indoles. [Data represents mean ± SEM (n = 5)] 
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Figure 4.3: The in vitro effect of DA Hel (1 )lM) on the in situ biosynthesis of [14C]indoles by 

rat pineal glands cultured during the mid-photophase [12hOO]. (A) NAS and 5-

methoxyindoles. (B) 5HT and deaminated indoles. (Data represents mean ± SEM (n = 5)] 
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Figure 4.4: The in vitro effect of DA Hel (10 J.LM) on the in situ biosynthesis of [14C]indoles 

by rat pineal glands cultured during the mid-photophase [12hOO]. (A) NAS and 5-

methoxyindoles. (B) 5HT and de aminated indoles. [Data represents mean ± SEM (n = 5)] 
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(ii) Scotophase 

Typically, the scotophase studies revealed two distinct responses of the in situ biosynthesis of 

pineal C4C]indoles to 10 !J.M DA in vitro. Results representative of each response are presented 

and discussed below. In the first study (Figure 4.5), DA significantly and potently decreased 

[14C]NAS levels (P < 0.001) without any effect on the other S-hydroxyindoles. DA also affected a 

decrease in [14C]MEL levels (P < O.OS). This was accompanied by an almost 2-fold increase in 

both C4C]SMIAA and p4C]5MTOH levels (P < O.OS), such that there was no significant change in 

total methylation. The results of the second study are graphically represented in Figure 4.10, and 

discussed below in combination with an APO (10 !J.M) study. 

4.3.2 APOMORPHINE ORGAN CULTURE STUDIES 

Unless stated otherwise, the term R-(-)-APO will be replaced by the abbreviation APO. 

(i) Photophase 

Typically, two responses to APO (SOO nM) in vitro were observed on the in situ biosynthesis of 

[14C]indoles by pineal glands explanted and cultured at mid-photophase (12hOO). Results 

representative of each response are presented below. 

In the first case, APO significantly increased [14C]NAS levels (P < O.OS), without any effect on the 

S-methoxyindoles and total methylation (Figure 4.6A). APO may have influenced MAO activity 

as evidenced by a slight, but significant decrease in [14C]SHIAA levels (P < 0.05), but no effect on 

C4C]5HTOH levels (Figure 4.6B). This is further reflected in almost significant changes in total 

MAOP (P = 0.077), the SHTIMAOP ratio (P = 0.077) and the SHIAAlSHTOH ratio (P = 0.078) 

[Figure 4.6B]. 

I 

In the second type of response, APO had no effect on [14C]NAS levels, but significantly increased 

C4C]MEL levels (P < 0.01) and total methylation (P < 0.01), without any effect on the other S

methoxyindoles (Figure 4.7A). Again, APO may have decreased MAO activity as reflected in an 

almost significant decrease in total MAOP (P = 0.0690), without a change in the levels' of the two 

respective [14C]deaminated indoles or the SHTIMAOP and SHIAAlSHTOH ratios (Figure 4.7B) 

In contrast, 10 !J.M APO in vitro had no significant effect on the in situ biosynthesis of any pineal 

[14C]indole (Figure 4.8). 
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Figure 4.5: The in vitro effect of DA Hel (10 !J.M) on the in situ biosynthesis of [14CJindoles 

by rat pineal glands cnltnred during the mid-scotophase [24hOO). (A) NAS and 5-

methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM (n = 6); 

P-values (compared to controls): * < 0.05, ~< 0.001] 
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Figure 4.6: The in vitro effect of APO Hel (500 nM) on the in situ biosynthesis of p~C]indoles 

by rat pineal glands cultured during the mid-photophase [12hOO]. (A) NAS and 5-

methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM (n = 5); 

P-values (compared to controls): * < 0.05,. "" 0.077] 
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Figure 4.7: The in vitro effect of APO Hel (500 nM) on the in situ biosynthesis of [14C]indoles 

by rat pineal glands cultured during the mid-photophase [12hOO]. (A) NAS and 5-

methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM (n = 5); 

P-value (compared to control): t < 0.01,. = 0.069] 
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(ii) Scotophase 

Studies performed during the dark-phase showed clear dose-dependent effects of APO in vitro. At 

500 nM APO had no significant effect on the in situ biosynthesis of any C4C]indole (Figure 4.9), 

whereas the effects of 10 11M APO, performed in combination with the second DA (10 11M) study, 

were very significant (Figure 4.10). 

APO (10 11M) significantly decreased [14C]NAS (P < 0.001), C4C]MEL (P < 0.001), C4C]SHT 

(P < 0.001) levels, and the SHTIMAOP ratio (P < 0.001). APO significantly increased the levels 

of [14C]SHIAA (P < 0.001), [14C]SHTOH (P < 0.01), total MAOP (P < 0.001) and C4C]SMTOH 

(P < O.OS). There was no effect on C4C]SMIAA levels or the SHIAAlSHTOH ratio. There was a 

slight, but significant decrease in total methylation (P < 0.001) [Figure 4.10]. 

DA (10 11M) affected a similar profile of [14C]indole biosynthesis. There was a significant 

decrease in C4C]NAS and [14C]MEL biosynthesis (P < O.OS in each case), whereas the levels of 

[14C]SMlAA and [14C]SMTOH were slightly, but significantly elevated (P < O.OS). Total 

methylation was slightly decreased with marginal significance (P = 0.04S7) [Figure 4.10A]. DA 

potently and significantly increased the levels of [14C]SHIAA (P < 0.001), C4C]SHTOH (P < O.OS) 

and total MAOP (P < 0.001), but decreased P4C]SHT levels (P < 0.001) and the SHTIMAOP ratio 

(P < 0.001) [Figure 4.10B]. 

However, APO (10 11M) had more potent effects on S-hydroxyindole biosynthesis than DA (10 

11M) [P < O.OS], whereas the ligands were equipotent against S-methoxyindoles. Finally, it must be 

noted that the control data for all the above scotophase studies (Figure 4.S, 4.9, and 4.10) are 
\ 

consistent with the values and profile of night-time pineal C4C]indole biosynthesis reported in 

section 3.3 (see Figure 3.3). J 

4.3.3 IN VIVO HALOPERIDOL ORGAN CULTURE STUDIES 

Acute administration of either 2.S mg/kg or S.O mg/kg bwt HAL (i.p., single dose) during the 

photophase had no significant effect on in situ C4C]indole biosynthesis by pineal glands explanted 

and cultured at mid-photophase (Figures 4.11 and 4.12). 
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Figure 4.9: The in vitro effect of APO HeI (500 nM) on the in situ biosynthesis of [14C]indoles 

by rat pineal glands cultured during the mid-scotophase [24hOO]. (A) NAS and 5-

methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM (n = 5)] 
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Figure 4.10: The in vitro effect of DA HCI (10 f.1M) and APO HCI (10 ~M) on the in situ 

biosynthesis of [14C]indoles by rat pineal glands cultured during the mid-scotophase [24hOO]. 

(A) NAS and 5-methoxyindoles. (B) 5HT and de aminated indoles. [Data represents mean ± 

SEM (n = 5); P-values (compared to control): * < 0.05, t < 0.01, ~< 0.001] 
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Figure 4.11: The effect of acute administration of HAL (2.5 mg/kg i.p., single dose) at mid

photophase (12hOO) on the in situ biosynthesis of [14C]indoles by cultured rat pineal glands. 

(A) NAS and 5-methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± 

SEM (n= 5)] 
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Figure 4.12: The effect of acute administration of HAL (5.0 mglkg i.p., single dose) at mid

photophase (12hOO) on the in situ biosynthesis of [14C]indoles by cultured rat pineal glands. 

(A) NAS and 5-methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± 

SEM (n= 5)] 
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4.4 Discussion and Conclusion 

The results presented here provide strong pharmacological evidence that the dopaminergic agents 

DA and APO can modulate the biosynthesis of []4C]indole by the pineal glands of male Wistar 

rats. Both drugs exerted complex dose-dependent effects, which were cbronotypic and state

dependent in nature. The complexity of the current nomenclature for DA receptors makes it 

difficult to assign these effects to a specific receptor subtype. 

DA receptors belong to the superfamily of G-protein coupled receptors, containing seven 

transmembrane domains. In 1979, Kebabian and CaIne proposed the existence of two DA 

receptors, namely the D] and D2 receptors. The D] receptor is functionally coupled to the 

stimulation of adenylate cyclase activity and thus tissue cAMP levels. The D2 receptor is 

negatively coupled to adenylate cyclase and also mediates the inhibition of phosphatidylinositol 

turnover, the activation of K+ channels and the inhibition of Ca2+ channel activity (Kebabian and 

CaIne, 1979; Strange, 1993). Subsequently, a multitude of other DA receptor subtypes have been 

cloned and pharmacologically and biochemically defined. This has led to a revision of the original 

classification and the formation of the DJ and D2 subfamilies. The D] subfamily comprises the 

classic D] receptor and the Ds subtype. The D2 subfamily contains two isoforms of the original D2 

receptor, D2L and D2S, and the D3 and D4 subtypes (Sibley and Monsma, 1992; Strange, 1993). 

Further studies are likely to reveal the existence of even more novel DA receptor subtypes. The 

original D J and D2 receptors still show the highest expression in the CNS and appear to be the 

most important neuronal SUbtypes. 

Typically, DA shows nanomolar affinity for the D2-like receptors, but micromolar affinity for the 

D]-like receptors. The R-(-)-stereoisomer of APO is a partial agonist or antagonist at D]-like 

receptors, but a full agonist at D2-like receptors. The receptor subtypes differ further in affinity for 

agonists within a subfamily. For example, the D3 has a 20-fold higher affinity for DA than the D] 

or D2 subtypes. In turn, R-(-)-APO shows higher potency at D3 and D4 subtypes (KD :::; .5-20 nM) 

compared to the D2 receptor (KD :::; 350 nM). Evidence also exists that DA receptor subtypes can 

exist in different conformational states, designated the high- and low-affmity states. For example, 

R-(-)-APO shows KD values:::; 5 nM and:::; 350 nM, respectively, for the high- and low- affmity 

states of the D2 receptor (Kebabian and CaIne, 1979; Creese et al., 1984; Sibley and Monsma, 

1992; Strange, 1993). The interconversion between each state is likely to be dependent on factors 

such as the presence of endogenous ligands. R-(-)-APO is also more potent at pre- than post-
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synaptic DA receptors, which again may represent different receptor subtypes or conformational 

states of the D2 receptor. This is consistent with the proposal that the D3 subtype is an autoreceptor 

(Creese et at., 1984; Sibley and Monsma, 1992; Strange, 1993). The differential effect and 

potency of APO at pre- and postsynaptic receptors is also evident in the dose-dependent 

behavioural responses to the DA agonist. A high dose of APO induces hyperlocomotion, 

stereotypy and exploratory behaviour via an effect on postsynaptic receptors. A low dose of APO 

induces hypolocomotion and suppresses behaviour via activation of presynaptic DA autoreceptors 

(Kendier et at., 1982). Thus, with respect to the rat pineal gland, the number of different DA 

subtypes present, their conformational state and location (presynaptic vs. postsynaptic) are 

important variables in interpreting the present results. 

Radioligand binding studies by Govitrapong et at. (1984) suggested the presence of a D2 receptor 

in the bovine pineal gland. Pharmacological studies with more selective D2 agonists and 

antagonists appeared to extend this finding to pineals of Sprague-Dawley rats (Govitrapong et at., 

1989). It is thus probable that ifDA receptors are present in the pineal of Wi star rats it will be the 

D2 subtype. Nonetheless the fmal DA concentration was ranged from 100 nM to 10 !J.M to cover, 

at least theoretically, the affinity of all DA receptor subtypes for this catecholamine. Higher 

concentrations of DA (» 1 0 IlM) were not employed to prevent non-specific stimulatory effects 

at the pineal f3-adrenergic receptors and interference of pineal MAO activity. More specific 

probing of the D2 receptor was achieved with R-(-)-APO. The experiments with the latter were 

based around a final concentration of 500 nM as this concentration covers the range consistently 

cited as the KD, ICso or ECso value of this agonist for the different subtypes and affinity states of 

the D2 subfamily (Kebabian and Caine, 1979; Niznik, 1987; Strange, 1987). R-(-)~O will only 

act as an agonist at DI receptors at micromolar concentrations and in the absence pf an 

endogenous ligand, such as DA. In the pres~tlce of the latter, R-(-)-APO will antagonize DI 

receptor-mediated events. The abbreviation APO will now be used instead of R -( -)-APO. 

The drug-induced changes to C4C]NAS and [14C]MEL biosynthesis observed during both the 

photophase and scotophase studies can be explained by one or more of the following events: 

(a) stimulation or inhibition of NAT activity. 

(b) changes in the availability of C4C]NAS as a substrate for O-methylation by HIOMT, without 

an effect on HIOMT itself. 

(c) time-delay between the N-acetylation and O-methylation events. 

(d) stimulation or inhibition of MAO activity. 
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These events are not necessarily mutually exclusive, but the activity of NAT is seen as the pre

determining step in the present studies. The synthesis of 5-methoxyindoles is not only dependent 

on the activity of the O-methylating enzyme HIOMT, but also on the availability and affInity of 

the corresponding 5-hydroxyindoles as substrates for HIOMT (Morton, 1990). As postulated in 

section 3.4, a change in the relative proportion of each 5-methoxyindole to total methylation, 

without a change in the absolute value of this index itself, is seen as being indicative of this 

phenomenon. Although the results can be parsimoniously explained without postulating a drug

induced increase in HIOMT, such an increase cannot be completely ruled out. The observed 

biosynthetic profile can also be influenced by MAO activity. For example, by reducing the activity 

of this enzyme, more C4C]5HT will be available for N-acetylation to C4C]NAS and thus 0-

methylation to C4C]MEL. 

During the photophase, DA Hel (100 nM, 1 IlM and 10 IlM) in vitro did not stimulate the in situ 

biosynthesis of any [14C]indole by the cultured pineal glands as would be seen for the ~-agonist 

NA. The basal nature of pineal indole biosynthesis during the daytime should and did preclude the 

possibility of seeing an inhibitory effect of DA. In contrast, APO (500 nM) in vitro stimulated the 

in situ synthesis of either [14C]NAS or [14C]MEL during the photophase, depending on the study. 

In both cases, this is attributed to either a stimulation of NAT, an inhibition of MAO, or both. The 

signifIcance of the contribution of MAO, however, differed between the two studies. Furthermore 

the magnitude of the effect on C4C]NAS or [14C]MEL levels is considerably greater than that seen 

on [14C]5HIAA and [14C]5HTOH levels, especially for the second study. This would suggest that a 

stimulation of NAT was the predominating and more robust effect. It is proposed that in the fIrst 

study (Figure 4.6), the increased C4C]NAS levels had not yet translated into increa~ed MEL levels, 

whereas this conversion is complete in the second study (Figure 4.7). The increase i1J total 

methylation, but not in the levels of [14C]5MTOH and C4C]5MIAA in the latter study, supports the 

contention that APO did not induce a general increase in HIOMT activity. The lack of effect of 10 

!J.M APO undermines the dose-dependency of the above profIle, but may be due to opposing 

effects of APO on multiple receptor subtypes at this higher concentration. 

In the scotophase studies, equimolar DA and APO (10 IlM) markedly reduced the in situ 

production of e4C]NAS and [14C]MEL. Unlike the photophase studies, APO was dose-dependent 

in that no effect was seen at a concentration of 500 nM. For both ligands, the observed profIle of 

pineal [14C]indole biosynthesis can be explained by either an inhibition of NAT or a stimulation of 

MAO activity, or a complex combination of both. In the first DA study (Figure 4.5), an inhibition 

106 



Chapter 4: Effect of Dopaminergic Agents on Pineal Indole Biosynthesis 

of NAT was the pre-determining step with no contribution by MAO. There was no need to 

postulate an effect on IDOMT, as outlined above. This is consistent with reports that DA has no 

significant in vitro effect on the activity of crude bovine pineal IDOMT (Hartley et al., 1972; 

Hartley and Smith, 1973). 

In contrast, the proflle seen with APO (10 ~M) and the second DA study (Figure 4.10) is 

complicated by very significant drug-induced increases in the apparent activity of pineal MAO: 

By increasing MAO activity, more C4C]SHT is deaminated to C4C]SIDAA and C4C]SHTOH. This 

should decrease the amount of [14C]SHT available for N-acetylation to C4C]NAS with a 

concomitant decrease in C4C]MEL levels. Similarly, an increase in the respective O-methylation 

of C4C]SIDAA and [14C]SHTOH to C4C]SMIAA and [14C]SMTOH should be evident. Since this 

proflle is similar to that seen following inhibition of NAT, it is difficult to delineate the relative 

contribution of each enzyme. However, results from the first DA scotophase study show that an 

inhibition of NAT activity is clearly implicated. Furthermore the decrease in total methylation 

indicates that the increase in C4C]SMJAA and C4C]SMTOH levels did not compensate for the 

decrease in C4C]MEL levels. It is therefore argued that this implies that the decrease in [14C]MEL 

biosynthesis is too robust to be simply explained by a stimulation of MAO activity. 

Evidence has been presented earlier (section 3.3) that apparent pineal MAO activity is lower in the 

scotophase compared to the photophase. Both DA and APO reversed this dark-phase associated 

trend. DA is a substrate for both MAO-A and -B (Fowler et al., 1978; Garrick and Murphy, 1982) 

and thus may compete with C4C]SHT for deamination. However, this should be evident as 

decreased rather than increased C4C]SIDAA and C4C]SHTOH levels, and total ¥AOP, and no 

such effect of DA was seen in the photophase studies. Furthermore, the fact that APO, which is 
I 

not a MAO substrate, also increased the levels of these S-hydroxyindoles suggests that this may 

indeed be a DA receptor-mediated event. Previous studies have also reported that NA and 

isoproterenol, a selective ~-adrenergic agonist, may modulate pineal MAO activity via ~

adrenergic receptors (Axelrod et al., 1969, Olivieri et al., 1990). 

The fact that APO (10 ~M) was more potent than an equivalent concentration of DA on the 

scotophase biosynthesis of [14C]S-hydroxyindoles may involve several factors. Two possibilities 

include: 

(i) the respective affinities of the receptor subtype or conformational state for DA and APO. 

(ii) differences in the degree of metabolic inactivation of each ligand. 
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DA is catabolized by both MAO and COMT (Napolitano et al., 1995) and none of the subsequent 

products are pharmacologically active at DA receptors. In contrast, APO is O-methylated by 

COMT to form apocodeine (Axelrod, 1966), which retains agonistic activity at the DA receptor. 

The present pharmacological profile of APO and DA and their ability to inhibit NAT and MAO 

activity is consistent with the presence of a D2 or D2-like receptor in the pineal gland. To reiterate, 

pineal NAT activity is induced during the scotophase by a nocturnal surge in the activation of~:

adrenergic receptors by NA released from presynaptic SNS nerve terminals. The postsynaptic ~

adrenergic receptors are located on pinealocytes and coupled, via G-proteins, to the stimulation of 

adenylate cyclase. The concomitant surge in intracellular cAMP levels is responsible for the 

induction and activation of NAT (Reiter, 1991). D2 receptors are negatively coupled to adenylate 

cyclase. If the putative D2 receptors were located post-synaptically, ligand-induced activation 

could antagonize the NA-induced increase in cAMP levels and thus NAT activity. Alternatively, 

D2 receptors are also known to be located on sympathetic nerve terminals where they mediate the 

inhibition of NA release (Niznik, 1987; Strange, 1987). Thus the putative D2 receptors may be 

located pre..gynaptically on the SNS nerve terminals innervating the pineal gland. NA is a MAO 

substrate and 70% of pineal MAO activity is associated with the noradrenergic nerve terminals 

innervating the pineal (Rack6 et al., 1991). Thus an inhibition ofNA release would explain both 

the reduction in NAS and MEL biosynthesis and the increase in apparent MAO activity during the 

scotophase. However, it is likely that most NA has already been released by mid-scotophase in 

vivo, prior to the removal of the pineal and the addition ofDA and APO during the culture period. 

Zawilska and Iuvone (1990) have strongly contended that the suppression of the nocturnal 
\ 

increase in NAT activity and MEL content of chicken pineals by the D2-selective agonists 
J 

bromocriptine and quinpirole was mediated byo.2-adrenergic receptors, and not D2 receptors. This 

is in contrast to Govitrapong et al. (1989) who attributed similar effects ofthese ligands in the rat 

pineal to the D2 receptor. Bromocriptine, quinpirole and DA are known to act on o.2-adrenergic 

receptors at high concentrations. This may simply reflect species differences, but Govitrapong et 

al. (1989) did note that higher than expected concentrations ofbromocriptine and quinpirole were 

required to exert the observed effects. Whether DA at a concentration of 10 flM acted on 0.2-

adrenergic receptors in the present studies is unclear. It is unfortunate that lower concentrations of 

DA were not additionally tested in the scotophase studies. Nonetheless, APO does not display 

affinity for 0.2- or ~-receptors. APO potently attenuated the nocturnal rise in NAT activity and 

MEL content in chicken retinas via stimulation of D2 receptors, with no effect in chicken pineal 
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glands (Zawilska and Iuvone, 1990). The results obtained in this study, especially for APO, tend to 

confirm the conclusions of Govitrapong et al. (1989), i.e. the presence of a postsynaptic D2 

receptor in the rat pineal. The problems associated with bromocriptine and quinpirole in the latter 

study may have been related to the exact nature of the D2-like receptor subtype. However, the 

dose-dependent variation in response to APO during the photophase and scotophase may involve a 

state-dependent effect at the level of the Dl receptor. R-( -)-APO is a partial agonist at the Dl 

receptor (Kebab ian and Caine, 1979). In other words, in the absence of DA, APO will act as an 

agonist, but as a full antagonist in the presence of DA. The activity of dopaminergic neurons and 

thus the release of DA is greater at night in nocturnal animals such as the rat (Paulson and 

Robinson, 1996). Therefore it is plausible that the state-dependent presence or absence ofDA may 

influence the activity of APO at pineal Dl receptors. Alternatively, the same day-night cycle in 

dopaminergic activity may be reflected in a variation in the sensitivity or conformational state of 

the D2 receptor. For example, the ability of a low dose of APO to induce yawning via an effect on 

the D2 autoreceptor is more pronounced during the dark-phase than the light phase (Nasello et al., 

1995). 

DA also may have numerous other cytosolic/nonreceptor-mediated effects. DA in vitro has been 

shown to inhibit both tryptophan hydroxylase and TH by complexing with the essential Fe3
+ co

factor (Naoi et al., 1994; Ribeiro et al., 1992). However, under the present experimental design, 

these effects are unlikely to be important. 

The nature of DA receptor subtypes can also be probed with selective antagonists. HAL is a 

relatively selective antagonist of the D2 receptor (Creese et al., 1984; Lidsky and Banerjee, 1993). 
~ 

Unfortunately, HAL appears to have both cytosolic and receptor-mediated effects on pineal 
I 

function that may, in addition, be species-specific. HAL administration to rats is generally 

reported to increase pineal NAT activity and' the endogenous MEL content during the both the 

light- and dark-phases (Gaffori et at., 1983; Govitrapong et al., 1989; Srinivasan, 1989). Only 

Wakabayashi et al. (1989) have reported a decrease in rat pineal MEL content during the dark

phase. All these studies administered acute HAL (single dose), but differed in the dosage and post

administration interval. A stimulatory effect on pineal MEL is commonly attributed to the ability 

of HAL to block the inhibitory effects of DA on NAT activity via the D2 receptor. On the 

otherhand, a reduction in MEL levels would be consistent with the inhibitory effect of HAL in 

vitro on crude and purified bovine HIOMT (Hartley et al., 1972; Cremer-Bartels et at., 1983). To 

further complicate the story, HAL (10 11M) in vitro was found to alter [14C]indole biosynthesis by 
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rat pineals during the scotophase in a manner consistent with an inhibition of MAO and the 

activation ofHIOMT activity (Nir and Hirschmann, 1983). This included an increase in [14C]MEL 

levels. In the present study, HAL (2.5 mg/kg or 5 mg/kg i.p.) administered during the photophase 

had no effect on the biosynthesis of any radiolabelled indole by pineal glands cultured at mid

photophase, including [14C]NAS, C4C]MEL and the MAO products C4C]5HIAA and [14C]5HTOH. 

The doses employed here are comparable or greater than those used in the aforementioned studies. 

Furthermore, brain levels of HAL are reported to be maximal 60 min after administration (Naylor 

and Olley, 1969), consistent with the 90 min post-administration interval used here. 

Administration of HAL by the i.p. route results in extensive first-pass metabolism of the drug by 

the liver. HAL is rapidly metabolized by hepatic microsomal enzymes to reduced HAL, which is 

frequently present in the tissues of HAL-treated subjects at a much higher concentration than HAL 

itself. This metabolite may be reoxidized to HAL in vivo. It must be noted, however, that reduced 

HAL shows preferential activity at cr (sigma) receptors over D2 receptors (Bowen et al., 1990). 

The observation of sedation, ptosis and catalepsy in the experimental, but not the control animals, 

was consistent with the known behavioural responses of HAL (Kendler et aI., 1982; Sanberg et 

al., 1988; Lidsky and Banerjee, 1993), and indicates that sufficient HAL must have penetrated the 

CNS. In fact, due to the absence of a blood-brain-barrier around the highly vascularized pineal, 

hydrophobic HAL has been shown to accumulate primarily in the pineal gland of the rat following 

systemic administration (Naylor and Olley, 1969). Due to its hydrophobic nature, HAL would be 

expected to enter the pinealocytes and SNS nerve terminals innervating the gland. The study of 

Gaffori et al. (1983) showed a marked increase in pineal MEL content after the s.c. administration 

of only 300 ng HAL/rat. This all leads to the conclusion that the observed lack of effect here was 
\ 

not due to problems associated with the dosage and pharmacokinetics of HAL or the nature of the 

vehicle. However, the problem may be related to the fact that the radiometric method empl6yed in 

the present study quantified the synthesis of exogenous C4C]indoles released into the culture 

medium and not endogenous pineal indole content as in previous investigations. Only the in vitro 

HAL study of Nir and Hirschmann (1983) employed a similar in situ pineal organ culture 

technique. 

Actually, the lack of effect of HAL in the present study is consistent with the lack of effect of DA 

on basal pineal C4C]indole biosynthesis during the photophase. As a DA receptor antagonist, HAL 

can block the effects of DA agonists, such as DA or APO, but does not have any intrinsic activity 

itself at the receptor. Theoretically then, HAL would not be expected to have an apparent effect on 
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daytime basal indole biosynthesis, in the absence of an agonist. This would, however, suggest that, 

if there is a dopaminergic system intrinsic to the rat pineal, the endogenous agonist DA is not 

responsible for maintaining the basal or photophase level of indole biosynthesis. Furthermore, the 

present studies cannot exclude the possibility that HAL may effect the hepatic metabolism of 

plasma MEL, independent of an effect on biosynthesis as seen for CPZ (Wurtman et al., 1968a). 

In summary, the dopaminergic agents DA and APO appear to have state-dependent effects on the 

indole biosynthesis by pineal glands of Wi star rats at the level of the NAT and MAO enzymes. It 

is argued that these preliminary studies indicate that these effects are mediated by postsynaptic D2-

like receptors. It would have been infonnative to determine the effect of DA and APO on NA

stimulated NAT activity during the photophase, in addition to basal activity of the enzyme. More 

specific agonists and antagonists, immunocytochemistry and molecular biology techniques (e.g. 

mRNA probes) need to be employed to elucidate the exact nature of the receptor subtype. 

It is also not impossible to determine from the present investigations whether this putative 

dopaminergic system is intrinsic to the pineal, consists of dopaminergic fibres arising outside the 

pineal, or is restricted simply to DA receptors expressed on pinealocytes. Further 

electrophysiological, biochemical and enzyme studies should help to characterize the nature of the 

dopaminergic system. Another possible experimental approach would be to re-perform the above 

experiments with DA and APO using pineal glands lacking noradrenergic input. This can be 

achieved in situ by creating a dispersion of pinealocytes or by culturing the pineals for 48-72 hrs 

prior to the addition of the agonists (Hernandez et ai., 1994; Santana et al., 1994). 

Regulation of pineal indole biosynthesis appears to be highly species-specific. With f)uiher 

regards to human beings, the very limited number of studies that have been performed would 

suggest a lack of dopaminergic control of pineal function. Neither the DA agonists APO and 

quinpirole nor the antagonist sulpiride had an effect on pineal MEL synthesis or secretion 

(Zimmermann et ai., 1994). In addition, L-Dopa has no effect on the amplitude of plasma MEL in 

healthy human subjects (Wetterberg, 1978) and Parkinson's patients (Fertl et ai., 1993), but does 

induce phase-advancement of MEL secretion in the latter. This would suggest that the results 

presented here for the rat pineal gland most likely cannot be extended to the human pineal gland. 
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Chapter 5 

Monoamine oxidase: Characterization and 
Optimization 

5.1 Introduction 

MAO occurs in the mammalian brain as two isoforms, designated MAO-A and MAO-B (Singer 

and Ramsay, 1995). Endogenous DA is primarily metabolized by MAO-A in the rodent brain 

(Berry et at., 1994; Juorio et at., 1994; Luque et at., 1995). Furthermore, enzyme activity, protein, 

and mRNA studies have shown that the latter isoform is abundant in the rat corpus striatum, 

apparently localized in presynaptic dopaminergic nerve terminals (Juorio et at., 1994; Luque et 

at., 1995; Jahng et al., 1997). Thus the MAO-A activity of the rat corpus striatum was quantified 

by an in vitro micro-radio enzymatic assay modified from Urry et at. (1972), Fowler et at. (1979) 

and Parvez and Parvez (1973). 

5.1.1 PRINCIPLE OF MAO-A ASSAY 

The principle of the assay is based on a direct aqueous-organic solvent extraction system to 

separate the radiolabeled reactants and products. The reaction scheme is outlined in Figure 5.l. 

Briefly, in the presence of molecular oxygen, the radioisotopic substrate [14C]5HT is de aminated 

by MAO-A to produce [14C]5lllAL. Acidification of the reaction mixture with Hel terminates the 

enzyme reaction and protonates the free amino group of [14C]5HT. This allows for the efficient 

separation of [14C]5lllAL from the charged [14C]5HT by extracting the aldehyde with ethyl 
I 

acetate. The analyte is then quantified by liquid scintillation spectroscopy. 

In the presence of the enzymes alcohol dehydrogenase and aldehyde dehydrogenase, 5HIAL can 

be further reduced to 5HTOH or oxidized to 5HIAA respectively. The relative production of 

5HTOH and 5HIAA is dependent on the prevailing NADHlNAD+ ratio (i.e. oxidative state) of the 

tissue. Both these additional products can be extracted with ethyl acetate following acidification of 

the reaction mixture. Alcohol dehydrogenase is a cytosolic enzyme, whereas aldehyde 

dehydrogenase can occur as several isoenzymes that differ in subcellular distribution, including 

the cytosol, mitochondria and micro somes (Kennedy and Tipton, 1990). Thus, the actual identity 

of the extracted products will differ with the nature of the tissue preparation. For this reason, the 
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term total MAOP formation was used to describe MAO activity, and refers to the absolute amount 

of radiolabeled product, irrespective of the nature or number of the products extracted from the 

reaction mixture. 

* H0Q1H2CH2NH2 

~ I I 
N 
H 

S-Hydroxytryptamine 
(5HT) 

I monoamine oxidase 

t * ~ 
H0Q:j

CH
2
CH 

~ I I 
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S-Hydroxyindole acetaldehyde 

(SInAL) 
aldehyde dehydrogenase / ~ alcohol dehydrogenase 

¥ NAD+/NADH ~ 

* HO~CH2COOH 

~N) 
H 

S-Hydroxyindole acetic acid 
(SIDAA) 

* = Site of radiolabel 

* HO~CH2CH20H 

~~TJ N 
H 

S-Hydroxytryptophol 
(SHTOH) 

Figure S.l: Reaction scheme for the in vitro radioenzymatic MAO-A assay. 

I 

More modem spectrophotometric and fluorometric assay systems have been designed (Zhou et al., 

1996; Holt et al., 1997), but these too have several disadvantages. These include complexity of 

design (e.g. the need for coupled-reactions), lack of isoform specificity and need for a relatively 

pure sample, necessitating a clean-up step (e.g. deproteinization, removal of endogenous 

substrates). In contrast, the radioenzymatic assay is very sensitive, isoform-specific, reproducible 
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and can be used on crude homogenates. For these reasons, the radiometric method still remains the 

most commonly used assay for MAO-A and -B. The cost of the radiochemicals is the main 

disadvantage associated with this assay protocol. The applicability of the radio enzymatic assay to 

the analysis of MAO-A activity of the rat corpus striatum was assessed in this chapter. Of 

particular importance was the flexibility of the assay for comparison between in vitro and in vivo 

studies, and thus the ability to detect MAO activity in very small quantities of tissue sample. This 

required full characterization of the MAO enzyme, verification of the presence of MAO-A in the 

rat striatum, and optimization of the assay conditions. An attempt was also made to minimize the 

cost without sacrificing reliability. 

5.2 Materials and Methodology 

5.2.1 CHEMICALS AND REAGENTS 

The radiochemical 5-hydroxy-(side-chain-2-14C)tryptamine [5HT] creatinine sulphate (specific 

activity 56 mCilmmol) was purchased from Amersham International (Amersham, UK). 5HT 

creatinine sulphate was purchased from Sigma and HPLC grade ethyl acetate from LAB-SCAN 

Analytical Sciences (Dublin, Ireland). Clorgyline HCI and pargyline HCI were purchased from 

Sigma, and L-deprenyl HCI [R-(-)-deprenyl; selegiline HCI] from Research Biochemicals 

International (RBI). All other chemicals and reagents were purchased from local commercial 

sources and were of the highest purity available. All buffers and reagents were prepared in MilliQ 

water. 

5.2.2 TISSUE PREPARATION AND STORAGE 
I 

Unless otherwise stated, all MAO optimization studies were performed on tissue samples prepared 

from the striata of animals sacrificed at mid-photophase (12hOO). The striata were pooled, 

dissected and stored as described in section 2.2. Stability studies performed on the 

mitochondriaVlysosomal fraction in 0.32 M sucrose indicated that MAO activity must be assayed 

within 72 hrs of storage at -20°C. Whole tissue can be stored at -20 °C for several months. 

5.2.3 ASSAY REACTION MIxTURE 

All reagents were prepared in the assay buffer, 0.1 M potassium phosphate buffer (PH 7.4). A 50 

mM Tris-HCI buffer (PH 7.4) was found to inhibit MAO-A activity as previously reported (Fowler 

et ai., 1978; Salach and Detmer, 1979). A standard reaction mixture, with a total volume of 100 
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Ill, comprised: 45 III assay buffer, 50 III enzyme fraction, and substrate solution. By default, the 

substrate solution consisted of 5 III [14C]5HT working solution (0.025 IlCi/assay tube), giving a 

final concentration of ± 4.5 J.1M [14C]5HT. This was designated "hot" or "C4C]5HT" substrate 

activity. In certain experiments, parallel samples were prepared containing, in addition, non

radioisotopic 5HT at a fmal concentration of 150 IlM. This was designated "C4C]5HT+5HT" 

substrate activity. For further comparison, the ratio of "C4C]5HT" activity to "C4C]5HT+5HT" 

activity was also calculated. 

5.2.4 ASSAY PROCEDURE 

Briefly, all components, except C4C]5HT, were prepared in a 1.5 ml Eppendorf vial on ice in the 

order listed above. Following saturation with carbogen (95% O2:5% CO2 v/v), the reaction mixture 

was preincubated for 5 min in a 37°C water bath, with gentle shaking, to allow thermal 

equilibration. The reaction was initiated by the addition of 5 III [14C]5HT working solution and 

incubated at 37°C for 30 min. The reaction was terminated by the addition of 60 J.l.I ice-cold 2 N 

HCI. After 15 min, this was followed by the addition of 1 ml ethyl acetate and vortexed for 60 s. 

Samples were then centrifuged at 3000 rpm for 10 min (Selecta Mixtasel benchtop centrifuge) and 

0.8 ml of the solvent extracted and quantified by liquid scintillation spectroscopy. Zero-time 

blanks were prepared by the addition ofHCl prior to [14C]5HT. 

5.2.5 EXPERIMENTAL DESIGN 

The composition of the reaction mixture represents optimum values that were experimentally 

determined as described below. Typically, one component (the dependent variable) was allowed to 
\ 

vary, while the independent variables were fixed at the optimum values. The volume of assay 

buffer was adjusted to compensate for any changes in the composition of the reaction mixtu~e. By 

necessity, each experiment is presented in 'a logical linear fashion, but the design· of one 

experiment was dependent on the results of several other experiments. 

(i) Subcellular Distribution Studies 

The following subcellular fractions were prepared as described in section 2.3: 5% (w/v) total 

homogenate, 5% (w/v) nuclei/cell debris, 4% (w/v) mitochondriallysosomes and 5% (w/v) 

cytosoVmicrosomes. MAO activity and specific activity of each fraction was determined using 50 

III aliquots with C4C]5HT (0.025 j1.Ci) as the sole substrate. 
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(ii) Linearity with Enzyme Content 

MAO activity was determined for 10,20, 30,40,50 and 60 /-LI aliquots of a 4% (w/v), 5% (w/v) 

and 10% (w/v) mitochondrial/lysosomal fraction. Activity was detennined with C4C]5HT (0.025 

/-LCi; 4.5 /-LM) as the sole substrate, and in the presence of 150 /-LM 5HT. The ratio of "C4C]5HT" 

activity to "(14C]5HT+5HT" activity was also calculated for each aliquot. 

(iii) Linearity with Assay Incubation Time 

The time-dependency of MAO specific activity was determined by tenninating the assay reaction 

at fixed time intervals of 0, 5, 10,20,30, 45 and 60 min. Activity was detennined with C4C]5HT 

(0.025 /-LCi; 4.5 /-LM) alone or in conjunction with cold 5HT at a fmal concentration of 150 /-LM. 

The ratio of"C4C]5HT" activity to "[14C]5HT+5HT" activity was calculated for each time point. 

(iv) Kinetic Analysis: [14C]SHT 

The substrate kinetics of MAO for C4C]5HT was detennined by initiating the assay reaction with 

0.00625, 0.0125, 0.025, 0.05, 0.125 or 0.25 /-LCi of the radio ligand. This gave approximate final 

concentrations of 1.125, 2.25, 4.5, 9.0,22.5 and 45.0 /-LM [14C]5HT respectively. Parallel studies 

were perfonned in the presence of cold 5HT at a final concentration of 150 /-LM. The ratio of 

"(14C]5HT" activity to "C4C]5HT+5HT" activity was calculated for each [14C]5HT concentration. 

The activity data obtained in the presence of 150 /-LM 5HT was further analysed by the Hanes

Wolf plot (SN vs. S) where the substrate (S) is the C4C]5HT concentration (/-LM) and V is the 

enzyme activity (DPM/30 min). The x-intercept of this plot represents the apparent ~ value. 

(v) Kinetic Analysis: SHT 

The substrate kinetics of MAO were further investigated by competing a fixed concentra~on of 

[14C]5HT (0.025 /-LCi; 4.5 /-LM) with varying fmal concentrations of non-radioisotopic 5HT (1, 5, 

25,50, 100,200 and 400 /-LM). Time-dependency of "inhibition" was detennined by preincubating 

the enzyme with 5HT for T = 5 min and T = 60 min prior to the addition of (14C]5HT. The 5 min 

preincubation period is equivalent to the nonnal thennal equilibration period. An inhibition curve 

and the Dixon plot were employed to detennine an ICso value for 5HT (see section 5.2.6). An leso 

value represents that concentration of inhibitor that produces 50% inhibition. 
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(vi) Inhibition by Pargyline, L-Deprenyl and Clorgyline 

In vitro inhibition profiles were generated for these irreversible MAO inhibitors by varying the 

[mal concentrations of each as follows: pargyline, 10-3 to 10-9 M; L-deprenyl, 10-3 to 10-9 M; and 

clorgyline, 10-3 to 10-22 M. [14C]5HT (0.025 f.LCi; 4.5 f.LM) was employed as the sole substrate. The 

preincubation period with each inhibitor was limited to the thermal equilibration period of 5 min. 

ICso values were determined from the respective inhibition curves and Dixon plots. 

5.2.6 DATA AND STATISTICAL ANALYSIS 

The DPM data was normalized for 1 ml of the extraction solvent and corrected for the zero-time 

blank value. MAO-A activity is represented by total [14C]MAOP and the units DPM/30 min. 

Specific activity has the units DPMl30 min/IOO f.Lg protein. Data is graphically presented as mean 

± SEM with the sample size (n) depending on the experiment. An inhibition curve was constructed 

by plotting % inhibition vs. log molar (M) concentration of the inhibitor (I). The mean data for 

each inhibitor concentration was converted to a % inhibition with respect to the control data. The 

linear Dixon plot involves plotting IN vs. I, where the x-intercept represents the ICso value 

(Dixon, 1972). For this purpose, the reciprocal of the mean value, (DPMl30 min/I 00 f.Lg protein)"!, 

was calculated. Generally, the data that fell within the linear section of the inhibition curve was 

used to construct the Dixon plot. Linear and non-linear regressions were performed according to 

section 2.7. 

5.3 Results 

(i) Subcellular Distribution Studies 
I 

The subcellular distribution of MAO-A activity is presented in Figure 5.2. The majority of MAO-

A activity and specific activity was observed in the mitochondrialllysosomal fraction, with 

comparable activity levels found only in the total homogenate. Only trace amounts of activity 

were detected in the nuclear/cell debris and negligible activity in the cytosolic/microsomal 

fractions. The crude mitochondrial/lysosomal fraction represents a "purer" enzyme preparation 

than the total homogenate, giving a more accurate reflection of MAO-A specific activity. 
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Figure 5.2: Subcellular distribution of striatal MAO-A activity. [Data represents mean ± SEM 

(n = S); ': Activity = DPM/30 min, Specific activity = DPMl30 min/I 00 Ilg protein] 

(ii) Linearity with Enzyme Content 

Preliminary results found a non-linear relationship between homogenate volume and MAO-A 

activity for the 10% (w/v) and S% (w/v) mitochondria1!lysosomal fractions (r2 = 0.996 and 

r = 0.996 respectively) in the presence of 4.S 11M [14C]SHT (data not shown). In the case of the 

4% (w/v) fraction (Figure 5.3), linear responses were obtained for 4.S 11M [14C]SHT alone 

(r = 0.9990,P < 0.0001) and in the presence of ISO 11M SHT (r = 0.9984, P < 0.(001). The ratio 

of "C4C]SHT" activity to "C4C]SHT+SHT" activity remained constant at ca. 2.0 fOl each 

homogenate aliquot (Figure S.3 Insert). A SQ III aliquot of a 4% (w/v) mitochondriaVlysosomal 

fraction was chosen as the optimum for all subsequent MAO-A assays. 

(iii) Linearity with Assay Incubation Time 

The relationship between MAO-A activity and assay reaction time is shown in Figure S.4. Activity 

with C4C]SHT alone was linear over the first 30 min (r = 0.983, P = 0.0009), but tapered off by 60 

min (non-linear r = 0.992). In the presence of ISO jlM SHT, activity remained linear for 4S min 

(r = 0.967, P = 0.0004) and then also tapered off by 60 min (non-linear r = 0.996). A similar 

pattern is seen in the ratio of "[14C]5HT" activity to "[14C]5HT+5HT" activity (Figure 5.4 Insert). 

A ratio ~ 2.0 is seen for the first 30 min, but then it drops below 1.7 at 45 and 60 min. 
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Figure 5.3: MAO-A activity as a function of enzyme concentration. Insert: Ratio of 

"[14C]5HT" activity to "[14C]5HT+5HT" activity. [Data represents mean ± SEM (n = 5)] 
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Figure 5.4: MAO-A activity as a function of assay incubation time. [Data represents mean ± 

SEM (n = 5)] 
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(iv) Kinetic Analysis: [14C]SHT 

The relationship between MAO-A activity and substrate concentration is shown in Figure 5.5A. 

Activity with C4C]5HT alone was linear over the concentration range of 0.0-45.0 j.!M (~ = 0.999, 

P < 0.0001). In the presence of 150 j.!M 5HT, activity remained linear over this range (~ = 0.987, 

P < 0.0001), but also gave a perfect non-linear fit (~ = 1.00). This deviation is further reflected in 

the ratio of "C4C]5HT" activity to "[14C]5HT+5HT" activity (Figure 5.5B). Initially, the ratio is 

constant at ± 2.0 for 1.125 to 9.0 j.!M P4C]5HT, but then progressively increases. The Hanes-Wolf 

plot for the "[14C]5HT+5HT" activity data is shown in Figure 5.5C. A linear plot was generated 

(~= 0.983, P = 0.0001), with an apparent K",;:z 100 j.!M obtained from the x-intercept. 

(v) Kinetic Analysis: SHT 

Non-radioisotopic 5HT in vitro dose-dependently competed for MAO activity, in a time

independent manner (Figure 5.6). For the T = 5 min data, an ICso value ;:z 135 j.!M was obtained 

from the sigmoidal plot (~ = 0.992 ) and ;:z 130 j.!M from the Dixon plot (Figure 5.6 Insert; 

~ = 0.9975, P < 0.0001). For the T = 60 min data, an ICso value ;:z 140 j.!M was obtained from the 

sigmoidal plot (~ = 0.991 ) and ~ 125 J.LM from the Dixon plot (Figure 5.6 Insert; ~ = 0.9916, 

P < 0.0001). Since there were no significant differences in these values, an average ICso ;:z 135 j.!M 

was calculated. 

(vi) Inhibition by Pargyline, L-Deprenyl and Clorgyline 

The structures of pargyline, L-deprenyl and clorgyline are shown in Figure 5.7. Inhibition profiles 

for each inhibitor are presented in Figure 5.8. Monophasic sigmoidal curves were obtained for 

each inhibitor. For pargyline, an ICso ;:z 0.8 j.!M was generated from the si~oidal curve 

(~ = 0.999) and an ICso ;:z 0.45 j.!M was obtained from the Dixon plot (Figure 5.9A; ~ = 0~986, 

P < 0.0001). For L-deprenyl, an ICso ;:z 1.8 j.!M was generated from the sigmoidal curve 

(~ = 1.000) and an ICso ~ 1.0 j.!M was obtained from the Dixon plot (Figure 5.9A; ~ = 0.9980, 

P < 0.0001). In comparison, the inhibition curve for clorgyline was markedly shifted to the left. 

The sigmoidal plot generated an ICso "" 6.5 X 10-20 M (~ = 0.973) and a similar value, ICso ;:z 7.8 X 

10-20 M, was calculated from the Dixon plot (Figure 5.9B; ~ = 0.9992, P < 0.0001). This potent 

inhibition by clorgyline was repeatedly confirmed in several independent attempts. 
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Figure S.S: MAO-A activity as a function of [14C]SHT concentration. (A) Activity determined 

in the presence and absence of ISO IlM SHT. (B) Ratio of "[14C]SHT" activity to 

"[14C]SHT+SHT" activity. (C) Hanes-Wolf plot for ,,[14C]SHT+SHT" activity. [Data 

represents mean ± SEM (n = 4)] 
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Figure 5.6: The effect of varying concentrations of non-radioisotopic 5HT on MAO-A 

activity. Insert: Dixon plot 
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Figure 5.7: Structures of pargyline, L-deprenyl and clorgyline. 
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5.4 Discussion and Conclusion 

The results of the subcellular fractionation study clearly indicate that the majority of MAO 

specific activity was present in the mitochondrialllysosomal fraction. Only trace amounts of 

activity were observed in the nuclei/cell debris fraction. This profile is consistent with the well 

established fact that both MAO-A and -B are integral proteins of the outer mitochondrial 

membrane (Abell et al., 1994; Singer and Ramsay, 1995). Obata et al. (1994) purportedly purified 

a cytosolic MAO isoform from the rat liver by countercurrent chromatography. This isoform had 

properties more like MAO-B than MAO-A in terms of substrate specificity and sensitivity to 

clorgyline inhibition. In the present study, negligible activity was observed in the 

cytosolic/microsomal fraction. However, it must be noted that MAO-B activity was not assayed. 

The similar activity obtained in the total homogenate and the mitochondrial/lysosomal fraction is 

indicative of the efficiency of the homogenization-fractionation process with no apparent loss of 

important co-factors inter alia. Furthermore, this simple, but rapid protocol provides an adequate 

and consistent source of MAO, with minimal enzyme loss and variability between striatal 

samples. MAO is tightly bound to the mitochondria and its release and solubilization (e.g. by 

sonication and detergents) can result in considerable loss of activity and alteration of kinetic 

properties. This has important implications for comparison between samples, especially with 

regard to the in vivo studies. Thus all further studies were performed on a 4% (w/v) 

mitochondrialllysosomal fraction, which gives a truer reflection of MAO specific activity. Use of 

mitochondria also removes or minimises the interference from the coupled enzymes alcohol 
\ 

dehydrogenase and aldehyde dehydrogenase (see Figure 5.1). 
I 

The relative proportion of MAO-A and MAO.:B protein and mRNA in the striatum and substantia 

nigra is a matter of contentious debate, and appears to be species-specific. It has been strongly 

argued in section 1.7.5 that in the rat striatum, presynaptic MAO-A is the key isoform with 

regards to the in vivo deamination of 5HT and DA following reuptake of these neurotransmitters. 

For this reason, the in vitro radioenzymatic assay was designed to quantify MAO-A activity. 

Subsequent studies were performed to characterize and confirm the nature of the MAO isoform 

being assayed. A linear relationship was observed between C4C]5HT and MAO activity without 

evidence of saturation. Cost limitations and the specific activity of the radiochemical batch did not 

allow the use of final C4C]5HT concentrations above 45.0 ~M. This prevented the calculation of 

an apparent K", value for [14C]5HT under the present conditions. However, in the presence of 
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150 11M non-radioisotopic 5HT, an apparent Km :::; 100 11M was determined. Similarly, an lCso :::; 

135 11M was obtained for the inhibition of MAO activity by 5HT when C4C]5HT was fixed at a 

concentration of 4.5 11M. These values (100 and 135 /l-M) fall within the range of published Km 

values (100-170 11M) of both crude and purified MAO-A for 5HT and [14C]5HT (Garrick and 

Murphy, 1982; Wu et al., 1993). 

Although 5HT is preferentially de aminated by MAO-A, it has been shown that MAO-B can 

metabolize 5HT in certain species and tissues, especially when MAO-A activity is low or deficient 

(Fowler et al., 1978; Garrick and Murphy, 1982; Cases et al., 1995; Luque et at., 1995). However, 

MAO-A is abundant in the rat corpus striatum (Juorio et at., 1994; Luque et at., 1995; Jahng et at., 

1997) and it has been conclusively shown that 5HT is exclusively metabolized by MAO-A in the 

rat brain (Fowler et at., 1978; Garrick and Murphy, 1982). Ultimately, inhibitor sensitivity is 

considered the most reliable and consistent trait for isoform characterization than substrate 

specificity. 

Pargyline, clorgyline and L-deprenyl (selegiline) represent enzyme-activatedlmechanism-based 

("suicide") inhibitors of MAO. Pargyline is a propynylamine, whereas clorgyline and L-deprenyl 

are propargylamine derivatives. All are acetylene-containing compounds that covalently attach to 

N-S of the flavin moiety causing irreversible inhibition (Palfreyman et at., 1987). The target 

enzyme is effectively titrated with the duration of inhibition dependent on the turnover rate (half

life) of the enzyme molecule. Thus the observed lCso value is dependent on the amount of enzyme 

present (Ackermann and Potter, 1949). Sensitivity to these inhibitors formed the basis of the 

original classification of MAO-A and MAO-B (Johnston, 1968; Yang and Neff, 1\973; Fowler et 

at., 1978). Clorgyline is the most selective MAO-A inhibitor known so far, with inhibitio'n still 

apparent at very low concentrations, e.g. 10-11 to 10-13 M. L-Deprenyl is highly selective for MAO

B. Pargyline, on the otherhand, is non-selective and equipotent against both isoforms, although 

some researchers claim that pargyline is slightly more selective for MAO-B (e.g. Knoll and 

Magyar, 1972; Wu et al., 1993). 

Two important features must be noted for the inhibition profiles obtained for these irreversible 

inhibitors in the present study. Firstly, clorgyline was substantially more potent than pargyline and 

L-deprenyl, which were roughly equipotent. Secondly, in each case a monophasic fit was 

obtained, whereas a biphasic titration curve is indicative of the presence of both isoforms 

(Johnston, 1968; Fowler et al., 1978; Salach and Detmer, 1979). Since lCso values of irreversible 
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inhibitors are dependent on the amount of enzyme present, the current inhibitory potencies of 

these inhibitors cannot be compared to published values. What is important, is the relative position 

of each inhibition curve. On this basis, it can be confidently stated that with SHT as the substrate, 

only one MAO isoform was assayed, namely MAO-A. Since these inhibitors effectively titrate the 

enzyme, they can be used to quantify the amount of MAO protein present in the homogenate. 

However, unlike pargyline and L-deprenyl, clorgyline does not bind stoichiometrically with the 

enzyme due to nonspecific binding of the inhibitor (Salach and Detmer, 1979). This only allows 

for an estimation of the quantity of MAO-A. Nonetheless, the inhibition of MAO-A by very low 

concentrations of clorgyline reported here (10'14 to 10,20 M) indicates that very small quantities of 

the enzyme are reliably detected by the assay. This confirms the micro-radioisotopic nature of the 

assay. 

For cost purposes, a fixed final concentration of 4.S ~M [I4C]SHT was routinely employed. 

Although this concentration is markedly sub-saturating, it was more than sufficient considering 

the micro-nature of the tissue samples. At this concentration, the assay was also extremely 

reproducible and met the required criteria of linearity with enzyme content and reaction time. This 

is consistent with the fact that MAO-A activity is related to the amount of enzyme present, and not 

due to different catalytic properties of molecules (Costa et al., 1980; Fowler and Wiberg, 1980). It 

is important to note that the ratio of "[I4C]SHT" activity to 'T4C]SHT+SHT" activity remained 

constant at ca. 2.0 for those assay conditions that were chosen as being optimum, namely: SO ~l 

homogenate, 4.5 ~M [I4C]5HT and 30 min reaction time. Deviations in the ratio reflected changes 

in the relative percentage contribution of the 4.5 ~M [I4C]SHT to the overall substrate 

concentration. For example, a prolonged reaction time (> 30 min) decreased the\ratio indicating 

that [I4C]SHT became progressively more limiting with time. I 

In summary, the current characterization of the striatal MAO isoform under investigation met all 

the necessary and published criteria for MAO-A: appropriate subcellular and tissue distribution, 

substrate specificity and inhibitor sensitivity. The radioenzymatic assay was very reproducible -

evident in the low data variability - and extremely sensitive, well-suited to the small tissue 

samples to be employed for in vivo studies. It would have been informative to determine the 

amount of MAO-B activity present in the rat striatum under identical conditions by using e4C]~

phenethylamine as the selective substrate (Yang and Neff, 1973). An additional precautionary step 

would have been to perform the MAO-A assay in the presence of a very low concentration of L

deprenyl to block any interference from MAO-B. This would definitely be necessary if the current 

126 



Chapter 5: Monoamine Oxidase - Characterization and Optimization 

assay method was extended to the striatum of the guinea pig or human. In the latter species, 

MAO-B, and not MAO-A, is the dominant isoform in the striatum and primarily involved in the in 

vivo deamination ofDA (Garrick and Murphy, 1982; Luque et al., 1995) 

.1 
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Chapter 6 

Inhibition of MAO-A by Indoles 

6.1 Introduction 

MAO is intimately involved in CNS neurotransmission, blood pressure regulation and 

detoxification. MAO has also been implicated in psychiatric, neurodegenerative and 

cardiovascular disorders, senescence, and the prolongation of life (Schalling et al., 1987; Weyler 

et al., 1990; Abell et al., 1994; Singer and Ramsay, 1995). This has been reviewed in section 

1. 7.6. Thus the search for novel MAO inhibitors represents a hot spot of pharmaceutical research, 

especially as antidepressants and antihypertensive agents. The first generation of MAO inhibitors 

were based on the hydrazine class of drugs, including iproniazid. Unfortunately, these drugs are 

long-lasting irreversible MAO inhibitors with hepatotoxic properties. The new wave of research 

has lead to a plethora of potent drugs from a wide range of chemical classes, including esoteric 

compounds such as the aminoalkylsilanes and organogermanium compounds (Singer and Ramsay, 

1995). This multitude of compounds can be divided into three main types of inhibitors: 

(i) time-dependent irreversible inhibitors, most of which are mechanism-based "suicide" 

inhibitors. 

(ii) reversible inhibitors at the substrate site (competitive inhibitors). 

(iii) reversible inhibitors, which are not purely competitive. 

The modern biochemical approach for the development of clinically useful drugs is based on the 

search for isoform-selective, reversible MAO inhibitors (priest et al., 1995). Some reversible 

MAO-A selective inhibitors include moclobemide, brofaromine, Ro 41-1049 ~nd toloxatone. 

Some reversible MAO-B selective inhibitors include Ro 16-6491, Ro 19-6327 and oxadia~olone 

and oxadiazothione derivatives (Palfreyman etal., 1987). 

Other important classes of inhibitors are based on the indole nucleus, a nitrogen-containing 

heterocycle. Indeed the indoleamines tryptamine and 5HT are non-selective and·· selective 

substrates of MAO-A, respectively (Fowler et al., 1978; Garrick and Murphy, 1982). Some 

representative indole-based MAO inhibitors are shown in Figure 6.1. Indole itself shows moderate 

potency, with slight selectivity for MAO-B (Medvedev et al., 1995). l3-carboline alkaloids have 

long been known as competitive, reversible and short-acting inhibitors of MAO both in vitro and 

in vivo (Udenfriend et al., 1958; Kim et al., 1997). These compounds are heterocyclic, 

dehydrogenated derivatives of tryptophan and tryptamine arising through ring-embedding of the 
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side-chain (Kim et at., 1997). Fully aromatic ~-carbolines and dihydro-derivatives include the 

hallucinogenic harmala alkaloids such as harman, harmine, harmaline and numerous others. They 

represent very potent inhibitors of both MAO isoforms, but with higher affInity for MAO-A. 

Pinoline, a tetrahydro-~-carboline derivative, is also a well known, but weak MAO inhibitor (Ro 

et at., 1968). 

~ ~N) WI 1
0 

::::-... 0 
N 

H H 

indole indole-2,3-dione 
(Isatin) 

~ 
CH30~tl~N 

H CH3 

CH3lCoO 
I~ I NH 

N 
H 

harmine harmaline pinoline 

J 

pirlindole 

tertindole 

Figure 6.1: A selection of indole-based MAO inhibitors. 

A more complex class of indolic chemicals is represented by the pyrazinocarbazole derivatives. 

Both pirlindole and tertindole display antidepressant activity and are potent, selective and 

reversible inhibitors of MAO-A (Medvedev et at., 1994). 
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Numerous ~-carbolines, including harman and norharman, are endogenous to the mammalian 

brain and various peripheral organs (Kim et ai., 1997). A stress- and anxiety-induced substance, 

designated tribulin, was found in the mammalian brain, and rat urine and heart (Yuwiler, 1990). 

Tribulin is known to inhibit MAO activity and benzodiazepine binding. Subsequently, it was 

determined that a major component oftribulin is indole-2,3-dione (isatin), which has been shown 

to be a very selective and potent inhibitor ofMAO-B (Medvedev et ai., 1995). Obata et ai. (1994) 

also isolated an, as yet unidentified, endogenous MAO inhibitor from the rat liver cytosol. 

Thus several indolic compounds may be endogenous MAO inhibitors, having important regulatory 

effects on neurotransmission, especially during stress and anxiety, as in the case of isatin. 

Endogenous, reversible MAO inhibitors in the brain may represent a clinically important 

therapeutic avenue. For example, an ability to manipUlate the levels of naturally occurring 

compounds may reduce the side-effect profiles and time- and dose-related fluctuations in efficacy 

typically associated with pharmaceutical drugs. In this regard, the numerous pineal indolic 

compounds may represent an important source of endogenous MAO inhibitors. All these indoles 

are more closely related structurally to the MAO substrates tryptamine and 5HT than the other 

indole derivatives discussed above. Furthermore, they represent a diverse array of structures, 

including the existence of a corresponding 5-methoxyindole for each 5-hydroxyindole (Figure 

6.2). This represents a valuable opportunity to probe the nature of the active site of MAO by 

performing structure-activity relationship (SAR) studies. Thus the main objective of this chapter 

was to screen the compounds listed in Figure 6.2 as potential inhibitors of MAO-A in vitro. 

6.2 Materials and Methodology 

6.2.1 CHEMICALS AND REAGENTS 
I 

The chemicals and reagents for the MAO-A radioenzymatic assay are described in section 5.2.1. 

Tryptamine Hel, NAS, 5HTOH, 5HIAA, 5MT, MEL, 5MTOH and 5MlAA were purchased from 

Sigma. 

6.2.2 TISSUE PREPARATION 

The corpora striata were removed at mid-photophase (12hOO) and stored as described in section 

2.2. The striata were pooled and all studies were performed on a 4% (w/v) 

mitochondrialllysosomal fraction prepared as described in section 2.3. The protein concentration 

of each enzyme batch was maintained at 2.0 mg/ml. 
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Figure 6.2: Structural comparison of tryptamine and pineal 5-hydroxyindoles and 5-

methoxyindoles. 
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6.2.3 MAO-A ASSAY 

The radiometric MAO-A assay was performed as described in 5.2.3 and 5.2.4. The assay 

components and conditions were based on the optimum values experimentally determined in 

section 5.3. Activity was quantified with [14C]5HT (0.025 /lCi; 4.5 /lM) as the sole substrate. 

(i) Inhibition Profiles 

The following indoles were tested in vitro for their inhibitory potential against MAO-A: 

tryptamine HCI, 5HTOH, 5HIAA, NAS, MEL, 5MT, 5MTOH and 5MIAA. Each indole was 

tested over a range of final concentrations to produce an inhibition curve. An ICso value was 

calculated for each indole from the inhibition curve and corresponding Dixon plot. 

Working solutions of the 5-methoxyindoles were prepared in buffered ethanol. The MAO enzyme 

was exposed to a maximum of 0.2% (v/v) fmal concentration of ethanol. At this level, the ethanol 

had no effect on control MAO-A activity (data not shown). For purposes of accuracy, control 

activity in all studies reported here refers to the vehicle-treated enzyme. 

(ii) Reversibility 

Reversibility of inhibition was determined by the Ackermann-Potter Dilution Method (Ackermann 

and Potter, 1949). Briefly, MAO-A activity was determined for varying concentrations of enzyme 

(homogenate) in the presence of the vehicle (control) or a fixed concentration of the test drug. A 

range of homogenate volumes known to correlate with MAO-A activity in a linear fashion was 

used (see section 5.3). Typically, a concentration of indole corresponding to its calculated ICso 

value (see results in section 6.3) was tested. A 5 min preincubation period was employed in all 

cases. In the presence of the inhibitor, a linear response that passes through the origin is indicative 

of a reversible inhibitor. For an irreversible inhibitor, the linear plot passes through the )X-axis 

prior to the origin with the magnitude of the x-.intercept depending on the inhibitor concentration. 

(iii) Time-Dependency 

The time-dependency of inhibition was determined by preincubating the enzyme witn the test 

indole for T = 5 min and T = 60 min at 37°C prior to the addition of C4C]5HT. The 5 min 

preincubation period is equivalent to the normal thermal equilibration period. Inhibition profiles 

and Dixon plots were plotted for both time periods to allow comparison of the ICso values. 
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6.2.4 DATA AND STATISTICAL ANALYSIS 

MAO-A activity is expressed in the units DPMl30 min. The raw data was converted to a mean ± 

SEM (n = 5). The mean data was then converted for the inhibition curves and Dixon plots as 

described in section 5.2.6. In the case of the 5-methoxyindoles 5MT, MEL and 5MTOH, the 

vehicle-treated data served as the control for calculation of % inhibition. The data for 5HIAA and 

5MlAA was graphically presented in bar graphs as the mean ± SEM. Linear and non-linear 

regressions were performed as summarised in section 2.7. In all cases, the non-linear regressions 

were monophasic, indicating that the data was consistent with a single site model. 

6.3 Results 

(i) Tryptamine Hel 

Tryptamine in vitro dose- and time-dependently reduced MAO-A activity (Figure 6.3). In the case 

of the T = 5 min data, an ICso value", 20 f.lM was obtained from the sigmoidal plot (r = 0.997 ) 

and the Dixon plot (Figure 6.3 Insert; r = 0.9985, P < 0.0001). Paradoxically, a 2-fold decrease in 

inhibitory potency was seen for T = 60 min, with an ICso value '" 40 f.lM calculated from the 

sigmoidal plot (r = 0.990) and the Dixon plot (Figure 6.3 Insert; r = 0.984, P < 0.0001). A 

comparison of the inhibition curves shows that for T = 60 min, less inhibition is seen at the lower 

concentrations of tryptamine (5-100 f.lM) with recovery and similar potencies at higher 

concentrations (200-600 f.lM). The reversibility of inhibition by tryptamine (25 f.lM), following a 

5 min preincubation period, is shown in Figure 6.1lA. Data for both the control (r2 = 0.9961, 

P < 0.0001) and tryptamine (r = 0.9865, P < 0.0001) gave a linear response that passed through 

the origin, indicative of reversible inhibition. 

I 
(ii) 5HTOH 

5HTOH in vitro dose-dependently inhibited °MAO_A activity, in a time-independent manner 

(Figure 6.4). An ICso value", 280 f.lM was obtained for both the T = 5 min (r = 0.988) and the 

T = 60 min (r = 0.996) data from the sigmoidal plots. The Dixon plots (Figure 6.4 Insert) 

generated approximate ICso values of 240 f.lM for T = 5 min (r = 0.9958, P = 0.0021) and 215 f.lM 

for T = 60 min (r = 0.9911, P = 0.0045). The latterICso values were not significantly different and 

thus an average ICso value", 250 f.lM was calculated. The reversibility of inhibition by 5HTOH 

(250 f.lM) is shown in Figure 6.11B. Data for both the control (r = 0.9915, P < 0.0001) and 

5HTOH (r = 0.9974, P < 0.0001) gave a linear response that passed through the origin, indicative 

of reversible inhibition. 
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Figure 6.3: Time-dependency of inhibition of MAO-A by tryptamine. Insert: Dixon plot. 

125 

c 100 
0 
+' 
-D 

75 :.c 
C 

~ 50 

25 

a 

0 0 0 600 
SHTOH concentration (1olM) 

-4 
5HTOH 

-3 
concentration (log[MJ) 

• T = 5 min 0 T = 60 min I 

Figure 6.4: Time-dependency of inhibition of MAO-A by 5HTOH. Insert: Dixon plot. 
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(iii) SHIAA 

The activity data for the 5HIAA inhibition study is shown in Figure 6.5. 5HIAA was a very weak, 

time-independent inhibitor of MAO-A in vitro. A maximum of 12-15% inhibition was observed at 

1 mM for both T = 5 and 60 min. The reversibility of inhibition was not determined due to the 

weak inhibitory potency of 5HIAA. 
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Figure 6.5: Time-dependency of inhibition of MAO-A by SIDAA. [Data represents mean ± 

SEM (n = 5)] 

(iv) NAS 

The in vitro inhibition profile for NAS is presented in Figure 6.6. NAS is a weak, time-
1 

independent inhibitor of MAO-A. The sigmoidal plots generated an leso value "'" 850 f.lM for 
I 

T = 5 min data (r = 0.995) and 885 f.lM for T = 60 min data (r = 0.990). There were insufficient 

data points either side of the 50% inhibition point to construct reliable Dixon plots. The slight 

difference in leso values was not significant and thus an average leso value"", 870 f.lM was 

accepted. The reversibility of inhibition by NAS (800 f.lM) is shown in Figure 6.11 C. . Data for 

both the control (r = 0.9973, P < 0.0001) and NAS (r = 0.9971, P < 0.0001) gave a linear 

response that passed through the origin, indicative of reversible inhibition. 
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Figure 6.6: Time-dependency of inhibition of MAO-A by NAS. 

(v) MEL 

MEL in vitro dose-dependently inhibited MAO-A activity, in a time-independent fashion (Figure 

6.7). An ICso ~ 190 f.tM was generated from the sigmoidal plots for both T = 5 min (~ = 0.997) 

and T = 60 min (~= 0.991). This value was confirmed by the Dixon plots (Figure 6.7 Insert) for 

both T = 5 min (~ = 0.9965, P < 0.0001) and T = 60 min (~ = 0.9891, P = 0.0005). The 

reversibility of inhibition by MEL (200 f.tM) is shown in Figure 6.11D. Data for both the control 

(~ = 0.9987, P < 0.0001) and MEL (~ = 0.9990, P < 0.0001) gave a linear response that passed 
\ 

through the origin, indicative of reversible inhibition. 
! 

(vi) 5MT 

5MT potently reduced MAO-A activity in vitro, in a dose- and time-dependent manner (Figure 

6.8). For the T = 5 min data, an ICso value ~ 1 f.tM was obtained from the sigmoidal plot (~ = 

0.971 ) and the Dixon plot (Figure 6.8 Insert; ~ = 0.9997, P = 0.0124). Paradoxically, a 10-fold 

decrease in inhibitory potency was seen for T = 60 min, with an ICso value ~ 14 f.tM calculated 

from the sigmoidal plot (~ = 0.990) and the Dixon plot (Figure 6.8 Insert; ~ = 0.9905, 

P < 0.0001). A comparison of the inhibition curves shows that for T = 60 min, less inhibition is 

seen at the lower concentrations of 5MT (0.5-50 f.tM) with recovery and similar potencies at 

higher concentrations (100 and 200 f.tM). The reversibility of inhibition by 5MT (25 f.tM), 
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following a 5 min preincubation period, is shown in Figure 6.11E. Data for both the control 

(r = 0.9993, P < 0.0001) and 5MT (r = 0.9966, P < 0.0001) gave a linear response that passed 

through the origin, indicative of reversible inhibition. 
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Figure 6.7: Time-dependency of inhibition of MAO-A by MEL. Insert: Dixon plot. 
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Figure 6.8: Time-dependency of inhibition of MAO-A by 5MT. Insert: Dixon plot. 
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(vii) 5MTOH 

The in vitro inhibition profile for 5MTOH is presented in Figure 6.9. 5MTOH is a potent dose

and time-dependent inhibitor of MAO-A. For the T = 5 min data, an lCso value ::::i 24 J.l.M was 

obtained from the sigmoidal plot (r = 0.9960 ) and the Dixon plot (Figure 6.9 Insert; r = 0.9991, 

P < 0.0001). For the T = 60 min, an lCso value ::::i 14 J.l.M was calculated from the sigmoidal plot 

(r = 0.992) and the Dixon plot (Figure 6.9 Insert; r = 0.9928, P = 0.0003). A comparison of the 

inhibition curves shows that 5MTOH was more potent at T = 60 min than T = 5 min at all 

concentrations tested except 1 J.l.M. The reversibility of inhibition by 5MTOH (25 J.l.M), following 

a S min preincubation period, is shown in Figure 6.11F. Data for both the control (r = 0.997, 

P < 0.0001) and 5MTOH (r = 0.9951, P < 0.0001) gave a linear response that passed through the 

origin, indicative of reversible inhibition. 
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Figure 6.9: Time-dependency of inhibition of MAO-A by 5MTOH. Insert: Dixon plot. 

(viii) 5MlAA 

The activity data for the 5MIAA inhibition study is shown in Figure 6.10. 5MIAA was a very 

weak, time-independent inhibitor of MAO-A in vitro. A maximum of 20% inhibition was 

observed at 1 mM for both T = 5 and 60 min. The reversibility of inhibition was not determined 

due to the weak inhibitory potency of SMlAA. 
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Figure 6.10: Time-dependency of inhibition of MAO-A by SMIAA. [Data represents mean ± 

SEM (n=5)] 
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Table 6.1: Summary of Inhibition Data for Indolic Compounds. 

ICso ij.tM) 

Name Structure T=5min T=60 min Reversibility 

Tryptamine 
Q:JCH2CH2NH2 20 40 YES 

H 

HOQJCH2CH2NH2 135 135 YES 5HT ~ I I 
N 
H 

5MT 
CH3U)CH2CH2NH2 1 14 YES 

H 

~ 870 870 YES NAS H~CH2CH2NHCCH3 
~ I I 

H 

~ 190 190 YES MEL CH3~CIf1CHiNHCCH3 
~ I I 

N 
H 

5HTOH H0'QJCH2CH20H 250 250 YES 
~ I I 

~ N 
H 

! 
CH3 CH2CH20H 

5MTOH 

~) 
24 14 YES . 

H 

5HlAA H0'QJC
H

2
COO

H 

~ I I 
N 

> 1000 > 1000 nd1 

H 

5MlAA CH3~CH2COOH 

~ I I 
> 1000 > 1000 nd 

H 
1; not determined (see text) 
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6.4 Discussion and Conclusion 

These studies clearly indicate that several indoles, endogenous to the brain and pineal, are capable 

of inhibiting MAO-A in vitro in a reversible fashion. The potency and time-dependency of each 

indole tested is summarized in Table 6.1, including non-radioisotopic or cold 5HT. Results for 

5HT were obtained from section 5.3. Although 5HT and tryptamine are MAO-A substrates, by 

competing with [14C]5HT they effectively act as competitive inhibitors. Comparing the inhibitory 

potencies of the indoles with respect to 5HT allowed for SAR studies. The rank order of potency 

was as follows: 5MT » 5MTOH > tryptamine » 5HT > MEL> 5HTOH » NAS > 5HIAA "., 

5MlAA. 

The active site of MAO is proposed to comprise two domains, the substrate binding site and a 

pocket housing the FAD moiety (Singer and Ramsay, 1995). The exact nature of the substrate 

binding site is still elusive, but it appears that the 3-dimensional conformational shape and the 

stereoelectronic and steric requirements of the catalytic sites of MAO-A and -B differ. For 

example, the fact that MAO-B favours more hydrophobic substrates is supported by hydropathy 

plots of the protein (Singer and Ramsay, 1995). One approach for modeling is the recognition that 

5HT receptors and MAO-A share 5HT as a selective ligand. In both cases, 5HT must be cationic 

for binding, by protonation of the free amino group (NH3+) at physiological pH. Computational 

modeling and site-directed mutagenesis of the 5HT2A has led to the identification of key amino 

acids for the binding of 5HT and structural analogues (Sealfon et at., 1997; Wang et at., 1993). 

Serine residues co-ordinate with hydroxyl groups and the indolic N-9. An aspartate residue acts as 

a counterion, interacting with the protonated amine, which is reinforced by a further serine 
~ 

residue. Similar residues may be required for the positioning of 5HT in the substrate binding site 
I 

of MAO-A (Figure 6.12). 

Computer-modeling of MAO substrates and inhibitors reveals that a common arrangement 

includes an aromatic ring with an amino group located in the ring plane. The distance between the 

center of the nitrogen and the ring is between 0.5 and 0.55 nm (Medvedev et al., 1995). This is 

consistent with the structure of tryptamine and 5HT. More specific to this thesis, structure-activity 

modeling with several types of reversible indole-based compounds has also contributed some 

basic rules to understanding the MAO active site. Indole itself has moderate inhibitory potency 

(lCso value ~ 100-200 ~) and is two-fold more selective for MAO-B than -A (Medvedev et at., 

1995). Typically substitution on the indole ring enhances inhibitory potency, with isoform 

selectivity depending on the nature of the substituent. 
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Figure 6.12: Proposed model for the substrate binding site of MAO-A. 

Insertion of oxo group(s) into the indole ring, particularly at the 3-position, increases potency and 

selectivity towards MAO-B and not MAO-A. For example, indole-2,3-dione (isatin) > oxindole > 

indole. In contrast, 5-hydroxyisatin is a potent (ICso value ~ 8 ~M) and selective inhibitor of 

MAO-A. Additionally, increased potency and selectivity for MAO-A required co-planar 

substituents at C2 of the indole ring, whereas MAO-B inhibitors require electron-donating groups 

in the same position (Medvedev et al., 1995). Substitution of the indole ring typically produces 

time-independent, reversible inhibitors of micromolar potency. In contrast, ring embedding of the 

primary amine, as seen in p-carbolines or the pyrazinocarbazole derivatives, produces 

competitive, reversible inhibitors of nanomolar or low micromolar potency (Udenfriend et al., 
~ 

1958; Ho et al., 1968; Medvedev et al., 1994, Kim et at., 1997). 
J 

Fully aromatic p-carbolines and dihydro-derivatives are very potent MAO inhibitors with ICso or 

K; values ranging from 5 nM to 5 ~M. In contrast, a-carbolines are relatively inactive and 

tetrahydro-p-carbolines are several-fold less potent than the fully aromatic compounds. The 

potency of these harmala alkaloids is attributed to that fact that they contain elements of the 

substrate tryptamine substituted in the a-indole position and at the side chain nitrogen 

(Udenfriend et al., 1958; Ho et al., 1968). Subsequent studies on purified enzyme indicate that p

carbolines inhibit both MAO-A and -B, but are more selective for MAO-A by at least two orders 

of magnitude (Kim et al., 1997). 
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Typically, substitution in the benzene ring or at C-2 in the pyridine ring does not alter degree of 

inhibition significantly. The ring-embedded N-2 must be basic to ensure inhibition and thus 

acetylation of this group decreases inhibition. N-methylation of l3-carbolines and dihydro

derivatives has no effect on inhibitory potency, but in general I-methyl and 7-methoxy 

substituents increased potency (Kim et at., 1997). In contrast, N-methylation ofN-9 in the indole 

ring of tetrahydro-l3-carboline produced a potent and competitive inhibitor of MAO-A. This is 

attributed to increased binding to the enzyme by van der Waals forces and hydrophobic bonding 

(Ho et at., 1968). Thus harmine, 2-methylharminium, 2,9-dimethylharminium and harmaline were 

the most potent inhibitors of purified MAO-A with ~ values in the low nanomolar range. Cationic 

2,9-dimethyl derivatives are also good inhibitors, in keeping with the importance of the positive 

charge in binding to MAO-A (Kim et al., 1997). 

The micromolar range of inhibitory potencies of the indoles tested here are consistent with that 

seen for substitutions on the indole nucleus without ring-embedding of the free amine. Only 5MT, 

5MTOH and tryptamine approached the potency of ring-embedded indoles. Certain parallels can 

be drawn with the results obtained in the present study. The following represents the main features 

arising from consideration of the SAR of the tested indoles : 

(i) tryptamine was more potent than 5HT. 

(ii) 5-methoxyindoles were more potent inhibitors than their corresponding 5-hydroxyindoles: 

5MT > 5HT, MEL > NAS, and 5MTOH > 5HTOH 

(iii) acetylation of the free amino group in the side-chain decreases inhibitory potency, possibly by 

steric hindrance. 

(iv) substitution of the free amino group with an alcohol group (CH20H) enhanced inhibitory 

potency, whereas a carboxyl group (COOH) markedly reduced potency. 

I 

Tryptamine is a non-selective substrate, common to both MAO-A and -B (Fowler et aI., 1978; 

Garrick and Murphy, 1982). 5-Hydroxylation of tryptamine to 5HT produces a shift in selectivity 

toward MAO-A, similar to that seen for 5-hydroxyisatin. It is has been proposed that 5-

hydroxylation of tryptamine or isatin induces a more favourable fit in the active site. 

Alternatively, if the indole nucleus binds to an electron-poor locus of the enzyme in a charge 

transfer complex, an electron-donating group such as an hydroxyl may enhance binding (Ho et at., 

1968; Medvedev et al., 1994). On the basis of the 5HT receptor model, however, the 5'-hydroxyl 

group of 5HT would be expected to interact with an electron rich area, namely a serine residue. In 

the present study, tryptamine was more potent than 5HT and O-methylation of the 5'-hydroxyl 

group to produce 5-methoxyindoles increased inhibitory potency. For example, 5MT > 5HT > 
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tryptamine. This would suggest that inhibitory potency is related to the degree of hydrophobicity. 

This creates the problem that MAO-B is known to preferentially deaminate apolar substrates. The 

results presented in section S.3 established that the characteristics of the present MAO enzyme are 

consistent with MAO-A. These studies were performed on a crude enzyme preparation with MAO 

still inserted in the mitochondrial membrane. One suggestion would be that this environment may 

have differentially influenced the availability of the substrates. 

However, studies with purified MAO-A have confirmed that methoxy substituents can increase 

the inhibitory potency of /3-carbolines by several-fold, depending on the position of the 

substituent. Pinoline, a 6-methoxy-1,2,3,4-tetrahydro-/3-carboline, is a very weak inhibitor (Ho et 

at., 1968). The 6-methoxy group of harm ala alkaloids is equivalent to the S-methoxy group of the 

indoles tested here. In contrast, 6-methoxylated and 7-methoxylated /3-carbolines and dihydro-/3-

carbolines are potent inhibitors, although the 7-methoxylated derivatives are more potent. Thus 

site-specific methylation also increased inhibitory potency (Kim et at., 1997). The bulky and 

hydrophobic pyrazinocarbazole derivatives pirlindole and tertindole are also very potent and 

selective inhibitors of MAO-A. Typically, they have Ieso values in the nanomolar range for MAO

A and in the micromolar range for MAO-B (Medvedev et at., 1994). Thus it is proposed the 

increased potency of S-methoxyindoles for striatal MAO-A may be attributed to one or more of 

the following factors: van der Waals forces and hydrophobic binding; higher electron-donating 

potential of the S-methoxy group compared to the S-hydroxy group; and finally, an improved 

induced fit of the molecule in the active site due to the bulkier S-methoxy group. 

The other SAR noted in this study are consistent with the SHT2A receptor model (Sealfon et at., 
\ 

1997; Wang et at., 1993). Acetylation of the free amine will interfere with co-ordination with the 
I 

aspartate and serine residues due to steric hindrance. The alcohol group of 5HTOH can still 

interact with the serine residue that normally 'interacts with the free amine. In contrast, repulsion 

will occur between the anionic carboxyl groups of SHIAA and the aspartate residue, both 

deprotonated at physiological pH. The results for SHTOH suggest that this deaminated indole 

product may control MAO-A in vivo by feedback inhibition. SHTOH is normally the minor 

reaction product of MAO-A, compared to SHIAA, and was a weak, reversible inhibitor in vitro. 

However, a change in the oxidative state (NAD+/NADH ratio) of the tissue micro-environment or 

relative activities of alcohol dehydrogenase and aldehyde dehydrogenase may favour greater 

production of SHTOH. 
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Ultimately, SAR modeling for MAO will be limited until the 3-dimensional conformation of the 

substrate binding site can be ascertained from X-ray crystallography data on the purified enzyme 

(Singer and Ramsay, 1995). Presently, photoaffrnity labeling and site-directed mutagenesis has 

indicated that important structural differences must exist between the substrate binding sites of 

MAO-A and MAO-B (Chen et at., 1987; Hsu and Shih, 1988; Wu et ai., 1993). In this regard, it 

would have been informative to determine the lCso of each pineal indole for MAO-B using 

C4C]phenethylamine as the substrate. A comparison with the present ICso values for MAO-A 

would give an idea of the selectivity of an indolic inhibitor for each MAO isoform. Future studies 

should also aim to determine the inhibition dissociation constant (1<;), rather than the ICso values, 

and the nature of the inhibition (e.g. competitive, noncompetitive, uncompetitive or mixed 

competitive inhibition). In the present setup, the use of a substrate concentration considerably 

lower than the Km value would allow the detection of competition inhibition, but cannot establish 

for certain the nature of inhibition. Competitive inhibitors do not display time-dependency of 

inhibition. Thus, with regards to the nature of inhibition, the present results can only say for 

certain that 5MTOH was not a competitive inhibitor. 

Unfortunately, the lower substrate concentration utilized in the present study does not permit 

comparison of the present ICso values with those of other indolic inhibitors of MAO, such as the 

indole nucleus, isatin or J3-carbolines. For monosubstrate reactions, the ICso values of a 

competitive inhibitor depend on substrate concentration and can only be compared when 

calculated under identical assay conditions. Furthermore, the ICso value can only be correlated 

with Kj when the substrate concentration is several-fold higher than the Km. The same argument 

also applies for noncompetitive and uncompetitive inhibitors: the lCso value is only independent of 
\ 

substrate concentration when the latter is in excess of K". (Cheng and Prusoff, 1973). To 

circumvent this problem it would have been ideal to test a known indolic inhibitor of MAd, such 

as harmine, under the identical assay conditions employed here. 

During the time-dependency studies with 5MT and tryptamine, it was noted that the ICso values 

were higher after 60 min preincubation compared to 5 min. This is indicative of less inhibition 

with time and this was particularly apparent at low concentrations. A time-dependent inhibitor 

would typically show greater inhibition following a prolonged preincubation, as seen for 5MTOH. 

Preincubation means that the test drug was added prior to the substrate,namely C4C]5HT. 

Tryptamine is also a substrate, and thus can be metabolized by MAO-A during the preincubation 

period. This decreases the ability of tryptamine to subsequently compete with [14C]5HT, especially 

at low concentrations of the test indole. A similar pattern was not seen with cold 5HT, due to the 
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high Ieso value of this indoleamine. Thus if the presence of this temporal pattern can be used to 

delineate substrates, it is proposed, on the basis of these preliminary findings, that 5MT may be a 

novel substrate of MAO. 

5MT is simply an O-methylated derivative of 5HT with a primary amine freely accessible for 

oxidative deamination. Due to the structural similarity to 5HT, a similar reaction scheme is 

postulated here for 5MT (Figure 6.13). Briefly, it is proposed that oxidative deamination of 5MT 

produces 5-methoxyindoleacetaldehyde (5MIAL). This intermediate is then further oxidized to 

5MIAA or reduced to 5MTOH respectively by aldehyde dehydrogenase or alcohol dehydrogenase. 

This scheme would require that the two latter coupled enzymes can utilize 5MIAL as a substrate. 

If conclusive proof can be obtained that 5MT is a novel MAO substrate, this has some important 

implications. Firstly, it strengthens the above argument that 5-methoxylation may enhance the 

affinity of both indole substrates and inhibitors for MAO-A. Secondly, if the proposed reaction is 

accepted, catabolism of 5MT may explain a novel and alternative biosynthetic origin of 5MIAA 

and 5MTOH in the pineal gland. 5MIAA and 5MTOH are currently believed to arise through the 

O-methylation of 5HIAA and 5HTOH, respectively, by HIOMT. Oxidative deamination of 5MT 

by MAO may represent an alternative source of these indoles. The relative production of 5MIAA 

and 5MTOH by HIOMT and MAO may then also depend on the affinity of 5HIAA and 5HTOH 

for HIOMT vs. the affinity of 5MT for MAO. 

The presence of several potential MAO inhibitors in the pineal is likely to have implications for 

the modeling of pineal indole biosynthesis. As discussed in section 3.4, one disadvantage of the in 

situ radiometric pineal organ culture technique is the build up of radiolabeled indoles in the 
~ 

culture medium. Some evidence has been presented for a negative feedback control of pineal 

indole biosynthesis by the secreted indoles, especially at the level of HIOMT (Trentin/ et at., 

1982; Morton, 1990; Yanez and Meissl, 1995}. The current results suggest that MAO activity may 

represent a further target of paracrine control of the pineal gland. Thus it is interesting that the 

nocturnal elevation in the pineal levels of MEL, shown here to be a MAO-A inhibitor, is 

correlated with decreased MAO activity in the pineal during the scotophase compared to the 

photophase when MEL biosynthesis is basal (see Figure 3.3). The endogenous MAO-A inhibitor 

Tribulin is also postulated to be responsible for the increases in MEL biosynthesis associated with 

stress or anxiety (Oxenkrug and McIntyre, 1985). 
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Figure 6.13: Proposed reaction scheme for 5MT as a MAO substrate. 

In summary, MEL is a time-independent, reversible inhibitor of MAO-A in vitro, although a 

relatively weak one. The extension of this finding to endogenous MEL could have enormous 

consequences for understanding the neurochemical effects of this hormone. For ex\imple, MAO-A 

in vivo selectively deaminates 5HT and NA (Johnston, 1968; Garrick and Murphy, 1982). Yor this 

reason, the new generation of antidepressants are based on a class of reversible inhibitors of 

MAO-A (known as RI.M.As) that include moclobemide (Aurorix®) and brofaromine. On the 

basis of the present results, MEL could be assigned to this class of antidepressants. However, 

phototherapy and studies with MEL antagonists and other classes of antidepressants (e.g. NA or 

5HT selective reuptake inhibitors) suggest that MEL may actually worsen the clinical picture of 

depression (Lewy et ai., 1987; Miles and Philbrick, 1988; Dubocovich et ai., 1990; Waldhauser et 

ai., 1993). 
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Future studies also need to ascertain whether MEL can inhibit MAO-B. In primates, including 

humans, DA is selectively metabolized by MAO-B in the basal ganglia rather than MAO-A, 

unlike the rat brain (Garrick and Murphy, 1982; Grimsby et ai, 1990; Naoi and Maruyama, 1993; 

Juorio et al., 1994). MAO-B activity is one of the most important factors involved in the nigro

striatal cell death associated with Parkinson's disease (Naoi and Maruyama, 1993). Firstly, by 

catabolizing DA, the enzyme contributes to the progressive loss of this catecholamine, which is a 

hallmark of the disease pathogenesis. Secondly, MAO is the prime generator of hydrogen peroxide 

in the basal ganglia, which can be converted to cytotoxic hydroxyl radicals in the presence of 

transition metals by the non-enzymatic Fenton reaction. Ferrous iron is abundant in the substantia 

nigra pars compacta and thus a current hypothesis attributes the selective neurodegeneration of 

these DA neurons to oxidative stress induced by toxic radicals (Greenfield, 1992). Surviving 

neurons are believed to compensate for the neuronal death by increasing the release of DA, which 

has an extra-synaptic distribution. This excess DA is then further catabolized or auto-oxidized in 

the presence of hydrogen peroxide to the selective dopaminergic neurotoxin 60HDA. Similarly, 

MAO-B, in particular, is responsible for the bioactivation of several other DA-selective 

neurotoxins, including MPTP and isoquino1ines (Greenfield, 1992; Naoi and Maruyama, 1993). 

MAO-B converts MPTP to I-methyl-4-pheny1pyridinium ion (MPP+), the true toxic species of the 

neurotoxin, which induces nigro-striatal cell death through a radical mechanism. In turn, MPP+ 

and several analogs are reversible, competitive product inhibitors of both MAO-A and MAO-B 

(Singer and Ramsay, 1995). 

The postulated role of MEL as a neuroprotectant in neurodegenerative diseases such as 

Parkinson's disease has mostly been attributed to the radical scavenging and anti-oxidative 

properties of the hormone (Reiter et ai., 1995). For example, Acuna Castroviejb et al. (1996) 

found that MEL is protective against MPTP-induced striatal and hippocampal lesions aJtd the 

authors contributed this to MEL's ability to sc<\venge hydroxyl radicals. Alternatively, it is equally 

feasible that this effect was due to an inhibition of MAO, and thus the bioactivation of MPTP, by 

MEL. The MAO-B selective inhibitor L-deprenyl has been shown to be an effective therapeutic 

agent in Parkinson's disease (Singer and Ramsay, 1995). The neuroprotective effects of this 

inhibitor have been attributed to a slowing of the progressive loss of DA and a reduced production 

of reactive oxygen species and 60HDA. In the light of the present studies, a similar argument 

could be made for MEL. 
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Chapter 7 

Catechol-O-methyltransferase: 
Characterization and Optimization 

7.1 Introduction 

COMT activity of the rat corpus striatum was quantified by an in vitro micro-radio enzymatic 

assay modified from McCaman (1965), Parvez and Parvez (1973) and Ziircher and Da Prada 

(1982). 

7.1.1 PRINCIPLE OF COMT ASSAY 

The principle of the assay is based on a direct aqueous-organic solvent extraction system to 

separate the radio labeled reactants and products. The reaction scheme is outlined in Figure 7.1. 

Briefly, using [14C]SAM as the methyl donor, the exogenous substrate DA is O-methylated by 

Mg2+-dependent COMT to produce [14C]3MT and the co-product S-adenosylhomocysteine (SAH). 

Alkalization of the reaction mixture with borate buffer (PH 10.0) terminates the enzyme reaction 

and deprotonates the free amino group of 3MT. Thus p4C]3MT becomes nonpolar, whereas 

[14C]SAM remains charged. This allows for efficient extraction of p4C]3MT with toluene:isoamyl 

alcohol (3:2 v/v), with minimal extraction of C4C]SAM. The analyte is then quantified by liquid 

scintillation spectroscopy. Although p4C]3MT is the predominant product, other minor 0-

methylated products may also be formed (e.g. 4-methoxytyramine) and extracted. Furthermore the 

presence of [14C]3MT in the analyte was not verified. Thus the term [14C]0-methYlated product 

formation was employed to describe COMT activity. I 

Several HPLC techniques, coupled to ultraviolet (UV), fluorometric, radiochemical or 

electrochemical detectors, and gas chromatography techniques have been employed more recently 

for the assay of COMT activity (Tilgmann and Ulmanen, 1996). These techniques have improved 

the sensitivity and specificity of analysis, allowing the simultaneous quantification of substrates 

and all O-methylated products. However, these techniques can only be applied to relatively pure 

samples following a clean-up step (e.g. deproteinization, removal of endqgenous catechols). 

Furthermore, in the case of electrochemical detectors, chemical treatment of the O-methylated 

products may be required to allow detection (Tilgmann and Ulmanen, 1996). The limit of 

sensitivity for HPLC techniques is adequate for analysis of COMT activity from tissue which 
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contain large amounts of the enzyme (e.g. the liver), but is often deficient for the low activity of 

COMT in the brain. Thus the increased sensitivity of radiochemistry and the ease of solvent 

extraction was opted for the analysis of striatal COMT activity. Furthermore, the use of DA as the 

exogenous substrate allows for the modeling of the potential fate of endogenous DA in the corpus 

striatum. 

Dopamine 
(DA) 

COMT 

Mg2+ 

N~N 
ll_.~_.jJ 

N N + * H2-S- CH3 
I 
CH2 
I 
CH2 
I 
CHNH2 
I 
COOH 

S-Adenosylmethionine 
(SAM) 

* = Site of radiolabel 

3-Methoxytyramine 
(3MT) 

H2-S 
I 

o 

CH2 
I 
CH2 
I 
CHNH2 
I 
COO¥ 

S-Adenosylhomocysteine 
(SAD) 

Figure 7.1: Reaction scheme for the in vitro radioenzymatic COMT assay. 

I 

This chapter assessed the applicability of the radio enzymatic assay described here to the analysis 

of COMT activity of the rat corpus striatum. Of particular importance was the flexibility of the 

assay for comparison between in vitro and in vivo studies performed on small quantities of tissue 

sample. This required full characterization of the COMT enzyme and optimization of the assay 

design. The ability of MEL to modulate striatal COMT activity in vitro was also investigated. 
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7.2 Materials and Methodology 

7.2.1 CHEMICALS AND REAGENTS 

The radiochemical S-adenosyl-L-[methyl-14C]methionine (SAM; specific activity 56 mCilmmol) 

was obtained from Amersham International (Amersham, UK). DA HCl and MEL were purchased 

from Sigma. Analytical grade toluene and isoamyl alcohol, and MgC1206HzO were obtained from 

UniVar® (Saarchem-Holpro Analytic, South Africa), SAM hydrogen sulphate from Boehringer 

Mannheim, and 3,5-dinitrocatechol (OR-486) from RBI (USA). All other chemicals and reagents 

were purchased from local commercial sources and were of the highest purity available. All buffers 

and reagents were prepared in MilliQ water. 

7.2.2 TISSUE PREPARATION AND STORAGE 

Unless otherwise stated, all COMT optimization studies were performed on tissue samples 

prepared from the striata of animals sacrificed at mid-photophase (l2hOO). The striata were 

dissected, pooled and stored as described in section 2.2. Stability studies showed that whole tissue 

or the cytosolic/microsomal fraction in 0.32 M sucrose can be stored at -20°C or -70 °C for 

several months with minimal loss of COMT activity. This is consistent with the fact that the 

presence of reducing agents, such as cysteines, markedly stabilize the COMT enzyme during 

purification (Tilgmann and Ulmanen, 1996). 

7 .2.3 ASSAY REACTION MIXTURE 

All reagents were prepared in the assay buffer, 50 roM Tris-Hel (pH 7.9). This buffer was chosen 

as it exhibits negligible binding of Mg2+. A standard reaction mixture, with a total volume of 500 
I 

Ill, comprised in the following order: 145 III assay buffer, 50 III MgC12 (l00 roM stock solution), 

100 III DA (5 roM stock solution), 200111 enzyme fraction, and 5 III P4C]SAM stock solution 

(0.025 /lCi / assay tube). This gives a fmal concentration of ± 893 nM (0.45 nmoles) for 

C4C]SAM. 

7.2.4 ASSAY PROCEDURE 

Briefly, all components, except C4C]SAM, were prepared in a glass extraction vial on ice in the 

order listed above. The reaction mixture was then preincubated for 10 min in a 37°C water bath, 

with gentle shaking, to allow thermal equilibration. The reaction was initiated by the addition of 

5 III [14C]SAM and incubated at 37°C for 60 min. The reaction was terminated by addition of 
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500 ~l ice-cold 50 mM borate-KCI buffer (PH 10). After 15 min, this was followed by the addition 

of 3 ml toluene:isoamyl alcohol [3:2 v/v] and vortexed for 60 s. Samples were then centrifuged at 

3000 rpm for 10 min [Selecta Mixtasel benchtop centrifuge] and 2.4 ml of the solvent extracted 

and quantified by liquid scintillation spectroscopy. A zero-time blank was created by adding the 

borate buffer prior to the C4C]SAM. A further control involved determining activity in the absence 

of exogenous substrate and was designated as "no substrate" activity. 

7.2.5 EXPERIMENTAL DESIGN 

The composition of the reaction mixture represents optimum values that were experimentally 

determined as described below. Typically, one component (the dependent variable) was allowed to 

vary, while the independent variables were fixed at the optimum values. The volume of assay 

buffer was adjusted to compensate for any changes in the composition of the reaction mixture. By 

necessity, each experiment is presented in a logical linear fashion, but the design of one 

experiment was dependent on the results of several other experiments. 

(i) Subcellular Distribution Studies 

The following subcellular fractions were prepared as described in section 2.3: 5% (w/v) total 

homogenate, 5% (w/v) nuclei/cell debris, 4% (w/v) mitochondriallysosomes and 5% (w/v) 

cytosol/microsomes. COMT activity and specific activity of each fraction was determined using 

200 ~l aliquots under conditions of maximal induction (1 mM DA and 10 mM MgCI2). All 

subsequent experiments were performed on the 5% (w/v) cytosolic/microsomal fraction. 

(ii) linearity with Enzyme Content 

COMT activity was determined for 50, 100, 150, 200 and 250 ~l aliquots of a 5% /w/v) 

cytosolic/microsomal fraction. 

(iii) linearity with Assay Incubation Time 

The time-dependency of COMT specific activity was determined by terminating the assay reaction 

at fixed time intervals ofO, 15,30,45,60, 75 and 90 min. 
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(iv) Kinetic Analysis: Dopamine 

Substrate kinetics of COMT were determined by varying DA to give fmal concentrations of 0.05, 

0.1,0.5,1.0,2.0,3.0 and 5.0 mM. The Michaelis-Menten kinetics were further analysed by the 

Hanes-Wolf plot (SN vs. S), where the substrate (S) is the DA concentration (mM) and V is the 

enzyme activity (DPM/60 minl500 Ilg protein). 

(v) Mg2+. dependency 

The induction of COMT activity by Mg2+ was investigated by varying MgCl2 to gIve final 

concentrations ofO.O, 0.5, 1.0,2.0,5.0,10.0, 15.0,20.0 and 30.0 mM. 

(vi) Kinetic Analysis: SAM 

Co-factor kinetics were analyzed through competition between non-radioisotopic SAM and 

C4C]SAM. The final concentration of cold SAM was varied from 10-3 to 10-4 M and the 

concentration of [14C] SAM fIxed at 893 nM. 

(vii) Inhibition by OR486 

The inhibitory potency of OR486 was determined in vitro with respect to a near-saturating 

concentration of DA (1 mM). An inhibition profile was generated by varying the fInal 

concentration ofOR486 from 10-3 to 10-10 M. The preincubation period with OR486 was limited to 

the thermal equilibration period of 5 min. 

(viii) Inhibition by Melatonin 

The potential in vitro inhibitory effect of MEL on basal and Mt+ -induced COMT activity was 
\ 

determined with respect to a sub-saturating concentration of DA (200 IlM). This concentration 
I 

approximates the apparent K", value ~ 185 IlM calculated from Figure 7.5. MgCl2 was present at a 

fInal saturating concentration of 10 mM to allow maximal induction. Basal activity was 

determined in the absence of exogenous MgCl2. A stock solution of MEL was prepared in assay 

buffer and ethanol such that the highest fInal concentration of ethanol in the assay reaction 

mixture was 0.2% (v/v). MEL was added to give final concentrations of 0.25, 0.50, 0.75 and 1.0 

mM. Control activity was determined in the presence of 0.2% (v/v) ethanol. MEL was 

preincubated with the enzyme for 30 min prior to the initiation of the reaction. 
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7.2.6 DATA AND STATISTICAL ANALYSIS 

The DPM data was normalised for 3 m1 of the extraction solvent and corrected for the "no 

substrate" activity. eOMT activity is expressed as [14CJO-Methylated product formation and is 

represented by the units DPMl60 min. Specific activity is expressed as DPM/60 minl500 !!g 

protein. Data is graphically presented as mean ± SEM with the sample size (n) depending on the 

experiment. ICso values were calculated from inhibition curves and Dixon plots as outlined in 

section 5.2.6. Data was converted to the reciprocal of each mean value, (DPMl60 min/500 !!g 

proteintl, for the Dixon plot. Linear and non-linear regressions were performed as described in 

section 2.7. 

7.3 Results 

(i) Subcellular Distribution Studies 

The subcellular distribution of COMT activity is presented in Figure 7.2. The majority of COMT 

activity and specific activity was observed in the cytosolic/microsomal fraction, with comparable 

levels found only in the total homogenate. Only trace amounts of activity were detected in the 

nuclear/cell debris and mitochondriallIysosomal fractions. The crude cytosolic/microsomal 

fraction represents a "purer" enzyme preparation than the total homogenate, giving a truer 

reflection ofeOMT specific activity. The 5% (w/v) cytosoliclmicrosomal fraction was used for all 

subsequent eOMT assays. 

(ii) Linearity with Enzyme Content 
\ 

Figure 7.3 shows a linear relationship (x2 = 0.9915, P < 0.0001) between COMT activity and 
I 

homogenate volume over the range tested for a 5% (w/v) cytosolic/microsomal fraction. An 

aliquot of 200 !!l was chosen as the standard homogenate volume for all subsequent studies. 

(iii) Linearity with Assay Incubation Time 

The time-dependency ofCOMT specific activity (Figure 7.4) was linear for the first 45 min of the 

assay reaction (x2 = 0.973, P = 0.0135) and tapered offby 60 min (non-linear x2 = 0.997). A plateau 

was observed between 60 and 75 min, with a substantial decrease in activity by 90 min. A fixed

time of 60 min was chosen as the standard reaction time for all eOMT assays. 
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Figure 7.2: Subcellular distribution of striatal COMT activity. [Data represents mean ± SEM 

(n = 4); *: Activity = DPM/60 min, Specific activity = DPM/60 minl500 llg protein] 
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Figure 7.3: COMT activity as a function of enzyme content. [Data represents mean ± SEM 

(n = 4)] 
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Figure 7.4: COMT activity as a function of assay incubation time. [Data represents mean ± 

SEM (n= 4)] 

§ 15000.-------------------------------------. 
-I-' ,--.. 

C1l c E .
L OJ 
0-1-' 

LL e 
Q. 

-I-' 

~ g' 10000 
"0 
00 
LO 
o..lJl 
"0' 

OJ c 
"cilE 5000 
>-0 
:51.0 
OJ' 

::E::E 
10.. 
00 
U''--' 

La 15 2.0 2.5 3.0 
5 (11M) 

~ OL-----~----~------~----~------~~ 
~ 0 234 5 

Dopamine Hel concentration (mM) 

I 
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(iv) Kinetic Analysis: Dopamine 

The relationship between DA concentration and COMT specific activity is presented in Figure 7.5. 

A classic monophasic binding isotherm (r = 0.988), consistent with a single class of sites, was 

obtained. Near-saturating conditions were obtained between 1 and 3 mM DA, with a substantial 

decrease in activity seen at 5 mM DA. Kinetic analysis of the saturation curve and the Hanes-Wolf 

plot (Figure 7.5 Insert; r = 0.999, P < 0.0001) produced an apparent K", value ~ 185 11M. Unless 

otherwise stated, a near-saturating concentration of 1 mM DA was employed as the standard 

substrate condition. 

(v) Mg2+. dependency 

Some minimal activity with 1 mM DA was observed in the absence of exogenous MgCI2. This 

was attributed to basal, Mg2+-independent activity or due to induction by trace amounts of 

endogenous Mg2+ present in the crude enzyme fraction. Data was accordingly corrected for this 

"background" activity. A biphasic response to Mi+ concentration was observed (Figure 7.6). 

Initially, the "dose-response" curve increased non-linearly (r = 0.994) in a monophasic fashion 

with maximal induction occurring at 10 and 15 mM MgCI2. Higher concentrations of MgCl2 (20 

and 30 mM) resulted in inhibition ofCOMT activity. A saturating concentration of 10 mM MgCl2 

was used for all COMT assays to allow maximal induction. 
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Figure 7.6: Mg2+-dependency of COMT activity. [Data represents mean ± SEM (n = 4); Data 

was corrected for basal activity in the absence of Mi+] 
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(vi) Kinetic Analysis: SAM 

Competition by non-radioisotopic SAM was evident as a monophasic sigmoidal curve 

(~ = 0.997), consistent with a single class of binding sites (Figure 7.7). This generated an ICso 

value ~ 4.5 !J.M. Similarly, the Dixon plot (Figure 7.7 Insert; ~ = 0.9676, P = 0.0025) produced an 

ICso value ~ 7 !J.M. 
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Figure 7.7: The effect of varying concentrations of non-radioisotopic SAM on COMT 

activity. Insert: Dixon Plot. 

(vii) Inhibition by OR486 

The structure of OR486 (3,5-dintrocatechol) is shown in Figure 7.8. An in vitro inhibition profile 
.I 

for OR486 is presented in Figure 7.9. A typic~ monophasic sigmoidal curve (~ = 0.994) was 

obtained, consistent with a single class of sites. Analysis of the sigmoidal curve and the Dixon plot 

(Figure 7.9 Insert; ~ = 0.9999, P < 0.0001) generated an ICso value ~ 35-40 nM. 
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Figure 7.8: Structure of OR486 (3,5-dintrocatechol). 
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Figure 7.9: Inhibition of COMT by OR486. Insert: Dixon Plot. [Data represents mean ± SEM 

(n = 5)] 

(viii) Inhibition by Melatonin 

MEL (0.0 - 1.0 mM) in vitro had no effect on basal (Mg2+-independent) or Mg2+-induced COMT 

activity (Figure 7.10) with respect to sub saturating DA (200 l-LM), following a 30 min 

preincubation period. Since control activity was not sensitive to 0.2% (v/v) ethanol (data shown), 

the control is depicted as the vehicle-treated activity. 
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Figure 7.10: The in vitro effect of MEL on basal and Mi+·induced COMT activity. [Data 

represents mean ± SEM (n = 5)] 

7.4 Discussion and Conclusion 

Cell fractionation and immunohistochemical studies of the rat brain have clearly show that MB

COMT is localized to plasma membranes andlor RER, whereas S-COMT is distinctly cytosolic 

(Tilgmann et at., 1992; Karhunen et at., 1995a and 1995b; Lundstrom et at., 1995). The results of 

the subcellular fractionation study presented here (Figure 7.2) are consistent with this proflie. The 

majority of COMT activity was found in the cytosolic/microsomal fraction followkg differential 

centrifugation. This fraction contains the soluble fraction arising from the cytosol, including 

soluble proteins and low density organelles .such as plasma membranes and RER. Thus it is 

proposed that this fraction contains both MB- and S-COMT. The similar activity obtained in the 

total homogenate and the cytosol/microsomal fraction is indicative of the efficiency of the 

homogenization and fractionation process with no apparent loss of important co-factors inter alia. 

The trace amounts of activity seen in the nuclear/cell debris and mitochondrial/lysosomal fractions 

probably represent "contaminants". Grossman et at. (1985) claimed that COMT was associated 

with the outer mitochondrial membrane, but this has been negated by a lllore sophisticated 

fractionation study (Tilgmann et al., 1992). Some immunoreactivity to MB-COMT was also 
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observed along the outer mitochondrial and nuclear membranes by Karhunen et al. (1995a; 

1995b), but the authors argue that this may simply reflect diffusion of the reactive product. 

All further studies were performed on a 5% (w/v) cytosol/microsomal fraction, which gives a truer 

reflection of specific activity. Subsequently, it must be noted that COMT activity will refer to a 

combination of both MB- and S-COMT, without reference to the relative contribution of each 

isoform. MB-COMT is believed to be the neuronally important isoform. However, preliminary 

studies (data not shown) showed very low activity of MB-COMT in the microsomal fraction 

relative to the amount of tissue employed. For this reason, it was believed that the additional 

isolation steps that would be required were not warranted. This simple, but rapid homogenization

fractionation protocol provides an adequate and consistent source of both COMT isoforms, with 

minimal enzyme loss and variability between striatal samples. This is important for comparison 

between samples, especially with regards to in vivo studies. 

The in vitro micro-radiometric assay designed and employed here conforms to the following 

criteria: specificity; linearity with striatal enzyme content; linearity with reaction time; and 

saturable kinetics with respect to substrate and co-factors. The results also confirm that the 

enzyme being assayed in the cytosolic/microsomal fraction is COMT. Kinetic analysis of the 

substrate DA revealed a K", 'iIZ 185 f..I.M. Reportedly, MB-COMT has a several-fold higher affinity 

for substrates than S-COMT (Rivett et al., 1983; Lotta et al., 1995; Borges et al., 1998). MB

COMT is capable of metabolizing low concentrations of DA and thus is considered the neuronal 

and functionally important isoform in the striatum (Tenhunen and Ulmanen, 1993). The present 

study with DA produced a monophasic Michaelis-Menten plot (Figure 7.5) consistent with a 

single class of sites. It is possible that the concentration range employed did not allow for 

resolution of the differential affinity of the two COMT isoforms for DA, masking ~e contribution 

of MB-COMT. However, MB-COMT is known to represent a minor proportion of th5 total 

enzyme. Indeed, as stated above, preliminary studies found very low COMT activity in the . 
microsomal fraction of striatal tissue. Thus the present K", value for DA is attributed to S-COMT. 

This also indicates that the latter isoform is abundant in the striatum and may actually be 

important in regulating dopaminergic neurotransmission. The ICso value for cold SA11 (ca. 5-7 

f..I.M) is consistent with the fmding that a fmal concentration of 300-500 f..I.M SAM is typically 

saturating for COMT (Byrne and Tipton, 1996; Borges et al., 1998). Although the fixed 

concentration of e4C]SAM (ca. 890 nM) employed was sub-saturating, the results obtained here 

indicate this concentration was not limiting due to the low activity of striatal COMT. 
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A decrease in COMT activity was observed after a prolonged reaction time and at high DA 

concentrations (5 mM). Possible reasons could be substrate inhibition, end-product inhibition or 

time-dependent inhibition by MgCI2• Borges et al. (1998) reported that normetanephrine, the 0-

methylated product of NA, did not influence liver COMT activity with AD as the substrate. This 

in itself does not exclude the possibility that 3MT may inhibit striatal COMT with DA as the 

substrate. However, Borges et al. (1998) did observe that the demethylated product SAH inhibited 

the enzyme with respect to both SAM and DA. 

Finally, the enzyme was potently inhibited by the selective COMT inhibitor, OR486. Catechols 

with electron-withdrawing substituents, particularly N02 groups, represent a second generation of 

more potent (nanomolar range) and highly selective COMT inhibitors (Byrne and Tipton, 1996). 

In particular, OR486 is a potent competitive inhibitor of COMT displaying tight-binding kinetics. 

OR486 is reported to inhibit recombinant human S-COMT and MB-COMT in vitro with K; values 

of ± 8 and ± 24 nM respectively (Byrne and Tipton, 1996). In the present study, OR486 dose

dependently inhibited Mg2+-induced COMT activity, with respect to DA, in a monophasic manner 

with an ICso Ri 40 nM. The small discrepancy between this value and the published K; values can 

be attributed to the following: the use of crude enzyme fraction containing both COMT isoforms; 

the use of near-saturating concentration of substrate, DA; and the calculation of an ICso value 

rather than K j • Furthermore, the low resolution of the OR486 concentration range possibly did not 

allow for separation of the effects on S- and MB-COMT, explaining the monophasic response 

observed. Under the specified conditions, MEL in vitro had no direct effect on basal or Mg2+_ 

induced striatal COMT activity, neither inhibitory nor stimulatory. Preincubation with MEL for 30 

min excludes the possibility that MEL had time-dependent inhibitory or stimulatory effects. 
~ 

I 
In conclusion, the radioenzymatic assay employed here is sensitive, reliable, extremely 

reproducible, and easy to use for small qUantities of striatal tissue. The assay shows that 

substantial Mi+ -dependent COMT activity is present in the corpus striatum of the rats, which can 

be successfully isolated and detected. Characterization of COMT and optimization of the assay 

allowed for adaptation of this protocol for in vivo studies. Of further importance for the in vivo 

studies is that both MAO-A and COMT activity can be assayed in the same striatal sample. 
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Chapter 8 

In Vivo Melatonin Administration Studies 

8.1 Introduction 

The potential modulation of striatal dopaminerigc function and behavioural output by MEL in vivo 

can be investigated by several strategies. These include assessment of circadian rhythmicity, 

photoperiod or light manipulation, chronotypic in vivo MEL administration, and pinealectomy. 

Results presented in sections 6.3 and 7.3 have shown that MEL is a reversible, time-independent 

inhibitor of striatal MAO-A activity in vitro, but does not have a direct in vitro effect on Mg2+_ 

dependent COMT activity. The potential role of MEL as an endogenous MAO-A inhibitor, as seen 

for the indolic derivative isatin (Yuwiler, 1990), is a strong motive for determining if MEL also 

regulates striatal MAO in vivo. Furthermore, MEL in vivo may have effects on COMT not seen in 

the in vitro situation. 

A few previous studies have shown that the in vivo effect of MEL on MAO and COMT is highly 

tissue-specific (Urry and Ellis, 1975; Esquifmo et al., 1994). To date, no studies have been 

extended to the corpus striatum. Thus this chapter ascertained the ability of MEL to regulate 

striatal MAO-A and COMT by two strategies: circadian rhythmicity studies, and administration of 

exogenous MEL. Plasma and tissue MEL levels are circadian in nature, with peak amplitude 

coinciding with the scotophase (Reiter, 1991). Thus day-night variations in enzyme activity may 

reflect an influence of the prevailing MEL concentration. Likewise, the phase-dependent level of 
~ 

endogenous MEL can be altered by administering the hormone. . 
I 

Several parameters need to be carefully considered in the experimental design when administering 

a drug in vivo, and this is especially true for MEL. Potential parameters include dose, route of 

injection (e.g. i.p. vs. s.c.), choice of vehicle, duration (e.g. acute, sub chronic, chronic) and 

chronotypic effects. Chronotypism means that there is a temporal variation in the sensitivity or 

responsiveness of a neural substrate to a drug (Cahill and Ehret, 1981). Numerous effects of MEL 

show this critical dependence on the timing of the light:dark cycle. Reiter (1987) proposed two 

hypotheses to explain how the MEL information is decoded by target tissues. The "Duration 

Hypothesis" states that the duration of the nocturnal MEL signal is important, as it is proportional 

to the length of the scotophase. The "Internal Coincidence Hypothesis" is more informative as it 
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can explain the cbronotypism of MEL's action. A response is only observed when the peak of 

MEL coincides with a "circadian window" of responsiveness to MEL. In part, this responsiveness 

is most likely due to variations in the density of the high-affinity MEL receptors. For example, 

MEL administration during the late photophase, but not the early photophase, results in gonadal 

regression (Tamarkin et al., 1976; Reiter, 1988). A lack of response, defined as a "refractory 

period", would then represent a lack of coincidence of between the MEL message and the window 

of responsiveness. Furthermore, the duration of MEL administration is also an important variable 

determining the responsiveness to the hormone. For example, Tamarkin et al. (1976) and Moreno 

et al. (1992) report that the anti-reproductive effect of MEL is only seen after 9 weeks 

administration. 

In this study, the plasma and tissue levels of endogenous MEL were not measured. Therefore it 

was not possible to ascertain whether exogenous MEL administration altered the amplitude of 

endogenous MEL levels and/or induced a phase-shift in the endogenous MEL rhythm. For this 

reason, the in situ organ culture technique was employed to assess the functional state of the 

pineal, and thus by inference, the state of endogenous MEL synthesis following MEL 

administration during the photophase and scotophase. Furthermore, this will allow determination 

of the potential of MEL to exert feedback control on its own biosynthesis by the pineal. 

Numerous reports have implicated MEL in the pathology of movement disorders. The main 

consensus from behavioural models of DA dysfunction is that MEL exerts an anti-dopamiroetic 

effect in the basal ganglia (Cotzias et al., 1971; Burton et al., 1991; Tenn and Niles, 1995). Also, 

the fact that APO-induced yawning is more pronounced at night is suggestive of a synergistic role 

for MEL in this behavioural paradigm(Nasello et al., 1995). Diverse biochemiccfl pathways are 

postulated to mediate the effects of MEL on DA-mediated behaviours, including, inter alia, the 

serotonergic, dopaminergic, opioidergic and GABAergic systems (Bradbury et al., 1985; Gaffori 

and Van Ree, 1985a and 1985b; Sandyk and Fisher, 1989c; Tenn and Niles, 1995). Catalepsy is a 

drug-induced akinetic state commonly used as a rodent model of drug-induced Parkinsonism 

(Sanberg et al., 1988). This state is induced by neurochemical agents that typically exert 

antidopamimetic effects, such as reserpine and HAL. Thus catalepsy was employed as a simple 

test to determine whether the proposed antidopamimetic action of MEL is manifested 

behaviourally. Ultimately, the behavioural responses to MEL were correlated with the effect of the 

hormone on pineal indole biosynthesis and striatal MAO-A and COMT activity. 
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8.2 Materials and Methodology 

8.2.1 CHEMICALS AND REAGENTS 

MEL was purchased from Sigma. The chemicals and reagents for the pineal organ culture 

technique, MAO-A assay and COMT assay are listed in section 3.2.1,5.2.1 and 7.2.1 respectively. 

8.2.2 ANIMALS 

Male Wistar rats were housed as previously described in section 2.1. For all studies, the animals 

were acclimatized for 1 week to the prevailing light-dark cycle prior to commencement of the 

experiments. 

For the in vivo studies, 48 rats were randomly assigned to either a "vehicle-treated" (n = 6) or a 

"MEL-treated" (n = 6) group prior to habituation. One of each treatment group was further 

assigned to the following "zeitgeber" (circadian) time periods: 08hOO (early photophase), l2hOO 

(mid-photophase), 16hOO (late photophase) and 24hOO (mid-scotophase). 

8.2.3 MELATONIN ADMINISTRATION 

MEL was prepared in the following vehicle: 2% (v/v) ethanol, 4% (v/v) Tween 80 and 94% (v/v) 

deionised water. The animals of each time group were administered i.p. with either MEL (1 mg/kg 

bwt) or an equivalent volume of vehicle once daily for 4 days. Animals were sacrificed 30 min 

after the last administration on day 4 at the times indicated for the respective groups. Scotophase 

studies, including behavioural testing, were performed under dim red light. 

8.2.4 BEHAVIOURAL STUDIES: CATALEPSY I 

The cataleptogenic potential of MEL was only assessed on those animals assigned to the mid

photophase (12hOO) and mid-scotophase (24hOO) groups. This represents each phase of the normal 

rest-activity cycle and should allow a more robust comparison of the state-dependent behavioural 

activity of these nocturnal animals. Catalepsy was tested by the Standardized Horizontal Bar Test 

described in section 2.6. 
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8.2.5 PINEAL ORGAN CULTURE STUDIES 

The standard organ culture technique and TLC analysis of C4C]indoles was performed as outlined 

in section 3.2.4. Following excision of the pineal glands, an attempt was made to rapidly remove 

the pineal stalk prior to incubation. 

(i) In Vivo Studies 

The effect of MEL administration on in situ pineal e4C]indole biosynthesis was only determined 

for the mid-photophase (12hOO) and mid-scotophase (24hOO) groups. Pineals were rapidly 

transferred to the corresponding pre-labeled Kimble tubes. The final total volume of all samples 

was 60 III for the in vivo studies, giving a final concentration ~ 120 IlM C4C]5HT. 

(ii) In Vitro Study 

The in vitro effect of MEL (350 IlM) on [14C]indole biosynthesis was determined using pineal 

glands explanted and cultured at mid-photophase (12hOO) from untreated animals. The pineals 

were randomly placed in individual Kimble tubes. MEL (n = 6) or the culture medium-ethanol 

vehicle (n = 6) was added in a volume of 10 !J.l to give the desired final concentration and 

0.135% (v/v) ethanol, respectively. e4C]Indole biosynthesis was initiated by the addition of 

C4C]5HT immediately thereafter. Thus, for all practical purposes, there was no preincuabtion 

period with MEL. The final total volume of all samples was 70 III for the in vitro studies, giving a 

final concentration ~ 100 IlM e4C]5HT. 

8.2.6 ENZYME ASSAYS 

8.2.6.1 Tissue Preparation 
I 

MAO-A and COMT activity was determined for the vehicle- and MEL-treated groups of all the 

designated time periods. The corpora striata were removed and stored as described in section 2.2. 

Crude preparations for the both enzymes were obtained from the same tissue source by the 

subcellular fractionation protocol described in section 2.3. 

8.2.6.2 Protein Determination 

For all in vivo studies, statistical analysis was performed on enzyme specific activities. Thus the 

protein concentration of each enzyme preparation was determined in triplicate according to the 

procedure in section 2.4. 
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8.2.6.3 MAO-A Assay 

All studies were performed on the 4% (w/v) mitochondrialllysosomal fraction. The assay 

components and conditions were based on the optimum values experimentally determined in 

section 5.3. MAO-A activity was determined with e4C]5HT (0.025 !-lCi; 4.5 !-lM) as the sole 

substrate, and in the presence of 150 !-lM 5HT. The ratio of "e4C]5HT" activity to 

"[14C]5HT+5HT" activity was also calculated for each sample. 

8.2.6.4 COMT Assay 

All studies were performed on the 5% (w/v) cytosolic/microsomal fraction. The assay components 

and conditions were based on the optimum values experimentally determined in section 7.3. It 

must be stressed that for in vivo studies, COMT activity was determined under conditions of 

maximal induction by MgCl2 (10 mM) and a near-saturating concentration ofDA HCl (1 mM). 

8.2.7 DATA AND STATISTICAL ANALYSIS 

For the catalepsy and enzyme studies, the significance of time-related or "between-group" 

variance for each treatment protocol was determined by ANOYA and Bonferroni's multiple 

comparisons test. For all studies, the mean values of vehicle- and MEL-treated samples within a 

specific data group were statistically compared by the Student t-test. 

8.3 Results 

8.3.1 BERA VIOURAL STUDIES 

The cataleptogenic potential of subchronic administration of MEL during the photophase and the 

scotophase are shown in Figure S.IA and S.lB respectively. Following a post-administration 
I 

interval of 20 min, MEL failed to induce catalepsy during either phase on any of the four days in 

comparison to the vehicle-treated data. The baseline scores prior to administration (0 min) for both 

treatment groups were relatively uniform on each day. There was a progressive increase in the 

variability of catalepsy scores following administration (20 min) of both the vehicle and MEL, 

especially in the scotophase studies. At no stage, however, is the behavioural response of 

sufficient intensity to be indicative of catalepsy. Rather, this may be explained by fear-induced 

immobilization due to repeated handling of the animals and neck-pinching. It is must be noted that 

the latter is actually of low magnitude, bearing in mind the scale of the data. 
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Figure 8.1: Cataleptogenic potential of MEL administered during the mid-photophase (A) 

and mid-scotophase (B). [Data represents mean ± SEM (n = 6)] 
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8.3.2 PINEAL ORGAN CULTURE STUDIES 

(i) In Vivo Studies 

MEL administration (1 mg/kg i.p., once daily for 4 days) at mid-photophase [12hOO] or mid

scotophase [24hOO] had no significant effect on the in situ biosynthesis of any exogenous 

[14C]indole by the pineal glands cultured at the respective time periods (Figure 8.2 and 8.3). A 

comparison of the control values for the photophase and scotophase studies confirms the day-night 

variations in the indole biosynthetic profile described in section 3.3. 

(ii) In Vitro Studies 

The in vitro effect of MEL (350 /lM) on the in situ biosynthesis of pineal r 4C]indoles is presented 

in Figure 8.4. The vehicle [0.135% (v/v) ethanol] did not influence biosynthesis (data not shown), 

and thus the effects of MEL are compared to the vehicle-treated data. MEL had no effect on 

[14C]NAS levels, but significantly decreased the levels of [14C]5MlAA, [14C]5MTOH and total 

methylation (P < 0.01 in all cases). A parallel small decrease in r4C]MEL biosynthesis was almost 

significant (P = 0.0576) [Figure 8.4A]. MEL also significantly increased C4C]5HT levels 

(P < 0.001) and decreased [14C]5HIAA levels (P < 0.01). There was a further trend towards 

decreased [14C]5HTOH biosynthesis (P = 0.1185), such that total MAOP was significantly 

decreased (P < 0.001) and the 5HTIMAOP ratio was significantly increased (P < 0.01) [Figure 

8.4B]. 
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Figure 8.2: The effect of subchronic administration of MEL (1 mglkg i.p., for 4 days) during 

the photophase on the in situ biosynthesis of [14C]indoles by rat pineal glands cultured at 

mid-photophase [12hOO]. (A) NAS and 5-methoxyindoles. (B) SHT and deaminated indoles. 

(Data represents mean ± SEM (n = 6)] 
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Figure 8.3: The effect of sub chronic administration of MEL (1 mg/kg i.p., for 4 days) during 

the scotophase on the in situ biosynthesis of [14C]indoles by rat pineal glands cultured at mid

scotophase [24hOO]. (A) NAS and S-methoxyindoles. (B) SHT and deaminated indoles. [Data 

represents mean ± SEM (n = 6)] 
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8.3.3 ENzn1E ASSAYS 

(i) MAO-A 

There were no time-related differences in MAO-A activity as detennined in the presence of 

e4C]5HT alone (Figure 8.5A) or in combination with 5HT (Figure 8.5B) for both vehicle-treated 

and MEL-treated samples. The "[14C]5HT:[14C]5ill+5ill" ratio (Figure 8.5C) did show 

significant time-related variations during the light:dark cycle for the vehicle-treated (ANOYA: 

P < 0.01, F = 5.719) and MEL-treated samples (ANOYA: P < 0.05, F = 3.201). For the vehicle

treated samples, the ratio at 24hOO was significantly increased compared to that seen at 08hOO, 

12hOO and 16hOO (Bonferroni: P < 0.05, P < 0.05 and P < 0.01 respectively). No differences in the 

ratio were observed between the 08hOO-, 12hOO- and 16hOO-groups. For the MEL-treated samples, 

the ratio at 24hOO was significantly increased only when compared to the 16hOO-group 

(Bonferroni: P < 0.05). No differences in the ratio were observed between the 08hOO-, 12hOO- and 

16hOO-groups. Within each time group, MEL had no effect on "[14C]5HT" activity, 

"[14C]5HT+5HT" activity or the ratio in comparison to the vehicle-treated values. 

(ii) COMT 

Yery significant time-related variations in COMT activity (Figure 8.6) were observed during the 

1ight:dark cycle for both vehicle-treated (ANOYA: P < 0.001, F = 50.75) and MEL-treated 

samples (ANOYA: P < 0.001, F = 78.647). For both treatment groups, activity at 08hOO was 

substantially lower than that at 12hOO and 16hOO, whereas 24hOO activity was markedly elevated 

compared to all three of the other time groups (Bonferroni: P < 0.001 in all cases). No significant 

differences were observed between the 12hOO- and 16h00-groups. Within each time group, MEL 

administration significantly decreased COMT activity of the 08hOO-group only ~tudent t-test: 

P < 0.001). I 
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Figure 8.5: Day-night variation of striatal MAO-A activity and the chronotypic effect of in 

vivo MEL administration. (A) Activity with [14C]5HT. (B) Activity with [14C]5HT+5HT. (C) 

Ratio of activity with [14C]5HT to [14C]5HT+5HT. [Data represents mean ± SEM (n = p)] 
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Figure 8.6: Day-night variation of striatal COMT activity and the chronotypic effect of in 

vivo MEL administration. [Data represents mean ± SEM (n = 6); ~: P < 0.001 (compared to 

08hOO-control) ] 

8.4 Discussion and Conclusion 

The average concentration of MEL in brain tissue falls within the picomolar to low nanomolar 

range. Subcutaneous administration of MEL at a dose of 25 ~glkg bwt results in a physiological 

brain concentration of 1-3 nM (Castillo-Romero et at., 1992). For this reason, it
1
is often argued 

that administration of MEL at a dose such as 1 mglkg will result in supraphysiological plasma and 
I 

tissue levels of MEL and any subsequent effects may simply be pharmacological artifacts. 

However, there is evidence for tissue-specific and brain region-specific uptake and accumulation 

of circulating MEL (Anton-Tay et at., 1988; Vitte et at., 1988). For example, the rat hypothalamus 

contains 1 ~M MEL (Zisapel and Laudon, 1982). In contrast, very low amounts of the, hormone 

are typically found in the nucleus accumbens, striatum and substantia nigra (Kopp et at., 1980; 

Seguela et at., 1982). In other words, the physiological concentration of MEL required for a eNS 

effect may not necessarily reflect the prevailing plasma concentration. The route of administration 

must also be considered. Intraperitoneal administration of MEL results in a single large bolus of 

the hormone, which is rapidly degraded by first-pass metabolism in the liver (Kopin et at., 1961). 

The effective concentration of MEL reaching the brain will depend on the degree of metabolism 
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and the subsequent pharmacokinetics of transport and uptake. The short half-life of MEL (± 20 

min) is the main factor determining the duration of the "spike" in plasma levels. In contrast, s.c. 

administration bypasses hepatic metabolism and results in a gradual, but uniform uptake of MEL, 

which enhances tissue levels of the hormone. Thus it could be argued that a supraphysiological 

dose may be necessary when MEL is administered by the i.p. route. It must be also noted that the 

duration of MEL administration may be an important variable (Tamarkin et al., 1976; Moreno et 

al., 1992). 

In the present studies, it was not possible to determine the effect of exogenous MEL 

administration on endogenous plasma MEL levels, by RIA for example. Therefore any effect of 

exogenous MEL may either be a direct physiological effect independent of its action as the 

internal zeitgeber time signal, or arise through an induction of a phase-shift in the circadian 

rhythm of endogenous MEL. In situ indole biosynthesis was thus employed as an index of the 

functional state of the pineal following MEL administration. This further served to investigate the 

claim that MEL may exert feedback control on pineal function in a chronotypic fashion (Trentini 

et al., 1982; Yanez and Meissl, 1995; Drijhout et al., 1996). For example, MEL (50 Ilg/animal for 

28 days) blocked or shifted the rhythm in endogenous pineal 5HT when administered to rats at 

mid-photophase, but not at late photophase, just prior to the onset of darkness (Fiske and Huppert, 

1968). 

Following the current administration regime, exogenous MEL had no effect on pineal [14CJindole 

biosynthesis during the photophase or scotophase. This included a lack of effect on pineal MAO 

activity. In contrast, MEL (350 11M) in vitro had a significant effect on pineal indole biosynthesis 
\ 

in a manner consistent with an inhibitory effect on pineal HIOMT and MAO activity. This 

discrepancy between the in vitro and in vivo studies may be due to the dose of MEL adminiltered, 

the vehicle, and the subsequent pharmacokinetics and degree of metabolic inactivation. Hartley 

and Smith (1973) reported that MEL (120 11M) in vitro had no effect on crude bovine pineal 

HIOMT activity. However, the decrease in 5-methoxyindole biosynthesis and total methylation 

observed here, without a concomitant reduction in NAS biosynthesis, is consistent with an 

inhibition on HIOMT and not NAT. Metabolically, MEL is a product ofHIOMT activity and thus 

product inhibition may be evident at high endogenous concentrations of the indole, as supplied 

here exogenously. 
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The inhibitory effect of MEL in vitro on striatal MAO activity has been previously described in 

section 6.3. It must be noted that the striatal studies represented in vitro conditions on a crude 

mitochondrial preparation where tissue and cellular integrity has been disrupted. Thus this effect 

of MEL may not be physiological. The pineal gland is rich in MAO activity (Juillard and Collin, 

1979) and the intact pineal organ would represent a good physiological system for determining the 

in situ effects of MEL on MAO activity (Schwarzchild and Zigmond, 1989). The change in C4C]5-

hydroxyindole biosynthesis was indeed consistent with an inhibition of MAO by MEL, but the 

effect was weaker than expected. From the striatal studies, 350 ~M MEL typically induced ± 60% 

inhibition, but only ± 25% inhibition was observed in the in situ organ culture assay. Several 

factors may explain this discrepancy. These include, inter alia: bioavailability of the exogenous 

MEL in the intact gland due to diffusion kinetics and intracellular compartmentalization; 

predominance ofMAO-B rather than MAO-A in the pineal; catabolism of MEL; and competition 

between endogenous 5HT and exogenous [14C]5HT, especially in the noradrenergic nerve 

terminals. 

It is important to note that the MEL-induced changes in 5-methoxyindole biosynthesis can also be 

explained by an inhibition of pineal MAO activity, for two reasons. Firstly, 5HlAA and 5HTOH 

are O-methylated by HlOMT to 5MIAA and 5MTOH respectively (see Figure 1.2). Thus a 

decrease in the bioavailability of the two deaminated 5-hydroxyindoles, affected through 

inhibition of MAO, should be reflected in a subsequent decrease in the biosynthesis of the 

corresponding 5-methoxyindoles. Secondly, it has been tentatively hypothesized (in section 6.4) 

that 5MT may be a novel substrate of MAO with 5MIAA and 5MTOH as the deaminated products 

(see Figure 6.13). Thus inhibition of pineal MAO could directly result in decreased levels of 
\ 

5MIAA and 5MTOH, irrespective of O-methylation. Both of these alternative proposals help 

explain why these two 5-methoxyindoles were affected more than [14C]MEL. The results of this in 

situ study confirm previous studies that MEl: and other indoles may exert negative feedback or 

paracrine control over pineal function (Trentini et al., 1982; Yanez and Meissl., 1995; Drijhout et 

al., 1996). 

Reportedly, brain MAO activity displays distinct day-night variations, but the phase characteristics 

are dependent on enzyme isoform, brain region and age (Chevillard et al., 1981; Bhaskaran and 

Radha, 1984). With respect to the corpus striatum of adult rats, Bhaskaran and Radha (1984) found 

that MAO activity peaked in the early photophase. Esquifmo et al. (1994) reported that vehicle

treated MAO activity of the rat adrenal medulla was higher during the late (16hOO) than the early 

photophase (08hOO). It must be noted that the latter two studies were not isoform specific as a 
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substrate common to both MAO isofonns was employed, namely kynuramine (Bhaskaran and 

Radha, 1984) and tyramine (Esquifmo et al., 1994). In the present study, there was no obvious day

night variation in striatal MAO-A. Only the "C4C]5HT:[14C]5HT+5HT" activity ratio showed a 

small, but significant increase at 24hOO compared to the other time periods for both the vehicle

treated samples. This may represent an assay artifact, but a similar trend was observed for the 

MEL treated samples and in follow-up experiments (see chapter 9). 

Under the optimum assay conditions, experimentally determined and presented in section 5.3, the 

"C4C]5HT:C4C]5HT+5HT" activity ratio was constant at ca. 2.0. This suggests that the deviation 

in the ratio at 24hOO may have arisen due to changes in the kinetic properties, such as substrate 

affinity, of the MAO enzyme. Indeed preliminary studies did fmd that striatal MAO-A isolated 

during the scotophase showed altered sensitivity to inhibition by the pineal indoles compared to 

that seen in the photophase (data not shown). This may represent changes in the catalytic 

properties of the enzyme or the presence of "modifiers" in the striatum at night. However, MAO

A activity is considered to be related to the amount of enzyme present, and not due to different 

catalytic properties of the enzyme molecules (Costa et al., 1980; Fowler and Wiberg, 1980). This 

suggests interference by a "modifier" and endogenous MEL itself represents a likely candidate. 

Plasma and tissue levels of the honnone are very low during the photophase and increase 

dramatically at night (Reiter, 1991). MEL is ubiquitously distributed intracellularIy, being present 

in plasma membranes, cytosol, mitochondria and the nucleus (Acuna Castroviejo et al., 1994; 

Reiter, 1995). Although MAO activity was determined on mitochondrial preparations, it is thus 

possible that MEL was present in amounts dependent on the phase of the light dark cycle. 

It is proposed that the lack of an obvious day-night variation in striatal MAO-A in this study 

compared to that of Bhaskaran and Radha (1984) is a matter of experimental design. In both/cases, 

MAO activity was determined ex vivo. A cireadian nature of MAO activity could arise· through 

several factors, including fluctuations in the amount of functional MAO protein (e.g. variation in 

gene expression of MAO), substrate bioavailability, or the circadian nature of MEL or other 

"modifiers". Firstly, Bhaskaran and Radha (1984) assayed non-specific MAO activity, whereas this 

study assayed MAO-A. Secondly, they prepared a total homogenate of the striatal tissue, in contrast 

to the mitochondrial preparation used here. Thus the day-night variation observed by Bhaskaran and 

Radha (1984) may be attributed to MAO-B and/or a circadian variation iI;l certain cytosolic 

components, including endogenous substrates and "modifiers". For example, endogenous MAO 

substrates, such as DA, are high at night, but low during the photophase following deamination in the 

striatum (Paulson and Robinson, 1994). Thus there would be less competition between kynuramine 
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and endogenous substrates in the early photophase, giving an apparent increase in MAO activity at 

this time as determined by the spectrophotometric method of Bhaskaran and Radha (1984). In 

contrast, use of a mitochondrial fraction should result in the removal of endogenous substrates and 

other cytosolic factors, but not necessarily MEL. In this light, the change in the 

"C4C]5HT:[14C]5HT+5HT" activity ratio at mid-scotophase may be very significant. 

Limited studies have investigated the effect of MEL administration on MAO activity. Esquifrno et 

at. (1994) found that chronic administration of MEL (25 Ilg/animal) for 60 days had chronotypic 

effects on adrenal medullary MAO activity in male Syrian hamsters. MAO activity was reduced 

following MEL administration during the early (08hOO) and late photophase (16hOO), but to a 

greater extent in the 16hOO-group. The effect of MEL on MAO activity may also be dependent on 

the developmental stage of the animal. Neonatal administration of a single dose of MEL to male 

rats on postnatal day 5 increased hypothalamic MAO-A at day 30 and 45, but decreased activity 

on day 60 of age, whereas MAO-B was only increased at day 45 (Moreno et at., 1992). With 

regard to the basal ganglia, bilateral injection ofng quantities of MEL into the substantia nigra and 

the nucleus accumbens dose-dependently increased DA content and reduced the DOPACIDA ratio 

(Bradbury et at., 1985). These results could reflect an inhibition of DA release or an inhibition of 

MAO. However, to this author's knowledge, no direct information is available regarding the effect 

of MEL on MAO of the corpus striatum. In the present study, short-term administration of 

exogenous MEL failed to effect striatal MAO-A activity or the "C4C]5HT:[14C]5HT+5HT" ratio at 

any of the time periods, including the vehicle-treated increase in the latter at 24hOO. 

It is possible that the lack of day-night variation and an effect of MEL on striatal MAO is related , 
to the nature of the in vitro assay and the experimental protocol (e.g. dose, duration of 

administration etc.). Analysis of tissue levels ofDA, DOPAC and HV A may reveal changes k the 

in vivo activity of striatal MAO-A not observed here. Furthermore, the time periods chosen may 

represent a "refractory period" and thus it would have been informative to investigate MAO 

activity at shorter time intervals, especially between 24hOO and 08hOO. Ultimately, a possible 

effect of MEL on striatal MAO-A cannot be excluded until all possible combinations of the 

administration parameters have been investigated. 

A search of the literature indicates that little to no research has been performed on the possible 

interaction of MEL and COMT, particularly in the corpus striatum. In the present study, strong 

evidence was found for day-night variations of striatal COMT in the rat and for chronotypic 

modulation by MEL in vivo. Activity was highest at mid-scotophase and lowest in the early 
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photophase with a plateau evident at other times of the photophase. Due to the resolution of the 

time intervals, it was not possible to determine the timing of peak: activity or to infer the actual 

wavefonn nature of the rhythm, i.e. whether it was circadian with a period of ca. 24 hrs. The dark

phase increase in COMT activity may be part of the general state-dependent increase in 

dopaminergic activity associated with the nocturnal activity of rats. The increase in DA release 

during the scotophase results in a concomitant elevation in extracellular 3MT levels (paulson and 

Robinson, 1994). 3MT is fonned from the O-methylation of DA by COMT and is a reliable index 

of DA release (Kehr, 1976). It could be argued that COMT activity would increase at night due to 

increased availability of substrate. However the present ex vivo assay employed a fixed amount of 

exogenous substrate and the apparent COMT activity was corrected for any background activity 

due to the presence of endogenous substrate. This suggests that the actual amount or proportion of 

active COMT enzyme molecules may increase at night. 

It must be noted that the apparent peak: of striatal COMT activity coincides with the nocturnal 

surge in MEL plasma levels, whereas the trough activity is temporally correlated with the return 

of plasma MEL basal daytime values. This would suggest an enhancing effect of MEL on COMT 

activity. However, an inhibitory effect of MEL administration was only observed on 08hOO

COMT activity. In other words, a reversal of basal MEL levels during the early photophase back 

to that seen in the scotophase would appear to potentiate a decrease in COMT activity. 

Alternatively, exogenous MEL may have phase-shifted the rhythm in COMT activity. On the basis 

of this preliminary evidence, it is hypothesized that the time-lag between peak plasma MEL levels 

and maximal inhibitory effect on COMT activity may arise through an effect of MEL at the level 

of COMT gene expression or post-translational modification. A time lag should be apparent 

before an alteration in gene transcription is observed at the mRNA and protein l\evel. This may 

require a consideration of the turnover rate and half-life of mRNA transcripts and protein 

molecules. The onset of darkness may trigger an increase in COMT activity, whereas a 

progressive increase in the sensitivity to MEL may act as a signal to begin reducing the 

contribution of the enzyme. It would be infonnative to compare the present results to an 

assessment of in vivo COMT activity by analyzing tissue levels of 3MT and HV A, arid COMT 

mRNA. MEL may also influence the CNS bioavailability of the essential cofactor, SAM, through 

an effect on SAM synthase or SAM decarboxylase. The latter enzyme exhibits a circadian activity 

rhythm in the liver, kidney and thymus. Pinealectomy failed to phase-shift th~ rhythm in any of 

the tissues, but increased the amplitude of enzyme activity in the kidney (Scalabrino et at., 1979). 

An inhibitory effect of MEL in vivo on COMT is supported by Esquifmo et al. (1994). Chronic 

administration of MEL (25 !1g/animal for 60 days) reduced adrenal medullary COMT activity in 
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male Syrian hamsters during both the early (08hOO) and late photophase (16hOO), but to a greater 

extent in the 16hOO-group. No difference was observed between vehicle-treated activity at 08hOO 

and 16hOO. This indicates that the chronotypism of MEL towards COMT and the phase 

characteristics of the enzyme are likely to be tissue-specific. It is possible that a more chronic 

administration of MEL in the present study may have revealed an alternative pattern in striatal 

COMT activity. 

The biochemical effects of MEL reported here, namely pineal indole biosynthesis, striatal COMT 

and MAO-A, did not appear to translate into a behavioural response. Although numerous models 

of behaviour assign an antidopamimetic role to MEL (Cotzias et ai., 1971; Burton, 1989; Tenn and 

Niles, 1995), the pineal hormone failed to induce catalepsy under the present experimental 

conditions. The MEL catalepsy studies were intentionally performed at mid-photophase and mid

scotophase in order to represent the two robust phases of the rest-activity cycle. It is possible that 

these times coincided with "refractory" periods. The switch from quiescence to activity at the 

onset of darkness or vice versa at the onset of the photophase may represent more sensitive 

"circadian windows" to the behavioural effects of MEL (Redman et al., 1983; Armstrong, 1989). 

In a follow-up study (data not shown), the chronic administration of a more physiological dose of 

MEL (25 j.lg/animal s.c., once daily) for a week during the photophase also failed to induce 

catalepsy. It must be noted that in contrast to the current research, previous studies investigated 

MEL in animal models of movement disorders, in which the "tonus" of dopaminergic systems was 

challenged with neurochemical agents. For example, selective lesioning of the nigro-striatal 

pathway with 60HDA produces supersensitive DA receptors. In contrast, the cataleptogenic 

potential of MEL was currently determined on an intact, steady-state dopaminergic system. Indeed 

this lack of an effect is actually in line with the modulatory or tonic nature of the hormone. MEL 

may either potentiate or attenuate the direction of the prevailing "tonus" without initiatiAg the 

change itself. 

In summary, short-term administration of exogenous MEL modulated both striatal MAO-A and 

COMT activity with a clear and marked inhibitory effect in the case of COMT. It is very likely 

that a more chronic administration paradigm would have induced more robust changes in both 

enzymes. The time-of-day studies suggest that endogenous MEL may also regulate both enzymes, 

particularly COMT. In the following chapter, manipulation of the prevailing photoperiod will be 

employed to further investigate the role of endogenous MEL. 
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Chapter 9 

Photoperiod Manipulation Studies 

9.1 Introduction 

Light is the most important environmental factor regulating the pineal noradrenergic secretory 

drive and MEL production (Reiter, 1988; Reiter, 1991). For a given latitude, the annual variation 

in daylength (photoperiod) is a much more accurate predictor of season than ambient temperature. 

The light dark cycle is thus the most robust rhythm to which life is synchronized as reflected in 

the circadian rhythmicity of both diurnal and nocturnal species. Photoperiodism of reproduction, 

body weight, metabolism and coat colour are common to seasonally breeding animals. Under 

natural conditions, most mammals are photoperiodic to varying degrees, with the degree of 

photoperiodism increasing progressively with higher latitudes. With regards to typical laboratory 

animals, the golden or Syrian hamster is fully photoperiodic, whereas the rat is only partially 

seasonal (Reiter, 1988). 

The rhythm in SCN metabolic function and pineal NAT activity, and thus MEL biosynthesis, is 

intrinsically free-running with a period of ca. 25 hrs. For this reason, the latter are designated as 

endogenous rhythms (Armstrong, 1989; Moore, 1993; Reiter, 1991). Photic stimulation via the 

retino-hypothalamic tract influences the SeN and thus pineal gland biochemistry in two ways: (1) 

it entrains the endogenous circadian rhythm in MEL production to the ambient light:dark cycle or 

daylength; (2) exposure to light during the scotophase rapidly suppresses the ~octurnal NAT 

activity and MEL production. Even brief exposure to low intensity lighting « 100 lux, oJ 5-20 

f.lW/cm2
) at this time is sufficient to cause a precipitous decline in pineal MEL synthesis and 

release, and a parallel decline in plasma and tissue MEL levels. This is a direct consequence of a 

rapid inactivation of NAT activity (Reiter, 1988; Deguchi and Axelrod, 1972b). For purposes of 

comparison, normal room light has an intensity of 50-100 f.lW/cm2 (100-400 lux). Single, pulses of 

light during the scotophase are also capable of phase-shifting the MEL circadian rhythm. 

Although some species-related differences are seen, the threshold for light-induced suppression is 

qualitatively similar between all mammals, including humans (Gaddy et al., 1993; Boivin et al., 

1996). It has also been reported that the spontaneous blink rate and pupil size are important 

parameters in determining the critical threshold of light-induced suppression of nocturnal MEL 
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biosynthesis (Gaddy et ai., 1993; Sandyk, 1990b). Closer examination actually reveals that 

specific wavelengths of light (or the electromagnetic spectrum) have differential and species

related effects on pineal, retinal and harderian MEL biosynthesis (Cardinali et ai., 1972; Reiter, 

1985). For example, Reiter (1985) reported that violet and yellow light are most effective in 

nocturnal animals, whereas blue-green and red light have the greatest effect in diurnal animals. 

More specifically, green light has a maximal effect on rat pineal indole biosynthesis, whereas red 

is incapable of suppressing nocturnal NAT activity (Cardinali et ai., 1972). 

In all the studies presented so far in this thesis, the animals have been housed under a 12L:12D 

cycle with the onset of light at 06hOO. This lighting schedule extends the scotophase 

symmetrically around midnight with 6 hrs before and 6 hrs after this peak. Under these conditions, 

a robust day-night rhythm was observed in striatal COMT with some indication for a similar 

pattern in MAO activity. Furthermore the administration of exogenous MEL had chronotypic 

effects on both enzymes. The question remains whether endogenous MEL can have similar 

effects, and thus entrain striatal dopaminergic function at the level of MAO and COMT. 

Considering the effects of photic stimulation, the contribution of endogenous MEL can be 

investigated by photoperiodic manipulation. For example, animals can be maintained under a long 

photoperiod (e.g. 14L:I0D) or a short photoperiod (e.g. 10L:14D) to differentially phase-shift the 

chronotypism in sensitivity to MEL (Miguez et al., 1995). Alternatively, the circadian oscillator 

can be reverted to a free-running rhythm by removing the entraining light signal. This results in a 

disorganization of the circadian and circannual control of behavioural, biochemical and 

physiological processes, and animals may become aseasonal. To achieve this, the rats can be 

housed under constant light (i.e. 24LL) or constant darkness (24DD). If a biochenpcal parameter 

still exhibits a rhythm under constant darkness, irrespective of its phase characteristics, it is said to 
I 

be endogenous and independent of the light:dark cycle as seen for pineal function. This further 

implies that modulation by MEL must be a dh-ect effect, independent of its role as an entraining 

agent or "Zeitgeber". In turn, constant light results in a complete suppression of nocturnal pineal 

MEL biosynthesis and thus plasma levels. The absence of light is required for the resurgence of 

MEL biosynthesis at night and thus the suppression is permanent for the duration of the constant 

illumination. 

One strategy to truly determine the role of MEL in vivo would be to suppress the synthesis of the 

hormone and remove it from circulation. Thus the main objective of this chapter was to determine 

the effect of housing animals under constant light or constant dark on pineal indole biosynthesis 

184 



Chapter 9; Photoperiod Manipulation Studies 

and striatal MAO-A and COMT activity. It must be stressed that light was supplied by a full 

spectrum cool-white fluorescent tube with very little long-wave emission and no UV radiation. 

This light source delivers a total radiant energy level of250 JlW/cm2
, considerably in excess of the 

0.0005 JlW/cm2 of white light required to suppress pineal NAT activity and MEL biosynthesis in 

the Wistar rat (Reiter, 1988). 

9.2 Materials and Methodology 

9.2.1 CHEMICALS AND REAGENTS 

MEL was purchased from Sigma. The chemicals and reagents for the pineal organ culture 

technique, MAO-A assay and COMT assay are listed in section 3.2.l, 5.2.1 and 7.2.1 respectively. 

9.2.2 ANIMALs AND PHOTOPERIOD MANIPULATION 

Male Wistar rats were housed as described in section 2.1. Initially, the animals were randomly 

assigned to groups and acclimatized for 1 week to a normal 12L:12D (LD) lighting schedule 

(lights on 06hOO) prior to photoperiod manipulation. 

(i) Protocol 1 

Rats were maintained under the following lighting conditions for 7 consecutive days: LD, constant 

light (24LL; n = 8) or constant darkness (24DD; n = 7). Two groups of rats were maintained under 

the LD conditions, representing the photophase (LD-DT; n = 7) and the scotophase (LD-NT; 

n = 7) respectively. Animals were sacrificed at 12hOO for the LD-DT, 24LL and 24DD groups, and 

at 24hOO for the LD-NT group. 

I 

(ii) Protocol 2 

In the second photoperiod study, animals were subjected to the following lighting conditions for 

21 consecutive days: LD (n = 5) and constant light (24LL). The latter comprised a "vehicle

treated" (n = 5) and "MEL-treated" group (n = 5), designated 24LL and LL-MEL respectively. 

MEL was administered as described below. The animals of all three groups were sacrificed on day 

21 at 16hOO (late photophase), 24 hrs after the last administration. 
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9.2.3 MELATONIN ADMINISTRATION 

For protocol 2, MEL was prepared in the following vehicle: 2% (v/v) ethanol, 4% (v/v) Tween 80 

and 94% (v/v) deionised water. Animals received either MEL (25 !lg s.c.) or an equivalent volume 

of vehicle at 16hOO once daily for 20 days. 

9.2.4 PINEAL ORGAN CULTURE STUDIES 

The standard organ culture technique and TLC analysis of [14C]indoles was performed as 

described in section 3.2.4. Following excision of the pineal glands, an attempt was made to rapidly 

remove the pineal stalk prior to incubation. Pineals were rapidly transferred to the corresponding 

pre-labeled Kimble tubes. The fmal total volume of all samples was 60 !ll for the in vivo studies, 

giving a final concentration ~ 120 !lM [14C]5HT. 

9.2.5 ENZYME ASSAYS 

9.2.5.1 Tissue Preparation 

The MAO-A and COMT activity of each experimental group was determined. The corpora striata 

were removed and stored as described in section 2.2. Crude preparations of both enzymes were 

obtained from the same tissue source by the subcellular fractionation protocol outlined in section 

2.3. 

9.2.5.2 Protein Determination 

For all in vivo studies, statistical analysis was performed on enzyme specific activities. Thus the 

protein concentration of each enzyme preparation was determined in triplicate cis described in 

section 2.4. The mean protein concentrations of each experimental group were not signifi~antly 

different (data not shown). 

9.2.5.3 MAO-A Assay 

All studies were performed on the 4% (w/v) mitochondrial/lysosomal fraction. The assay 

components and conditions were based on the optimum values experimentally determined in 

section 5.3. MAO-A activity was determined with [14C]5HT (0.025 !lei; 4.5 j.lM) as the sole 

substrate, and in the presence of 150 !lM 5HT. The ratio of "C4C]5HT" activity to 

"C4C]5HT+5HT" activity was also calculated for each sample. 
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9.2.5.4 COMT Assay 

All studies were perfonned on the 5% (w/v) cytosolic/microsomal fraction. The assay components 

and conditions were based on the optimum values experimentally determined in section 7.3. It 

must be stressed that for these in vivo studies, COMT activity was determined under conditions of 

maximal induction by MgCl2 (10 mM) and a near-saturating concentration ofDA HCI (I mM). 

9.2.6 DATA AND STATISTICAL ANALYSIS 

All data are presented as mean ± SEM. The sample size (n) depends on the experimental group 

and is indicated in the respective figure captions. Striatal MAO-A and COMT are expressed as 

specific activity in the units DPMl30 minilOO Ilg protein and DPMl60 minl500 Ilg protein 

respectively. The significance of group-dependent variation in MAO and COMT activity was 

detennined by ANOVA followed by Bonferroni's post test. Where specified, the less stringent 

Student-Newman-Keuls test was also employed. In addition, the mean data of the enzyme and 

pineal studies was statistically compared by the unpaired Student I-test. A two-tailed P-value was 

generated with respect to either the LD-DT group (protocol 1) or the LD group (protocol 2) as the 

control data. Only the latter Student I-test P-values were graphically presented. 

9.3 Results 

9.3.1 PINEAL ORGAN CULTURE STUDIES 

(i) Protocol 1 

The effects of 24LL and 24DD for 7 days on in situ pineal indole biosynthesis in\comparison to 

LD-DT conditions are shown in Figure 9.1. The P-values in the text below were generated 9Y the 

Student I-test. 24LL markedly increased the levels of [14C]NAS (P < 0.01) and C4C]MEL 

(P < 0.05). There was a concomitant decrease in the biosynthesis of [14C]5MIAA (P<O.OI) and 

C4C]5MTOH (P < 0.001) without a change in total methylation (Figure 9.1A). Under conditions of 

24DD, there was a similar, but marginally insignificant increase in [14C]MEL levels (P ~ 0.1267). 

In addition, there was a substantial elevation in the biosynthesis of [14C]5MTOH (P < 0.01) and 

total methylation (P < 0.001) [Figure 9.lAJ. Neither 24LL nor 24DD caused a change in the levels 

of [14C]5HT, [14C]5HIAA, [14C]5HTOH or total MAOP (Figure 9.1B). Pineal indole biosynthesis 

was not detennined for the LD-NT group. 
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Figure 9.1: The effect of photoperiodic manipulation on the in situ biosynthesis of 

[14C]indoles by rat pineal glands cultured during the mid-photophase (12hOO). (A) NAS and 

5-methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM; LD: 

normal I2L: I2D cycle (n = 7), 24LL: constant light (n = 8), 24DD: constant'darkness (n = 7); 

P-values (compared to LD-group): * < 0.05, t < 0.01, ~ < 0.001] 
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(ii) Protocol 2 

The effect of long-term exposure to 24LL and MEL administration (LL-MEL) on in situ pineal 

indole biosynthesis in comparison to LD conditions are shown in Figure 9.2. The P-values in the 

text below were generated by the Student t-test. 24LL for 21 days induced a 3- to 4-fo1d increase 

in [14C]NAS biosynthesis (P < 0.01) with a parallel, but smaller increase in [14C]MEL levels 

(P < 0.01). Conversely, the levels of C4C]SMIAA and C4C]SMTOH were substantially reduced 

(P < 0.01 in both cases) without a change in total methylation (Figure 9.2A). An identical pattern 

was seen in the LL-MEL group: [14C]NAS (P < 0.01), [14C]MEL (P < O.OS), C4C]SMlAA 

(P < 0.01) and C4C]SMTOH (P < 0.01) [Figure 9.2A]. There was no change in the levels of 

[14C]SHT, e4C]SHIAA, [14C]SHTOH or total MAOP for the 24LL and LL-MEL groups (Figure 

9.2B). Only the SHIAAlSHTOH ratio was elevated in these two groups compared to the LD 

group, but this was not significant due to greater degree of variability in the data for 24LL and LL

MEL. The similar profile between the 24LL and LL-MEL groups indicates that MEL 

administration failed to modulate the effects of constant light. 

9.3.2 ENZYME STUDIES 

9.3.2.1 MAO-A 

(i) Protocol 1 

Striatal MAO-A specific activity of the LD-DT, LD-NT, 24LL, and 24DD groups is presented in 

Figure 9.3. There was no evidence for variation in MAO activity between the different groups as 

assessed in the presence of C4C]SHT alone or in combination with SHT. The 
\ 

"C4C]SHT:C4C]5HT+SHT" activity ratio did show significant group-dependent variations 

(ANOVA: P < 0.001, F = 9.699). The ratio of the LD-NT group was significantly inc~eased 
compared to that seen for LD-DT (Bonferroni'and Student t-test: P < O.OS), 24LL (Bonferroni and 

Student t-test: P < 0.01) and 24DD (Bonferroni and Student t-test: P < O.OS). The ratio of the 24LL 

group was also significantly lower than seen for the LD-DT and 24DD groups (Student t-test: 

P < O.OS in each case). 
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Figure 9.2: The effect of photoperiodic manipulation and late-afternoon MEL 

administration on the in situ biosynthesis of [14C]indoles by rat pineal glands cultured during 

the late photophase. (A) NAS and 5-methoxyindoles. (B) 5HT and deaminated indoles. [Data 

represents mean ± SEM (n = 5); LD = normal lighting schedule; 24LL = constant light: vehic1e

treated; LL-MEL = constant-light: MEL-treated; P-values (compared to LD-group): * < 0.05, 

t < 0.01] 
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Figure 9.3: Day-night variation in striatal MAO-A activity and the effect of photoperiod 

manipulation. [Data represents mean ± SEM; LD-DT: mid-photophase of 12L:12D cycle (n = 7), 

24LL: constant light (n = 8), 24DD: constant darkness (n = 7), LD-NT: mid-scotophase of 

12L:12D cycle (n = 7); Ratio = [14C]5HT:[14C]5HT+5HT; P-values (compared to LD-DT): 

* < 0.05] 

(ii) Protocol 2 

Figure 9.4 shows the striatal MAO-A specific activity of the LD, 24LL and LL-MEL groups. 

Activity in the presence of [14C]5HT alone showed no differences between the groups, whereas 

there was variation in combination with cold 5HT (ANOYA: P < 0.05; F ~ 4.901). The 

"e4C]5HT+5HT" activity of the 24LL group was slightly, but significantly elevated compired to 

LD (Bonferroni and Student t-test: P < 0.01). There was also a marginal trend towards a decrease 

in "[14C]5HT+5HT" activity of the LL-MEL group compared to 24LL (Student t-test: P = 0.0502). 

LL-MEL was not significantly different to LD. The "[14C]5HT:[14C]5HT+5HT" activity ratio also 

showed considerable group-dependent variation (ANOY A: P < 0.01; F = 12.299). The ratio of 

24LL was significantly lower than for LD (Bonferroni and Student t-test: P < 0.01) and LL-MEL 

(Bonferroni: P < 0.01; Student t-test: P < 0.05). The LL-MEL ratio was marginally lower than for 

LD (Student t-test: P = 0.0655). This indicates that the present MEL adminisn;ation protocol can 

reverse the effect of long-term light exposure on striatal MAO-A. 
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Figure 9.4: The effect of photoperiod manipulation and late-afternoon MEL administration 

on striatal MAO-A activity of the rat corpus striatum. [Data represents mean ± SEM (n=5); 

LD = normal lighting schedule; 24LL = constant light: vehicle-treated; LL-MEL = constant-light: 

MEL-treated; P-values (compared to LD): • = 0.0655; * < 0.05; t < 0.01] 

9.3.2.2 COMT 

(i) Protocol 1 

Striatal COMT specific activity of the LD-DT, LD-NT, 24LL, and 24DD groups fS presented in 

Figure 9.5. There was considerable variation in COMT activity between these groups (ANPVA: 

P < 0.01; F = 6.260). Activity of the LD-NT group was significantly increased compared to the 

LD-DT (Bonferroni: P < 0.05; Student t-test: P < 0.01) and 24DD groups (Bonferroni and Student 

t-test: P < 0.01). There was also a trend towards increased COMT activity in the 24LL group 

compared to the LD-DT (Student t-test: P = 0.0672) and 24DD groups (Student-Newrn,an-Keuls 

and Student t-test: P < 0.05). There was no significant difference between the LD-DT and 24DD 

groups. 
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Figure 9.5: Day-night variation in striatal COMT activity and the effect of photoperiod 

manipulation. [Data represents mean ± SEM; LD-DT: mid-photophase of 12L: 12D cycle (n = 7), 

24LL: constant light (n = 8), 24DD: constant darkness (n = 7), LD-NT: mid-scotophase of 

I2L: 12D cycle (n = 7); P-values (compared to LD-DT): • = 0.0672; * < 0.05] 
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Figure 9.6: The effect of photoperiod manipulation and late-afternoon MEL administration 

on striatal COMT activity of the rat corpus striatum. [Data represents Mean ± SEM (n = 5); 

LD = normal lighting schedule; 24LL = constant light: vehicle-treated; LL-MEL = constant-light: 

MEL-treated; P-values (compared to LD): t < 0.01] 
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(ii) Protocol 2 

Striatal COMT specific activity of the LD, 24LL and LL-MEL groups is presented in Figure 9.6. 

There was considerable variation in COMT activity between these groups (ANOVA: P < 0.001; 

F = 35.444). The activity of the 24LL group was significantly greater than that of the LD 

(Bonferroni and Student t-test: P < 0.001) and LL-MEL groups (Bonferroni and Student t-test: 

P < 0.001). No significant difference in COMT activity was observed between the LD and LL

MEL. This indicates that MEL treatment potently reversed the effect of constant light on COMT 

activity to a level that was indistinguishable from control (LD) values. 

9.4 Discussion and Conclusion 

In situ [14C]indole biosynthesis was employed as an index of the functional state of the pineal in 

the absence of information regarding the levels of endogenous MEL. The rhythm in pineal NAT 

activity and MEL production is endogenous, robust, and should persist unaltered in constant 

darkness (Miguez et al., 1995). As an entraining agent, light makes small corrections to the phase 

characteristics of the rhythm, but MEL production consistently peaks during the scotophase, even 

in the absence of light. In the present study, however, constant darkness for 7 days resulted in a 

substantial change in the MELl5MTOH ratio at mid-photophase. The synthesis of [14C]5MTOH 

was dramatically enhanced without a change in C4C]5MIAA and [14C]MEL, resulting in a 

substantial increase in the apparent total methylation. Since there was no evidence for a change in 

NAT or MAO activity, the altered profile of methylation cannot be due to the bioavailability of 5-

hydroxyindoles. Rather this profile must reflect an induction of HIOMT activity, but it is unclear 

why 5MTOH was preferentially increased. According to the O-methylation equati,?n proposed by 

Morton (1990) [see section 3.4], NAS has the highest affinity for HIOMT and then 5HTOH, Thus 

MEL should be the preferential O-methylated product and not 5MTOH. Balemans et al. (1979) 

found that the MELl5MTOH ratio in the rat pineal shifted with the season. The results presented 

in section 3.3 subsequently confirmed that the MELl5MTOH ratio does appear to show 

photoperiod-dependent fluctuations, i.e. both circadian and seasonal. Balemans et al. (1979) 

attributed the change in pineal O-methylation to a pteridine-dependent regulation of HIOMT. 

Pteridines have been shown to potent inhibitors of pineal and retinal HIOMT (Cremer-Bartels et 

al., 1983). Furthermore, several endogenous pterdines require photo-activation. Thus it is 

proposed that under conditions of constant darkness the synthesis of pteidines is reduced, 

disinhibiting the HIOMT enzyme. 
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The exposure of rats to constant light for 7 days or 21 days produced paradoxical effects on 

photophase pineal indole metabolism. Although the animals were sacrificed at mid-photophase 

and late photophase, respectively, the profile of C4C]indole levels was identical, but the magnitude 

of the effect was more pronounced following the longer duration of illumination. In each case, the 

profile was consistent with a marked induction of NAT activity as evinced by the dramatic 

increase in [14C]NAS. The increase in [14C]MEL levels, but a decrease in C4C]5MTOH and 

C4C]5MIAA levels without a change in total methylation, is indicative of the relative 

bioavailability and affinity of each corresponding 5-hydroxyindole for HIOMT, without a change 

in the absolute activity of this enzyme (Morton, 1990). Cardinali et al. (1972) found that exposure 

of rats to continuous green light, the most effective wavelength of light, for 17 days resulted in an 

almost total loss of pineal HIOMT activity of Sprague-Dawley rats, and decreased the pineal 

weight. This is in contrast to the present study, where the extent of total methylation after 21 days 

of constant light is indistinguishable from that seen for the normal 12L: 12D cycle, indicative of 

substantial HIOMT activity. This difference cannot be attributed to the nature or intensity of the 

light source used in the study. Common (cool-white) fluorescent light is reportedly more effective 

on pineal HIOMT than Vita-Lite, which simulates sea level solar radiation. This may be related to 

the fact that the cool-white light spectrum lacks erythemal UV radiation, which can transiently 

stimulate HIOMT activity (Cardinali et al., 1972). However cool-white fluorescent tubes were 

also employed in the present study, and delivered a total radiant energy in excess of that used by 

Cardinali et al. (1972). 

A reduction in sympathetic tone to the pineal causes a marked suppression of MEL biosynthesis 

through a rapid inactivation of pineal NAT activity. Sympathectomy can bf produced by 

decentralization or bilateral ganglionectomy of the SCG, or physiologically with constant light 
I 

conditions or exposure to light during the scotophase (Deguchi and Axelrod, 1972a and 1972b; 

Cantor et al., 1981). These procedures increase the density or sensitivity of pineal p-receptors, 

which results in a superinduction of NAT and tryptophan hydroxylase in response to NA or other 

p-receptor agonists. Even a long photoperiod, rather than constant light, is sufficient to induce the 

aforementioned effects. Pineal indole biosynthesis during the photophase is basal and due to the 

lack of NA release rather than a lack of responsiveness of the p-adrenergic receptors. Constant 

light would maintain the post-ganglionic sympathetic nerve fibres of the pineal under permanent 

tonic inhibition through hyperpolarization. Furthermore, Abreu et al. (1987) reported that the 

activity of the NA-synthesizing enzymes TH and DBH of the rat pineal gland was completely 

abolished following constant illumination for three days. The subsequent reduction in the basal 
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synthesis and release of residual NA during the photophase may be sufficient to produce 

supersensitive 13-receptors. It is further feasible that receptor sensitivity may increase with the 

duration of the constant light exposure, explaining the ca. 2-fold induction of NAT activity after 7 

days, but a 4-fold increase after 21 days. However, the possibility of a chronotypic effect must be 

considered. Animals were sacrificed at mid-photophase and late photophase for the 7 day and 21 

day study, respectively. 

An alternative explanation involves the in situ radiometric nature of the organ culture technique, 

employing C4C]SHT as the exogenous substrate. Although pineal L-Dopa decarboxylase activity 

peaks during the light-phase, the activity of pineal tryptophan hydroxylase, the rate determining 

enzyme in the synthesis of SHT (Naoi et ai., 1994), is maximal during the dark-phase (Reiter, 

1989). Thus chronic exposure to light may suppress tryptophan hydroxylase activity and SHT 

synthesis. As a result, the vesicular stores of SHT in the pinealocyte may be depleted, allowing the 

preferential N-acetylation of C4C]SHT over SHT. The lack of an effect of constant light on 

apparent pineal MAO activity further supports the notion that [14C]SHT has been selectively taken 

up into the vesicular stores, rather than the cytoplasmic pool or into the presynaptic SNS nerve 

terminals (Juillard and Collin, 1979; Racke et at., 1991). It must be reiterated that 70% of pineal 

MAO activity is present in the SNS nerve terminals and that NA is a substrate for MAO (Garrick 

and Murphy, 1982; Rack6 et ai., 1991). Thus a decrease in presynaptic NA levels induced by 

constant light would be expected to increase the degree of deamination of C4C]SHT as described 

in section 3.4. The only possible effect on MAO activity, however, was a trend towards decreased 

[14C]SHOTH synthesis after 21 days of constant light, which was also reflected in a more variable 

SHIANSHTOH ratio, but not after 7 days of exposure. This lack of an obviou~ change in the 

apparent pineal MAO activity is a strong motivation for favouring an increase in the de~ity or 

sensitivity of the 13-receptors as the main mechanism behind the observed induction of [14C]NAS 

and C4C]MEL biosynthesis. 

It must be noted that, regardless of the mechanism, the observed induction is more indicative of 

the functional state of the pineal at the time of removal than the extent of in vivo pineal MEL 

biosynthesis and plasma levels. With the current protocol, the explanted pineal is saturated in situ 

with exogenous [14C]SHT making the superinduction of NAT activity apparent. In vivo, the tonic 

inhibition induced by light must be removed, the equivalent of adding substrate, before a rebound 

in MEL biosynthesis is possible. Ideally, another constant light group of rats should have been 

sacrificed at mid-scotophase for comparison. A suppression of nocturnal MEL synthesis under 
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conditions of constant light, but not constant darkness, would indicate that the organ culture 

technique is a reliable index of pineal function. The latter would also help interpret the mechanism 

operating behind the photophase constant light study. 

The results also show that the chronic administration of MEL (25 Ilg/animal s.c.) for 20 days 

failed to alter the constant light-induced increase in [14C]NAS and C4C]MEL biosynthesis. This 

administration paradigm overcomes some of the problems that, arguably, may have been 

associated with the MEL administration studies presented in section 8.3. These include a more 

physiological dose and a longer duration of administration. In addition, the s.c. route delivers a 

more uniform and gradual release of MEL than the i.p. route, and largely bypasses hepatic 

metabolism. Nonetheless, in contrast to the in vitro study with MEL (see section 8.3), there is still 

no evidence for feedback regulation of pineal indole biosynthesis following in vivo administration 

of exogenous MEL, particularly at the level of MAO and HIOMT. 

The photoperiod manipulation protocols also influenced both MAO-A and COMT activity of the 

corpus striatum, with a particularly robust effect on COMT activity. Exposure to constant 

darkness for 7 days had no effect on MAO-A activity at mid-photophase, but constant light caused 

a significant decrease in the ratio of "[14C]5HT" activity to "[14C]5HT+5HT" activity. Following 

21 days of exposure, the decrease in the ratio was more pronounced and accompanied by an 

increase in "C4C]5HT+5HT" activity. Subsequent MEL administration reversed the increase in 

"C4C]5HT+5HT" activity and returned the ratio to a value that was almost indistinguishable to 

that seen for animals housed under a normal 12L: 12D cycle. A parallel study confirmed that the 

"C4C]5HT:C4C]5HT+5HT" activity ratio is higher at mid-scotophase than at ~id-photophase 

under a 12L:12D cycle as reported in section 8.3. These results further strengthen the ar&ument 

(see section 8.4) that fluctuations in the ratio are potentially reliable indicators of changes in the 

activity or catalytic turnover rate of MAO-A. More specifically, both exogenous and endogenous 

MEL appear to be state-dependent modulators of the ratio. A decrease in the ratio appears to be 

associated with diminished endogenous levels of MEL (e.g. constant light), whereas an, increased 

ratio is associated with high levels of MEL (e.g. during the scotophase, or following 

administration). Changes in the ratio are relative to a value that was calculated under the assay 

conditions specified in section 5.3. at mid-photophase for a normal 12L: 12D cycle. The latter time 

period was also found to be a possible "refractory period" in the responsiveness of striatal MAO

A to MEL (see Figure 8.5). Thus deviations in the ratio appear to represent state-dependent shifts 

in the sensitivity of the enzyme to the pineal hormone. 
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It is difficult, however, to ascertain the reason behind the altered ratio with respect to the 

functioning of the enzyme. As discussed previously, MAO activity is most likely related to the 

amount of enzyme present (Costa et at., 1980; Fowler and Wiberg, 1980), but changes in the 

catalytic properties of the enzyme cannot be excluded. For example, the presence of an 

endogenous inhibitor would be expected to alter the catalytic properties and thus the apparent 

activity. Under the conditions specified in section 5.2, both "C4C]5HT" activity and 

"[14C]5HT+5HT" activity increased with time, whereas the "C4C]5HT:[14C]5HT+5HT" ratio 

decreased after 30 min (see Figure 5.4). This decrease in the ratio can be attributed to the fact that 

the "[14C]5HT" activity became progressively more non-linear as the amount of [14C]5HT became 

limiting. By inference, a decreased ratio could also be equated with enhanced turnover of the 

substrate, i.e. increased enzyme activity. The relationship between MAO-A activity and enzyme 

content was determined in section 5.2 and is represented in Figure 5.3. The 

"C4C]5HT:[14C]5HT+5HT" ratio did not change over the range of mitochondrial fraction tested 

(10-60 Ill). In other words, a decrease in enzyme content was not associated with an increase in 

the ratio. Furthermore a 20% increase in the amount of enzyme routinely used in the in vivo 

studies (50 vs. 60 Ill) did not result in a decreased ratio. This implies that the change in MAO-A 

activity is not due to the amount of enzyme present, but due to the presence of a "modifier" such 

as MEL. In other words, the increase in the "C4C]5HT: C4C]5HT+5HT" ratio during the 

scotophase and following MEL administration is proposed to be a consequence of inhibition of the 

enzyme by MEL. The decreased ratio following exposure to constant light is consistent with the 

removal of MEL and thus disinhibition of the enzyme. This confirms the results of the previous in 

vitro and in situ studies (see sections 6.3 and 8.3 respectively) that MEL is a reversible inhibitor of 

MAO-A. More importantly, endogenous MEL would appear to regulate striatal Mf-O-A through 

an inhibition of the enzyme. 
I 

This conclusion is supported by previous studies. Urry and Ellis (1975) reported that MAO-A 

activity of the rat hypothalamus was unaffected by photoperiod, but increased by pinealectomy. In 

contrast, pituitary MAO was increased by constant light and pinealectomy, and decreased by 

constant darkness. Olcese and Devlaming (1979) reported that the MBH of the goldfish only 

exhibited a daily variation in MAO under a long, but not a short photoperiod. Furthermore, the 

MBH MAO activity was depressed by a short photoperiod, and pinealectomy increased the 

enzyme activity only when the fish were exposed to a short photoperiod. Thus the effect of 

endogenous MEL on MAO may be very tissue-specific, and the present study seems to be the first 

to report such an effect in the corpus striatum of the rat. 
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The results of photoperiodic manipulation of striatal COMT clearly suggest that both exogenous 

and endogenous MEL inhibit this enzyme, confIrming the results presented in section 8.3. The 

extent of the constant light-induced increase in COMT activity was more pronounced after 

exposure for 21 days than for 7 days. It is believed that the time-dependency of this effect is 

related to the endogenous MEL levels and the mechanism behind MEL's inhibitory effect on 

COMT. A more chronic exposure would be expected to result in a more pronounced and complete 

suppression of plasma and tissue MEL levels. This is supported by the results discussed above that 

the pineal gland showed a greater degree of supersensitivity after 21 days than 7 days exposure. It 

was proposed in section 8.4 that MEL may influence the amount of active COMT enzymes, 

possibly at the level of gene expression or post-translational modifIcation. Thus the longer MEL 

levels remain suppressed the longer the expression or modifIcation of de novo COMT protein will 

be dis inhibited. For example, 21 days may be more in line with the half-life or turnover rate of 

COMT mRNA and protein than 7 days. In a previous study (Figure 8.6), MEL administration at 

16hOO (late photophase) had no effect on COMT activity. However, the latter study represented 

basal COMT activity under a normal 12L:12D cycle, whereas in the current study MEL reversed 

an induction of the COMT enzyme by constant light. This supports the contention that the 

replacement of the suppressed endogenous MEL with exogenous MEL maintains the inhibitory 

effect on COMT expression. The inability of constant dark exposure for 7 days to alter mid

photophase COMT activity is in line with the robust free-running rhythm of endogenous MEL 

synthesis. It further confIrms that, under normal conditions, the mid-photophase represents a 

"refractory period" in responsiveness of the enzyme to MEL. Finally, a parallel study found that 

striatal COMT activity is higher at mid-scotophase of a 12L:12D cycle than at mid-photophase, 

confIrming an earlier result (see Figure 8.6). This strengthens the argument put forward in section 
\ 

8.4 to explain the apparent incongruity to the argument that MEL suppresses COMT activity. 
I 

Other methods of photoperiod manipulation could also be used to probe the nature and mechanism 

behind the regulation of striatal MAO-A and COMT by endogenous MEL. These include 

photoperiod reversal, exposure of dark-adapted animals to light or vice versa. It would also be 

informative to investigate the effect of constant dark and constant light on each enzyme at various 

times throughout the 24 hr cycle. This would indicate whether the day-night rhythm of each 

enzyme is endogenous or entrained by light. It is also possible that these lighting conditions may 

phase-shift the chronotypic sensitivity of MAO-A and COMT to MEL. The current studies were 

based on the principle that constant light exposure should suppress pineal MEL biosynthesis and 

plasma and tissue levels of the hormone. Although this assumption appeared to be validated by the 
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change in the functional state of pineal indole biosynthesis, the actual plasma levels of 

endogenous MEL were not determined. An alternative and more direct method to investigate the 

role of endogenous MEL would be to compare striatal MAO-A and COMT activity in sham

operated and pinealectomized rats. 

J 
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Chapter 10 

In Vivo y-Hydroxybutyrate Administration 
Studies 

10.1 Introduction 

The predominant behavioural attribute of MEL is the entrainment of the circadian rhythmicity in 

locomotion and defined behavioural repertoires such as food-hoarding behaviour (Redman et at., 

1983; Armstrong, 1989; Underwood, 1990). As shown in section 8.3, subchronic administration of 

MEL during either the photophase or the scotophase failed to induce catalepsy, an akinetic state 

reflecting Parkinson's disease. At first, this appears paradoxical as catalepsy is a typical 

antidopamimetic behavioural response, and the evidence for an antidopamimetic effect of MEL 

has been extensively reviewed in section 1.6. MEL is a chronotypic modulator of dopaminergic 

function and DA-mediated behaviours, typically through tonic inhibition. Studies with animal 

models of DA dysfunction clearly show that the nature and intensity of the effect of MEL is 

dependent on the prevailing "tonus" of the midbrain dopaminergic pathways. The "tonus" can be 

differentially and selectively altered through pharmacological intervention with a variety of 

neurochemical agents (see section 1.6.5.3). 

Several agents are capable of inducing catalepsy, but through different mechanisms (Sanberg, et 

aI, 1988; Tunnicliff, 1992). These include reserpine, HAL and GHB. Reserpine is a nonspecific 

depletor of the presynaptic vesicular stores of DA, NA and SHT. Specifically, the I*"oduction of an 

akinetic state is attributed to the depletion of intraneuronal DA. HAL, a typical antipsycMtic of 

the butyrophenone class, induces catalepsy ,through antagonism of postsynaptic D2 receptors 

(Creese et al., 1984; Lidsky and Banerjee, 1993). In contrast, GHB (Figure 10.1) suppresses the 

impulse flow and DA release of midbrain dopaminergic neurons (Walters and Roth, 1976; 

Engberg and Nissbrandt, 1993), primarily through an effect on inhibitory GABAB'receptors 

(Engberg and Nissbrandt, 1993; Williams et al., 1995; Snead, 1996). Thus a comparison of the 

ability of MEL to modulate the behaviour induced by each agent may give further information 

regarding the mode of action of MEL. 
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Figure 10.1: Structure ofGHB monosodium salt. 

MEL was reported to attenuate reserpine-induced catalepsy in female rats during the late 

photophase (Sandyk and Mukherjee, 1989; Sandyk and Fisher, 1989a). Pinealectomy was found to 

lessen HAL-induced catalepsy (Arushanyan et al., 1992), but markedly increased the incidence 

and severity of HAL-induced oro-facial dyskinesia in male rats (Sandyk and Fisher, 1989b). 

Preliminary studies were performed by the present author to investigate the cataleptogenic 

potential of HAL and reserpine in adult male Wistar rats (data not shown). In the case of 

reserpine, a dose of 1 mg/kg bwt. was found to induce a catalepsy state that was far too robust 

for the present studies. Typically, the intensity of catalepsy in the reserpinized rats was in the 

order of 30 to 90 min, far in excess of the 180 s maximum cut-off allowed by the Standardized 

Horizontal Bar Test (Sanberg et al., 1988; see section 2.6.2). This precluded the possibility of 

observing any effect of MEL. TWs was unfortunate, in that, unlike HAL, reserpine in vivo was 

found to have dramatic effects on pineal indole biosynthesis. In tum, HAL-induced catalepsy 

was highly variable, ranging in intensity from that seen for reserpine to mild sedation. 

Nonetheless, a preliminary study suggested that MEL pretreatment did not alter the intensity or 

frequency of HAL-induced catalepsy during the photophase. 
I 

To date no studies have investigated the effeCt of MEL administration and/or pinealectomy on 

GHB-induced catalepsy. The biochemistry of GHB has been reviewed in section 1.9. GHB 

represents a likely candidate in that it is a structural analogue of GABA (Vayer et al., 1985). 

There is also strong evidence that it may be a neurotransmitter in its own right (Vayer et al., 

1988; Cash, 1994). The highest levels of endogenous GHB are found in the substantia nigra, 

although this area is sparse in specific [3H]GHB binding sites (Hecher et aI., 1992). GHB 

inhibits both impulse-dependent and impulse-independent DA-mediated behavioural responses 

(Cott and Engel, 1977; Ellinwood et aI., 1983). In tWs way, GHB can induce sedation, 

catalepsy and anaesthesia (Tunnicliff, 1992). 
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Biochemically, several of the effects of MEL and GHB are mediated by similar neurotransmitter 

systems in the basal ganglia. GHB acts primarily through an effect on inhibitory GABAB receptors 

(Engberg and Nissbrandt, 1993; Williams et at., 1995; Snead, 1996), but may also influence 

opioidergic systems (Feigenbaum and Howard, 1997). In tum, the effects of MEL on reserpine

induced catalepsy and HAL-induced oro-facial dyskinesias were attributed to a modulation of 

opioidergic systems (Sandyk and Fisher, 1989a; Sandyk and Fisher, 1989c). MEL also influences 

the central GABAergic/benzodiazepine system (Acuna Castroviejoy et at., 1986a and 1986b; 

Rosenstein and Cardinali, 1986; Niles et at., 1987; Coloma and Niles, 1988). 

The prime object of this study was then to determine whether MEL can modulate GHB-induced 

behavioural responses. It was further investigated whether GHB has an effect on striatal MAO-A 

and COMT, as seen for MEL. Conversely, the possible reciprocal effect of GHB on pineal indole 

biosynthesis was also determined. 

10.2 Materials and Methodology 

10.2.1 CHEMICALS AND REAGENTS 

The chemical inventories for the pineal organ culture technique, MAO-A assay and COMT assay 

are listed in sections 3.2.1, 5.2.1 and 7.2.1 respectively. GHB monosodium salt was purchased 

from Sigma. 

10.2.2 ANIMALS , 
Male Wistar rats were housed as described in section 2.1. For all studies, the animals were 

I 
acclimatized for 1 week to the prevailing light-dark cycle prior to commencement of the 

experiments. 

10.2.3 DRUG PREPARATION AND ADMINISTRATION 

GHB monosodium salt was prepared in saline (0.9% NaCI). In all studies, animals received a 

single dose of GHB (750 mg/kg bwt, i.p.) or an equivalent volume of the vehicle. MEL was 

prepared in the following vehicle: 2% (v/v) ethanol, 4% (v/v) Tween 80, 94% (v/v) deionised 

water. 
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10.2.4 BEHAVIOURAL TESTING 

10.2.4.1 Testing Environment 

Rats were habituated in individual testing arenas for 10 min prior to GHB administration. All 

testing was performed in a sound attenuated CER. 

Preliminary observations revealed that the rats showed large inter-individual variation iri 

behavioural responses to equivalent doses of GHB. Further observation led to the classification of 

the behavioural responses into three subjective, but distinct and robust states. These are defined 

below. 

10.2.4.2 Categories 

(i) Status A: Normal/Sedate 

Following administration, these animals appeared, for all purposes, normal or showed mild 

sedation, evident as drowsiness. SLA was decreased to varying extents, if at all. The startle reflex 

appeared normal and the tail-pinch response was robust. 

(ii) Status B: Cataleptic State 

After a defmed period following administration (see below), the GHB-treated animals were 

clearly cataleptic. Animals were lying flat on their stomachs with fore- and hind-limbs extended in 

spread-eagled posture. Ears were typically erect and eyes open with no evidence of spontaneous 

blink rate. The startle reflex in response to auditory stimuli was impaired and the tail-pinch , 
response was delayed. The animals could be maintained in abnormal postures and the righting 

reflex was very delayed. Animals were aroused by more robust stimuli such as trying to m~ve or 

handle them. 

(iii) Status C: Anesthetic State 

These animals exhibited the same behavioural responses as described for the "cataleptic state". 

However, there was no startle reflex or tail-pinch response, and the animals could be moved and 

handled without arousing them. In each experiment, the behavioural response of each animals was 

classified as above and the overall frequency of each behavioural state calculate<;i 
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10.2.4.3 Time Parameters 

In a further attempt to quantify the above behavioural responses, the time parameters were defmed 

and measured as below. 

(i) Onset Time 

The time taken to enter either the "cataleptic" or "anesthetic" state as measured from the time of 

GHB administration [T = 0 min]. 

(ii) Duration 

The time spent in "cataleptic" or "anaesthetic" state as measured from time of onset to first 

evidence of spontaneous recovery. 

10.2.5 PINEAL ORGAN CULTURE STUDIES 

The standard organ culture technique and TLC analysis of C4C]indoles was performed as 

described in section 3.2.4. Following excision of the pineal glands, an attempt was made to rapidly 

remove the pineal stalk prior to incubation. These pineal studies were performed in the summer 

months of January and February. 

(i) In Vivo Studies 

The effect of GHB administration on photophase [14C]indole biosynthesis was determined for 

pineal glands isolated and cultured at mid-photophase (12hOO). Pineals were rapidly transferred to 

the corresponding pre-labeled Kimble tubes. The fmal total volume of all samples was 60 /-ll for in 

vivo studies, giving a final concentration ~ 120 /-lM p4C]5HT. 

I 
(ii) In Vitro Study 

The in vitro effect ofGHB (100 /-lM) on [14C]indole biosynthesis was determined for pineal glands 

cultured at mid-photophase (12hOO). Untreated pineals were randomly placed in individual 

Kimble tubes. GHB was prepared in culture medium and added in a volume of 10 /-ll t~ give the 

desired final concentration. C4C]Indole biosynthesis was initiated by the addition of C4C]5HT 

immediately thereafter. Thus, for all practical purposes, there was no preincubation period with 

GHB. The fmal total volume of all samples was 70 /-ll for in vitro studies, giving a fmal 

concentration ~ 100 /-lM [14C]5HT. 
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10.2.6 EN-ZYMEASSAYS 

10.2.6.1 Tissue Preparation 

The corpora striata were removed and stored as described in section 2.2. Enzyme preparations for 

the MAO-A and COMT assays were obtained from the same tissue source by the subcellular 

fractionation protocol described in section 2.3. 

10.2.6.2 Protein Determination 

For all in vivo studies, statistical analysis was performed on enzyme specific activities. Thus, the 

protein concentration of each enzyme preparation was determined in triplicate, as described in 

section 2.4. Mean protein concentrations did not differ significantly between the experimental 

groups for the MAO-A and COMT enzyme preparations (data not shown). 

10.2.6.3 MAO-A Assay 

All studies were performed on the 4% (w/v) mitochondrialllysosomal fraction. The assay 

components and conditions were based on the optimum values experimentally determined in 

section 5.3. MAO-A activity was determined with C4C]5HT (0.025 !-lCi; 4.5 !-lM) as the sole 

substrate, and in the presence of 150 !-lM SHT. The ratio of "C 4C]5HT" activity to 

"P4C]5HT+SHT" activity was also calculated for each sample. 

10.2.6.4 COMT Assay 

All studies were performed on the 5% (w/v) cytosolic/microsomal fraction. The assay components 

and conditions were based on the optimum values experimentally determined in section 7.3. It 
~ 

must be stressed that for in vivo studies, COMT activity was determined under conditions of 
J 

maximal induction by MgClz (10 mM) and a near-saturating concentration of DA HCl (1 mM). 

10.2.7 EXPERIMENTAL DESIGN 

(i) State-clependent behavioural effects of GHB 

The behavioural effects of GHB were observed following administration at mid-photophase 

[12hOO] (n = 22) or at mid-scotophase [24hOO] (n = 21). The behavioural response of each animal 

was designated to one of three groups defined above, and where applicable the "onset time" and 

"duration" of the response was recorded. 
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(ii) Modulation of GHB-induced behaviour by melatonin 

In an attempt to minimize the variation in behavioural responses, animals were screened in a 

preliminary study. Only rats (n = 28) which were completely anesthetized (i.e. Status C) by GHB 

(750 mg/kg i.p.) administration during the photophase were utilized for this study. These animals 

were randomly assigned to either the vehicle- (n = 14) or the MEL-pretreated group (n = 14) and 

allowed a 7 day "washout" period for recovery from the GHB treatment. 

The animals then received a single dose of MEL (2 mgikg bwt) or vehicle i.p. 5 min prior to GHB 

administration at 12hOO. Behavioural responses were observed and quantified as above. 

(iii) Effect of acute GHB administration on MAO-A, COMT and pineal function 

Rats received a single dose of GHB (n = 6) or vehicle (n = 6) 20 min prior to sacrifice at mid

photophase (12hOO). 

(iv) In vitro effect of GHB on pineal function 

The in vitro effect of GHB (1 00 ~M) on pineal C4C]indole biosynthesis was investigated 

according to the protocol described above. Animals were drug-free. 

10.2.8 DATA AND STATISTICAL ANALYSIS 

All data are graphically presented as mean ± SEM. The sample size (n) depends on the study. 

Statistical comparison of group mean values was performed by means of the Student t-test. 

10.3 Results 
! 

10.3.1 BEHAVIOURAL STUDIES 

(i) Day-night variations in GHB-induced behavioural responses 

Considerable inter-individual variation in the type and magnitude of behavioural responses to a 

fixed dose of GHB was observed in the rats. The GHB-treated animals could be consistently and 

reliably categorized into one of the three defined behavioural states. Vehicle-treated animals 

showed no obvious behavioural abnormalities. A comparison of the photophase and scotophase 

studies revealed no significant alteration in the frequency of each GHB-induced behavioural 

response (Figure 10.2). Significant state-dependent differences were seen in the onset time of 

catalepsy and anaesthesia, but not in the duration of these responses (Figure 10.3). The data 
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indicates that the rats were less susceptible to GHB treatment during the scotophase than the 

photophase (P < 0.05 for the "cataleptic" data; P < 0.01 for the combined "cataleptic and 

anaesthetic" data). 

(ii) Modulation of GHB-induced behaviour by melatonin 

Pretreatment with MEL failed to modulate GHB-induced behaviour with respect to the frequency 

of the three behavioural responses (Figure 10.4), or the onset time and duration of catalepsy and 

anaesthesia (Figure 10.5). It must be noted that all the animals used in this study were completely 

anesthetized by GHB in a preliminary screening experiment, but all three behavioural responses 

were induced by GHB in both the vehicle- and MEL-pretreated groups. 

5 4 

5 12 10 7 

Figure 10.2: Frequency of GHB-induced behavioural states. (A) Photophase. (8) Scotophase. 

[State A: sedation; State B: catalepsy; State C: anaesthesia. See section 10.2.4.2 for explanatipn] 
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Figure 10.3: Comparison of time parameters of GHB-induced behavioural responses during 

the photo- and scotophase. (A) Cataleptic state. (B) Cataleptic and Anaesthetic states. [Data 

represents mean ± SEM; Numbers in parentheses refer to sample sizes; *: P < 0.05, t: P < 0.01] 
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Figure 10.4: Frequency of GHB-induced behavioural states during the photopbase: 

modulation by MEL. (A) vebicle-pretreated. (B) MEL-pretreated. [State A: sedation; State B: 

catalepsy; State C: anaesthesia. See section 10.2.4.2 for explanation] 
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Figure 10.5: Comparison of time parameters of GHB-induced behavioural responses in 

vehicle- and MEL-pretreated animals during the photophase. (A) Cataleptic state. (B) 

Cataleptic and Anaesthetic states. [Data represents mean ± SEM; Numbers in parentheses refer 

to sample sizes] 

10.3.2 PINEAL ORGAN CULTURE STUDIES 

(i) In Vivo 

GHB administration resulted in a significant increase in C4C]MEL synthesis and tOtal methylation 

(P < 0.05 in each case), without an effect on any other 5-methoxyindole (Figure 10.6 A). There 

was no effect on the synthesis of any radiolabeled 5-hydroxyindole (Figure 10.6 B). The . 
5HIAA/5HTOH ratio showed higher than normal variability for both the GHB- and vehicle-

treated samples. Furthermore, C4C]5HT and C4C]5IllAA levels, total MAOP and the 5HTIMAOP 

ratio of the GHB-treated samples also showed high variability. It is unclear wh~ther this 

variability is an effect of the vehicle, GHB or the fact that the study was performed in February. 

However, the control and GHB-treated [14C]NAS levels and control C4C]MEL levels were similar 

to that normally seen for winter months, and not the lower levels expected for summer months 

(see section 3.3). This may be an effect of the saline vehicle. 
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Figure 10.6: The effect of acute administration of GHB on the in situ biosynthesis of 

[14C]indoles by rat pineal glands cultured during the mid-photophase [12hOO]. (A) NAS and 

5-methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM (n = 6); 

P-values (compared to vehicle-treated controls): * < 0.05] 
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Figure 10.7: The in vitro effect of GHB (100 ~M) on the in situ biosynthesis of [14C]indole by 

rat pineal glands cultured during the mid-photophase [12hOO). (A) NAS, and 5-

methoxyindoles. (B) 5HT and deaminated indoles. [Data represents mean ± SEM (n = 6); p

value (compared to control): • = 0.163] 

212 



Chapter 10: In Vivo y-Hydroxybutyrate Administration 

(ii) In Vitro 

GHB (100 11M) had no significant in vitro effect on the in situ biosynthesis of any C4C]indole 

(Figure 10.7). There was a trend towards a GlIB-induced increase in the synthesis of [14C]MEL 

(P = 0.1633 compared to control; Figure 10.7 A). The low [14C]NAS levels and high variability in 

5-methoxyindole synthesis can be attributed to the fact that this study was performed in January 

(see section 3.3). This variability may explain the difficulty in delineating significance in the 

observed trends. 

10.3.3 ENZYME STUDIES 

(i) MAO-A 

The effect of acute GHB administration on MAO-A activity of the corpus striatum is shown in 

Figure 10.8. MAO specific activity, with or without cold 5HT (150 11M), and the ratio of 

"C 4C]5HT" activity to "[14C]5HT+5HT" activity were not significantly altered. 
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Figure 10.8: The effect of acute GHB administration on in vitro MAO-A activity of the rat 

corpus striatum during the mid-photophase (12hOO). (Data represents mean ± SEM (n = 6); 

Ratio = [14C]5HT:[14C]5HT+5HT) 

213 



Chapter 10: In Vivo r-Hydroxybutyrate Administration 

(ii) COMT 

Acute GHB administration had no significant effect on COMT specific activity (Figure 10.9). 
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Figure 10.9: Effect of acute GHB administration on in vitro COMT activity of the rat corpus 

striatum during the mid-photophase (12hOO). [Data represents mean ± SEM (n = 6)] 

10.4 Discussion and Conclusion 

In the present studies, a dose of GHB (750 mg/kg i.p.) known to cause anesthesia (Vickers, 1969; 
~ 

Walters and Roth, 1976; Tunnic1iff, 1992) was routinely employed. Nonetheless, the responses of 
i 

the animals were highly variable, ranging from mild sedation through catalepsy to complete 

anesthesia. Anesthesia, however, was the predominant effect at this high dose. This profile is 

consistent with the ability of GHB to induce behavioural responses indicative of dopaminergic 

hypofunction, including akinesia, catalepsy and sedation (Tunnic1iff, 1992). In addition, 

subsequent challenges with GHB induced different behavioural responses in the same rat. This 

could not be attributed to an accumulative dose-effect. GHB is rapidly metabolized to carbon 

dioxide and water such that no drug is detectable in the urine 4-5 hrs after administration (Vickers, 

1969). Thus GHB has no toxic effects on the liver, kidney or other organs. However, GHB may be 

converted back to GABA (Vayer et al., 1985). For this reason, an extended "wash-out" period of 7 

days between drug administrations was employed to allow normalization of brain function. 
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The observed variability may be related to the pharmacokinetics of GHB, which is not absorbed as 

rapidly and uniformly across the blood-brain barrier as its prodrug gamma-butyrolactone 

following i.p. administration (Walters and Roth, 1976). Alternatively, it may reflect individual 

differences in the activity state of the dopaminergic neurons. Neurophysiologically, GHB 

suppresses impulse flow from the substantia nigra to the corpus striatum with a concomitant 

inhibition of DA release (Walters and Roth, 1976; Alter et al., 1984; Engberg and Nissbrandt, 

1993; Howard and Feigenbaum, 1997). For this reason, the efficacy of a given dose of GHB may 

depend on the prevailing spontaneous neuronal firing rate. The activity of mesencephalic 

dopaminergic neurons is known to increase with locomotion, eating and drinking, and novelty 

seeking behaviour, and displays considerable inter-individual variation (Piazza et al., 1996). This 

may explain the decreased sensitivity of rats to GHB-induced catalepsy and anesthesia in the 

scotophase compared to the photophase. Rats are nocturnal animals displaying increased SLA at 

the onset of darkness. This is paralleled by a rapid elevation in the firing rate of midbrain 

dopaminergic neurons and increased DA release (Piazza et al., 1996; Paulson and Robinson, 

1994). A delay in the ability of GHB to reduce extracellular DA to levels sufficient for the 

induction of catalepsy and anesthesia may then explain the prolonged "onset time" during the 

scotophase. 

Plasma and tissue MEL levels also peak in the scotophase following a surge in secretion and 

biosynthesis of the pineal hormone at the onset of dark (Reiter, 1991). Thus it is possible that the 

decreased sensitivity to GHB during the scotophase may also be related to enhanced MEL levels 

at this time. There is a strong consensus that the central effects of GHB, including the inhibition of 

DA release and akinetic behaviours, relate mainly to the agonistic effect of the qrug at GABAB 

receptors (Waldmeier, 1991; Xie and Smart, 1992; Engberg and Nissbrandt, 1993; Williams,et ai., 

1995; Snead, 1996), and an influence on opioidergic systems (Feigenbaum and Howard, 1997) . . 
MEL is reported to inhibit DA release in several brain regions, but, paradoxically, not the corpus 

striatum (Zisapel et al., 1982; Dubocovich, 1983 and 1984; Nowak, 1988). The well-established 

ability of MEL to modulate behaviours indicative of DA dysfunction has been attrib~ted to an 

effect on several neurotransmitter systems (see review in section 1.6.5.3). These include, inter 

alia, dopaminergic (Bradbury et al., 1985; Burton et ai., 1991), serotonergic (DurIach-Misteli and 

Van Ree, 1992), opioidergic (Gaffori and Van Ree, 1985b) and GABAergic systems (Tenn and 

Niles, 1995). More specifically, the ability of MEL to antagonize APO":induced rotational 

behaviour in 60HDA-lesioned rats appears to be facilitated by the striatal GABAAlbenzodiazepine 

receptor complex (Tenn and Niles, 1995). Although GHB has no effect on GABAA receptors 
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(Serra et al., 1991), this does suggest that MEL and GHB may exert behavioural effects through a 

common denominator in the nigro-striatal pathway, namely the GABAergic system. 

However, under the specified conditions, pretreatment with MEL, to mimic the scotophase, failed 

to modulate GHB-induced behaviour during the photophase. This does not preclude a role for 

endogenous MEL as other variables need to be considered, including the dose, route and time of 

administration of the hormone. Furthermore, earlier studies have clearly shown that the 

biochemical and behavioural effects of MEL are known to be chronotypic, depending on the 

responsiveness of the neuronal target. There was also no obvious relationship between the 

polymorphism in pineal e4C]NAS and [14C]MEL biosynthesis and the intensity of the behavioural 

response to GHB. 

Conversely, the effect of GHB on in situ pineal [14C]indole biosynthesis was also investigated. 

Following GHB administration, there was only a significant increase in [14C]MEL biosynthesis 

and total methylation. This profile is difficult to interpret, but may arise through a stimulation of 

either NAT or HIOMT activity without an effect on MAO activity. The important point is that an 

effect on the biosynthesis and secretion of endogenous MEL may represent a part of the modus 

operandi of GHB. The existence of an intrapineal GABAergic system in the rat is well-established 

(Rosenstein et al., 1990), but the stimulatory effect reported here is not consistent with agonistic 

activity of GHB at the inhibitory GABAB receptor. The existence of independent eH]GHB 

binding sites in the pineal gland has not yet been investigated. Alternatively, this effect of GHB 

may result from a reduction in endogenous DA release, disinhibiting NAT activity. An ability of 

DA to inhibit rat pineal NAT activity is implicit in the results reported in section 4.?, confirming a 

previous study by Govitrapong et al. (1989). 
I 

Strong immunohistochemical evidence has been presented that the rat pineal is innervated by 

dopaminergic fibres arising outside the gland, mostly from central structures including the 

habenula complex and the posterior commissure (Zhang et al., 1991). It may be argued ~at GHB 

(100 J.l.M) in vitro induced a trend towards increased C4C]MEL biosynthesis. The lack of 

significance in the latter study may be related to the dose of GHB used in vitro, namely 100 J.l.M. 

A more intensive dose-dependency study may have revealed more significant effects, paralleling 

the effective dose of the in vivo administration. Alternatively, the trend observed in vitro simply 

reflects variation in the sample data. This would then suggest that GHB, in vivo, may have 

inhibited presynaptic DA release in the pineal by suppressing the impUlse flow of the 
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dopaminergic fibres arising outside the pineal, rather than a direct effect in the pineal itself. In this 

regard, GHB could be used to delineate the origin of these fibres. For example, one could check 

for an increase in pineal TH activity of TH-positiveIDBH-negative immunoreactive fibres 

following the site-specific application of GHB. In particular, GHB may represent the ideal tool to 

determine if the pineal represents an output structure of the basal ganglia. This would strengthen 

the argument for a reciprocal relationship between the striatum and the pineal, i.e. the putative 

pineal-striatum axis. 

Concomitant with a suppression of impulse flow and an inhibition of DA release, GHB induces a 

marked increase in the activity of TH and DA levels present within presynaptic dopaminergic 

nerve terminals (Walters and Roth, 1976). Indeed TH activity and DA levels are employed as 

presynaptic markers in the Walters-Roth model to investigate whether dopaminergic agents act at 

autoreceptors. Suppression of nigro-striatal impulse flow blocks postsynaptic feedback effects of 

the same drug arising through local neuronal loops, e.g. the striato-nigral pathway. For example, 

low doses of APO markedly attenuate the GHB-induced increase in TH activity and intracellular 

DA levels (Walters and Roth, 1976). 

MAO-A and COMT are located pre- and post-synaptically in the rat corpus striatum. Thus the 

potential of these enzymes as biochemical markers for GHB studies, instead of TH, was 

investigated. The lack of effect of GHB administration on mid-photophase MAO-A or COMT 

activity suggests that these enzymes are not involved in the behavioural effects of the drug. This 

does not preclude possible dose- and state-dependent or chronotypic effects of GHB 

administration. It is important to note that both enzymes did not appear sensitive '0 the transient, 

but dramatic, flux in the steady-state dynamics of the neurons induced by GHB. Regardless ,of the 

GHB-induced increase in the levels of endogenous DA, a substrate common to both enzymes, 

there was no change in MAO-A and COMT activity determined ex vivo. In contrast, prolonged 

manipulation of endogenous MEL levels caused marked changes to the ex vivo activity of both 

enzymes (see sections 8.3 and 9.3). In future studies, the potential autoreceptor functioI). of MEL 

in the striatum should by investigated by using the classic Walters-Roth model, in others words, to 

determine if MEL can modify the GHB induced increase in TH activity. 
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Conclusions and Future Perspectives 

The current results provide evidence suggestive of MEL-DA interactions in the CNS of the male 

Wistar rat at the level of the pineal gland and corpus striatum of the basal ganglia. The thesis 

objectives were achieved through two main experimental strategies. Firstly, dopaminergic agents 

were found to have an inhibitory effect on the induction of pineal MEL biosynthesis during the 

scotophase. Reciprocally, MEL exerted an inhibitory effect on striatal doparninergic function at 

the level of COMT and MAO-A activity. In other words, the nature of the MEL-DA interaction 

would appear to be one of functional antagonism. 

Previous research into the neuroendocrine and circadian effects of MEL revealed the 

antidopamimetic potential of this hormone in the hypothalamus and pituitary. Research on animal 

models of DA dysfunction also suggested that MEL exerted tonic inhibition on the behavioural 

output of the mesencephalic dopaminergic systems. However, the latter findings were backed up 

by limited biochemical studies. Furthermore, these behavioural effects of MEL could be equally 

attributed to an effect on numerous other neurotransmitter systems operative in the basal ganglia, 

besides the nigro-striatal and mesolimbic dopaminergic systems. To this author's knowledge, the 

present results represent the fIrst evidence that MEL may be an endogenous and chronotypic 

regulator of striatal DA catabolic enzymes. This extension of an antidoparnimetic effect of MEL 

to the corpus striatum supports the hypothesis that MEL may be a homeostatic modulator of 

dopaminergic neurotransmission throughout the CNS. In line with the existenCf of a pineal

hypothalamic axis, the present fmdings will help defIne the nature of a putative pineal-striatal 
I 

axis. Such a holistic concept of brain homeostasis is necessary to delineate the diverse array of 

effects of MEL on brain neurochemistry and b~haviour. 

The robust diurnal rhythm in pineal indole metabolism is considered the most reliable indicator of 

the functional state of the pineal gland. The in situ nature of the present organ culture technique 

offered several advantages. These included the determination of indole biosynthesis by a single 

pineal under physiological conditions, but free from humoral or neural factors of the in vivo 

milieu. In other words, the effects of APO and DA could, theoretically, oe investigated in 

isolation. The only potential disadvantage was the radiometric nature of the present technique. 

218 



Chapter 11: Conclusion and Future Perspectives 

Indole metabolism was quantified by sampling exogenous ['4C]indoles released into the culture 

medium, rather than the pineal content of endogenous indoles. Nonetheless, an assessment of 

C4C]indole biosynthesis revealed that the radiometric technique was capable of accurately 

reflecting both the species-dependent profile of indole metabolism of the rat pineal gland, and 

state-dependent metabolic fluxes. More specifically, the present results confirmed that the activity 

of pineal NAT is the pivotal regulatory step associated with the day-night and seasonal variation 

in MEL biosynthesis. 5-Methoxyindole biosynthesis was primarily determined by the 

bioavailability and affinity of each corresponding 5-hydroxyindole for HIOMT, rather than the 

activity of the latter enzyme. In this regard, the MELl5MTOH ratio appeared to be another 

important index. Both circadian and seasonal changes in photic stimulation resulted in a shift in 

this ratio. This may simply reflect a change in the relative synthesis of MEL and 5MTOH due to 

changes in NAT activity. Alternatively, the role of endogenous pteridines in the regulation of 

pineal HIOMT activity warrants further investigation. 

It must be noted that a potential problem of the current radiometric technique involves the 

metabolic competition between exogenous [14C]indoles and endogenous indoles. The latter was 

found to interfere with data analysis, especially with regard to the apparent pineal MAO activity. 

Generally, such complications were fairly noticeable and could be accounted for in data 

interpretation. It can also be argued that the awareness of this phenomenon may be informative, 

revealing aspects of pineal indole metabolism not observed in other techniques. For example, the 

present system revealed that MEL and other indoles may indeed exert negative feedback control 

on pineal indole biosynthesis. Evidence for such a paracrine control of the pineal by MEL has 

been strongly debated. Another case in point is that under certain experimenta\ situations the 

metabolic state of pineal e4C]indole metabolism quantified in situ is not directly correlated JO the 

prevailing plasma level of MEL. For example, constant light exposure, which is known to 

suppress pineal MEL biosynthesis in vivo and thus the plasma levels of the hormone, potentiated 

C4C]indole metabolism during culture. In future studies, these short-comings of the radiometric 

organ culture technique can be avoided by determining the pineal content of endogeno~s indoles 

by HPLC with dual electrochemical and fluorometric detection. Alternatively, the organ culture 

technique itself could be replaced by in vivo microdialysis with test drugs applied by 

iontophoresis. Finally, endogenous plasma and tissue levels of MEL should also be assessed 

directly by HPLC, RIA or ELISA. This will indicate whether an experimental situation altered 

pineal MEL biosynthesis, the distribution and metabolic fate of the hormone following secretion, 

or both. 
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High inter-individual variability in the biosynthesis of pineal e4CJNAS and [14C]MEL has also 

been a constant hall-mark of the radiometric organ culture technique. In an attempt to manage this 

variability, it was found that, like humans, Wistar rats can be divided into high and low producers 

of MEL. It is most likely that this polymorphism is inherent, arising through genetic regulation of 

key enzymes or the noradrenergic secretory drive. However environmental factors and social 

interactions cannot be ruled out, until a multifactorial analysis can be performed. There was no 

apparent correlation between the extent of [14C]NAS and [14C]MEL biosynthesis and the size of 

the pineal gland. In future studies, a relationship should be sought at the level of enzyme activities 

or the cell density of pinealocytes. This MEL polymorphism may have important functional 

implications, but none were apparent in the present studies. No obvious relationship was found 

between pineal [14CJMEL production and striatal MAO-A and COMT activity, or behavioural 

responses of the animals to exogenous MEL or GHB administration. Practically, however, 

awareness of this polymorphism should assist in the optimization of experimental design. 

The studies with APO and DA provided evidence that a phase-dependent dopaminergic system is 

operative in the pineal gland of the Wistar rat. Both these agonists caused a marked suppression of 

NAS and MEL biosynthesis during the scotophase, consistent with an inhibitory action on the 

nocturnal induction of pineal NAT activity. Pharmacologically, it is proposed that postsynaptic D2 

or D2-like receptors, located on the pinealocyte plasma membrane, were responsible for mediating 

the effects of DA and APO. This fmding clarifies and extends the studies of Govitrapong et at. 

(1984 and 1989). It remains likely that other DA receptor subtypes are also present in the pineal 

gland. There was also some indication that the functional or conformational state of pineal DA 

receptors may vary in a manner dependent on the phase of the light:dark cycle. The exact nature 

and location of these receptor subtypes can be probed with more selective D2 agonisu and 

antagonists, immunocytochemistry, and by !n situ hybridization of mRNA transcripts. The 

mechanism behind these events should be investigated biochemically at the level of the NAT 

enzyme and the cAMP signal transduction system. For example, one could determine if DA and 

APO are capable of reversing the induction of NAT activity by NA or other /3-agonists during the 

photophase. 

The above D2 receptor-mediated events provide a mechanism by which DA can control indole 

biosynthesis, but does not indicate the ultimate function of this neurotransmitter within the pineal. 

The functional nature of the dopaminergic system is likely to be closely associated with the 

morphology of the system. The pineal dopaminergic system of the rat is believed to be 
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independent of photoperiod and consists of fibres originating from central structures via the pineal 

stalk. In contrast, the dopaminergic amacrine cells of the retina are responsive to light and thus 

regulate the circadian rhythmicity of retinal NAT activity and MEL biosynthesis in a direct 

fashion. Determination of the origin and regulation of the pineal dopaminergic fibres should help 

delineate the function of this system. This could be achieved through electrophysiological studies, 

retrograde labeling experiments and the iontophoretic application of agents such as GHB. It would 

be of particular interest to determine if these fibres are associated with output structures of the 

basal ganglia. This would provide the closing feedback loop in the putative pineal-striatal axis. 

The indirect nature of the dopaminergic innervation is consistent with a modulatory role of DA 

within the pineal, in comparison to the direct inhibitory effect of DA in the retina. Therefore DA 

is likely to be involved in the long-term regulation or synchronization of pineal indole 

biosynthesis, consistent with a hormonal rather than a neuronal action. An appreciation of the 

ontogenic and evolutionary development of the retinohypothalamic-pineal tract may be help 

delineate the role of DA in this pathway. It is proposed here that the key may lie with the photo

responsiveness of each component of the tract. Thus, a comparison of dopaminergic function in 

photoreceptive (e.g. the trout) and non-photoreceptive (e.g. the rat) pineal glands is likely to be 

highly informative. 

Dysfunction of dopaminergic systems has been implicated in neuroendocrine, neurodegenerative 

and psychiatric disorders. MAO and COMT are the key catabolic enzymes of DA, having a major 

influence on dopaminergic neurotransmission. Thus, it is of no surprise that both enzymes are 

associated with numerous pathologies and that inhibitors of these enzyme are of major clinical 

importance. The current thesis presented several lines of evidence that the actiwity of striatal 

MAO-A and COMT is state-dependent and inhibited in vivo by endogenous MEL in a chron,typic 

manner. 

Both enzymes displayed day-night variations in activity and were modulated by experimental 

conditions that altered endogenous MEL levels. The latter included photoperiod manipulation and 

administration of exogenous MEL. The inhibitory effect of MEL was more robust against COMT 

than MAO-A, suggesting that COMT is the key enzyme in the regulation of DA catabolism by 

MEL. It is possible that a more robust effect on MAO-A would have been observed following 

changes in the timing, dose and duration of MEL administration or photoperiod manipulation. In 

fact, considering the functional pleiotropy and complexity of MEL, a possible effect of the 
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hormone on any biochemical parameter cannot be excluded until all possible parameters of an 

administration paradigm have been optimized. 

Furthermore the present administration protocol cannot determine whether MEL had a direct 

inhibitory effect on both enzymes or phase-shifted the temporal characteristics of the activity 

pattern. Thus the influence of exogenous MEL and photoperiod on the enzyme activity should be 

re-assessed at more frequent time periods throughout the light dark cycle. This will also give more 

information regarding the wave-form and period of the day-night variation in striatal MAO-A and 

COMT activity and indicate whether these rhythms are endogenous or exogenous (i.e. free

running or entrained by light or other circadian oscillators). Future studies should also compare 

the activity of each enzyme in sham-operated and pinealectomized neonatal and adult rats. 

Currently, the in vivo effect of MEL on MAO-A and COMT activity was determined in vitro by 

radio enzymatic assays. Additional information could be obtained by assessing the in vivo activity 

of these enzymes through quantification of DA and its deaminated and O-methylated metabolites 

by HPLC. This could be performed on striatal homogenates, or by real-time sampling of the 

extracellular fluid by in vivo microdialysis. Coupling of the latter with iontophoresis would allow 

for the site-specific application of MEL and determination of the optimum dose of the hormone. 

An alternative, and the most likely, proposal for the differences in intensity of MEL on the two 

striatal enzymes is related to the mechanism of the hormone in each case. In the case of MAO-A, 

the profile of the in vivo effect of MEL was consistent with the finding that MEL is a reversible, 

time-independent inhibitor of MAO-A in vitro. In contrast, MEL in vitro had no effect on basal or 

Mg2+-induced COMT activity. In other words, the reduction ofCOMT activity in the striatum was 

not due to a direct inhibitory effect of the hormone, but must be related to the amount of ,ctive 

enzyme present. Thus MEL may control the COMT enzyme at the level of gene expression, post

translational modification, compartmentalization, or stability and turnover of mRNA and protein 

molecules. Both the S- and MB-isoforms of COMT are derived from a common gene through two 

distinct promoters. Although MB-COMT is considered to be the neuronally importantjsoform, 

the present results suggest that abundant S-COMT is expressed in the corpus striatum and the 

latter appears to be the isoform regulated by MEL. Recent research has indicated that MEL 

influences transcriptional activation of certain genes through nuclear MEL receptors. An 

important research avenue would then be to determine if MEL can influence the promoter activity 

and expression of S-COMT. The proposal that the effect of MEL on MAO-A is cytosolic, but 
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receptor-mediated in the case of COMT, can be further investigated through the use of selective 

MEL receptor agonists and antagonists. 

Besides MEL, several other pineal indoles were found to be reversible inhibitors of striatal MAO

A in vitro. Furthermore, the preliminary indication that 5MT may be a novel substrate of this 

enzyme needs to be verified. As a consequence, a re-assessment of the regulation of indole 

metabolic pathways within the brain and the pineal gland may be necessary. The latter includes 

the possible feedback regulation of MAO-A by product inhibition and an alternative biosynthetic 

pathway for pineal 5-methoxyindoles. The latter is of particular importance in that there is a 

growing recognition that 5MT and 5MTOH may also be important hormonal products of the 

pineal with potent CNS effects. 

The 5-methoxy substituent on the indole nucleus appeared to be the principal determinant of the 

inhibitory potency of the pineal indolic compounds. This novel fmding suggests the presence of 

an interesting peculiarity in the nature of the MAO-A active site. Further studies should be 

performed on purified MAO-A and MAO-B to calculate 1<; values, rather than lCso values, and to 

determine the type of inhibition and the isoform selectivity of inhibitory potency. This 

information and a comparison of the K; values of the present pineal indoles with other endogenous 

MAO inhibitors, such as isatin and the ~-carbolines, should provide useful data for the structure

activity modeling of the MAO substrate binding site. Subsequently, site-directed mutagenesis and 

recombinant protein technology could determine the exact nature and location of amino residues 

responsible for the enhanced inhibitory potency of the 5-methoxy moiety. Ultimately, this could 

lead to the design of potent reversible inhibitors of MAO-A and MAO-B. In partiwlar, it may be 

advantageous to have therapeutic agents that are structural analogues of endogenous compoUJlds. 

Finally, the inability of MEL alone to induce catalepsy is also in line with the modulatory nature 

of this hormone in the nigro-striatal pathway. Catalepsy was employed as an animal model of 

Parkinson's disease and the Standardized Horizontal Bar Test was capable of reflecting the 

akinetic state induced by drugs such as reserpine, HAL and GHB. However, the flexibility and 

quantification of the Bar Test may be improved by using a rating scale or increasing the maximum 

"cut-off' time allowed. The studies with GHB suggest that this neurochemical will be a useful 

agent to delineate the neural circuitry behind the behavioural effects of MEL. It may be possible 

to overcome the variability in behavioural responses to GHB and the high frequency of 
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anaesthesia by lowering the dose (e.g. 400 mglkg) and using the GHB pro drug, y-butyrolactone. 

The Walters-Roth model should be used to investigate the potential effects of MEL on DA 

autoreceptor function and presynaptic TH activity in the nigro-striatal pathway. In this way, the 

modulatory nature of MEL on striatal DA catabolism may also be found to exist at the level of 

DA biosynthesis. 
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