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General Abstract: 

Given their widespread effects and distribution in both natural and industrial environments, the 

monitoring of phenolic compounds is of considerable analytical interest. Electrochemical biosensor 

technologies, in particular those comprising laccase enzymes, afford many potential benefits to 

address this analytical need. However, several key factors affecting sensor response currently limit 

their applicability. 

This Thesis reports on the fabrication and optimisation of an electrochemical laccase-based biosensor 

towards the application of the monitoring of phenolic compounds. Selected factors considered to 

affect sensor response were investigated using the optimised biosensor. These included: 

electrochemical, biochemical and substrate-dependent factors, which were found to intersect in 

modulating biosensor response signals. Through the application of transducer-dependent and 

substrate-dependent parameters, the selective and simultaneous detection of a mixture of different 

phenolic analytes is successfully demonstrated. 

This Thesis also investigates the use of Quartz-Crystal Microbalance with Dissipation (QCM-D) 

technology, an analytical technique that measures physical parameters of thin-film structures, towards 

the successful monitoring of enzyme immobilisation strategies. These strategies are fundamental to 

the successful fabrication of biosensors, and the real-time monitoring of immobilised film formations 

is of considerable research interest. In the studies reported on in this Thesis, QCM-D technology was 

demonstrated to be an effective complementary technology in the prediction of film immobilisation 

techniques on the resultant biochemical kinetics of immobilised enzymes. 
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Chapter 1: General Introduction 

1.1 Chapter Overview 

This chapter aims at contextualising the research reported on in this Thesis. To this end, a literature 

review is presented, followed by the identification of current knowledge gaps pertaining to this research. 

The literature review provided outlines the necessity for, and methods by which, monitoring of phenolic 

compounds occurring at the time of writing, before giving an overview of biosensor technology in 

general, and the current state of research in laccase-based electrochemical biosensors for phenolics 

detection. 

The identification of current knowledge gaps is centred on laccase-based biosensor processes. In this 

section, the various factors that currently contribute to limit the application of this technology are briefly 

discussed, in order to motivate for the proceeding research reported on in this Thesis. 

1.2 Literature Review: 

1.2.1: Phenolic compounds 

1.2.1.1 Chemical and physical properties of phenolic compounds 

Phenolic compounds are a class of compounds, characterised by the presence of a benzene ring onto 

which a hydroxyl substituent is attached (McMurry, 2000a; Stalikas, 2007). The hydroxyl substituent 

makes phenolic compounds weakly acidic (McMurry, 2000a; Schweigert et aI. , 2001). Figure 1.1 depicts 

the generalised chemical structure of a phenolic compound. 
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R 

Figure 1.1: Generic structure of a phenolic compound. 

R represents any substituent In the parent compound. phenol. R is a hydrogen substituent. Red represents the ortho-position, 
blue the meta position and orange the para position of the substituents. relative to the hydroxyl group. 

The aromatic nature of the benzene ring onto which substituents are anchored provides a high degree of 

stability, decreasing the reactivity of the phenolics towards many organic chemical interactions and 

enhancing their residence time in environmental systems. The conjugated bonds of the benzene ring 

carbons provides a resonance structure that delocalises n electrons throughout the benzene molecule, 

providing an evenly-distributed electron density around the ring, which precludes many substitution and 

elimination reactions from occurring (McMurry, 2000b). Conjugation allows for intra-molecular electron 

transfer to occur, both within the ring between the substituents and the ring, providing a further stability 

when an electron is abstracted from the compound (McMurry, 2000b) . This mono-electron removal 

results in the formation of a carbocation radical that is stabil ised by the resonance intermediates, as 

electron donation within the ring structure stabilised the positive radical charge (McMurry, 2000c). 

Further stability of the resonance forms is also noted with the inclusion of substituents with electron-

donating resonance effect, such as halogens and amino substituents, and further hydroxyl and alkoxyl 

substitution. It is important to note that many of these substituents are electron-withdrawing groups (from 

an electronegativity inductive perspective), withdrawing some of the electron (i .e. electron density) from 

the benzene ring and destabilising it. This, in some cases (such as halogens), may counteract their 

electron-donating effects towards the resonance structure. Other electron-withdrawing groups (notably 

carbonyl, cyano and nitro substituents) are also classed as electron-withdrawing groups, further helping 

to destabili se the resonance structure (McMurry, 2000c). 
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Many of the physical and chemical properties attached to specific phenolic compounds are dependent on, 

and modulated by, the nature of the substituents attached to the conj ugated ring. Phenolic compounds are 

cited as being volatile or semi-volatile, at room temperatures, dependent on their substituents (Soares et 

aI., 2008) and the aromaticity of phenolics makes them readily absorb UV (i .e. < 280 nm wavelength) 

light (Robbins, 2003). Due to the presence of the benzene ring, many simple phenolic compounds are 

weakly soluble in aqueous solutions, albeit slightly more soluble in alkaline solutions, due to their 

acidity. The presence of polar (e .g. - OH) and ionic (e.g. -COOH. - X, - NH,) groups tend to increase the 

aqueous solubility, while the presence of non-polar groups (e.g. - CH,) tends to achieve the converse. 

The reactivity of phenolics is generally initiated by, and results in alterations of, the substituent groups 

attached to the benzene ring. The hydroxyl substituent, in particular, is a strongly-activating ortho- and 

para-directing substituent (Figure 1.1) due to the donation of electrons via the IT-bonds overlapping from 

the oxygen substituent to the benzene ring (McMurry, 2000b). The directing effect of the hydroxyl group 

permits the relatively easy attachment of halogens to the benzene rings at the ortho and para positions of 

the benzene ring. When oxidised, phenolics can reversibly form cyclic, non-aromatic quinone 

compounds. Figure 1.2 depicts the relevant chemical forms. (McMurry, 2000b) 

OH o 

Reduction 

Oxidation 

Figure 1.2: Chemical structures of hydroquinone (1,4-dihydroxybenzene) and its corresponding quinone, p-Quinone. 

Note the alteration of the double-bond structure within the benzene ring. Adapted from McMurry, 2000b. 
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1.2.1.2: Distribution and effect of phenolic compounds 

Two broad classifications of phenolic compounds are apparent when considering both the effects and the 

distribution of phenolic compounds in the environment and, by inference, in human contact. Generally, 

anthropogenic phenolic compounds are produced in great quantities and act as harmful xenobiotic 

compounds which are manufactured by-products of industrial processes. Naturally-generated phenolics 

are generally found in lesser quantities and possess numerous food and medicinal applications. 

This broad, almost antithetical, gap between the two classes of phenolic compounds defined above arises 

from the initial chemical definition of a phenolic compound (Section 1.2.1). The classification of 

phenolics encompasses a vast number of chemical compounds, from the essential roles tyrosine and 

dopamine play in mammals (Garrett and Grisham, 1999c) to the toxic effects of pentachlorophenol 

(Oikari et aI., 1992), ranging in size from humic acids ~ 22.6 kDA, Smith et aI., 2000) to the simplest, 

phenol (94 Da) (Stalikas, 2007). Phenolic compounds must contain at least one aromatic ring to which a 

hydroxyl substituent is attached, but the presence of this defining structure does not govern the effects, 

mode of biological action of same and other relevant properties of a given phenolic (Schweigert et aI., 

200 I, Aptula et aI., 2005). Of far more importance, in terms of assaying the detrimentallbeneficial effects 

of a phenolic group are the other, secondary substituents, the presence and number of other aromatic / 

aliphatic groups and the degree of halogenation of the aromatic moieties of a given compound. 

Even beneficial properties conferred by consumption of phenolic compounds may still constitute 

pollution - it has been reported that contamination of more than I ~gIL of phenolics adversely affects the 

colour and odour of water (Martinez et aI., 2000). 

a. Anthropogenic phenolics: 

Anthropogenic phenolic compounds have found application as the following: precursors to bulk 

antioxidant manufacture for both foodlbeverage industries (KaroviCiDvand Simko, 2000) and for 

industrial applications (Soares et aI. , 2008); lubricants (Soares et aI., 2008); surfactant precursors (Soares 

et aI. , 2008; Lian et aI. , 2009); precursors in the manufacture of pharmaceutics (Schweigert et aI., 2001); 
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plastics (Schweigert et aI. , 2001) and adhesives manufacture (Schweigert et aI., 2001; McMurry, 2000b) 

and the petrochemical industry (Quintana and Ramos, 2008). Chlorophenolic compounds are released as 

by-products of the paper and pulp industries (Oikari et aI., 1992; Schweigert et aI., 200 I) and in 

agrochemical industries, phenolics are present as intermediates of the degradation of pesticides (Quintana 

and Ramos, 2008) and certain fertilizers. Pentachlorophenol, a priority pollutant, is still widely used as a 

wood-preservative, and chlorinated phenolics are widely applied as herbicides, pesticides (Barcelo and 

Hennion, 1995) and antiseptic agents (McMurry, 2000b). The anti-oxidant effects of anthropogenic 

phenols are also exploited within the food industry as preservatives (McMurry, 2000b) and as anti

corrosives (Sugama, 2000). 

To emphasise the wide production of phenolic compounds, nonylphenols, which act as precursors for 

compounds used in many other industrial processes are presented as an example of the manufacturing 

scope: an estimated 500 000 tons are manufactured yearly around the globe, 60% of which is eventually 

distributed into water systems (Ying et aI. , 2002). The chemical structure of 4-nonylphenol is depicted 

below (Figure 1.3). 

OH 

Figure 1.3 Chemical structure of 4-nonylphenol (Sigma-Aldrich, 2010) 

Due to the large quantities of manufacture and use, phenolic-originating compounds generally reach 

wastewater streams in significant quantities where they are imperfectly degraded (Soares et aI., 2008) to 

produce a phenolic compound, whereupon they are discharged into the environment. 

The dual polar and aromatic natures of phenolic compounds allow them to pass easily into organisms and 

through cell walls. Phenolic compounds are thereby taken up by living organisms, both micro- and 

macro-organisms (Ferrara et aI. , 200 I), entering the food-chain of the local environment and enhancing 

the exposure probability in humans. The following detrimental effects of exposure to phenolic 

compounds are noted, with some notable examples included: endocrine disruption, notably of the 
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oestrogenic pathways e.g nonylphenol (Soares et aI. , 2008) and other alkylphenols (Femara et al.,2001; 

Santos and Galceran, 2003); disruption of intracellular metabolic pathways (Aptula et aI. , 2005) and 

protein inactivation (Schweigert et aI. , 2001); acute toxicity (Oikari et aI., 1992); cytotoxicity (Soares et 

aI., 2008); hepatotoxicity (Wang et aI., 2001); mutagenicity (hydroquinone, Smith et aI. , 2000, Roza et 

aI., 2003); teratogenicity; genotoxicity (catechols and chlorocatechols, JEM, 2003, Gaskell et al ,. 2005; 

phenols and chlorophenols, Rothman et aI. , 1998; Farre et aI., 2005; Soares et aI., 2008), carcinogenicity 

(Smith et aI., 2000; Soares et aI., 2008) and increased oxidative cellular stress (Schweigert et aI. , 2001; 

Wang et aI., 200 I). Specifically cited is the acute toxicity towards aquatic organisms following 

contamination of water systems by phenolic systems (Matthiessen and Law, 2002; Chen et aI. , 2009), 

which is indicative of their ability to circulate within water systems despite their non-polar properties. 

Polyaromatic hydrocarbons (PAHs) in particular, a class of aromatic compounds within which some 

phenolics are also classified, are considered to be exceedingly toxic to aquatic life (Matthiessen and Law, 

2002). 

Due to the chemical stability of phenolic compounds conferred by the properties of both the benzene ring 

and the substituents attached to it (McMurry, 2000c), phenolic compounds are recalcitrant pollutants, 

resisting degradation by both biotic (Goi et aI., 2004; Soares et aI. , 2008) and abiotic processes (Soares et 

aI. , 2008), as well as by anthropic methods e.g. bulk electro-oxidation (Anandhakumar et aI. , 20 I 0) or 

catalytic chemical oxidation (Hamoudi et aI. , 1999). 

In addition, the partial degradation, or metabolism, of a phenolic compound may only result in the 

release / alteration of substituents (e.g. oxidation to the quinone form, or semi-quinone radical) - the 

resulting compound itself possessing toxic qualities, sometimes more so than the parent compound 

(Schweigert et aI., 2001; Wang et a!., 2001; Aptula et a!. , 2005; Soares et aI., 2008). Similar 

transformations and partial metabolisms of phenolic compounds have been noted within mammalian 

models (Davies, 1999; Mudnic et aI., 20 I 0). Phenol has been shown to be metabolised to form 

hydroquinone and catechol (Davies, 1999), and phenolic compounds are excreted in urine as 

-glucuronide (Malaveille et aI. , 1998), -O-glycoside (Heim et aI., 2002), -sulfate (Malaveille et a!. , 1998) 
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and -glutathione (Davies, 1999) complexes of the same. Chemical disinfection of phenolic-contaminated 

drinking water has been reported to result in the formation of chlorophenols (Martinez et aI. , 2000). 

Remediation of contaminated sites is further complicated by the tendency of phenolic compounds to 

associate with environmental matter. Through a combination of hydrogen bonding, n-n interaction and 

hydrophobic binding (Li et aI., 2009) many phenolics can bind strongly to matter within the 

environment, such as humus (Soares et aI., 2008), humic acids (Oikari et aI. , 1992), microbial biomass, 

(Soares et aI. , 2008; Lian et aI. , 2009), soil (Llorca-P6rcel et aI. , 2009; Chen et aI., 2009), metal ions 

(Schweigert et aI. , 200 I; Ferrat et aI., 2003) and clay particles (Razee and Masujima, 2002). Soil, in 

particular, is cited as a favourable binding substrate for phenolic compounds (Llorca-P6rcel et aI., 2009). 

These effects are also affected by the nature of the substituents attached to the benzene ring (Li et aI., 

2009). 

The binding kinetics of phenolics to environmental matter has the effect of decreasing the possibility of 

degradation through physicochemical means (e.g. photolysis, oxidation, ozonation (Goi et aI., 2004) and 

situates them favourably from many microbial degradation methods (Lian et aI. , 2009) through e.g. 

partitioning in areas with decreased oxygen availability; Soares et aI., 2008). In some cases, this 

increases the detrimental effect of exposure to phenolics (Oikari et aI. , 1992). This preferential 

partitioning further increases their recalcitrance (Oikari et aI. , 1992; Soares et aI., 2008) and improves 

their rate of circulation throughout the biosphere under examination. In addition, their low aqueous 

solubility provides a long-term, chronic circulation of the contaminant between water and soi l mediums 

(Soares et aI., 2008). 

In summary, due to the high levels of phenolic production, the wide-ranging adverse effects of 

contamination to both human and environmental well-being, coupled with phenolics' inherent 

recalcitrance, their incomplete degradation kinetics and their interaction with environmental matter, it is 

of extreme importance to monitor levels of hazardous phenolics within industrial, household and 

environmental contexts. The following section outlines the effects that naturally-synthesised phenolics 

possess, primarily in human health and nutrition. 
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b. Natural phenolics 

As secondary metabolites produced by plants, phenolic compounds have been widely studied (Ferrat et 

aI., 2003) and have numerous structural and protective functions within plants. Approximately 8000 

distinct compounds classified as phenolics have been identified from plant matter (Stalikas, 2007). 

Phenolics comprise the largest group of non-nutritive compounds found within the plant kingdom and 

are synthesised from ubiquitous precursor compounds found within most cells e.g. phenylalanine and 

acetylcoenzyme A (Sakihama et aI. , 2003; Harnly et aI., 2007). Phenolics are classifiable by the number 

of phenol moieties: relatively simple compounds are present i.e. compounds comprising a single phenolic 

ring, but phenolics are also present in other configurations; from dimeric and oligomeric phenOls up to 

very complex, much larger polymeric molecular forms of polyphenols, such as lignins, are present in 

plant matter (Robbins, 2003; Stalikas, 2007). Within the plants, they afford protection against: 

pathogens, browsers and UV-mediated oxidative damage (Stalikas, 2007; Harnly et aI. , 2007), and form 

pigmented compounds in order to attract pollinators and seed-distributors e.g. anthocyanins (Heim et aI., 

2002; Harnly et aI., 2007) and impart organoleptic qualities to edible plant matter (Robbins, 2003; de 

Pascual-Teresa et al ., 2010) and are widely distributed and varied according to tissue (Heim et aI., 2002). 

Flavonoids (Firuzi et aI., 2005 , specifically flavonones and flavonols, Gonzalez-Molina et aI. , 2010) , 

phenolic/benzoic acids (Gonzalez-Molina et aI., 2010; Mudnic et aI. , 2010; Rodriguez-Bernaldo de 

Quiros et aI. , 2010) tannins (Ferrat et aI. , 2003; Rodriguez-Bernaldo de Quiros et aI. , 2010), polyphenols 

(Rodriguez-Bernal do de Quiros et aI. , 20 I 0) and lignins are groups of phenolic, or phenol-comprising, 

compounds and are widely distributed throughout the plant world (Ferrat et aI., 2003). Humus (semi

degraded plant matter) and humic substances are themselves highly complex phenolic compounds with 

widely-varied chemical constructions, functional groups and isomers (Lin et aI. , 200 I), while lignin is a 

phenolic polymer of irregular size and structure that is a component of cell walls (Rabinovich et aI., 

2004). The structure and distribution of phenolics varies from tissues and species of producing plant 

(Ferrat et aI. , 2003). As such, phenolics are also present as intermediates in the microbial degradation of 

plant-based polyphenolic compounds (Schweigert et aI., 200 I). The chemical structure of an example of 

a flavonoid, (-)-epicatechin gallate, is presented below (Figure 1.4) 
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OH 
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Figure 1.4: Structure of (-)-epicatechin gallate, an example of a flavonoid. (Sigma-Aldrich, 2010) 

Many beneficial phenolic compounds are taken in by humans as components of food products 

(Schweigert et aI., 2001) or beverages (Mudnic et aI. , 2010). Their beneficial properties as a food 

component includes: cardioprotective function (Cespedes et aI, 2008; de Pascual-Teresa et aI., 2010); 

antimutagenicity and antigenotoxicity (Heim et aI., 2002; Malaveille et aI., 1998), anti-tumour activity 

(Robbins, 2003) and possess vasodilatory (Mudnic et aI., 20 I 0), anti-allergenic (Leger et aI., 2009), 

antimicrobial, antiviral (Robbins, 2003) wound-repair stimulation (albeit indirectly, Goutharnchandra et 

aI., 20 I 0) as well as anti-inflammatory properties (Heim et aI., 2002; Robbins, 2003). As with 

anthropogenic phenolics, the effect and degree of effect noted with intake of dietary phenolic is strongly 

influenced by the substituents and structure (Arora et al., 1998; Heim et aI., 2002; Firuzi et aI., 2005) of 

the phenolic compound. 

The most well-known and well-studied properties of plant-originating phenolics are as radical

scavenging antioxidants i.e. decreasing the amount of free radical-induced damage to cells through the 

donation of one or more protons to a free radical source, stabilising it (Arora et aI. , 1998; Heim et aI., 

2002; Robbins, 2003). A great diversity of simple phenolic compounds from whole foods and food 

extracts have been demonstrated to delay and minimise oxidative damage to cells, not only within the 

producing plant source (Heim et aI., 2002; Cespedes et ai, 2008), but also within mammalian models and 

tissues (Heim et aI., 2002; Cespedes et ai, 2008; Gonzalez-Molina et aI., 2010; Gouthamchandra et aI., 

20 I 0; Mudnic et aI., 20 10) and the in-vitro stabilisation of free-radicals (Heim et aI., 2002; Firuzi et aI. , 
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2005; Malaveille et aI., 1998; Gouthamchandra et aI., 2010; Mansoor et aI., 2010; Moyo et aI. , 2010; 

Mudnic et aI. , 2010; Xu et aI., 2010). The increased uptake of phenolic-based antioxidants by humans is 

itself implicated in many protective functions against chronic diseases, such as carcinogenesis 

(Malaveille et aI., 1998; Heim et aI., 2002; Cespedes et ai, 2008), neurodegenerative diseases (Cespedes 

et ai, 2008; de Pascual-Teresa et aI., 2010) and cardiovascular diseases (de Pascual-Teresa et aI., 2010), 

either through direct antioxidant interaction with radical species, or through the chelation and 

neutralisation of metal ions implicated in cell ular oxidative damage (He im et aI. , 2002; Firuzi et aI., 

2005). Free-radical interaction and proton donation is considered to be primarily a function of the 

hydroxyl substituents (Heim et aI., 2002) . 

The correlation existing between the antioxidant capacity of a given foodstuff is so high that a separate 

determination of the phenolic content of a foodstuff is generally measured as an indication of the total 

antioxidant activity (Huang et aI., 2005; Xu et aI., 2010; Rodriguez-Bernaldo de Quir6s et aI., 2010), in 

conjunction with other assays. 

1.2.2: Detection of phenolic compounds 

The variety, distribution and wide-ranging health implications of phenolics within the contexts of both 

natural environments and human prosperity strongly indicates that quantitative analysis of phenolics is 

essential when considering monitoring strategies. Since the detrimentallbeneficial properties of phenolic 

exposure are strongly influenced by the substituents present, it may be insufficient from an analytical 

perspective to merely detennine the phenolic content of a given sample. 

In the case of detrimental, pollutant phenolics: Due to the aforementioned reasons of detrimental 

exposure effects, excellent inter-medium partitioning and persistence within natural environments, many 

phenolic compounds, or compounds that degrade to phenolics, have been classified as priority pollutants 

by the United States Environmental Protection Agency (Buckman et aI., 1984). A total of 12 phenolics 

are classified as priority pollutants, and numerous other compounds that have a phenolic degradation 

intennediate, or final degradant, are included within this list. Thus, there is a pressing need to monitor 

their levels within the environment within a number of analytical matrices. This intimates the necessity 
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for in-situ (portable) and rapid analytical methods to be implemented in the monitoring of sites suspected 

of phenolic contamination. 

In addition to the characterisation of the extent of contamination in polluted sites, quality-assurance 

procedures of treatment processes require that phenolic levels require extensive characterisation and 

monitoring to ensure that safe levels of pollutants are achieved prior to industrial effluent discharge into 

municipal, or natural, treatment pathways. This is also an important measuring priority when determining 

the efficacy at which treatment of contaminated sites is occurring, and requires medium- to long-term 

analysis taking place. 

Quality-assurance is also necessary for ensuring synthesis reproducibility in those industries/applications 

for which these phenolic precursors are essential - this is of especial importance in those phenolic 

compounds for which pharmaceutical applications have been exploited and human exposure is expected. 

A similar rationale for phenolic monitoring is anticipated for those phenolics classified as beneficial / 

nutritive. Both quantitative and qualitative analysis of these are required in order to standardise process 

streams in the food, beverage and phyto-medicinal industry. Extensive research has been performed on 

determining both the structure and the leveVs of phenolics within a variety of samples. The following 

section describes the conventional methods of determining phenolic contents within these analytical 

matrices and a critical evaluation of their efficacy in being applied to phenolics monitoring. The call for a 

profiling method that comprehensively and rapidly detects all separate phenolics within a food source 

has previously been made (Harnly et aI., 2007). In terms of process control and quality assurance, in the 

combined spheres of human health and human nutrition, it is essential to not only identify and monitor 

beneficial phenolics within food sources, but also the biokinetic information derived from in-vivo 

transformation of beneficial phenolics. 

Hence, the following analyte matrices are to be considered when considering the potential areas at which 

monitoring of both beneficial and detrimental phenolics is important: soil , water, foodstuffs, bacterial 

and macro-organism tissues and secretions. 
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1.2.2.1 Conventional, non-electroanalytic detection methods: 

The following techniques have been used in order to detect and monitor phenolic products. These have 

been categorised by the medium in which detection of phenols has been investigated. 

Due to the aforementioned effects of phenolic contamination, much research has been expended on the 

monitoring of priority aromatic pollutants (including phenolic compounds) in water systems and soil 

systems. In environmental soi l samples, sample extraction followed by Gas-Chromatography-Mass

Spectroscopy (GC-MS) has been used extensively, as the degree of separation coupled with the 

qualitative/quantitative information gained by this technique lends itself well to the initial 

characterisation of chemical species present in complex samples suspected of contamination (Santos and 

Galeeran, 2003, Farre et aI., 2005; Llorca-Porcel et aI., 2009). GC-MS has also been used to characterise 

phenolics present in various fractions of petroleum (Wasinski and Andersson, 2007) 

Water samples containing phenolic compounds are routinely analysed with High-Performance Liquid 

Chromatography, HPLC (Suliman et aI., 2006; Lian et aI. , 2009). This is a technique that lends itself well 

to the detection of phenolics, as they strongly absorb UV light (Robbins, 2003). Since a common 

detection mode of HPLC is a UV Nis spectroscopic detector, this makes non-derivatised detection of 

phenolics much easier for this technique. Samples of water contaminated by chlorinated phenols have 

been analysed with Liquid Chromatography (LC) with solid-phase extraction (Barcelo and Hennion, 

1995), as well as by GC-MS (Eisert and Levsen, 1996; Heberer and Stan, 1997; Lian et aI., 2009) and CE 

(Martinez et aI. , 2000). For the purposes of initial characterisation, in cases of suspected phenolic 

contamination of water sources, the use of model organism toxicity/inhibition studies has been 

employed, primarily bacterial (Farre et aI., 2005). Toxicity/inhibition studies of macroscopic aquatic 

organisms (Aptula et aI., 2005; Fenara et aI. , 200 I) is also studied for an assessment of the medium-to

long term detrimental features of site-specific phenolic-specific contamination. These techniques suffer 

from a lack of specificity, but remain useful for a comprehensive overview as to the general toxicity of 

the sample under examination. 
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In mammalian serum sampling, microdialysis has been used as a preparative pre-analysis treatment in 

order to improve detection specificity, coupled with LC or Capilliary Electrophoresis (CE) (Davies, 

1999). Other analyses conducted on samples, or extracts of animal tissues include: GC-MS (Ferrara et 

aI., 2001 , Ahn et aI., 2007a; Rothman et aI., 1998), typically with Solid-Phase Extraction to screen out 

interferents. HPLC has been used in order to analyse liquid samples, such as blood or urine (MalaveilJe 

et aI., 1998). 

Antioxidant assays, primarily of foodstuffs, fruits and beverages are classed separately. HPLC has been 

employed as a preparative separation technique (Malaveille et aI., 1998; Karovicovli and Simko, 2000; 

Robbins, 2003; Harnly et aI. , 2007; Gonzalez-Molina et aI., 2010), followed by a variety of detection 

methods - typically UVNIS or flourimetric spectroscopy (Robbins, 2003; Gyorik et aI., 2003) or MS. 

Extraction, followed by derivitization and GC-MS detection has also been routinely used to analyse 

phenolic contents of food (Robbins, 2003). 

Biomolecular detection techniques focus primarily on immunoaffinity assays, such as Enzyme-Linked 

Immuno-Assay (ELISA), offer portable, highly specific and sensitive (0.05 to 1 flg/L sensitivity, . 

depending on the chemical species and matrix properties under consideration) assays for various 

phenolic compounds with samples obtained in complex matrices (FaITe et aI., 2005). 

The advantages of many of these techniques are the principles of easy separation between chemical 

species (Buckman, et aI., 1984), detection efficiency of phenolics (Llorca-P6rcel et aI., 2009) down to the 

ng level (Buckman et aI., 1984), short sample preparation times and the ability of preanalytical 

techniques to further concentrate and purify analyles of interest (Karovicov Ii and Simko, 2000). 

However, the drawbacks of applying these techniques to phenolics monitoring are: the lack of 

portability, high unit-cost of detection equipment, lack of robustness for much of the equipment, 

requirements of skilled technical sample preparation, which combine to make on-site analyses very 

difficult, especially within an environmental monitoring paradigm, but also affecting industrial process 

monitoring, such as effluent quality assurance. This requires that samples be transported to analysing 

centres, increasing the time-of-analysis and making real-time monitoring difficult to deploy, further 
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decreasing the infonnation-gathering efficiency that is necessary to enact relevant alterations to processes 

to improve pollutant regulation. 

Due to the high toxicity of many phenolics, many detection techniques require that standardised 

procedures must be emplaced for the extraction and concentration of environmental samples prior to 

analysis (Eisert and Levsen, 1996), many of them complex in themselves (Rothman et aI. , 1998; Ahn et 

aI., 2007a; Quintana and Ramos, 2008; Lian et aI. , 2009), the use of which might lead to a lack of 

representative sampling. In addition, the need for derivatisation of analytes prior to analysis, which in 

some techniques is required to enhance, or generate, a signal (Robards, 1992; Heberer and Stan, 1997; 

Suliman et aI. , 2006; Wasinski and Andersson, 2007) necessitates the use for skilled operators and data 

analysts to perfonn the dual qualitative-quantitative analysis. Many of these pre-analytical concentration 

and separation techniques suffer the same drawbacks, and entail the use of toxic reagents/solvents in both 

preparative and analytical stages of determination (Lian et aI., 2009; L1orca-P6rcel et aI. , 2009), and their 

use raises the issue of destructive sampling that occurs during these procedures. This makes disposal of 

analysed samples difficult in situ. The addition of the requisite solvents and reagents used in the 

detectiOn/pre-detection procedures (such as the generation of monoclonal antibodies in ELISA, highly

pure solvents for sample extraction, or the f1ourophoric derivatising compounds in some variants of GC) 

greatly increases the per-sample cost of analysis. 

While equipment portability for GC-based equipment is improving, and commercially-available portable 

detection systems are available, the degree of portability is I imited by "power, weight and analytical 

capability issues" (Santos and Galceran, 2003) and the more cost-effective and powerful models are still 

limited to vehicle-transported units. 
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1.2.2.2 Electroanalysis: 

a. Basic principles 

Electroanalysis is the measurement of electric potential, current (and its integral, charge) and/or 

resistivity, typically following an alteration of one or more of the aforementioned parameters. 

Electrochemistry, a subset of this analytical discipline, studies the chemical changes created by the 

passage of current and/or the production of electrical energy by chemical reactions. In brief, it relates the 

reduction, or oxidation, of analytes at an electrode/electrolyte system to provide information on the 

analyte (Bard and Faulkner, 200 I a). The governing principle of electrochemistry is that generation of a 

suitable potential difference between electrodes immersed in an electrolyte solution (the sum of these 

components referred to as the electrochemical cell) containing an electroactive analyte generates a 

current, based on the reduction/oxidation of the analyte. 

For the purpose of this Thesis, the electrochemical cell is comprised of a three-electrode electrochemical 

cell. Electrodes are distinguished by their purposes: a reference electrode maintains a constant potential 

to maintain or control the potential difference between a working electrode and an auxiliary electrode via 

external energy input. The working electrode's potential allows it to generate the desired 

reduction/oxidation reaction at its surface and the auxiliary electrode completes the circuit by performing 

the other half-cell reaction/s as a counterpart to the processes undergone at the working electrode (Bard 

and Faulkner, 2001 a). 

Categories of electroanalysis are based on which property of the electrochemical cell is being measured -

amperometric devices measure current (usually relative to a set potential); coulometric devices measure 

charge (relative to a set potential), potentiometric sensors detect potential shifts (relative to a fixed 

current) and impedimetric sensors measure the impedance/admittance of an electrochemical cell (usually 

to a frequency-dependent AC potential shift) (Bard and Faulkner, 200 I a). 

Electrochemistry has several benefits when viewed for its considerat ion as an analytical technique. The 

fo llowing advantages of employing electrochemical analysis have been cited: extreme sensitivity of 
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signal detection, and the resultant low detection limits (Bakker and Telting-Diaz, 2002; Ashley, 2003), 

ruggedness (Ashley, 2003), portability (Farr'; et aI., 2005), ease-of-miniaturisation of detection platforms 

(Bakker and Telting-Diaz, 2002; Ashley, 2003), leading to the possibility of in-vivo analyses (Bakker and 

Telting-Diaz, 2002), excellent compatibility with a number of analytical matrices (Ashley, 2003); rapid 

analys is timeframes, potential for real-time analysis, non-destructive sampling, the easy, low-cost mass

production of most of components, such as disposable screen-printed electrodes (Ashley, 2003 ; Farro et 

aI., 2005), allowing for disposable components to be manufactured (Farre et aI. , 2005) and low cost of 

analysis relative to other analytical techniques. Through the use of specific potentials, or the fabrication 

of sensor arrays (Ashley, 2003), the simultaneous presentation of both quantitative and qualititative 

multi component detection of analyte(s) is also made possible under real-time monitoring conditions. All 

of these advantages lend themselves to the concept of electroanalysis as a method of monitoring in situ 

(Ashley, 2003) and in the paradigm of continuous-monitoring, both of which are of paramount 

importance in the context of phenolics monitoring (Sct. 1.2.2). 

Some of .the disadvantages to using electroanalysis include the generation of false-positives by the 

presence of electroactive substances present in the matrix (Farre et aI. , 2005). Since many analytes within 

a given matrix undergo oxidation/reduction at specific potentials, this imparts a degree of selectivity to 

the analytical procedure that obviates the separation/exclusion protocols cited in Sct 1.2.2.1. However, 

there is a general lack of selectivity noted using electroanalysis as a quantitative technique - hence much 

research has been focused on the alteration of electrode surfaces to impart further se lectivity to detection 

methods (Bakker and Telting-Diaz, 2002) 

b. Electroanalysis in phenolics detection 

Due to the absence of specificity, coupled with the vast array of phenolic pollutant species, 

electroanalytical detection of phenolics is commonly coupled with a separative technique, such as HPLC, 

in order to apply the extreme detection sensitivity of electroanalysis together with the selectivity of the 

separation technique. Detection limits for phenolic compounds assessed by electroanalysis are routinely 

within, or below, the 10" M range, in a variety of matrices (10.9 M, (Farre et aI. , 2005)). Table 1.1 
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displays a short overview of selected electroanalysis detection of various pollutant phenolics. These were 

selected to display the scope and compatibility of electrochemical detection with various sample matrices 

and phenolic species under investigation. 

Table 1.1: Exam ples of phenolics monitoring and detection using electroanalysis: 

Phenolic species 

Chlorophenols 

Flavanoids, phenolic ac ids 

o-cresol, chlorophenols 

Beneficial phenolics 

Beneficial phenolics 

Alkylphenols, oestreonic 
phenols 

Dopamine, catechol 

Priority phenolic pollutants 

, - LImIt of DetectIon. 

2 - If of interest. 

a - Electrochemistry 

Detection L.O.D(M)I 
Method 

EC' 10"" 

CE' -EC 0.25-2.5 ~glml 

Electrochemical > 10" 
"tongue"d 

HPLC-EC > I mgIL 

HPLC-EC < 4 ~gIL 

HPLC-EC 0.9& xl 0" -
3x10" 

CE-EC < 10" 

HPLC-EC < 0.1 ~gIL 

b - Not specifically mentioned, but inferred from the presented data 

C - Capillary Electrophoresis 

Matrix 
(Transducer)' 

LipidfWater Micelles 

Ethanolic tinctures 

Aqueous 

Liqueur extracts 

Mead extracts 

Water samples 
(nanotube-modified 
electrode) 

Acidic buffer 

(microchin nlatformj 

Contaminated water 
(greconcentration) 

d - Artificial neural networks' modelling of electrochemical data to provide simultaneously-acquired 

detection and signal separation during I electro analysis. 

Reference 

Anandhakurnar et a1. , 2010 

Peng, et aI., 2005 

GUles el ai., 2005 

R.0dtjer et aI., 2006 

Kahoun el ai. , 2008 

Vega e\ ai., 2007 

Ding et ai., 2007 

Pocurull, et aI., 1996 

As Table 1.1 displays, the electrochemical detection of phenolics couples high sensitivity with a broad 

selection of matrices and samples in which detection takes place. The combined separation-

electrochemical detection methods, while improving the limits of detection, have the same drawbacks to 

those outlined in the previous section, limiting its effectiveness for deployment in-situ. However, a very 

important advantage to electroanalysis that differs from the conventional analytical paradigms outlined 

previously is the tendency of research in this field towards the modification of the sensor platform and 

not of the analyte (or the analyte matrix) in order to generate/amplify detection signals and to improve 

analyte detection selectivity (Bard and Faulkner, 200 I b; Ashley, 2003), which alone can improve 
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environmental and in-situ monitoring strategies by addressing the concerns involved with pretreatment of 

samples. The modi fication of electrode surfaces in order to improve response to a given analyte has been 

widely researched for a vast number of applications (Bard and Faulkner, 2001 b; Ashley, 2003).This 

strategy is most effective when tailored towards the analyte under concern within the analytical matrix in 

which it is found. 

In order to improve both the analyte specificity, and the detection sensitivity, biomolecules are routinely 

applied in conjunction with electroanalysis to produce a composite sensor - an electrochemical 

biosensor. The following section details the basic principles and applications of biosensors, before 

exploring biosensors researched for phenolics monitoring, specifically. 

1.2.3 Biosensors: 

Biosensors are sensors that composite biological macromolecules into a biorecognition element, to which 

a transducer is coupled. In this configuration, the biorecognition element provides analyte specificity and 

signal amplification through bioaffinity reactions, while the transducer measures alterations to the 

biorecognition layer caused by said bioaffinity reactions and relates the changes to the biorecognition 

layer to a measurable signal. Figure 1.5 provides a pictorial overview of the primary elements in a 

biosensor. 

o ~O • • 
0 . 0 ... 

• ~O· ~ • "'.'" ~ 
An alyte Matrix ---i 

Biorecogn ition layer ---i 

Biorecognition event 

Signal Transduction 

Signal Generation 

Figure 1.5: Primary components in biosensors and governing principles. Adapted from Gopel and Heiduschko, 1995. 
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As displayed in Figure 1.5, upon the occurrence of a biorecogntion event the biorecognition layer alters 

(e.g. a change in conformation, the release of enzyme-catalysed product, an alteration in pH), an event 

that is detected by the transducer. The transducer then corresponds this change with a signal, which is 

then processed accordingly. The two broad classifications of biorecognition events that exist are 

bioaffinity and biocatalytic events. In the former, the affinity of a biomolecule (e.g. DNA, antibodies, 

whole cells) for a desired analyte is exploited and differences between the bound and unbound 

biomolecule are measured by the transducer. In the latter, the catalytic conversion of a substrate to a 

product by biomolecules (e.g. enzyme, ribozymes, whole cells) is applied - i.e. the transducer measures 

the depletion of substrate(s), generation of product(s) or alteration of co-factor(s) (Gopel and 

Heiduschka, 1995). 

Biosensors themselves are primarily classified according to the nature of the transducer employed, and 

secondarily according to the type of biomolecule comprising the biorecognition element. Thus, optical 

biosensors exploit optical changes (such as the production of a chromatic product), thermal biosensors 

measure changes occurring through biorecognition events and electrochemical biosensors measure the 

production / depletion of electroactive components during biorecognition events. Gravimetric, 

impedimetric and thermal transducers also measure biorecognition events. 

By alteration of the biorecognition element, much of the specificity is altered. The core concept 

underpinning biosensor fabrication is that of the biorecognition event i.e. the interaction ofa biomolecule 

with an acknowledged specificity/affinity for the analyte of interest with the analyte under consideration. 

To this end, biosensors have been fabricated using DNA, RNA, and bioaffinity proteins, which include 

both enzymes and antibodies. The binding affinities that these molecules have towards the analyte of 

interest are exploited and the resultant change, be it an alteration of conformation, the release of 

products, or the alteration of co-factors (e.g. NADH) and co-substrates, is monitored to provide 

quantitative information as to the analyte of interest. 

The choice of both the transducer type and the biomolecule are key to the limitations of the biosensor. 

Transducer selection is typically based on the choice and type of the biorecognition element employed in 

19 



Chapter 1: General Introduction 

a biosensor, due to the dependence of the signal upon the biorecognition event under measurement. For 

these purposes, electroanalysis, primarily due to the sensitive measurement of electrochemical 

information has been commonly applied as a transducer platform for biosensor fabrication. Enzymes are 

particularly suited as biorecognition sensors. Their catalytic action promotes signal generation and, in the 

absence of inhibitory mechanisms or molecules, providing a continuous generation of signal in the 

presence of substrate through the monitoring of product formation / substrate depletion (Byfield and 

Abuknesha, 1994). In addition, the high substrate selectivity normally employed in natural catalysis can 

be exploited toward the production of a high degree of analyte specificity (Byfield and Abuknesha, 

1994). 

Biosensors (and bioanalytical techniques in general) possess numerous benefits that lend themselves 

superbly to environmental monitoring. As biomolecules, they function under mild chemical conditions, 

thus requiring little in the way of solvents or oxidative elements. Biocatalytic events enhance signal 

response and biorecognition the selectivity of analyte detection, which is highly applicable to the analysis 

of complex matrices, such as environmental sa~ples. The monitoring of phenolic compounds has been 

explored in this context - laccases and tyrosinases are commonly attached to electrochemical transducers 

to produce electrochemical biosensors for phenolics monitoring. The following section describes laccase-

based biosensors, from the characterisation and properties of laccases to their function as biosensors. 

1.2.4 Laccases: 

1.2.4. I: Distribution. structure and function: 

a. Distribution. structure. mechanism and role in nature 

Laccases (EC code: I. 10.32) are a class of enzymes that are widely expressed in a number of eukaryotes 

i.e. fungi, insects and plants (Call & MGcke, 199; Claus, 2004) and more recently, in prokaryotes (Claus, 

2004). Laccases are oxido-reductase enzymes, catalysing the transfer of electrons from an oxidisable 

substrate (usually a phenolic compound), to an electron-acceptor (diooxygen, in the natural state), 
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catalysing its reduction. Figure 1.6 is a simplified schematic depicting the electron transfer occuring 

between phenolic substrate and diooxygen when catalysed by laccase. 

OH 

0 

\ 

Oxidation 

OH (substrate) 

Intra-protein electron 
transfer 

Tl T2/T3 
Copper Copper 

u2 
u2 

Y 

Reduction 
(acceptor) 

)\ 
Y 
B 

O2 

Figure 1.6: Simplified schematic of the flow of electrons between the phenolic substrate and electron acceptor. 

) 

In this example, catechol or 1,2-dihydroxybenzenc is the substrate and diooxygen. O2, the acceptor. Type I copper (T I ) 

abstracts an electron from the phenolic substrates and transfers it to the Types 2 or 3 (T 2/T 1) sites situated within the laccase 
monomer's active site and trinuclear cluster. respectively. Once 4 electrons have been abstracted and stored in this manner. they 
are transferred to oxygen, producing water. This results in the formation of 1,2-benzoquinone and water as the products of the 
catalytic cycle oflaccase. The cycles grouped as "A" occurs 4 limes prior to the occurrence of "B", resulting in regeneration of 
the active enzyme form. 

The active sites of laccases typically include between 3 and 4 copper atoms that reduce and oxidise 

between the Cu'+ and Cu'+ state. These copper atoms are themselves broadly categorised as either Type 1 

or Type 2/3 atoms, based on their wavelengths of maximal absorption (Claus, 2004) which differentiates 

their respective roles in the catalytic activity of the enzyme. Types 2 and 3 typically associate within the 

active site to form a " trinuclear cluster" (Claus, 2004) . Type 1 copper atoms are involved in the initial 

abstraction of electrons from the substrate, followed by transfer of that electron to the trinuclear cluster 

until 4 separate electrons are stored within the active site (Claus, 2004). These 4 electrons are then 

transferred to the final electron acceptor, diooxygen, generating water as the final product of this 

catalysis (Claus, 2004). While the electron-transfer between Type I copper atoms and the phenolic 

substrates occurs in a typical ' ping-pong' enzyme mechanism, the mechanism governing electron-
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transfer and their subsequent accumulation at the trinuclear cluster has not yet been fu lly elucidated 

(Shleev et aI. , 2006b). 

Laccases are characterised by having a very broad range of substrates that can be oxidised (Claus, 2004). 

The following compound classes have been cited as suitable substrates which laccase can oxidise: ortho

and para-diphenols; aminophenols; polyphenols; polyamines; lignins; aryl diamines and some inorganic 

ions (Couto and Herrera, 2006). In addition, it has been noted that during the destruction of larger 

molecules (such as the biopolymer, lignin), steric hindrances occurring between the enzyme and the 

substrate preclude direct oxidation of the substrate. Here, the efficacy of the enzyme is considered to be 

due to the use of smaller compounds that act as electron-transfer mediators. When oxidised, these form 

stable reactive products that diffuse to the larger substrate and oxidise it, regenerating the mediator. A list 

of naturally-occuring mediators can be found in Bourbannais et aI., 1995 and Claus, 2004, but are not 

pertinent to the research purposes reported in this Thesis. These diffusional mediators can be used to 

further increase the apparent substrate range of laccase. 

In nature, laccases perform a diverse array of functions including: the formation and degradation of 

complex natural polymers (e.g lignin (Call & Mlicke, 1997; Claus, 2004), initiating the cross-linking of 

chitin precursor molecules (Claus, 2004), and the oxidation and sedimentation of foreign, toxic phenolic 

compounds (Leontievsky et aI. , 2000;Claus, 2004). Laccase is also expressed as an important virulence 

factor in the human fungal pathogen, c,yptococcus ner%rmans to produce immune-modulating 

compounds targeting the host (Zhu and Williamson, 2004). 

A wide variety of laccases are abundantly secreted by saprophytic fungi which, along with other 

oxidoreductase enzymes, allows for the degradation of lignin to as a carbon source for the secreting 

organism (Bourbannais et aI. , 1995; Rabinovich et aI. , 2004). For lignin-degradation, laccase is a 

mandatory enzyme - laccase-free mutants lose the ability to degrade lignin and it is postulated that the 

degradation of xenobiotic phenolics is due to the incomplete degradation of lignin, which leads to the 

localised accumulation of phenolics (Rabinovich et aI., 2004). 
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Fungal laccases, the primary focus of this research, are commonly secreted as a range of isozenymzes 

(ranging between 50 kDa and 100 kDa in size when expressed by the same organism), which can further 

aggregate into multimeric complexes in the surrounding medium (Claus, 2004). The fungal laccase 

monomer is organized in three sequentially arranged domains, with overall dimensions of about 65 x 55 

x 45 A (Shleev et a!., 2006). At least 3 separate laccases have been separated from a single culture of 

Coriolus versicolor alone (Bourbannais et a!., 1995), each with their own preferred substrate range and 

optimal operational physico-chemical conditions. In at least one study, the differences occurring between 

the rate of oxidation of simple phenolics is the same for these isozymes (Bourbannais et a!., 1995), but 

vastly different oxidation rates have been reported for both polyphenols (Bourbannais et a!., 1995) and 

between simple phenolic compounds. 

b. Industrial applications offungallaccases 

Given the previous background for laccases provided, the most obvious application of laccase, and 

associated phenoloxidases is in the bioremediation of water and soil sources and sites contaminated with 

phenolic and other xenobiotic pollutants (Durim and Esposito, 2000; Xu, 2005; Couto and Herrera, 2006; 

Shleev et a!. , 2006). For these purposes, complete degradation/detoxification of the compound is not the 

primary objective - rather, it is the covalent coupling of the xenobiotic to other substances to neutralise 

their effect (Couto and Herrera, 2006), or the polymerisation of the xenobiotic. In this capacity, laccases, 

both immobilised onto various supports and 'free' i.e. dissolved into solution, have been used to degrade: 

dyes, halogenated phenolics, benzopyrenes, phenols, plastics, petrochemical pollutants and other 

xenobiotic compounds (Xu, 2005). In some cases, the use of an electron-transfer mediator was 

necessitated in order to achieve high degradation rates and to increase the apparent substrate range of the 

laccase (Dunln and Esposito, 2000). Other phenol oxidase-like enzymes used in this application include, 

but are not limited to: tyrosinases, lignin peroxidise, manganese peroxidise, polyphenoloxidase and 

horseradish peroxidise (Duran and Esposito, 2000). 
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It is in this capacity that the most widely-researched, non-biosensor, laccase application is during the 

delignification and bleaching of plant pulp for paper fabrication, which has been touted to both greatly 

decrease the process' capital costs and increase the environmental palatability of the waste effluentls 

(Call & Miicke, 1997; Couto and Herrera, 2006). This is primarily due to the chemically-mild conditions 

under which enzymes operate (Call & Miicke, 1997; Couto and Herrera, 2006), compared to the 

chemically harsh conditions under which chemical-based bleaching occurs. A secondary class of the 

aformentioned application is the degradation of food-based phenolics to improve the quality of the food 

or beverage in question (Xu, 2005). 

In addition to bioremediative efforts, a lot of research has been expended in the application of laccase in 

the cathodic compartments of biofuel cells (Shleev et ai. , 2006) to facilitate the reduction of oxygen. 

Biobleaching i.e. the decolourisation of chromatic compounds (Couto and Herrera, 2006) and the 

converse, the activation of dye precursors has also been mentioned as an ancillary application (Xu, 

2005). Laccase has also been researched as an alternative to chemical catalysts in the synthesis of novel 

phenolic polymeric compounds (Tranchimand et ai. , 2006) and similar molecular assemblies. 

It is, however, as a component in biosensor-based technologies for the monitoring of pollutants that 

laccase has been widely investigated. The proceeding section outlines the mechanisms that laccases, in 

particular, employ in the detection of phenolic compounds and the advantages that it possesses over 

alternative biorecognition elements. 

1.2.4.2 Laccases as biosensor components 

Four major laccase biosensor configurations are available, namely: measuring the decrease of solution 

diooxygen concentration due to the exposure of phenolics, re-reduction of oxidised substrate at the 

electrode surface, the electro-oxidation of laccase active sites, and the re-reduction of oxidised mediators 

at the electrode surface. The first and third of these configurations, respectively, rely on an inference of 

the data - the levels of oxidised mediator and diooxygen are indicative of laccase activity, and hence, the 
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presence of reducible substrate. The third configuration, in particular, is reliant on the mediator' s ability 

to reduce the analyte under consideration - chemical limitations are the precluding factor in this method 

of detection. Figure 1.7 depicts the participants within laccase oxidation that are amenable to 

electrochemical detection. 
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Figure 1.7: Diagram of the molecules and processes within the lacease catalytic cycle that can be electroanalytica"y 
detected. 

These processes are indicated in red, while those processes that do nol for the governing principles of lacease biosensors, are 
indicated in black. 

Figure 1.7 depicts the mechanisms in the laccase catalytic cycle that can be detected electrochemically. 

(j) The direct detection of the oxidised substrate, regenerating the substrate at the electrode surface (e.g. 

Jarosz-Wilkolazka et aI., 2005); ~ the use of a substrate in acting as an electron-transfer mediator to 

oxidise the desired analyte, and the monitoring of the corresponding increase in reduced substrate 

concentrations (e.g. Shleev et aI., 2006b); Gl Detection of the electrons abstracted from the substrate 

through direct electron transfer occuring between the electrode and the copper centres of the active site of 

laccase (Xu, 2005); ® The detection of diooxygen depletion caused by oxidation of a suitable substrate 

(Xu, 2005) and ~ and @, the electrochemical detection of oxidation/reduction of a suitable electron-

transfer mediator that re-reduces the active sites in laccase in much the same manner as diooxygen. 
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1.2.4.3 Difficulties associated with electrochemical phenolic detection and laccase-based 

biosensors: 

Laccase- and tyrosinase-based biosensors have been researched for their applicability towards phenolic 

monitoring for a great many years and extensive research has been expended towards this end. However, 

to date, a consistent, reliable, reproducible commercial product has yet to be realised. This is due to a 

number of considerations that pertain to biosensor fabrication and deployment in general, to the 

electrochemical detection of phenolics and to the mechanism-of-action that laccases (and enzymes that 

act in a similar manner) use to detect phenolic compounds. These issues must be adequately addressed 

prior to the succesful deployment of such a sensor. The following section deals specifically with a 

number of important considerations when constructing and fabricating laccase-based biosensors, which 

not much literature has, to date, been concerned with. 

Concerns regarding the immobilisation strategies of enzymes, in general, will be covered in Chapters 4, 7 

and 8 of this Thesis. 

a. Oxidative alterations in chemical structure of both substrate and product: 

Figures 1.6 and 1.7 of this Chapter are overly-simplistic views of the fate of the phenolic substrate once 

an electron is abstracted. Due to the mono-electron oxidative activity of the laccase, the phenolic 

substrate is generally released in a radical form, which allows it to participate in a number of non

enzymatic reactions, either with the surrounding solvent, other semi-aromatic substrates, or allowing it to 

participate in further enzymatic reactions with laccase. In addition, the aromatic nature of the phenol 

permits intramolecular rearrangements of electrons, placing the positive-radical at areas of the molecule 

other than the hydroxyl-bearing carbon atom. (Call & Milcke, 1997). Figure 1.8 shows the possible 

reactive sites produced by catechol following the removal of the hydroxyl-situated electron. 
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Figure 1.8: Possible forms offree radicals produced by the mono-electron oxidation of ca techol by laccase. 

Free radical sites are formed not only at the oxygen atom of the hydroxyl site, but al so at the carbon atoms at the ortho and para 
position (relative to the first hydroxyl), as well as at the adjacent hydroxyl group. where it can undergo a similar molecular 
rearrangement to that already depicted. Adapted from Dec et al .• 2003. 

The radical nature of phenolic substrate oxidation allows it to participate in a great number of chemical 

reactions, and produces an array of products_ The number of potential products are further increased by 

the resonance-stabilised intermediates that can direct reactions at several points around the benzene ring 

(Figure 1.8), resulting in a variety of enantiomeric products. The phenoxy radical itself is highly reactive, 

participating in both intra- and inter-molecular reaction while in the semi-quinone intermediate. Possible 

reactions noted after oxidation of phenolic compounds are: degradation, polymerisation (inter-molecular, 

both with radicalised and non-radicalised phenolics), solvent-reduction, molecular rearrangements, 

radical substitutions, intra-molecular dehalogenation (Dec et al., 2003), carboxyl/methyl cleavage (Dec et 

aI. , 2003), and oxidation via diooxygen (Tokmakov et aI. , 2005). [t was reported that decarboxylation, 

demethylisation and dehalogenation was achieved through a common mechanism that is determined by 

whether or not the moiety in question is attached to a carbon radical cation that participates in further 

reactions with other radicalised phenolic compounds during coupling reactions (Dec el aI. , 2003). 

Electron-withdrawing groups (-COOH and halogens) are more easi ly detached from the benzene-ring, 

while electron-donating groups (-CH" -OCH" -NH, ) are more difficult. 

It has been reported that these reactions are more dependent on solvent conditions than they are on the 

laccase type and composition, indicating that laccase is responsible for the formation of the phenoxy 
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radical and that ancilliary reactions are not dependent on it, although different rates of oxidation of 

substrates by the laccase may affect the composition of the final products (Tranchimand et aI., 2006). 

The vast amounts of conceivable products arising from phenolic oxidation, both electrochemically, and 

when mediated by laccase may lead to the generation of unanticipated redox products in and around the 

electrode surface during application of the biosensor (Anandhakumar et aI., 20 I 0). This may result in a 

signal complicated by the formation of new redox cycles occurring between the electrode and the 

enzyme, or the preferential formation of products that are not electrochemically-detectable. 

Polymerisation itself is a large concern and presents itself as a passivating coating of the electrode 

surface in a phenomenon known as ' fouling' . This is addressed in the following section of this Chapter. 

b. Electrochemical fouling mechanisms: 

Fouling occurs through polymerisation of the parent compound/s due to oxidation. Oligomeric, or 

polymeric, oxidation products deposits on surfaces, hindering further analyses (Berrios et aI., 2009), or 

catalytic conversion of substrate (Harnoudi et aI., 1999). In many instances, this is the single largest 

drawback against the direct (anodic) electroanalytical detection of phenolic compounds, as surface re

cleaning / catalytic modification makes the detection of phenolic compounds extremely time-consuming, 

and in the instance of catalytic resurfacing, expensive. Various strategies, both electrochemical and 

solution-based have been postulated to minimise electrode fouling, to varying degrees of success. 

c. Absence of inter-substrate specific discriminatory methods: 

Electroanalysis and biosensor technology has been successfully applied for the selective monitoring of 

phenolic compounds. However, due to the wide variety of chemical species that are both phenolic 

compounds and suitable laccase substrates, there is a lack of specificity within this class. Substrates that 

are suitable laccase substrates and the products of which are electroactive may function as interferents 

when trying to determine analytes of interest, especially considering the breadth of variety of chemical 
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composition, distribution and exposure effect of phenolics. Hence, it may be analytically important to 

detect one harmful phenolic compound within a matrix comprising of several other, harmless phenolic 

compounds. Amperometric biosensors, in particular, suffer from this analytical shortcoming. 

1.3 Identified Knowledge Gaps: 

Phenolic compounds, both anthropogenic and natural in origin, are of extreme analytical importance due 

to their widespread production and varied effects on environmental and human health. While biosensor 

technology, electroanalytical laccase biosensor technologies in particular, possess numerous properties 

beneficial to this research need, several severe shortcomings remain that require addressing before such 

technologies find successful application. These are summarised as the following: 

(1) Biochemical - immobilisation strategies. The crucial concept underpinning biosensor technology is 

the localised concentration of signal-generating biomolecules in an area in order to generate a sensitive 

and selective signal through biorecognition events (Byfield and Abuknesha, 1994). Typically, especially 

in the case of non-catalytic biorecognition events, this si te is located near the signal transducer, but other 

configurations are available in which the biorecognition site is detached from the transducer. In both 

cases, however, localisation of biomolecules is typically achieved through the immobilisation of said 

biomolecules (Byfield and Abuknesha, 1994), and seldom by the addition of the biomolecules to the bulk 

detection matrix. Immobilisation of biomolecules cannot be applied in a ubiquitous manner: several 

broad categories and numerous immobilisation strategies exist for individual biomolecules, or even 

classes of biomolecules, but their effects cannot be generalised when considering the vast array of 

structures and functions that constitute biomolecules. The broad categories, benefits and drawbacks of 

their application and a review of techniques applied to fungal laccases is presented in the following 

section. A main aim of the research presented in this Thesis is the optimisation of immobilisation 

strategies to produce a biosensor of at least comparable performance to those that have been reported on 

in the literature. 
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(2) It is widely acknowledged that the detection of chemically-distinct phenolic compounds is achieved 

with varying degrees of success. While a principal factor governing the success of detection in laccase

biosensors is due to the efficiency with which laccase acts as a biorecognition element for a given 

substrate, a further complicating factor is the extent to which the phenolic compound, once oxidised, acts 

as an efficient carrier of signal to the electrode surface. While a search through literature has revealed 

that studies on both of these factors have been previously performed, no research, to date has been 

performed on the interrelatedness of the two within the context of biosensing. Articles concerning the 

relative laccase-based oxidation rates of specific phenolic compounds have been published (Xu, 1996), 

as well as investigations probing the mechanisms by which this occurs (Xu, 1997). Other research has 

been focused on the suitability of specific phenolic compounds as analytes for laccase-based biosensors, 

without explicitly investigating the connection between sensor response, the fate of oxidised phenolic 

compounds and the rate at which these oxidised compounds are generated by the laccase biorecognition 

element. Research in this Thesis aims to unify these two factors, by providing both an electrochemical 

and biochemical explanation for the detection of different substrates through the same immobilisation 

stage. 

(3) Intra-phenolic specificity. A search of the literature has revealed that very linle research has been 

performed on the specific detection of phenolics in a mixed sample using electroanalytical chemistry. Of 

the limited research: preanalytical purifications; neural-network detection and alteration of 

electrochemical waveforms to favour detection of a limited range of present phenolics are the main 

research concerns. To this end, it is proposed that, through manipulation of the electrochemical 

waveforms used for the detection of phenolic species, that an enhanced degree of specificity can be 

obtained during the deployment of the biosensor, providing simultaneous, real-time detection of multiple 

phenolic species present in the same analyte. The two most important descriptors of a biosensor are the 

selectivity and sensitivity of response to the target analyte (Byfield and Abuknesha, 1994). These are, in 

turn, determined from the two main components of a biosensor:the biorecognition layer(s), comprised of 

biomolecules and the support onto which biomolecules are immobilized onto, and the signal transducer. 

Their influences on the generated signal may be inferred from their use - biorecognition elements 
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primarily confer signal selectivity, through the generation of a selective signal in conjunction with a 

specific analyte (or class thereof), or the enhancement of signal response, as in the case of enzymes 

(Byfield and Abuknesha, 1994). Transducers are primarily employed in the transduction, or the 

enhancement of transduction of the biorecognition-originating signal. Biosensor sensitivity is usually 

controlled through a mixture of the properties of the transducer and the biorecogntion layer (e.g. 

biorecognition element density) (Byfield and Abuknesha, 1994). These definitions are less distinct than 

stated - e.g. a degree of selectivity can be conferred by the transducer; such is the case with the selection 

of a specific potential for the reduction/oxidation of specific analytes with the use of electrochemical 

transducers, but relatively little research is performed on this aspect of the biosensor fabrication. 

Tranducers also usually function as the solid support structure onto which enzyme immobilization takes 

place 

Thesis overview: 

To these ends, we have examined the following core aspects of laccase biosensor design: 

reproducibility, immobilisation, sensitivity and specificity as below. 

I. Reproducibility: In Chapter 3, investigations were conducted on the various methods 

improving and predicting inter-electrode reproducibility and enhancement of substrate 

detection sensitivity through alteration of the surface properties of the transducer. In 

Chapters 4 and Chapter 5, fouling considerations were in particular taken into account in 

an effort to address some of the common problems associated with sensor passivation 

due to oxidation of phenolic compounds in order to assess and assign causal properties to 

the factors (biochemical , substrate-dependant and transducer-originating) result in sensor 

passivation via fou ling mechanisms. 
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2. Considerations regarding the role of biomolecules immobilisation on the function of 

laccase-based biosensors: Using a combined approach that monitored both the analytical 

properties of the biosensor and the biochemical/electrochemical parameters that govern 

the analytical properties, various methods of protein immobilisation strategies and their 

resultant optimisations were examined. The effects of these immobilisation strategies 

were assessed on the bases of both kinetic and physical properties, and the relevant 

investigations detailed in Chapters 4, 7 and 8, respectively. 

3. Sensitivity and specificity of detection: The respective roles of the: analysis pH, the 

selection of laccase substrate under investigation and the detection waveform used during 

the application of biosensors was assessed with an aim to enhance both substrate 

specificity and sensitivity. Chapter 5 details the investigations of electrochemical and 

biokinetic considerations for laccase biosensors when considering the detection of 

chemically-di fferent phenolic substrates via electrochemical biosensors. A proof-of

principle study demonstrating simultaneous monitoring of three selected phenolic 

substrates via multiple-pulse chronoamperometry is reported in Chapter 6. 

4. This Thesis also examines the application of the Quartz-crystal Microbalance with 

Dissipation (QCM-D) as a tool for monitoring enzyme immobilisation strategies and 

assessing the fate of immobilised biomolecules at a fundamenta l molecular level. 

Chapter 7 examines the role ofQCM-D in monitoring the immobilisation ofa monolayer 

Glucose Oxidase, used here as a model enzyme, onto the surface of a biocomposite 

sensor and the comparison of these findings with enzyme kinetic parameters established 

for this particular sensor configuration in the literature. In Chapter 8, a more in-depth 

investigation of the same was performed using laccase as the enzyme under 

considerations. Comparisons between the physical film parameters established using 
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QCM-D and the apparent enzyme kinetics of the immobilised film were performed. The 

principles ofQCM-D technology are outlined in the relevant sections. 

5. Chapter 2 outlines the general methodologies and principles outlined in this Chapter. 

Enzyme kinetics and modelling of enzyme kinetics under biosensor paradigms forms a 

key component of this Thesis and is outlined in this Chapter. 

6. Chapters detailing the results of investigations reported on in this Thesis (i.e. Chapters 3 

to 8) are prefaced by individual Abstracts, providing a convenient summary of the key 

findings of each Chapter, as well as contextual ising the key purposes of the studies 

presented. 
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Chapter 2: General Methodologies and Principles 

This Chapter outlines some of the commonly-used apparatuses, reagents, preparation methodologies and 

data treatments that take place in the proceeding Chapters, as well as the principles of the techniques and 

models underpinning the biosensors kinetics and electrochemistry used henceforth. Chapter-specific 

methods and methodologies are detailed in the relevant Chapters. 

2.1 Apparatus: 

2.1.1 Electroanalysis: 

I . Electroanalytical equipment 

All electroanalysis was performed on an Autolab Potentiostat/Galvanostat (PGSTAT 30, EcoChemie, 

Netherlands). Electrodes were positioned and held within a V A stand (Metrohm) and attached via 

crocodile clips to the PGSTA T 30. Timed stirring control was provjded via the lME663 (Metrohm) 

attachment connected to the PGSTA T 30. Stirring was provided by a Teflon®-coated steel rod and 

adjustable in 500 rpm increments up to 3 000 rpm, as set by the VA stand. 

2. Electrodes 

The reference electrode used throughout these studies was a Silver/Silver chloride/saturated chloride 

reference electrode (Bioanalytical Systems, USA - BAS) and is henceforth referred to as an AglAgCI 

electrode. 

Working electrodes for cyclic voltammetry and chronoamperometry were either glassy carbon electrodes 

(henceforth referred to as GCEs), or gold (AuE), both of which were sourced from BAS. GCEs had an 

active electrode diameters of 3 mm and AuEs had diameters of 1.6 mm. 
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2.1.2 UVlVis Spectroscopy: 

1. Equipment 

UVNis spectroscopy was performed on a PowerWave (Gold) UVNis spectrometer. Control of the 

apparatus, data collection and analysis was perfomed using KCJuniorTM software, v4. l 2. The various 

protocols are outlined in the appropriate Chapters. 

Disposable, UV-transmissible Powerwave plates (96 wells, 300 fil volume wells) were used when 

UV Nis spectroscopy was employed. 

Data obtained from spectroscopy was exported to Excel spreadsheets following analysis using KCJunior 

software, owing to software incompatibility. 

2.1.3 QCM-D analysis: 

Crystals used for QCM-D analyses were AT-cut quartz crystals, QSX-30 l , surfaced with gold. These 

were mounted in titanium QCM-D flow chambers, which were in tum housed in a Q-Sense E4 QCM-D 

sensor system. All of the above were sourced directly from Q-Sense®, Sweden. 

Flow of solutions through the chambers was regulated by an lsmatec® peristaltic pump. Flow rate was 

regulated at 50 fil.min-' and the chamber temperature was set at 20C ten minutes prior to the start of 

QCM-D analysis and maintained throughOUt. 

2.1.4 Glassware 

All glassware used to store buffers, cleaning agents or electrolytes, as well as electrochemical cells, were 

soaked in dilute (- 5%) HN03 solution overnight, followed by repeated rinsing and air-drying. Between 

analyses, electrochemical cells were repeatedly rinsed with alternating solutions of 60% ethanol solution 

and milliQ water. 
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2.2 Reagents: 

2.2.1 General 

All reagents used were of analytical purity, unless stated otherwise. Purity indices of reagents was taken 

into account when formulating reagents, and concentrations were calculated to provide the desired 

concentration. 

2.2.2 Solvents 

Water used in cleaning and dissolving of reagents was of double-disti lled quality and purified using 

MilliQ, to a total resistivity of> 18 MQ.cm·'. Ethanol was of absolute (> 96%) purity and all organic 

solvents used were ofHPLC-grade. 

2.2.3 Electrode storage and cleaning. 

Reference electrode cleaning and storage was performed using saturated chloride solution, which was 

formulated using a solution of 3 M KCI and then saturating the solution with NaC!. 3 M KCI was 

prepared from KCI crystals (99+% pure, Sigma-Aldrich) and then diluted to the desired concentration 

when used as an electrolyte. 

Working electrode surfaces were polished on a Buehler felt pad (Bioanalytical Systems) using a small 

aqueous slurry of aluminium oxide powder « 10 ~ diameter, 99.7% pure), sourced from Sigma

Aldrich. Treatment of electrodes thereafter varied - cleaning procedures for GCEs are outlined in 

Chapter 3 and those for AuEs outlined in Chapter 6. Unless otherwise stated, all electrodes were cleaned 

between analyses during electrochemical investigations. 

2.2.4 Buffers and electrolytes: preparation and storage 

Electrolytes and buffers were formulated by dissolving the relevant salts/acids in water. In the case of 

buffers, the solution was then dissolved with 2.0 M NaOH until the desired pH was obtained before the 

desired concentration was reached with water. Formulation and titration of buffers occurred at room 
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temperature. Buffers were stored at 4 °C and aliquots were warmed to room temperature prior to use. 

Fresh buffers were prepared once every two weeks. 

The primary buffer/electrolyte utilised throughout this thesis was succinic-lactic acid buffer (SLB). 

Succinic acid (Sigma-Aldrich) was of 99+% purity and lactic acid (Sigma-Aldrich) was of85% purity. A 

solution comprised of equimolar concentrations of succinic acid and lactic acid was prepared and titrated 

to the desired pH with NaOH. 

2.2.5 Potentiallaccase substrates (Phenolics): 

Phenolic substrates were dissolved in water at the desired concentration and stored in the dark. Fresh 

substrate was prepared daily, unless a discolouration of the solution was observed, in which case fresh 

substrate was immediately prepared. In the case of certain phenolic compounds, sol ubilisation was aided 

through the addition ofless than 5 J.l1 of 2.0 M NaOH to the solution. 

2.2.6 Solution De-aeration 

Nitrogen (>99% purity, sourced from Afrox) was dehydrated and purified by flowing through a mesh 

comprised of calcium sulphate and cobalt chloride (sourced from CRS) and Drierite® Molecular Sieve 

(Sigma-Aldrich) before use. 

De-aeration of solutions took place via bubbling nitrogen through the solution for 10-20 minutes. De

aerated solutions were thereafter sealed and any amendments to the solution thereafter were followed by 

de-aeration. 

2.3 General .overviews and principles of enzymatic and electrochemical 

techniques 

2.3.1 Biochemical kinetics 

The study of chemical kinetics seeks to measure and interpret rates of chemical reactions by monitoring 

the rate of formation of a given chemical product, or the rate of depletion of a chemical reactant (Atkins, 
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1997). Thus, the effects of the presence or absence of catalyst/s (which accelerate chemical reaction 

rates) can be monitored by assessing the relative rates of product formation I reactant depletion (Atkins, 

1997). Enzymes are defined as protein-based biocatalysts, enhancing the reaction rates of specific 

chemical reactions by as much as 1016-fold (Garrett and Grisham, 1999b). Biochemical kinetic studies 

seek to measure the catalytic effect of designated chemical reactions that are gained through the presence 

ofbiomolecules, such as enzymes. 

Throughout this thesis, the response of biosensors has been related in the form of a variety of parameters 

commonly used for relating the biochemical rates and constants of the enzymatic system within the 

biosensors to the various conditions under which it was fabricated or applied. 

To this end, this section has been provided to outline both enzyme kinetics and the techniques used to 

derive rate parameters describing enzyme-substrate interactions. In the first subsection, the generally

reported case, that of Michaelis-Menten enzyme behaviour, is outlined and the principle biochemical 

parameters of this paradigm (Km and v""J defined. Subsections dealing with two special cases that 

pertain to the description of biochemical behaviour of the biosensors reported on in this Thesis are 

presented below that. The former case outlines the conventional methods of relating biochemical 

constants when assessed through electroanalytical means; the latter provides a description of enzyme 

kinetic determinations that deviate from conventional (i.e. Michaelis-Menten-like) behaviour. 

2.3.1.1 Michaelis-Menten kinetics 

All steady-state biochemical relationships attempt to define a graphical relationship between the velocity 

i.e. reaction rate of an enzyme-catalysed reaction (symbolised as v, also known as activity) of a specified 

amount of enzyme and the concentration of substrate that it is exposed to ([S]) (Miller and Tanner, 

2008). 

Under catalytic conditions, enzyme and substrate molecules associate to form intermediate substrate

enzyme complexes that catalyse the conversion of a substrate to a product. Following catalysis, the 

enzyme-substrate complex degrades, releasing the product and allowing a new catalytic process to take 

place (Miller and Tanner, 2008) as depicted in Scheme 2.1 , below. In classic enzyme kinetics (Briggs-
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Haldane), the most simplistic representation of the relative rates of enzyme-substrate complex formation 

and the degradation of this complex into the productls - enzyme state is dictated by the following rate 

formalisms, depicted in Scheme 2.1 : 

E+S ~ ~ES 
k .• 

k, - E+P 
Sch.2.1 

Where E represents the enzyme, S the substrate, P the product and ES refers to the enzyme-substrate 

complex intermediate stage (Miller and Tanner, 2008). The rate constants k" k_1 and k, refer to the rate 

of substrate-enzyme association to form ES, the non-catalytic dissociation ofES and the combined ratels 

of catalysis and product release from ES, respectively (Miller and Tanner, 2008). 

This model assumes only a single substrate interacting with the enzyme and the irreversible formation of 

product arising from the formation of the enzyme-substrate complex, which is relatively uncommon in 

enzyme kinetics (Miller and Tanner, 2008). However, by maintaining all other conditions, including the 

concentrations of co-substrates, as constant, this remains a viable model for monitoring multi-substrate 

enzyme kinetics under those conditions (Miller and Tanner, 2008). 

Activity studies seek to elucidate key rates ofbiocatalysis by monitoring the rate of product formation, or 

the rate of substrate consumption in order to assess the rates governing the kinetic behaviour of a given 

enzyme system. For the purposes of this description, substrate depletion or product formation is 

considered interchangeable, as either represents the velocity of an enzyme-catalysed reaction. Since the 

velocity of the enzyme-catalysed reaction is the rate of change of product concentration over time, v, 

velocity can therefore be defined by the following rate equation: 

d[P] 

d(t) 
= V = k, [ES] 

Eq.2.1 

Where [P] is the concentration of enzyme-catalysed product, thus d[P]/d(t) is the rate of product 

formation and the other symbols have their usual meaning, as in Scheme 2.1 (Miller and Tanner, 2008). 
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However, [ES] is not equivalent to the total concentration of enzyme present in the system under 

investigation. This is accounted for by the rate constants k, and k'l (Scheme 2.1), which correct for the 

inter-conversion between the various stales of enzyme al a given concentration of substrate. Accounting 

for the differences between the amount of bound enzyme i.e. ES and the total amount of enzyme present 

(ElOt ) leads to the following rate equation, Eq. 2.2 (Miller and Tanner, 2008): 

d[P) k2 [E)tot[S) 
= Y = 

del) ([k2 + k_Il /k)) + [S) 

Eq. 2.2 is further simplified to yield the classic Michaelis-Menten equation (Eq. 2.3). 

d[P) 

del) 
= Y = 

Ymax [S) 

Km + [S) 

Eq.2.2 

Eq.2.3 

Where v=, is the maximal rate of substrate turnover at saturating concentrations of substrate ([S] -+00, 

kl -+00, therefore [ES] - [E] lOt and thereafter, using Eg. 2.1) and Km represents the Michaelis constant = 

[(k,/k t ) + (k./kl)]' as in Eg. 2.2 (Miller and Tanner, 2008). Eq. 2.3 describes a hyperbolic dependence 

ofv on [S] which is graphically depicted in Figure 2.1 below: 

1 - - --- ---- - -- -- - - - - -- - -------- vmax 
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C' [SI = Km 
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Figure 2.1: Graphical depiction of the Michaelis-Menton plot generated using dimensionless model data. 

Kinetic parameters inputted: V_ ~ I d[P]/dt and Km = 0.2 [S] 

40 



Chapter 2: General Methodologies and Principles 

As depicted in Figure 2. 1, re-arrangement of Eq. 2.3 shows that Km is mathematically equivalent to the 

concentration of substrate required to produce an initial catalysis rate equivalent to v ~ vmaJ 2 (Garret and 

Grisham, 1999). The interpretation of Km warrants further exploration at this juncture, as it is used 

frequently as a relative indication of substrate-binding ability during biokinetic characterisations of 

enzymes. Through Scheme 2.1 and Eq. 2.2, it is apparent that Km is the sum of the enzyme-substrate 

complex degradation rates (k., and k,), divided by the assembly rate of said complex (k,). This, in tum 

means that Km can be resolved in terms of the concentrations of the various participants from which the 

rates themselves are derived. In the simple scheme outlined in Scheme 2.1 , Km is equivalent to: 

([E]tot - [ES]) [S] 
Km~ 

[ES] Eq.2.4 

(MiJler and Tanner, 2008) 

From Eq. 2.4, Km ~ [S] when the difference between the concentrations of total and bound enzyme 

equals that of the bound enzyme-substrate complex (Garrett and Grisham, 1999b), i.e. when 

y,[E] tot ~ [ES]. Thus, Km itself can be considered to be a global equilibrium dissociation constant of the 

enzyme-substrate complex (Garrett and Grisham, 1999b; Miller and Tanner, 2008) i.e. the substrate 

concentration at which half the enzymes present in the system are in an enzyme-substrate complex. From 

this understanding of Km, the inverse of the Km is often taken as an indication of the substrate-binding 

efficiency of a given enzyme system (Garrett and Grisham, 1999b). A more intuitive definition of Km is 

that it is the concentration of substrate at which the average time of substrate capture by the enzyme is 

equivalent to that of product generation and release (Northrop, 1998). Viewed from this perspective, v""' 

is then the reciprocal of the time required to generate and release product (Northrop, 1998) by the 

enzyme system under investigation. 

Through use ofEq. 2.1, vma, in Eq. 2.3 can be resolved to produce the k, constant, if the concentration of 

enzyme within a given system is known. k" often also referred to as k"" is known as the catalytic 

constant, or turnover number. The catalytic rate constant, k" provides a definition of the maximum 

catalytic rate at which an enzyme system proceeds under conditions of substrate-saturation (MiJler and 
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Tanner, 2008). A further useful parameter is derived from k, and Km. The specificity constant (k, lKm) is 

a measure of the rate of enzyme reaction velocity at very low concentrations of substrate ([S] « Km) 

(Miller and Tanner, 2008) and provides a means of comparing efficiency of enzymatic catalysis under 

these conditions (Garrett and Grisham, 1999b). Under this substrate concentration range, the velocity is 

linear (as indicated in Figure 2.1), since Km becomes the predominant term in the divisor in the 

Michaelis-Menten formalism (Garrett and Grisham, 1999b). 

The above three parameters (k" Km and k,lKm) are the most commonly reported values when describing 

and comparing enzyme kinetics. The following section (2.3.1.2) details the conventions in reporting 

enzyme kinetics data when electroanalysis is used as the basis of assaying enzyme activity. 

2. Enzyme kinetics within an electroanalytical context 

Assays and analyses of enzyme kinetics have been performed using an array of techniques to detect the 

formation of products, or the depletion of substrates. These commonly include, but are not limited to: 

UVIVIS spectrophotometry; Mass Spectrometry; High-Performance-Liquid-Chromatography and 

electroanalysis (Miller and Tanner, 2008). Due to the nature of the research presented in this Thesis, 

kinetic characterisations of enzymes and enzyme systems using electroanalytical techniques is of 

particular interest. While kinetics analyses of 'free' (i.e. unimmobilised) enzyme systems using 

electrochemical monitoring techniques takes place under the same principles that other forms of enzyme 

assays undergo i.e. as a means of monitoring product formation I substrate depletion (e.g. Ciolkosz and 

Jordan, 1993; Klis et aI., 2007a), additional concerns arise when assessing immobilised enzymes for the 

purposes of biosensor fabrication and application. 

When considering enzymatic biosensors, it is the respective velocity of the enzyme-substrate 

interactionls that drives signal generation, and thereby, determines the efficiency of analyte detection. 

The act of immobilising enzymes onto transducers often has the effect of distorting the enzyme structure, 

affecting its kinetic ability and making predictions of the immobile enzyme kinetics from analyses of the 

mobile enzyme state analytically inconsistent. This is a subject that is outlined in greater detail in 

Chapter 4 of this Thesis. Biosensors are further complicated by other operational factors affecting signal 
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generation: diffusional constraints are often found to be imposed on the transport of the substrate within 

the biorecognition layer due to the dense packing of catalyst on the transducer surface and on the 

transport of the product to the transducer surface (Chapter 4 of this thesis). In addition, product

transducer kinetics and side-reactions involving the product may also affect both the quantity and quality 

of signal (Chapter 5 of this thesis). These factors further distort the apparent rate constants from which 

signal generation is derived. As such, aJl further kinetic parameters reported in this thesis (Km' v=, ) 

should be considered as apparent rate constants. 

Hence, separate characterisation of the rate kinetics governing immobilised-enzyme systems are essential 

for assessing the efficacy of biosensors under different conditions (both during fabrication of the 

biosensor and during its operation), in order to allow for meaningful comparisons between these 

conditions to be made. From a biosensor-fabrication perspective, the interpretation of sensor responses 

though biochemical kinetics models is invaluable to understand the mechanisms influencing sensor 

response. This is useful, both from a fundamental analysis perspective and during optimisation of sensor 

response, as well as for the meaningful interpretation of other alterations to the sensor performance under 

different conditions e.g. assessing reasons behind attenuation of sensor response during storage (Bartlett 

and Pratt, 1993). 

From an applications perspective, a linear relationship between the analyte of interest and the sensor's 

response is desirable, if only for the purposes of ease-of-interpretation by the end user. Commonly used 

criteria for evaluating sensor performance in the absence of a kinetics-based model include: signal 

response to changing substrate concentrations (termed "detection sensitivity") and the linear dynamic 

range under which detection sensitivity is applicable ("linear response range") (Bartlett and Pratt, 1993). 

Some examples of published findings using these parameters as the prime parameters underpinning 

biosensor efficiency include, but are not limited to: Gomes et ai., 2004; Jarosz-Wilkolaska et aI. , 2004 

and Montereali et ai., 2009. 

Non-linear sensor modelling processes extends the range under which meaningful sensor response can be 

extracted from the sensor response, beyond the linear range. As Figure 2. I shows, the apparent linear 

response range of a purely Michaelis-Menten-Iike sensor behaviour is very narrow (in this example, 
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between [S] ; 0 and [S] ; y,.K m). By decreasing reliance on the purely linearly-behaving portions of 

sensor-current functions, a much greater substrate range can be interpreted; again, in the example 

provided in Figure 2.1, the non-linear response region covers a much greater range of substrate 

concentrations (to at least [S] '" 4Km) before the sensor response approaches zero-order behaviour. 

Amperometric sensors assessed in a bio-kinetic method are typically characterised by the following 

parameters: maximal current, 1m,,, equivalent in this context to the apparent v""x parameter in Eq. 2.3 

and by their apparent Michaelis constants, Km (e.g. Kulys and Vidziunaite, 2003; larosz-Wilkolaska et 

aI., 2004; Tan et al., 2009; Wang et aI., 2009). From these parameters, k, and k,/Km values can be 

readily established, as explained in the preceding section (Sct. 2.3.1.1) and interpreted as equivalent 

indications of the various rates governing the substrate-enzyme kinetic system under investigation. They 

are considered to be apparent rate constants, for the reasons (both biochemical and operational) that may 

affect how representative a transduced signal is of the biorecognition event that initiates the signal. 

It is now common practice that both the aforementioned aspects of the biosensor's performance be 

reported on (Kulys and Vidziunaite, 2003; Yan et aI., 2009), to present both a biosensor's analytical 

performance and on the biochemical kinetics that govern said performance. 

3. Deviations from non-hyperbolic behaviour: sigmoidal velocitv-concentration profiles and entailments 

1 '- I-nH = 2 --nH =l- - nH=o.7I--

0.8 

C' - . 
~ 0.6 

e;: 
"'" 0.4 ~ .. 

0.2 

o 0.2 0.4 
[SI 

0.6 0.8 1 

Figure 2.2: Influence of positive and negative coopcrativity on velocity-substrate concentration functions. 

Graphical representations of kinetic data comprised of different Hill coefficients (nH) generated using 
dimensionless model data. 

v_ = 1 and Km = 0.4 for all graphed functions. 
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Sigmoidal velocity-substrate behaviour (Figure 2.2) is interpreted as characteristic of co-operative 

enzyme kinetics, commonly observed in enzyme systems possessing multiple substrate-binding sites. 

Cooperativity, and allostericity in general, entails an oligomeric organisation of the enzymatic system 

under investigation, and/or multiple substrate-binding sites per polypeptide chain (Garrett and Grisham, 

1999b). Certainly, the most commonly-cited model, the Monod-Wyman-Changeux (M-W-C) model is 

generated under the assumption that more than one substrate-binding site per discrete biomolecule 

(which includes oligomeric complexes thereof) occur (Garrett and Grisham, 1999b). Under this 

paradigm, the formation of an enzyme-substrate complex may alter the affinity of subsequent enzyme

substrate binding kinetics at other substrate-binding sites. [n addition to this, the binding of non-substrate 

compounds to areas of the enzyme other than the active site may also alter substrate-enzyme kinetics. 

Both of these phenomena are classed as allosteric effects. 

From the model of Monod-Wyman-Changeux (schematically represented in Figure 2.3 below) 

describing allosteric enzyme kinetics, two conformational/catalytic states of the enzyme in a given 

oligomer are present in equilibrium. They are represented, respectively as R (relaxed i.e. substrate

binding) and T (taut i.e. a conformation with a lesser, or no, substrate affinity). [n the absence of 

substrate, these exist in equilibrium with R<-+T. The addition of substrate (S) to this system adds a further 

equilibrium between R and the substrate-bound R, R<-+RS. This, in turn, depletes the relative proportion 

ofR in the system, driving the formation of a new T ..... R equilibrium, increasing the effective proportion 

of active enzyme within the system (Garrett and Grisham, 1999b). Similarly, the binding of an allosteric 

effector, A, alters the equilibrium in the same manner as binding of S does. 
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Figure 2.3: Schematic depiction of the M-W-C model of allostericity for an enzyme with a dimcric 
quarternary conformation. 

Separate intra-subunit binding sites fo r an effector (A) and substrate (S) are also depicted. As adapted ITom Garrett 
and Grisham, 1999b. 

Empirically, sigmoidal velocity-substrate react ions are fitted to the Hill Equation (Eq. 2.5), which 

describes a sigmoidal dependence of velocity on substrate concentration. 

V = 
VmaJSlnH 

K' + [Sln H 
Eq. 2.5 

Where nH is the Hill coefficient, K' = (Km)"H fulfilling the same mathematical re lation that Km does, 

and the other symbols have their usual meaning as in Eq. 2.3 (Miller and Tanner, 2008). Comparison of 

Eq. 2.5 and Eq. 2.3 show that the Michaelis-Menten equation can be considered as a special case of the 

Hill Eq uation, with nH = I . With nH > I a sigmoidal curve is described, and with nH < I , a flattened 

hyperbolic dependence, simi lar in shape to the Michaelis-Menten curve, is described (Figure 2.2). 

There are several shortcomings preventing the description of enzyme kinetics using the Hill co-efficient. 

Most importantly, the Hill Equation is only an empirical formula, to which many sigmoidal curves may 

46 



Chapter 2: Gene ral Methodologies and Princi ples 

be fitted to equally. For complete description of enzyme kinetics, more stringent models (such as M-W

C) are required (Weis, 1997). Even within the context of enzyme kinetics analysis in well-defined 

systems, it is that nH is rarely an exact indication of the number of substrate-binding sites present per 

catalytic unit: this only occurs under rare conditions of extreme cooperativity (Weiss, 1997). Under 

normal conditions of positive cooperativity nH indicates the minimum, and not the total, number of 

binding sites required to describe the extent of cooperativity in a given system (Weiss, 1997). Generally, 

it appears to be used mainly as a diagnosis of global cooperativity in a given system not conforming to 

normal Michaelis-Menten kinetics (such as the systems described above); when nH > I , positive 

cooperativity is assumed to occur and when nH < I, negative cooperativity is presumed (Goldbeter, 1975; 

Acerenza and Mizraji, 1997). A value of nH ; I indicates conventional Michaelis-Menten kinetics 

predominating the enzyme system under examination (Whitehead, 1978; Acerenza and Mizraji, 1997). 

No further mechanistic analyses may be performed using this system for determining cooperativity. 

2.3.2 Electroanalysis 

2.3.2 .1 Overview of principles governing electroanalysis 

The principles governing electroanalysis are concerned with the measurement of electrical variables of 

charge (more commonly its first-order derivative, current) and potential difference (referred to as 

potential henceforth) occurring at an electrode (Wang, 1994; Kissinger and Heineman, 1996). By altering 

one measurable parameter (e.g. potential) away from the pre-existing equilibrium state and measuring the 

response of the system another parameter (e.g. current), dynamic electroanalytical measurements may be 

performed. During the research reported on henceforth, potential was usually altered and the 

charge/current was measured. 

Potential and charge may be explained through the example of the classic generic-compound Nemstian 

reaction (Kissinger and Heineman, 1996). Consider the reaction of 0 and R occurring at the surface

solution interface of a working electrode at a fixed potential: 

47 



Chapter 2: General Methodologies and Principles 

0+ ne-
Scheme 2.2 

Where ne· represents a stoichiometric addition of n electrons to the oxidised form 0 to generate the 

reduced compound R k, is the forward rate constant (i.e. rate of conversion of 0 to R) and kb the reverse 

rate constant (Kissinger and Heineman, 1996). 

The rate constants (k, and kb) in the above example are potential-dependent. Alteration of the potential of 

the working electrode thus alters the equilibrium of k,lkb and dictates which reaction becomes prevalent 

at the surface. The addition/release of electrons to 0 by the electrode is measurable as the charge 

leaving/entering the electrode (Kissinger and Heineman, 1996). By convention, oxidative current/charge 

(electron abstraction from R) is measured as a positive value and reduction (electron donation to 0) is 

designated as negative. Thus, measurement of the current measures the proportional conversion rate of 

0-7 R and vice versa. 

The potentials at which oxidation/reduction occurs are indicative of the thermodynamic/ kinetic 

favourability of that reaction. For the purposes of oxidation, less positive potentials indicate more 

favourable electron donation to the electrode by the analyte. The converse is true for analyte reduction 

(Bard and Faulkner, 2001). 

Since electrochemical reaction rates are potential-dependent, alteration of the potential drives the 

reaction rate away from the initial equilibrium to a favoured overall direction of oxidation / reduction. As 

these reactions occur at the electrode-solution interface, current is then driven by the transport of the 

reactant of the favoured reaction to the interface. At potentials by which the reaction is no longer 

kinetically-limited by potential (I.e. equilibrium strongly favours a given reaction direction), current is 

then limited by the rate at which reactant reaches the electrode (mass transport limitations). Diffusion, 

electrostatic migration and convection are all modes of transport by which the reactant arrives at the 

electrode surface and are of varying importance depending on the desired outcomes of the 

electrochemical reaction (Kissinger and Heineman, 1996). 
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Electroanalytical waveforms used throughout this thesis assess the reduction/oxidation of specific 

analytes measureable through electrode-analyte current exchange. Two main waveforms, cyclic 

voltammetry and chronoamperometry are used throughout this Thesis and as such, are briefly outlined in 

the following subsections (2.3.2.2 and 2.3.2.3). 

2.3.2.2 Cyclic Voltammetry 

Cyclic Voltammetry (CV) is an electrochemical waveform whereby the potential difference extant at a 

working electrode surface is linearly altered with respect to time; this alteration occurs in either towards 

more positive potentials (anodization, promoting oxidation of analytes) or towards more negative 

potentials (cathodisation, promoting reduction of analytes). As the potential approaches a value whereby 

a Faradaic reaction (such as outlined in Scheme 2.2) becomes favoured, electron-transfer reactions 

between the analyte and the electrode generate charge, which is recorded and displayed as a function of 

potential. At a predetermined potential, the electrode potential is then altered in the opposite direction to 

the initial direction, promoting the opposite reaction{s) (Bard and Faulkner, 2001). Figure 2.4 below 

displays this in a graphical format. 
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Figure 2.4: Representational diagrams of principles of cyclic voltammetry using the participants outlined in 
Scheme 2.2 

A) Potential-time waveform, moving towards positive values (anodic sweep) and returning to the starting 
potential (cathodic sweep) 

Legends: tS1atI - time of start of application of potential-time cycle, t switch, time at which reverse (cathodic, in this 
instance) sweep was initiated. t end - time of end of application of potential-time eyeles. 

S) T ransduced current arising from oxidation of R and reduction of 0 due to the imposed potential-time 
waveform in A) 

Legends: Ep.a - peak oxidation (anodic) potential, Ip.a - peak oxidation current, E p,c - peak reduction (cathodic) 
potential. 

Single-ended arrows show potentials at which the attached reaction schemes are kinetically favourable. 

Figure 2.4 displays that, as electrode potential increases to a point at which the reaction under 

examination is less limited by electron-transfer kinetics i.e. becomes less kinetically-limited, current 

becomes increasingly restricted by the amount of analyte present near the electrode surface . Mass-

transport limitations, which increase as kinetic limitations decrease, give current responses arising from 

CY their characteristic peak shapes. The peaks themselves are the basis for infonnation regarding the 

system: common measured parameters include, but are not limited to, the peak current (lp) and peak 

potentials (Ep), indicated for the anodic (oxidation) and cathodic (reduction) peaks, respectively in 

Figure 2.4 (Bard and Faulkner, 200 1)_ Several data treatments exist for extracling both quantitati ve and 

qualitative information regarding electrode processes observed during CV (Bard and Faulkner, 200 1)_ 
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Electrochemical parameters and data treatments are presented and discussed in the relevant Chapters 

where pertinent. 

2.3.2.3 Chronoamperometry 

Similarly to the principles outlined in the preceding section concerning CV (Section 2.3.2.2), 

Chronoamperometry (CA) involves the stationary positioning of working electrode potential to a 

predetennined level and subsequent measurement of the current transduced from potential poising. 

As an example, consider the Nernstian Scheme 2.2, in which only 0 was present. By altering the 

potential cathodically, to a level at which the reduction reaction becomes kinetically favourable, 

reductive current caused by the conversion of 9+ R is transduced. As in cyclic voltammetry, this 

current rapidly becomes limited by the mass-transport considerations under which the electrochemical 

system finds itself. 

While linear diffusion of analyte to the electrode system results in an exponential decay of current (as in 

the classical Cottrell Equation for planar electrodes in static solutions), convection of the solution 

through stirring (classed as hydrodynamic analyses) permits more stable current-time behaviour (as in 

the classical Levich equation, for a rotating disc electrode undergoing a Faradaic process) (Heineman and 

Kissinger, 1996). 

2.4 Data Treatments of biosensor responses and general modelling 

considerations: 

All enzyme kinetics studies performed were analysed using computer-driven modelling systems to 

elucidate relevant parameters governing the phenomenon under examination. Data was not linearised 

prior to modelling in e.g. Hanes-Woolfplots or Eadie-Hofstee plots (Miller and Tanner, 2008). 

The use of computer-driven non-linear regression has been previously postulated (Sagnella, 1985; 

Leatherbarrow, 1990) and subsequently used in a number of biochemical studies (Coons et ai. , 1995), 
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including enzyme kinetics (Stojan, 1997; Gooding et aI., 2000; Johnson, 2003; Goudar et aI., 2004; 

Walsh et aI., 2007). It has the distinct advantage of objectively weighting errors in the modelled data 

over the whole dataset, rather than exaggerating errors at low substrate concentrations (as occurs when 

data is normalized to the Lineweaver-Burke and Eadie-Hofstee plots (Leatherbarrow, 1990; Miller and 

Tanner, 2008), providing more robust overall estimations (Sagnella, 1985). The use of reiterative 

minima-seeking algorithms, such as those found in Microsoft® Office's "Solver" add-in for non-linear 

regression curve-fitting has been previously performed (Walsh and Diamond, 1994; Lin et aI., 2006) and 

the various adjustable parameters explained (Walsh and Diamond, 1994). 

Rather than create and subsequently rely on specialised modelling programs, the majority of data 

analyses presented in this Thesis was performed using only the simple and widely-available program 

Microsoft® Excel 2007, in order to demonstrate the wide-ranging applicability of the systems 

characterised and analysed in this manner. Data treatments used in assessing biosensor response are 

available in Sections A 1.2 of Appendix I of this thesis. The criterion and Microsoft-Excel®-based 

procedure for assessing the goodness-of-fit between modelled data and experimental data is outlined in 

Sections A 1.3 and A 1.4, respectively, of Appendix I. 

2.4.1 Sigmoidal/Hyperbolic model used in describing biosensor kinetics 

Sensor response was often resolved into a sigmoidal shape when current response (I, .. ) at a given 

substrate concentration [S] was compared to the substrate concentration. For definitions of Itob refer to 

Section A 1.2 of Appendix I. In these cases, this necessitated the use of a different model to that typically 

used in enzyme kinetics modelling, the Michaelis-Menten relation. In order to extract the relevant 

parameters governing sensor response, a sigmoidal model of the following four-parameter formalism 

(Eq. 2.6) was used (Pauliukaite et aI., 2006, Lee et aI., 2000): 

_ + (a - d) 
y - d (I +(x/c )b) Eq.2.6 

Where y = Ito, and x = [S] and the other model parameters are explained below. This function provides a 

very flexible model for sigmoidal (and hence, logistical) plots (Lee et aI., 2000). For the purposes of 
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display, Figure 2.5 demonstrates the effects on the plotted curves that alterations of these parameters has 

on the overall function using hypothetical data generated between x = 0 and x = I (dimensionless units). 
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Figure 2.5: Computer-generated model data governed by sigmoidal model, as described by Eq. 2.6. 

This was performed using starting values of a = 0, b ::: 2, c :::; 0.2 and d = 1, using dimensionless x and y values. 
Legends indicate parameter val ues substituted into the original equation, while maintaining all other parameters as 
outlined above. Separate plots are displayed for each alteration of a given parameter: A - parameter a, B - parameter 
b, C - parameter c and D - parameter d. 

For the purposes of comparison, the original function using the aforementioned parameters is displayed 

within all graphs in Figure 2.5 as ___ . Hence, a is the lowest asymptote of the sigmoidal graph function 

(Figure 2.5A), d is the higher asymptote of the sigmoidal shape (Figure 2.5D), c is the mid-point of 

response (the value of x at which y is hal f the response of d) and b is the degree of inflexion of the graph 

- when the functio n is linearised in a logit-Iog plot this value equates to the slope of the linearised plot 

(Lee et aI., 2000). 

Several notable properties of the model parameters need to be stated at this point in order to equate them 

to the enzyme kinetic equations outlined in the previous section. Both a and d are asymptotic values, 

rather than absolute values - at lower and higher values of x, respecti vely, values of y lend towards that 

value, rather than assume it. Secondly, that when b is set to a value of I and a to a value of 0, this 
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equation becomes analogous to that of the Michaelis-Menten value (see Figure 2.5B, b = I). Upon setting 

these parameters as aforementioned, the equation governing the function alters to Eq. 2.7: 

d 
Y = d - (1 +(x/c)) 

Which, when rearranged, becomes: 

(d)(x) 
y= -

(c + x) 

Eq.2.7 

Eq.2.8 

Which, given the above meanings of these parameters, is equivalent to the classic Michaelis-Menten 

equation (Eq. 2.3). Similarly, using a value of b not set as b = I gives mathematical equivalence between 

Eq. 2.6 and the Hill 's Equation (Eq. 2.5). As expected, model data generated using arbitrary values 

showed no difference when outputs obtained by Eq. 2.8 when compared to Eq. 2.3, or when comparing 

Eq. 2.6 to Eq. 2.5. As the same number of parameters is fitted by either of these equations, they are also 

equal in their exactness of model fitting and computing ability. Thus, this model can be used to predict 

both the sigmoidal and hyperbolic biosensor behaviour, both of which were commonly found and 

reported on in later Chapters. 
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Chapter 3: Transducer surface pretreatments (glassy carbon 
electrodes) and enzyme activity 

3.1 Abstract: 

The requirement for a consistent transducer surface for biosensor attachment and transduction is an 

obvious one for the successful application of biosensor technology. Significant differences in electrode 

response, both between individual electrodes and between amendments of the electrode surface (i.e. 

cleanings and modifications), are often noted in studies within this area. These deviations are due to 

differences arising between electrode surfaces - both due to the differences in the chemical composition 

between moieties present on electrode surfaces and/or differences in surface roughnesses of the 

electrodes between cleanings and modifications. Heterogeneity of response is common to carbon-based 

electrodes; due to their inexpensive fabrication and presence of functional groups, they are desirable 

transducer surfaces for both biosensor fabrication and operation. Hence, the selection of a rapid pre-

analytical treatment of the transducer surface that minimises electrochemical variance between electrodes 

was investigated. The selection of this cleaning procedure was performed on the basis of both non-

Faradaic electrochemical investigations into electrode behaviour and Faradaic behaviour of the 

electrodes, with respect to catechol. Of the methods reported on in this Chapter, an anodic pretreatment 

of the electrode in 0.1 M NaOH, in addition to other mechanical pretreatment methods was found to 

produce a high degree of consistency in the aforementioned categories, both between electrodes and 

between cleanings of individual electrodes. 

Concurrent to this was the research need to provide a means of rapidly assessing the surface of an 

electrode in order to determine the suitability of a given glassy carbon surface as a transducer for 

biosensor studies. Several requirements were posited. Firstly, the methods of determination should make 

use of the same technology as the biosensor (in this case, electroanalysis), in order to decrease the 

amount of equipment, processing-time and training required to effectively use the biosensor. Secondly, 

determinations should not substantially interfere with the functionality of the sensor following estimation 

of the surface area, either through alteration of the transducer or of the attached enzyme-layer. 
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Additionally, in the case of long-tenn, or continuous monitoring, such a method should be 

implementable between analyses, if not ideally during. In the following chapter, an electroanalytical 

method of detennining the electrochemically-active surface area of glassy carbon electrodes is 

postulated, that of measuring the degree of charging current separation (dJ). dI was validated against 

several, more-established non-Faradaic electroanalytical techniques of detennining surface area and 

found to be partially successful at addressing the need for a rapid means of assessing electrode state. 

Finally, in this Chapter, the methods, results and rationales for assaying laccase activity by 

spectrophotometrically monitoring the oxidation of catechol is described. One of the often-overlooked 

aspects of enzymatic biosensor fabrication is the standardisation of the quality and activity of the sourced 

enzyme. This is true both when considering differences in the commercial source!s of the enzyme in 

question and when detennining consistency in quality between sourced batches of the enzyme. The 

inclusion of a standardised method of assaying enzyme activity under consistent conditions is essential in 

order to ensure consistency between biosensor fabrications, and thus, consistent results between 

bios~nsors. As several individual batches oflaccase of varying laccase contents (and therefore, activities) 

were sourced from the supplier over the course of this research, consistent enzyme activity needed to be 

maintained throughout the experiments reported on in this Thesis. Enzymatic activity of non

immobilised laccase batches was therefore assessed via spectrophotometric activity assays repeatedly 

during the course of the research reported on in this Thesis - both when using a new batch of laccase 

stock and, periodically, to ensure that the laccase retains activity during storage. Assaying of laccase 

activity was found to be complicated by the non-linear behaviour existing between the concentration of 

enzyme and the assayed activity determined spectroscopically. This non-linearity was considered to be 

due to the auto-reduction exhibited by laccases in the absence of substrate, following solubilisation. On 

the basis of these findings, assays to test the activities of received and stored laccases were standardised 

through the velocity of oxidation of 0.05 M catechol by a laccase stock concentration of 1 mg.mr' . 
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3.2: Introduction 

3.2.1 The relevance of surface area determinations in biosensor transducers: 

For effective biosensor deployment and application a means of either standardising the fabricated 

transducer's surface area (in both composition and physical area) or, more realistically, a means of 

incorporating surface area/composition determinations with the biosensor response is essential for 

consistency and reproducibility of biosensor response. 

Most electrochemical parameters and equations make explicit use of surface area (;j ,uif) as a variable in 

their determinations. Hence, the estimation and determination of real electrode surface area is of 

paramount importance in relating electrochemical information. Since, for any given experiment 

presented onward in this Thesis, at least 3 separate experiments are performed on at least 3 separate 

electrodes, estimation of the real electrode surface area is of great importance when determining and 

minimising inter-electrode variability and ensuring that proceeding phenomena recorded are evaluated 

independently of considerations of surface area. 

Surface area determinations are still a problematic area in most electrochemical analytical paradigms 

which has not yet readily been solved, with particular regard to carbonaceous materials such as pyrolytic 

carbon-based electrodes (e.g. glassy carbon or highly-ordered pyrolitic graphite electrodes). Various 

research papers have compared the merits/demerits and limitations afforded by the many different 

methods of determining the active electrode surface area and the results provided may vary substantially 

through slight changes in the analytical variables; electroanalytical (Marozzi and Chialvo, 1996), 

chemical, (e.g. solvent composition and purity) the type and state of the electrode surface employed in 

this determination (Trasatti and Petrii, 1991 ) have been shown to significantly alter the calculated 

electrode surface area. 

It should be stressed at this point that the main aim of evaluating surface area during the course of this 

research was merely to standardise the sensor responses to a given surface area. The scope of this 

research does not entail an exhaustive comparison as to the various merits and informative yield provided 

by various methods used in determining the real surface area. Since the value of the apparent real 
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electrode surface area is dependent on the analytical method used to evaluate it (Jarz'tbek and 

Borkowska, 1996), there is little value to be gained in a comparison of multiple analytical methods. 

By including these measurements as part of the preliminary cleaning stage of the electrode, prior to any 

electroanalysis, this effectively includes an approximate measurement of surface area of the electrode 

within the same analysis-scheme, allowing for a time-efficient, individualised analysis on a per-electrode 

basis. 

3.2.2 Methods of determining surface area: 

Surface area determinations for solid macro-electrodes may be generally categorised into variations 

within three discrete groups: (a) mass transfer of redox probes under diffusion control, (b) adsorption 

processes at the electrode surface (usually with the assumption of purely monolayer, or a reproducible 

sub-monolayer/multilayer of probe) and (c) measurements of the differential capacitance in the double

layer charging potential region/s (i.e. non-faradaic processes) (Jarz'tbek and Borkowska, 1996). One or 

more of these processes may be appl icable for surface area determination, based on the electrode 

composition and electrolyte/probe system under consideration. Whereas JarZ'tbek and Borkowska (1996) 

have stated that the determination of the capacitance of the electrical double-layer is the main method for 

the determination of the surface area. 

Potentiostatic or voltammetric analysis of the mass-transfer of redox probes under rigorously controlled 

conditions is commonly applied for the evaluation of real electrode surface area and has often been used 

in published research articles centred on the fabrication of biosensors. As such, the deliberate absence of 

such a technique in this Chapter (and proceeding Chapters) needs to be briefly justified. Trasatti and 

Petrii (1992), in their comprehensive review of the nature of analytical in situ methods of determining 

surface areas of electrodes, have outlined several limitations to this method of determining surface area 

that are relevant to the research described further onwards: 
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(I) This technique ultimately measures the cross-sectional area of the diffusion layer possessed by 

the electrode, which is relatively insensi tive to microscopic surface roughnesses. The extracted 

value is time-dependent (Trasatti and Petrii, 1991 ), and tends towards unity with the geometrical 

area with increasing time-of-assessment. For example, within an analytical time frame of 10 ms 

to lOs, the diffusion layer thickness is 2 - 70 flm, which necessitates that surface asperities < 

I flm will not be accounted for (McCreery and Cline, 1996). This analytical system, hence, fails 

to accurately measure microscopic surface roughnesses at time-frames greater than I ms (which 

are common in the low-sweep rate voltammetric techniques employed herein) (McCreery and 

Cline, 1996; Bard and Faulkner, 200Ia). Decreasing the analytical time-frame possesses its own 

inherent problems: 

a. The surface area as determined by this technique is only influenced by surface roughness 

at time-frames less than 100 ns i.e. with a diffusion layer of approximately 10 nm away 

from the electrode surface (Bard and Fualkner, 2001 a). 

b. At these time-frames, time-dependent non-faradaic currents (e.g. double-layer charging 

currents) would form a significant bulk of the transduced current (Miaw and Perone, 

1979), necessitating that a lot of corrective calculations and control experimentation 

must be performed in order to account for this and decreasing the applicability of this 

technique. 

(2) Convection alters the produced diffusion layer, affecting the effectiveness of determining surface 

area in a hydrodynamic system. (Trasatti and Petrii , 1991) such as was routinely employed to 

assess biosensor functionality . 

(3) Typically, reversibly-redox probes e.g. ferricyanide, (Fe(CN)/"·) and ruthenium 

tetrahydraborate (Ru(BH4) 3+12+) are employed for this technique. In order for this technique to 

have analytical relevance, the current yields (1 •.• 11 •. ,) would have to be unity (Trasatii and Petrii, 

1992), which requires rigorously-controlled electrode/electrolyte parameters (e.g. pH, electrode 

surface state and ionic strength). Neither of these factors can be guaranteed when considering the 

use of the biosensor in an in situ analytical matrix and taking into account the surface reaction 

kinetics of carbonaceous electrodes (see: Section 3.2.3 of this Chapter). 

60 



Chapter 3: Transducer surface, enzyme activity 

(4) Trace amounts of redox probes may be adsorbed onto the surface of the electrode andlor 

biorecognition layer fOllowing surface area determinations. Acting as adsorbed contaminants, 

they may then affect subsequent electrode kinetics inconsistently (McCreery and Cline, 1996) as 

well as producing redox signals upon voltammetriclchronaomperometric analyses. Given that 

biomolecule modification of the electrode surface is thereafter intended to take place, this 

precludes the harsh treatment of the electrode (e.g. organic solvent rinsing or sonication) 

required to remove the adsorbed redox probes prior to biosensor use. Mechanical cleaning is 

precluded for the same reasons. The adsorption and interactions of biomolecules with the 

electrode surface would also alter the surface area, rendering the value of determining surface 

areas pre-modification questionable. Additionally, interactions arising between the redox probes 

and the redox active site of laccases (see Chapter 5.1) may alter the kinetics of the biosensor 

inconsistently. 

For the above reasons, redox probes, either diffusionally-controlled, or adsorbed, were not considered a 

suitable analytical method for determining surface areas in glassy carbon electrodes. Monitoring the 

formation of the oxide layer of gold during acid-medium electrochemical cleaning was undertaken in 

order to determine the surface area (Trasatti and Petrii, 1991) for gold electrodes reported on in Chapters 

6 and 8 of this Thesis. Non-faradaic electrochemical profiles of individual sensors were used as a basis of 

determining surface area/composition of glassy carbon electrodes. 

I. Capacitance measurements and non-Faradaic electrode processes: 

The measured capacitance of an electrode is dependent on a variety of analytical parameters: the 

composition of the working electrode, the electrolytic solvent used (both the concentration (JarZltbek and 

Borkowska, 1996), chemical composition (Jarz'l.bek and Borkowska, 1996) and the pH of the selected 

solvent), the selected potential that capacitance determinations are performed at (Moulton et aI., 2004), 

While it is implied by stating that the capacitance is dependent on the electrode surface, it should be 

stressed at this juncture that subsequent modifications to the electrode surface (or indeed, the electrode I 
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bulk solution interface) will result in an alteration of the capacitance that is measured. The adsorption of 

protein onto a gold electrode performed by Moulton et aI., 2004 exploited this phenomenon, by tracking 

alterations to the capacitance upon the exposure of the electrode to proteinaceous solutions. 

The other aspects which are important to standardise the functioning of a working electrode surface are: 

surface topography (represented in part by the recognition that real surface area is dependent on the 

microscopic / macroscopic roughness of the electrode), lateral chemical / physical homogeneity of the 

surface (of especial relevance when considering of carbon-based materials as electrode surfaces, given 

their heterogeneous chemical natures). 

3.2.3 Carbonaceous electrodes - structure and kinetics 

I. Carbonaceous electrodes: general overview 

Carbonaceous electrodes have the advantages of a very low cost of manufacture and ease-of-fabrication 

(Kamau, 1988; Rice et aI. , 1989; Bowers et aI. , 1990). This, coupled with their large potential window 

(Rice et aI., 1989; Zhao et aI. , 2008) and relative inertness with electrolytes (Rice et aI. , 1989; Bowers et 

aI. , 1990) (mainly in terms of corrosion-resistance) are important properties governing the deployment of 

this technology within an industrial paradigm, while the variability occurring between electrodes is 

important from an analytical perspective, both qualitatively and quantitatively. 

Glassy Carbon Electrodes (GCEs) are widely used carbonaceous electrode surfaces, and are considered 

to be the most widely-employed electrodes of carbonaceous composition (McCreery and Cline, 1996). 

They are impermeable to liquids and gases, easily polishable and installable (in a variety of 

configurations) and are compatible/inert with most common solvents. They also have a large potential 

window in which they provide electro analytical information (approximately between 1.2 Vand -0.8 V vs. 

SCE) without themselves being greatly affected (McCreery and Cline, 1996). This electrode is formed 

through the high-temperature partial degradation of high-weight carbonaceous polymers (e.g. 

phenol/formaldehyde resin). The resultant chemical structure is predominantly sp'-hybridised hexagonal 
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carbon rings bonded onto the original backbone of the polymer used - essentially fonning "a tangled 

mass of graphitic ribbons" (McCreery and Cline, 1996). This structure produces an increased level of 

crystalline disorder, relative to Highly-Ordered Pyrolic Graphite Electrodes (HOPGE), but improves the 

hardness and removes the porosity experienced by the fonner. Surface roughness of this electrode 

material type is highly dependent on the polishing/cleaning procedures undertaken, but typically ranges 

from (} ~ 1.3 to 3.5 and the observed capacitance between 10 - 20 I'F.cm·' for microscopically-smooth, 

heat-treated electrodes to between 30 -70 I'F.cm·2 for the majority of polished electrodes (McCreery and 

Cline, 1996). 

2. Heterogeneitv of response of carbon electrodes and electrode surface studies 

The heterogeneous nature of carbonaceous electrodes has a vast effect on the electrochemical transfer 

kinetics of the electrodes (Mcreery and Cline, 1996), and is thus an important consideration when 

contemplating their usage for biosensor technology. Of subsequent importance governing electrode 

reactions are the carbon-oxygen groups found along the electrode surface (Kamau, 1988; Bowers et ai, 

1990; Ray and McCreery, 1999). These can be broadly classified as hydroxyl, carboxyl, carbonyl and 

aromatic (mainly phenolic/quinone) groups present on the electrode surface (Kamau, 1988). Concomitant 

with, and perhaps due to, increasing the oxygen content of a carbon electrode's surface displays an 

enhanced electrochemical response (Bowers et al. , 1990), both in terms of signal and in the redox 

reversibility of analytes and redox probes (Shi et aI., 2007). Of the aforementioned surface groups, the 

quinonelhydroquinone groups have especially been proposed to function as an electron-transfer mediator 

for certain redox systems, enhancing the electrodes' reactivity towards their reduction/oxidation (Kamau, 

1988). Hence a great deal of research has been perfonned to achieve reproducible enhancements of the 

signal through modulation of the presence of these oxygenated species, either electrochemically (Kamau, 

1988; Bowers et aI. , 1990; Shi et aI., 2007) or via chemical (Kamau, 1988) means. A wide variety of 

electrochemical pretreatment strategies already exist, with different applications guiding the extent, type 

and selected electrolyte used in such pretreatments (McCreery and Cline, 1996). 
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The proportions, concentrations and lateral distributions of these surface groups differ between the 

different states of carbon comprising the electrodes; furthermore, surface group density is affected (often 

increased) by the cleaning (Ray and McCreery, 1999, Kiema et aI., 2003; Swain, 2007) and pre-analysis 

treatments (Bowers et aI., 1990; McCreery and Cline, 1996; Swain, 2007) used, as well as exposure of 

electrode surfaces to electrolyte solutions or air (Ray and McCreery, 1999). 

The attachment of contaminants to the electrode surface produces simi lar alterations in the 

reproducibility and strength of electrochemical signals. A pertinent sub-set of this is that of polishing 

debris. Contaminants formed during polishing produce a film that is mechanically and chemically 

resistant to removal, but has a pronounced effect on the functioning of the electrode (McCreery and 

Cline, 1996; Kiema et aI., 2003). Several methods have been advanced in an attempt to remove this 

fabricated film including: ultrasonication (in both aqueous solutions and a variety of organic solvents, 

Kamau, 1988); and electrochemical pretreatment (both electrooxidation and oxidation/reduction cycles, 

Kamau, 1988). SEM studies performed by Kiema et al. (2003) demonstrated that brief electrooxidation 

of polished GCEs in an alkaline solution (0.1 M NaOH) adequately removed the layer of debris formed 

during mechanical polishing of the electrode, improving both the magnitude and reproducibility of 

electrochemical response between cleanings. 

The choice of cleaning and electrode pretreatment strategies has a profound effect on the functioning of 

electrodes, particularly on the glassy carbon electrodes employed in this study (Engstrom, 1982; Rice et 

aI., 1989; Jorgen and Steckhan, 1992; Kiema et aI., 2003). Increases in both the reproducibility and 

magnitude of electrochemical signals can be achieved through the selection of an appropriate pre

analytical treatment strategy (Engstrom, 1982; Wang and Lin, 1998). Cleaning and pretreatment 

protocols vary on a study-to-study, and a lab-to-1ab basis, having a substantial effect on the 

reproducibility of results reported using this electrode material (McCreery and Cl ine, 1996; Kiema et aI., 

2003). This factor is further complicated by the physical and chemical effects of cleaning strategies on 

the electrode surface. 
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The selection of a given cleaning or pretreatment strategy may simultaneously affect both the physical 

roughness (Smyrl et aI. , 1989), surface chemical composition (Kamau, 1988; Smyr et aI. , 1989) and 

influences the presence/absence of contaminants. These factors hinder attempts at resolving the complex 

interplay that results in such variability of response (Rice et aI., 1989). In addition, the selection of an 

optimum intersection of treatmentis is considered to be dependent on the analyte (McCreery and Cline, 

1996; Hoogvliet et aI., 1989) and detection matrix in question (Hoogvliet et aI., 1989). Hence, 

optimisation of electrode response for one analyte does not itself guarantee improved electrode kinetics 

for others. This has been extensively researched, and in many cases, exploited, in order to improve both 

the response and selectivity of electrodes towards certain analytes. 

3. Laccase assaying 

The fabrication and application of enzymatic biosensors at a commercial level is, to a large extent, 

dependent on the availability and quality of commercially-available enzyme acting as the biorecognition 

element. For this section, much of the discussion given over to already-commercialised biosensors is 

relevant for consideration for laccase. 

Commerically-available enzyme preparations commonly have > 25% active enzyme by weight and may 

contain non-protein additives, such as salts and sugars (Roy and Abraham, 2004). This is 

counterbalanced to a large extent by the typically-low stability of highly-pure enzymes, as well as the 

time-consuming and expensive processes required to purify enzymes to near-homogeneity (Roy and 

Abraham, 2004). Hence, there exist both advantages and disadvantages to the fabrication of biosensors 

using either high or low degrees of enzyme purity. 

However, when considering the manufacture of enzymatic biosensors at a commercial i.e. mass

production level, the addition of costly pre-modification purification stages, with their concomitant loss 

of both active enzyme molecules and subsequent enzyme activity (e.g. Garret and Grisham, 2001b; 

Uthandi et aI., 2010), and enzyme stability (Roy and Abraham, 2004) once purified, makes the 

preparative steps of purification undesirable from a manufacturing perspective. 

65 



Chapter 3: Transducer surface, enzyme activity 

The direct application of commercially-sourced enzymes is somewhat problematized by variations in the 

amount and purity of enzyme obtainable between batches. A common method of assessing both of these 

factors is the straightforward assaying of total enzyme activity per unit mass of the sourced enzyme. This 

provides the biosensor manufacturer with an indication of both the total activity of the enzyme and the 

degree of purity (in the form of specific activity i.e. activity per unit mass) (Garret and Grisham, 200 I b). 

Comparisons between activity and specific activity allows adjustments to be made between different 

batches, based on the relative performance of the specific batch, in order to provide consistency between 

biosensors fabricated using different batches of sourced enzyme. 

Hence, it was of analytical interest to assess the conditions under which the assaying of laccase activity 

would provide consistent results regarding both the total, and specific, activity of different batches. In 

particular, the effects of the amount of enzyme present during an activity assay on the determined 

activity of the enzyme is explored in this Chapter. Assaying of solubilised laccase is commonly 

performed through the spectrophotometric detection of the rate of product formation during the oxidation 

of a specific substrate under pre-specified conditio!ls e.g. standardised pH. A common substrate for this 

method is catechol, which is used by the supplier of the laccase in question to determine the relative 

activity of batches (Internet Reference I). 

3.3 Aims and Objectives: 

The following aims and objective were set for this phase of research: 

(I) Determination of a pre-analytical treatment method for GCEs that provides an adequately clean 

electrode surface and minimises inter-electrode variance in electrochemical response. Both of these 

criterion were assessed by non-Faradaic assessments of the electrode surface and with respect to the 

oxidation I reduction of catechol present in the main electrolyte used for the majority of the research, 

SLB adjusted to a pH of 4.5. 
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(2) Validate the selected non-Faradaic method of assessment against a more conventional method of 

determining electrode surface area. As stated in the Introduction section of this Chapter, the validative 

technique must also be non-Faradaic, owing to considerations centred around the use of redox probes as 

means to assess electrode surface areas. 

(3) Evaluate certain criterion by which laccase activity is assayed under the conventional paradigm of 

spectroscopy. These include the relative activity in the presence of other proteins (BSA, for the purposes 

of this research), as well as the effects of laccase content on the rate of oxidation. 

3.4 Methods and Materials: 

3.4.1 Apparatus and Reagents 

The electroanalytical apparatus used was the same as described in Chapter 2 of this thesis (Section 

2.1.1.1), as was the. quality of solvents and reagents (Section 2.2) 

0.1 M KCI solution was used as the main electrolyte when assessing the effect of cleaning protocols on 

the double-layer effect of glassy carbon electrodes, diluted from 3 M KCI stock. 

0.1 M succinic-lactic acid buffer (SLB) was employed as the main electrolyte and buffer throughout this 

section. Unless otherwise stated, the pH of this electrolyte was maintained at 4.50. All analyses took 

place at room temperature, and all electrolytes and cleaning agents were prepared and used once 

equilibrated to this temperature. Storage of electrolytes was at 4°C. 

All catechol (phenolic) substrate stocks used were prepared to a concentration of 100 mM in water daily 

and stored in the dark until used. 
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3.4.2 Methodology for transducer surface studies: 

3.4.2.1 Effect of cleaning protocol on charging currents 

Several cleaning protocols were used in order to determine the cyclic voltammetric charging currentls 

arising from the different exposed surfaces. The cleaning procedures investigated in this study are 

outlined below: 

I. Paper-cleaning (negative controll: 

Electrodes were polished using tissue paper, rinsed with water and stored in water until electroanalysis. 

2. Polishing 

Electrodes were polished in a slurry of alumina oxide (AI,O,) microparticles (> 10 J.1m) and water for at 

least 2 minutes. Following polishing, electrodes were rinsed with water and stored in same prior to 

electroanalysis. 

3. Ultrasonication (ethanoll 

Electrodes were polished (Section 3.4.2.1.2) before being rinsed with ethanol and ultrasonicated in 

ethanol for 2 minutes, followed by rinsing and ultrasonication in water for 2 minutes. After 

ultrasonication, electrodes were stored in water until used 

4. Ultrasonication (base) 

Electrodes were prepared as in Section 3.4.2.1.2 before being ultrasonicated in 0.1 M aqueous NaOH 

solution for 2 minutes, followed by ultrasonication in water for the same length of time. Prior to analysis, 

electrodes were stored in water. 

5. Anodic pretreatment (base) 

Following polishing, electrodes were electrooxidised in 0.1 M NaOH (+ 1.45 V vs. AglAgCI) for 5 s 

before being successively ultrasonicated in ethanol and water, before being stored in water. 
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Electrodes cleaned in this manner were subsequently cycled repeatedly between 0 and + 1.0 V in 0.1 M 

KCl until a stable CV response was recorded. Voltammetric shapes and current responses at certain 

potentials were recorded and analysed to assess both reproducibi lity and alterations to same resulting 

from the cleaning protocol used. In addition, the effect of the cleaning procedures upon the 

reduction/oxidation of 0.1 mM catechol within O. I M KCl was performed. 

In order to assess differences in the double-layer capacitance due to alterations in the electrolyte, as well 

as to assess the reproducibility of the reduction/oxidation of phenolic compounds at the electrodes' 

surface, polished electrodes and electrodes that were anodically pretreated were also analysed in SLB, 

pH 4.5. 

3.4.2.2 Validation of dI as an indication of electrode surface area: Non-Faradaic Chronoamperometry 

Electrodes, prepared as outlined in 3.4.2, were subjected to two-step chronoamperometry, following 

cyclic voltammetry. Electrodes were cycled repeatedly between 0 and + 1.0 V in electrolyte until a stable 

response was recorded. Voltammetric shapes and charging currents at +0.5 V (dI) were recorded. 

Following cyclic voltammetry, double-step chronoamperometry was performed. Electrode potential was 

poised at +0.45 V for 5 seconds, to equilibrate the system. Following equilibration, electrodes were 

subjected to two-step chronoamperometry (E, = +0 .45 V and E, = +0.5 V) for 10 ms each, sampling 

current at 1 00 ~s intervals. Both cyclic voltammetry and double-step chronoamperometry were 

performed either in 0.1 M KCl or in SLB, pH 4.5. 

Datapoints corresponding to the first 2 ms of the second voltammetric step were imported into Excel 

spreadsheets and the CDL was calculated using the following equation (Eq. 3.1) using i as the goodness-

of-fit indicator (Appendix A 1.4): 

. Llli 
iDL= - 

Rs Eq.3 . l 
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Where iDL is the double-layer charging current (assumed to be the sole current response in the absence of 

Faradaic reactions), /I.E is the change in potential (0.05 V) and Rs is the solution resistivity (in £1) (Miaw 

and Peronne, 1979; Bard and Faulkner, 200 I a). 

The capacitance derived from dI was related to the apparent total capacitance of the system, as outlined 

by Trasatti and Petrii, 199 1. In brief, dI values at + 0.5 V are related to the scan rate of volt am metric 

sweeps through the following formali sm: 

Eq.3 .2 

Where ioh is the non-Faradaic i.e. double-layer charging current (A), A,on is the electrode's surface area 

(cm') and Cd' is the capacitance of the electrode (F.cm·') (Bard and Faulkner, 200Ia). Since dl is the sum 

of anodic and cathodic sweeps, it is equivalent to 2 x ioh (Bard and Faulkner, 200 I a). Assuming that 

double-layer charging is the only contributor to the current, dI would therefore be equivalent to 

2 x 0.1 x (CDL .A ,on) (Bard and Faulkner, 2001a; Trasatti and Petrri, 1991). 

3.4.2.3. Faradaic Voltammetry: 

The reproducibility of electrochemical signals for the oxidation I reduction profile of 0.2 mM catechol 

was assessed by cyclic voltammetry for electrodes subjected to various cleaning protocols as outlined in 

3.4.2. Cyclic voltammetry was performed between -0.3 V and + 0.8 V at a scan rate of 0.1 V.5' and 

performed in both 0.1 M KCI and 0.1 M SLB. 

3.4.3: Methodology for spectrophotometric assay of lac case activity: 

The apparatus used for this is described in Chapter 2 of this Thesis, Section 2. 1.2. For the determination 

of laccase activity, catechol (A.=, = 450 nm, E = 221 1 M·'.cm·') was selected as the laccase substrate. 
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I . Initial spectroscopic characterisation of free laccase 

Laccase activity determinations were performed in at least quadruplicate replicants and reported on as 

such henceforth. Spectroscopic assaying occurred at a set temperature of 20 ' C, in 0.09 M SLB, pH 4.5 

containing 0.05 M catechol. The rate of catechol oxidation was measured at an absorbance wavelength of 

)..; 450 nm at 4 s intervals, for at least IS consecutive intervals (i.e. at least I minute). All absorbance 

data was blanked relative to a laccase-free negative control containing 0.05 M catechol. Fresh laccase 

solution was prepared for each assay 

Table 3.1: Volumes, formulations and final concentrations of reagents used during spectroscopic 

analysis oflaccase stock solutions. 

Assay Reagent Volume (fll) Final concentration 

0.1 M SLB, pH 4.5 267 0.09M 

Laccase (dissolved in SLB) 3 10" • 

SLB (for negative controls) 3 -
Catechol (0.5 M, in water) 30 0.05 M (15 flmol total) 

a _ i.e. a 100-fold dilution, relative to the stock concentratIOn eml?loyed for each expenment 

Immediately following the addition of catechol to the spectrophotometry well, the solution was rapidly 

mixed and the change in absorbance at 450 nm was read, as outlined above. From the rate of change of 

absorbance, the total laccase activity within the stock used was calculated using the following equation 

(Eq. 3.3): 

v= 
t.t.E.[C].L.dJ 

Eq.3.3 

Where v is the enzyme activity of the stock solution (units.min,1 = flmol.min'I) , !'!.Al t.! is the gradient of 

the initial absorbance change (OD.min'\ c is the molar extinction co-efficient for catechol at A. = 450nm 

(2211 M'I.cm' l, as cited in lung et aI., 2002; Roy and Abraham, 2006), [C] is the concentration of 

catechol in the solution (0.05 M), L is the path length (1 cm for the 300 III volume used) and dl is the 
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dilution factor (IOO-fo ld). I unit of enzyme activity was defined as the catalysed degradation of I flmol 

of catechol.min-l 

Specific activity was calculated from the total activity by dividing the total activity by the concentration 

of laccase used in the formulation of the stocks (mg.mr') and applying a corrective factor of lOx (since 

manufacturers' specifications were that - 10% of the supplied Iyophilised mass was active enzyme, 

Sigma-Aldrich, 20 I 0 - cf. Internet References 1.1 and 1.2 following the Reference section of this 

Thesis). 

2. Spectroscopic determination of laccase activity with increasing laccase concentrations 

The initial laccase concentrations were calculated by the manufacturer's specifications provided 

(typically> 20 U.mg·' protein, reported activities differed according to batch). Laccase activity was 

assayed at: I, 2, 5, 10,20 and 32.6 mg oflyophilised mass.mr' concentrations, all of which were derived 

from a single sourced batch of laccase. Laccase, and all other reagents for spectroscopy, were prepared as 

in Table 3.1 , Section 3.4.3.1. 

3. Addition of BSA to laccase assays 

The same laccase assays outlined above (Section 3.4.3.2) were performed, in the presence and absence of 

BSA. To the laccase stock solution, BSA was added to a final concentration of 10 mg.mr' BSA before 

addition of protein to the spectroscopic wells (final concentration of BSA during assaying: 0.1 mg.mr'). 

4. Laccase activity assays between batches 

For each batch of laccase used henceforth in this Thesis, laccase activity was first assayed at I mg.mr' 

stock laccase concentration as outlined above in Section 3.4.3.1. Activity was adjusted accordingly 

between batches to correspond to the activity of the first batch (clarified below) used in research in order 

to maintain the same activity in biosensor and spectroscopic studies conducted. 

For reasons discussed in the Results of this section, the activity of the first batch was set to be the activity 

of laccase at a concentration of 36.2 mg.mr' laccase. This activity was extrapolated from the laccase 

assayed spectroscopically at a concentration of I mg.mr'. 
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3.5 Results: 

3.5.1 Effects of cleaning on non-Faradaic indicators of electrode performance 

For this phase of study, only 3 different glassy carbon electrodes were used, in order to maintain parity 

between the effects of different cleaning techniques. Henceforth, the indicated electrodes are separately 

referred to as GCE I, GCE 2 and GCE 3, respectively. 0.1 M KCI was selected as the main electrolyte 

due to its absence of tendency to form adsorptive or ionic bonds with carbon substrates (Milller and 

Kastening, 1994). 

Figure 3.1 displays the typical behaviour of GCEs during the successive scanning of electrodes in O.IM 

KCI. Similar behaviour is noted in SLB, pH 4.5 (data not shown). This example is a representative CY 

recorded at a GCE which was polished and subsequently sonicated in ethanol. The first and tenth scans 

are included and indicated. 
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Figure 3.t: Cyclic voltammograms depicting apparent differences in the current-potential curves at the IS! 
and 10'h scan recorded in O.lM KCI. 

The electrode used in this depiction was polished, then ethanol-sonicated. Grey arrows show potential s at which 
currents were sampled to calculate dl values (double-headed arrow) 
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For the purposes of estimating surface area of GCEs, electrodes were cycled in electrolyte for a 

successive series of a minimum of 5, and typically 10, cycles until a stable baseline was achieved (as in 

Figure 3.1). At selected points along the voltammogram, indicated in Figure 3.1 (i.e + 0.1 V, 0.5 V and 

0.7V vs. AglAgCI) both the anodic and cathodic currents were recorded and the current separating them 

(dl) was calculated. These points corresponded to the first plateau of current after the onset of the anodic 

sweep; the midpoint of the voltammogram and the first current plateau after the onset of the cathodic 

sweep, respectively. 

Figure 3.2 displays the average dl initially calculated for all three electrodes when using different 

cleaning strategies . It is divided into a summary of the dl values calculated across all 3 selected 

electrodes i.e. inter-electrode consistenty when current is sampled at the aforementioned potentials of O. I 

V; 0.5 V and 0.7 V (Figure 3.2A); and when assessing intra-electrode consistency when dl calculated at 

E ~ +0.7 V was used (Figure 3.2B). 
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Paper Polished 

0.5 V 

Son icated 
(ethanol) 

OO.7V 
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Cleaning Protocol 

Figure 3.2: Influence of cleaning protocol on dl at selected potentials and between electrodes. 

A) Effect of potential selection on calculated dJ on total population of analyses, n > 9, across 3 electrodes 

B) dI values at E = + 0.7 V vs_ AglAgCI determined for individual electrodes cycled in O.IM KCI with 
different cleaning protocols. 

Error bars indicate standard deviation from the mean, n = 3, for each electrode (3). 

From the lower degree of deviation observable at the selected potentials using different surface 

pretreatments (Figure 3.2A) dl, as determined at + 0.7 V was used to evaluate the differences in dI 

between electrode cleanings (Figure 3.2B). In order to generate information regarding both inter- and 

intra-electrode variability with different cleaning techniques, cleaning protocols were repeatedly 

performed on the same electrodes and the dI evaluated (Figure 3.2B). The variance in most cases appears 

75 



Chapter 3: Transducer surface, enzyme activity 

to be stable and dependent on the electrode, rather than on the global population, evidenced by the lower 

degree of deviation for individual electrodes (Figure 3.2B). 

Little discernible difference in dl variability is noted at this stage when electrodes are cleaned with paper 

or polished and rinsed, from both inter- and intra-electrode perspectives (Figures 3.2A and Figures 3.2B). 

Anodic pretreatment, followed by ultrasonication of the electrode in successive solutions of ethanol and 

water provided the highest noted degree of consistency in the determined dl values, as evidenced by the 

significant reduction in standard deviation from the mean (error bars in Figure 3.2). This occurs, both 

between electrodes (Figure 3.2A) and between pretreatments performed on the sarne electrode (Figure 

3.2B). From this, it can be inferred that anodic pretreatment in alkaline solution results in a more 

reproducible electrode surface, in both physical and chemical characteristics of the electrode surface, 

relative to the other pretreatment methods. 

Anodic electrochemical pretreatment of electrodes prior to analysis has been employed as means to: 

enhance surface reproducibility after polishing, enhance response and as a further cleaning measure to 

remove electrooxidised fouling products (Wang and Lin, 1988). Reproducibility of response was found 

to be related to the reproducibility of both cleaning and electroanalytical pretreatment (Wang and Lin, 

1988). Anodic pretreatment of electrodes in this study resulted in the formation of reddish-yellow films 

on the electrode surface that were subsequently removed during sonication. These films are assumed to 

be composed of graphite oxide layers, a by-product of electrode anodisation (Majer et aI. , 1973; Jlirgen 

and Steckhan, 1992). 

The sarne trends between surface reproducibility as assessed by dI in 0.1 M KC1 using different cleaning 

methods (Figure 3.2A) are found when determining d1 in SLB, for the various electrode pretreatments 

(Figure 3.3, below). Figure 3.3 displays the mean dI, and the respective variations thereof, when 

comparing electrodes cleaned via: poli shing (negative control), ethanol ultrasonication (which gave a 

high degree of inter-electrode variation in O.IM KCI, Figure 3.2A) and anodic pretreatment (most 

reproducible dI between electrodes, 3.2A) 
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Figure 3.3: dl values determined for different cleaning protocols for GCEs in SLB buffer, pH 4.5 dl 
determined at +0.6 V vs. Ag/ AgCl. 

Error bars indicates standard deviation from the mean with number of observations, 9 < n < 15, using 3 different 
electrodes. 

The calculation of dI in SLB at a potential of + 0.6 V was selected due to the onset of electrolyte 

oxidation at + 0.7 V (data not shown). A comparison of Figures 3.3 and 3.2 display the same trends in 

reproducibility of dI calculations observed when applying the different cleaning protocols, irrespective of 

whether 0.1 M KCI or SLB was the electrolyte used in the determination of dl. This indicates that the 

state of cleanliness and the inter-electrode surface roughnesses determinable by dI with the various 

cleaning strategies appear equivalent despite alterations in the electrolyte. 

Even though anodic pretreatment resulted in the most reproducible electrode characteristics assessed by 

dl, the coefficient of variation noted within the group still ranged within 19 % and 16 % of the mean 

value (Figure 3.2A). This indicates that variability between the prepared electrode surfaces remains quite 

high, reiterating the need for surface area determinations as part of biosensor measurements. This 

becomes increasingly important when implementing many separate surfaces as both biomolecule 

immobilisation scaffolds and for multiple analyses to be conducted simultaneously - the homogeneity of 

electrodes either during the fabrication stage (manufacture, distribution) or at the end-user stage (as 

typified in the above study) cannot be guaranteed. 
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3.5.2: Validation of elI as a measure of surface area through non-Faradaic 

electroanalysis 

From the investigations on the effect of electrode pretreatments on the calculated dl, it is apparent that 

the cleaning procedure selected has a large effect on the apparent non-Faradaic characteristics of the 

electrode. In an effort to address some of the analytical shortcomings of using dI in order to determine 

relevant electrode-state analyses, a further validative technique was applied to this method. The 

determination of COL via non-Faradaic chronoamperometry was performed and related to dI, for 

electrodes immersed both in 0.1 M KCI and SLB. 

Initially, KCI was used as the main electrolyte, not just for the reasons of inertness with the electrode 

stated in Section 3.4.1 , but because it has been previously characterised as an electrolyte (Bobacka et aI., 

2000) in the literature, while SLB has not. In addition, the interaction of the surface electrode layer with 

proton concentration was avoided by selecting this electrolyte. 

The model used for chronoamperometric determination of the COL predicted a solution resistivity, Rs, 

for O.IM KCI of 114.2 ± 12.8 Q before electrode cycling and 115.4 ± 15.7 Q after electrode cycling 

when electrodes were prepared with anodic pretreatment in O.IM NaOH. Either of these values show 

excellent agreement with previously-published solution resistivities of the same electrolyte; previous 

values of Rs for this electrolyte is reported to be 122 ± I Q (Bobacka et aI. , 2000, obtained by 

electrochemical impedance spectroscopy (EIS) at an organic polymer film attached to a planar platinum 

electrode of comparable geometric area, 0.07cm'). As this value varies with cell geometry, the nature of 

the electrolyte and electrode geometry (Yu and Liu, 20 I 0), the value reported in Bobacka et aI. , 2000 

was selected to represent this value with comparable geometries. 

Appendix 2, section A2.1 details the modelling system used in order to extract the COL and the Rs of the 

electrodes examined using non-Faradaic chronoamperometry, as well as showing examples of the data 

obtained through the double-step chronoamperometry. Figure 3.4 (below) displays the linear comparison 

between electrodes treated either through anodic pretreatment in 0.1 M KCI and those treated via 
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polishing when comparing C DL calculated through chronoamperometl)' (Eq. 3.1) and through dI (Eq. 

3.2). 
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Figure 3.4: Correlations between COL as calculated by chronoamperomtric determinations of charging 
current (after voltammetric determination) vs. e DL as calculated by sweep separation current, dI in 0.1 M 
Ket. 

Electrodes cleaned through polishing (circles) and electrodes cleaned through anodic pretreatment (diamonds) are 
included. Inset boxes in the respective colours of the data-sets indicate linear regress ional parameters evaluated 
from the global population. 

Number of measurements per cleaning procedure, n = 9, using 3 different electrodes. 

As Figure 3.4 displays, there is a positive linear trend occurring between the C DL values calculated by dI 

and those determined through chronoarnperometry. The degree oflinearity is much higher for anodically-

pretreated electrodes (R' ~ 0.725) than it is for electrodes cleaned via polishing (R' ~ 0.53). In addition, 

while the determined slope for anodically-pretreated electrodes approaches that of unity (- 0.90), the 

s lope determined for polished electrodes is much lower (-D.53). This disparity in slope and linearity may 

be caused by the aforementioned differences in surface composition outlined above. The presence of 

charged groups on the electrode (such as carboxyl groups) would increase the capacitance of the 

electrode in neutral pHs, through the concentration of charged groups and the equivalent charge-

neutralisation of the electrolyte solution. 

In order to account for these differences in surface composition, these experiments were repeated in SLB, 

pH 4.50. The increased concentration of protons in the electrolyte was anticipated to reduce the 
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differences arising due to the presence of charged groups at the electrode surface. Due to the shift in 

electrolyte, and corresponding alteration of cyclic-voltammographic traces, a different potential window 

and point at which dI (+ 0.6 V) was measured. Figure 3.5 shows the trends occurring between 

amperometrically-calculated COL and that calculated by dl. 
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Figure 3.5: Correlations between COL as calculated by chronoamperomtrically-determined, vs. that. 
calculated by sweep separation current, dl, in SLB buffer, pH 4.50. 

Number of observations, n = 12, using 3 separate electrodes. 

Electrodes cleaned through polishing (circles) and electrodes cleaned through anodic pretreatment (diamonds) are 
included 

The nature of the electrolyte appears to have a dramatic influence on the current, as determined by 

amperometric data, while the dI values appear to be less sensitive to electrolyte composition. A much 

higher degree of linearity is noted when comparing Figures 3.5 (SLB) and Figure 3.4 (KC!). dI values in 

0.1 M KCI average 2.14 ± 0.25 ~A, while in SLB, the average dI was calculated to be 2.64 ± 0.39 ~A, an 

increase of23%. However, COL values determined from amperometry ranged from an average of3.33 ~F 

to 4.69 ~F when considering O.IM KCI or SLB, pH 4.5 as electrolytes. This corresponds to a 41% 

difference in average COL values determined amperometrically. 

It is also noted that the act of cycling the electrode repeatedly prior to the recording of dI values is itself a 

cleaning protocol. However, in this instance, as all electrodes were treated identically following the 

execution of the various cleaning protocols, this should not greatly affect the data retrieved from the 

studies undergone. As further validation of this assumption, Appendix 2, Section A2.1 and A2.2 contains 
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the data analysis performed on short-time non-Faradaic chronoamperometry performed on electrodes 

before and after electrode cycling for both anodically-pretreated electrodes and polished electrodes. 

3.5.3: Faradaic responses to selected pretreatment protocols: catechol 

The responses of electrodes cleaned by the outlined pretreatment techniques to the oxidation/reduction 

behaviour of 0.4 mM catechol (in O.IM KCI) was investigated. Table 3.2 displays a summary of the 

relevant peak parameters elucidated. 

Table 3_2: Examination of electrochemical reversibility exhibited by 0.4 mM catechol using GCEs 

cleaned via different protocols: 

Cleaning procedure Ep,a E p., (V)' "'E(V) Ip~ (A x 10") Ip.< (A x 10-6
) Ip~/Ip" 

(V)' 

0.1 M KC1 

Paper-cleaned 0.519 0.214 0.305 2.12 ± 0.78 1.63 ± 0.54 0.849 

Polished 0.432 0.293 0.139 2.74 ± 1.15 2.52 ± 0.78 0.989 

Sonicated (Ethanol) 0.429 0.283 0.144 3.61 + 0.84 3.30 + 0.51 0.932 

Sonicated (base) 0.444 0.272 0.172 3.13 ± 0.49 3.05 ± 0.28 0.988 

Anodic pretreatment 0.331 0.275 0.055 1.66 ± 0.54 3.09 ± 0.69 1.861 

0.1 M SLB, QH 4.5 

Anodic pretreatment 0.371 0.313 0.058 8.1 ± 0.91 6.92 ± 0.91 0.853 
(SLB, pH 4.5)2 

Polished (SLB, pH 4.5)2 0.340 0.274 0.067 4.25 ± 0.91 3.99 ± 0.87 0.935 

Number of rep he ants, n - 6, across 6 different electrodes. 

l _ VS. AglAgCl reference electrode. Averaged values are reported ± 15 mY standard deviation from the mean. 

2 _ Averaged values reported ± 5 m V standard deviation. 

The reversibility of catechol at the electrode is assessed by the difference in the reduction/oxidation of 

catechol ("'E of the above table) and the relative differences in the peak currents (lp.,/lp.,) (Heineman and 

Kissinger, 1996). 
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As can be seen in Table 3.2, the addition of even a modest cleaning stage above that of paper-cleaning 

greatly improved the t.E responses of the electrodes. The highest degree of reversibility occurred through 

the use of anodic pretreatment of the electrode. This alteration in reversibility seems to primarily arise 

from a modification of the oxidation peak potential (Ep., ), rather than a difference in that of the cathodic 

sweep (Ep.,)' Table 3.2 indicates that the cathodic peak potential, after polishing, does not alter greatly 

with the cleaning procedure undergone after polishing has occurred, while the anodic peak potential is 

affected to a greater extent. 

Studies conducted on glassy carbon electrodes using catechol as a reporter molecule have shown that the 

extent of pretreatment, as choice of supporting electrolyte (and pH) for anodic pretreatment has a 

substantial effect on both peak current, and peak potentials for the redox couples of catechol 

oxidation/reduction (Jiirgen and Steckhan, 1992). In general, a decrease in anodic potential and an 

increase in peak current of phenolic oxidation/reduction electrochemistry (Jiirgen and Steckhan, 1 992), 

as well as an improvement in peak reproducibility (Engstrom, 1982; Wang and Lin, 1998) is noted with . 

anodic pretreatment of GCEs such as was found with this study using catechol. 

The current detected through the different cleaning procedures show a high degree of standard deviation. 

Current responses could not be related to the dI values extracted from the solutions prior to the addition 

of catechol when assessed in 0.1 M KCl, as is expected when considering a diffusion-controlled process. 

This is most likely due to the nature of the electrolyte used and the pH at which the electrochemical 

reaction proceeds in this instance, rather than an indication of great deviation in the electrode surfaces. 

As reported in Table 3.2, when the electrolyte was altered to SLB, pH 4.5, the degree of reproducibility, 

both in current and potential significantly increased, as did the generated current for both polished and 

anodically pretreated GCEs. From the cleaning procedures investigated, anodic pretreatment produced 

exhibited both the highest degree of electrochemical reversibility for catechol oxidation/reduction, as 

well as some of the highest current response (in SLB) combined with a high degree of inter-electrode 

reproducibility. 

82 



Chapter 3: Transducer surfa ce, enzyme activity 

3.5.4 Spectroscopic characterisation oflaccase activity 

Due to the high molar extinction coefficient of their oxidation products, syringaldehydes and 2,2' -Azino

bi s(3 -ethylbenzothiazoline-6-sulfonic acid) (often abbreviated as ABTS) are the most commonly

reported substrates for detennining phenol oxidase (including laccase) activities (e.gs Bourbainnais et aI., 

1995; d' Acunzo et aI., 2002; Jung et aI., 2002; Roy and Abraham, 2006; Svobodova et aI. , 2008). 

However, catechol was selected as the substrate for spectroscopic assaying of the enzyme activity, in 

order to provide comparable results between the spectroscopic estimations of laccase activity, and the 

fabricated biosensor properties determined electrochemically that are reported in this Chapter. 

Given the broad substrate range of laccases, it is unsurprising that laccases are reported exhibit rates of 

oxidation that differ on both the laccase and the substrate under investigation (Jung et aI. , 2002), and that 

individual substrate oxidation rates have their own characteristic pH optima (Jung et aI. , 2002) that 

themselves differ between laccases. This is discussed in greater detail in Chapter 5 of this Thesis. The 

activity of the commercially-obtained laccase used in this study was assayed using catechol as a 

substrate, at pH 4.5 (Sigma-Aldrich, 2010 - See Internet Reference 1.1). The lack of generalisability 

between substrates is the main reason that the model substrate and pH was maintained as catechol and 

pH 4.5, respectively, throughout the studies outlined in this Chapter. Modulation of biosensor signal 

through the exploitation of the phenomenon of preferential substrate-pH intersections for enhancing 

biosensor response selectivity is discussed in greater detail in the following Chapter (Chapter 5 of this 

thesis). 

Figure 3.6 shows typical spectrophotometric data from the detennination of free laccase activity, with 

catechol as a substrate. 
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Figure 3.6: Change in spectrophotometric Optical Density units (00) vs. time for a solution of 0.36 mg.mr' 
laccase solution (i.e. from 36.2 mg.mr1 stock solution) during the oxidation of catechol. 

Absorbance values are in Optical Density (OD) dimensionless unites. Aabs = 450nm. Linear portion used in activity 
calculations indicated by arrow. Data is presented 'as·is' from the data-acquisition software used (KCJunior 4.1) 

Inset: gradient co-efficient and degree oflinearity extracted from data-acquisition software. 

As is visible in Figure 3.6, the initial tangential slope of the spectroscopic rate of formation of oxidised 

catechol (product) was used in the determinations of the velocity of the enzyme-catalysed reaction 

(Miller and Tanner, 2008). 

Initially, laccase activity assays were performed with a high concentration of laccase (20 - 30 mg.mr l
) , 

resulting in very low specific laccase activities as calculated from the spectrophotometric measurement 

of catechol oxidation. Due to concerns regarding the solubility, and the possibility of irreversible 

precipitation of laccase following catalysis occurring, this concentration was then adjusted downwards. 

In an attempt to improve both dispersal and stability of the laccase protein, laccase was additionally 

solubilised in SLB containing dissolved BSA (final BSA concentration: lOmg.mr l
). Table 3.3 displays 

the calculated activities from the assays with varying laccase and BSA concentrations. Fresh laccase 

solution was prepared for each assay outlined in Table 3.3. 
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Table 3.3: Results of spectroscopic assay of laccase for catechol in SLB buffer, pH 4.5 

ILaccasel IBSAj AAJAt Activity Stock laccase Specific 

(mg.mr')' (mg.mr')' (OD.min·')b (V.mr' x 10·') activity activity 

(U.mr') (V.mg·') 

36.2 0 0.2963 + 0.0247 4.02 + 0.33 13.4 + 1.1 3.72 + 0.31 

36.2 10 0.2862 ± 0.0089 3.88 ± 0.12 12.9 +0.4 3.60+ 0.11 

20 0 0.2880 + 0.0226 3.9 1 + 0.31 13.0 + 1.0 6.51 + 0.51 

20 10 0.3027 + 0.0094 4.11 + 0.1 3 13.7 + 0.4 6.85 + 0.21 

10 0 0.1985±0.0105 2.69 ± 0.14 9.00 ± 0.5 8.98 ± 0.48 

10 10 0.2314 ± 0.0047 3.14 ± 0.07 10.5±0.2 10.5 :t 0.22 

5 0 0.1306 + 0.0173 1.77 + 0.23 5.91 + 0.78 11.8 + 1.6 

5 10 0.1101 ± 0.0061 1.49 ± 0.08 4.98 ± 0.28 9.96 ± 0.5 

2.0 0 0.0594 :t,0.0041 0.806 ± 0.06 2.69 ± 0.19 13.4 ± 0.9 

2.0 10 0.0699 + 0.0076 0.949 + 0.05 3. 16 + 0.17 15.8 + 0.9 

1.0 0 0.0358 ± 0.001 ' 0.485 :t 0.01 1.62:t 0.04 16.2:t 0.04 

1.0 10 0.0379 :t 0.0023 0.515 ± 0.03 1.72 ± 0.11 17.2±0.1 

Grey rows mdlcate assays perfonned when BSA was added to laccase stocks 

a _ Stock laccase concentration. Concentrations in spectroscopic wells are 100-fold less, as in Table 3.l. 

b _ Number of replicants, n, 2::. 3, uncertainty values rep resent standard deviation from the mean and are the basis for 
resultant calculated uncertainties. 

C _ single data point eliminated to decrease standard deviation from the mean - Le. results are in duplicate 

As is readily viewable from Table 3.3, there is a consistently non·linear, albeit positive, trend between 

enzyme concentration and the resultant enzyme activity determinable from spectroscopic assaying of 

catechol oxidation rate. The maximal enzyme activity (-13 ± I U.mr') is attained at a stock solution 

concentration of 20 mg.mr' and a statistically-insignificant increase occurs thereafter when nearly 

double the laccase concentration is used (- 13.4 ± I u.mr' for 36.2 mg.mr' stock laccase concentration). 

Even prior to the plateauing of activity, a significant decrease in specific activity is noted with an 

increase in the amount of dissolved laccase, both in the presence and absence of BSA. While lower 

concentrations show a fair agreement with the specific activity provided by the manufacturer 

(17.19 U.mg·' protein assayed at I mg.mr' stock laccase concentration, compared to the manufacturer's 

reported 22.1 U.mg-I protein for this batch), the specific activity rapidly decreases upon the use of higher 

concentrations of lacease, to a specific activity of 3.7 U.mg·' laccase at a concentration of 36.2 mg.mr' 

stock laccase) 
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The addition of BSA to laccase prior to assaying increases the activity of a laccase solution, but not 

consistently (Table 3.3). However, the add it ion of BSA did decrease the variability of response between 

replicants, evident as a decrease in the margin of uncertainty between assays using BSA and laccase and 

those using only laccase. The enzyme concentration of 36.2 mg.mr ' concentration was included in this 

study, as it was often used in the fabrication of thick-film sensors reported later in thi s chapter. Figure 3.7 

displays a graphical representation of the information recorded in Table 3.3, compari ng the determined 

laccase stock activity and the specific activity vs. the concentration of di ssolved laccase, both in the 

presence and absence of IOmg.mr' BSA. 
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Figure 3.7: Laccase stock activity and specific activity vs. stock concentration of laccase. 

Data presented in blue refers to activity calculations of laccase stock solutions in the absence of 10 mg.mr l BSA 
solution, while purple depicts activity deduced from laccase stock solutions dissolved in 10 mg.m r ' BSA solution. 
The red line is a linear equation generated under the assumption that specific activ ity remains constant between 
laccase stock concentrations and is merely present to guide the reader. 

Substrate depletion was not considered to be the reason behind the non-li near behaviour of the activity 

vs. enzyme concentration trend observed in Figure 3.7. Since the maximal activity calculated during 

spectroscopy, that of the 36.2 mg.mr' laccase stock concentration, in the absence of BSA, averaged only 

an in-situ activity of 4.02 x 10·' mol of catechol oxidised.min·' (4.02 x 10·' U, see Table 3.3) and the total 

amount of substrate per assay was maintained at 1.5 x lO.s mol (Table 3.3), the initial substrate 
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concentration was far in excess of the oxidation rate of even the most active laccase concentration used. 

While constraints in oxygen (co-substrate) availability was also considered to be a possible reason 

behind this non-linear behaviour, the relative abundance of dissolved oxygen in water at equilibrium at 

20 'C (-0.5 to - 0.6 mM, therefore - 1,67xI0·7 mol present) coupled with the assumed stoichiometry of 

catechol oxidised: oxygen consumed of 4:1 also precludes oxygen depletion. Hence, the reaction was 

assumed to proceed at maximal velocity throughout the laccase concentration range assayed and that the 

velocity of reaction as assayed through this method is equivalent to the V~, parameter of the Michaelis

Menten enzyme-rate formalism (Eq. 2.3). From this it was inferred that steady-state kinetics were 

assumed to dominate the reaction at the time-frames that assaying was conducted in (Miller and Tanner, 

2008). 

The data contained in Table 3.3 and Figure 3.7 contradicts the apparent mathematic formalisms 

embodied in classical Michaelis-Menton enzyme kinetics (Eq. 2.3). A linear increase in the velocity of 

the enzyme-catalysed reaction was anticipated with an increase in the concentration of enzyme used in 

the assay. The non-linearity of expected versu~ experimental data at higher concentrations is readily 

observed in Figure 4.5. Two primary mechanisms are thought to be behind this degree of non-linearity 

and the pronounced decrease in specific activity with increasing laccase concentration. These can be 

separately classified as the formation of a resting oxidative state of the laccase and the concomitant 

complexation and aggregation of the laccase (which may, or may not, be dependent on the first 

mechanism). 

There are several other phenomena of soluble enzyme solutions that pertain to concentrated solutions 

"blue multi-copper" oxidases in general, which include other enzymes such as biluribin oxidase and 

ascorbate oxidases, and to laccases in particular. These phenomena are not expected to occur in nature, 

due to the typically low concentration of enzyme (Shleev et aI., 2006b). The oxidisedlreduced state of the 

copper ions bound within the active site is critical to the catalytic process (as depicted in Figure 1.4) and 

the presence of "active" and "resting" states of the enzyme have been postulated (Shleev et aI., 2006b). 

The catalytic function of these proteins is thus strongly influenced by the rate of intraprotein electron 

transfer from the Tl (oxidative catalyst) to the trinuclear cluster and the co-ordination state of these ions. 
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Several distinct phases of the enzyme's catalytic state have been postulated, based on kinetic studies (as 

diagrammatised by Shleev et a!., 2006b): <D native intermediate (4 Cu'+, T2ff3 sites co-ordinated with 

oxygen bridge). Upon oxidation of substrate occurring, with 3 intraprotein electron transfer to T2ff3 

sites, this leads to ® fully reduced state (4 Cu+, no co-ordination between T2ff3). Following the 

reduction of 0, ~ H, O the @ peroxy-intermediate state is reached (4Cu'+, T3 sites co-ordinated with T2 

sites via epoxy bond), which decays to form the native intermediate state. The alternative development 

of a ' resting' oxidised state of laccase ® (4 Cu+, no co-ordination between T2ff3) from the native 

intermediate state was postulated. In this state, while T I sites are still oxidised i.e. active, intraprotein 

electron transfer is very slow, greatly diminishing participation in the catalytic cycle. 

In a study conducted by Zopallero et a!., 2000, it was found that pH-dependent autoreduction of the TI 

site of biluribin oxidase through solvent-protein interactions can take place, decreasing experimentally

determined enzyme activity. Laccases were also implicated to possess a similar phenomenon (Shleev et 

al.,2006b). 

Shleev et a!. , 2006b, found a complex time-dependance on the activity of stored, solvated highly-pure 

laccase solutions, which was also influenced by oxygen availability and the source (i.e. structure) of the 

laccase under investigation. Shleev et a!., 2006b, also determined that the generation of laccases in the 

resting state was also strongly linked with their polymerisation and aggregation, up to and beyond the 

formation of octameric enzyme complexes. However, due to the reversible nature of this interaction may 

not be represented in conventional aggregation analyses, such as poly-acrylamide gel electrophoresis 

(Zopallero et a!., 2004). 

Overall, the addition of a small amount (10 mg.mr') of BSA to the stock solution (final concentration in 

well: 0.0 I mg.mr') was found to slightly improve the activity noted through spectroscopic assaying of 

catechol oxidation, while decreasing the variability in calculated activity between replicants (Table 3.3). 

BSA has been used before as a dispersant and stabil iser of enzymes, including laccase. The presence of 

BSA may cause better dispersion, decreasing the degree of auto-aggregation occurring to the enzyme and 

retaining the enzyme in a more optimal conformation than occurs in its absence. BSA was included at 

this stage of research due to the inclusion of it as a co-immobilant in thick-film sensors i.e. as a stabiliser 
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protein to decrease denaturation undergone by laccase during glutaraldehyde cross-linking (Chapter 4 of 

this Thesis). 

In most biotechnological processes in which high levels of proteins are solubilised (either used as-is or 

with an anticipated immobilisation application), there is a tacit acceptance of the trade-off between a 

decrease in the specific activity of a given biocatalyst and the total activity of the resultant solution. 

Table 3.3 shows that, even though there is a significant decrease in the specific activity between the 

highest and lowest laccase concentrations assayed (IOO-foid decrease between I and 36.2 mg.mr' 

laccase solutions), the overall activity is still much higher (a 9-fold increase between the same). 

Especially relevant in biomolecular immobilisation is the use of high-activity solutions, which usually 

entails the preparation of high concentrations of biocatalyst. An increased concentration of proteins 

means that protein-protein interactions become more important in dictating the final properties of the 

solution. Protein-protein interactions may improve solubility of other proteins, but may also cause 

precipitation initiated by aggregation reactions between proteins. Precipitation of the catalyst(s), while 

important for applications that require soluble fonms of enzyme, become less important for applications 

in which the biomolecule under investigation is immobilised. Rather, it is the conformational changes 

between the soluble catalyst and the precipitated catalyst that affect the suitability of the biomolecule 

state during immobilisation strategies. 

3.6 Conclusion: 

A method of inferring the reproducibility of surface area via the capacitance of a glassy-carbon electrode 

was investigated and validated for solutions in O.IM KCI and O.IM succinic-lactic acid buffer, pH 4.5. 

The difference between anodic and cathodic sweep currents when the electrode was immersed in an 

analyte-free electrolyte, dl, was calculated, and the effect of cleaning procedures on the measured dl 

assessed. Anodic pretreatment in O. I M NaOH was found to provide a consistent surface with dl higher 

than those cleaned via polishing and more consistent than surfaces polished, then cleaned via 

ultrasonication in both organic and alkaline solutions, as well as a flatter baseline. Electrode cleanliness 
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was related to catechol oxidation/reduction and found to greatly influence the oxidation potential, and to 

influence the reduction potential to a much lesser degree. The highest degrees of electrochemical 

reversibility of catechol was found to be present when using electrodes cleaned via anodic pretreatment, 

both in O.IM KCI and in SLB. 

The use of dI as a measurement procedure was found to be less sensitive to alterations of the electrolyte 

composition than the validative techniques of determining CDL from chronoamperometric measurements 

and, therefore, less dependent on the density or presence of charged groups on the electrode surface. 

Modelling of the charging current showed good agreement with previously-published electrolyte 

resistivity values of the initial electrolyte, 0.1 M KCI, indicating an accurate comparison is achieved 

between the modelled values to the charging phenomenon occurring at the electrode. A greater degree of 

linearity and a greater degree of unity with expected results was achieved when using SLB as the 

electrolyte, as opposed to the ionic solution of O.IM KCI, indicating that charge-counterbalancing with 

protons provides a higher degree of unity between CDL values calculated by dI and those calculated 

through modelling of the short-time charging current. The selection of cleaning protocol substantially 

affected these results - both in terms of linearity and when considering the unity of results when 

comparing COL calculated by dl and that calculated through double-step chronoarnperometry. 

Assaying of dissolved laccase via monitoring of catechol oxidation spectrophotometrically was found to 

have a non-linear dependence on the concentration of laccase that couldn' t easily be linked to the 

experimental conditions (namely the concentration of substrate or co-substrate) used during assaying. 

This non-linear dependence was considered to be due to a combination of aggregation and auto-reduction 

processes cited in literature to occur at high concentrations of dissolved laccases and other 

oxidoreductases. On the basis of the findings of this research, laccase activity assays between batches of 

sourced assays and during storage of laccase were performed using a I mg.mr l concentration of 

dissolved laccase and activity calculations henceforth performed by extrapolating the concentration of 

dissolved laccase used with the specific activity calculated for catechol at pH 4.5 at I mg.mr l 

concentrations. Laccase activities reported in future Chapters are calculated by this method. 
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4.1 Abstract 

Fundamental to the fabrication of a biosensor is the selection of an immobilisation strategy in order to 

concentrate the biorecognition element constituents near the signal transducer. The selection of an 

immobilisation strategy not only dictates the conformation (and hence, function) of the biorecognition 

element, but also influences other key aspects of the biosensor's fun ction, such as tolerance to adverse 

analysis conditions (e.g. pH) and retention of activity during storage. In the research reported on in this 

Chapter, three separate immobilisation methods: physical adsorption, covalent attachment and cross

linking of the laccase molecules were performed on the surface of glassy carbon electrodes and the 

resultant biosensors assessed for further development through the detection of catechol. Of the three 

selected strategies, cross-linking of laccase proteins using glutaraldehyde produced biosensors with the 

best operational parameters and was selected for further optimisation. 

Optimisation of the cross-linking process was performed through the co-immobi lisation of bovine serum 

albumin (BSA) during laccase cross-linking. Parallel to optimisation, biosensors were assessed for their 

re-usability, an important consideration for the applicability ofbiosensors. BSA is a common reagent 

during cross-linking, serving to better retain enzyme function during the denaturative immobilisation 

process. In this instance, the inclusion of BSA produced biosensors with sigmoidal current responses. 

Re-use ofbiosensors resulted in sensors with improved biosensor operational parameters, relative to their 

pristine (Le. unused) counterparts. The degree of improvement in these parameters was found to be 

related to the amount of BSA immobilised in conjunction with the laccase. 

In an effort to investigate the reasons behind this behaviour, both the BSA content and the BSA-laccase 

proportions were varied and the resultant biosensor responses assessed. Sigmoidality was found to 

increase both with the amount ofBSA co-immobilised with laccase and with the proportion of lac case 

co-immobilised at higher BSA biosensor loadings. Electrochemical studies conducted on cross-linked 

BSA films indicate that the reason behind this behaviour is due to the binding of catechol oxidation 
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products by BSA, which gives rise to the apparent sigmoidal current response. Upon exposure to 

catechol oxidation products, further interaction between BSA and the oxidation products is limited, 

allowing enhanced mass transport through the film and improving the sensor function upon re-use. In 

conjunction with this, the attachment of oxidation products to the electrode surface further improve 

sensor function, although in this study, this is restricted to GCE surfaces. 

4.2 Introduction: 

4.2.1 Enzyme immobilisation: 

As stated in Chapter I (Section 1.2.4.3), immobilisation is typically performed in order to concentrate 

signal-generating biomolecules near, or within, the signal transducer. 

The act of immobilisation yields several properties beneficial to the fabrication of biosensors, the most 

apparent of which is the localised concentration of the signalling biomolecules to generate a detectable 

signal. Through localisation, it decreases the amount of catalyst required to produce the signal in 

question, decreasing process costs; it improves the re-usabili ty of the biomolecules in question (Salis et 

aI., 2009); furthermore, by controlling the architecture of immobi lisation it allows for heterogenous 

biomolecules to be co-immobilised, either in discrete areas (as required) or in a mixed fashion . Most 

importantly to the purposes of biosensor technology, it alters the conformational parameters of the 

biomolecules, relative to the soluble form of the biomolecule. The latter property is vital to the 

development of biosensor technologies: since the conformation dictates the functioning of the molecules 

under investigation. 
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I. Protein immobilization methods - overview 

When immobilising protein molecules, two things are desired: a localisation of functional proteins at a 

given locus, and a higher degree of stability, relative to the non-immobilised, soluble, ' free ' protein. The 

extent of denaturation undergone by proteins is influenced by both the immobilisation strategy used and 

the nature of the support onto which protein immobilisation occurs (Freire et aI. , 200 I; Duran et aI. , 

2002; Mateo et aI. , 2007). Due to the great diversity of proteins' physical and chemical properties 

coupled with the breadth of application envisaged for the immobilized proteins, there is no generic, or 

universal, method of immobilization that can be rel iably applied to even a small range of different 

proteins (Freire et a!., 2001; Cao, 2005; Mateo et a!. , 2007) with consistent immobilized properties. 

Four broad categories of protein imrnobilisation may be drawn. These are: physical adsorption of the 

protein to the solid support, cross-linking (either protein-protein, protein-support, or a mixture of the 

two), entrapment/encapsulation of the biomolecule and covalent attachment of the biomolecule to the 

support (Sadeghi et aI., 2002). Figure 4.1 depicts the various states and visually summarises the 

differences occurring between the different immobilisation categories. 
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A B 

c D 

~ Non-covalentbond I Covalent bond PotymerMesh • Blomolecule Support 

Figure 4.1: Schematic depiction of the major forces involved in immobilization of proteins onto solid 
supports for different immobilization strategies. 

Legend: A - Physical immobilization, B - Covalent immobilization, C - Entrapment/Encapsulation, 
D - Cross-linking. 

Physical adsorption (Figure 4.1 A) relies on the attachment, and retention, of the protein to the support by 

means of non-covalent forces (Duran et aI., 2002). These forces include: hydrogen bonds (both occurring 

from the protein backbone and amino acid residues), hydrophobic bonds (hydrophic amino acid 

residues), ionic bonds (ioniseable amino acid residues) and other van Der Waal forces (Scouten et aI., 

1995). While these forces are weak, possessing less than 5% of the attractive strength of covalent bonds 

(Alberts et aI. , 2002), they occur naturally and in profusion when proteins contact sol id surfaces. Due to 

the weakness ofthe bonds, attachment via this method does not greatly disrupt the secondary, tertiary, or 

quarternary structure of the protein in question, minimizing the degree of denaturation undergone by 

biomolecules during the attachment process (Scouten et aI. , \995) and allowing a great degree of activity 

to be retained, in the case of enzymes. 
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A natural extension of the principles behind physical adsorption attachment is the entrapment and 

encapsulation of the protein, behind a semi-permeable membrane for the former and within a semi

penneable polymeric gel for the latter (Figure 4.1 B). The physical barrier imposed by these structures is 

the attachment force for this immobilization category (Scouten et a!. , 1995; Dunin et a!., 2002). Like 

physical adsorption, the method generally occurs under mild conditions and the enzyme's structure is not 

greatly perturbed during immobilisation. 

The covalent attachment between the protein and the support (Figure 4.1 C) produces a very stable 

protein-support complex, due to the strength of covalent bonds. (Scouten at a!. , 1995; Duran et a!. , 2002). 

In most instances, the major limiting factor in this method of attachment is the nature and chemistry of 

the support under investigation. A wide variety of moieties naturally occuring on proteins are readily 

utilizable for the formation of support-protein covalent bonds: carboxyl groups (side-chains of aspartic 

and glutamic acid residues), amine groups (lysine, histidine, arginine residues), thiol groups (cysteine 

residues) and some non-protein groups on heteroproteins e.g. carbohydrate moieties. The selection of 

specific protein groups for attachment has certain drawbacks, such as the loss of activity upon 

immobilization of areas of the protein strongly influencing the conformation/catalytic activity of a given 

enzyme. The formation of covalent bonds itself has a denaturing effect on the enzyme, as both the 

covalent bond and the close proximity of the enzyme to the support constrains the available 

conformations that can be adopted, decreasing the apparent sensitivity and the protein-substrate/antigen 

complexes' binding affinities. In addition, the orientation of the biomolecule at the support surface may 

be of great importance when considering the diffusion of larger analyte molecules, such as other 

macromolecules, to the activeibinding site of the biorecognition layer. 

The final category, cross-linking (Figure 4.1 D), is an extension of covalent modification techniques. 

Rather than rely on the covalent attachment occurring between enzyme and support, this technique 

primarily relies on the fonnation of covalent inter-protein bonds forming a cross-linked network of 

protein molecules at the surface of the transducer, with the formation of support-protein bonds as a 

secondary reaction (Duran et a!., 2002). A combination of non-covalent support-protein forces and the 

insol ubility of the cross-linked protein complex (Roessl et a!., 2010) helps retain the immobilized 
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molecules at the support surface. Glutaraldehyde is a common homobifunctional cross-linking agent 

(Roessl et aI., 20 10) 

The suitability of applying a particular immobilization strategy to a given protein is dictated by several 

factors . Notably: the support in mind, the presence and density of specific groups amenable to a given 

strategy, their location on the protein of interest and the desired function of the immobilized surface are 

key factors in the selection of a given category, or specific immobilization strategy, for a specific protein. 

The following section outlines the broad advantages and disadvantages of the application of strategies 

that have been outlined above. 

4.2.2. Effects. advantages and disadvantages of protein immobilisation techniques 

The method used to achieve protein immobilisation has a great impact on the confonmation and the 

confonmational mobility of the immobilized protein. Due to the correlation existing between the 

confonmation of an enzyme and its catalytic function, immobilization affects the kinetic operation of the 

enzyme, relative to the soluble, ' free ', enzyme (Royer, 1982; Mateo et aI. , 2007). Due to the 

aforementioned link between the tertiary/quarternary structure of an enzyme and its kinetic parameters 

(Byfield and Abuknesha, 1994) it is of critical importance to minimize perturbation of protein 

confonmation from the optimal structure when immobilizing enzymes. 

Due to the aforementioned changes adopted in protein confonmation during immobilization, alterations in 

the enzyme kinetics, reported as changes in both activity and Michaelis-Menten constant (when 

compared to free enzyme), are frequently exhibited upon following immobilisation of the enzyme to the 

solid support. In addition, other operational parameters, such as pH optima or substrate specificity, are 

also affected by immobilisation (Duran et aI. , 2002). The extent of change reported is uniquely 

dependent on the selection of support (Duran et aI., 2002; Klis et aI. , 2007b; Kim et aI., 2007; Forde et 

aI., 20 I 0), the enzyme in question (Duran et aI. , 2002; Forde et aI., 20 I 0) and method of immobilization 
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used (Royer, 1982; Freire et aI., 2001; Duran et aI., 2002; Bayramoglu et aI. , 2003; Klis et aI., 2007b; 

Bayramoglu and Arica, 2008; Forde et aI., 2010) to conjoin the protein to the support. 

In general, immobilisation has been both cited and demonstrated to improve the stability of enzyme 

activities, relative to the solubil ised (i.e. ' free') enzyme (Cao, 2005). Protein thermostability; (Duran et 

aI., 2002; Roy and Abraham, 2006; Wang et aI., 1997; Qiu et aI., 2008; Forde et aI. , 2010), pH-stability 

(Duran et al., 2002; Forde et aI., 2010), resistance to denaturation via exposure to organic solvents 

(Duran et aI., 2002; Roy and Abraham, 2006) and storage lifetimes (Wang et aI., 1997; Duran et aI. , 

2002; Quan et aI., 2004) are enhanced through the immobilisation of biomolecules, relative to the free 

enzyme. In addition, inter-substrate selectivity and modulation of protein sites associated with the 

binding of enzyme inhibitors/effectors are also altered during immobilisation (Mateo et aI., 2007), 

allowing for tuning of the enzyme's functional parameters to be undertaken to produce an immobilised 

protein with the desired properties for the application under development. 

Considerable research has been expended into the minimization of deleterious properties while 

enhancing those properties deemed desirable during immobilisation (Lowe, 1977; Bayramoglu G. et aI., 

2003; Forde et aI., 2010). This is often achieved by modulating certain aspects of selected immobilisation 

procedures (Bayramoglu et aI., 2003; Forde et aI., 2010). In principle, the alterations in protein 

conformation between the immobilized and free enzyme influences the alterations in enzyme kinetics, 

while the enhancement of stability is due to the constraints imposed in enzyme conformation by the 

immobilization process. 

The formation of covalent bonds, either between proteins (i.e. cross-linking) or between proteins and the 

support (i.e. covalent attachment), is generally acknowledged to produce a more stable immobilised 

protein than physical adsorption (Scouten et aI. , 1995; Duran et aI., 2002; Salis et aI., 2009). This is due 

to the strength of covalent bonds, and is generally accompanied by a decrease in the activity of the 

enzyme, due to the strong alteration of the conformation of the protein caused by bond formation (Duran 

et aI. , 2002). For the aforementioned reason, enzyme specificities may also be altered through the use of 

this technique, sometimes usefully (Duran et aI. , 2002). Proteins immobilised through cross-linking 
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possess the same advantages/disadvantages, due to the similarity in the principle governing 

immobilisation (Scouten et aI., 1995; Duran et aI. , 2002). A drawback to the ease-of-use of employing 

cross-linking is the difficulty experienced in fine control of the immobilisation process (Scouten et aI., 

1995). 

4.2 .3. Select examples of protein immobilisation strategies applied to laccase for electrochemical 

biosensor construction 

Laccase has been immobilised through the use of all the aforementioned immobilisation techniques. The 

adsorption of laccase has been studied for the purposes of facilitating direct electron transfer between 

protein and transducer (Qiu et aI., 2008) and for biosensing purposes (Jarosz-Wilkolazka et aI. , 2004). 

Covalent immobilisation has been studied, both for the purposes of producing monolayer (Vianello et aI., 

2004) and multilayers of immobilised laccase as well as membrane entrapment and physical adsorption. 

Table 4.1 displays select references showing some biosensor parameters reported for fabricated 

biosensors. These biosensors differ in both quantity, laccase origin (Le. structure), detection matrix and 

immobilisation method used, and are reported herein for the purposes of displaying the large disparities 

between sensitivities within the same class of immobilisation strategy and also as a rough guide to the 

anticipated "good" and "poor" biosensor kinetics of the biosensors reported on in this Chapter. This list 

is by no means either definitive or exhaustive, and numerous other operational factors that do affect 

biosensor parameters have been excluded from the table in the interests of brevity, hence this is to be 

considered as a very brief overview only. 
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Table 4.1: Biosensor fabrication techniques and salient parameters found in selected litera ture 
examples: 

Laccase source 1m mobilisation Analyte ' Sensitivity Linear Reference 
(transducer) (matrix) (nA·flM.cm-')b range 

(I'M)' 

Adsomtion 

Cerrena unie% r Adsorplion Planl 58 1-10 Jarosz-Wilkolazka et ai., 
(graphite) tlavinoids 2004 

Trametes versicolor Adsorplion (carbon Catechol 76.4 - Freire et aI. , 200 I 
fibres) 

T versicolor (MWCNT-Chit)' catechol - 1400 0 - 30 Liu et aI., 2006 
T. versicolor Graphite rods catechol 77.2 0 -2000 Portaccio et aI. , 2006 
T versicolor Graphite rods catechol 1321 1 - 10 Haghighi et aI., 2003 

Entragment 

Corio/us versicolor Membrane Catechin 0.432 2 - 14 Gomes el aI., 2004 
entrapment (red wine) 

T. hirsute Nation entrapment hydroquinone 2546 0.1 - 3 Yaropolov et aI. , 2005 
(GCE) 

T versicolor Polyaniline catechol 0.022 0.2 - I Timur el aI., 2004 
entrapment 
(platinum) 

T versicolor Sol-gel enlrapment caffeic acid 96.92 < 6 Montereali et aI. , 2009 
(wine) 

T. versicolor (MWCNT-Chit) caffeic acid 650 0.7 - 10.5 Diaconu el aI. , 2010 

Covalent attachment 

Deni/ite ® Covalent p- 2062 0-29 Quan et aI. , 2004 
immobilisation phenylenedia 
(platinum) mine 

T. versicolor (MWCNT-Chit) catechol 3.22 1 - 190 Tan el aI. , 2009 
T versicolor Carbon fibre catechol 469.8 - Freire et aI. , 200 I 
Rigidoporus /ignosus ECH-Sepharose®* catechol 1287 0 - 500 Vianello at aI., 2006 

hydroquinone 1471 0 - 500 

Cross-linking 

Trametes hirsuta Glutaraldehyde lignin Not reported 10 - 500 Shleev el aI., 2006c 
cross-linking ~g.mr 1 
(glass) 

Recombinant Glutaraldehyde catechol 21.58 0 - 13 Kulys and Vidziunaite, 
(graphite-BSA) 2003 

T versicolor Magnetic hydroquinone 1076.7 0.015 - I Zhang et aI. , 2006 
nanoparticies 

T versicolor CLEAs catechol 489 0 - 100 Portaccio et aI., 2006 
T versicolor Glutaraldehyde caffeic acid 7.07 0.5 - 83 Gamella et aI., 2006 

. - . 
8 _ In cases where multiple analytes were reported on, the substrate detected with the highest sensitivity was 
selected for these categories. In cases where linear range is not explicitly reported, the LOD is recorded. 

b _ calculated relative to electrode surface area of the transducer employed where not explicitly reported in-text. 

1_ Multi-Walled Carbon Nanolubes, dispersed in Chitosan 

* - substrates pre-oxidised in a reactor containing immobilised laccase prior to analysis 
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Table 4.1 highlights the extreme variability in reported biosensor parameters using different 

immobilisation techniques. Given a lack of consensus regarding the optimal source/structure of laccase 

for biomolecular immobilisation, a variety of different sources of laccases have been investigated. 

However, even considering the same producing organism and similar immobilisation techniques, there is 

still a large breadth in the reported sensitivity and linear range of biosensors fabricated using laccase as 

the biorecognition element. 

Despite the high level of denaturation reported through its use, the advantages conferred through cross

linking ensure that it remains a valid current method of protein immobilisation. Roy and Abraham (2006) 

reported a method of producing cross-linking laccase monomers in such a manner that greatly improved 

the thermo stability, with a concomitant decrease in the activity (approximately 78% activity loss). Cross

linked laccase films were investigated as a biorecognition immobilisation technique using 

glutaraldehyde. Both physical adsorption and covalent immobilisations were selected as alternative 

immobilisation strategies for this stage of research. Biomolecule immobilisation techniques were 

selected for their enhanced robustness over the signal-decreasing effects of denaturation, due to the fact 

that the envisaged end-user application needs will favour stability over sensitivity, and that thick-film 

sensors (as outlined below) may help to address the need for sensitivity without affecting the stability of 

the fabricated biosensor overmuch. 

4.2.2. Bovine serum albumin - application to Iaccase biosensors 

Bovine Serum Albumin (BSA) is a transport protein extracted from the serum fraction of blood. Serum 

albumins are principally involved in the maintenance of pH in the blood fraction and are present as the 

most abundant serum proteins (Huang and Kim, 2004). Serum albumins also function as carrier proteins, 

being the principal method of distribution and delivery offatty acids and lipid-associated compounds e.g. 

steroids, drugs (Demant, 1996; Huang and Kim, 2004; Tian et aI. , 2005), as well as other proteins, metal 

ions, co-factors and metabolites present in the bloodstream (Huang and Kim, 2004; Tian et aI., 2005; 

Kun et aI., 20 I 0). 
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Bovine serum albumin (BSA) has been extensively studied and remains a co-reagent in many 

biochemical studies, due to the breadth of extant knowledge of the protein and its wide commercial 

availability of this protein in a purified form from a historical perspective (Anderegg, 1955). BSA has 

been extensively applied in the immobilisation of biomolecules, from blocking of active sites on 

immobilisation substrates to preclude non-specific binding (Bollag et aI., 1996c; Suzuki et aI. , 1997) to 

protecting the biomolecule of interest from surface-based denaturation. 

When added in high concentrations to dilute i.e. ' free ' enzyme solutions, BSA has a stabilising effect on 

conformational denaturation of the biomolecule of interest (Chang and Mahoney, 1995), preventing loss 

of activity of the enzyme (Bollag et aI., 1996a) with relative protein-protein inertness (RCSB, 20 I 0). 

BSA, in particular, is cited as a common additive for protein stabilisation for these purposes (Bollag et 

aI., 1996a), due to the high degree of aqueous solubility possessed (Kun et aI. , 2010). For this 

application, it is used to prevent both solvent-denaturation and denaturation caused by interfacial 

interactions (e.g. adsorption onto solid surfaces contacting the solution). BSA is often used as a standard 

component in protein-content assays (Bollag et aI., 1996b) and as a model protein for several research 

applications and techniques (e.g. Delgado et aI., 2002). 

Due to its stabilising properties, BSA is frequently applied as an ' inert ' protein in the preparation of 

cross-linked films and particles comprising enzymes (Dong et aI., 20 10). Within the context of laccase 

immobilisation, BSA is commonly co-immobilised with laccase during glutaraldehyde cross-linking 

immobilisations (Freire et aI. , 2002; Freire et aI., 2003; Kulys and Vidziunaite, 2003; Solita et aI. , 2005; 

Cabana et aI., 2007; Cabana et aI., 2009; Roessl et aI., 2010), often added at very high relative 

concentrations, forming an "inert" backbone to which the laccase proteins are covalently attached and 

adding a degree of protection from the denaturative effects of glutaraldehyde. The inclusion of BSA as a 

co-immobilant has been shown to not only improve the retention of activity following immobilisation 

(Cabana et aI., 2009; Roessl et aI., 2010), but also to improve the stability of laccase once immobilised 

(Cabana et aI., 2007; Cabana et aI., 2009; Roessl et aI., 20 I 0), to both solvent-based and thermal 

denaturations. The use of BSA as a stabiliser is also applied to other enzymes for biosensor fabrication 
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purposes (Lei and Deng, 1996; Dzyadevich et aI. , 1998; Yang et aI., 1998; Solna et aI. , 2005; Aytar and 

Bakir, 2008; Roessl et aI., 20 I 0). 

The claim of inertness with regard to the research presented in this Thesis must be investigated i.e. with 

regard to phenolic compounds and their oxidation products. Given the wide range of substrates BSA 

binds to in its role as transport protein, it is unsurprising to note that BSA has been found to associate 

with and to bind phenolic compounds. Albumins have been implicated in the binding of many phenolic 

compounds. Ellagic acid has been found to associate with albumins (Leger et aI., 2009), as have 

flavinoid compounds (Tian et aI., 2005). Other polyphenols found to bind to BSA include: curcumin and 

resveratrol (Bourassa et aI., 20 I 0). This binding is thought to be due to hydrophobic interactions 

occurring between the polyphenols and hydrophobic amino acid residues of BSA (McManus et aI., 1985; 

Bourassa et aI., 20 I 0), specifically, tryptophan residues (Bourassa et aI. , 20 I 0; Sahoo et aI., 2008) within 

at least one of 2 hydrophobic pockets present on the protein that are associated with lipid binding 

reactions (Tian et aI., 2005; Sahoo et aI., 2008; Zhang et aI. , 2009). Calculated binding affinities between 

phenolics and BSA range between J 0' M-I (Bourassa et aI., 2010) and J O'M·I (Tian et aI., 2005; Sahoo et 

aI., 2008). These are relatively low binding affinities - for comparative purposes, antibody-antigen 

interactions are typically 106M-I and for avidin-biotin binding (one of the strongest known non-covalent 

biochemical interactions) are typically I O"M-I, but the affinities suffice to show that binding appears to 

be via specific and not non-specific methods. 

Alterations to the conformation of BSA are noted with high concentrations (-0.5mM in -!-1M 

concentrations of BSA, or stoichiometries exceeding 5 : I phenolics: BSA) of polyphenols, consistent 

with unfolding of the proteins' secondary structure (Tian et aI., 2005; Bourassa et aI., 20 J 0). These 

alterations also occur in the presence of other aromatic compounds (Zhang et al., 2009), and some 

uncertainty exists as to whether they are caused by the adoption of specific ligand-binding conformations 

or due to microenvironmental changes in the areas surrounding protein molecules caused by the addition 

of the aromatic compounds. 
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During the in-vitro peroxidase-catalysed oxidation of phenolics in the presence of albumins 

(Bratkovskaja et aI., 2004), it was found that, in high ratios of BSA: peroxidase increased the overall 

efficiency of conversion, while not affecting the initial velocity of reaction. It was postulated that 

albumins react with the products of phenolic oxidation, through hydrophobic bonding, forming BSA

phenolic polymer complexes, acting as a trap for the products of oxidation, which typically cause 

fouling. The presence of BSA has the effect of minimising the inactivation of the enzyme that would 

otherwise occur through the formation of peroxidase-phenolic polymer complexes (Bratkovskaja et aI., 

2004). 

Given the commonality of the use ofBSA in laccase biosensor, it was of analytical interest to investigate 

the extent and manner with which the inclusion of BSA in biosensor fabrication alters the properties of 

the biosensor by assessing the effect that varied concentrations of BSA possesses as a co-immobilant in 

glutaraldehyde-cross-Iinked sensors. 

4.3 Aims and Objectives 

Given the amount and varied effects that the selection of an immobilisation strategy possesses on the 

resultant biosensor, it is imperative to select, and further optimise, an immobilisation strategy that will 

produce a biosensor of sufficient detection sensitivity to warrant further studies, such as those reported 

on in Chapters 5 and 6 of this Thesis. The utility of biosensors developed during this phase of research 

were tested against a single model phenolic substrate, catechol, in order to generate current-concentration 

functions that provide comparisons between the different biosensor configurations reported on in this 

Chapter. In addition to assessing biosensor functionality on the basis of graphical analyses of current

concentration curves (e.g. measuring relative detection sensitivities between configurations), this was 

also an opportunity to test the sigmoidal model described in Chapter 2, in order to assess its modelling 

robustness and its facility to distinguish between the gradations existing between highly-sigmoidal and 

non-sigmoidal current-concentration functions. From a fundamental aspect of this research, the potential 
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reasons behind sigmoidal current-concentration biosensor response should also be examined, in order to 

provide adequate explanation for this previously-unreported behaviour in laccase-based biosensors. 

From the above aims, the following objectives for the research reported on in this Chapter were set: 

(I) To assess which of the selected immobilisation procedures selected (physically-adsorbed, covalent 

attachment and cross-linking) produced a biosensor of sufficient phenolic-detection sensitivity to provide 

comparable results to those already present in literature regarding this subject. The selected 

immobilisation procedure would then be subjected to optimisation studies in order to enhance the 

sensitivity of detection. 

(2) Model assessment. 

(3) Investigate the effects that the inclusion of BSA as a co-immobilant produces on cross-linked laccase 

films used as biorecognition elements for a phenolic-monitoring biosensor. While a common co-reagent 

in laccase immobilisation, to date, no known research has assessed the effects that varying BSA 

concentration has on biosensors, with most reports regarding this having between 1-2 optimisation 

stages. This aim also includes the optimisation of the amount of BSA to be co-immobilised in biosensors 

fabricated for research in later Chapters (Chapters 5 and 6 of this Thesis), as well as assessing the relative 

alterations to biosensor response with altering relative laccase-BSA proportions. 

(4) Examine the mechanism that BSA co-immobilisation has in producing sensors with sigmoidal 

current-concentration functions. 

4.4. Methodology: 

4.4.1 Apparatus: 

Electroanalytical equipment was used as outlined in Chapter 2, as was the spectrophotometric apparatus. 

Both electroanalysis and spectrophotometry took place at 21 °C and all reagents were warmed to this 

temperature prior to the onset of analysis. 
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4.4.2 Reagents: 

Unless otherwise stated, all reagents were of analytical grade, or higher, and sourced from Sigma

Aldrich. 

Lyophilised powder containing> 20 V.mg·' laccase, purified from Trametes versicolor culture was 

sourced from the supplier (Sigma-Aldrich), as was crystalline Bovine Serum Albumin. Crystalline 

bovine serum albumin was stored alGI and laccases were stored dry as stocks at -20 ' C until 

solubilised. 

Glutaraldehyde solution (15% VI, ) was diluted from stock solutions (25% 'i, concentration, Grade 1 

purity, Sigma-Aldrich) using milliQ water. 

Protein solutions were dissolved in SLB, pH 4.5. The formulation of SLB took place as described in 

Chapter 2. BSA stock solution (100 mg.mr') was stored at 4 ' C for up to a week before being discarded. 

Solutions of laccase were formulated fresh for each triplicate modification on each lot received from the 

suppliers. Owing to concerns of solvated protein instability, the exact specific activity of each batch 

received was assessed spectrophotometrically, as the activity of a 1 mg.mr' solution of laccase. For the 

rationale behind this, see Sections 3.5.4 and 3.6 of the preceding Chapter. In order to maintain a constant 

laccase activity between different batches, laccase solutions were formulated on the basis of their 

respective activities towards catechol oxidation at pH 4.5, not on the dissolved mass. 

Catechol (99+ % pure) was used as the main laccase substrate used in optimisation studies reported in 

this Chapter. Stock solutions, ranging from 0.08 - 0.1 M were prepared fresh in water just prior to 

triplicant investigation of modified biosensors. For spectroscopic studies, a 0.5 M stock was prepared 

prior to activity assaying of the laccase. 

UVNIS spectroscopy was performed using a UV-transmissible 96 well ELISA Microplate, sourced from 

Greiner Bio-One. 
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4.4.3 Methodologies: 

4.4.3.1. Pre-modification treatment of electrodes 

Glassy Carbon Electrodes (GCEs) were cleaned via anodic pretreatment and subsequent ultrasonication, 

perfomed as outlined in Chapter 3, Section 3.4.2.1.5. 

4.4.3.2. Biosensor fabrication: 

a) Physical adsorption: 

To the surface of cleaned electrodes was added I 0 ~I of a solution corresponding to a 800 u.mr! solution 

of laccase. Adsorption of protein to the electrode surface was allowed to occur for an hour at RT. 

Following the adsorption stage, electrodes were rinsed with water and equilibrated in 5 ml of SLB for 15 

minutes prior to use. 

b) Covalent immobilisation: 

For activation of carboxyl groups on electrodes for thin-film protein immobilisation, 0.1 M 

2-[N-Morpholino Jethanesulfonic acid (MES) buffer, adjusted to a pH of 4.5, was used as the buffer for 

carboxyl activation. MES (>99.5% pure, catalogue number: M-8250) was sourced from Sigma-Aldrich 

and titrated with 0.2 M NaOH to pH 4.5 for use in EDCINHS activation of the glassy carbon surface 

(Narn et aI. , 2007). 

Activation of the carboxyl groups was performed in a similar manner as has been previously described 

(Klis et aI. , 2007b). Into MES buffer was dissolved 15 mM of EDC and 15 mM NHS to form the 

carboxyl activation solution. EDCINHS solutions were prepared freshly for each electrode activation in 

Iml aliquots and immediately used after dissolution. 20 ~Is of EDCINHS solution was added onto the 

surface of cleaned electrodes and the activation reaction was allowed to proceed for 2 hours at RT, in the 

dark. Following activation, the electrodes were briefly rinsed with water, before being subsequently 

modified with laccase, as has been described for physically-adsorbed laccase electrodes, 4.4.3.2(a) . 
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c) Glutaraldehyde cross-linking: 

Cleaned, air-dried GCE surfaces were modified through the addition of successive aliquots of I ~I of the 

following solutions : 800 U.mr' laccase solution and 15 % ~/, glutaraldehyde. These were briefly mixed 

and evenly spread over the surface of the electrode. Cross-linking was allowed to run to completion (- 30 

minutes) at room temperature. Electrodes modified in this manner were rinsed with water and stored in 

5 ml SLB prior to analysis (approx. 30 minutes to an hour). 

4.4.3 .3 Optimisation of glutaraldehyde cross-linking: 

Following selection of cross-linking as the superior immobilisation method from those initially selected, 

based on criterion established in Section 4.4.3.6 and discussed in Section 4.5.1 below, optimisation of the 

production of laccase-containing cross-linked films was performed in the following method. While the 

procedure for electrode modification is the same as outlined in 4.4.3.2(c), a further protein co-

immobilant (BSA) is included prior to the addition of glutaraldehyde. Concentrations of BSA and laccase 

were varied (as in Table 4.3, below), the aliquots for all three solutions was maintained at I ~I volume. 

Table 4.2: Varying concentrations of BSA and laccase used in optimising sensor performance in 
thick-film sensors 

Stock solutions Mass or Activity at electrode 

[BSA] (mg.mrl ) [laccase] (u.mrl)' [BSA] (Ilg) [lac case] (U)b 

0 40 0 0.04 

5 80 5 0.08 

10 lOa 10 0.1 

20 200 20 0.2 

50 400 50 0.4 

lao 800 100 0.8 
,-, 

a _ detenmned through spectroscOpiC assaymg of catechol oXidation usmg a 1 mg.ml concentratIOn of laccase, as 
described in Chapter 3. 

b _ assuming no denaturation of laccase during imrnobilisation occurs i.e . that activity remains comparable before 
and after immobilisation 
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4.4.3.3 . Electrode 're-use' 

Following modification and analysis of the biosensor, certain configurations of biosensor were then re

used, rather than cleaned and re-modified for other experiments. These electrodes were stored in 200 11M 

solutions of catechol (dissolved in SLB, pH 4.5) and either used within an hour when stored at room 

temperature, or stored overnight at 4 ' C before being re-assessed as outlined below (Section 4.4.3.4). 

During the optimisation of glutaraldehyde cross-linked laccase films , alterations to biosensor operational 

parameters upon re-use are presented and discussed in parallel with parameters reported for the pristine 

(i.e. previously unused) biosensors, before the effects of sensor re-use are discussed in general 

(Section 4.5.3 .2). 

4.4.3.4 Electroanalytica! determination of biosensor kinetics 

For the electroanalytical determinations of biosensor kinetics, SLB pH 4.5 was the sole electrolyte used 

at this juncture. The following sections describe the electroanalytical methodologies and data treatments 

used for the determinations of biosensor kinetics. 

a) Buffer cycling: 

Electroanalysis of the fabricated biosensors took place within 5 ml of SLB, warmed to room temperature. 

Cyclic voltammograrns were executed before and after chronoarnperometry. Prior to 

chronoarnperometric estimation of biosensor parameters, electrodes were cycled between -0.3 V and 

+ 0.8 V for 10 cycles before chronoamperometry, in order to determine dI and to ensure the cleanliness 

ofthe solution and electrode prior to chronoarnperometry. 

b) Chronoamperometry: 

Chronoamperometry was performed by poising the working electrode at -0.17 V (vs. Ag/AgCI). Stirring 

was achieved through the use of a Teflon® coated stirring bar set at 2000 rpm. The stirrer bar was placed 

0.5 cm away from the surface of the working electrode during stirring. Sequential aliquots of substrate 

were only added once a steady current response was noted by the biosensor. 
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Following chronoamperometry, electrodes were cycled between -0.3 V and +0.8 V for 3 cycles. CVs 

comparing electrode response to catechol substrate in stirred and unstirred solutions were performed i.e. 

a total of 6 cycles. 

4.4.3.5 Electroanalytical investigations of catechol oxidation/reduction at GCEs modified with BSA 

Cleaned GCEs were modified with sequential aliquots of 1111 BSA and I III 15% glutaraldehyde. 

Electrodes were modified using the same BSA concentrations outlined in Table 4.2 and allowed to 

crosslink under the same conditions, with the same post-modification treatment, outlined in 4.4.3.2(c). 

Following cross-linking of the film, electrodes were successively scanned in 2 ml SLB, under the same 

electroanalytical conditions as in 4.4.3.4(a). Catechol was then added to the electrochemical vessel to a 

final concentration of I mM and the solution briefly homogeneised via stirring. 

BSA-modified electrodes were then successively scanned between -O.3V and + 0.8V while varying the 

5~"', .. ale at: iu, 33.3, 56.7, 80,100,103,126.6 and 150 mV.s·'. Peak characteristics of potential (E) and 

current (I) were recorded for both the anodic (p,a) and cathodic (p,c) peaks generated by the presence of 

catechol. The apparent diffusion coefficients of catechol and its oxidation product, a-benzoquinone, were 

calculated from Eq 4.1 , as described in Bard and Faulkner, 2001 c: 

1/2 

I = 0 4463 OF3 J n3/2 A D II2C 'y1l2 
p. RT 0 0 

Eq. 4.1 

Where Ip is the peak current (A), F is Faraday's constant (96 485.3 C.mor'), R is the molar gas constant 

(8.315 J.mor'.K·') , T is the temperature under which investigations were undertaken (293 OK), n is the 

number of electrons transferred (n = 2), A is the cross-sectional diffusion area of the electrode 

(- 0.071 em' for all GCEs used), Co' is the bulk concentration of catechol (1 x 10.6 mol.cm·3) and Do is 

the diffusion coefficient (cm'.s"') (Bard and Faulkner, 200Ic). All experiments were performed in 

triplicate and discussed relative to electrodes that were merely cleaned, but not modified with BSA. 
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Exposure of BSA films to catechol oxidation products was performed by incubating fabricated BSA 

films in a solution of 200 JlM catechol in the presence of 3 U of laccase in SLB for 5 minutes. Thereafter, 

electrodes were rinsed thoroughly with water and immersed in SLB for half an hour to allow the 

diffusion ofunreacted product away from the electrode before being assessed by CV as outlined above. 

4.4.3.6 Data Treatment 

Data acquisition of current-concentration response for the biosensor was performed using linear 

regressional data, using X' minima as the determinant for regressional parameters as outlined in 

Appendix 1 (Section A 1.2). 

The modelling of biosensor responses was performed using the model described in Chapter 2 (Section 

2.4.1 ). Goodness-of-fit was for the modelling process was determined in parallel for each sensor 

investigated, and parameters fitted using either the Sum-of-Square Difference (SSD) or Chi-Squared (X') 

minima, respectively (Appendix 1, Section AI.4). This was executed as outlined in Section 2.3.3.3 of 

this Thesis. Parameter a was set to zero and all other parameters were varied in order to produce the final 

modelled parameters. In brief, the pertinent parameters governing biosensor response and relative 

efficacy was estimated from the following parameters: 

(1) Biosensor sensitivity was determined from the gradient of the linear range of sensor response. 

(2) Maximal current, I""" was reported as analogous to the model parameter d of the sigmoidal model 

response. 

(3) The degree of sigmoidality was estimated from the model parameter, b. 

(4) The Km was determined from c. 

(5) Sensor responses were normalised with respect to electrode surface area, in order to accurately 

compare results with those obtained from literature. For thin-film GCE sensors (physically adsorbed, 

covalent modification), the capacitance calculated from dl in SLB pH 5.5 (performed prior to surface 

activation) was used to calculate surface area. For glutaraldehyde cross-linked sensors, the geometric 
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surface area (- 0.071 cm' for a 3mm diameter electrode) was taken to be equivalent to the diffusional 

cross-sectional area necessary for nonnalisation. Hence the maximal current, 1m"" is reported as the 

maximal current density, im,,, henceforth. Biosensor sensitivity is also reported relative to the electrode 

surface area. 

The model's robustness was also assessed. The differences in the final modelled parameters when 

minima-seeking was performed using either SSD or X' as indications of model goodness-of-fit were 

assessed for their reproducibility, both between sensors and sensor categories. In addition, the ability of 

the model to produce coherent sensor responses analogous to either the classical (Michaelis-Menten) or 

non-classical (sigmoidal) biosensor responses was also assessed. 

4.5 Results 

Sensors fabricated in this Chapter were fabricated using two separate batches of laccase, with specific 

activities of2 1.7 U.mg·' and 32. I U.mg-', assessed via spectrophotometric assay using catechol at a stock 

laccase concentration of I mg.mr' (Chapter 3, Section 3.5.4). After adjusting the concentrations of 

laccase to correspond to 800 U.mr' solutions, no significant difference was found to be present when 

laccase from either batch was used in the fabrication of sensors. This indicates that pre-modification 

adj ustments oflaccase concentration on the basis of activity is sufficient to produce sensors of consistent 

enzyme activity, irrespective of the specific activity (and thereby purity) of the batch under examination. 

Page 111 



Chapter 4: Fabrication and optimisation of cross-linked laccase biosensors 

4.5.l: Immobilisation Techniques 

The sensitivity of detection, linear range of response and modelled parameters of i""", Km and the degree 

of sensor sigmoidality is reported in Table 4.3 , below. 

Table 4.3: Summary of the properties of sensors fabricated on anodically-pretreated GeE surfaces 

using different immobilisation methods 

Graphical analysis Modelling Analysis 

Sensitivity Linear Range imax Kru Degree of sigmoidality, 
(nA·flM·'.cm·') (flM) (flA·cm·') (flM) b 

Physical adsorntion: 

6.4 71 ± 1.064 0- 100 3.5 ± 0.3 246 ± 23 0.97 12 ± 0.0422 

Covalent Modification: 

6.227 ± 0.349 0-127 2.2± 0.1 226 ± 22 0.941 ± 0.0135 

Cross-linked: 

79. 19 ± 5.554 0-98 23.3 ± 5.2 152 ± 19 . 1.08 ± 0.094 

Uncertamtles represent standard deViatIOns from the means, with number of measurements ::: 5 

While physical adsorptive and covalent attachment methods utilise laccase in the sub-monolayer to thin-

multilayer, a larger amount of laccase can be loaded onto the surface of the electrode when employing 

cross-linking as a means to immobilise laccases. Hence, despite the anticipated denaturation of laccase 

occurring during cross-linking, a more than 10-fold increase in sensitivity (relative to physical adsorption 

or covalent attachment of the laccase) is noted when using glutaraldehyde cross-linking as a means of 

laccase immobilisation. 

On the basis of the increases in the catechol detection sensitivity and imax parameter, as well as the 

lowered Km values relative to the other immobilisation methods, cross-linked sensors were selected as 

the primary sensor reported henceforth in this research. Other advantages regarding the stability of the 

biosensor under adverse conditions (temperature, pH, storage) conferred through the use of cross-linking 

have been outlined in the Introduction of this Thesis (Section 4.2.2). 
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4.5 .2 Optimisation of glutaraldehyde cross-linked laccase biosensors 

In order to examine the effects of varying concentrations of laccase and BSA on the operational 

parameters of the produced biosensors, the current response of fabricated biosensors calibrated using 

varying concentrations of catechol was measured. 

4.5.2.1 Sigmoidal model parameter extraction under Michaelis-Menten and sigmoidal sensor responses 

For the purposes of a visual overview as to the type of data analysed in this section, Figures 4.3 and 4.4 

shows typical chronoamperometric raw data and the determined current-concentration relationships for 

sigmoidal (Fig. 4.3) and hyperbolic (Fig. 4.4) biosensor responses using catechol as a laccase substrate, 

with the various parameters extracted from modelling of each sensor response presented in both Figures. 
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A) Chronoamperometric response of biosensor fabricated with 800 mU laccase and SO Ilg BSA to aliquots of 
catechol. 

The addition of catechol is indicated with black arrows. 

B) Current-concentration function for the resultant sigmoidal sensor response, as assessed by 
chronoamperometric determination of response in presence of increasing substrate concentration. 

Inset shows biosensor parameters extracted from both graphical and non-linear computer modelling of sensor 
response. Please note that data used is presented 'as-is' i.e . without normalisation for electrode surface area. 
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A) Chronoamperometric response of biosensor fabricated with 0.8 U lacease and 10 I1g BSA to aliquots of 
catechol. 

The addition of catechol is indicated with black arrows. 

B) Current-concentration function for the resultant hyperbolic (i.e. Michaelis-Menten-like) sensor response, 
as assessed by chronoamperometric determination of response in presence of increasing substrate 
concentration. 

Inset shows biosensor parameters extracted from both graphical and non-linear computer modelling of sensor 
response. Please note that data used is presented 'as-is' i.e. without normalisation for electrode surface area. 

As Figures 4.3 and 4.4 display, a purely-graphical analysis of sensor response often underestimates the 

1m" parameter, due to the hyperbolic nature of the current-concentration i.e. enzyme velocity- substrate 

concentration response (Garret and Grisham, 2001). This, in turn, leads to an inaccurate determination of 

Km values, through Eq. 2.3 (Garret and Grisham, 2001). These inaccuracies would be further 
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exaggerated by the sigmoidality of the sensor, justifying the use of the non-li near enzyme kinetics 

mode lling techniques used to extract the salient kinetics parameters to descri be both sigmoidal and non-

sigmoidal (i.e. hyperbolic) sensor responses. 

The interpretation for the sigmoidality of the produced current-concentration curves is that sensor 

response, through reasons that are discussed in further secti ons, become mechanistically 

indistinguishable from the empirical Hill Equation for positive co-operativity, as defined in Eq. 2.5 of 

Chapter 2. Indeed, it is important to note that sensors modelled via either the sigmoidal model (Eq. 2.6) 

or via the Hill formali sm (Eq 2.5) yield the same parameter values. 

When comparisons between parameters of sigmoidal biosensor responses e lucidated via the sigmoidal 

response, or by the Hill Equation above were compared, V'N' was found to be equivalent to 'd', 'n' to ' b' 

and K' to be equivalent to cb
, with no differences in the SSQ fou nd when comparing either model. The 

Inset values of Figure 4.5 serve as an example of the congruency. Figure 4.5 depicts the excellent 

agreement between the extracted parameters fitted using either the Hill Equation or the Sigmoidal 

Equation sensor response, as well as the equivalency of the aforementioned parameters. 
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Figure 4.4 : Modelling of experimental data vs. fUllctions generated by modelling of parameters using either 
the Hill Equation or the Sigmoidal Model. 

Inset: Parameters extracted through use of either model, Red (upper-left box) = Hill Equation and Green 
(lower-right) = Sigmoidal Model. Experimental data used: 100mg BSA, 800 U.mr ! laccase, replicant I, GCE 3 of 
that set. 
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This highlights the robustness of the selected sigmoidal model, in that it elucidates parameters that are 

not only relatable to classic Michaelis-Menten enzyme kinetics, but also to the kinetics governing 

sigmoidal enzyme kinetics. While the sigmoidal equation has previously been used in order to assess 

sigmoidal biosensor behaviour (Pauliukaite et aI., 2006), the use of this formalism has been rare and, to 

date, no known correlation between it and established formalisms for determining enzyme kinetics has 

been published. 

For those sensor responses exhibiting a lower degree of sigmoidalily (b .::: 2.5) andlor a Km value greater 

than 250 fJ,M, the model parameters determined from x2-minima fitting are henceforth presented, while 

for other sensor categories, parameters extracted from SSD-minima are presented. Appendix 3 of this 

section provides supporting evidence for this method of discriminating between highly sigmoidal and 

less sigmoidal biosensor current response curves. 

4.5 .2.2 BSA content: 

Significant alterations in the performance of the sensor were noted, both assessed graphically and 

through modelling of the non-linear sensor response with variation of substrate concentration. Figures 

4.5 - 4.7 display the relevant alterations to the sensor's performance with an alteration in added BSA, 

both before and after re-use of the electrode. The various laccase activities and BSA masses reported in 

this Section are reported in Table 4.2 (Section 4.4.3.3) 
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Figure 4.5: Alterations in biosensor sensitivity with addition of BSA. 

Laccase activity was set at 0.8 U per biosensor. 

Error bars represent standard error from the mean, number of repiicants, n ~ 3 

3.50 

:Q' 
'-' 

C 
;:: 
.g 2.50 
. ~ 

c 
8 
bIl 
.~ 

'" ... 
c 1.50 .. .. .. 
bIl .. 
~ 

0.50 
~Pristine biosensors Re-used sensors 

o 20 40 60 80 100 

Mass ofBSA co-immobilised (fig) 

100 

120 
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Laccase activity was set at 0.8 U per biosensor. 

Error bars represent standard deviation from the mean, number of rep lie ants. n ~ 3. 
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Figure 4.7: Alterations in modelled imu values (parameter ti), with the varying concentrations of BSA as co
immobilant within the sensor. 

Laccase activity was set at 0.8 U per biosensor. 

Error bars represent standard error of the mean, number of rep lie ants, n ~3 

As Figures 4.5 - 4.7 display, there is a pronounced effect on the operational parameters of the pristine 

laccase biosensor with the inclusion of BSA. A significant effect on the sigmoidality of biosensor 

response is recorded with an increase in BSA content (Figure 4.6). To discuss the various alterations in 

biosensor responses, the effects of BSA content are categorised into responses that produce non-

sigmoidal biosensor kinetics i.e. hyperbolic curves similar to those anticipated with Michaelis-Menten 

like functioning of the immobilised biomolecules and those that exhibit a higher degree of response 

sigmoidality. 

Laccase biosensors fabricated with low BSA contents (0 - 20 }lg) exhibited increased biosensor 

sensitivity and maximal current with increasing BSA content (Figure 4.5). The absence of BSA results in 

a biosensor with an averaged sensitivity of 79. 1 nA.].lM-'.cm·', a value which, with increasing BSA 

content, exhibited an almost linear increase to a final value more than 10-fold higher, 

967.5 nA.].lM-'.cm-', for sensors fabricated with 20 ].lg of BSA (Figure 4.4). The modelled imax value also 

exhibited a nearly ten-fold enhancement in thi s range, from 23.3 }lA.cm-' to 239 }lA.cm-' (Figure 4.7). 

Page 119 



Chapter 4: Fabrication and optimisation of cross-linked laccase biosensors 

The degree ofsigmoidality (Figure 4.6) remains steady between 0 - 10 fig BSA at (between 1.0 - 1.15) 

and then increases slightly to - 1.4 at 20 fig BSA co-immobili sed, which still produces a sensor response 

that is visually close to the hyperbolic curve anticipated in Michaelis-Menten enzyme kinetics. 

At higher BSA concentrations (20, 50 and 100 fig BSA), the degree of sigmoidality increases rapidly, 

stabilising at approximately b = 3.2. Simultaneous with the increase in sigmoidality, biosensor sensitivity 

declines to a value that is still three times larger than that recorded at sensors without BSA included 

(256 nA.fiM· ' .cm·' for sensors fabricated with 100 flg BSA co-immobilised, vs. 79 nA.flM·'.cm·' for 

those fabricated using laccase alone). Concomitant with the decrease in sensitivity is a decline in the 

modelled i""" parameter (Figure 4.7). Since the laccase content is consistent between biosensors at this 

juncture, the i""" parameter, being analogous to the v""" parameter at a fixed enzyme concentration, is 

itself analogous to the k, parameter of the biosensor kinetics. 

1n addition to the increasing sigmoidal behaviour of sensor response (Figure 4.6) with increasing addition 

of BSA alters the substrate concentration range through which a linear response is recorded, as well as 

the apparent Km of the biosensor assessed during calibration of the biosensors using catechol. Figure 4.8 

demonstrates the alteration in both the linear portion of the sensor response and the modelled Km values 

(equivalent to the modelled parameter, c) that was exhibited by the biosensors when increasing BSA 

concentrations were utilised in the fabrication of the sensor, prior to re-use. 
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Figure 4.8: Alterations in catechol concentration range exhibiting linear sensor response, and modelled Km 
values for pristine sensors fabricated with differing BSA contents, prior to re-use. 

Laccase activity was set at 0.8 U per biosensor. 

Legend: Onset of linear response (Lin Begin) is solid grey, the end of the linear response (Lin End) is dashed grey, 
and modelled Km (KM) values are in depicted in black. Error bars represent standard error from the mean. Number 
of replicants, n 2: 3 

In Figure 4.8, the area occurring between the end of linear response and onset of linear response indicates 

the area in which linear current-substrate concentration response occurs. This area remains fairly 

constant, with - I 00 ~M separating the beginning and ends of the linear responses of the sensor. A 

complex behaviour between the BSA content of the biosensor and the range of linear response is 

observable, coupled with an equally-complex behaviour of the modelled Km values (Figure 4.8). 

Similarly to the i""x and sensitivity trends discussed above, these responses can be divided within low-

content BSA cross-linked laccase films and high-content laccase films. 

When sensors are fabricated with a low BSA content (0 - 10 ~g BSA co-immobilised) linear response 

undergoes deviation that possesses an inverse trend within the modelled Km values. Since the Km values 

are extracted from the entire data-set of response-concentration calibration, while the linear response is 

obtained from only a portion of the data-set, the trend observed with Km indicates that this is an intrinsic 

property of the fabricated sensor, rather than an observational error in the measurement of the linear 

portion of the biosensors' responses. At higher levels of BSA, concomitant with the increase in 

sigmoidality, a monotonic increase of the linear range is noted, coupled with a relative decrease in the 

Km value. 

Electrodes that were re-used, after calibration of ' pristine' sensors with catechol, showed significant 

alterations in all of the parameters so far reported. Significant increases in both the detection sensitivity 

(Figure 4.5) and i~ values (Figure 4.7) are noted, accompanied by a general decrease in sigmoidality 

(Figure 4.6), relative to those values obtained at pristine biosensors. The degree of enhancement appears 

to be linked to the amount of BSA co-immobilised with the laccase, with the largest relative alterations 

noted with increasing BSA content. 
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Following re-use, in addition to the alterations in the sensors' sensitivity and i""" values, there is a 

decrease in both the linear response regions and the modelled Km values. Figure 4.9 displays the linear 

range and Km values of sensors fabricated with different BSA contents, for re-used biosensors. 
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Figure 4.9: Alterations in linear portion of sensor response, and modelled Km values for re-used biosensors 
fabricated with differing BSA contents. 

Legends and their meanings are the same as in Figure 4.8. The dashed black line indicates trends in the Km of non
conditioned biosensors (Figure 4.8) and is represented here for comparative purposes 

Along with the decline in BSA-dependent sigmoidality upon biosensor re-use (Figure 4.6), both the 

linear sensor response concentration range and the Km (Figure 4.9) decline and stabilise, compared to the 

monotonic increase seen in Figure 4.8. Following a rapid increase, the linear sensor response after re-use 

occurs between 0 - 100 flM of substrate concentration and becomes independent of the sensor's BSA 

content. 

In order to track the changes in the kinetic parameters governing the biochemical aspect of the biosensor, 

the VIK value (calculated here as the i=,IK rn, or ilK) is presented for biosensors both prior and after re-

use in Figure 4.10 
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Figure 4.10: ilK values plotted before and after re-use, with differing amounts of BSA co-immobilised with 
the laccase. 

The significant increase in the ilK values between re-used and pristine biosensors can be explained via 

the large contribution due to the significant decrease in modelled K!" val ues after re-use has taken place 

(Figure 4. 10), together with the BSA-dependent increases in i n~ noted after re-use (Figure 4.7). A 

comparison between the behaviour of biosensor sensitivity (Figure 4.5) and the ilK values shows very 

similar trends between these values and their dependence on the BSA loading. Figure 4.1 1 displays the 

comparison of ilK values extracted from the modelling process against the sensitivity of the biosensor, 

both before and after re-use of the sensor. 
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Figure 4.11: logarithm of ilK values plotted against the logarithm of biosensor sensitivity for sensors 
fabricated with different BSA contents 

A: Pristine biosensors 

B: Re-used biosensors, following intermediate incubation in SLB containing 50 JIM catechol for 1 hour. 

Inset text displays the stock BSA concentration used in fabrication of sensors for individual points, Inset boxes 
display the linear regression function of the data. Green data-points show the ilK values when t minima-seeking 
was used for the modelling parameters. 

Figure 4.11 demonstrates that a strong linear tendency between the calculated ilK values and the 

biosensor sensitivities is observable, both before and after re-use of the electrode. While the degree of 

linearity is stronger after re-use of the el ectrode (R' - 0.98), the gradient is shallower, with a higher y-

intercept, possibly indicating the presence of a further reaction aiding signal generation that is not based 

solely on enzyme kinetics. For both pristine and re-used biosensors, ilK appears to trend with the 

detection sensitivity 
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The empirically-detennined linear relationship existing between ilK values and biosensor sensitivities, as 

shown in Figure 4.11, allow us to postulate that alterations in either the apparent V=, (translating to 

alterations in modelled i=, values) or the apparent Km values alters biosensor sensitivities. This finding 

is extremely important, not only for unification of the graphical analyses of current responses with the 

modelling parameters used, but also when consulting the effects that alteration in biosensor parameters 

(e.g. re-use, BSA content) of the biosensor has on the functional parameters of the produced biosensor, 

as well as in explaining differences in the different sensor configurations displayed above by tracking 

changes in the i,", and Km values. 

Through the empirical demonstration that ilK correlates with detection sensitivity, alterations in either 

the i,., or Km upon re-use have a corresponding, positive effect on the biosensor sensitivity. Using 

alterations in these parameters upon re-use allows a re-interpretation of the effect that re-use has on 

laccase biosensors fabricated with differing BSA contents. Figure 4.12 displays the relative alterations in 

biosensor apparent kinetic parameters upon re-use. For ease of representation, the parameters are 

grouped according to their behaviour (increasing vs. decreasing trends). 
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Figure 4.1 2: Graph depicting change in sensor behaviour with re-use, when different BSA contents are co
immobilised with laccase. 

A) Increases in biosensor sensitivity and modelled Jilin parameters 

B) Decrease in sigmoidality and modelled Km parameters. 

Data used is the relative shift in said parameters between conditioned and non-conditioned electrodes and drawn 
from the same data used for the presentation of Figures 4.8 - 4.15. Error bars indicate standard deviations from the 
mean with n ?:. 3 

It is evident from the graphical rendering of the data in Figure 4.12 that an increase in BSA content is 

proportionately (but not linearly) related to an improvement in biosensor parameters following re-use 

from the non-conditioned counterpart. The relative decrease in the degree of sigmoidality, b (Figure 

4.l2B) increases with increasing BSA content following re-use. Proportional increases in both the 

biosensors' sensitivity and 1m" values (Figure 4.l2A) are noted; significant decreases in the modelled 

Km values (Figure 4.1 2B) occur with an increase in BSA content. All of these parameters indicate that an 
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improvement in the operational parameters of the sensors occurs with exposure of the biosensor to 

substrate. Please note that the very low values of b and the inverse nature of Km values in the sigmoidal 

model, and the interrelatedness of b values and the calculated Km values lead to relatively high 

uncertainties in the measurement of the relative shift of Km. Nonetheless, significant alterations in these 

values are readily observable in the trends present in Figure 4.12B. 

A comparison of the relative shift in biosensor sensitivity compared to the i.,.x parameters (Figure 4.12A) 

indicates that a major factor in the alteration of the biosensor's sensitivity is the alteration in the 

modelled Km response, and the decrease in sigmoidality. While the modelled i,~ parameters remains 

relatively stable, being enhanced by approximately 50 ± 20% increase (relative to pristine biosensors), 

biosensor sensitivity still shows an impressive 250% increase at the maximal relative difference (I 00 ~g 

BSA content). This, in tum, can be related to the more than two-fold decrease in the modelled Km 

parameter in Figure 4.12B, and the simultaneous effect of both on the V IK ratio. The linearity observed 

between ilK ratios (Figure 4.11) and the biosensor sensitivity indicates that an alteration of the ilK value 

ofa given biosensor has a direct effect on the observable sensitivity of the biosensor. 

4.5.2.3. Optimisation oflaccase content for BSA-glutaraldehyde-Iaccase sensors: 

As the catalyst for catechol oxidation, laccase is expected to improve sensor response, through the 

increase in [El in the Michaelis-Menten equation. If one were to neglect mass transfer constraints that 

arise from the increased concentration of enzyme (purely for hypothetical reasons, for reasons that are 

outlined below), the concentration of enzyme in a given solution is related to both the velocity and 

maximal velocity of the catalytic system. As Eq. 2.3 shows, an increase in the Vm~ of an enzyme system 

corresponds to an increase in the substrate-dependent velocity. Since v.,., itself is resolved from: 

Eq.4.2 

Where v.,.x is the maximal enzyme velocity for a given concentration of substrate, k, is the 

concentration-independent catalytic co-efficient of a given enzyme and [Et"l is the enzyme concentration 
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(Miller and Tanner, 2008). There is, hence, a positive correlation between enzyme concentration and the 

catalytic velocity of a given enzyme-substrate mixture. 

However, kinetic functions of 'free' enzyme systems are not necessarily comparable to those dealing 

with immobilised enzyme kinetics. As mentioned previously (Section 1.3), through immobilisation of the 

enzyme, a much greater concentration of enzyme near the transducer is achieved, which itself results in 

increased localised catalysis rates which, in turn, produces the desired high sensitivities of biosensors. 

Under these conditions, mass transfer kinetics become increasingly significant when describing the 

overall kinetics of the system, as the transport of substrate to the enzyme and the transport of product to 

the transducer becomes a rate-determining stage of signal reporting. 

Two broad categories of diffusional mass-transport can be made at this junction. The first, being a 

passive property arising from the diffusional constraints imposed on a molecular diffusion into the 

electrode through the porous cross-linked protein structure is likely to be impose 

Ultimately, it is an interplay of the factors of enzyme loading and mass-transfer restrictions arising from 

enzyme loading that primarily affect biosensor response. 

In addition, the presence of BSA as a stabiliser has been shown in the previous section to have a 

significant effect on the apparent enzyme kinetics of the sensor, and hence, the final linear range and 

sensitivity of the biosensor. Given the low sensitivity of the enzyme fabricated in the absence of BSA 

(see preceding section), the effect of laccase content on the final sensor was assayed at two separate 

mass-loading of co-immobilised BSA: 10 /lg and 100 /lg. These BSA loadings were selected on the basis 

of the sigmoidalities of the biosensors fabricated using when using these amounts of co-immobilised 

BSA. Although a BSA addition of 20 /lg was considered to produce a sensor with optimal parameters, 

the increase in sigmoidality > b = 1.0 indicated that ~ lower amount of BSA was preferable for this stage 

of experimentation, in order to contrast biosensors that appear to obey idealised (Le. Michaelis-Menten) 

kinetics and those that do not. 
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It was of interest to see whether the relative proportion of BSA ; laccase would induce significant 

alteration in the produced catechol calibration curves (as indicated in Section 4.3.3.1), or whether the 

absolute concentration (i.e. loading) of the laccase or BSA would affect the sensor response, as indicated 

by the spectrophotometric data in the presence of BSA in Section 4.1 of this Chapter. Since the use of 

10 Jlg ofBSA in the preceding section was found to not affect the sensor's anticipated Michaelis-Menten 

kinetics greatly, this indicated that the intersection of enzyme loading and stabiliser loading did not 

greatly deviate from the postulated aggregation interaction noted in previous studies. 

Issues of protein solubility precluded laccase concentrations larger than 800 U.mrl (i.e. > 0.8 U laccase 

loaded per sensor) solutions of laccase being included into this phase of study. As it was, notable 

precipitation of laccase solution was noted within 5 minutes of solubilisation at this concentration of 

laccase, necessitating rapid modification of the electrode surface. 

Figure 4.13 displays the relative substrate-detection sensitivities of biosensors fabricated using either 

10 or 100 Jlg BSA, both before and after re-use. Figure 4.18 displays the i,M, as detennined through 

sigmoidal modeJling of the current response-substrate concentration curves. 
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Figure 4.13: Biosensor sensitivities recorded with sensors fabricated with varying concentrations of laccase 
using BSA co-immobilised at an amount of either 10 or 100 JIg per biosensor. 

A) Pristine biosensors 

B) Re-used biosensors 

Dashed lines in Figure 4.13B indicate values of maximal sensitivity recorded in Figure 4.13A, and are merely for 
demonstrative purposes. 

Error bars indicate standard errors from the mean with the number of observations, n ~ 3. 

As Figure 4.13A depicts, prior to re-use, when 100 flg of BSA is added as the co-immobilant, biosensor 

sensitivity rapidly levels off, following the addition of 20 flg of laccase, while sensitivity in 10 flg of 

BSA appears to increase monotonically with an increase in laccase loading. Following re-use (Figure 
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4.13B), similar, albeit more exaggerated, trends are still noted. In addition, the biosensor sensitivities 

begin to become more comparable, with similar biosensor sensitivities recorded for the same laccase 

content irrespective of the BSA loading, in addition to a general decrease in the relative error noted for 

sensitivities. To confirm previous findings underlying electrode re-use in the previous section, the 

recorded biosensor sensitivities of conditioned electrodes surpass those of biosensors prior to re-use, with 

the most significant gains in biosensor sensitivity recorded for biosensors fabricated with I 00 ~g of BSA. 

While the increases in sensitivity with increases in laccase concentration may indicate that re-use may 

help unify sensor response despite the differences in BSA, it is only an apparent unification that is itself 

due to the effect of alterations in the im .. and Km values (which themselves vary substantially between 

equal laccase loadings at different BSA loadings) on the biosensor response (Figures 4.14 and 4.15, 

below). Thus, it is of interest to track changes in these parameters between the sensors, both on the basis 

of laccase loading, and on that of the BSA loading. Figures 4.14 and 4.15 display the modelled i~x 

parameters and the Km values, respectively, of both high-BSA and low-BSA biosensor configurations 

with differing laccase content. 
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Figure 4.14: imn: of biosensors sensitivities recorded with sensors fabricated with varying concentrations of 
laccase using BSA co-immobilised at an amount of either 10 or 100 JIg per biosensor. 

A) Pristine biosensors 

B) Re-used biosensors 

All reported parameters as in Figure 4 .3 

Dashed lines in Figure 4.18B indicate maximal recorded values of imax before re-use for each set. Error bars 
indicate standard error from the mean, n 2: 3. 

Consistently, there is a < 50 % gain in the imax parameter value upon re-use (Figure 4.14B compared to 

Figure 4.14A), while the biosensor sensitivity has almost doubled in both cases (Figure 4. 13B vs . Figure 

Page 132 



Chapter 4: Fabrication and optimisation of cross-linked laccase biosensors 

4.13A). This can be attributed again to a decrease in the apparent Km of the biosensor, as Figure 4.15 

(below) indicates. 
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Figure 4.15: Km values recorded for sensitivities recorded biosensors fabricated with varying concentrations 
of laccase using BSA co-irnmobilised at an amount of either 10 or 100 fIg per biosensor. 

A) Pristine biosensors 

B) Re-used biosensors 

Y-axes are maintained between Figure 4.l5A and B in order to depict differences occurring during re-use of sensor. 

Error bars indicate standard error from the mean with n 2: 3 
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Apart from a single aberration in the data (10 Ilg laccase, 10 Ilg BSA), the Km values prior to re-use are 

relatively close for both categories of BSA content and show a similar decrease with an increase in 

laccase content. Interestingly, upon re-use, modelled Km values for sensors fabricated with 100 Ilg BSA 

content remain consistently lower when compared to their 10 Ilg BSA counterparts. 
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Figure 4.16: Degree of sigmoidality of biosensors at differing laccase contents, co-immobilised with 10 or 100 
~g BSA per biosensor. 

Error bars indicate standard deviation from the mean, n 2: 3. 
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From inspection of Figure 4. I 6, it is apparent that the presence of BSA at high concentrations is mainly 

responsible for the increase in sigmoidality between the two separate categories selected for this study. 

While an increase in the model's b parameter is noted with an increase in laccase content for the sensors 

fabricated with 100 Ilg BSAlelectrode, no significant increase in b occurs in sensors fabricated with 

10 Ilg BSA/electrode. Hence, the differences between the sigmoidality of the current-concentration 

functions are more pronounced with increases in BSA, rather than those of laccase. 

Following re-use, the degree of the decrease of sigmoidality appears to depend negatively on the content 

of BSA and positively on the content of laccase. A significant decrease in sigmoidality (from b - 2.5 to 

- 1.25) is noted with high-BSA films following re-use, while no significant decrease in note for films 

fabricated with a low BSA loading. 

Figure 4. I 7 depicts the relative alteration in the operational parameters of the sensors, following 

electrode re-use. 

Page 135 



Chapter 4: Fabrication and optimisation of cross-linked laccase biosensors 

gOO _ lGuC W _ lOOIlIW 450 _ 10U18SA __ IOOIl.1ISA 

- 700 400 

~ 350 .c 600 

~ 
_ 300 

500 ~ 0 2S0 ~ J ~ 400 -Q 200 a 300 ~ 150 ~ 

/"-. Q 

iii 200 100 • 
100 -- - -- so - - -

0 0.2 0.4 O.G o.g 1 I 0 0.2 0.4 D.G D.g 1 

AJ Sensitivity 
Lacease content (U) 

Blim ... 
Lactase content (D1 

- - - r ---1 --
120 -lOIl185A 120 _ lDuIBSA _ lODui!ISA _ lOOu.BSA 

100 100 

C gO 80 
~ 

§ >1 .. GO ;:.. GO • ." 

"' .; 
e 40 40 .. 
Vi 

20 20 

0 0 -- --
0 0.2 0.4 D.G D.g 1 0 0.2 0.4 D.G D.g 1 

C) Sigmoidality 
Lacease content (U) 

°1K", 
LaccASe content (U) 

Figure 4.17: Relative alterations in operational parameters of lacease biosensors fabricated with low-BSA 
(10 "g BSA) and high-BSA (100 "g BSA) loadings, following re-use of the sensor. 

Alterations in A) Biosensor detection sensitivity. B) imax parameter C) sigmoidai ity. represented as the model 
parameter b and D) the modelled Km were tracked and recorded. 

Values were calculated using data previously reported on in this section. Number of observations, n .::: 3 

Error bars were removed for purposes of clarity. 

The improvement in i""" parameters following re-use (Figure 4.l7A) shows an exponential decrease with 

an increase in laccase loading for biosensors fabricated using 100 ).lg of BSA. [n contrast, sensors 

fabricated with low BSA content (i.e. 10 ).lg BSA / sensor) showed almost no improvement in the [mn 

parameters, with only slight improvements noted when laccase loading was less than 10 ).lg. [t is also 

quite clear that the degree of improvement upon re-use is much higher in the presence of higher loadings 

of BSA. These two observations combined indicate that increase in lmax is apparently govemed primarily 

by the absolute concentration of BSA and, inversely, by the amount of laccase used to fabricate the 

sensor. 
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Similar trends are noted for the biosensor sensitivity (Figure 4.17B). While it appears to undergo a more 

complex behaviour than attributed to the im" parameter, this is most likely due to the contribution that 

the decrease in modelled Km values (Figure 4.17C) provides to the biosensor sensitivity, as discussed 

when considering differences between sensors fabricated with consistent laccase loadings and varying 

BSA contents and depicted in Figure 4.14. For all sensors tested in this phase of research, biosensor 

sensitivity improved - however, the degree of improvement noted was much higher in sensors fabricated 

with high BSA contents, most likely due to the improvement in 1m>, values recorded in Figure 4. I 7 A. 

The implications for these trends are much the same as those discussed for 1m>, parameters in the 

paragraph above. 

A large, significant decrease in the degree of sigmoidality (Figure 4.l7C) is noted with sensors fabricated 

with 100 ~g BSA / sensor. The degree of sigmoidality decreased by -40 % for all electrodes investigated 

in this category upon re-use and appeared to be more or less consistent despite alterations in the amount 

of laccase used to fabricate the film, which may indicate that the degree of relative decrease of 

sigmoidality is governed primarily by the BSA content, and is perhaps weakly influenced by the amount 

of laccase added to fabricate the biosensor. This behaviour is contrasted against the behaviour of 

biosensors fabricated using low BSA additions, which showed little to no relative alteration in the 

sigmoidality of the current-concentration functions. This is most likely due to the Michaelis-Menten-Iike 

behaviour of the sensors prior to re-use (i.e. b'" 1 , Figure 4.20A) in this category, as well as a 

compliance with the trends noted above. 

Of all the trends noted above, the lease consistent is that of the decrease in apparent Km of the sensor 

response (Figure 4.1 7C). In laccase films cross-linked in the presence of high concentrations of BSA, 

this response appears to produce a biphasic decreasing trend with an increase in laccase content. A nearly 

5-fold decrease in the Km is noted when laccase contents are larger than 18 ~g, which would explain the 

sudden increase in biosensor sensitivity at higher laccase concentrations for this category of sensor noted 

in Figure 4.l7B. The behaviour of the relative Km decrease is more complex in laccase biosensors 

comprising of a lower BSA content: whi le a general decrease in the Km is noted for most electrodes in 

this category upon re-use, there appears to be no consistent trend to be found when comparing this 

Page 137 



Chapter 4: Fabrication and optimisation of cross-linked laccase biosensors 

alteration with the laccase content. However, sensors displaying higher than expected Km alterations i.e. 

5 and 18 }1g laccase, also consistently display a degree of sigmoidality (b < I ) that indicates the presence 

of negative cooperativity occurring upon re-use (Figure 4.19B). This may increase the apparent Km 

values, which in tum, increases the relative Km alteration upon re-use. 

In general, the behaviour of sensors following re-use indicates that enhancements in the operational 

parameters of the biosensor upon re-use is governed primarily and proportionately by the absolute 

concentration of BSA used in fabrication and. To a lesser extent, the operational parameters trend 

inversely by the amount oflaccase used to fabricate the sensor, or rather the BSA : laccase ratio. 

4.5.3. Investigations on the cause of sensor sigmoidality and effects of re-use in 

BSA-laccase composite sensors: 

Bearing in mind the limitations of the Hill coefficient as an indication of cooperative behaviour (Chapter 

2, Section 2.3 .1.3: A review of the previous data indicates that the degree of apparent sigmoidality (I) 

increases with the amount of BSA co-immobilised with the laccase in the final biosensor (Figure 4.6) and 

(2) increases with an increase in laccase content (Figure 4.16). It is also apparent that the effects ofre-use 

are also mediated by both the laccase and the BSA content (Section 4.5 .2.2 and Section 4.5.2.3). The 

positive effects that re-use of the electrode has on the operational parameters of the biosensor when 

re-analysed are themselves worthy of further discussion. The following section details some of the 

possibilities that govern both of these phenomenon. 

4.5.3.1. Sigmoidality: 

A review of the data presented in Section 4.3.3.3 and 4.3.3.4 reveals that the majority of biosensor 

sensitivities displaying kinetics more complex than conventional Michaelis-Menten kinetics decreases 

the operational biosensor parameters deemed desirable (i """, biosensor sensitivity, extension of the linear 

range), revealing them to be poor candidates for potential sensor applications. Indeed, only the biosensor 

comprising of 20 }1g of BSA and 0.8 U initial activity of laccase is used as the thick-film biosensor in 
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proceeding Chapters. However, the mechanisms governing these kinetic alterations are still worthy of 

brief discussion and investigation, as they reveal the extent to which the loading of active enzyme and/or 

8SA as a co-immobilant dictate the operational parameters of the completed sensor. In this section, a 

theory regarding the interactions of these proteins is postulated and shown to be viable, from a 

mechanistic perspective. 

The context-dependent increase in biosensor sigmoidality response was shown to be directly relatable to 

the Hill Equation (Section 4.3.3.1 and Appendix A3.1), with a non-trivial increase in the Hill co-efficient 

being equivalent to the ' b' parameter. Hence, the Hill coefficient, which is commonly referred to as H 

and nH for mechanistic studies is used interchangeably with b for the kinetic estimations for the model 

used in chronoamperometric current-concentration functions in this research. This increase in the b 

model value was found to depend primarily on the BSA content of the biosensor under investigation 

(Figure 4.8), but also less significantly on the laccase content of the cross-linked sensor, under conditions 

of a high 8SA loading (Figure 4.20). 

As outlined in Chapter 2 of this Thesis, cooperativity, and allostericity in general, entails an oligomeric 

organisation of the enzymatic system (Garret and Grisham, 1999b). To date, very few fungallaccases are 

reported to have quarternary structures more complex than monomers. For fungally-secreted laccase, 

primarily monomers (Baldrian, 2006), some homodimers (Yaver et aI., 1996; 8aldrian, 2006) and, more 

rarely, heterodimers or larger oligomers (Baldrian, 2006; Giardina et aI., 2007), of isozymes of laccase 

are reported to occur. Crystallographic (Piontek et aI., 2002) and electrophoretic (e.g. Collins et aI., 1996; 

Freixo et aI. , 2008; MatijoSyte et aI. , 2008) investigations of laccases secreted by the fungus Trameles 

versicolor (used in this research) overwhelmingly report on the presence of monomeric structures: 

indeed, this is the case when laccase of the same type sourced from the same supplier was assessed 

(Matijosyte et aI. , 2008; Birlhani and Yesilada, 2010; Uthandi et aI., 2010). 

Positive cooperative effects may arise from separate mechanisms other than a natural tendency to 

oligomerise. Allosteric biosensors have been fabricated, through protein engineering (conferring of 
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kinetic-acitivating binding sites or greater binding site flexibility) or through inducing the 

oligomerisation of protein monomers into subunits (Villaverde, 2003). Very few naturally-occurring 

allosteric enzymes are used, as their modulators are generally not of importance for analysis (Villaverde, 

2003 

Given the above infonnation it is thus, unlikely to suggest that a natural tendency towards self

oligomerisation is the cause of this sigmoidal response. The mechanistic evidence suggested by cross

linked enzymes in the absence of BSA, or in the presence of low concentrations of BSA, (Section 

4.3.3.1 , Figure 4.8) consistently possess sigmoidality values closely approaching that of b ~ I (i.e. with 

no positive-cooperativity noted). 

While cross-linking techniques, including the use of glutaraldehyde, have been previously used as a 

means of both stabilising naturally-occuring oligomers (Hennann et a!. , 1981 ; Jaenicke, 1982; Phizicky 

and Fields, 1995; Loster and Josic, 1997) and inducing the formation of artificial oligomers/aggregates 

(Hennann et a!., 1981 ; Jaenicke, 1982; Loster and Josic, 1997), it is also unlikely that this is the case. 

Certainly, no other works that make use of cross-linking laccases has made mention of this phenomenon. 

The increase in the degree of (apparent) subunit association as indicated via monitoring of the 

sigmoidality parameter b occurs with an increase in the amount of BSA loaded (Figure 4.6, Figure 4.16) 

Cooperativity models explicitly state that catalytically subunits must be in very close proximity in order 

for the binding of a substrate to a subunit to affect another; however, an increase in the BSA content 

increases the degree of cooperativity noted. Finally, the absence of BSA during sensor fabrication 

appears to produce a sensor with Michaelis-Menten-Iike kinetics (Figure 4.8). This evidence reinforces 

the notion that this apparent oligomerisation is not an intrinsic property of the laccase during the cross

linking process. Rather, it is proposed that the apparent sigmoidality of response is due to the effects of 

BSA on the products of oxidation. 

A search through the literature indicates that BSA is able to bind a variety of phenolic compounds 

(Section 4.2.2), including catechol (McManus et a!., 1985). To investigate whether BSA inclusion has 

any binding ability towards the oxidation products of catechol, cyclic voltammograms were generated in 
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the presence of I mM catechol using electrodes fabricated only with cross-linked BSA at varying BSA 

content. These CVs reveals a tendency away from the electrochemical reversibility of catechol 

oxidation/reduction found at non-modified GCEs with increasing BSA film content. The decline in 

reversibility appears to occur through a decrease in the cathodic peak associated with the reduction of 0-

benzoquinone (Figure 4.17, below) 
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Figure 4.18: Representative Cyclic voltammograms generated showed the oxidation/reduction behaviour of 
1 mM catechol in SLB, pH 4.5 when scanned using electrodes coated with cross-linked films of varying BSA 
content. 

Inset legend indicates the amounts of BSA used in fabricating the cross-linked film . Arrow indicates starting 
direction o[scanning, from anodic (oxidation) to cathodic (reduction) sweeps. 

Scanning rate = 0.1 V.s· l 

Even though there is a decrease observable in the oxidation peak current in Figure 4.18 (above) 

associated with the increased diffusional constraints of catechol through the film, there is a more 

pronounced decrease occurring in the reductive peak with an increase in BSA. This causes the catechol 

oxidation/reduction profile to shift from reversible (0 fig BSA) to nearly irreversible (100 fig BSA) 
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behaviour. BSA thus appears to act as a trap for the oxidation products of catechol following 

electrooxidation, as indicated in the literature (Kulys et aI., 2002). Following exposure of the BSA-film 

electrodes to oxidised catechol (200 flM in 5 mls of SLB, pH 4.5, for 5 minutes), this apparent trapping 

effect declines and the electrode response begins to attain degrees of reversibility associated with bare 

GeEs. 

Table 4.4 displays a swnmary of the effects of the deposition of cross-linked BSA of varying 

concentration on the resultant catechol oxidation/reduction. 

Table 4.4: Electrochemical parameters of catechol and o-benzoquinone through cross-linked films 
of differing BSA contents. 

BSA Ep,a Ep,c 10' x Do.' 10' x DR,.,' I p,./I." 
4 Do,lDR«I 

(flg) (V)' (V)' (cm'.s') (cm'.s-I) 

0 0.375 0.300 3.26 2.92 0.867 0.897 

5 0.384 0.272 2.89 2.38 0.777 0.824 

10 0.380 0.280 2.37 1.89 0.749 0.798 

20 0.393 0.271 1.68 1.19 0.630 0.709 

50 0.412 0.310 0.46 0.05 0.2 13 0.091 

100 0.410 0.310 0.38 0.04 0.255 0.1 10 
---------- ----------- ----------- --------------- ------------ ----------- ------------
100 (ox.)' 0.406 0.302 0.60 0.49 0.628 0.812 

Unless otherWIse mdlcated, values report on averages of 3 mdependent measurements conducted at a scan rate of 
0.1 V.s·1 

I _ vs. Ag! AgCl. Mean values of?, 3 independent measurements reported ± 10m V 

2 _ Le. of catechol 

J _ i.e. of a-benzoquinone 

a _ following exposure of the film to laccase-oxidised catechol 

From Table 4.4: In the regime of BSA of [0] to [20], diffusion coefficients of both unoxidised and 

oxidised forms of catechol decline slowly and stably and the degree of reversibility declines negligibly. 

However, after BSA loadings greater than 20 mg.mr l [stock] BSA concentration, both peak reversibility 

(lP.,llp.,) and the diffusion coefficient parity (Do,IDR,d) through the film decline significantly. The 

behaviour of the respective diffusion coefficients is presented in Figure 4.19. 
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Figure 4.19: Logarithm of diffusional coefficients for both catechol and o-benzoquinone compared to the 
amount ofBSA uscd in fabricating cross-linked films. 

Hence, the apparent sigmoidality is proposed to be caused by a combination of diffusional constraints 

and oxidation product trapping itself caused by the presence of BSA. During the course of analysis of the 

biosensor, the interaction between oxidised product (generated by laccase exposed to the substrate) and 

BSA saturates the BSA film with oxidised products, diminishing the trapping effect of BSA. The 

increased diffusional coefficients of both catechol and a-benzoquinone are likely due to the relaxing of 

diffusional constraints placed on the mass transport of substrate to the enzyme and the transport of the 

product to the electrode. This is most likely due to internal rearrangement of the film caused by the 

interaction of BSA with the products of laccase-based oxidation of catechol. Only one published article 

has indicated that serum albumins, both HSA and BSA, interact with the radicalised products of laccase-

oxidation (Kulys et aI., 2002). From the aforementioned research, it was found that methyl-syringate, 

following laccase oxidation, resulted in inactivation of laccase in vitro, and that the use of BSA/HSA 

reduced the level of inactivation, through binding of the phenoxy radical in the hydrophobic pockets of 

BSA/HSA. The inclusion of albumin was also found to decrease the apparent Km of the reaction and to 

enhance the velocity of reaction, similar to the findings of this phase of research involving immobilised 

BSA and laccase. 
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4.5.3.2 Re-use: 

Of further interest from the research detailed in the above sections is the decreasing sigmoidality, and 

enhanced biosensor parameters, that occur during the re-use of the electrode. While this phenomenon 

produces a biosensor with more desirable analytical properties, including a significant improvement in 

the detection limits of catechol, the addition of a further preparative stage could lead to a greater degree 

of sensor response deviation during transport/storage and application stages of analysis, and demands a 

greater degree of understanding and explanation. 

The behaviour of the biosensor upon re-use, is itself explainable when the recorded biosensor kinetics are 

analysed using the interaction between BSA and the oxidation products, as outlined above. 

Mechanistically, the effects of re-use are analogous to the inclusion of the binding of a heterotropic 

effector (A) to a subunit, as indicated in the M-W-C model of allostericity (Figure 2.3). If substrate

binding and effector-binding only occurs in the R state to form RA, then the equilibrium ofTfR is shifted 

in much the same manner as with the introduction of substrate. This, in tum, leads to an increase of 

apparent velocity; itself presented as a decrease in the K' (i.e. Km) value, coupled with a decrease in 

cooperativity (Garret and Grisham, 1999a). That the effects of re-use are themselves dependent on both 

the absolute concentration of BSA co-immobilised (Figure 4.12) and less-so on the loading of laccase in 

films with a low BSA content (Figure 4.17) implies that modification of the BSA occurring during the 

catalytic function of laccase is necessary for this process and that modification of the laccase molecules 

themselves are, if occurring, less prevalent for dictating this process. 

The apparent decrease in sigmoidality and Km can be attributed to a decrease in the signal-inhibiting 

(product-trapping) ability of BSA when re-used, in the same manner by which exposure of the BSA film 

to oxidised catechol products enhances the rate of reversibility of catechol oxidation/reduction (Table 

4.4). As more oxidised product reaches the electrode at low substrate concentrations, the sensor response 

approaches that of the biochemical kinetics and exhibits the anticipated Michaelis-Menten-like behaviour 

anticipated for the biosensor, simultaneously decreas ing both the degree of sigmoidality and the apparent 

K m , through decreasing the initial signal inhibition caused by the presence of BSA. These factors may 
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also be improved through enhanced mass transport through the film - the increases noted for the 

diffusion of both catechol and its oxidation product through BSA films previously exposed to catechol 

oxidation products (Figure 4.19 and Table 4.4) indicate faster mass-transport occurring through the film, 

which may also improve sensor response. This explains the dependence of the relative decreases in these 

parameters upon the concentration of BSA (Figures 4.12B, 4.17B, 4.17C). The decline of Km values of 

re-used sensors with increasing BSA content (Figures 4.9, Figures 4.15) may be explained through the 

stabilisation oflaccase conformation during immobilisation through the inclusion of BSA, as is expected 

from the literature. 

The increases in i= values upon re-use (Figure 4.7 and Figure 4.14) are considered to have two origins. 

Similar to the explanation discussing shifts in Km and sigmoidality, the decrease in BSA-based signal 

inhibition upon re-use would have the effect of increasing i""" . However, a reaction pertinent to GCE 

surfaces also appears to enhance sensor response. Prior to the re-calibration of re-used sensors using 

substrate, CVs generated in the absence of substrate revealed the presence of reduction/oxidation couples 

at more negative potentials thal! recorded for catechol oxidation/reduction. This phenomenon is not 

recorded when using gold-surfaced electrodes (AuEs) for the same biosensor configuration (data for 

AuEs presented and discussed in Chapter 6 of this Thesis). Figure 4.20 displays representative CVs of 

this phenomenon. 
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Figure 4.20: CVs generated in SLB performed on pristine and re-used biosensors in the absence of catechol. 

A) GeE surfaces 

B) AuE surfaces 

CVs performed at 0.1 V.s ' in a solution ofSLB, pH 4.5 

As Figure 4.20 demonstrates, the presence of non-catechol redox peaks on re-used sensors appears to be 

restricted to GCE surfaces, and do not appear on AuE surfaces. Similarly, significant increases in the im" 

parameter are not found when considering AuEs as transducer surfaces for laccases biosensors 

(Chapter 6), indicating that significant increases of i~ for re-used sensors fabricated on GCE surfaces is 

linked to the appearance of these peaks. Furthermore, varying the scan-rate of cyclic voltammetry at re-

used GCE sensors indicates that these peaks are attached to the surface of the electrode, rather than being 

controlled via diffusion (data not shown). This is considered to be due to the attachment of catechol 
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oxidation products to the electrode surface, a phenomenon known as fouling which is discussed in 

further detail in Chapter 5 of this Thesis. Fouling, which usually inhibits electrode reactions, appears to 

be improving the sensor operational parameters in this instance (and when considering certain other 

substrates, as discussed in Chapter 5) by mechanisms which are not yet clear. 

Detection sensitivity, which has been shown to be positively influenced by i_ and negatively influenced 

by Km (exemplified in the correlation between sensitivity and the ilK values, Figures 4.10 and 4.11) is 

thereby altered by the alterations in the Km and i""x parameters, for the reasons outlined above. 

4.6. Conclusions: 

Of the three immobilisation strategies investigated, glutaraldehyde cross-linking of laccase to GCE 

surfaces yielded the highest sensitivity and was selected for further optimisation. 

The sigmoidal model outlined in Chapter 2 was successfully applied to both highly-sigmoidal and 

hyperbolic graphic functions and extracted parameters from current-curve functions that were consistent 

between biosensors of the same configuration. This is an important finding, as it demonstrates that, using 

simple, commercially-ubiquitous software, consistent kinetic parameter estimations can take place, 

which is a valuable trait when considering the applicability ofbiosensors. 

The inclusion of BSA during glutaraldehyde cross-linking of laccase during biosensor fabrication not 

only improves operational parameters (Km, i""" sensitivity) but also has the valuable trait of normalising 

protein content between batches of laccase. Since the laccases sourced have different specific activities 

and therefore different degrees of purity, this ensures that only activity needs to be normalised between 

batches. In addition to this, the use of glutaraldehyde will affect different protein concentrations 

differently, so this regulates the degree of inactivation between sourced laccases, improving fabrication 

consistency. This is especially important when considering that this laccase was sourced from a 

commercial supplier, which normally cannot guarantee purification oflaccase to homogeneity. 
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The studies reported in this Chapter lead us to conclude that the sigmoidal behaviour of the biosensor is 

related to both the absolute concentration of BSA present as co-immobilant, and is further influenced by 

the relative laccase-BSA concentration. Electrochemical investigations of BSA cross-linked films in the 

absence of laccase, but in the presence of catechol, indicates that the oxidation product/s of phenolic 

substrates bind to BSA, causing a significant decrease in the apparent diffusion coefficient of catechol's 

oxidised quinone counterpart, o-benzoquinone. Following saturation of the film with oxidised substrate, 

diffusion coefficients on both unoxidised and oxidised substrates relax, the latter less significantly than 

the former. In addition to BSA-oxidation product interactions, the attachment of oxidation products to 

GCE surfaces appears to enhance sensor function, increasing the i=, values upon re-use. Neither the 

presence of oxidation products nor improvement in i_ val ues following re-use are evident when 

examining re-use at gold electrodes (AuEs, reported on in greater detail in Chapter 6), indicating that this 

phenomenon pertains only to GCE surfaces, as opposed to a general attachment. 

While sigmoidal current-concentration responses are analytically relevant, the concentration thereby 

being related to the current through the formalism of: 

[S] = 

Eq 4.3 

Where [S] is the substrate concentration and the other symbols follow from the sigmoidal model used i.e. 

K"app is the sigmoidal parameter = c, I,,~ = d and n = b (Kurganov et aI., 200 I). 

Such a determination, however, has a tendency towards greater relative error in the accuracy of the 

current-concentration, especial ly in cases where the concentration lies outside the linear response region 

(Kurganov et aI. , 2001). The reasons for sigmoidality are discussed, as are their impacts on the other 

analytical parameters observed. This is considered to be an unnecessary complication of the biosensor 

(especially from the perspective of the end-user), but still raises some very interesting questions as to 

what mechanisms are underlying this deviation from the desired behaviour of the sensor. 
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Due to the interference from sigmoidality and the potential for variability of results upon re-use, the best 

concession, both in terms of beneficial properties conferred through BSA co-immobilisation, and the 

detrimental ones associated with the sigmoidality was found to be laccase fabricated via cross-linking at 

a pre-immobilisation activity of 0.8 U, in the presence of20 ~g BSA. This configuration of sensors were 

used onwards in the fabrication of sensors reported on in Chapters 5 and 6 of this Thesis. 

Table 4.5: Properties reported with respect to catechol for optimised cross-linked biosensors 
fabricated using 20 ~g of BSA and 0.8 U lac case. 

Sensor Property Value (pristine) Value (re-used) 

Sensitivity (nA.~M- · .cm-z) 970.5 ± 11.15 1864.4 ± 98.73 

Linear range (1lM) 3.8 - 135 0-90 

i""" (/lA.cm-·) 238.9 ± 26.62 278.6 ± 14.48 

Km(~) 125.6 ± 8.717 78.63 ± 9.24 

Degree of sigmoidality, b 1.65 ± 0.250 1.30 ± 0.147 

These parameters compare very favourably to other amperometric biosensors reported in the literature 

(Table 4.1) . Sensitivity of detection for catechol exhibits a maximum of - 1300 nA.~M-l.cm-2 with the 

examples obtained in literature, which is comparable to the initial sensitivi ties attained by the optimised 

laccase sensor and is exceeded during re-use of the sensor (Table 4.1). Those attaining these levels of 

sensitivity in Table 4.1 also exhibited a much lower linear range of detection than is reported here. 

Certainly, this sensor exhibits the highest degree of sensitivity of cross-linked biosensors cited from 

references included in Table 4. 1 

Prior to re-use, biosensor sensitivity and linear range are favourably comparable to those within its 

immobilisation class (cross-linking) detecting the same substrate (catechol), from the literature review 

presented in Table 4.1. After biosensor re-use, this increases to a value only exceeded by Yaropolov et 

al. . 2005 in the detection of hydro quinone (Table 4.1). 
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Chapter 5: Electrochemical considerations for intra-phenolic 
substrate detection 

5.1 Abstract: 

The electroanalysis of phenolic compounds, either through direct electro-oxidation or through the use of 

biocatalysis, is complicated by the multiple oxidation products that could form as a result of the 

phenoxy-radical intermediate oxidation stage, some of which are not susceptible to electro-reduction. 

This compl icates the detection of phenolic compounds through the bio-oxidationlelectro-reduction 

mechanism in chronoamperometric laccase biosensors. Herein, we propose a combined approach that 

seeks to correlate biosensor signal current with both the phenolic-enzyme kinetics (i.e. the suitability of a 

phenolic species to act as a substrate for oxidation by laccase) and the product-electrode kinetics (i.e. the 

suitability of the oxidised products to act as analytes for electrochemical detection) during the operation 

of the biosensor. 

In addition, the tendency of analytes to passivate (,foul') the electrode surface by adsorption is also 

assessed with aims to investigate the feasibil ity of re-use when considering detection of certain analytes. 

The tendency of phenolic substrates to foul the electrode surface during electrooxidation was compared 

to biosensor operational kinetics during the re-use of the electrode following exposure of the sensor to 

phenolic compounds. 

Substrate-enzyme kinetics were monitored through modelling of chronoamperometric data obtained 

using a crosslinked laccase-bovine serum albumin biosensor, which was optimised in the previous 

Chapter (Chapter 4) with respect to catechol detection. The Km value derived from this model was used 

as a basis for assessing the relative substrate-Iaccase affinity and was considered to be a property solely 

derived from biochemical kinetics. i=, and biosensor sensitivity, in comparison, were assumed to be 

governed through a combination of electrochemical and biochemical interactions in the aforementioned 

substrate/analyte contributions to signal current. 
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Current yields, through reduction/oxidation of proposed substrates at anodically-pretreated glassy carbon 

electrodes (Chapter 3), was empl oyed to assess the electroactivity of both the substrate during oxidation 

and the oxidised product in order to assess the relative signal strength / amount substrate oxidised. While 

comparisons of substrate-dependant oxidation potentials showed a limited, category-restricted, 

correlation to the substrate-dependent detection sensitivity, a new parameter comprised of relative 

current yields with relative enzyme-substrate affinities (Km) was successfully correlated to substrate

dependent detection sensitivity. 

Fouling at the electrode surface was assessed through a decrease in current response during repeated 

oxidation/reduction of the compound at the electrode surface. In particular, the occurrence of fouling at 

unmodified GCE surfaces was shown to indicate passivating behaviour of substrates when considering 

biosensor response upon re-use of the sensor. 

5.2 Introduction: 

5.2.1: AnaJyte specificity: 

Analyte specificity is a highly desirable property for biosensor technologies. The presence of non

specific signal complicates the analysis, leading to the possibility of fal se positives (in qualitative 

analyses) and over/under-estimation of the analyte of interest (quantitative). The routine presence of 

compounds generating non-specific signals requires laborious sample pre-analysis treatments or post

analysis data treatments in order to disentangle the desired signals from the prepared signals. This has the 

effect of further increasing the time and complexity of analyte detection, making the application of a 

biosensor in this context less appealing to potential end-users. These factors combined obviate the main 

advantages cited for biosensor usage - those of selectivity and rapidity of analysis. 

As discussed previously (Chapter 1, Section 1.2.3), biosensors possess an inherent tendency towards 

specificity due to the specificity of biorecognition events. Since most biorecognition agents bind a very 
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narrow range of analytes, this greatly decreases the possibility for non-desired reactions to occur, 

limiting the effects of non-specific signal generation from occurring. 

However, a caveat exists in the case of phenolic detection. The variations in structure and exposure 

effects existing between phenolic compounds (Chapter I, Section 1.2.1.2) indicates that the detection of 

phenolics also requires a degree of discrimination, and that it is analytically insufficient to perform 

assays of the total phenolic content of a given sample. The inability of a given sensor configuration to 

distinguish between a neutrallbeneficial phenolic compound or a detrimental one in a given matrix 

greatly limits the applicability of this technology from all but absolute quantifications of phenolics in a 

given sample. Thus, discrimination between phenolic species during detection remains a highly desirable 

trait when considering the deployment of this technology. 

5.2.2: Considerations of substrate ranges for laccase biosensor application 

A primary characteristic of laccases are their broad substrate ranges (Claus, 2004). A wide variety of 

compounds are amenable to oxidation via electron exchange with the T I copper ion embedded in the 

active site of laccases. Apart from ortho- and para-substituted diphenolic compounds (Couto et aI., 

2006), polyphenols (Call and MOcke, 1997; Couto et aI., 2006), anilines (Claus, 2004; Couto et aI., 2006) 

and polyamines(Cail and MOcke, 1997; Couto et aI., 2006), nitroaromatics (Claus, 2004), ascorbic acid 

(Call and MOcke, 1997), aryl diamines(Cail and MUcke, 1997; Couto et aI. , 2006), thiols (Couto et aI., 

2006); inorganic ions e.g. Mn (Call and MUcke, 1997; Claus, 2004; Couto et aI., 2006), chelated metal 

ions e.g. ferrocyanide (Couto et aI., 2006) and other aromatic alcohols (Claus, 2004) are all potential 

reducing substrates for laccase. In the occurrence of steric hindrance preventing direct substrate-Iaccase 

interaction, this is sometimes circumvented through the use of electron-transfer mediators transporting 

electrons between substrate and laccase (Call and MUcke, 1997; Couto et al., 2006), which further 

increases the range of potential substrates. These reported compounds that are potentially suitable for 

laccase oxidation constitute a relatively large array of both natural and xenobiotic compounds. As such, 
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they must themselves be considered as potential co-analytes/interferents when sample analyses on 

complex matrices are performed. 

Although it is widely accepted that laccases possess very broad substrate ranges, this phenomenon is 

mitigated by the fact that laccases display preferential binding kinetics to different substrates, which is 

explored in greater detail below. Preferential substrate-binding kinetics have been assessed as a means of 

providing a discrimination between co-analytes in a complex matrix. 

5.2.2.1 Preferential substrate-binding kinetics within the ()- and p-diphenol classes: substituent effects 

Even within the group of compounds classifiable as ()- and p-diphenol compounds, there exist significant 

differences reported in enzymatic activity towards different phenolics by laccases. The presence and 

location of substituents on the benzene ring has a great influence on the relative activity of a given 

laccase (Xu, 1996). In a study conducted by Xu, 1996, the following substituent effects were notable: 

• The presence of electron-withdrawing groups (-NO" -COCH, ) increase the oxidation potential 

of the hydroxyl group, decreasing oxidation rate by increasing Km and decreasing k,." evident as 

a decrease in the logarithm of k,./Km• The opposite effect was noted for electron-donating 

groups (-H, -OH, -CH" -OCH"C,H, ). 

• With smaller ortho-substituents (i.e. those listed above), the effect of electron 

withdrawal/donation is more important than possible steric hindrance. This correlation was not 

evident for para-substituents for the laccase examined in the study. 

The reduction of diooxygen (oxidising substrate) to water is more constant between laccases. Both the 

variance of Km between different fungal laccases (20 - 50 flM) and its dependence on pH are much more 

stable than is reported of the reducing substrate (Xu, 2001). 
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5.2.2.2 Preferential substrate-binding kinetics within the 0- and p-diphenol classes: enzyme effects 

Irrespective of substituent effects, laccases possess varying activities towards different reducing 

substrates. There is significant research interest in exploring whether variations in interaction affinities 

between laccases and different substrates could be exploited as a means of promoting catalysis of certain 

phenolics over others. These differences, while still following certain principles regarding the nature and 

location of additional substituents (Xu, 1996; Xu, 1997), also vary substantially between the laccase 

being studied (e.g. Shleev et aI. , 2004), making generalised characterisation of laccases impossible. 

This difference is present when comparing laccases sourced from different strains, or between different 

isozymes produced by the same culture (e.gs Bourbonnais et aI., 1995; Collins et aI. , 1996). Articles 

reporting on the biochemical characterisation of a given laccase routinely demonstrate that the recorded 

laccase activities (Jung et. aI., 2002; Robles et aI. , 2002; Saito et aI., 2003; Jordaan et aI. , 2004; Ibrahim 

el aI., 2010), catalytic rate constantls and Km value/s (Robles et al ., 2002; Saito et aI. , 2003; Jordaan et 

aI., 2004; Klis et aI., 2007) and pH optima (Jung et. aI., 2002; Robles et aI., 2002; Quan et aI. , 2003; 

Jordaan et aI. , 2004; Chakroun et aI., 2010; Ibnihim et aI., 2010) are based on specific substrate-Iaccase 

interactions, and differ accordingly. These interactions have been explored using various techniques -

while UVIVIS spectroscopic studies of these phenomena are perhaps the most commonly reported (Jung 

et. aI. , 2002; Robles et aI., 2002; Saito et aI., 2003; Jordaan et aI. , 2004; Klis et aI. , 2007; Chakroun et a!., 

2010; Ibrahim et a!., 2010), electroanalytical techniques employing both immobilised laccases (e.gs Ahn 

et a!. , 2007b; Quan et a!., 2003) and solution-phase laccase electroanalytical assays (e.g.s Garzillo et a!. , 

1998; Klis et al. , 2007; Frasconi et aI., 2010; Ibrahim et aI. , 2010) form a significant contribution to this 

ongoing research interest. 

Table 5.1 provides a brief quantitative overview of the relative biochemical parameters and kinetics 

extracted from literature for a selection of substrates ' interactions with laccases isolated from Trame/es 

versicolor cultures: the fungal source of the laccase used as the biorecognition element of biosensors 

investigated in this Thesis. Table 5.1 is divided between values extracted from published studies 

characterising T. versicolor laccase-substrate interactions in general (Table 5.1.1), and two further 
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distinctions that are important - the effects of substrate-specificity interactions before and after 

immobilisation (Table 5.1.2) and studies comparing substrate preference between isozymes isolated from 

the same fungal culture (Table 5.1.3). 

Table 5.1: Overview of relative substrate affinities for different substrates reported for laccases 
isolated from T. versicolor. 

Substrate pH Km k, Activity Analytical Reference 
optima' (JlM) (s·') (U.mg·') Metbod 

5.1.1. General overview 

ABTS . 455 - - Voltammetric Klis et aI., 2007 
Hydr"quinone 856 
ABTS 2.5 37 
Dimethoxyphenol 3.5 15 - - Spectroscopy Baldrian, 2006 
Syringaldazine 4.0 -
Catechol 4.0 Spectroscopy, Filhraeus and 
Guaiacol 3.5 - - - manometry Ljunggren, 1960 
Hydroquinone 4.0 

ABTS 4.5 620 - - Spectroscopy Pazar!toglu et aI., 
2005 

ABTS 3.5 800 8.000 HPLC Oianfreda et aI., -
2,4-dichlorophenol - 350 0.021 (UVNis) 1998 

5.1.2. Free vs. immobili sed forms of lac case 

ABTS 141 23.62 21155 
Catechol 539 6.36 5699 
Guaiacol 5.0 623 5.6 5014 Spectroscopy Roy and Abraham, 
Pyrogallol 149 2.31 2067 2006 (free) , 
Syrin.ga1dazine 741 9.03 8085 
ABTS 859 3.21 2873.2 
Catechol 2717 0.879 787.1 
Guaiacol 5.0 1059 0.544 487.2 Spectroscopy Roy and Abraham, 
Pyrogallol 1113 0.081 72.7 2006 (immob.)' 
Syringaldazine 1684 0.044 39.4 

Syringaldazine 5.5 9.4 - 21.7 Spectroscopy Bayramoglu et aI., 
20 10 (free) 

Syringaldazine 5.0 19.7 - 15.6 Spectroscopy Bayramoglu et aI. , 
2010 (immob.) 

ABTS 130 130 
SyringaJdazine 66 77 
Catechol 5.0 1110 115 - Voltammetry Frasconi et aI. , 20 I 0 
Dopamine 2100 186 (free) 
Ferricyanide 830 215 
ABTS 110 
Syringaldazine 58 Frasconi et aI., 2010 
Catechol 5.0 740 - - Voltammetry (immob.) 
Dopamine 1200 
Ferricyanide 640 

(cont. overleaf) 

a _ where underlined, indicates pH at which other reported values were elucidated from, not optimal pH. 
I _ (free): published parameters for the unimmobilised enzyme system reported in this subsection 
2 _ (irnmob.): parameters ofimmobilised laccase reported herein, for the same reference as in I 
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Substrate pH Km k, Activity Analytical Reference 
optima' (11M) (S'I) (U.mg· l

) Method 

5.1.3 . Between Iso~mes 

ABTS 1.30 
Guaiacol 5.0 - - 0.15 Spectroscopy 
Syringaldazine 1.37 
Vanilyll alcohol 0.078 
ABTS 1.30 
Guaiacol 5.0 - - 0.12 Spectroscopy 
Syringaldazine 1.00 
Vanilyll alcohol 0.059 

ABTS 1.9 - 3.1 - - 2.6 - 36.3 Spectroscopy 

, , . 
Unless otherwise mdlcated, reported values are obtained from free I.e. dissolved laccases. 
3 - Isozyme I of laccase in Reference. Activity reported in SOD/min. 

, - Isozyme]] of laccase in Reference. Activity reported in SOD/min 

Bourbonnais 
19953 

Bourbonnais 
1995' 

Koschorreck 
2008' 

s- lowest to highest values reported from four recombinant laccase isozymes cloned from T. versicolor 

and expressed in Pichia pas/oris from this reference 

et 

et 

et 

aI., 

aI., 

aI. , 

Table 5.1 provides a numerical overview that highlights the degree of variability between reported 

laccase substrates. As is readily apparent from the tabulated references, any investigation between the 

biochemical parameters of specific substrate-Iaccase interactions show marked differences depending on 

the laccase and the substrate used. The lack of consensus in the reported values of pH optima and Km 

values for the most commonly used phenolic substrate (e.gs pH optima of ABTS, Table 5.1.1 and 5.1.2, 

reported Km values of catechol at a pH of 5.0, Table 5.1.1 and 5.1.2) strongly indicate a lack of 

homogeneity of the substrate affinities between laccase enzymes isolated in the articles reported herein. 

The reported pH optima of the laccase-ABTS interaction, for example, range between 1.9 and 4.5 within 

the references used in compiling Table 5.1. 

Part of the reason behind the disparities in reported biochemical characterisations may also lie in the 

uncertainty as to which of the number of isozymes present in T. versicolor cultures was characterised in 

the studies from which these values were extracted. The various isozymes of T. versicolor laccase show 

marked distinctions between their substrate affinities as Table 5.1.3 shows. A further plausible reason 
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may lie in primary/secondary/tertiary structural differences between laccases produced by different 

strains ofthe same species. 

Critical to the research considerations in this Thesis, the act of immobilisation of the laccase (Table 

5.1 .2) also alters both the absolute and relative affinities for reducing substrates. An example of 

alterations in the relative substrate affinities is apparent in the study conducted by Roy and Abraham 

(2006) . Therein, the Km for ABTS increased 6. I-fold when laccase was immobilised via cross-linking, 

while the Km for guaiacol increases by only a factor of 1.7. Similarly, the reported k, .. values for 

catechol and syringaldazine decrease by factors of 7.2 and 205 respectively, upon immobilisation. This 

indicates that the act of immobilisation, rather than altering the secondary/tertiary protein structure in a 

manner that affects all subsequent laccase-substrate interactions to the same extent, produces alterations 

that affect laccase-substrate interactions to differing degrees, in a substrate-specific manner. 

This influence on the relative substrate affinities due to the aforementioned conditions (heterogeneity 

between isozymes, laccase-producing strains and alterations to substrate affinities upon immobilisation) 

indicates that, in the absence of standardisation of the source and type of laccase under investigation, it 

would be more meaningful to determine relative substrate affinities on a case-by-case basis, rather than 

through comparison with published values, or in differences between immobilisedlunimmobilised 

laccases. 

Irrespective of a lack of consensus, there is sufficient evidence to posit that there are exploitable 

differences existing in the biochemical parameters dictating specific substrate-Iaccase interactions when 

considering different substrates as analytes for detection using biosensors fabricated using a specified 

laccase. Control at the level of biorecognition provides a measure of control of intra-phenolic biosensor 

specificity in order to preferentially detect a desired substrate, or indeed to predict whether the substrate 

is readily detectable through this analytical technique. Investigations of laccase-dependent substrate 

specificity, combined with studies examining the relative electrochemical signal response generated 

through substrate oxidation, is thereby necessary in the successful prediction of a given substrate 's ability 

to be detected through laccase-biosensor technologies. 
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5.2.3: Electroactivity: 

In addition to differences between analytes based on their rate of oxidation, it is also important to 

consider the relative response each analyte produces upon oxidation by laccase. During electrochemical 

analysis using a biosensor, it is essential to know whether the potential substrates once oxidised results in 

product compounds that possess detectable reductive signal when interacting with the transducer i.e. are 

reducible. In a manner almost analogous to that of the molar extinction coefficient, E, as a measure of the 

chromophoretic ability of a compound during UVlVis spectroscopy, the relative electroactivity of a 

given substrate's oxidised form also requires assessment. 

Phenolic oxidation chemistry is a complex research area. The typical oxidation of a phenolic compound 

yields a phenoxy radical that can undergo electron-transfer reactions, radicalised chemistry and internal 

re-arrangement reactions with themselves, each other, unreacted phenolic compounds, or unrelated 

compounds present in the medium. Hence, assessments of this nature are complicated by the multiple 

end-products that potentially form following the oxidation of phenolics. 

Due to the radicalised intermediates that precede the generation of a fully-oxidised product, the 

production of dimeric, polymeric, or degraded compounds without the formation of a quinone compound 

necessary for signal generation at the electrode surface can occur. By way of example, the investigation 

of products formed during the mono-electron oxidation of guaiacol conducted by Hwang et a!. in 2008 

determined that no less than 6 different monomeric and dimeric products of differing oxidation states 

(from fully-oxidised quinones to fully-reduced phenolics) are initially formed. Cross-reaction of these 

products with one-another, or the parent compound yielded still further monomericidimericipolymeric 

compounds (Hwang et a!. , 2008). The complexity of oxidation pathways results in uncertainty of the 

relative proportion and nature of the end-products formed, in tum affecting the proportion of oxidised 

substrates that can be detected electrochemically. 

While simple, hydroxyl-substituted, para- and or/ho- phenolic compounds primarily generate their 

oxidised (quinone) counterparts, this may not necessarily be the case for other phenolics and non-
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phenolics investigated during the course of this phase of research (e.g. amine substituents). To illustrate 

the scope of possible phenolic-oxidation products that can be produced, Figure 5.1 provides a schematic 

detailing the possible intenmediates formed during the oxidation of unsubstituted phenol and the final 

products that are detectable via electro-reduction. 

Phenol A OH !! H 

"- _ repeat ~ j) n 60: ~+6~ ~ ~- '2"« > 0 

~ ~ )"Q.J 
Q) ~20 e'/H' r--------+-----------------, l--eM 

OH 
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2e'/2W 
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Q) Reported in Wang etal., 1998 

al Reported in Zh i et al.. 2003 

@ Reported in Zhi et aI. , 2003 

Figure 5.1: Schematic overview of the possible interactions and the resultant end-products of the radicalised 
intermediate state of phenol during electrooxidation, as obtained from literature. 

Structures coloured in red are amenable to electro-reduction under normal conditions; those in black are not. 
Balded. underlined letters indicate chemically-distinct phases that are referred in-text, below. 

Schemes depicted in this Figure are reproduced from Wang et aI., 1998 and Zhi et aI., 2003. 

An expanded scheme depicting the formation of catechol (D) and hydroquinone (E), and the formation of various 
dimeric compounds from phenol during electro-oxidation is available (Ferreira et aI. , 2006) 

From Figure 5.1, it is apparent that even for chemically-simple phenolic compounds, a range of end-

products are generated dur ing oxidation. The mono-electron oxidation of phenol yields a phenoxy radical 

intermediate ® which itself forms radical resonance-stabilised structures at carbon atoms located ortho-

and para- to the hydroxyl. If reacted with a reduced phenol parent compound (Scheme CD), this 

eventually resul ts in the fonmation of an aromatic polymer (£) through the further oxidation of para- and 
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ortho-substituted radicalised intermediates, such as .!!. However, hydroxylation of the phenoxy radical 

(Scheme <6» yields catechol (Q) and hydroquinone @, which themselves can oxidise at lower potentials 

to form their quinone counterparts <E and G, respectively). Scheme @ details the possible formation of 

oligomeric/dimeric structures caused by the reaction of an oxidised phenoxy radical with an unoxidised 

phenolic compound. This represented here as the para-para conjugate H , but can undergo any 

permutation of orlho- para- or oxygen- attachment of one monomer to the other. H undergoes oxidation 

in the manner of E and E to generate its quinone counterpart, 1 but can also participate in the formation 

of the polymeric product, £. 

Structures outlined in red represent oxidation products that can generate a signal when electro-reduced 

under normal conditions. Of the 9 represented end-products reported in literature, only 3 of those 

compounds are reducible under the electrochemical regimen used in this research. While structures ~, .!! 

and C are technically reducible, their rapid reactivity indicates that they will be precluded from being 

represented as reduction current at the electrode. 

For the above example, the possible formation of redox-active oligomers ill, polymers (Q) or the 

formation of intermediate phenolics (E,!::) during the oxidation of phenols indicates that the oxidation of 

a phenolic does not, in itself, necessarily guarantee the generation of significant amounts of reductive 

current obtainable from the reduction of oxidation products.This heterogeneity of products entails that 

the signal derived from a laccase biosensor may not be strictly representative of only the laccase

substrate interactions, but also is affected by the differing end-products. The generation of the polymeric 

end-productls (represents as !! in Figure 5.1) itself is problematic to the electroanalysis of phenols, and is 

discussed in the following section below. 
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5.2.4: Fouling 

I. Electroanalytical: Transducer passivation 

As outlined in the previous section, the radicalised intennediate of phenols during oxidation introduces 

the possibility of the production of oligomeric or polymeric end-products, in addition to the numerous 

side-reactions outlined in Chapter I (Section 1.2.4.3). During the electro-oxidation of phenolic 

compounds, these products tend to attach to the electrode surface, forming an adherent, passivating film 

that decreases the electrode's response to subsequent analyses (Wang and Martinez, 1991). This 

occurrence is tenned "fouling" of the electrode surface. 

The extent of a given phenolic compound's ability to foul an electrode surface is dependent on several 

factors, which are listed in decreasing order of importance: 

I) The species of phenolic compound(s) undergoing oxidation (Wang et aI. , 1998; Ureta-Zaiiartu et aI., 

2001; Ferreira et aI., 2006). As Figure 1.6 of this Thesis (Chapter I) indicates, phenoxy radical 

intennediates favour substituent localisation in the order of para- > ortho- » meta- positioning (Ureta-

Zaiiartu, 200 1; Ferreira et aI. , 2006). Blocking of a favo urable locus on the benzene ring by another 

substituent decreases the possible tree radical intennediates, which in turn, restricts the range of potential 

end-products (Ureta-Zanartu, 200 I). The occurrence of other side-reactions, as outlined both in Chapter I 

and depicted by the example provided in Figure 5.1, will also have an effect on the primary end-product, 

and hence, the structure and proportion of oligomers/polymers film produced during oxidation of the 

phenolic substrate. 

2) The bulk concentration of phenol (Wang and Martinez, 1991). The extent and rate of fouling is 

positively correlated to the concentration of phenolic compound proximate to the electrode. 

3) The materials employed as the working electrode (Ureta-Zanartu et aI. , 2001) and electroanalytical 

parameters. Differences in extent of fouling occur between electrodes, not only based on their bulk 

compositional differences (e.g. Au vs. GCE), but also vary between pre-analytical treatments of the 

electrode surface and other surface modifications (e.gs Wheeler et aI. , 1990; Mafatle and Nyokong, 
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1997). Electroanalytical parameters also influence fouling e.g. scan rate in voltammetry (Wang and 

Martinez, 1991), applied potentials and oxidation time during chronoamperometry. (Wang and Martinez, 

1991) 

4) Other operational considerations (chiefly pH (Ureta-Zanartu et aI., 2001) and electrolyte specie/s and 

concentrationls) also influence fouling. 

Variations on the parameters listed above produce a wide variety of polymers that are distinct from both 

the perspective of chemical/electrochemical properties and film architecture (e.g. porous to non-porous, 

rough to smooth) (Wang and Martinez, 1991; Ferreira et aI., 2006). Importantly for the purposes of the 

research reported on in this Chapter, distinct differences in the degree with which oxidation products 

passivate electrode surfaces are noted (Ferreira et aI., 2006). 

Some of these oxidation products find application in research and industry e.g. as electro-conductive 

polymer molecules (Parys et aI., 20 I 0); as a rule, though, the presence of fouling products is considered 

to be a hindrance in the electroanalysis of a given phenolic species, requiring a fresh transducer surface 

be prepared for each analysis. Numerous studies dealing with the modification of electrode surfaces in 

order to minimise the presence and extent of fouling have been performed. 

Biorecognition layer inactivation: 

The formation of multiple oxidation products through phenolic oxidation is not only a concern pertaining 

to the electro-oxidation of phenolics, but also to the application of laccase biosensors, where it is 

sometimes referred to as "product inactivation". Similar to electro-oxidative techniques, laccases catalyse 

the abstraction of a single electron from the phenolic moiety, causing the generation of phenoxy 

intermediate radical species. These can participate in the same oligomerisationlpolymerisation reactions 

depicted for phenol in Figure 5.1 , affecting the biocatalysts in the same manner as electrode surfaces. In 

addition, the products and product intermediates can re-participate in laccase oxidation, increasing the 

complexity of a given reaction. Numerous studies report on the formation of oligomeric/diimeric 
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products following laccase-catalysed phenolic oxidation - in some cases, this is an intended effect e.g. in 

the biosynthesis of polymers (e.g. Karamyshev et aI., 2003). 

Two potential mechanisms can affect the biorecognition layer: passive or active transformation of the 

laccase by the oxidation end-products. From a passive sense, entrapment of the catalytic portions of the 

biorecognition layer can occur by the polymeric/oligomeric end-products of the laccase catalysis 

(Canfora et aI., 2008), imposing diffusional and conformational restrictions on the biocatalysts. 

Actively, it is known that oxidation of, and conjugation to, amino acid residues of proteins can occur; 

principally tryptophan, tyrosine, histidine and cystine/cysteine res idues can interact with the 

intermediates and products of phenolic oxidation (Call and Milcke, 1997), altering laccase activity. In 

laccases, product inactivation is minimised by the relative absence of these residues along surface-facing 

tertiary structures (Call and Milcke, 1997), but sti ll occurs as a time-dependant decrease in laccase 

activity (Canfora et aI., 2008). The rate of inactivation is noted to differ according to the substrate 

undergoing oxidation (Shuttleworth and Bollag, 1986; Can fora et aI., 2008). 

Conceivably therefore, the oxidation of phenolic substrates during the operation of the biosensor can 

result in an attenuation of biosensor signal. This could occur either via passivation of the electrode and/or 

of the biorecognition layer during the normal operation of the biosensor. When considering different 

substrates, therefore, their inherent capability to generate passivating end-products should also be taken 

into consideration for a more complete characterisation of the operational applicability of the biosensor. 

Due to the potentially-numerous side reactions that can occur in the time between the substrate-laccase 

interactionls and product-electrode interaction, a given phenolic compound may demonstrate a high 

substrate affinity to laccase, but the oxidation of the parent compound may be under-represented through 

measurement of reductive current during the operation of the biosensor. This, in tum, demonstrates that a 

method of determining the relative electroactivity of the products of laccase-oxidised phenolic 

compounds remains an important consideration when exploring the potential effects of different 

substrates on the biosensor system optimised in Chapter 4. 
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5.3 Aims: 

The overall aim of the research reported on in this Chapter was thus to assess the differences in responses 

when the biosensor (optimised in the previous Chapter of this Thesis) was employed in the detection of 

differing phenolic compounds. This was performed with an aim to disentangle the electrochemical 

properties of a given phenolic compound's oxidation products (i.e. fitness as an analyte) from the same 

phenol's biochemical properties when considered as a substrate for the immobilised laccase comprising 

the biosensor used herein (i.e. fitness as a substrate). 

Due to the aforementioned considerations of sterie hindrance, as well as a desire to restrict the selected 

substrate range to that of simple electrochemical/biochemical interactions, relatively simple substrates 

have been tested and compared as to their suitability in this regard. 

A key research question addressed in this chapter was to assess whether the electrochemical behaviour 

of a substrate in the absence of laccase oxidation could be used to predict the efficacy of detection within 

the biosensor configuration optimised in Chapter 4. While the biochemical reaction rates and kinetic 

properties of potential laccase substrates have been previously correlated (e.g. Xu, 1996) with their 

oxidation potential, and studies conducted on the effects of substituent presence and location on the 

sensitivity of detection via amperometric laccase biosensors Jarosz-Wilkolazka et aI. , 2006, to date no 

study has yet been performed on whether electrochemical investigations of different substrates can be of 

aid in predicting biosensor response to those substrates. Hence, it was of interest to consider if other 

electrochemical parameters would be of aid in predicting the response of a biosensor to various 

substrates. 

If successful, this research would find application in fields requiring the monitoring of a single phenolic 

compound, or a small closely-related range of industrial monitoring of a few, known and well

characterised phenolic streams (such as azo dyes, pharmaceutical monitoring, etc.) The extent to which 

fouling behaviour infl uences the biorecognition layer and transducer surface, as it is anticipated to affect 

future analyses using the same sensor was also a key question to be addressed. 
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The sub-aims of this Chapter are, hence: 

(I) The selection of 10 suitable phenolic substrates, with simple, relatable differences in their chemical 

structures for voltammetric assessment and calibration using the biosensor configuration optimised in 

Chapter 4 ofthis thesis. 

(2) A brief electrochemical characterisation of the oxidation/reduction reactions ofthe selected substrates 

via CV in the absence of laccase, but under the same operational conditions used in biosensor assessment 

(Aim 3). This was performed in order to determine the basic electrochemical properties, in an attempt to 

assess the extent of potential side-reactions occurring following oxidation, and to obtain information 

regarding the relative electroactivities of the substrates. 

(3) An investigation of the biosensor's operational parameters while using these substrates. The 

characteristics, both purely biochemical (Km' degree of cooperativity) and those arising from both the 

electrochemical and biochemical properties of the phenolic substrate Urnax, biosensor sensitivity). 

Assessments via CV were performed to determine major differences occurring between electro-oxidation 

and biochemical oxidation of the selected substrates. 

(4) To ascertain which electrochemical parameters have an effect on the operational parameters of the 

biosensor when deployed against a specific substrate. From the information on the biosensor's 

operational kinetics (3), substrates were initially categorised based on structural differences and then 

contrasted against the electrochemical parameters obtained achieving Aim (2) of this section. 

(5) To assess the occurrence of biosensor attenuation upon re-use of the biosensor and to relate it to the 

electrochemical behaviour of the substrate. 

(6) Modulation of the biochemical properties of the laccase-substrate kinetics and electrochemical 

properties of the analyte using small alterations in electrolyte pH to further expand on Aims (3) and (4). 
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5.4 Methods and Materials: 

5.4.1 Apparatus 

Electroanalytical equipment was used as outlined in Chapter 2. 

Electroanalysis and biosensor modification took place at 21°C and all reagents were warmed to this 

temperature prior to use 

5.4.2 Reagents 

Unless otherwise stated, the main buffer and electrolyte used throughout this research was SLB, which 

was adjusted to pH 4.5 using 2 M NaOH. In studies requiring diffe rent pH values, SLB, adjusted to a pH 

of either 3.5, or 5.5 was used and is indicated as such in-text. 

5.4.2.1 Substrate selection, solubilisation and sourcing: 

. All substrates used in this Chapter were sourced from Sigma-Aldrich and were of analytical grade purity 

Go: 98%), or higher. 

Substrates were dissolved in water immediately prior to analysis. In cases of poor solubility (especially 

prevalent at high concentrations of stock substrate), substrates were induced to dissolve by the addition 

ofa few microliters of2 M NaOH. 

Table 5.2 lists the phenolic substrates used in this phase of research and the acronyms used henceforth in 

this Chapter, as well as other properties useful in contextualising their harmfulfbeneficial properties. 

Figure 5.2 displays the chemical structures of the test substrates used in the subsequent investigations. 
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Table 5.2: Selected substrate overview: 

Substrate Acronym Hazard L DSO Substituent Ancillary 

Classification' (mglkg)," properties' 

2-aminophenol 2-AP Harmful 951 2-NH, Electroactive polymer 
precursor, synthesis 
precursor 

1,2,4-Benzenetriol BZT Harmful Not 2,4-0H -
established 

Catechol CAT Toxic 260 2-0H Industrial antioxidant 
and precursor 

Gallic acid GA Irritant 5000 2,5-0H Phytochemical, 
4-COO' antioxidant and 

antibacterial properties 

Guaiacol GOL Harmful 520 2-COCH, Phytochemical, 
organoleptic properties 

3-Methylcatechol 3-MC Irritant Not 2-0H Model product for 
established 3-CH3 bioproduction of 

3-catechols 

Hydroquinone HQ Harmful 302 4-0H Ecotoxic (aquatic), 
industrial antioxidant 
and precursor 

p-Cresol PCL Toxic 207 4-CH, Petrochemical industry 
byproduct 

Phenol PHE Harmful 317 - Polymer, plastics and 
resin precursor 

ABTS ABTS Irritant Not Non-phenolic Widely-used laccase 
established 4-COOH activity assay substrate 

I - as reported by MSDS proVIded by supplIer (SIgma-AldrIch) 

2 _ as assessed by oral ingestion in mammalian model organism, usually rodent. 

3 _ excluding those found in MSDS 

4 _ reported relative to the primary hydroxyl common to most substrates (See Figure 5.2) 

a _ Ancillary properties cited in this reference. 

References4 

Palys et aI., 
2010 

-

Antonyraj et aI., 
2010' 

Max et aI. , 2010 

Dorfner et aI., 
2003 

HUsken et aI. , 
2001 

Antonyraj et aI., 
2010' 

Tallon and 
Hepner, 1958 

Busea et aI., 
2008 

-
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Figure 5.2 : Chemical structures and abbreviations of compounds investigated as potential substrates. 

5.3.3: Methodology 

Throughout this phase of research, all experiments were performed in at least triplicate independent 

measurements. In general, independent observations were performed in quadruplicate, unless stated 

otherwise. 

All cyclic voltammetry was conducted at a scan rate of 0.1 V.s·' , unless otherwise stated. All 

chronoamperometry was conducted with the working electrode poised at a potential of -0.17 V vs. 

AglAgCI, unless otherwise stated. 
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5.3 .3 .1 Electroanalytical substrate characterisation (bare GCEs) 

Electrodes were polished, anodically pretreated at + 1.45 V for 5 s in 0.1 M NaOH and then sonicated in 

successive solutions of ethanol and water (as per findings in Chapter 3) and stored in water prior to 

analysis. 

Prior to analyle characterisation, electrodes were cycled in SLB, pH 4.5, between the potentials of -0.3 V 

and + 1.1 V for 10 cycles, or until a stable baseline was achieved. Following cycling, the phenol under 

investigation was added to a final concentration of I mM and briefly homogenised by stirring. The 

electrode was then cycled under the above conditions for a further 5 scans. 

The resultant peak characteristics: Peak potential (£); Peak Current (A); Peak charge (Qp) and Wave 

Charge (Qw) were noted and used for the proceeding criterion of electroactivity outlined below. In the 

occurrence of multiple reduction/oxidation peaks present during the assessment of a given substrate, 

electroactivity was assessed primarily on the characteristics of the most prominent reduction/oxidation 

peaks. 

a) Categorisation of substrate reversibility: 

The degree of reversibility of each substrate was determined using the following guidelines. In order to 

categorise a substrate as ei ther reversible, quasi-reversible, or irreversible, at least 2 of the tabulated 

criterion had to be fulfilled. 

The distance between oxidation/reduction peaks (dE) was assessed by the following formula: 

Eq.5 .1 

Where Ep.a is the apex potential of the anodic peak and Ep., is the apex potential of the cathodic peak. In 

the occurrence of multiple reductive waves, the distance between Ep.a and the closest significant 

reductive peak was used to determine dE. 

The current yield (%J) and the charge yields were determined according to the following formalism: 
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%1= 
Eq.5.2 

Where 1p.o and 1p,c denote the apex currents of the anodic and cathodic peaks, respectively. Substituting 

the integrated current for the whole peak to determine the charge passed during the formation of the 

oxidation/reduction peak, Qp, for I in Eq. 5.2 provides the charge (%Q) ratio (Eq. 5.3). 

%Q= 
Qp,c Eq.5.3 

For certain substrates that lacked a distinctive reductive peak, or produced multiple reductive peaks upon 

oxidation, the charge passed during the cathodic wave at potentials more negative than the primary 

oxidation peak was calculated to produce Qw,c. using Eq. 5.4 

Eq.5.4 

Where the charge passed for the reduction of phenolic oxidation products (/J,.Qw,,,d) was corrected for the 

charge passed by the electrode/electrolyte system in the absence of the phenolic species (/J,.Q , ). 

To provide a pictorial overview of the above measurements, a typical cyclic voltarnmogram of the 

oxidativelreductive profile obtained using unsubstituted phenol (PHE) is presented below (Figure 5.3), 
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Figure 5.3: Typical oxidation/reduction profile of phenol (PHE) in SLB, pH 4.5. 

Annotations depict typical parameters extracted from cyclic voltammograms. 

1.000 

Legend: I p,1 - Peak oxidation current~ Ep,a - Peak oxidation potential; E p,c - Peak reduction potential closest to Ep,a; 

Qp., (Dark grey area) - Peak oxidation charge; Qw., (Light Grey areas) - total integrated charge for the reductive 
wave (blank-subtracted). 

Grey cyclic voltammogram overlaid shows the cyclic voltammograrn generated prior to the introduction of phenol 
into the electrolyte 

From the criterion of dE, %! and %Q, substrates were assigned categories indicating their respective 

degrees of electrochemical reversibility, using the conventional system i.e. reversible, quasi-reversible 

and irreversible. Table 5.3 shows the various criterion used in assessing a given substrate' s reversibility. 

Table 5.3: Criterion for classification of analytes with respect to electrochemical reversibility 
during oxidation/reduction at bare GCEs: 

Degree of reversibility dE (V) %1 %Q Fouling rate 

Readily reversible (reversible) :s; 75mY 80%-100% > 70% Negligible 
Quasi-reversible > 75mY 20%-80% >50% Moderate 
Irreversible > 150 mY <20% < 10% Severe 
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In order for an analyte to strictly qualifY as a reversible i.e. Nemstian system, dE values should range 

between 60.5 and 57.0 mV (depending on the relative distance between the peak potential and the onset 

of the cathodic sweep), and the ratio of cathodic to anodic peak current should approach unity (i.e. %1 -

100%) (Bard and Faulkner, 200 I). However, given the imprecise measurements of peak currents via CV 

(Bard and Faulkner, 2001), the complexity of phenolic oxidation/reduction chemistry outlined in the 

Section 5.2.4 of this Chapter, as well as the non-optimal conditions that analytes were anticipated to find 

themselves in with regard to pH and electrode effects caused by the heterogeneity of glassy carbon 

surfaces (Chapter 3), criterions for classification of reversible analytes/substrates presented in Table 5. I 

were broadened beyond the strict definition outlined by Bard and Faulkner, 2001. 

Similarly, the boundaries between categorisation of quasi-reversible and irreversible substrates were 

given similar considerations. dE values for quasi-reversible systems range between 61 and 212 mY, 

depending on the dimensionless CV rate parameter, 1jI, for systems exhibiting transfer co-efficient values 

of 0.3 > (l> 0.7 (Bard and Faulkner, 2001). Hence, while analytes classified as irreversible were not, in 

the strictest sense, totally irreversible (%1 < 20%; dE> ISO mV in Table 5.1, as opposed to the strict 

definition wherein both parameters would have values of 0% and indeterminable, respectively), 

classifications of these substrates were performed on the basis that these quasi-reversible substrates 

tended towards mainly quasi-reversible or irreversible behaviour. 

For the purposes of this research, at least three of the properries indicated in Table 5.3 had to be met for a 

substrate to qualifY as a reversible, quasi-reversible or irreversible analyte during this phase of research. 

The fourth criterion for reversibility was the absence of, or negligible presence of, fouling at a bare GCE 

surface, in order to distinguish a substrate as either reversible, or quasi-reversible. This was used in cases 

where uncertainty in categorisation existed for a given substrate. The methodology for ascertaining the 

extent of fouling is outlined in the proceeding section. 
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b. Electrochemical fouling rate: 

The extent offouling is assessed electroanalytically by measuring the decrease in voltammetric current as 

a function of successive scans (Mafatle and Nyokong, 1997), or of oxidation time (Wheeler et aI., 1990). 

Hence, the peak characteristics of 5 successive scans were assessed in order to investigate the extent of 

fouling that a given substrate produces at a bare electrode during oxidation/reduction. In cases where 

additional redox products accumulated at the electrode within the potential window used to assess 

fouling rate, the increase and position of reductive peaks was also tracked. 

In order to meaningfully quantify and compare results from different phenolic species, these values were 

linearised by graphing against the inverse of the scan number used, and the resulting gradients of the 

I oxidation! scan number- I were presented herein. 

c. Assessment of unity between electrooxidation and laccase-catalysed oxidation 

Following chronoamperometric analysis of the substrate-biosensor kinetics (Section 5.3.3.2, below), 

cyclic voltammograms generated between -0.3 V and +0.8 V using the laccase-modified GCE electrode 

in the presence of the substrate were performed. The presence or absence of peaks arising from the 

oxidation/reduction of the main phenolic species was recorded in order to deduce whether the same 

mechanism dictating the electro-oxidation of a given phenolic species governed its laccase-catalysed 

oxidation. 

5.3.3.2. Biosensor responses: 

Biosensor performance and the elucidation of operational kinetics was achieved via sigmoidal modelling 

of the current-concentration profiles of each substrate. This was performed as discussed in Chapter 4, 

using the biosensor operational kinetics model and data-gathering and processing methodologies outlined 

in Chapter 2 of this Thesis. 
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Biosensors were fabricated using sequential I III aliquots of the following: 20 mg.mr' BSA stock 

solution; a concentration of laccase corresponding to a total of 800 V.mr'; 15% glutaraldehyde. These 

were then briefly mixed and allowed to cross-link at room temperature until dry (- 30 minutes). 

Thereafter, fabricated biosensors were stored in SLB, pH 4.5, at room temperature until used, within 

0-2 hours of fabrication. The relevant optimisation studies and rationales detailing the reasons behind 

these concentrations of proteins have been reported in Chapter 4 of this thesis. 

The electroanalytical procedure for the application of the biosensor to the differing substrates is the same 

as described in Chapter 4 of this Thesis, as were the conditions for sensor re-use. 

Data analysis and extraction of modelled parameters took place as described in Chapter 2, using the 

modelling system and goodness-of-fit indicators outlined in Chapter 2 (Section 2.4 and Appendix I, 

respectively). Values of parameters were interpreted as outlined in Section 2.3 and Section 2.4 of this 

Thesis. 

5.5 Results and Discussion 

5.5.1 Electroactivity assessment at bare GeEs: 

For the purposes of visual comparison, Figure 5.4 displays typical CV results for: irreversible (gallic 

acid); quasi-reversible (guaiacol) and reversible (catechol) phenolic electrochemical behaviour as 

investigated at bare GCE surfaces. Screening downstream of the main peak was performed on biosensors 

after incubation with substrate in order to determine whether electrooxidation resulted in the same 

products as that catalysed by laccase. 
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Figure 5.4 : Examples of: A) Irreversible, B) quasi-reversible and C) readily reversible phenolic compounds, 
as assessed at bare (unmodified) GCEs in SLB, pH 4.5. 

Black arrows indicate current and potential scales. 

Grey arrows indicate the direction of potential application, from anodic to cathodic sweeps. 

Grey cycl ic voltammograms inset into each sub-Figure show cyclic voltammograms generated prior to the 
introduction of said substrate to the electrolyte solution. Scan rates for all represented voltammograms was 
maintained at 0.1 V.s·l . 

As evidenced in Figure 5.4, distinct changes in the number, morphology and position of peaks were 

observed when different analytes were electro-oxidised and then reduced at bare GCEs. This 

infonnation, together with the fouling analyses was collated, and the averaged values for each substrate 

are presented below (Table 5.4). Figure 5.5 shows demonstrative data collected from the oxidation

reduction of guaiacol and its oxidation products, together with the data-processing techniques used to 

assign relative rates of fouling (either oxidative or reductive peaks). 

176 



Chapter 5: Electrochemical considerations for intra-phenolic substrate detection 

o - - ·15 
·3E.S 
A) L-.~200~--OO.OOO~-'O~.200~-',~.~~~OT"OO.--OO~ .. O--C, .. ~-J 

Potential applied (V vs Ag/A.gCI) 
B) 

60 

:;;40 

-= • • ~ 

20 

- -- --- - -.--
____ Jp,a -. lp,e 

I ----

-30 100 

80 

-25 ~ 
<' ~60 
=. 0. 

~ " u ' • 
_Q:. _E 40 

-20 ";f,. 

1 2 3 4 S 
Scan Number 

-, ___ Ip,a 
--- --
• Ip,e 1-

I 
----=:..' 

120 

100 

80 ~ ' 
~ 

60 ! , 
40 ~ 

20 V'" 83 .596x+ 15.912 - Y'" ·29.888)(-+ 104.99 20 

o 

C) 0.1 0.3 o.s 0.7 
Scan Numbe ..... 1 

0.9 1.1 

-15 o 
1 0 ) 0.1 

Rl = 0.9986 R2 '" 0 .9823 

0.3 0.5 0.7 
Scan Numbe ..... 1 

0.9 

- 0 

1.1 

Figure 5.5: Fo.uling extent of guaiacol (GOL) at a concentration of 1 mM, as assessed at a bare GeE in SLB, 
pH 4.5. 

Both the main oxidative peak (black) and the main reductive peak (grey) are presented here. 

Error bars indicate standard deviation from the mean, n = 3. 

This figure depicts the transformation of data from: 

A) Successive scans showing fouling behaviour of guaiacol (GOL). Grey scan shows cyclic voltammogram in the 
absence of guaiacol. 

B) Averaged peak data tracked against scan number 

C) Averaged peak data plotted against the inverse of the scan number. 

D) Normalisation of peak data to maximal current observed in the study. 

As Figure 5.5 displays, graphing of the oxidative and reductive currents against the inverse of the scan 

rate provides a satisfactory means of linearising the data (Fig 5.5 C), while assessment of the gradients 

obtained (Fig. 5.5 D) provides a rapid method of comparing the relative extents of fouling of the 

electrode upon oxidation/reduction of the speci fied phenol/oxidation product(s). Larger gradients are 

interpreted as an increased rate of fouling at the bare GCE. Table 5,4 displays a summary of the results 

obtained from the electrochemical characterisation of the laccase substrates, as assessed at bare GCEs. 
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Table 5.4, below, records the categories that substrates were placed in, and the pertinent electrochemical 

parameters for the initial oxidative peak and the closest reductive peak. 

Table 5.4: Findings of peak reversibility and fouling of the oxidative currents for potentiallaccase 
substrates: 

Initial scans Successive scans 

Substrate Ep,a Ep,c dE %1 %Q Fouling rate' Fouling rate' 

(V)' (V)' (mY) (%) (%) 
(61p".scan) (61p".scan ) 

% % 
Reversible 

BZT 0.149 0.081 68.4 90.4 + 1.28 66.9 + 2.0 3.90 3.88 

HQ 0.287 0.211 76.5 94.3 :!: 0.94 78.0 :!: 1.1 -1.77 -0.97 

3-MC 0.348 0.262 85 .5 83 .9 :!: 0.55 91.3 :!: 0.5 0.35 0.12 

CAT 0.371 0.313 57.8 85 .3 + 0.86 90.6 + 2.5 -0.85 3.29 

Quasi-reversible 

2-AP 0.363 0.061 303 13 .9 + 1.78 26.2 + 12.5 65.8 -6.87 

ABTS 0.548 0.462 85.5 67.1 :!: 2.10 107 :!: 3 -3.68 -6.76 

GOL 0.681 0.244 436 34.8:!: 0.76 49.1:!:1.1 83.6 -29.7 

Irreversible 

GA 0.358 -0.151 509 1.16:!:0.01 0.033:!:0.002 84.7 0 

P-CL 0.745 0.145 612 1.35 + 0.03 1.89 + 0.11 129 0 

PHE 0.841 0.438 403 14.7 + 1.0 37.9 + 2.9 75.8 -30.4 
• - reported herem vs. Agi AgCI reference electrode. 

2 _ Negative values of fouling scans are indicative of eiectrodeposition onto bare GCEs. 

Reported values have a standard deviation from the mean S 5 m V or < 1 % unless otherwise stated. Number of 
observations, n ~ 3. 

Substrates classified as reversible (Table 5.4) uniformly showed the lowest dE values (> 77 mY), while 

possessing very high %1 and %Q values accompanied by minimal fouling. In some cases (HQ and CAT), 

fouling studies indicated an increase in peak current (represented as a negative value for fouling rate 

measured by Ip,,) with successive scans. Substrates classed as irreversible possessed opposite 

characteristics - significantly higher dE values (>400 mY), accompanied by low %1 and %Q values and 

significant relative fouling rates. Those categorised as quasi-reversible exhibited properties that were a 

mixture of both reversible and irreversible properties, with significant variances in dE, %1 and fouling 

rates that were a mixture of characteristics of either of the other classes of substrates. 
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Ep. is by itself an important parameter to measure and record, in that it is an indication of the relative 

thermodynamic ease at which an analyte undergoes oxidation (Section 2.3 .2 of this Thesis), which is 

relevant to both electrochemistry and laccase-catalysed oxidation. Laccases catalyse reactions by 

shuttling electrons between the reducing substrate (phenolics) and the oxidising substrate/s (0, under 

natural conditions). The copper T 1 atom embedded in the active sites of laccases are often characterised 

by their oxidation potential obtained through redox titrations; hence, the differences extant between the 

oxidation potentials ofTI si tes and the oxidation potential of substrates are indicative of the relative ease 

by which the laccase can oxidise the substrates and are thereby related to the rate of substrate oxidation 

(Xu, 1997; Hong et aI. , 2006). Hence, the larger the difference between the oxidation potentials of 

laccase and the substrate become (Xu, 1997) and the more thermodynamically favourable oxidation of 

the substrate is. 

The oxidation potentials of T 1 sites differ between the laccases under consideration (e.g. Xu, 1997) and 

(in the case of immobilised laccases) by the conformational alterations occurring due to the 

immobilisation process. Both the characteristic potentials for substrate and the active site of laccase are 

influenced by operating conditions (temperature, pH (Xu, 1997), ionic strength, etc). However, while the 

oxidative potential for substrates decreases at a rate of - 58 m V /decade with increasing alkalinity, T 1 sites 

exhibit a much lesser negative dependence on pH (Xu, 1997). As alkalinity increases, the difference 

between these potentials widens, indicating an increased rate of substrate oxidation. Reaction rate 

increase under increasing alkalini ty, however, is counterbalanced through inhibition of the laccase at the 

copper T ,IT 3 site (inVOlved in diooxygen binding and reduction) caused by increasing OH- concentration 

(Xu, 1997). 

A cautionary note is warranted at this juncture. The %l values, as they were quantified via 

electro-oxidation of the substrate, are not to be taken as being strictly representative of the 

oxidation/reduction behaviour of substrates undergoing oxidation via the immobilised laccases in the 

biosensors. Heterogeneity between the mechanisms of oxidation through biochemical or electrochemical 

mechanisms may result in the formation of different compounds. Table 5.S (below) displays 

presence/absence of electro-active compounds when comparing the oxidation of laccase substrates 
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through electrochemical, or biochemical means, indicating the formation of differing end-products. It 

must be emphasised that the electrochemical investigations were performed to create relative 

comparisons between the electrochemical behaviour of substrates/products, rather than to produce 

accurate depictions of oxidation end-products expected to be produced by the immobilised laccase. The 

ongoing oxidation of substrate during deployment of the biosensor would make determination of the 

calculated %1 values very difficult; added to which was the concern that the CVs performed at biosensor 

surfaces themselves would result in products arising from both electro- and biochemical-oxidation. 

Hence, the values reported for the %1 in Table 5.4 are not expected per se to be an accurate indication of 

the actual ratio of charge conveyed through the oxidation of substrate by laccase. 
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Table 5.5: Summary of the peaks found to be present during oxidation-reduction of phenolic 
substrates at bare GeEs and comparison with anticipated laeease-eatalysed oxidation products 

Number of redox Literature 
Peak(s) (ale)' 

Substrate Bar. Bare Laeease- Anticipated laeease-eatalysed References 
GeE GeE modified oxidation produetls' 

lSI scan 5th scan GeE' 

Reversible 

BZT III I I I 111 2-hydroxy p-benzoquinone 

HQ I I! I I I 111 p-benzoquinone Zhi et aI., 2003 

3-MC II! II! I (2) I I (2) 3-methyl-o-benzoquinone Nematollahi and 
Goodrazi, 200 I 

CAT III II! I I I a-benzoquinone Zhi et aI. , 2003 

Quasi-reversible 

2-AP 2 / 4 4 / 4 2 1 I (3) Polymers, dimers, a-benzoquinone, Gon,alves et aI., 
benzoquinone monoiimine 2000 

ABTS 2 /2 2 / 2 2(3)/2(3) Stable monocation radical, Munteanu et aI., 
Stable dieation 2006 

GOL I 13 3 / 3 3 / 2 Monomers, dimers, oligomers Hwang et aI., 2008 

Irreversible 

GA 2 / 2 2 / 2 1/0(1) - -
P·CL 112 2 I I 1(2) / 0(1) _ Dimers, polymers, Pummerer's Benfield et aI., 

ketone 1964 
Navarra et al., 

2010 

PHE 113 3 / 2 4 / 4 CAT, HQ, dimers, polymers Wang et aI., 1998; 
Zhi et aI., 2003 

- Represented by number of peaks on anodic wave / peaks on cathodic wave of the first scan 

2 - Numbers indicated in brackets represent the number of peaks present on the CV that include minor peaks i.e. 
< 10% current of the main peaks reported in unbracketed terms. 

3 - Where published articles based on laccase-substrate oxidation products were not available, those reporting on 
the electrochemical oxidation of substrates under acidic aqueous conditions at glassy carbon electrodes were used. 

The differences in the number and distribution of peaks present between the biosensor-generated CV and 

the urunodified electrodes (Table 5.5) reinforces the above view that electro-oxidation and biochemical 

oxidation most likely result in the formation of different end-products. However, the purpose of 

assessing Table 5.5 displays that those compounds categorised as reversible display only a single 

oxidation/reduction couple, indicating that a single product is generated during electro-oxidation which is 

conserved between laccase- and electrode-oxidation pathways, a view bolstered by literature regarding 

laccase-oxidation products. The sole exception to this, 3-MC, is discussed at a later stage in this Chapter. 
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As mentioned previously, these compounds exhibit either very little fouling, or exhibit electrodeposition 

at the bare GCE, perhaps indicating that only very small proportions of the oxidation products are 

produced in more complex states than the anticipated oxidation products described in literature. 

Furthermore, Table 5.5 indicates that those compounds indicated in literature to possess numerous 

oxidation-products themselves have numerous peaks present in the reductive wave. The sole exception of 

this is P-CL, which was noted to deposit a strongly-coloured yellow-gold film on the electrode surface 

following electro-oxidation. In addition, Table 5.4 indicates that both P-CL and GA analytes exhibited 

two of the highest relative fouling rates when bare GCEs were successively scanned in solutions where 

they were present. This infers that the products of both these substrates, while themselves being 

negligibly electroactive (possessing very low %/ and %Q values), are formed during its oxidation and 

have a pronounced passivating effect on the transducer surface. Fouling of the electrodes during GA 

oxidation was found to be unaffected by narrowing the potential window to just after the main oxidation 

peak seen in Figure 5.4A (data not shown), indicating that the least-positive oxidation event is the source 

of the production ofl'assivating compounds. 

In all other assessments of the quasi-reversible and irreversible substrates, the oxidation of the parent 

compound is accompanied by the production of numerous peaks at potentials significantly more negative 

than the main oxidation peak. This is evidenced by the significantly large dE values (Table 5.4) in these 

categories, relative to reversible substrates. This is considered to be due to the formation of electroactive 

compounds that are not structurally identi cal to the parent compound and, as such, do not regenerate 

back to the parent compound upon reduction. Secondary reduction/oxidation peaks exhibited an 

increasing current with increasing scan numbers, concomitant to the decrease of the current associated 

with the oxidation of the parent compound. As stated previously, these substrates also exhibited 

significant declines ofthe main oxidative peak current with successive scans. 

As cyclic voltammetry at the laccase biosensor surfaces were performed after chronoamperometry (i.e. at 

conditions of substrate saturation, or near-saturation within the biorecognition layer), significant amounts 

of the parent substrate were assumed to be present at the electrode surface during cyclic voltammetry. As 
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expected, peaks corresponding to the oxidation of the parent compound were present for all the 

substrates analysed. While it was potentially true that, in the case of reversible substrates, their reduction 

at the electrode at potentials more negative than the oxidation peak may cause the localised formation of 

the parent compound (giving rise to an oxidation peak), the presence of these peaks in both quasi

reversible and irreversible compounds indicated the presence of significant amounts of parent substrate 

within the biorecognition layer following saturation of the immobilised enzymes. 

5.5.2 Biosensor response to different substrates: 

Detection sensitivity and i=, were considered to be governed by both substrate-enzyme kinetics and 

analyte-electrode kinetics. Through their inclusion of electrochemical signals (current), their 

determination arises from a mixture of electrochemical and biochemical effects. Conversely, Km and the 

degree of sigmoidality, b, were considered to be wholly biochemically controlled, due to their 

mathematical exclusions of any electrochemical considerations (Eq. 2.3). 

A high degree of variability in the sensitivity of detection was apparent between selected substrates. 

Figure 5.6 shows representative current-concentration curves generated by the biosensors when 

calibrated using different candidate substrates, HQ and GA. 
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Figure 5.6: Current-concentration responses of laccase biosensors to two separate substrates. A) Gallic acid 
(GA) and B) Hydroquinone (HQ). 

Points on the graphs displayed as black squares joined by a line correspond to the areas of the current-concentration 
range at which detection sensitivity and linear response range were calculated. 

Inset boxes show operational parameters drawn from the regression of the linear portion of the graph and those 
obtained from modelling of the data 

A comparison between the two current-concentration curves provided in Figure 5.7 A) and B) readily 

shows that substantial differences occur between substrates with regard to their individual detection 

sensitivities, linear response ranges, and modelled parameters i=" Km and a lesser variation of the 

degree of sigmoidality, b, when concentration of substrates was varied using laccase biosensors. Figure 

5.8 provides a graphical depiction of the differences obtained in detection sensitivity when different 

substrates were assessed using laccase biosensors. 
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Figure 5.7: Overview of the substrate-detection sensitivities from the linear range obtained from the current
concentration functions of different substrates by the laccase biosensors. 

Where not visible, biosensor sensitivities are recorded by their average value, in boxes coloured respectively black 
and grey, indicating pristine biosensor values and those that were generated using re-used biosensors. 

Error bars indicate the standard error from the mean. Number of observations, n > 3. 

Due to the high degree of variability in detection sensitivity and other parameters between substrates (as 

evidenced in Figure 5.7) and the associated difficulties in meaningfully presenting this data graphically, 

the operational parameters obtained from this phase of research are presented in tabulated form, below. 

Tables 5.6 and 5.7 outline the main parameters elucidated from the analysis of the laccase biosensors 

when exposed to different substrates, both in the pristine state (i.e. immediately after modification) and 

following analysis of the same substrate ("Following re-use"). Table 5.6 displays the relevant operational 

parameters of the biosensor obtained graphically (detection sensitivity and linear response range), while 

Table 5.7 specifically displays the operational parameters of the biosensor-substrate interactions obtained 

from the modelling process (i_, Km and b value). The effects of biosensor re-use, while reported in this 

section, are discussed in greater detail in Section 5.4.4.4 
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Table 5.6: Substrate sensitivity and linear ranges, as assessed from the graphical current
concentration curves 

Before re-use After re-use 

Substrate Sensitivity Linear Linear Sensitivity Linear Linear Sensbe(ore 

BZT 

HQ 

3-MC 

CAT 

2-AP 

ABTS 

GOL 

GA 

P-CL 

PHE 

(nA.I'M:'cm-') onset endpoint (nA'I'M:'cm-') onset endpoint 
(I'M)' (l'M)b (I'M) (I'M) 

Reversible: 

2713 + 58.02 0 100.0 + 5.0 2813 + 72 0 74.33 + 4.91 

1947 ± 47.59 0 120 2443 ±23 0 103.3 ± 8.3 

1154 ± 71.60 5.3 ± 2.3 93.33 ± 5.77 1662 ± 53 0 90.00 ± 5.00 

970.5 ± 9.7 3.8±3.8 135.0 ± 8.66 1639 ± 135 0 88.60 ± 5.84 

Quasi-reversible: 

424.9 ± 39.5 0 166.7 + 16.67 366.7 + 43.6 0 150.0 

358.3 ± 18.8 0 220 ± 10 302.7 ± 12.3 0 240.0 

340.5 + 29.7 0 264.7 + 47.67 110.7 +5.7 0 345.4 + 37.3 

Irreversible: 

95.85 + 4.78 0 166.7 + 16.67 110.2 + 8.1 0 300.0 + 61.2 

59.18 + 5.07 0 380 + 11.55 14.18 + 3.04 0 200.0 

0.8952 ± 0.0385 2518 ± 13398 ± 0.1786±0.0140 3874± 37626 ± 
496.71 3377 595.6 3625 

Uncertainties represented as standard error from the mean. Number of rep II cants. n 2: 3 

Values highlighted in grey do not have a co-efficient of variation < 10% from the mean value. 

a _ Start of linear response range for current-concentration functions o f the biosensor 

b _ End of Jinear response range for current-concentration functions of the biosensor 

SenSafter 

103.7% 

125.5% 

143.9% 

168.9% 

86.30% 

84.49% 

32.50% 

11 5.0% 

23.96% 

19.95% 

As Table 5.6 indicates, there exist considerable variations between substrates tested, both in detection 

sensitivities and linear response concentration ranges. This highlights the concern surrounding 

electrochemical detection of phenolic compounds through the application of laccase biosensors, as 

substrates of varying toxicity (Table 5.2) are not equally detectable by this method. For example GA and 

GOL which are both phytochemicals (and might therefore be present in the same sample matrices), vary 

1 O-fold in their estimated lethal doses and vary 3-fold in their detection sensitivities. Similarly, PHE, HQ 

and CAT, which possess similar L050 values (-300 mglkg, Table 5.2) and are likely to be present in the 

same analyte matrix that PHE is present in (through the scheme outlined in Figure 5.1) possess 

significantly different average detection sensitivities of -<1, - 1950 and -970 nA.flM.cm-' respectively 

for the laccase biosensors used in substrate calibration studies, producing a range of sensitivity of 
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approximately 2000-fold. These significant, consistent, variances in detection sensitivities between these 

substrates would conceivably lead to the over/under-estimation of a given phenolic substrate of analytical 

relevance (for example, detection of CAT in a mixed sample containing GA) during the analysis of 

samples. 

A comparison between Table 5.4 and Table 5.6 shows that biosensor sensitivity decreases in the same 

order in which the Eox increases. However, this negative trend was not found to be consistent with the 

global data including all substrates, but to be consistent within the groups classified according to 

electrochemical reversibility in Section 5.5.1. This is discussed further in Section 5.5.4 below, where 

findings from the electrochemical and biochemical parameters are compared. 

With the exception of phenol, all substrates tested exhibited an onset of linear current-concentration 

behaviour at approximately 0 fiM of substrate. The end-point of the linear response region appears to 

decrease logarithmically with the logarithm of the sensitivity, as Figure 5.9 indicates. Trends established 

here do not include datapoints obtained for PHE, as the values obtained from PHE were quite displaced 

from the grouping of the other substrates. This, in turn, was found to be linked to the positive trend 

existing between 10g(Km) and the logarithm of the end-point concentration (data not shown). 
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Figure 5.8: Plot of the logarithm of biosensor sensitivity for each substrate against the logarithmic 
concentration at which the linear response region ended for each substrates. 
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Averaged data used (n? 3). Trends depicted herein exclude the data-points found for PHE substrate (datapoints 
labelled PHE indicate their position). Inset boxes display the regressional parameters for the trends found. 

Legend: Black - pristine sensors used; Grey - fe-used sensors. 

Table 5.7 presents the data obtained through sigmoidal modelling of the current-concentration functions 

generated through calibration of the laccase biosensors with the selected substrates. 

Table 5.7: Data obtained from modelling of the biosensor kinetics, taking into account sigmoidal 
current-concentration behaviour 

Before re-use After re-use 

Substrate imn Km b i max Km b 

(JiA.cm'!) (11M) (JiA.cm'!) (11M) 

Reversible: 

BZT 410.4 + 16.9 79.79 + 3.38 1.31 + 0.02 347.1 +33.8 57.81 + 6.04 1.42 + 0.05 

HQ 342.8:t 7.5 87.04:t 2.53 1.40:t 0.02 366.1 :t 20.1 71.29 :t 2.29 1.39 :t 0.04 

3-MC 221.6 + 19.2 1I0.1 + 3.0 1.42 + 0.02 344.6 + 8.2 105.5 + 9.1 1.23 + 0.1 I 

CAT 236.9 :t 11.0 125.6 :t 4.4 1.66:t 0.12 286.1 :t 12.7 77.87 :t 5.66 1.25 :t 0.08 

Quasi-reversible: 

2-AP 149.5 :t 8.6 176.7 :t 26.8 1.61 :t 0.03 168.5:t 4.9 245 .8 :!: 29.1 1.24 :!: 0.06 

ABTS 235.3 + 7.6 445.7 + 0.2 1.09 + 0.02 301 .6 + \3.0 759.9 + 10.1 0.95 + 0.01 

GOL 175.6 + 16.6 248 .9 + 32.8 1.22 + 0. \3 99.34:!: 12.22 489.1 :t38.1 1.13 :!: 0.04 

Irreversible: 

GA 75.38 + 5.28 373.4 + 22.1 1.26 + 0.03 120.5 + 7.8 554.5:!: 4.8 1.06 :!: 0.06 

P-CL 22.3 1 :!: 1.96 216.5 + 29.3 1.17 ± 0.12 18.54 :<:,1.47 918.6:!: 91.6 0.98 :!: 0.03 

PHE 43 .97 ± 6.93 29056 ± 1.50 :<:.0.06 16.66 ± 0.9 1 44093 ± 1.27 ± 0.11 
2963 2165 

Uncertamtles presented as ± standard error from the mean. Number of rep he ants. n 2: 3. 

Values highlighted in light grey do not have a co·efficient of variation (C. V.) < 10% from the mean value. 

An excellent degree of reproducibility (C.V. < 10%) was found for most substrates calibrated using the 

biosensor. Even those values above the critical threshold of 10% relative uncertainty were not much 

more than 10%. From this, it can be concluded that reproducible and consistent differences arise from the 

calibration of the biosensor with different substrates. Those substrates categorised as reversible 

demonstrated the highest I ,~x values, coupled with the consistently lowest Km parameters of all of the 

categories (Table 5.7). Irreversibly-oxidised substrates exhibited the opposite characteristics; while 
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quasi-reversible substrates exhibited a compromise of these characteristics (high imu coupled with high 

Km, and vice versa). 

Biosensor sensitivity was compared to the ilK values calculated from the averages of the modelled i ~x 

and Km parameters presented in Table 5.7 Figure 5.10 below displays the correlation existing between 

biosensor sensitivity and the calculated ilK values for the substrates assessed in this Section. 
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Figure 5.9: Correlation existing between biosensor sensitivity and ilK values, obtained for the substrates 
analysed using the optimised laccase biosensor. 

Both the values obtained from the use of the pristine biosensor (black) and the biosensor after re-use (grey) are 
presented here. Inset boxes in the respective colours indicate the Iinear-regressional parameters obtained when 
y-intercepts are forced through the origin of the graph. 

Inset box depicts a IOg lO -log lO plot ofthe sensitivity plotted against the ilK values for the pristine biosensors. 

Error bars indicate standard error from the mean. n'::: 3 

The logarithmic relationships between the sensitivity and the ilK values (Figure 5.9, inset) are presented 

to confirm that the degree of linearity observed was consistent throughout the data-set, not merely 

artificially caused by those substrates possessing higher sensit ivity (or ilK) values. The degree of 
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linearities measured through log-log plots of sensitivity vs. ilK values also possessed strong linearity 

(R' values> 0.99) for both pristine and re-used biosensors (data not shown for re-used biosensors). 

The excellent linear compliance between the biosensor sensitivity and ilK values (F igure 5.9, R' > 0.995) 

strongly indicates a correlation between the detection sensitivity and those parameters extracted from the 

model. Thus, differences between the various biosensor sensitivities achieved between substrates can be 

discussed in terms of their contributions from the aforementioned modelled parameters: positive 

influences on biosensor sensitivity from the i=x and negative influences from the Km values, 

respectively. 

It is at this point that the contributions arising from the relative electrochemical properties of the 

oxidation products can be discussed. While CAT, 2-AP and P-CL have Km values that differ by only a 

factor of 2 (means of 126, 176 and 217 ~M, respectively), indicating similar substrate-binding affinities 

and binding/release rates (Chapter 2, Section 2.3.1.1 and Eq. 2.4), their relative detection sensitivities 

range more than IS-fold (970, 425, 59.2 nA.~M·lcm·2, respectively). This is most likely due to the 

disparities between their i=x values, with the oxidation of GOL resulting in a nearly 7-fold higher i=x 

value than P-CL, while CAT exhibited a 10-fold increase (Table 5.7). This, in tum, can be related to the 

differences in electroanalytical behaviour of their respective oxidation products: P-CL, being irreversibly 

oxidised, exhibits a very low return current (Table 5.4) and subsequent charge yielded, GOL exhibits 

approximately 50% and 35% for the charge and current yields, respectively; of these examples, CAT 

possesses the highest %1 and %Q values of 85% and 91 %. This indicates that the proportion of electro

reductive oxidation products (analytes) formed during oxidation of the substrates trend with 

CA T>GOL» P-CL, thus representative currents are ranked in a similar way during the operation of the 

biosensor. This example, in conjunction with the rest of the data presented in this section serves to 

indicates that knowledge of the electroanalytical properties of the oxidised products (%1, imax ) is required 

in order to equate the biochemical properties of the laccase-substrate interaction (Km) estimated through 

modelling of the current-concentration functions to that of the biosensor during operation. Figure 5.10, 
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below, demonstrates the substrate-dependence of detection sensitivity on their respective values of i=, or 

Km, determined from the modelled parameters. 
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Figure 5.1 0: Substrate-dependence of detection sensitivity on modelled parameters 

B) imn. 

Data is presented in a logarithmic format for the ease-of-representation of disparate values ofi max and Km across 
reported substrates (Tables 5.6 and 5.7) 

Lines indicate linear trends existing between substrates that are grouped together on the basis of their respective 
reversibility categories (Table 5.4). The above graphs do not show PHE, due to the large difference in x-axis values. 

When substrate-dependence of detection sensitivities is compared to Km or i"", (Figure 5.IOA and B, 

respectively), rather than the ilK values (Figure 5.9), separate trends between the substrates emerge, 

when grouped by their degree of reversibility as reported in Table 5.4. The detection sensitivity of 
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reversible substrates shows a linear positive dependence on i"",x and a negative dependence on their Km 

values. A lesser negative dependence on Km (Figure 5.IOA) is noted for quasi-reversible substrates, 

while a very slight negative dependence on i""" (Figure 5.1 OB) is also noted for this class of substrates. 

Irreversible substrates possess a positive detection-sensitivity dependence on Km accompanied by a 

strong positive dependence on i"",x' These respective trends indicate the degree to which sensitivity is 

affected by the modelled parameters: irreversible substrates appear to have detection sensitivities largely 

influenced by i~" rather than Km, since the correlation between sensitivity and ilK would indicate that 

increasing Km values would decrease the sensitivity of detection. Similarly, detection of quasi-reversible 

substrates is influenced by Km, rather than i"",,, while reversible substrates show dependence on both 

factors. Apart from reversible substrates, Km does not decrease sequentially with an increase in detection 

sensitivity (Figure 5. lOA) - overlaps in Km values between quasi- and irreversible substrates exist, 

despite significant differences in detection sensitivities. Similar behaviour in the comparison of i"",x vs. 

detection sensitivity is also evident (Figure 5. lOB). The above serves to indicate that, combined with the 

above shows that i""" (taken in this study to contain a non-negligible contribution from the proportion of 

oxidised product resulting in detectable analyte, analogous to the %1 values established at bare GeEs) 

has a profound effect on the functioning of the sensor, causing the categorisation seen in Figure 5.10 

5.3.3 pH studies: 

An alteration in pH was anticipated to affect the laccase biosensor through 3 separate means, which are 

divided into their electrochemical and biochemical effects. Electrochemically, the effect of a pH 

alteration on the electrochemical parameters gathered using bare GeEs was anticipated to affect sensor 

response through the proportion of oxidised substrate converted into reducible analyte (%1) and affect the 

thermodynamic ease with which the substrate is oxidised by the laccase (represented by shifts in the 

E.,,), Potential biochemical effect of pH on sensor were the effect of pH on the conformation, and hence, 

activity of the immobilised laccase, to which is conjoined the effect of pH on the active sites of the 

laccase, through ionisation of the eu active atoms, or the other amino acids, as outlined by Xu, 1996. 
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The pH studies were performed with two main purposes in mind: (I) Modulation of the oxidation 

potential of the parent substrate, in order to further explore the putative Ep" - sensitivity correlation in 

the case of reversible substrates and to provide the basis for further studies in modulating sensor signal in 

the presence of multiple laccase substrates, which is presented in Chapter 6 of this Thesis, 

For the aforementioned purposes, substrates classified as electrochemically reversible (i.e. BZT, 3-MC, 

HQ and CAT) were selected as model substrates for this study. These were selected on the basis of their 

uncomplicated oxidation/reduction mechanisms (i.e. their implied high oxidation to signal yield), both 

when electro-oxidised (Section 5.3. 1) and during analysis by laccase (Section 5.3.2). From these 

sections, it was assumed that differences in sensitivity caused by change in pH and substrate species 

would be primarily dictated by biochemical kinetics, not electrochemical kinetics. Examples of a quasi

reversible substrate (GOL) and an irreversible substrate (GA) were additionally analysed, TI,e inclusion 

of reversible and irreversible substrates was done in order to explore the relative contribution arising 

from analyte-electrode kinetics and their effects on biosensor kinetics, Selection of these substrates were 

justified on the basis of the relatively strong signal produced during analysis at pH 4.5 (Section 5,3.2). 

In addition to the studies conducted at pH 4.5 (Section 5.3 .2), two additional, closely-grouped pHs (3.5, 

5,5) were included for substrate analysis, using both biosensors electro-oxidation, as outlined above, The 

narrow pH range used was selected to produce very small modulations in both the electrochemical and 

biochemical kinetics of the substrates, rather than to provide a complete characterisation of the biosensor 

under vastly different pHs. Summaries of the pertinent parameters investigated in this section are 

tabulated and summarised in Table I of Appendix 4, with select examples of the findings of the 

substrates used to illustrate points and the trends observed throughout discussed in general. 

Increases in electrolyte alkalinity were observed to decrease the oxidation potentials and the reduction 

potentials of the selected substrates, both at bare GCEs and when CV was performed at the surface of 

biosensors exposed to saturating concentrations of substrates (Appendix 4, Tables A4.1 and A4.2), . This 

effect was expected (Costen tin et aI., 20 I 0) due to the nature of phenolic oxidation / reduction, which 

undergoes a 1 e'1H" or a 2e'I2H" reduction/oxidation process, and supported by Xu, 1996. As examples, 
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Figure S.14A displays the pH-dependant behaviour observed during the electro-oxidation of HQ and 

Figure S.14B displays the same behaviour for the voltammetric biosensor response for BZT. Summaries 

of the relevant 3-point peak potential vs. pH shifts are available in Table A4.2 of Appendix 4. 
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Figure 5.11: Representational CVs of the pH-dependant behaviour of oxidation/reduction cycles of: A) HQ 
at bare GeEs and B) BZT at laccase biosensors in SLB with pH values ranging between 3.5 and 5.5. Arrows 
indicate trends in oxidation peak currents with an increase in alkalinity. 

Disparities between the currents present between A} and 8 ) are due to the differing concentrations of substrates 
used for bare-GeE assessments (1 mM) and those used for biosensor assessments (- 300 ~M) . 
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Biosensors exposed to substrates exhibited, in general, higher averaged i=x values (Figure 5.l2A) with 

an increase in electrolyte acidity while Km also tended to increase with an increase in acidity (Figure 

5.l2B). The sole exception to these trends in i~x are 3-MC and GA, for reasons that are discussed 

further on in-text. Tabulated summaries of the biosensor kinetic parameters are available in Table A4.2 

of Appendix 4. 
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substrates 

A) pH dependence of the imu parameters. 

B) pH dependence of the Km parameters. 

Data in Fig. 5.12 is presented in iog2 format in order to satisfactorily resolve the differences between substrates. 
Error bars indicate standard error from the mean, n ::: 3. 
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B) imu parameter 
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Lines present in Figures 5.13B and C indicate pH-dependent alterations in these values for individual substrates. 
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Figure 5.13A demonstrates the correlation between substrate-dependent biosensor detection sensitivities 

and the ilK values for the selected substrates examined under varying pH. Figure 5.13B demonstrates 

that, in the case of most substrates exhibiting reversible electrochemistry (BZT,HQ,CAT, but not 3-MC) 

that an increase in the i=x parameter (itself increasing with increasing acidity) predicts a decrease in the 

sensitivity (itself analogous to ilK values, 5.13A), rather than an increase. Both 3-MC and GA show a 

reversal of this trend, with an increase in imax trending positively with the sensitivity . When comparing 

Km to detection sensitivity, both GA and 3-MC show limited effect from the Km on the produced 

sensitivity. This is in strong contrast to the degree of apparent dependence exhibited by the other 

substrates' detection sensitivity on the Km (Figure 5.13C) This indicates that the detection sensitivities 

(i.e. ilK values) of substrates BZT, HQ, CAT and GOL are positively affected by decreases in Km and 

negatively affected by declines in i=x occurring with a increase in electrolyte acidity. The increase in 

sensitivity with an increase in alkalinity indicates that the dependence on i m~ for these substrates' 

detection is less than the effect on Km. The detection of these substrates are thus controlled primarily 

through the biochemical kinetics occurring in the immobilised laccase film, rather than the 

electrochemical properties of their oxidation products. The converse is true for substrates GA and 3-MC, 

which record both increases in sensitivities with increasing i~, and no apparent dependence on Km. (as 

indicated in Figure 5.13C). Sensitivity of detection of these substrates are thus primarily controlled 

through a combination of electrochemicallbiochemical kinetics, rather than just through biochemical 

kinetics. 

The i""x of biosensors was itself found to possess a positive linear dependence with reference to the 

oxidation potential of substrates at the selected pHs, as assessed at bare GCEs (Figure 5.14). This 

indicates that a decrease in the ease-of-oxidation of a substrate (with increasing alkalinity) increases the 

i""x value ofbiosensors detecting said substrate. 
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Figure 5.14: Correlation between oxidation potential (E p •• ) of substrates at bare electrodes with the modelled 
imu parameter of the selected substrates at varying pH. 

Arrow indicates the behaviour ofEp•a with increasing pH. 

As Figure 5.14 demonstrates, a positive linear trend was noted for all the substrates when the i ~, 

parameter of the biosensor was plotted against the oxidation potential of the substrate established using 

unmodified GCEs, with an average Pearson's correlation coefficient of R' ~ 0.900 between the sets. The 

sole, partial, exception to this was 3-MC. 3-MC exhibited the formation of a pH-dependant additional 

redox couple situated at more positive potentials than the parent compound, when CV was performed at 

the surface of the biosensors (Figure 5.15, below), indicating the presence of a side-reaction which 

diminishes the proportion of oxidised substrate converted to analyte. This additional reaction, which is 

either masked or not occurring at the bare GCE, was considered to be the source of the aberration 

between the oxidation potential of the substrate and the i=, values extracted from the biosensor's 

calibration with 3-MC. However, taking the reductive potential of these oxidation products as being 

equidistant from the oxidation potential (as was the case for all other substrates, Appendix 4) and 

therefore indicative of the oxidative behaviour of the parent compound (Appendix 4) (3-MC (reduction) 

in Figure 5.14 above) produces the same linear positive dependence ofi,,,,, on potential. 
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Figure 5.15: Cyclic voltammograms generated by biosensors in the presence of200 pM of3-MC dissolved in 
0.1 M SLB adjusted to different pHs. 

Arrows indicate the potential of the oxidation of the 3-MC parent compound, to distinguish between the 
reduction/oxidation couple occurring at more positive potentials at higher electrolyte pH values. This behaviour is 
not found at a bare GeE (data not shown). 

The positive correlation existing between Ep.a (oxidation potential) and %1 are initially non-intuitive. A 

decrease in the oxidation potential indicates a more readily-oxidisable substrate, so it is expected that k, 

catalytic rate constant for the biorecognition layer would increase with an increase in the pH (Xu,. 1997), 

resulting in a larger i=x' 

However, it is reported that an increase in acidity of the medium enhances the conversion of oxidised 

phenolics to quinones. Studies conducted on the different end-products of the radicalisation of 2,4,6-Tri-

tert-butylphenoxyl have demonstrated that a high degree of acidity in the surrounding medium favours 

the protonation of the phenoxy radical, in turn promoting the formation of quinones over that of 

diimeric/oligomeric products (Omura, 2008). While this may not be evident when considering the less-

complicated phenol-to-quinone formation exhibited by the reversible substrates, the significant increases 

in %1 as assessed at the bare GeE for GA indicate a much higher proportion of oxidised GA is converted 

into reducible compounds with a decrease in pH. Table A4.1 shows that the recoverable current from GA 
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oxidation (%1) alters more than 5-fold under the pH range studied. The %1 values exhibited by the other 

analytes selected for this study (Table A6. I) do not vary that substantially: The co-efficient of variation 

of the reported values of %1 in Table A6. I between - 13% (BZT, GOL) and -2 % (HQ, 3-MC, CAT) of 

the mean values, between pHs. GA, however has a coefficient of variation - 99% of the mean value 

between pH ranges. This may indicate that, in the case of GA, rather than signal current being primarily 

dictated by enzyme-substrate kinetics (as would be predicted through Ep . ., such as was found for all other 

analytes, Figure 5. I 8, below), signal current is strongly influenced by the pH-dependant formation of 

reducible oxidation products. Hence, in the case of GA, the increase in sensitivity with a decrease in pH / 

increase in oxidation potential is most likely attributable to the increase in production of detecti ble (i.e. 

reducible) analyte within the system. Figure 5.16 displays the biosensor response for saturating 

conditions of GA under the varying electrolyte pH values profiled in this study: 
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Figure 5.16: Cyclic voltammograms of GA performed at a laccase biosensor under conditions of varying 
electrolyte pH. 

Arrows indicate trends in peak currents and potential with an increase in pH. 
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In the absence of substantial analyte-pH interactions, such as those exhibited by GA, the above study 

demonstrates that alterations in Ep., through manipulation of the electrolyte pH can predict sensor 

response to a given analyte. This is discussed in further detail in Section 5.5.4.2, below. 

5.5.4: Comparisons between electrochemical characterisations and biochemical 

characterisations of the substrates tested. 

A relationship between the oxidative potential difference between substrate and laccase and their 

respective oxidation rates has been found for both phenolic (Xu, 1996; Xu, 1997) and for non-phenolic 

aromatic compounds (Xu et aI. , 2000), as well as other compounds classified as laccase substrates (Xu, 

1997). Km, k,a, and k,a,lKm values were found to possess logarithmic dependence on the difference in 

oxidation potential (Xu, 1996; Xu et aI. , 2000). This difference translates into a more thermodynamically 

favourable electron transfer between the substrate and the laccase, meaning that faster oxidation rates are 

realised. Hence, the oxidation potentials measured during this phase of research are also indications of 

the relative ease that laccase can oxidise the substrates characterised. Similar relationships have been 

derived for other laccase studies (e.g. Xu, 1996). However, oxidation rates measured in the majority of 

the cited studies were assessed via spectrophotometry, or oxygen-consumption which, while providing 

an accurate indication of substrate-enzyme kinetics are of little relevance when predicting sensor 

response considering opposing analyte-electrode kinetics. This study aimed to understand the principles 

underpinning the disparity of biosensor sensitivity between substrates, and to assign causal values based 

on their respective electrochemical or biochemical origins, rather than direct measurement of the 

biochemical conversion rates. Thus, for the purposes of this study, other electrochemically-determined 

parameters (%1, in particular) were included when considering how electrochemical characteristics affect 

biosensor response. 
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5.5.4. I .Pristine biosensor responses for a1l tested substrates : pH 4.5 

Figure 5. I 7 displays the comparison of oxidation potential (Ep.,), of individual substrates as assessed at 

bare GCEs (Table 5.4) against their sensitivity of detection assessed at lac case biosensors. 
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Figure SJ 7: Comparisons of the oxidation potential (E p,,) of all substrates assessed at GCEs at a pH of 4.S to 
their detection sensitivity at laccase bioscnsors at pH 4.5. 

A) Biosensor sensitivity of the tested substrates vs. the oxidative potentials, established at unmodified GeEs. 

B) Logarithm of the bisosensor detection sensitivity vs. the oxidation potentials 

Error bars indicate standard error from the mean (y-axis) and standard deviations from the mean (x-axis), 
respectively. 
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As mentioned previously (Section 5.3.3.2), there is a general tendency for biosensor-assessed detection 

sensitivity to decline with an increase in substrate-dependent oxidation potential, Ep .• (Figure 5.17), 

although this only holds true within the classes of reversibility established for each substrate. Figure 5.17 

shows that, even though there exists several overlaps in Ep., values between the three classes of 

electrochemical reversibility as established at bare GeE surfaces, biosensor sensitivity displays different 

linear trends that are consistent only within the groups characterised by their degree of reversibility, and 

not by the population as a whole. 

The logarithm increases the degree of linearity observed for these classes. By excluding BZT, the R' 

coefficient value increases to 0.999 for reversible substrates, while the degree of linearity for quasi

reversible substrates increases from an R' of 0.947 to 0.956. Reasons for the exclusion of BZT are 

discussed in Section 5.4.4.2, for reasons uncovered during the investigation of pH-substrate-biosensor 

interactions. The decrease in linearity observed for irreversible biosensors is caused by the deviation of 

PHE from the trend observed. This is considered to be due to the high oxidation potential that, rather 

than favouring catalysis, may indicate the presence of an thermodynamically-unfavourable oxidation by 

the laccase biomolecules. 

As sensitivity displays a strong linear correlation with the ilK electrochemical catalytic specificity 

constant (Figure 5.9) obtained through the data-modelling process, this indicates that the oxidation 

potential possessed the same effects on the ilK constant as it does on the detection sensitivity. In order to 

remove considerations of the im" (as it is influenced by both electrochemical properties of the oxidation 

product, as well as biochemical properties from the product-enzyme dissociation kinetics) value from 

considerations of the enzyme-substrate affinity, the following relationship is postulated and expanded on 

to produce a new value containing information on both the electrochemical properties of the products of 

a given phenolic species, and it 's relative biochemical affinity, %lIKm : 
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The Km value is an indication of substrate-binding affinity and equivalent to the rate of substrate release I 

rate of substrate binding (k,lk,+k./k" Chapter 2, Section 3.1.1). As %1 tracks the proportion of oxidised 

substrate converted to reducible substrate (1,.,11,.,), the value of %I/K m corrects for the conversion 

proportion as outlined below: 

SenSlt,v,tyoc --- ~ --- = --- [Elo . . . imu Evmu jC Phenol oxidised J t2(P/Q~ 
Km Km Quinone produced Km 

Where the symbols take their usual meaning from Eq. 2.2 

Since, from Equation 2.2: 

k , 1<. , 
11K ~ -- + --

m k2 kJ 

Then, in the context of the biosensor: 

1~'PP ~ 

k, 
+ 

k, (P/Q) 

Eq 5.5 

Eq.5.6 

Eq.5.7 

Since the rate constants k J and k.J do not of themselves result in oxidised phenolic product, corrections 

in the form of (P/Q) are not necessary. 

As stated previously %1 is = 1,.,/1,., and therefore is representative of: 

C
QUinoneproduced] 

%I -
Phenoloxidised 

So, therefore: 

%1 
- lIKm oc Sensitivity 

Eq.5.8 

Eq.5.9 
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This formali sm neglects three important considerations. Firstly: that the proportion of quinone produced 

remains invariant with both time of exposure of substrate and the bulk concentration of parent phenolic 

compound. Secondly: that the k, rate constant remains consistent between substrates. Third, that the Km 

and i= parameters are apparent, rather than actual, values indicating the rate constants of enzyme-

substrate association and enzyme-product dissociation, for reasons indicated in Eq. 5.6 and 5.7 above. 

The first is outside the scope of the research and, while of fundamental relevance in understanding the 

numerous factors comprising signal generation, are of little analytical relevance. For the second, Xu 

(1996) demonstrated a greater variance exists for Km values than for k, parameters when monitoring the 

biochemical oxidation rates of different substrates with laccase. Irrespective of the above considerations, 

an empirical correlation between the substrate-dependent %IIKm and the substrate-dependent detection 

sensitivity exists that was not found when comparing other values obtained from either the modelling 

process (Km or i ~" Figure 5. 1 OA and B, respectively), or from an evaluation of the electrochemical 

parameters of the substrates assessed at bare GCEs (Figure 5.17 for Ep ... data not shown for %1) . Figure 

5.18 displays the comparison of%IIK m values to the detection sensitivity for this phase of research. 
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Figure S.18: Comparison of the empirical %IIKm value to the detection sensitivity for all tested substrates at 
pH 4.5 

Trend was drawn excluding PHE. 

As evident in Figure 5.18, a strong positive linear correlation is obtained when comparing substrate-

dependent detection sensitivity to the substrate-dependent %IfKm value. Due to the previously-discussed 

difficulties associated in accurately determining the conversion rate of phenolic substrate to reducible 

product at the biosensor through the use of %1 values, %lfKm acts as a relative indicator of a substrate 's 

suitability to detection, rather than an absolute numerical indicator. However, the linear correlation noted 

extends through all the substrates tested (excluding PHE), irrespective of their degree of reversibility, in 

addition to the sequential increase in substrate-dependent detection sensitivity with %IfK m values 

(compared to the non-sequential increases noted when comparing Km or i""x alone to the detection 

sensitivities evident in Figure 5.10). This strongly indicates that the %lfK m value effectively predicts the 

relative detection sensitivity of a given substrate on the bases of both the estimated electrode-product and 

estimated substrate-enzyme kinetics. 

5.4.4.2 Selected substrates analysed under varying pH. 

Figure 5.19 displays a comparison of the pH-dependent oxidation potential (Ep •• ), of individual substrates 

as assessed at bare GeEs (Table A3.1) against the pH-dependent sensitivity of detection as assessed at 

laccase biosensors (Table A3.2). 
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Figure 5.19: Comparison of substrate- and pH-dependent detection sensitivity (assessed with laccase 
biosensors) to the dependent oxidation potential (E •.• ) of selected substrates (assessed at bare GeEs) 

A biphasic profile when comparing the logarithm of the sensitivity with the oxidation potential is notable 

(Fig. 5. I 9) when considering the detection sensitivity of reversible substrates (BZT, CAT, 3-MC, HQ) 

and GOL. The plateauing of the trend between BZT may indicate the onset of operational limitations of 

the biosensor sensitivity by factors such as transport limitations affecting the diffusion of dissolved 0 , 

into the biorecognition layer. Certainly, none of the other substrate-pH interactions produced higher 

results, which indicates that the biosensor system used during these investigations has an upper limit of 

- 2800 nA.~M-I.cm·', with regard to sensitivity. 

As is observable in Figure 5.19, a strongly linear negative trend (R' ; 0.909) between the logarithm of 

the biosensor sensitivity and the oxidation potential of a substrate at a bare GCE was shown. By 

eliminating the aberrant data-point (HQ assessed at a pH of 5.5), the degree of linearity rises to 

R' ; 0.95 I . A similar trend is noted when the logarithm of the sensitivity is plotted against the oxidation 

potential of substrates when cyclic voltammetry was perfonned at the surface of the laccase biosensors, 

albeit with a slightly lower degree of linearity (R' ; 0.9185 , data not shown). This linear behaviour is 

evident even when GOL is accommodated within the trend, as is the case in Figure 5. I 9. This indicates 

that, for the reversible substrates investigated in this phase of research, there is cause to suggest that 
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determining the oxidation potential of a given substrate in a given system, using a bare GCE, does 

predict the sensitivity with which the laccase biosensors used herein, can detect it. 

The negative linear correlation between Ep" and sensitivity for reversible substrates (Figure 5, 19) is 

anticipated, due to the kinetic considerations between Ep" and substrate oxidation rate (Xu, 1996), 

coupled with the observation that detection of these substrates shows greater influence from the modelled 

Km values than it does for i~ values (Figure 5.13), However, in the cases of GA and BZT, for reasons 

previously discussed, the correlation between Ep., and detection sensitivity is not readily available. For 

the same reasons outlined in Section 5.4.4.1 , the substrate-dependent, pH-dependent alterations in 

sensitivity was compared to the %IIKrn value established in this study to study the combined effects of 

biochemical and electrochemical reactions of substrate oxidation and detection (as in Figure 5,18). 

Figure 5.20 displays the comparison between detection sensitivity and the %I1Km values calculated for 

biosensor-based detection of BZT,3-MC,HQ,CA T,GOL and GA under conditions of varying pH. 
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Figure 5.20: Comparison of the substrate- and pH-dependent detection sensitivity to the dependent %I/Km 
values. 

The use of %I1K m as a predictor of detection sensitivity (Figure 5.20), rather than Ep." (Figure 5.19) has 

the effect of linear ising all biosensor responses, irrespective of their classification of reversibility, as was 

previously noted for the detection of substrates at pH 4,5 (Figure 5.18). In addition, a higher degree of 
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correlation is noted for those substrates classified as reversible or quasi-reversible than is found when 

Ep .• is compared to detection sensitivity (R' = 0.928 in Figure 5.20, compared to R' - 0.909 in Figure 

5.19). Similar to the findings represented in Figure 5.18, an increase in the %I1Km trends with a 

sequential increase in the detection sensitivity of a given substrate, under given pH conditions, compared 

to the non-sequential increases noted for i""" or Km alone as predictors of sensitivity (Figure 5.13C and 

B, respectively) or that noted for Ep .• (Figure 5.19). Again, this strongly indicates that the %IIKm value is 

a more effective predictor of the relative detection sensitivity ofa given substrate than the other 

parameters reported on in this study. 

5.4.4.4 Comparisons of alterations to operational biosensor parameters following re-use for all substrates 

at pH 4.5 

Table 5.8 displays the relative alteration to operational biosensor kinetic parameters (detection 

sensitivity, i~ and Km) to biosensors re-calibrated with their respective substrates, in addition to 

pertinent behaviours of the substrates when fouling behaviour at bare GCEs was assessed. 

Table 5.8: Alterations to sensor operational kinetics following re-use and correlation witb studies 
found at bare GCEs 

Biosensor operational parameters after re-use (presented as BareGCE 
a percentage of values obtained for "pristine" unused 

biosensors) 

Fouling Electroactive 
Substrate % sensitivity 0/0 imn % Km %Sensl%im"I%Km (oxidative oxidation 

current)' species' 

Electrochemicallx Reversible 

BZT 105 84.6 72.5 itt Yes No 

HQ 126 107 81.1 tii No No 

3-MC 144 156 95.8 tii No No 

CAT 169 121 62.0 iit No No 

Quasi-Reversible 

ABTS 84.5 121 171 tit No No 

GOL 32.8 53.4 133 ttt Yes Yes 

2-AP 86.3 113 139 tit Yes Yes 
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Irreversible 

GA 115 181 178 iiL Yes No 

P-CL 24.0 85.2 252 L L L Yes No' 

PHE 20.0 37.9 152 L L L Yes 

' - .. 
ongmal data presented m Table 5.4 

2 _ other than the quinone counterpart of the parent compound, Table 5.4 

* presence of pigmented film indicates formation of fouling compounds that were not found to be strongly 
electroactive under experimental conditions. 

Yes 

Due to the correlation occurring between sensitivity and the modelled parameters ofK" and i""" (Figure 

5.9), a review of the information in Table 5.8 indicates that alterations in sensitivity upon re-use are 

primarily governed via alterations in the Km parameter following re-exposure of the sensor to the 

selected substrate, rather than alterations in the i"",. For example, for electrochemically reversible 

substrates, the generally-observed decrease in Km following re-use is coupled to an increase in 

sensitivity, whi le the reverse is true, for example for quasi-irreversible substrates. The i""x parameter 

appears to vary much less upon re-exposure than do the Km and sensitivity values. 

The fouling behaviour of substrates assessed at bare GCEs does seem to predict biosensor inactivation 

following exposure to substrates. All those substrates classified as quasi-reversible and irreversible 

substrates that exhibited fouling behaviour at the GeE (Table 5.4) produced declines in the sensitivity 

and concomitant increases in the apparent Km of the biosensor following re-calibration with the selected 

substrate (Table 5.8), with the exception of GA. Furthermore, the majority of these substrates also 

produced a decline in the i"", modelled parameter. 

All non-reversible substrates tested showed an increase in the modelled Km response following re-use, 

indicating inactivation of either the transducer, or the biorecognition layer by oxidation products of same. 

All those substrates showing occurrence of fouling at the electrode surface exhibited a decrease in the 

ima, with exception of2-AP, most likely through passivation of the electrode surface. 

However, all those substrates exhibiting a decrease in sensitivity, concomitantly show a decrease in Km, 

while i"" doesn't appear to alter significantly. A decline in the i"", parameter due to a decrease in the k, 
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rate constant would result in a decrease in the apparent Km of the enzyme system (Equations 2.3 and 2.1 

and Scheme 2.1 in Chapter 2), as opposed to the increase observed (Table 5.8). Hence, two reasons may 

be equally plausible for describing the decrease in i=, following re-use of the sensors: destabilisation of 

the enzyme-substrate complex assembly parameter (resulting in a concomittant decrease of the k, 

parameter, Eq. 2.2) via inactivation of the biorecognition layer by the oxidation products, or electrode 

passivation, which foul ing behaviour indicates. This, combined with the fonnalion of electroactive 

species found adsorbed onto the surface of re-used GCE biosensors that appear to be linked to an 

increase in i=, during the detection of CAT when deploying re-used sensors (Chapter 4, Section 4.5.3.2), 

indicates that the alteration of i=, is linked to the attachment of oxidation products to the transducer 

surface i.e. fouling of the electrode, inhibiting current response upon re-use. The opposite holds true for 

those substrates classified as reversible, for reasons that have been outlined in Chapter 4, Section 4.5.3.2 . 

This indicates that a categorical distinction exists between the fouling behaviour of a given substrate (as 

assessed at a bare GCE) and the effects of its exposure to the biosensor, which affects the current 

response of biosensors upon re-use. Quasi-reversible and irreversible substrates passivate biosensor 

response, while reversible substrates appear to enhance biosensor response when the substrate under 

investigation is re-analysed using the same biosensor. 

5.6 Conclusions: 

Chemically-distinct substrates were analysed using both unmodified GCEs and laccase-modified GCE 

biosensors in order to investigate whether the individual electrochemical behaviour of substrates could 

aid in predicting variations in biosensor detection sensitivity between substrates. This variation is 

postulated to exist based on differences between substrates with regard to their individual substrate-

laccase kinetics and on their subsequent behaviour prior to electro-reduction at the electrode surface. 

Preliminary examinations of the substrates using unmodified GCEs indicated consistent differences 

existed between studied substrates in terms of their peak oxidation potential (Ep •• ), anodic-to-cathodic 

peak potential separation (dE), the ratio of oxidation to reduction (%1 and %Q) and fouling behaviour. 
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These parameters allowed the various substrates to be categorised according to the degree of reversibility 

observable at the electrode. Reversible, quasi-reversible and irreversible behaviour at the electrode 

surface was found to consistently occur in a substrate-dependent manner when assessed at bare GeEs in 

SLB, pH 4.5 

Substantial variances were noted between substrates when used to calibrate laccase-modified GeE 

biosensors for all the biosensor operational parameters reported (linear response range, detection 

sensitivity, K m, im,,). In general, the linear response range was found to decline logarithmically with an 

increase the logarithm of the sensitivity of detection. Sensitivity declined in the order: of reversible> 

quasi-reversible> irreversible between the global population of assessed substrate and, within these 

categories, decreased with increasing oxidation potential. While substrate-dependent detection sensitivity 

was found to correlate to the substrate-dependant ilK (which combined imaK and Km values), no such 

correlation could be found for either of these values independently. Differences between substrate

dependent i~ values were assigned to arise from a combination electrochemical and biochemical 

origins, while substrate-dependent Km values were assigned to arise from biochemical origins, primarily. 

Reversible (and to a lesser extent, quasi-reversible) substrates were shown to have detection sensitivities 

with negative dependence on the Km value, indicating that the detection of these substrates is controlled 

biochemically. Irreversible substrates were found to have a positive dependence on K m, while possessing 

a positive dependence on the imaK parameter (taken to have a non-neglible contribution from %1), 

indicating that the detection of these substrates is controlled through both biochemical and 

electrochemical considerations. While a general correlation was found, within groups, between substrate

dependent biosensor detection sensitivity and the Ep .• assessed at bare GeEs and validated through the 

literature existing on the subject, this correlation did not provide a linear correlation between the general 

population of substrates. A further parameter, %lIKm , combining the electrochemical behaviour of the 

substrates at bare GeEs with the affinity for the substrate assessed at the biosensor, correlated strongly 

with the substrate-dependent detection sensitivity across most of the selected substrates, which none of 

the other parameters assessed (either electrochemical or biosensor-originating) was found to achieve. 
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In order to explore the relative roles of electrochemical I biochemical control of substrate-dependent 

detection by the laccase biosensor, 6 substrates corresponding to all the substrates classified as reversible 

(HQ, BZT, CAT, 3-MC) and substrates selected from the quasi-reversible and irreversible categories 

(GOL and GA, respectively) were selected for further studies under varying electrolyte pH (pH 3.5 to pH 

5.5). This was performed in order to modulate the various electrochemical and biochemical parameters 

postulated to govern signal generation, in order to further investigate in greater detail the interaction 

between these parameters. Both electrochemical parameters and biosensor operational parameters were 

found to alter with pH. In general, an increase in both Km and i=, was noted with an increase in 

electrolyte acidity, while a significant increase in %1 was noted for GA. 

A correlation between detection sensitivity and the ilK value was found during the pH studies, allowing 

sensitivity to be discussed in terms of the relative contributions of each of these parameters. For most of 

the reversible substrates (HQ, BZT, CAT, GOL), sensitivity was found to depend negatively on both the 

i=, and Km, indicating that signal generation is primarily governed by the Km values, and hence, the 

biochemical substrate-Iaccase kinetics, rather than electrochemical considerations. For the substrates 3-

MC and GA, the opposite was true: while sensitivity was not found to be affected greatly by Km, positive 

correlations between i ~ and detection sensitivity indicated that, for these substrates at least, signal 

generation is strongly linked to both biochemical and electrochemical considerations. While a strong 

correlation existed between the pH-dependent detection sensitivity of reversible substrates and their pH

dependent Ep .• values under conditions of varying pH than was noted when assessing all of the substrates 

at pH 4.5, this formalism still does not take into account sensor responses from either BZT or GA. A 

comparison between the detection sensitivity and the %I/Km values under these conditions revealed a 

stronger correlation than was observed when comparing sensitivity and Ep ... as well as a sequential 

increase of %I1Km with an increase in detection sensitivity, which was not evident when assessing 

detection sensitivity with any other reported parameter. This, combined with the findings of all of the 

tested substrates at pH 4.5, indicates that %llKm can be successfully used in predicting sensor response to 

a given substrate, both on the basis of the substrate-dependent, pH-dependent substrate-Iaccase 

biochemical kinetics and on the basis of dependent product-electrode kinetics. 
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The substrates' effects on biosensors during re-use were compared to the electrochemical parameters 

established at bare GCEs. In general, only reversible substrates resulted in re-used biosensors exhibiting 

more sensitive substrate detection upon re-analysis, for reasons outlined in Chapter 4 pertaining to 

alteration to the structure of the BSA-Iaccase film and GCE surface upon exposure of both to laccase

oxidised phenolic products. A combination of product inactivation of the biorecognition element and 

electrode passivation (fouling) was indicated to reduce sensor response upon re-use for quasi-reversible 

and irreversible substrate. A categorical correlation between electrode passivation during electro

oxidation of substrates at unmodified GCEs and a reduction in re-used biosensor operational parameters 

(relative to the prisine biosensor) was established. 

Hence, it is proposed that electro analytical assessment of individual substrates (performed both at bare 

GCEs and laccase biosensors) can be used in order to predict the efficacy of a given substrate 's detection 

limits when considering the biosensor used in this research. This is of great application when considering 

the deployment of this sensor against industrial effluents where characterisation of the substrates and 

their relative electroactivity can take place, but also helps explain the lack of consensus regarding 

kinetically-driven parameters obtained for amperometric biosensor devices - vis, that it is not necessarily 

alterations in the biosensor-substrate kinetics that by itself informs the transduced sensitivity, but non

negligible considerations of the fate of the oxidised product that themselves can be assessed 

electrochemically. Monitoring of the Ep .• alone provides insufficient information regarding the efficacy 

of detection of a given analyte/substrate. While the actual velocity of the enzyme reaction may be 

strongly-correlated to the oxidation potential when considering any 0- or p -diphenols (as demonstrated 

by Xu, 1996), this is not of great concern when considering the biosensing applications - it has been 

shown in this research that the signal itself can be correlated to parameters that take into account both the 

electrochemical and biochemical parameters that combine to generate signal at the electrode surface. 
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Chapter 6: Multiple-Pulse chronoamperometry applied to the real
time, specific detection of phenolics in mixed samples 

6.1 Abstract: 

This Chapter sought to investigate simultaneous, speci fic detection of multiple phenolic substrates using 

the laccase biosensor examined in Chapters 4 and 5 of this Thesis. A proof-of-concept regarding the 

application of Multiple Pulse Chronoamperometry (MPCA) to address this aim is outlined. 

Three separate substrates were selected as case studies for this phase of research, given their 

uncomplicated oxidation products established in Chapter 5. To further separate the oxidation from the 

reduction peaks associated with the electrochemistry of catechol (CAT), hydroquinone (HQ), 1,2,4-

benzenetriol (BZT), laccase fabricated on gold electrodes (AuEs) were fabricated. AuEs were selected as 

they are notoriously poor oxidising agents of aromatic compounds . Further separation of the oxidation 

peak of the parent compound, and the reduction of the laccase-generated quinone is desirable in order to 

include a ' resting' potential, which allows the system to relax between multiple detection ('sensing') 

potentials, in order to maintain a constant, representative mixture of all three substrates near the electrode 

surface. 

The kinetics and detection sensitivity of the aforementioned substrates by the laccase biosensors on AuEs 

was, thus, determined under the different conditions pertinent to this research. Firstly, AuEs were 

compared to the standard GCEs, in terms of their detection sensitivity and modelled biochemical rate 

parameters, Km and i~, for the detection of each substrate under single-potential chronoamperometry, 

as has been previously reported for GCEs. Secondly, AuEs operating under multiple-pulse 

chronoarnperometric detection of substrates in isolation were compared to the first results. Finally, AuEs 

operating under MPCA conditions in the presence of all three substrates are reported on. 
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6.2 Introduction 

6.2.1 Multiple-pulse chronoamperometry: 

MUltiple-pulse chronoamperometry (MPCA, also sometimes referred to as Pulsed Amperometric 

Detection or "PAD") is an electrochemical waveform concerned with the rapid, sequential switching 

between selected potentials and monitoring their resulting currents independently. The theory governing 

the current response to these multiple excitation steps remains similar to that of chronoamperometry. 

Scheme 6.1 follows to better depict this analytical waveform: 
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Scheme 6.1: Generic example of multiple pulse chronoamperometry 

A) Single scan ofa generic potential-time pulse cycle. Grey Arrows indicate times at which current is sampled. 

S ) Currents transduced from the potential shifts in Scheme 6.1A. Grey arrows indicate times at which current is 
sampled 

C) Sampled currents resulting from the potential-time pulse imposed on a given electrochemical system over a 
single potential·time cycle (left-most graph). In multiple-pulse chronoamperometry, these currents are tracked 
discretely and. over sufficient potential-time cycles. resolve to provide separate currents-time functions 
superimposed over the same time axis (right-most graph). 
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A review of the available literature reveals MPCA, as an electroanalytical wavefonn, is used for two 

major applications not pertinent to this research: firstly, in order to clean and reactivate electrode surfaces 

in situ, following, or during, electroanalysis (e.g. to remove phenol-generated anodic fouling products, 

Ding and Garcia, 2006; Bebeselea et aI., 2010) or secondly to enhance stability, or sensitivity, of 

detection. The second occurs primarily through the inclusion of a pre-concentrative or excitation 

potential, increasing the analyte's concentration near the electrode during analysis or generating the 

analyte prior to detection at another potential (e.g. Neuberger and Johnson, 1987). For the second 

application, the use of MPCA in carbohydrate detection using gold electrodes (as outlined and optimised 

by Neuberger and Johnson, 1987) is a common method of carbohydrate detection (e.g.s Zook and 

LaCourse, 1995; Blanco et aI. , 2004) and is often coupled to HPLC separation of analytes during real

time analysis. 

The third application, that of selective simultaneous detection through the control of different potentials, 

is the most recent and least researched application of this waveform, and is the principal motivation for 

the use of MPCA in the research reported on in this Chapter. Since, as outlined in Chapter 2, the applied 

potential of the working electrode dictates which reaction(s) occur(s) at the surface of the working 

electrode, control of the potential provides a means of specification between competing signals. Thus, the 

use of MPCA can provide multiple levels of specificity to be imposed on the same analysis. This results, 

potentially, in a real-time separation of multiple signalS which nonnal i.e. static-potential 

chronoamperometry cannot provide. The principles of this have similarly been applied to the selective 

determination of different ions (KUpper and Schultze, 1997). 

Recently, several articles dictating signal separation for the anodic detection of multiple phenols and 

phenolic derivatives using MPCA have been published (Ding and Garcia, 2006; Medeiros et aI. , 20 I 0). 

However, none of the research to date has yet been perfonned on the cathodic detection of different 

oxidation products generated through the laccase-based oxidation in a biosensor configuration. The 

former (anodic detection) is simplified by the application of appropriate potentials for the measurement 

of the current following oxidation of the analytes. In the biosensor assembly for cathodic detection, it is 

the application of the potential for reduction of the oxidation products which is of interest. As research 
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reported in Chapter 5 indicates, substantial differences exist in the potentials at which these products are 

reducible at for different substrates. However, the cathodic detection of multiple phenols oxidation 

products is then complicated by the selection of relevant reduction potentials which do not overlap the 

oxidation potentials of the substrates themselves within a mixture. This concept is conveyed further in 

Figure 6.1 (below) which shows the CVs of substrates BZT, CAT and HQ and the prospect for overlap. 

In theory therefore, simultaneous detection of a mixture of phenolic compounds through the use of 

MPCA imposed at a laccase-modified electrode is possible if sufficient separation of the anodic and 

cathodic waves can be achieved. 
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Figure 6.1: Cyclic voltammetry profiles showing the ciose proximity of anodic and cathodic peaks for the 
selected substrates (BZT, CAT, HQ) when assessed at laccase biosensor-modified GCE surfaces. 

Data from the above is reported in Chapter 5 of this Thesis. 

All of the above cycl ic voltammograms were generated at a scan rate 0[0.1 V.5\ in SLB, pH 4.5 

This chapter therefore seeks to examine methods for separating signals resulting from the oxidation of 

three phenolics possessing simple oxidation/reduction chemistry at laccase-modified electrodes to allow 

for feasible application of MPCA to achieve sim ultaneous phenolic detection. To this end, the 

application of the inclusion of resting potentials and gold electrodes is examined. 
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6.2.2 Considerations for MPCA - Resting potentials 

If one considers the irreversible electrochemical reduction of the system (0 + no' ~ R) under which only 

o is initially present and is the sole electroactive element: 

Using MPCA with potentials applied both ahead (more positive) and behind (more negative) of the 

formal redox potential, EO'; switching of electrode potential to E < EO' results in the generation of a 

reductive current from 0 + no' ~ R. This causes a depletion of 0 located near the electrode surface 

generating the subsequent imposition of a distant-dependent concentration gradient, 80/8x, where x is 

the one-dimensional distance from the electrode surface.Under conditions of semi-infinite linear 

diffusion, the current (it) is then governed by the following equations (derived from Fick's first law of 

diffusion): 

I = t 
Eq.6.1 

Where n is the number of electrons, F is Faraday's constant (96458.3 C), A is the cross-sectional 

diffusional area (cm') and Do is the diffusion coefficient of 0 (cm' .s·') (Heineman and Kissinger, 1996). 

In the absence of any other fonns of mass transfer other than diffusion, Eq 6.1 becomes the Cottrell 

equation, which describes an exponential decrease in the sampled current as a function of time: 

nFADo Y'Co* 
It = IT/2t% 

Eq.6.2 

Where Co' is the bulk concentration of 0 (mol.cm·' ) and the other symbols have their usual meaning as 

in Eq. 6.1 (Heineman and Kissinger, 1996). 

This becomes important when considering the effects of generated currents obtained when trying to 

separate current between several analytes. To extend the above example, consider the detection of several 

analytes 0" 0 b and 0" which reduce at increasingly negative potentials E" Eb and Eo. respectively. 

Thus, E, generates current from the reduction of all three substrates, Eb from the reduction of 0, and Ob 

and so on. One cannot simply apply a potential cycle of (E,~Eb~E,)" in order to detect all three 
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substrates. Depletion of O. during the application of E. will cause the current generated from E = Eb to 

be under-represented, through the depletion of 0, at E = E. 

However, upon altering the potential to E > EO': 0 no longer undergoes reduction and the concentration 

gradient then decreases as the system relaxes again towards its original state (i.e 80/8x decreases), 

increasing the amount of 0 localised near the electrode. Hence, the application of a so-call ed "resting" 

potential is necessary between each step in order to ensure that representative proportions of all three 

analytes be present near the electrode surface throughout all 3 potential steps used for the detection of 

analyte (designated as "sensing" potentials herein), 

For the purposes of biosensor investigated throughout this research, which are deployed under stirred 

conditions to aid mass transfer, the examination of a hydrodynamic element to describe current-time 

behaviour is controlled through convection and warrants a brief examination. In the absence of kinetic 

considerations (i.e. current is limited by mass-transport only) and under the stirred conditions in which 

the biosensor is applied (presence of convection), current response is no longer limited by the time of 

applied potential. Rather, it becomes analogous to that of the limiting current defined by the Levich 

Equation (Bard and Faulkner, 2001): 

nF ADo[Co. - CO(x~o)l 
00 

Eq,6.3 

After sufficient time the diffusion layer (80 ) of 0 becomes a constant, given sufficient time, 80 

corresponds to a non-time dependent element of: 

1 ,61Do v,(J)-V>Y 1/6 
Eq.6 .4 

Where OJ is the speed of rotation undergone by the electrode (radians.s') and v is the kinematic viscosity 

of the analyte matrix (-0,0091 cm'.s·' for water at 25°C) (Bard and Faulkner, 2001), While this 

corresponds to studies normally conducted at a rotating disk electrode (ROE), a similar behaviour is 

anticipated for electrodes placed near a stirrer-bar during the application of a potential that is not 
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kinetically-limiting to a particular substrate. Hence, similar principles to those outlined above will apply, 

with respect to substrate depletion due to potential switching during MPCA analysis. 

6.2.3 The selection of Au as an electrode surface: 

Gold electrodes are relatively poor oxidisers of organic compounds, including phenolics, which is due in 

part to the complex basic electrochemistry exhibited by the gold surface itself (Burke et aI., 1994). 

Rather than participating in direct electron exchange, oxidation of phenolics by Au and Pt is postulated to 

proceed via an ECE mechanism (i.e. a reaction with an intermediate chemical step between charge

transfer stages) involving the formation of hydrous gold-oxide adatoms which mediate electron transfer 

berween the electrode and phenols (Burke et aI., 1994; Burke and Nugent, 1998 lotov and Kalcheva, 

1998). Several separate species of such electro-generated mediators that are present under different 

conditions, primarily electrolyte pH, have been proposed (Burke and Nugent, 1998). The above reaction 

limitation, coupled with the weak chemisorption behaviour observed at Au surfaces (Burke and Nugent, 

1998) combine to make Au particularly difficult to routinely apply to a variety of analytes. 

The proposed ECE mechanism however at AuEs possesses a large advantage for the appl ication of 

MPCA - rather than each substrate possessing individual oxidation potentials, as was observed at GCEs 

in Chapter 5 (and above), all substrates should in theory possess similar oxidation potentials 

corresponding to the formation of the surface-bound mediator, such as outlined by (Burke et aI., 1994; 

Burke and Nugent, 1998). Similarly, this restricts the reduction of analytes to potentials at which the 

mediator is not generated (Burke and Nugent, 1998). 

For the purposes of the research reported in this Chapter, this has the advantageous effect of markedly 

separating the oxidation and reduction potentials of the substrate from one-another. This desirable 

separation is a property that the GCE cannot provide for the substrates investigated. All of the substrates 

under investigation are classified as "reversible" phenolic substrates in Chapter 5 of this Thesis, 

indicating anodic-to-cathodic peak separations of::: 75 m V. The effects of individual analytes undergoing 

oxidation during the application of sensing potentials would severely hamper the detection of the desired 

reductive current produced through detection oflaccase-oxidised substrate products. Hence, while AuEs 
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may not provide the best transducer surface for the detection of these analytes per se, Au surfaces may, 

through their restrictive surface properties provide an opportunity to generate uncomplicated signal 

separations that would not be possible with the GCE surface used thusfar in the course of this study. 

6.3: Aims and Objectives: 

This phase of research was developed as a proof-of-concept in the development of the selective, 

simultaneous real-time analysis of a mixed sample of phenolics. Research reported on in Chapter 5 

indicated that the phenolic substrates: hydroquinone (HQ), 1,2,4-benzenetriol (BZT) and catechol (CAT) 

all possessed uncomplicated oxidation/reduction profiles, when investigated using both electro-oxidation 

and through biochemical oxidation by immobilised laccases. In selecting these compounds for 

investigation in this Chapter, we obviate many of the problems of under-representative signal current and 

inactivation of the sensor during operation: properties that other the substrates reported on in Chapter 5 

possess. 

The overall aim of this chapter is to elucidate conditions under which MPCA could be applied to achieve 

simultaneous phenolic detection. In order to draw meaningful conclusions, comparative studies for 

substrates was performed at single potential CA as well as at MPCA for both single substrates (eg CAT 

alone) and in combination with other substrates as described further. 

The objectives for this phase of research were as follows: 

(I) Assess the feasib ility of laccase modified AuE for cathodic detection of phenol oxidation 

products through comparison with similar studies at GCE (as described in Chapter 5) in order to 

determine if transducer surface differences affect the biosensor response significantly 

(2) Assess the extent to which gold electrodes hinder the oxidation of phenolics for their intended 

use in MPCA, relative to GCEs. This will be performed by assessing alterations to biosensor 

kinetics at a laccase AuE when applying multiple potentials during chronoamperometry for each 

substrate in isolation and compared to the findings outlined in the first stated objective. 

(3) Develop a chronoamperometric strategy in order to minimise (or at least, account for) the 

generation of current through electrooxidation of substrate (through application of resting 
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potentials and judicious selection of the time of potential application) and subsequent re

reduction at the electrode during sensing potentials. A method to discriminate between electro

generated oxidation of substrate and the laccase-generated oxidation of substrate (normal 

biosensor function) is of benefit in accurately distinguishing between these two causes of current 

generation during the application of sensing potentials. 

5) Simultaneous, real-time and selective determination of the above-mentioned substrates using MPCA. 

6.4 Methods and Materials 

6.4.1 Apparatus and Reagents 

6.4.1.1. Apparatus 

Electroanalytical equipment was used as outlined in Chapter 2, as was the spectrophotometric apparatus. 

Both electroanalysis and spectrophotometry took place at 21 °C and all reagents were warmed to this 

temperature prior to the onset of analysis. 

The transducer surface used throughout this phase of research was gold-surfaced electrodes, as described 

in Chapter 2 of this Thesis. Comparisons in this chapter between AuE and GCEs were made on the basis 

of data reported on in Chapters 4 and 5 for the relevant substrates under the relevant conditions. 

6.4.1.2. Reagents 

Piranha solution (cleaning solution for AuEs) was formulated using a 3 : 1 solution of H, S04 (> 95% 

purity, Saarchem) and H,O, (30% WI" Saarchem). Piranha solution was formulated immediately prior to 

the chemical etching step employed to clean AuEs (outlined in Section 6.4.2.1 below). 

The substrates BZT, CAT and HQ were selected from Chapter 5 of this Thesis and formulated as 

outlined in Chapter 2 (Section 2.2.5) . 
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SLB, adjusted to a pH of 4.5 , was the main electrolytelbuffer used throughout this research. 

6.4.2 Methodology: 

6.4.2.1. Pre-modification treatment of AuEs 

Gold electrodes (AuEs) were polished (Chapter 2) and sonicated in ethanol and rinsed with water. 

Thereafter, gold electrodes were chemically etched using fresh Piranha solution for 2 minutes before 

being rinsed with successive solutions of water and ethanol. Electrochemical pretreatment was performed 

by successively cycling the electrode between potentials of -0.15 V and +1.60 V (vs. AglAgCI) at a scan 

rate of 0.1 V.s·' in a solution of 0.1 M aqueous H2S04 solution. Electrochemical pretreatment occurred 

until a stable baseline was achieved (-100 cycles, followed by rinsing the surface with water. Following 

rinsing, the electrodes were dried under N2 flow and immersed in de-aerated ethanol for an hour, before 

drying under N 2 flow and used for biosensor fabrication. The above succession of cleaning stages used in 

preparing AuEs has been shown to reduce surface roughness and decrease surface inconsistency between 

cleanings (Carvalhal et aI., 2005). 

6.4.2.2. Biosensor fabrication 

After electrode pretreatment (Section 6.3.2.1) biosensors were fabricated on the surface of AuEs using 

BSA-Iaccase-glutaraldehyde crosslinked films as outlined in Chapter 4 of this Thesis, Section 4.4.3.2, 

using 0.8 U laccase and 20 f!g of BSA per biosensor (Section 4.4.3.3). 

6.4.2.3. Single-substrate. single-potential chronoamperometry 

Fabricated AuE biosensors were calibrated against the selected substrates (HQ,BZT,CA T) as described 

in Chapter 5 for GCE transducers. Potentials applied for chronoamperometry (for single substrate 

analysis using single potential CAl was set to -0.25 V vs. AglAgCI, rather than -0.17 V (as used in 

previous Chapters). This was performed in order to accommodate the negative shift of the reduction 

potential of oxidised BZT compound(s) found using AuEs, reported below (Table 6.1). Potentials were 
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selected in order to accommodate the reduction potential of the quinone form (oxidation product of 

phenols) of the specific substrate (as outlined in Chapter 6.5.1) 

Data analysis and treatment occurred as described in the Methodology sections of Chapters 2 and 4, 

using the model formulated in Chapter 2, and applied as in Chapters 4 and 5 of this Thesis. Comparisons 

between biosensors fabricated on GCE surfaces and those performed on Au surfaces were performed in 

order to ascertain consistency between these sets. Electrodes were stored in SLB after initial calibration 

and re-used as described in Chapter 4, for each tested substrate, and compared against biosensor 

counterparts manufactured on GCE surfaces. 

CYs generated under the potential window described above (6.3.2.2) were performed before and after 

substrate calibration in order to determine peak characteristics of substrate oxidation/reduction at the 

AuE. Potentials corresponding to values more negative than the peak reduction potentials were selected 

as substrate-dependent sensing potentials for 6.2.4.2, (with the exception of HQ, for reasons outlined in 

Section 6.4.1) while a resting common to all three substrates was selected on the basis of being more 

positive than the onset of reduction at AuEs for any of the selected substrates. This was performed under 

the same electroanalytical waveform described in Chapter 5 of this Thesis. 

6.4.2.4. Biosensor characterisation: Single substrate, multiple-pulse-potential chronoamperometry (Effect 

of resting potential and applied potential time) 

Two potentials were selected: a resting potential (+ 0.4 Y, as determined with respect to the findings of 

investigations outlined in Section 6.4.2.3) and a sensing potential, which differed with respect to the 

substrate under analysis. The selection of the applied sensing potential was performed on the basis of 

maximising substrate response current, while minimising the response current of substrate(s) which 

reduced at more negative potentials. Thus, CAT was assessed at + 0.088 Y, HQ at -0.055 Y and BZT at -

0.25 Y, vs. AglAgCl at AuE electrodes. 

Biosensors were calibrated using the relevant substrate under the relevant potentials outlined above. 

Results obtained from this were compared to results obtained from the previous section in order to 

225 



Chapter 6: Specific separation of simultaneous inter-phenolic detection via M PCA 

compare sensor perfonnance under nonnal i.e. single-potential chronoamperometric control and those 

obtained using MPCA. 

In addition to assessing the effects of the selected potentials on the produced biosensor detection 

sensitivity, the time of application of both resting and sensing potentials were assessed with regard to 

ensuring that substrate-specific biosensor current responses obtained via MPCA remain representative of 

the current responses observed for biosensors under normal CA. An example of the relevant optimisation 

study, for CAT detection, can be found in Table 6.2, in Section 6.5.2 of this Chapter. 

6.4.2.5. Biosensor characterisation: Multiple-substrate. multiple-pulse-potential chronoamperometry 

Sensing potentials corresponding to a compromise between reductive potentials of the selected substrates 

and minimising interfering current from substrates reducing at more negative potentials were selected. 

These were selected on the basis of findings from single-electrode, single-potential studies outlined in 

Section 6.5.1 

Alternating aliquots of select substrates were added during chronoamperometry and the. various effects of 

these single additions tracked on each of the selected potentials. 
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6.5 Results: 

6.5.1 Comparison between AuE and GCE as transducer surfaces for biosensing 
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Figure 6.2: Representative CVs comparing the oxidation/reduction profiles of hydroquinone/p-benzoquinone 
at AuEs (black) and GeEs (grey). 

In order to effectively compare differences in currents between electrode, current responses have been normalised 
relative to surface area and presented as current density. 

A comparison between Figures 6.1 and 6.2 Figure 6.2 indicates that significant alterations in both the 

oxidation potential and the reduction potential of HQ and its oxidation product (p-benzoquinone) occurs 

when comparing CVs generated using AuEs to those generated using GCEs. This is most likely due to 

the aforementioned ECE mechanism which dictates the potential of both reduction and oxidation of 

analytes when considering AuEs (Burke and Nugent, 1998). Similar differences in oxidation/reduction 

peaks are noted for the other substrates when comparing electrode surface compositions. 

Table 6.1 reports on the average values obtained when calibrating laccase-BSA crosslinked biosensor 

films produced on AuEs against those produced on GCEs (as reported in Chapter 5 of this Thesis). In 

order to account for the differences in electrode geometry, biosensor parameters relying on surface area 
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measurements (sensitivity and i""x) were calculated using the cross-sectional diffusion area (-0.020 em' ) 

for AuEs, as opposed to calculations involving GCE-based biosensor responses (-0.071 cm'). 

Table 6.1: Operational parameters of laccase biosensors fabricated on AuEs compared to those 
obtained from previous find ings on GeE surfaces. 

AuE GeE 

Ep,e Sensitivity Km imn Eo., Sensitivity Km imu 

(V)' (nA."M-'.cm·')' ("M) ("A.em·') (V)' (nA."M·' .em·') ("M) ("A.em·') 

CAT 

0.09 ± 901 + 15 134+4 234 + 4 0.250 ± 964 + 14 126 + 9 237 + II 
0.01 

1323 ± 60 113 ±4 238 ± 15 
0.005 

1757 ± 127 78 .6 ± 5.3 286 ± 18 

BZT 

-0.215± 1633 ± 132 124 ± 10 311 ± 2 -0.063 ± 2713 ± 58 79.8 ± 3.3 410±17 
0.01 1308 ±32 115 ± I I 291 ± 14 0.005 2813±72 57.8 + 6 347 + 33 

!:!Q 

-0.05 ± 1867 ± 163 93 ± 10 331 ± 14 0.09 ± 1947±48 87 ± 2.5 343 ±7 
0.01 1049 ± 130 86± 12 299 ± 20 0.01 2443 ± 23 71.3 ± 2.3 366 ± 20 

.. 
Maximal current denSity (l max ) and sensItivity values are calculated takmg mto account differences In cross
sectional diffusion area of the electrodes, with radii of 0.8 mm for AuE and 1.5 mm for GCEs, respectively. 

Uncertainties represent standard error from the mean. Number of independent measurements, n 2:. 3. 

Rows shaded in grey indicate biosensor parameters obtained from re~used electrodes, in each category. 

Detection potential for AuE: -0.250 V; Detection potential for GCE: -0. I 70 V 

a _ As assessed by CY under stirred conditions, following calibration of the sensors with substrate, 

b_ As assessed between the same concentration range as reported for GCEs 

As Table 6.1 displays, dissimilar behaviours are observable between the AuEs and the GCEs in terms of 

the sensitivity of detection for the selected substrates BZT and CAT, with minimal difference observed 

for HQ. Km values obtained using AuEs were consistently higher than their GCE counterparts, while 

comparable inux values were obtained between the substrates. This indicates that the higher Km values 

largely influence the lowered detection sensitivities observed between AllEs and GCEs through the 

relationship proposed in Chapters 4 and 5, between inuxlKm and sensitivity. 

The lack of relative alteration in the average i"", parameter upon re-use, together with the lowered Km 

values for GCE surfaces compared to the same studies at AuE (Table 6.2) supports the supposition 

(Chapter 4) that the attachments of oxidation products to the surface of GCEs facilitates electron transfer 
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between the electrode and the oxidised substrates. This is not evident when considering AuEs as surfaces 

for biosensor fabrication, although a decrease in Km upon re-use corresponds to the assertion that the 

interaction between phenolic oxidation products and the BSA co-immobilant enhances the rate of 

substrate and product diffusion through the cross-linked film. 

The findings from this phase of research indicate that AuEs produce consistent biosensor operational 

parameters, even though they are dissimilar to their GCE counterparts reported on in Chapters 4 and 5 of 

this Thesis. 

Most importantly, from the perspective of this research, the selection of gold as a transducer surface 

consistently increases the distance occurring between reduction and oxidation potentials (for example, as 

shown in Fig 6.2) when modified for use as a biosensor (reduction potentials noted in Table 6.1 ). This 

was a key consideration in the selection of this surface, as it also allows the selection of a resting 

potential not associated with the oxidation potential of parent compounds used in this study, as would 

occur with GCEs. As aforementioned, the inclusion of a resting potential would prove to be problematic 

when attempting to resolve sensing currents that contain contributions from both oxidation and reduction 

of substrates. Figure 6.3 displays typical CVs obtained at AuEs modified with laccase in the presence of 

each substrate in isolation. Peak characteristics from this phase of research were used in the selection of 

sensing potentials for each substrate. 
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Figure 6.3 CVs of biosensors generated under: A) Stirred and B) Unstirred conditions in the presence of 
response-saturating concentrations of substrate. 

Dotted lines indicate potentials which refer to values hereafter used at lacease modified AuE used in the detection 
of the various substrates 

Cyclic Voltammograms were generated in SLB, pH 4.5, at a scan rate of 0.1 V.sl 

A comparison between Figure 6.2A and 6.2B shows that the act of stirring the solution drives the 

apparent peak apices to slightly more negative potentials. As MPCA was performed under stirred 
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conditions, potentials were selected on the basis of peak generation under stirred (Figure 6.2A) rather 

than quiescent (Figure 6.2B) conditions. The following selected potentials were designated for the 

specific detection of the various substrates at a laccase modified AUE. CAT was henceforth detected at 

+ 0.088 V and BZT at -0.250 V, both at potentials more negative than the peak potentials indicated in 

Figure 6.2 and Table 6.3. HQ, however was selected to be detected at Es ~ -0.055V, which is poised 

slightly too positive for it to be confidently stated that current is purely mass-limited. However, an 

examination of Figure 6.3 reveals that the onset of BZT reduction at potentials more negative than the 

selected potential would significantly affect the selectivity of detection. A resting potential corresponding 

to +0.4 V was selected, as it was more positive than any of the potentials observed to cause reduction of 

any of the selected substrates (Figure 6.2A) 

In an effort to further minimise deviations between detection sensitivities obtained under conditions of 

normal chronoamperometry and those obtained using MPCA, the time of potential(s) application was 

optimised in order to ensure that current representative only of the biorecognition layers' activity on 

substrates was included. 

6.5.2. Single-substrate, Multiple-pulse chronoamperometry studies 

(Effect of resting potential and applied potential time) 

The correct application of a resting potential, both in the potential selected (as described in the preceding 

section) and the time at which it is applied every cycle is critical to producing an optimised current 

response that is sti ll an accurate depiction of the laccase-generated current, due to the inherent opposition 

of these factors . Optimised current response of the sensing potential entails a resting potential step 

sufficiently separated, both in terms of potential and application time, from the onset of quinone 

reduction potentials. However, the selection of these parameters may cause the oxidation of laccase 

substrate that occurs both from the reduction occurring at the electrode surface during the sensing phase/s 

of the potential cycle, and that occurs during saturation of the biorecognition element at higher bulk 

substrate concentrations. 
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In order to sample current sim ultaneously at the two selected potentials (Es and ER), electrodes were 

calibrated with the respective substrates as reported in Section 6.4.1. The following MPCA potential 

regimen was imposed, as described in Table 6.2: 

Table 6.2 MPCA regimen used in optimising potential time application for sensing and resting 
potentials for the substrate CAT: 

Potential Designation Potential Applied Current Total application 

(Current designation) (V) sampling time time / potential 

(s) (s) 

ESI (lSi) 0.1 0.1 

ES2 (lS2) 0.088 0.1 0.2 

ES3 (lS2) 0.1 0.3 

ERI (lRI) 0.1 0.1 

ER2 (ld 0.400 0.1 0.2 

ERJ (lRJ) 0.1 0.3 

Full cycle 0.6 

Simi lar time optimisation studies were applied to BZT and HQ calibration, using sensing potentials (Es) 

of -0.250 V and -0.055 V, respectively and the same resting potential as in Table 6.2. In this manner, 

simultaneous current-sampling was tracked at several time constants when potentials were sequentially 

switched between resting and sensing states. Comparisons between the current-concentration functions at 

the different sampling-times were made in order to ascertain which provided current-concentration 

curves comparable to those in Table 6.2 (Section 6.4.2) 
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Figure 6.4: Example of effects of optimisation of current sampling time (i.e. potential application times) for 
the calibration of AuE·surfaced biosensors with the substrate HQ. 

A) Effect of increasing HQ cooceotration on sensing potentials (Es, -0.055V) 

B) Effect of increasing HQ concentration on resting potentials (E", +0.4 V) 

Current plateaus indicate current response following addition of HQ al iquots into electrochemical vessel. Inset 
legends display the potential designations for individual current-time curves, and are the same as in Table 6.3. 

Since all time and potential optimisation studies were performed in the timescales > 100 ms, there is 

negligible non-Faradaic current (from e.g. double-layer charging) anticipated when switching potentials 

and sampling current as time regimes remained> 10 ms, (Miaw and Perone, 1979). Charging current 

becomes negligible between 10'" s and I s, depending on the system used and the current passing through 

that electrode (Bagotsky, 2006a). Indeed, the baseline difference between ESI and ES2 (0. 1 sand 0.3 s 
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times of potential application, respectively) do not exceed - 0.5 ~A.cm-2 for AuEs, as exemplified in 

Figure 6.4, prior to the addition of the first substrate aliquot. 

In the presence of low concentrations of substrate (i.e. when the majority of substrate present near the 

electrode surface is oxidised by laccase), all three of the selected time-constants correspond very closely 

(Figure 6.4A). This is accompanied by very slight changes to the resting currents upon the introduction 

of further substrate (HQ in the example, Figure 6.4B) . However, when concentrations are increased 

further, IS , and IR, deviate substantially from IS, and IR,; similar behaviour (albeit of a lesser degree) 

is noted for the comparison of IS2 and IS3 and the resting states, respectively. 

This behaviour is most likely due to the generation of reductive current through the electro-oxidation of 

unreacted substrate at the electrode surface under conditions of enzyme saturation. Even at increased 

bulk substrate concentrations, at higher sensing potential application times (Es, ), minimal contribution to 

the current through this mechanism occurs, due to its exponential decay as a function of time - Eq 6.2). 

However, the current resulting from the generation of analyte by laccase remains constant and remains 

the predominant source of current signal at ESJ. In order to account for the differences at different time 

constants caused by anodically-generated re-reduction of analyte, currents from the resting states were 

subtracted from the respective sensing states. Thus, current for this phase of research is represented as the 

difference between Es, and ERn (where n = 1,2,3). For the sake of brevity, currents from n = I and n = 3 

are presented for comparative purposes henceforth. Figure 6.5 below displays current-concentration 

curves obtained when considering the different potential application times for Es and ER• 
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Figure 6.5: Semi-log plot displaying an example of current-concentration response curves obtained at 
different sensing-to-resting potential switching time constants for the calibration of AuE biosensors using 
BZT. 

Substrate concentration is presented here in a logarithmic format, in order to display sensor responses at both low 
and high substrate concentrations. Note that this data is presented without normalisation relative to the electrode 
surface area. 

Legend: 

Nonnal CA: response recorded using CA with a single potential, set at -0.25 V (data reported in Section 6.4.1) 

IS (n ~ 1): lSI, as referred to in-text, above. 

Similarly, IS-IR(n ~ 1): IWIRI; IS-IR(n ~ 3): I,, -IRJ . 

The similarity in current-concentration behaviour when comparing 1S3-IR3 to the response of a biosensor 

undergoing normal chronoamperometric calibration with the substrate (exemplified in Figure 6.5) 

produced detection sensitivity values that were comparable to those presented in Table 6.1, for both BZT 

and CAT. This indicates that, under the potentials selected, little alteration to the apparent biosensor 

function (inferred from the current) is caused by the imposition of a pulsed, rather than static, potential 

during chronoamperometry. 

However, the imposition of a less-optimal potential for the detection of HQ, itself selected to minimise 

current interference on HQ detection by BZT (Figure 6.3), significantly altered the current-concentration 

function of the biosensor. Detection sensitivity decreased from a mean value of 1867 nA./lM-I.cm-' 

(Table 6.1) to approximately half that: 853 ± 53 nA.j.IM-I.cm·' , while the apparent Km value trebled from 

93 ± 10 to 341 ± 7 j.IM. This is due to the selection of a potential that produced current-concentration 

functions that were both kinetically-limited and mass-transfer limited. As mentioned above, the selection 
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of this potential was due to the desire to maximise current resulting from HQ detection, while minimising 

current derived from the detection of BZT in the next phase of research. 

6.5.3. Multiple-substrate, multiple-pulse chronoamperometry studies 

Having ascertained the relative effects of the selected potentials on the detection sensitivity of each 

substrate, the abi lity of MPCA to separate signal arising from the introduction of all three selected 

substrates was assessed. The following waveform was imposed on the biosensors during MPCA (Table 

6.3) 

Table 6.3: Multiple Pulse Chronoampcrometry waveform applied for simultaneous detection of 
specified phenolics BZT, CAT and HQ 

Potcntial Step Potential Applied Potential Time of application 

(#) Designation (V) (ms) 

I ES,CAT 0.088 300 

2 ERI 0.400 300 

3 ES.HQ -0 .050 300 

4 ERl 0.400 300 

5 ES,BZT -0.250 300 

6 ER3 0.400 300 

Total time per cycle 1 800 

Figure 6.6 displays typical chronoamperometric responses recorded simultaneously for the determined 

potentials when sequentially introducing the different substrates into the electrochemical celL 
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Figure 6.6: Example of chronoamperograms ("raw data") obtained from MPCA analysis of the sequential 
calibration of AuE biosensors when introducing alternating aliquots of BZT, CAT and HQ to the 
electrochemical cell. 

The respective sensing potentials used herein are recorded at the upper-left of each curve. Points corresponding to 
the introduction of substrate to the electrochemical reaction vessel are indicated by vertical lines, with final 
concentrations of each substrate indicated in the appended boxes. 

As displayed in Figure 6.6, the applied potentials used in MPCA showed distinct behaviours upon the 

introduction of different substrates to the electrochemical vesseL The most negative selected potential 

(-0.25 V) successfully detected the introduction of all 3 substrates visible as an increase in reductive 

current. The mid-potential (-0.055 V) showed only slight alterations to reductive current upon the 

introduction of BZT to the detection matrix; however, due to the aforementioned non-optimal positioning 

of the potential, exhibited a smaller reductive current to HQ introduction relative to the normal CA 

perfonned at -0.250 V. In contrast, the most positive sensing potential (+0.1 V) registers a reductive 

current upon the introduction of CAT comparable to the other two sensing potentials and is influenced 

vel)' slightly by the introduction of HQ to the matrix. Hence, through the application of MPCA and the 

careful selection of sensing potentials, selective simultaneous detenninations of each substrate can be 

performed, by subtracting the current response of the preceding sensing potential from the one under 

examination. 
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6.5.4 Overall data summary between reported electrochemical conditions 

Figure 6.7 summarises the relative detection sensitivities exhibited by the selected sensing potentials for 

all of the waveforms 
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Figure 6.6: Summaries of the detection sensitivities for the substrates under investigation, as assessed at the 
different stages of AuE detection that are reported on in this Chapter. 

Detection sensitivity was dctcnnined between 0 and 100 J..1M bulk concentration of each substrate. Error bars reflect 
the standard deviation from the mean. Number of independent references, n 2: 3 

From the detection sensitivities recorded and contrasted in Figure 6.7 above, it can be concluded that 

MPCA can be successfully used to simultaneously analyse and separate currents arising from the 

laccase-based oxidation of several phenolic species. The detection of CAT, for example, is negligibly 

affected, both when comparing its detection using MPCA at all sensing potentials, and when comparing 

results from MPCA to those obtained from normal chronoamperometry. The detection of HQ, while 

exhibiting a significant decrease in detection sensitivity due to the imposition of a non-optimal sensing 

potential, is detectable at the same degree of substrate sensitivity observed both with single-substrate 

MPCA and multiple-substrate MPCA. BZT, while producing consistent detection sensitivities both 

238 



Chapter 6: Specific sepa ration of simultaneous inter-phenolic detection via MPCA 

during detection via normal CA and MPCA in isolation from other substrates, produced a significant 

decrease when detected in the presence of CAT and HQ, for reasons that are unclear at this time. 

When viewed from the perspective of the sensing potentials during multiple-substrate MPCA, there is a 

clear indication of specific detection of substrates using the selected sensing potentials (Figure 6.6). A 

An applied potential of -0.250 V detected all three substrates satisfactorily (albeit with slightly lowered 

sensitivities for both BZT and HQ), while the imposition of an applied potential of -0.055 V drastically 

decreased the detection of BZT by approximately 10-fold while maintaining HQ detection at the 

sensitivity previously noted at this potential. The selected sensing potential for catechol (+0.088 V) 

greatly diminished the detection of HQ while producing a negligible response for BZT, even though the 

detection sensitivity of CAT left practically unchanged. This shows proof of the principles under which 

this research was conducted - that MPCA can successfully be applied to the selective detection of 

substrates simultaneously, under-real time conditions. 

6.6 Conclusions 

AuEs gave relatively poor responses when applied as transducer surfaces for the laccase-based 

biosensors optimised on GCEs. Both increased modelled Km values and lower detection sensitivities 

were recorded for the cathodic detection of selected substrates (CAT, HQ and BZT) using AuE-surfaced 

biosensors at a static potential of -0.25 V. However, pertinent to the purposes of the research conducted, 

consistent shifts in peak potentials were noted to occur, for both the anodic and cathodic peaks 

corresponding to the oxidation of parent compound (substrate) and the reduction of the laccase-catalysed 

oxidation product (analyte). The repositioning of the anodic potentials, in particular, is desirable for 

MPCA as it removes considerations of analyte oxidation occurring during the application of sensing 

potentials. 

No substantial differences in detection sensitivity were noted when applying MPCA to the detection of 

analyte from the substrates BZT and CAT, in isolation ITom other substrates. However, the application of 

a non-optimal sensing potential for the detection of HQ showed a markedly decreased detection 

239 



Chapter 6: Specific separation of simultaneous inter-phenolic detection via MPCA 

sensitivity approximating to half that noted for the detection under static-potential conditions. In this 

instance, a compromise between enhancing the detection of HQ and minimi sing the detection of BZT at 

this potential was made. Detection sensitivities ITom sensing potentials applied for 300 ms per potential 

cycle was found to have a good correlation to the sensitivities obtained at static chronoamperometry, 

once the current response from resting potentials was taken into account. 

MPCA performed in the presence of all three of the selected substrates has shown a good degree of 

simultaneous signal selectivity between these substrates when sensing potentials corresponding to 

selective potentials for each substrate were applied. CAT was detected equally well at all three potentials 

selected for MPCA, while the detection of BZT and HQ were severely restricted at potentials more 

positive than their selected sensing potentials. CAT and HQ responses obtained at this stage were 

comparable to responses obtained under MPCA conditions in the sole presence of the respective 

substrates. These findings all indicate that selective, simultaneous assessment of individual substrates 

present in a detection matrix containing all three selected substrates are possible through the careful 

application of MPCA. As such further examination and application of this technique is warranted, but is 

beyond the scope of this study. 
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Chapter 7: Assessment of the quartz-crystal microbalance as an 
analytical tool for biosensor development and fundamental studies: 
case study metallophthalocyanine - glucose oxidase biocomposite 
sensors. 

7.1 Abstract: 

As mentioned in Chapter I of this Thesis, one of the challenges in biosensor fabrication is the 

optimization of procedures immobilizing biomolecules onto, or near, the transducer surface. Ideally, this 

should occur in a manner such that a significant amount of biomolecules is immobilized while 

maintaining the maximum amount of function. Gaining a fundamental knowledge of the processes 

underlying immobilisation of the molecules onto the electrode surface is thus, of significant interest in 

understanding the mechanisms by which molecules are immobilized onto the electrode surface, and how 

this itself affects the sensor's performance. It is in this light that the following two Chapters are 

presented, in which piezoelectric QCM-D technology (and the rheological mQdeling offilm responses) is 

contrasted against the functioning of various sensors. Chapter 7 reports on the initial proof-of-concept, 

using well-characterised processes and biomolecules (glucose oxidase). Herein QCM-D technology was 

used to assess the formation of 2 layers comprising a composite sensor fabricated in the same manner as 

one whose operational parameters have been previously reported (Mashazi et aI., 2006) 

In this research, we report on the application of the Quartz-Crystal Microbalance with Dissipation as a 

tool for fundamental analyses of the immobilisation of successive monolayer attachments of tertra-

carboxylated cobalt(U) metallophthalocyanine (TCACoPc) and glucose oxidase (GOx) onto a gold 

electrode for the enhanced detection of glucose. 

The data presented in this Chapter fonns the basis of the following publication and is not further referenced in thi s Chapter: 

-'Critical assessment of the quartz-crystal microbalance as an analytical tool for biosensor development and fundamental studies: 

case study metallophthalocyanine - glucose oxidase biocomposite sensors." Fogel, R., Mashazi, p" Nyokong, 1'. and Limson, 

J., 2007. Biosens. Bioelectron. 23, 95-101 . 
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In order to maintain compatibility during piezoelectric analysis, the sensor was constructed in aqueous 

phase and covalently linked the gold surface to the TCACoPc, and the TCACoPc to the GOx. It was 

found that the aqueous metallophthalocyanine formed a multilayer over the surface of the electrode, but 

this multilayer could be removed to leave a fairly rigid monolayer with a mass loading that compared 

favourably to the theoretical value expected. Analysis of frequency and dissipation plots indicated the 

covalent attachment of glucose oxidase onto the metallophthalocyanine layer. Furthermore, the amount 

of GOx bound compared favourably to calculations derived from the amperometric functioning of the 

sensor, but not to theoretical values derived from the dimensions of GOx as established by 

crystallography. 

The strength of the binding of the GOx film with the TCACoPC layer was tested by using 2% SDS as a 

denaturant/surfactant, and the bound mass associated with the GOx film was not found to be significantly 

affected by exposure to this. This indicates the fonnation of covalent bonds occurring between GOx and 

the TCACoPC layer; similarly, the removal of adsorbed TCACoPC to fonn a monolayer indicates the 

formation of covalent bonds occurring between TCACoPC and the cystamine SAM surface assembled 

onto the piezoelectric sensor surface which confirms a covalent attachment of GOx to the SAM surface. 

7.2. Introduction: 

7.2.1 Quartz-Crystal Microbalance with Dissipation: Principles and properties 

The Quartz-Crystal Microbalance with Dissipation monitoring (QCM-D) is a piezoelectric 

sensor that is frequently used to monitor inter-molecule interaction on the surface of a 

piezoelectric sensor platform. Previous research using this analytical techn ique has focused on 

such diverse elements of research as: bio-photovoltaic cell construction (Lam et aI., 2006), 

protein-surface interactions (Hook and Kasemo, 2006; Andersson et aI. , 2004 and Hemmersarn 

et aI., 2005), antibody-antigen interactions (Marx et a!., 2006 and Larsson et a!., 2005), protein

prote in interactions (Limson et a!., 2004) and cell adhesion monitoring for implant surface 

technology (Lord et aI., 2006 and Modin et a!. , 2006) 
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Data retrieved from QMC-D analysis is two-fold. Firstly, the frequency shift (11/) upon 

attachment/detachment of electrode-bound mass is related to the mass by the Sauerbrey equation 

,Equation 7.1 (Sauerbrey, 1959). : 

11m=/';fxC / n Eq. 7.1 

Where /';fis the frequency shift (in Hz), 11m is the mass area change (in ng.cm-2
), C is the mass 

sensitivity constant (17.7 ng.cm-2.Hz- J at an oscillation frequency of 5 MHz, as was used here) 

and n is the overtone number (I, 3 , 5 , 7 ... ). The Sauerbrey equation may also be used to 

estimate the layer thickness and viscosity of the attached layer. However, the Sauerbrey 

equation only holds true for thin, homogenously-distributed, light (relative to the electrode 

mass) and rigid films firmly adsorbed onto the electrode surface that couple to the electrode's 

oscillation (Hook et ai., 1998). The interaction of the piezoelectric sensor with a viscoelastic 

film (such as protein) that does not satisfy the above criterion, causes frequency dampening to 

occur, reSUlting in an overestimation of the mass of the attached layer (H66k et ai., 1998). 

Additionally, the presence of water coupled to the film results in an overestimation of mass 

(H66k et ai., 1998). 

The dissipation factor, D (dimensionless units, x 10-6
), provides data regarding the 

viscoelasticity of the attached layer, giving information about the strength of attachment, and the 

structure of the attaching layer (Hook et ai., 1998). This information can be combined with the 

/';fvalues to assess whether the Sauerbrey equation holds true (i.e. a rigid film strongly bound to 

the previous layer would possesses a low dissipation value relative to the frequency shift) (Hook 

et ai., 1998). 
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Comparison of the dissipation as a function of the frequency shift (f vs. D plots) can often 

reveal infonnation regarding the strength of film-film interaction and identification of the 

various phases undergone during the attachment stage/s (H65k et a!., 1998). Furthennore, 

analysis of the !!if and Ll.D values at multiple overtones can, in turn, generate infonnation 

regarding the thickness, shear and viscosity of the attaching layer (Hook and Kasemo., 2001). 

7.2.2 Principles and properties of the sensor under examination 

During the fabrication of a biosensor, the addition of inorganic components is often performed 

in order to improve the analyte specificity (Ahuja et ai, 2006) enhance the signal strength of the 

biomolecule-mediated reaction (Ahuja et ai, 2006; Chen and Gorski, 200 I and Murphy, 2006) 

and to improve the stability of the immobilised biomolecule (Ahuja et a!. , 2006; Chen and 

Gorski, 2001 and Murphy, 2006). 

Glucose Oxidase (GOx), is an enzyme that catalyses the oxidation of glucose with the 

concomitant fonnation of hydrogen peroxide from water and is thus used in the fabrication of 

commercially available sensor technology for monitoring of glucose in the health as well as 

indsutrial sectors. Research development in this area is targeted at improvements In the 

sensitivity of the final sensor, and may be afforded by the use of mediators such as the 

metallophthalocyanines. 

Metallophthalocyanines (MPc) are synthetic aromatic compounds that possess catalytic 

properties towards a wide variety of compounds, and have been shown to have photocatalytic 

and electrocatalytic effects (Zagal, 1992). Aqueous-soluble derivatives of 

metallophthalocyanines have exhibited the tendency to aggregate in solution (Hiev and Heva, 

1995 and Kuznetsova et a!., 2003), which has been found to decrease their effectiveness as 
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photocatalysts (I1iev and I1eva, 1995). Cobalt(lI) Phthalocyanine is a metalloorganic compund 

that has been previously shown to mediate the electrooxidation of hydrogen peroxide, and to 

increase the signal response of a GOx-based amperometric biosensor for the determination of 

glucose (Mashazi et a!., 2006). 

One of the major concerns In the fabrication of biocomposite biosensors (i.e. biosensors 

comprising of both a biological and chemical operative agent) is to assess the interaction 

existing between the biological and chemical conjugates. While the strength, assembly 

mechanism and level of interaction between the abiotic component and the electrode surface can 

be easily assessed (through, e.g. Raman spectroscopy (Zhang et a!., 2003) and impedance 

electroanalysis (Calvo et a!., 1996)), little high-quality data can be gathered regarding the 

interaction of the biomolecule with the chemical component of the composite biosensor. While 

QCM-D technology seems very suitable for this area of analysis; the challenge is to develop 

analytical protocols that closely model the desired method of fabrication. Multi-layer, or non

optimal orientations of tightly-packed metallophthalocyanines have been considered 

undesirable, as it may prevent solvent exposure of the metallic centre of the 

metallophthalocyanine (Agboola et a!., 2007) 
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Figure 7.1: Schematic of proposed electron-transfer pathway between substrate (glucose) and transducer 
surface (Au) for the biocomposite GOx-CoPe biosensor and relevant participants. 
Adapted from Mashazi et aI., 2006. 

In the reported research, previous research conducted by Mashazi et aI., 2006 is expanded upon 

by assessing the fabrication of a glucose-detecting biosensor fabricated by the conjugation of 

Tetra-carboxy cobalt(lI) phthalocyanines (TCACoPc) to the gold surface (as illustrated in Figure 

7.1), and glucose oxidase (GOx) to the TCACoPc layer. The QCM-D was used to assess the 

various parameters and interactions occurring between the various layers built up on the 

electrode surface, and a comparison was performed between previously published literature on 

thi s biosensor configuration, theoretical maxima and those parameters determined by QCM-D 

technology. 
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Figure 7.2: Scheme for the formation of an activated TCaCoPc layer over the surface of a gold electrode. 
The addition of cystamine to a gold surface (I) gives rise to the formation of an NH, -terminating SAM (2). 
Incubation of the EDC and NHS to the non-activated TCACoPc carboxyl groups (R 1) results in the production of 
the activated form (R,). The activated TCACoPc binds to the SAM layer via covalent linkage of the activated 
COOH groups of the TCACoPc and the NH, groups of the SAM, forming a TCACoPc layer (3). Vnreacted 
activated groups of the TCACoPc then covalently bind to NHrterrninating amino acid residues on the GOx, 
forming a biocomposite sensor. 

7.3 Methods and Materials: 

7.3.1 Reagents: 

Tetra-carboxylic acid cobatt(l!) phthalocyanine (TCACoPc) was prepared as described previously 

(Mashazi et al., 2006). 

Cystamine dihydrochloride ~98%), N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride 

(EDC); N-hydroxy succinimide (NHS), sodium dodecyl sulphate (> 98%) and sodium heptane 

sulphonate (HS) were all sourced from Sigma-Aldrich. Glucose oxidase (Type VII, from Aspergillus 

Niger, 157 U/mg) was sourced from Sigma-Aldrich. 

248 



Chapter 7: QCM-D for monitoring of GOx-MPc biocomposite sensor fabricat ion 

Phosphate Buffer (0.05M), pH 6.50 (PB) was prepared using equimolar solutions of NaH,PO, and 

Na,HPO, in water. 

All non-proteinaceous solutions were degassed by sonication in a sonicator bath (Elmasonic S 10 H) for 

10 minutes prior to experimentation. Proteinaceous solutions were crudely degassed by allowing the 

solution temperature to equilibrate at 25 °C for 15 minutes prior to use. 

7.3.2 Apparatus: 

Crystals used were AT-cut quartz crystals, QSX-301 , surfaced with gold. These were mounted in 

titanium QCM-D flow chambers, which were in turn housed in a Q-Sense E4 QCM-D sensor system. All 

of the above were sourced directly from Q-Sense®, Sweden. 

Flow was regulated ~y an Ismatec® peristaltic pump. 

7.3.3 Methodology: 

7.3.3. I Pre-analysis cleaning of crystal 

Prior to modification, all crystals used were cleaned by exposure to ozone-producing ultraviolet light 

(UV-O) for 5 minutes. Following UV-O treatment, the crystals were immersed in a solution of NH3 : 

H, O, : H,O in a ratio of I : I : 5, heated at 75°C for 5 minutes. The crystals were then rinsed thoroughly 

with water, dried under nitrogen gas and then exposed to UV -0 for a further 5 minutes prior to use. 

QCM-D analysis took place under the following parameters: 20°C temperature and a flow rate of 

25 )11 / minute. 

249 



Chapter 7: QCM-D for monitoring of GOx-M Pc biocomposite sensor fabrication 

7.3.3.2 Formation and confirmation of cystamine self-assembled monolayer (SAM): 

Dried and cleaned crystals were immersed in a solution of 25 mM cystamine prepared in an ethanolic 

solution (l: I of ethanol: water) that was thoroughly degassed prior to crystal immersion. Chemisorption 

of the cystamine to the gold surface took place for 16 hours at room temperature, or for 24 hours at 4°C. 

Following SAM formation, the crystals were rinsed thoroughly with ethanol and water, successively, and 

dried under N" before being mounted into the titanium chamber. The dried electrodes were then checked 

(by monitoring resonance peak formation and dissipation values in air at multiple overtones) to ensure 

that they were satisfactorily cleaned and dried prior to analysis. 

Cystamine SAM coverage (r ""u,,",,) was estimated using the charge produced by the reductive 

desorption of a cystamine SAM in 0.5 M KOH (EI-Deab and Ohsaka, 2004), formed as above on a 

Bioanalytical System gold electrode (1.6 mm geometric diameter) that was cleaned as outlined in 3.3.1 
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7.3 .3.3: Phthalocyanine layering: 

Prior to use, a 1.3 mM solution of TCACoPc was prepared in a O.OSM HS solution (pH 5.80 at 20 dc) 

containing IS mM EOC and 15 mM NHS for I.S hours at 4 DC, in the dark. Inso luble aggregates were 

removed from the solution by centrifugation (13 ,000 x g, for 30 seconds) prior to analysis. A cystamine

modified crystal was exposed to the activated metallophthalocyanine solution for 40-S0 minutes before 

washing with HS, followed by successive rinses of PB and 2% w/v SOS in PB (SOS-PB) until a steady 

baseline was once again achieved. 

7.3.3.4: GOx layering and binding: 

Glucose oxidase (GOx) was dissolved in PB to a final concentration of I mg/ml. This was flowed over 

the immobil ised quartz crystal, both modified with TCACoPc and over a cystamine-SAM electrode. 

In an attempt to estimate the strength of GOx-TCACoPc interaction, a 2% solution of sodium dodecyl 

sulphate (SOS) (prepared in PB) which is a denaturant/surfactant, was flowed over the electrode for S 

min, and then the electrode exhaustively rinsed with PB until a steady-state was achieved. 

7.3.3.S : Data analysis 

Ivs. D plots were generated using the 3'" overtone, as were all mass estimations, both theoretical and 

experimental. 

Oata analysis was performed using Q-Tools® software from Q-Sense®, whereupon multiple overtones 

(::: 4) were used in determining the other salient properties of the various layers built onto the electrode 

surface (thickness of the layer and layer viscosity). 

7.3.3.6: Theoretical data generation: 

TCACoPc modelling (both activated and non-activated) was performed using HyperChemLite™ 

Aspergillus niger GOx dimension estimations were performed using Rasmol v2.06 (PDB reference fi le: 

IGPE.pdb). 
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7.4. Results and Discussion: 

7.4-1 Estimation of SAM coverage 

The active surface area of the electrode corresponded to a surface roughness factor (a) of -1.5. The 

average charge produced by reductive desorption of cystamine was 0.378 /lC, corresponding to a 

r 'Y'tanuoo = 2.58 X 10·\0 mols.cm·', or 1.54 molecules.nm-'. This level of coverage is in good agreement of 

the surface concentration constituting a SAM, and also correlates closely to the surface coverage of 2.8 x 

10·\0 mols.cm·' as found by Arias el ai., 1996. 

7.4.2 Theoretical coverage permissible by TCACoPC: 

As shown above, the average space taken up by a cystamine molecule is 0.644 nm', which corresponds 

to a square area with dimensions of 0.802 (0.806) nm x 0.802 nm (0.806), or a circular area with a 

diameter of OA5 (OA 13) nm. An unconstrained, activated TCACoPc molecule bonded head-on with a 

cystamine molecule has a molecular width of approximately IA3 nm, providing a ratio of I TCACoPc 

molecule covering 2 bound cystamine molecules at the r ,y,umi", calculated in section 7 A .!, This ratio was 

used to determine the mass of bound phthalocyanine expected in a monolayer (96A nglcm'), and 

substitution into the Sauerbrey equation provided the anticipated frequency shift at the third overtone (6./ 

,) of -16.3 Hz. As the bound phthalocyanine is a rigid, linear molecule, very little frequency dampening 

is expected. However, bound I trapped water in-between the phthalocyanine molecules in the mediator 

layer was expected to add additional mass. 

7.4.3. Analysis ofphthalocyanine layering of cystamine SAM: 

Figure 7.3 shows an abbreviated 6./and 6.D plot vs. time for the 3,d, 9'" and II'" crystal overtone for the 

addition of an activated TCACoPc layer onto a cystamine SAM (Section A), the removal of multi layers 

(8) and the attachment of GO x to an activated monolayer (C) . 
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Figure 7.3: Abbreviated QCM-D response on a cystamine-modified, QCM-D electrode. 
This figure shows the frequency response (Jines) and dissipation shifts (symbols) at the overtones n = 3, 9 , II. The 
progression is as follows: (A) the layering of the TCACoPc layer, (B) a PB (phosphate buffer) wash and removal of 
multilayers, (C) GOx layering and washing. The start of 5-minute SDS washes are indicated with arrows. 

As can be observed from Section A in Figure 7.3, the addition of TCACoPc causes a frequency shift 

many times greater than the expected theoretical/';/ 3 of approximately -16 Hz. Extending the layering 

time further (up to 1.2 hours, data not shown) does not produce steady-state/and 0 values, with regard 

to time. This indicates the formation of a multi-layered, loosely adsorbed film over the surface of the 

electrode, as opposed to the desired monolayer. 

Plotting the dissipation as a function of the frequency shift (0 vs. / plot) showed that the addition of 

TCACoPc was a multi-phased process. A typical/ vs. 0 plot for the formation of a mediator-layer is 

shown in Figure 7.4. 
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Figure 7.4: t.D vs t.j plot for the binding of TCACoPc in heptane sulphonate at overtone n=3. 

Several distinct phases for the attachment of TCACoPc to the cystamine-primed electrode surface are 

easily notable (Figure 7.4). Phase I shows a fairly rigid (low dissipation vs. frequency gradient) 

attachment, probably relating to the covalent attachment of the TCACoPc to the pre-formed cystamine 

SAM. Phase II shows either the attachment of a viscoelastic stratum onto the first layer, or the loose (i.e. 

imperfectly coupled) binding of a rigid further layer onto the first. Given the rigidity and the tendency 

towards aggregation of the TCACoPc molecule, it is more probable that the latter occurs. Phase III 

shows a further increase in the frequency, with a relatively smaller decrease in the dissipation, relating to 

film thickening and possibly the removal of water molecules from between the loosely-bound adlayers. 

Similarly, phase IV shows the possible addition of a further layer on to the electrode surface. During the 

washing phase, a rapid decrease of D concomitant with a slight I decrease was noted. This most likely 

refers to the removal of the outer (i.e. film-solvent located) loosely-adsorbed TCACoPc molecules by the 

buffer solution, as well as the removal of EDC and NHS. After the washing stage, the dissipation value 

falls to within -5% of the Ill, (a frequency shift of -80 Hz and a dissipation value of - 5 x 10.6), at and 

below which the Sauerbrey equation is assumed to hold valid. Using the Sauerbrey equation for a crude 

estimation of the bound mass, one can estimate that approximately 472 nglcm' of mass (including 

TCACoPc, coupled water and ionic buffer components) has bound, a value nearly five times the 
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expected theoreti cal value, strongly indicating the accumulation of a multi-layered TCACoPc film on the 

electrode surface. 

A med iator multi-layer has many disadvantages - primarily in terms of biomolecule attachment and 

surface irreproducibility. Since the biomolecule would attach to surface TCACoPc molecules, which are 

in turn loosely-bound to the electrode surface, this would result in a poor attachment of the biomolecule 

to the electrode surface. Figure 4 shows the instabi lity of the TCACoPc film multilayer when the solvent 

was altered to phosphate buffer, following the HS rinse. 

As is illustrated in Figure 7.5, below, a stable film was formed in HS that was resistant to washing. This 

film was found to be unstable when PB was flowed over the electrode surface, resulting in a linear-type 

removal of mass from the electrode surface. Additional washing steps of SDS were included in order to 

accelerate the removal of loosely-bound TCACoPc aggregates from the electrode surface. An average 

/>,/3 of -16.30 ± 1.25 Hz was recorded, corresponding satisfactorily to the expected theoretical frequency 

shift. 

5 

4 

PBwash 

-60 -50 ·40 -30 -20 -10 o 

!iF (Hz) 

Figure 7.S : .lD vs. "'fplots for the attachment and detachment of TeACopc multilayers onto a gold quartz 
crystal electrode modified with a cystamine SAM. 
2% SDS wash steps are indicated by a gap with an arrow, and solvent-stable films are indicated by a circle. HS = 
Heptane sulphonate, PB = phosphate buffer. 
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Negative controls using non-activated TCACoPc showed a rapid, logarithmic-like removal 

pattern ofTCACoPc from the electrode surface, w ith an average of -1.7 Hz obtained prior to an 

SDS wash and a positive frequency shift (relative to the origin of analysis) after an SDS rinse 

(b.fJ = +2.7 Hz). This positive frequency is considered to be caused by base line drift, which was 

more pronounced after the extended time of analysis (2 hours). 

Figure 7.6 shows the 3 major conformations of GOx binding as predicted from the 

crystallography data. 

A B c 

Figure 7.6: Illustration showing the 3 major possible conformations of a GOx dimer binding to the activated 
electrode surface. 
Inset shows the dimensions of a GOx monomer as a geometric ellipsoid. 

Crystallography data showed that GOx monomers bind in a configuration that is identical along the x 

axis, but with both y and z dimensions inverted at the point of binding. This results in the positioning of 

the FAD co-factor at opposite facings of the completed dimer. Since the FAD co-factor is responsible for 

the formation of the analyte (hydrogen peroxide) this results in the production of at least 50% of the 

analyte substrate that remains unavailable to the electrode surface. Additionally, it was found that the 

subunits associated through non-covalent bonds, without disulphide bonds stabilising the interaction. 
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The OOx monomer was determined to have the dimensions of 6.4 x 4.7 x 3.8 nm (x;y;z as illustrated in 

Figure 7.6), which have a good correlation with a non-glycosylated Aspergillus Niger OOx diimer 

previously described (Hecht and Schomburg, 1993). Theoretical surface areas of the three conformations 

were calculated as a flat ellipsoid with those protein dimensions parallel to the electrode surface. Surface 

areas for the various electrode-attached conformations were calculated to be 76.78 nm', 111.82 nm' and 

186.31 nm' for conformations A, B and C, respectively. This provided final surface masses of: 348.78 

ng.cm·' (/',/, = -59.1 Hz), 239.49 ng.cm·' (/',/, = -40.6 Hz) and 143.74 ng.cm·' (11/, = -24.4 Hz) for the 

conformations A, Band C, respectively. 

An important consideration is that the OOx subunits are not covalently bound together (by the formation 

of a disulphide bridge). Hence, conformation A would be the least stable towards non-optimal solution 

conditions, as it is more prone than the other conformations to subunit disassociation. By contrast, 

conformation "C" would be considered to be the most stable, as it has the largest proportion of protein 

bound at the electrode-solvent interface. 

Binding of the OOx onto the activated electrode layer showed a relatively high viscoelastic response. 

The addition of SOS caused a slight addition of mass, with a signi fi cantly larger increase in dissipation. 

This is considered to be due to the linearising effect caused by the increase in electrostatic repulsion by 

the binding of the negatively-charged SOS to the OOx. As the proteins adopt more expanded 

conformations, this would have the effect of increasing the viscoelasticity of the bound molecules, 

reSUlting in an increase in the dissipative force exerted during oscillation. However, upon the removal of 

SOS, a frequency/d issipation profile similar to that achieved prior to SOS incubation was found, 

indicative that the OOx film was stable and resistant to denaturation and removal, itself indicative of 

covalent attachment of the OOx at multiple residues to the TCACoPc layer. Section C of Figure 7.3 

illustrates this. 
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An average of 11f, ~ -1 2.23 ± 0.69 Hz bound, equating to approximately 72. 157 ±..,3.7 nglcm', slightly 

less than half of the projected level of bound protein that was expected to bind when the largest 

confonnation (conformation C). 

In previous work (Mashazi et aI., 2006), a biosensor created using Au-MPC-GOx was found to provide a 

maximal current output (at saturated levels of glucose) of 17.13 ~A.cm-', with the signal transduced 

created by the phthalocyanine-catalysed electrooxidation of hydrogen peroxide. An electron yield of 2 

electrons I molecule H, O, oxidised was determined. 

Since the current output is related to the charge, and the total charge is related to the amount of 

participant molecules by equation 3, the total output of H,O, produced by the immobilised GOx per 

minute was calculated (as in Equation 7.3). 

Q ~ nxFxN Eq. 7.3 

Where Q is charge (in C), n is the number of electrons transferred in the redox reaction, F is Faraday's 

constant (9 .6485 x 104 C/mol) and N is the number of molecules participating in the redox reaction 

(mols) (Bard and Faulkner, 200Ia). 

It was detennined that the bound GOx possessed a maximal H, O, production of 

5.33 x 10.9 mol.min·1.cm-'. Since at least 50% of H,O, produced remains unrepresented, due to the non

optimal binding conformations of the diimer subunits, this relates to a total H, O, production of 

approximately 1.066 x 10-8 mol.min·1cm·'. The diffusion coefficient of hydrogen peroxide was taken to 

be between 1.6 x 10" cm' .s·l and 1.61 x 10" cm'. s-l in aqueous solutions between the pH range of6 to 8 

(Prabhu et aI., 1981). Given the relatively high diffusion coefficient and that the distance between the 

phthalocyanine layer and the active site of the electrode-facing monomer of the GOx can be estimated to 

be not greater than 6 nm (based on crystallography data for the distance between the active site of the 

enzyme and the outside of the protein for the various conformations of the predicted bound GOx), this 

means that little substrate destruction is expected to occur during the transport of the hydrogen peroxide 

to the electrode's surface. 
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This translates to 1.066 x W-' V.cm·' of GOx activity bound at the electrode surface. Assuming that no 

denaturation of the bound GOx has occurred (i.e. GOx is not bound in a catalysis-inhibiting 

conformation), this translates to a protein loading of5.33 x 10-' mg.cm·' (or 53.26 ng.cm·'), which results 

in a frequency shift of /}'/ 3 = -9.2 Hz. Since this value does not give an indication of coupled water, a 

film containing an additional 50% mass of water (/},/3 = -13 .8 Hz) still falls within the frequency shift 

range, indicating a fair correlation with that of the QCM-D data. 

7.4 Critical assessment of QCM-D as a fundamental biosensor: 

The poor compatibility of some of the QCM-D flow chamber components with select organic solvents 

may make it difficult to assess the layering of organic-phase biosensor components. In previous work 

(Mashazi et aI., 2006), layering of the phthalocyanine and the removal of a possible multilayer down to a 

TCACoPc monolayer onto the electrode surface took place using DMF (as a Pc solubilising agent), 

which shows poor compatibility with certain QCM-D components. Hence, an exact comparison between 

the previously published methodology and the one described in this paper (Mashazi et aI. , 2006) could 

not be performed. Aqueous-soluble substitutes and derivatives for chemical layer components in 

biocomposite materials may have to be used in order to successfully use this analytical technique. 

However, a good comparison between the theoretical maxima modelled in both this paper for TCACoPc 

layering and the experimental data for GOx loading compared to previous work (Mashazi et aI., 2006) 

outlined here has been successfully achieved, showing the relevance and applicability of QCM-D as a 

analytical technique for probing fundamental interactions between multiple layers in biocomposite 

materials. 

It is important to note that crystallography data may not accurately model the dimensions and 

conformation of the solubilised protein. Certain procedures crucial to the crystallisation of proteins prior 

to X-ray crystallography (for example, exposure of the protein to a buffer with a pH value that of the 

protein's pI val ue in order to minimise electrostatic repulsion (Bollag et aI. , 1996a; Bollag et aI. , 1996b; 
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Harris, 2001), and the use of precipation agents (Harris, 2001) have the effect of altering the 

conformation of the protein molecules, typically compacting them in order to adopt an aggregated 

conformation suitable for precipitation and crystal growth. This results in an underestimation of the 

volume that protein will adopt in a solvated environment, tending towards an overestimation of the 

theoretical mass that can be bound. Additionally, the differences extant between crystalline and solvated 

protein molecule conformations may have the effect of altering the number of available (i.e. surface

exposed) binding sites, further shifting possible binding conformations beyond those projected. A further 

comparison with the electrochemical output of a biosensor fabricated in a similar manner and making use 

of the same components shows a fair correlation with that predicted to have occurred via QCM-D. 

7.5 Conclusion: 

The QCM-D was successfully used to create and assess various layers present in previously published 

composite GOx-based sensors mediated through the attachment of Cobalt(ll) metalophthalocyanine. 

Although the requirement for aqueous modification of the piezoelectric sensor created an undesirable 

TCACoPc mUltilayer, successful removal of the multilayer was achieved, leaving the sensor with a 

monolayer coverage of TCACoPc that exhibited a frequency shift that correlated satisfactorily with the 

theoretical value. GOx was then attached onto the surface of the TCACoPc, and the strength of 

attachment gauged through the use of a protein-denaturating surfactant, SDS. Based on the stable 

formation of the GOx film, and its minimal interaction with SDS, it was assumed that a strong (i.e. 

covalent) attachment between the GOx molecules and the underlying TCACoPc layer was achieved. 

While the experimental values for the mass addition of GOx did not correlate with the theoretical 

maximum based on crystallography modelling, it did correlate with the theoretical maximal current 

output of the previously-published sensor, even when the additional factor of coupled water was added. 

This displays proof-of-principle that the measurements of mass addition as tracked by QCM-D can be 

successfully applied in biosensors. 
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Chapter 8: Monitoring fundamental film characteristics of 
immobilized laccase monolayers: a comparison between QCM-D 
piezoelectric analysis and immobilized enzyme kinetics in a sensor 
configuration. 

8.1 Abstract 

Enzyme immobilization is an ever-growing research-area for both analytical and industrial applications. Of 

critical importance in this area are the effects of immobilization procedures upon the functionality of the 

immobilized biomolecules. Both beneficial and detrimental effects can be conferred through the selection 

and tuning of the immobilization procedure. Quartz-crystal microbalance with Dissipation (QCM-D) has 

been previously used to great effect in tracking alterations to thin films of biomolecules immobilized onto 

quartz transducers. 

In this study, we investigate the ability of QCM-D to track and monitor film parameters of a monolayer of 

laccase immobilized on a series of self-assembled mono layers (SAMs), differing in lateral density of binding 

residues on the SAM and height of the SAM from the quartz surface. Both mass gains and rheological 

parameters for these varying surfaces were measured and trends compared to the apparent enzyme kinetics 

of the immobilized laccase films , assessed via chronoamperometry. 

For covalent attachment of proteins, both shear and viscosity were increased relative to physically adsorbed 

proteins. An increase in lateral density of protein-binding surface of the SAM components was shown to 

increase the shear/viscosity of the resultant film while an increase in distance from the electrode (through 

incorporation of lysine linkers) was shown to decrease the shear/viscosity while simultaneously increasing 

the wet mass gain of the films. 

The subject matter of this chapter has been submitted for publication as follows: 
R. Fogel, J. Limson. Probing fundamental film parameters of immobilized enzymes - towards enhanced biosensor 
performance. Part 1- QCM-D mass and rheological measurements. Enzyme and Microb ial Technology. 

R. Fogel, J, Lirnson. Probing fundamental film parameters of immobilized enzymes - towards enhanced biosensor 
performance. Part II - elcctroanalytical estim ation of immobilized enzyme perfonnancc. Enzyme and Microbial 
Technology. 
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Shear and viscosity may be indicative of both enzyme denaturation and increased lateral protein packing 

within the film structure hence it is assumed that less distortion occurs with the inclusion of linkers which 

allow for more optimal protein immobilization. 

The apparent enzyme kinetics of laccase films immobilized on the SAM series were measured through the 

detection of hydroquinone. Increases in both the maximal enzyme-generated current, im", and the apparent 

detection sensitivity of hydroquinone, as well as a decrease in the apparent Michaelis-Menton constant, Km 

were noted for most of the surfaces with increasing linker length. Decreasing the lateral density of the 

spacer-arms brought about a general improvement in these parameters, which is attributed to the decrease in 

multiple points of immobilization undergone by functional proteins. 

Finally, comparisons between rheological data and enzyme kinetics data showed that a dependence in Km on 

the measured viscosity of the film between the different surfaces. Due to the contribution of increased 

viscosity brought about through the method of immobilization, these trends are restricted to the various 

surface classes used, rather than being a global trend, but a satisfactory trend between these classes indicates . 

similar principles governing the correlation between viscosity and Km. The relative detection sensitivity of 

immobilized films was found to be related to the degree of immobilized protein hydration Cas estimated 

through the QCM-D parameters of Sauerbrey-calculated Mass and Voigt-calculated mass), between the 

different surfaces examined. This trend was found to be opposing when considering rigid films Cas indicated 

by their shear values) with non-rigid films. The findings of this research indicate that viscoelastic 

measurements of immobilized enzyme thin-films using the QCM-D can produce valuable insight into the 

mechanisms dictating the kinetics of said films. 
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8.2 Introduction 

The majority of protein immobilisation techniques have two often-conflicting factors to balance, namely 

finding a means to attach proteins in as firm a manner as desired for the application, while ensuring that the 

active conformationls of that protein are retained in the finished product. While many immobilisation 

techniques have been investigated in biosensor-application research, much of this research is not addressing 

a key factor in this - an understanding of the interplaying factors that affect the final conformations present 

in the attached biomolecule, and, further, their effects on the functioning of the attached biomolecule. A 

greater understanding of the biomolecules participating in biosensing applications is, hence, of high 

desirability (Gopel and Heiduschka, 1995). Furthermore, a deeper appreciation of the changes undergone by 

these biomolecules during their immobilisation, and the subsequent effects that these alterations have on the 

functionality of that biomolecule is of utmost importance in the design and construction of immobilized

biomolecule structures, regardless of their intended use. Due to the alteration in protein conformation upon 

binding and catalysis of a substrate, an overly-reticulated protein molecule for example, may undergo 

additional decrease in efficiency based on the lack of protein mobility. 

A number of papers have examined the immobilized film-structures of biomolecules using Quartz Crystal 

Microbalance (QCM), and QCM-D technology (QCM with Dissipation) through measurement of frequency 

changes (<'>1) and in the case of QCM-D, the dissipation of molecules immobilized on quartz crystal surfaces 

(Hook et a!. , I 998a; Hook et a!., 1998b; Voinova et a!. , 2002). These provide information on amount of mass 

bound, film thickness, viscoelasticity and assessment of conformational changes which can occur upon 

biomolecule immobilization (Voinova et a!., 1999). However no such studies have attempted to relate these 

physical parameters identified to the performance of an amperometric sensor at similarly formed films, nor 

to the immobilised-enzyme kinetics thereof determined via electroanalytical techniques. 
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To this end, the studies reported on in this Chapter examine the physical film characteristics observed 

following the immobilization of laccase onto gold quartz crystal surfaces, either through physical adsorption 

or through covalent attachment to modified mixed thiol monolayers in different configurations. Parameters 

of the immobilized enzyme films' physical state are then compared to the observed kinetic functioning of the 

enzyme when attached to gold electrodes for amperometric detection of hydroquinone 

8.2.1 Influences of protein immobilization at the molecular scale: 

The method of protein immobilisation has a great impact on conformation, and hence, the kinetic operation 

of the enzyme, relative to the soluble, 'free ', enzyme(Royer, 1982). These effects can be broadly categorized 

as: 

(I) Changes occurring due to the non-primary interaction between support and enzyme (hydrostatic, ionic 

and hydrophobic interactions that occur due to the close proximity of the support to the enzyme) (Royer, 

1982) (Bayramoglu et aI., 2003) (Bayramog!u and Arica, 2007); 

(2) Changes due to primary interactions occurring between support and enzyme (e.g. covalent bond 

formation, orientation(Bayramoglu and Arica, 2007) and cross-linked reticulation)(Bayramoglu et aI. , 2003); 

(3) Microenvironmental factors, such as the accumulation of protons in the microenvironment surrounding 

protein films due to the presence of charged amino acids (Royer, 1982) (Lowe, 1977). An important sub-set 

of microenvironmental factors is : 

(4) increased diffusional constraints arising from the accumulation of enzyme at a selected regions (affecting 

the rate of substrate interaction with the enzyme and the rate of product release to the transducer I bulk 

solvent) (Royer, 1982), (Kim et aI., 2007). Additionally, immobilisation increases the concentration of 

biocatalytic protein at the area of attachment, resulting in an increase of protein-protein interactions, altering 

both microenvironmental and non-primary interactions occurring at the point of immobilisation. Alterations 

in the activity, kinetic stability and Michaelis-Menten constant (compared to free enzyme) have been 
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frequently reported upon immobilisation of the enzyme to the solid support, the extent of change being 

uniquely dependant on the selection of support (Klis et aI., 2007b, Kim et aI., 2007), Ihe enzyme in question 

and method ofimmobilisation (Freire et aI. , 2001, Klis el aI., 2007b), Bayramoglu el aI. , 2003 , (Bayramoglu 

and Arica, 2007,Mateo et aI., 2007) used to conjoin the first two elements (Royer, 1982). Considerable 

research has been expended into the minimization of deleterious properties while enhancing those properties 

(such as improved thermostability (Lowe, 1977) or pH stability) deemed desirable during immobilisation 

(Bayramoglu et aI. , 2003, Cabaj et aI. , 2009» . This is often achieved by modulating certain aspects of 

selected immobilisation procedures (Bayramoglu et aI. , 2003), but many of these papers report only on 

effects evidenced by the functioning of the protein (Le. alterations in enzyme kinetics), as opposed to any 

physical changes undergone by them (Bayramoglu et aI., 2003, Bayramoglu and Arica, 2007). 

Direct observation of conformational changes undergone by immobilized proteins is difficult to achieve, 

primarily due to the low concentrations of proteins found at the immobilisation site and analytical 

interferences due to the support (Royer, 1982). Atomic Force Microscopy has been previously used to 

analyse both mono-dispersed and aggregates of proteins attached to supports and used to document attached 

particles' size and shapes (for example, Mazur et aI. , 2007), but this method (while very useful in assessing 

surface coverage of a given surface) gives very little indication of the extent of distortion or denaturation 

undergone by the protein layer. The research reported in this Chapter thus aims to fuse both data obtained 

from the determination of physical parameters of monomolecular layer of protein via the QCM-D and the 

kinetic parameters obtained by electroanalysis of products resulting from the activity of laccase within this 

film. 

8.3 Aims and Objectives 

The aim of this work was twofold: to examine i) whether QCM-D could be used to monitor fundamental film 

parameters that may impact on the operational properties of an amperometric sensor manufactured in the 

same manner and ii) whether the protein-film characteristics explored through the use of QCM-D as a 
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fundamental technique show any correlation with the kinetic parameters and functioning of the laccase when 

used as a biorecognition element in a biosensor for the electrochemical detection of hydroquinone. This 

study does not aim to construct a desirable biosensor. With reference to this Chapter, the aim is rather to 

determine if QCM-D can be of use in the fabrication ofbiorecognition layers by examining the fundamental 

constraints involved in the immobilisation ofbiorecognition elements to transducers. While QCM (Mazur et 

aI., 2007; Rahman et aI., 2008) and QCM-D (Saarinen et aI., 2009) has been used as a gravimetric 

measurement of immobilized laccases at various surfaces, similar studies have not been reported in the 

literature for QCM-D analyses. 

8.4 Methods and Materials 

8.4.1 Apparatus 

Apparatus for QCM-D was the same as previously described in Chapter 2 (Section 2.1.3) 

8.4.2 Reagents 

All reagents used were of analytical purity, (Sigma-Aldrich), and used without further purification. Stated 

purities of all reagents used in this research follow: 99% succinic acid, >99% cysteamine chloride, 98% J3-

mercaptoethanol, 99.9% sodium dodecyl sulphate (SDS) and 99+% L-Iysine. Lactic acid, 85% WI w. and 

25% WI" glutaraldehyde (Grade I, high purity) were obtained in solution form at the stated concentrations 

and laccase purified from a culture of Trametes versicolor, was obtained as a lyophilized powder. 

QCM-D analysis and protein modification of the electrode surface took place using 0.025 M succinic and 

0.025 M lactic acid buffer (SLB), adjusted with NaOH to a pH of 4.5. All non-proteinaceous solutions were 

degassed by ultrasonication to remove bubbles for at least 10 minutes prior to QCM-D analysis. 
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Laccase solutions were prepared in SLB to a final concentration of3.67 mg.mr! (SO U.mr !) . These were 

prepared > I hour before use and stored at 4 'C. Laccase solutions were allowed to stabilize at room 

temperature for 15 min prior to QCM-D analysis. 

Electrochemical apparatus was the same as outlined in Chapter 2 of this Thesis (Section 2.1.1). The working 

electrodes used in this study were gold-surfaced electrodes (AuEs), as described in Chapter 6 of this Thesis. 

Hydroquinone stocks were prepared at either 50 roM or 100 roM concentrations, as outlined in Chapter 2 

(Section 2.2.5). 

8.4.3 Methodology: QCM-D studies 

S.4.3 .1 Self-assembled monolayer (SAM) formation: 

100 roM stock solutions of cysteamine and ~-mercaptoethanol were prepared in de-aerated water and stored 

at 4 'c in the dark until used (within 36 hours of preparation). 

Gold-surfaced crystals were cleaned as described in Chapter 7. Following cleaning of the crystals, mixed 

solutions of cysteamine and ~-mercaptoethanol were prepared in de-aerated 20% ethanol, SO% water 

solution to a final concentration of 0.1 mM and the gold surfaces exposed to this solution for at least S hours 

at 4'C in the dark. Two different deposition solutions of different molar fractions 0 f cysteamine and ~

mercaptoethanol were prepared: a solution of I : 99 cysteamine : ~-mercaptoethanol (henceforth referred to 

as "SAM I") and I : 4 cysteamine : ~-mercaptoethanol ("SAM 2") were used to modifY the gold surface. 
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8.4.3.2 Self-assembled monolayer modification to produce a multi-layered SAM: 

I mM solutions of glutaraldehyde or L-Iysine were prepared in either: milliQ water (for ex-vitro crystal 

modification) or 0.025M SLB (for QCM-D analysis). Surfaces were exposed to alternating solutions of the 

two for 5-10 min for each solution, followed by an ethanol / water rinse (ex-situ) or a 0.025M SLB rinse for 

10 minutes (in-situ). Table 8.1 below tabulates the various completed surfaces formed, prior to the addition 

of laccase. For example, surface SAM 2.3 would be exposed to sequential alternations of glut-Iys-glut-Iys-

glut. 

Table 8.1: Compositions oftbe various surfaces investigated in this Chapter 

SAM Number Cysteamine content (%) Cysteamine modification· 

I I none 

l.l I glut 

1.2 I glut-Iys-glut 

1.3 I glut-Iys-glut-Iys-glut 

2.1 25 glut 

2.2 25 glut-Iys-glut 

2.3 25 glut-Iys-glut-Iys-glut 

Au none none 
" " " " . • - layer-by-Iayer, startmg at the basal SAM. glut deSlgnates glutaraldehyde and Iys mdlcates the addition of a 

lysine residue 

8.4.3 .3 Attachment of lac case molecules: OCM-D analysis and biosensor fabrication 

For all films that required glutaraldehyde activation prior to the addition of laccase (Table 8.1), the final 

activation of glutaraldehyde always took place during QCM-D analysis and was followed with a 10-minute 

SLB rinse, as described above. Glutaraldehyde exposure was required in order to activate the requisite 

surface residues (cysteamine), as described elsewhere (Lee and Chang, 2005). 
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Laccase solution was flowed over the QCM-D crystals until such a time as a stable mass response was 

recorded (typically 10-15 minutes), followed by a IO-minute rinse with SLB, and a short exposure (-2 

minutes) of the crystal to 0.3% SDS solution. SDS exposure was followed by a final , extensive, wash phase 

using SLB. 

8.4.3.4 Raw data treatment ofOCM-D response curves: 

The principles of QCM-D are outlined in the literature (Rohdal et aI., 1995; Hook ct aI. , 1998a). Upon 

attachment/detachment of bound mass at a piezoelectric material, the shift in frequency Lli is related to the 

mass by the Sauerbrey equation (Sauerbrey, 1959), Eq. 7. 1. This relation is only valid for thin, rigid films 

firmly adsorbed onto the electrode surface that couple to the electrode's oscillation (HOOk et aI., 1998a; Hook 

et aI. , 1998b). Viscoelastic films (such as protein) or those with coupled water generally result in a dampening 

of the frequency to occur, and an overestimation of the mass of the attached layer (HOOk et aI., 1998a; Hook et 

aI., 1998b). Data regarding the viscoelasticity and strength of the attached layer, can then be obtained from 

QCM-D measurements of the so-called D factor, or dissipation factor, D (dimensionless units, x10-'). D is 

essentially the ratio of energy dissipated from the surface of the crystal versus that stored during one period 

of oscillation. During QCM-D measurements oCLlI and LlD are taken at multiple overtones. These 

essentially refer to multiple integers of the resonant frequency. In so doing these measurements can provide 

further information of thickness, shear and viscosity of the layer (Hook et aI. , 2001). 

For QCM-D analysis, the same solvent (0.025 M SLB, pH 4.5) was used throughout to minimize the 

perturbation of the QCM-D response by a large alteration of the solvent composition. For similar reasons, 

low concentrations of glutaraldehyde and L-lysine were used, additionally to decrease non-specific binding 

at the electrode surface and the reversible polymerization of the glutaraldehyde (Lee and Chang, 1995). 

Frequency and dissipation data were normalised to possessing values of 0 after glutaraldehyde activation of 

the SAM surface prior to the analysis of the protein film, when surfaces requiring glutaraldehyde activation 

was used. This was performed in order to account for very slight drifts in the Lli and LlD values following 

glutaraldehyde exposure. 
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Two major parameters of the protein binding were used to determine the efficacy thereof. The first is the 

viscoelasticity index (V.I.). The viscoelastic index of the protein detennined in these studies is the inverse of 

the conventional 6 DI(6fln) relation (Dutta et aI. , 2008) and calculated as in Eq. 8.1 in order to display 

increases in rigidity more intuitively. 

V.1. = 6f,,, I W,,, Eq.8.1 

where ,1f,,, is the total change in frequency, nonnalised after the stable frequency of response of the 

glutaraldehyde activation (Hz), with 6f,,, = f - f, being the difference between the recorded frequency 

value (I) assessed after reaching a stable frequency and the initial frequency recorded at a stable baseline 

prior to sample adsorption (I, ). Similarly, ,1D", is the total change in dissipation for the same (x IO-6 

dimensionless units) .. 

Secondly, from ,1f"I> the Sauerbrey equation was used to detennine the mass gain on the crystal surface. The 

Sauerbrey equation was only held to be valid if the V.1. was::: 10 Hz. I06. The Sauerbrey equation 

(Sauerbrey, 1959) was solved as in Eq. 7.1. 

The V.1. and the Sauebrey-calculated mass gain were detennined at the three major stages of the protein 

attachment: (I) at the height of protein attachment, (2) at the steady-state of the subsequent rinse ofloosely

adsorbed proteins and (3) following a short SOS rinse in order to remove all protein that was not covalently 

bonded to the electrode surface. Experiments were perfonned in at least triplicate, and the mean values with 

standard deviation presented henceforth. 
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8.4.3.5 Rheological monitoring 

Film thickness, elastic shear modulus and viscosity detenninations of the attached protein films were 

perfonned using Q-Tools viscoelastic detennination functions using the raw 1),/ and tJ) values drawn from a 

minimum of 3 overtones and a maximum of 5. The Voigt-based model of coupled motion for viscoelastic 

films attached to a quartz piezoelectric sensor developed by Voinova et aI., 1998 was used for the 

determination of these parameters during the laccase attachment / detachment stages. The film density, fluid 

viscosity and fluid density were assumed to be 1000 kg.m·', 0.001 kg.ms and 1100 kg.m·' respectively for all 

protein films examined. An abbreviated summary of the modeling system and relevant calculations used in 

these detenninations is available (Dutta et aI., 2008), as is a more detailed investigation into the mathematics 

and assumptions underlying this system (Johannsmann, 2008), but is excluded from here for the sake of 

brevity. 

The Voigt mass gains of the film at different states of rinsing were detennined from the film thickness, and 

effective film density. In order to maintain parity between replicants, laccase films adsorbed to surfaces (Au 

and SAM I) were modeled as possessing low shear (> I 0' N.m·' ) in order to satisfactorily fit the experimental 

data of all the replicants to the model data. All other surfaces were modeled under the assumption of a high

shear « 10' N.m·'), in order to provide a satisfactory fit to the data and a consistent grouping of rheological 

parameters between replicants. 
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8.4.4 Methodology: Immobilised enzyme kinetics monitoring via electroanalysis 

8.4.4 .1 Electrode Cleaning and surface area estimations 

AuEs were cleaned as outlined in Chapter 6, (Section 6.4.2.1). Following cleaning, the final CV was saved 

and analysed to calculated the surface area of individual electrode surfaces. 

Real electrode surface area was estimated through integration of the gold oxide reduction peak of the final 

cleaning voltarnmograms of each electrode in order to determine the charge of that peak. Peak charge was 

then used to determine the real surface area of the electrode using a surface-charge relation of 400 l'c.cm·2 

(Trasatti and Petrii, 1991). 

8.4.4.2 Modification of gold surfaces and formation of immobilized enzyme layers 

Gold electrodes cleaned as in Section 8.4.4.1 were modified with the various SAM layers outlined in Table 

8.1 in the same manner as was used to modify gold QCM-D sensors (Section 8.4.3.1) 

Following formation of SAM films and subsequent cleaning, electrodes were modified through alternating 

exposures of the SAM film to glutaraldehyde and lysine, for a period of 10 minutes per modification. After 

each modification, electrodes were thoroughly rinsed with ethanol, then water. This was performed to 

produce the SAM amendments outlined in Table 8.1. 

Once SAM amendments had taken place, SAMs were activated via a 10-minute exposure to glutaraldehyde, 

rinsed with ethanol and then water, and 20 1'1 of an 80 U.mg"' solution of laccase was ali quoted over the 

surface of the activated SAM. 

Electrode surfaces labeled as "SAM I" received no glutaraldehyde activation prior to addition of laccase. 

Electrode surfaces designated "Au" were modified with laccase as above, using cleaned electrodes without 

SAMs. 
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The SDS wash stage following protein immobilisation (Section 8.) was used exclusively for QCM-D 

analysis in order to rapidly remove loosely-bound proteins from the film. It should be stressed that this was 

not considered necessary for the fabrication of the electrochemical biosensor, due to the rapid washing of the 

modified electrode using comparatively large volumes of water and buffer, neither of which are readily 

utilizable using QCM-D without causing signal perturbation. 

8.4.4.3 Chronoamperometrv 

Chronoamperometry was performed under stirred conditions (stirrer speed: 15 000 rpm) using 5 ml of 

O.lM SLB, pH 4.5. The working electrode was poised at -0.15 V (vs. AglAgCl) and the current-sampling 

time was 0.2 s per reading. Aliquots of either 50 mM or 100 mM HQ stock solution were used to calibrate 

the immobilized enzyme films 

8.4.4.3 Electroanalytical Modelling system 

Immobilised enzyme parameters were determined using the sigmoidal model (Eq. 2.6) as outlined in Chapter 

2 and Appendix I of this Thesis. Measurement of detection sensitivity; K m; imu and the degree of 

sigmoidality, b, proceeded as described in Chapter 4 of this Thesis. 

From surface area determinations (Section 8.4.4.1), i mu and biosensor sensitivity were calculated as an 

expression of current density (current per em' of surface area, A.cm"), and reported as such henceforth. 
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8.5 Results and Discussion: 

8.5.1 QCM-D Analysis 

~-mercaptoethanol was selected as a non-active SAM filler (Bain et aI. , 1989; Bumm et ai, 1999; Smith et 

aI., 2004) i.e. in order to alter the space occurring between protein-binding cysteamine SAM components. 

Based on the similarities in its chain-length to cysteamine, and the polar head-group, ~-mercaptoethanol was 

expected to have a similar aqueous solubility, allowing for a laterally-homogenous deposition of SAM 

components onto the electrodes . 

8.5. Ll Characterisation of typical protein film attachment and protein wash-off 

Figure 8.1 below shows a typical QCM-O response for the attachment of laccase to a sensor surface, in this 

instance, SAM 2.2. / and D values are normalised relative to the glutaraldehyde activation of the SAM, with 

the phase shifts indicated by labeled arrows. 

Typically, the attachment process of laccase consisted of the following phases in all surfaces examined: a 

rapid increase of bound mass to the sensor (concomitant with a rise in dissipation), followed by slow 

stabilization of that response. Wash-off of the protein occurred in two similar stages, with final phase being 

that of a very slow and steady loss of mass from the sensor surface. The SDS wash was used to induce a 

more rapid removal of unbound protein from the electrode surface (Yin et aI. , 2008) and the post-SOS phase 

exhibits a more rapidly-stabilized removal of mass from the electrode surface. The differences between the 

6/ vs. time and 6D vs. time gradients of the buffer rinse stages before and after exposure to SDS confirm 

this. 
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Figure 8.1:(Afln) vs. time and AD vs. time plots (overtone Dumber, n = 3, 7,11) ortbe attachment oflaecase to 
the surface of SAM 2.2. 

Values are normalized re lative to the QCM·D response following glutaraldehyde activation of the SAM and rinse-off of 
unbound aldehyde. Arrows indicate alteration of the solvent fl owing over the crystal. 

Legend: L = 80 U.mr1 lacca~e solution, B I and S2 = buffer wash, S = 0.3% SDS solution 

8.5 .1.3 Mass and V.1. variations between laccase,adsomtion phases and binding surfaces investigated: 

Due to the better resolution of the phases, I!..f and I!..D values drawn from overtone n ~ 9 were used for 

calculating V.1. and mass gain, as displayed in Figures 8.2A and Figure 8.2B for the different surfaces 

outlined in Table 8.1. 

In Figure 8.2, mass gain displayed was calculated using the Sauerbrey equation (Eq. 7.1) for all investigated 

surfaces at different phases of protein attachmen1fdesorbtion, except for analyses following the SDS rinse 

step where these are reported using both the Sauerbrey equation (after SDS rinse, S) and Voigt viscoelastic 

modeling (after SDS rinse, V). Of the four categories displayed in Figure 8.2, only the last three ("Buffer 

Rinse" and "After SDS,Rinse, S" and "After SDS-Rinse V") should be considered important for elucidating 

the efficacy of any electrochemical biosensor fabricated in the same manner as was modeled on the QCM,D. 

It must be considered that the initial measurement (that of the protein film after a buffer rinse) is indicative 
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of an adsorbed protein multilayer, as opposed to the washed enzyme monolayer that was used for 

electrochemical determination. 
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Figure 8.2: Mass and V.I. variations for the different surface configurations at different stages of protein 
attachment as monitored via QCM-D. Number of independent measurements, D :::. 3 

A) Protein film mass gain (in ng.cm'2) 

Values are drawn from stable areas of the laccase adsorption·desorption phases indicated in Figure 8.1 
Inset box shows effects of + 1 Hz deviation of frequency on the calculated mass 
"After SDS rinse - S" refers to mass gains calculated via the Sauerbrey formalism, while "After SOS rinse· V" refers to 
mass gains calculated via the Voigt film thickness. 
B) Viscoelastic Indices (V.I.) of same protein films. 
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Considering here only the Sauerbrey-determined mass gains in this section (Figure 8.2A), comparable 

amounts of protein was retained after the SOS wash on both basal films and between controls. Taking into 

account uncertainties, average bound masses of - 280 ng.cm-2 were recorded for both SAM 1.1 and SAM 2.1 

and - 173 ng.cm·2 for Au and SAM 1). This is indicative of a bound monolayer (or sub-monolayer in the 

cases of controls) with a greater cohesiveness than a multilayer would possess. The use of dilute SOS would 

ensure that only loosely-bound proteins would be removed from the transducer surface, leaving behind the 

sub- to full-monolayer of bound protein. 

The two controls used for this study, namely, laccase adsorbed onto a plain gold surface (designated Au in 

Table 8.1) and onto 1 :99 cysteamine: B-mercaptoethanol surface (designated SAM I) show that the addition 

of dilute SOS removes the majority of the protein film formed by the adsorption of laccase. Laccase 

adsorbed onto gold displayed a greater averaged V.l. (film rigidity) than SAM 1, probably due to the 

adoption of a non-optimal surface-bound conformation of the bottom-most layer on contact with the gold 

electrode. Since SAM 1 possesses both hydrophilic and basic SAM head-groups, this increased 

hydrophilicity may aid the proteins in retaining a solvated conformation when interacting with this surface. 

The low V.l. value of SAM 1 (Figure 8.2B) and larger proportional mass loss after rinsing (relative to other 

surfaces) are indicative of a less rigidifYing interaction between protein and surface. The low average V.l. 

value, coupled with the large degree of uncertainty present in the determination ofV.l. and bound mass itself 

may indicate the presence of a sub-monolayer of protein of variable coverage retained after SOS exposure, 

possessing a substantial mass contribution from coupled water trapped in-between adsorbed protein 

molecules on the surface contributing to the dissipation of the film. 

A comparison between the two basal SAMs (SAM 1.1 and SAM 2.1) layers shows immediate differences in 

their respective rigidities. Consistently, protein films attached onto SAM 2-based surfaces showed greater 

rigidity than their SAM I counterparts (Figure 8.2B). An increased surface concentration of cysteamine 

provides a greater number of attachment points between the enzyme and the electrode. Increased reticulation 
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of the enzyme will have the effect of increasing the rigidity of the film, by decreasing the possible 

conformations and orientations that the enzyme can adopt following attachment. This increase in rigidity 

with increase in protein concentration conforms with previous studies (Saarinen et aI. , 2009). This also helps 

to explain why a consistently higher level of protein binding was also observed for SAM 2 surfaces when 

compared to their SAM I counterparts. The initial surfaces themselves bound a comparable amount (-266 

ng.cm·' in SAM 1.1 compared to 296 ng.cm·' for SAM 2.1 Figure 8.2A), but a much greater average V.l 

value was recorded for SAM 2.1 (44. 1 Hz.IO' Figure 8.2B compared to SAM 1.1 (35.6 Hz.IO' ). Film 

rigidity has previously been used as a parameter to investigate inter-protein cross-linking of adsorbed films 

onto QCM-D crystals (Dutta et aI., 2008) and it is logical to assume that a greater degree of surface-protein 

bonds would increase the degree of rigidity. 

An increase in the amount of final bound mass of protein (i.e. following SDS desorption) was found to be the 

general trend with the addition of lysine linkers connecting the surface to the protein (Figure 8.2A). Similar 

behaviour has been previously observed with the inclusion of ionic spacers between the surface and laccase 

using QCM, with surface plasmon resonance indicating a significant increase in bound mass (Mazur et aI., 

2007). With a greater degree of linker length and mobility (Hermanson et aI., 1992) the number of protein

binding attachment points was increased, resulting in greater mass binding, as supported by other research 

(Bayramoglu and Arica, 2008). Additionally, the presence of carboxyl and amine groups present on lysine, 

and the carbonyl groups present on glutaraldehyde are expected to increase the hydrophilicity of the 

attachment surface, decreasing denaturation of the enzyme when interacting with this linker (Hermanson et 

aI., 1992). 

The addition of lysine linkers to the SAMs was proposed to decrease rigidity (Figure 8.2B) by the following 

two methods: firstly, as stated above, by allowing for enzymes to be linked in a less denaturing conformation 

through the increased linker mobility, and secondly by increasing the space between the attached protein and 

the electrode surface. Since proteins have been shown to alter their conformation from a solvated to a bound 
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confonnation when contacting a solid surface (Mungikar and Forcinti, 2004), an increase in the length 

between the bound protein film and the electrode would enable a better retention of the solvated 

conformation (Bayramoglu and Arica, 2008). A larger degree of protein solvation would increase the amount 

of coupled water occurring within the film, etTectively increasing the amount of bound mass of the protein 

film and increasing the dissipative etTect of the film. Thus, an increase in spacer length would 

simultaneously lower the V.I and increase the bound mass gain, respectively. 

The possibility of cross-linking occurring between linker molecules must also be considered. As linker 

mobility increases with linker length, there occurs an increasing probability of linkers interacting with one

another, decreasing available covalent linkages to protein. This is a potential explanation behind the lowered 

final mass gain that appeared between SAM 1.2 and SAM 1.3 (323 ng.cm-' and 296 ng.em-' respectively, 

while possessing similar standard deviations of ± - 30 ng.em-' ). A similar etTect between SAM 2.3 and SAM 

2.2 does not occur, possibly since the inter-cysteamine space was greatly decreased in SAM 2, resulting in 

less overall linker mobility. As stated above, the inclusion of coupled water would produce a large wet

weight of the protein film, but very little actual bound protein contributing to the mass of this film (Voinova 

et aI. , 1998) while the low rigidity (and larger height) of this film may decrease the amount of apparent mass 

monitored by the Sauerbrey fonnalism (Voinova et aI., 2002) accounting for discrepancies in mass between 

SAM 1.2 and SAM 1.3. 

By itself, the V.1. is a fairly data-poor indicator of the effects undergone by the layer. The reliance on a 

single hannonic overtone to investigate the film properties produced a higher degree of uncertainty in the 

determination of bound mass by the Sauerbrey fonnalism, compared to the mass calculated from the Voigt

modeled film height (Figure 8.2A). In addition, relatively high uncertainties in the determination of V.1. 

values exist (Figure 8.28), making comparisons between closely-related sub-protein films (e.g. SAM I.J and 

1.2) problematic. Frequency and dissipation measurements are useful, but not considered reliable indicators 

of film properties and several important assumptions are ignored when merely using these two results as an 
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indicator of film properties (Johannsmann, 2008). The following section highlights this phenomenon, when 

considering the rheological modeling of the various surfaces using the Voigt-element modeling of 

viscoelasticity. 

8.5.1.4 Rheological parameters ofthe attached film: 

Table 8.2 displays the viscoelastic parameters elucidated from the pseudo-stable wash-off phase of the 

laccase attachment utilizing Voigt modeled mass gains. The modeling system used was unable to accurately 

determine the parameters of the post-SOS wash phase for some of the films presented here without a high 

degree of uncertainty, hence the inclusion of the pre-SOS, buffer-rinsed protein layer. This also presents 

valuable information regarding the alteration of the film after exposure to SOS (and thus, a sub- to full 

monolayer of protein, as opposed to the semi-multilayer of protein that a simple buffer rinse leaves on the 

crystal). 
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Table 8.2: Shear modulus, film viscosity and film thickness of the surfactant-wasbed film determined 

using Voigt modeling using data drawn from the QCM-D measurements 

Surface' Mass gainb Film thickness Shear Modulus Viscosity 

(ng.cm·') (run) (IO'N .m·') (IO·'N.s.m·') 

Gold - prior 569 ± 58 5.17 0.42 ± 0.23 2.9 ± 0.7 

· post 298 ± 35 2.71 0.26 ± 0.09 2.6 ± 0.1 

SAM I - prior 611 ± 34 5.56 0.33 ± 0.06 2.7 ± 0.3 
(phys) · post 382 + 20 3.48 0.16 + 0.05 2.5 + 0.1 

SAM 1.1 - prior 571 ± 88 5.19 7.31 ± 1.78 8.3 ± 1.2 
· post 392 + 22 3.56 6.69 + 0.76 6.6 + 0.8 

SAM 1.2 - prior 545 ± 35 4.96 3.44 ± 1.35 4.7 ± 0.5 
- post 490 + 35 4.46 5.21 + 0.84 3.3 + 0.4 

SAM 1.3 - prior 691 ± 76 6.29 0.30 ± 0.06 2.3 ± 004 
- post 415 + 14 3.78 1.42 + 0.29 3.1 + 0.2 

SAM 2. 1 · prior 413 ± 59 3.76 10040 ± 3.80 7.6 ±2.2 

· post 255 + 37 2.32 11.50 + 3.29 8.33 + 1.30 

SAM 2.2 - prior 458 ± 48 4 .17 11.25 ± 1.92 7.25 ± 1.49 
- post 39 1 + 3 I 3.56 12.60 + 0.09 7.20 + 1.48 

SAM 2.3 - prior 438 ± 22 3.99 5. 19 ± 2.90 6.43 ±2.09 

- post 386 + 39 3.51 9.50 + 2.50 6.56 + 0.46 . , , Pnor" refers to values drayl/n from the end of the wash-off stage pnor to treatment of the film \\'lth SDS ("'B I " phase 
in Figure 1 of this Chapter) and "post" to values drawn from a stable response during buffer rinse after SDS exposure 
("B,"). 

b As calculated by multiplying the film th ickness by the modeled film density (1100 kg.m·' ). 

Uncertainties represent standard deviations from the mean. Number of independent measurements, n .::: 3. 

QCM-D has been previously coupled with rheological-modelling software to describe both the mechanical 

properties of viscoelastic proteinaceous thin-films and alterations undergone by said films (e.g. Voinova et 

a!., 1999; H66k et a!., 2001; Gurdak et a!., 2005; Feiler et a!., 2007; Lubarsky et a!., 2007; Malmstrom et a!., 

2007; Dulta et a!., 2008). A good correlation with validative techniques, such as AFM and SPR have been 

noted once corrections have been made to accommodate the effects of bound and/or coupled water 

(Lubarsky et a!., 2007; Reimhult et a!., 2004). 

Mass gains determined by Voigt modeling were consistently higher than those estimated by the use of the 

Sauerbrey Equation, as displayed in Figure 8.2A, a finding which is supported by the literature (Hook et aI. , 
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1998b). The Voigt modeling takes into account viscous energy loss arising from a non-rigid film (H56k et 

aI. , 1998b) where the dissipative effect of a viscoelastic film (such as a protein layer) causes an 

underestimation of the mass / film thickness in the Sauerbrey relation. Additionally, the Sauerbrey equation 

does not take into account film swelling through solvent intercalation (Voinova et aI., 2002). Mass and film 

thickness are interrelated as described in the footnote of Table 8.2. This val ue is assumed to be relatively 

independent of the estimated film density as determined by Larsson et aI, 2003. Since the film density was 

used as a constant between the surfaces examined, it is expected that the greatest areas of alteration (i.e. film 

viscosity and elastic shear modulus) be substantially different between surfaces, and thus may not be truly 

representative of these actual values, but still remain useful as a means of comparison. 

In Table 8.2 the film thicknesses themselves seem very low relative to expected values from a packed protein 

surface, however flattening of protein has been noted previously in QCM research (Lojou et aI., 2004) and 

can be attributed to either flattening under sub-monolayer coverage or to conformational changes extant 

between crystalline protein and immobile protein. Teichroeb et al. (2008) provide evidence to suggest that a 

monolayer ofBSA protein adsorbed onto support deforms dimensions indicated in the crystallographic data. 

The two controls used highlight the detail of the information that may be gained from the use of the 

modeling system used herein (Table 8.2). Even though comparable mass gains / film thicknesses were 

observed in both phases (569 and 611 ng.cm·' prior to the SDS rinse and 298 and 382 ng.cm·' after the SDS 

rinse for laccase physically-adsorbed onto the gold surface (Au and SAM I, respectively) between the 

controls, higher viscosity and shear modulus values were observed for the gold surface than the SAM-coated 

gold surface. This indicates either a greater degree of proteinaceous packing, and/or an increased 

denaturation of the protein at the surface-solvent interface, due to the decreased hydrophilicity of the 

unmodified gold surface (Mungikar and Forcinti, 2004). A greater degree of distortion/denaturation 

occurring at the laccase molecule as it interacts with a surface should decrease the amount of surface-facing 

hydrophilic/ionizeable residues, but allowing predominantly protein-protein interactions through 
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hydrophobic interactions, but decreasing protein-solvent interactions (Otzen, 2008). Logically, as the 

amount of coupled or bound water in the protein film decreases, the viscosity and elastic shear modulus of 

the film would increase as the film increases its cohesiveness, a similar phenomenon to that noted with the 

binding of streptavidin to a biotin layer (Reimhult et aI. , 2004). Therefore, a viscosity or shear increase 

could indicate that either (I) a greater degree of protein packing (as a function of mass) relative to the bound 

water in the film, (2) an increased strength of attachment between surface and protein or (3) an increased 

average level of denaturation I conformational alteration undergone by the attached protein or a fusion of the 

aforementioned factors (Reimhult et aI., 2004). 

The activation of SAM I with glutaraldehyde greatly increased both the viscosity and shear of the protein 

film (Table 8.2), even though only a 10 ng.cm" difference in modelled mass was observed. The viscosity 

increased from an anticipated 2.5 to 6.6 x 10" N.s.m" and the shear from 0.16 to 6.69 x 10' N.m" for 

physically-adsorbed laccase and covalently-bound laccase after the SDS rinse. This change was expected and 

attributed to the covalent linkages formed between the protein film and the sensor surface, causing increased 

protein film rigidity. The increase of protein-binding cysteamine residues between SAM I and SAM 2 

causes a sinnilar increase in viscosity and shear modulus. This phenomenon is further highlighted in Table 3, 

where the rheological parameters are normalized to the bound mass of the protein film. 

As shown in Table8 .2, the covalent addition of L-Iysine to the SAM components as a linker caused an 

increase in the mass I film thickness among surfaces studied compared to their basal SAMs i.e. SAMs 1.1 

and 2.1. Generally, the shear and viscosity of the final protein film initially decreases concomitantly with an 

increase in the number of L-Iysine between the SAM and the protein. This function may also be attributable 

to the further inclusion of water at the protein film (especially when monitoring differences in film thickness 

and mass). However the statistical significance of the trends of these decreases is questionable. 
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Similar uncertainties in the rheological properties have been noted for QCM-D viscoelastic modeling (Liu 

and Kim, 2009) due to the analytical problems associated with viscoelastic modeling in the absence of 

external information regarding film thickness (Johannsmann, 2008), while the determination of film 

thickness itself is less affected. Hence, in Table 8.3, shear and viscosity of the protein films (determined at 

the post-SDS rinse phase) are divided by the Voigt film mass in order to further explore differences extant 

between the surfaces. 

Table 8.3: Rheological parameters calculated relative to the final mass of the protein films following 

an SDS rinse. 

Surface Shear modulus Viscosity V.I.,=. 

(I 03N.cm '.ng-I .m -3) (IO"N '-I -3) .s.em .ng .m 

Gold 0.08 ± 0.01 8.9 ± 1.1 37.2 ± 3.9 

SAM I (phys) 0.04 ± 0.01 8.2 ± 0.5 22.0 ± 8.3 

SAM 1.1 2.07 ± 0.23 16.8 ± 2.3 35.6 ±2.1 

SAM 1.2 0.92 ± 0.18 6.8 ± 0.9 . 32.2 ± 6.6 

SAM 1.3 0.34 ± 0.07 7.5 ± 0.6 29.9 ± 3.3 

SAM 2.1 4.51 ± \.67 32.7 ± 6.9 44.1 ± 2.3 

SAM 2.2 3.21±0. 18 18.4±3.9 40.1±4.9 

SAM 2.3 2.46 + 0.70 17.0 + 2. 1 36.3 + 4.4 

UncertaintIes represent standard deVIat ions from the mean, With number ofmdependent measurements, n:::: 3 

Table 3 satisfactorily shows that these parameters tend to decrease when related to the average film mass 

following SDS desorption. This indicates that the use of L-lysine to separate the attached protein from the 

surface tends to decrease the shear and viscosity of the protein film (i.e. increase the degree of solvation of 

the attached protein molecules) per unit mass added. This was the anticipated effect of the addition of the 

linkers to the surfaces examined. Hence, this indicates that, not only does the amount of proteinaceous mass 

increase with increasing length of linkers, but that the addition of linkers tends to decrease the extent of 

denaturation exhibited by the attached protein films. In other studies, retention of enzyme activity has been 

reported for laccase bound through zirconium phopshonate functional groups (Mazur el aI. , 2007). 
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It is important to note at this juncture that a higher protein loading does not necessarily entail a better 

biorecognition element for a protein-based biosensor. When considering the effects of a packed-protein 

layer, certain issues such as the decreased protein flexibility (due to sterie hindrance caused by the presence 

of other bound biomolecules and/or electrostatic repulsions caused by same), the covalent method of 

attachment and the resultant non-optimal catalytic conformations that the proteins adopt for the 

aforementioned reasons could impede the function of the biosensor (Hammes, 2002). For the same reasons, a 

decreased accessibility of the substrate!s to the enzymes (internal diffusional resistance) and (by inference) 

decreased accessibil ity of the products to the electrode surface and the slower diffusional rates that these 

cause may all influence the efficacy of a protein film when considering its application to a biosensor. This 

shows that one cannot rely on a single parameter (such as mass gain) in order to determine which the best 

protein immobilisation method is. In this case, viscosity and shear data derived from QCM-D data may be 

invaluable indicators of, not only (I) the level of distortion and potential denaturation arising from both the 

immobilisation method and subsequent protein-surface interactions but also of (2) film properties arising 

from the lateral interactions of the biomolecules with one another. 
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8.5.2 Kinetic analysis of laccases immobilized on SAM surfaces 

A satisfactory biorecognition signal was transduced from the surfaces investigated within the nanoampere 

range (Figure 8.3), allowing for accurate modelling of the parameters of the immobilized biomolecule layer 

to take place (Table 8.4). 
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Figure 8.3: Chronoamperogram (current values adjusted to account for surface area) generated through the use 
of laccase immobilized to a gold electrode through the use of SAM 1.1 

Scales of the current-time values for this biosensor are represented in the bottom-left corner. Current plateaus indicate 
the lime of the addition of2.5 III of 100 mM HQ to the electrochemical vessel (an increase in concentration ofapprox. 
50 J.lM) and the double-headed arrows indicate the addition of 5 III of the same concentration ofHQ. 

Inset diagram: The current-concentration curve drawn from this data, and the Km, biosensor sensitiv ity and Imax values 
determined from same from use of the modeling software 

Since the transduced current of the biosensor is in the sub- to 10W-flA range, the substrate turnover is 

estimated to be in the pmol.min·' range (As in Eq. 6.1) when using substrate concentrations starting at the 

flM range. Hence, steady-state enzyme kinetics were assumed to dominate and enzyme kinetics modeling 

proceeded as normal, as the total change in substrate concentration throughout the analysis was assumed to 

be far less than I % of the bulk substrate concentration (in fact, a factor of at least 104 separated the bulk 

solution from the velocity of enzyme reaction). 
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As Figure 8.3 demonstrates, a rapid current response (> lOs) to changes in substrate concentration are noted 

(from stable current-baseline to stable baseline) when using this electrode. However, it provides a very low 

sensor response, and suffers from a particularly high noise-to-signal ratio for that reason. This becomes more 

pronounced as the substrate concentration increases, making it difficult to detect changes in the current at 

very high substrate concentrations. 

8.5 .2.2 Overview of data obtained from modeling procedures: 

Table 8.4 displays the immobilized enzyme kinetic parameters for the various surfaces investigated in the 

course of this study. 

Table 8.4: Operational kinetics parameters determined for immobilized laccase films with regard to 

the detection of HQ 

Surface Detection sensitivity imn Km Degree of sigmoidality 

(nA."M" .cm .,) (nA.cm") ("M) (b) 

Au 3.94 ± 0.53 429 ± 86 132 ± 19 1.00 ± 0.07 

SAM I 2.59 ± 0.29 544 ± 44 224 ±29 0.92 ± 0.05 

SAM 1.1 4.77 ± 0.86 1009 ± 57 205 ±24 0.90 ± 0.01 

SAM 1.2 8.42 ± 0.49 808 ± 85 95 ± 18 1.02 ± 0.09 

SAM 1.3 11.8 + 0.75 1404± lOS 101 ± 3 0.90 ± 0.01 

SAM2.! 2.32 + 0.17 404 + 28 196 + 8 0.97 + 0.03 

SAM 2.2 4.52 + 0.40 495 + 57 127 + 21 0.95 + 0.03 

SAM 2.3 5.30 ± 0.29 677 ± 41 112 ± 14 0.9 ± 0.00 

The findings reported in Table 8.4 above indicate that both i m" and HQ detection sensi tivity were highest for 

SAM I films, re lative to any other surface. The increase in cysteamine SAM residues between SAM 2.1 and 

SAM 1.1 decreased the im", and sensitivities, considerably, while not affecting the Km to a statistically 

significant amount, in agreement with the intui tion of results obtained from rheological monitoring of the 

films via QCM-D (Section 8.5 .1.3) in which increases in shear and viscosity were attributed to increased 

levels of denaturation undergone by attaching proteins during immobilization. 
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While the addition of linkers in both SAMs I and SAMs 2 increased both i~ and sensitivity and lowered 

Km, relative to SAMs 1.1 and SAMs 2.1, respectively, this increase is less for SAM 2 films (i.e. SAM 1.1 -

1.3 ) than for films amended from SAM 1.1. The sole exception to this trend occurred for the i_ values of 

SAM 1.2. However, this decrease in the i=x value for SAM 1.2 (relative to SAM l.l), does not affect the 

increase in sensitivity noted between these two surfaces (an increase from 4.8 to 8.4 nA.~M· J .cm·'). This, in 

tum, is atrributed to the decrease in the apparent Km values (Table 8.4) of SAM 1.2 surfaces, relative to 

SAM 1.1 This is in concordance with previous findings reported in Chapters 4 and 5 of this Thesis. To this 

purpose, Figure 8.5 compares the logarithms of detection sensitivity to that of ilK (im,.lKm) values, as was 

reported for other biosensor configurations in Chapters 4 and 5 of this Thesis. 
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Figure 8.5: Logarithm ofbydroquinone detection sensitivity compared to tbe modeled ilK values for the surfaces 
examined in this study. 

Figure 8.5 indicates that the correlation existing between the detection sensitivities and the ilK values extend 

the argument put forward earlier in this Thesis that influences ofthe biosensors' operation represented by 

imax and Km parameters themselves influence the detection sensitivity. 

A comparison between Tables 8.4 and 8.2 serves to indicate that biosensor performance (imox and biosensor 

sensitivity) is enhanced with those surfaces that exhibit decreased shear/viscosity (e.g. SAMs 1.1 - 1.3), and 

that increasing rigidity tends to decrease biosensor performance, independently of bound mass. Km however 
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appears to decrease to approximately the same extent with an increase in linker length, regardless of the 

degree of rigidity/shear/viscosity evaluated from the films. Previous studies performed by Lowe (1977) show 

that, when using linkers of increasing length to covalently attach an enzyme to the support, there is a 

concomitant decrease in the Km accompanied by an increase in the specific activity of the enzyme (Lowe, 

(1977). The aforementioned study linked these effects to both the increasing distance between enzyme and 

support (decreasing surface-enzyme bonding interactions which result in deformation of the enzyme 

structure) and increasing penetration of the enzyme into the diffusion layer (decreasing the di [fusional 

distance undergone by substrate molecules) (Lowe, 1977), both of which are anticipated to occur with the 

inclusion of linkers. The decrease in Km and increase in activity expected in the literature are supported by 

the findings of this study as in Table 8.4. 

8.5.3 Integration of QCM-D data analysis with electrochemical kinetic parameters: 

Of great interest to this research was examining whether the rheological data provided through the QCM-D 

data (Section 8.5.1) could be reconciled with the kinetic parameters elucidated through electroanalysis of the 

fabricated biosensors (Section 8.5 .2). Due to the differences inherent in both the immobilisation method 

(with SAM I and Au electrodes making use of physical adsorption as the attachment parameter) and the film 

properties, trends in this section were only tracked between 3 categories: (I) differences between physically 

adsorbed and covalently-attached protein films (2) between SAM surface of with differing linker lengths i.e. 

SAMs 1.1 - 1.3 and SAMs 2.1 - 2.3 , respectively and (3) differences occurring between SAM I surfaces and 

SAM 2 surfaces. 

Of the two rheological parameters (shear and viscosity) extracted from QCM-D measurement, viscosity was 

selected for the comparison between physical film parameters and immobilized enzyme kinetics. The reasons 

for this selection are two-fold : firstly, increases in solution viscosity have been linked to the denaturation of 

dissolved proteins in previous research (Tanford et aI., 1955; McKenzie et aI., 1963 ; Tamia et aI., 1985) for 

cited reasons of protein aggregation (McKenzie et aI., 1963; Tamia et al. , 198) and conformational changes 
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between the native and denatured state CTanford et al., 1955; Tamia et al., 1985). Secondly, literature has 

cited concerns regarding the accurate determination of shear modul us through the Voigt-model 

CJohannsmann, 2008), namely that viscosity measurements, while typically deviations of viscosity are ± 10% 

between crystals, the estimation of shear modulus has a much larger frequency-dependence than viscosity 

when the crystals are immersed in liquids, such as was performed for this research. Shear modulus values are 

therefore used as general indicators of film rigidity, rather than absolute numerical values henceforth. 

Figure 8.6 depicts relational values of three separate parameters of the protein films: the Km, film viscosity 

and the average film viscosity per unit mass Cas reported in Table 8.3) values. 
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Figure 8.6: Relative values of the immobilized film parameters Viscosity, Viscosity I Voigt Mass (Visc/Mv) and 
average Km 

Data plotted in black indicates values drawn from QCM-D analysis of immobilized enzyme films. Data plotted in grey 
indicates values drawn from kinetic estimation of immobilized films catalytic oxidation of HQ 

While similar trends in values are noted between the film viscosity and the Km value extracted from kinetic 

estimations of the immobilized film for the surfaces studies, a better trend is noted when comparing the 

average film viscosity per unit mass bound CVisc/M v) with the Km. If one interprets viscosity as consisting 

of contributions arising from both the method of attachment and the extent of protein unfolding following 
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immobilization, then the relationship between the viscosity (normalized relative to the bound mass) will 

provide an indication of the degree of denaturation undergone by attaching proteins, when categorised by 

the different surface types (i.e. adsorbed vs. covalent attachment, SAM type I vs. SAM type 2). The degree 

of denaturation undergone would also be represented as differences between Km. Figure 8.7 displays a 

comparison of the Km values to the [mass-normalised] viscosity values obtained during QCM-D analysis for 

these three categories. 
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Figure 8.7: Comparison between the Kill values (extracted from immobilized enzyme kinetics) determination to 
the logarithm of tbe average viscosity per unit mass of surfaces (extracted from QCM-D studies) 

Y -intercepts forced through the origin for linear regression of the data 

Figure 8.7 di splays that strong linear behaviour is noted between the surface types when comparing the Km 

to the mass-normalised film viscosities. Linear correlations for 4-point fits for enzyme films immobilised 

SAM types I and 2 have RZ values > 0.94, and the 3-point correl ation for the physically-adsorbed enzyme 

films have RZ > 0.8 . The findings of Figures 8.6 and 8.7 indicate that decreases in film viscosity observed 

through the use of linkers (Table 8.2 and 8.3) are linked to the decreases ofKm values observed at the same 

SAM amendments (Table 8.4), although the trends observed are restricted between the basal surfaces used 

for further modification prior to protein immobilization. Due to the increase in viscosity brought about 

through the method of immobilization used (Table 8.2)and the different surfaces (e.g. SAM 1.1 vs. SAM 2.1 , 
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Table 8.2), these trends are restricted to the various surface classes used, rather than being a global trend, but 

a satisfactory trend between these classes indicates similar principles governing the correlation between 

viscosity and Km. This strongly indicates that the anticipated decrease in enzyme denaturation due to linker 

inclusion is represented, in part, by the decreases in film rigidity/viscosity noted for during rheological 

comparison of the films inunobilized onto the different surfaces. 

While the Sauerbrey Mass (Ms) contains a contribution from trapped/coupled water within the protein film, 

the Voigt Mass (M v) is considered to be a more accurate estimation as it corrects for the viscoelasticity of 

the film. Increasing film softness results in an underestimation of Ms; in addition to which is acknowledged 

that the Ms imperfectly accounts for film swelling in the solvent (Johannsmann, 2008). Thus, to a very 

limited extent, the ratio of Mv compared to Ms provides some index of the relative softness and degree of 

film swelling exhibited by the immobilized enzyme films. Since both of these factors have contributions 

arising from protein-solvent interaction, M vlMs could therefore be taken as a crude estimation of the ratio of 

viscoelastic mass compared to the rigid mass. In this instance, this can be interpreted as the relative degree of 

solvation of the immobilized proteins, at least, when considering surfaces differing by the number of linkers 

connecting proteins to the gold electrode. Similar data treatments for estimating the level of film hydration 

via the differences occuring between Mv and Ms have been advanced in the literature (Paul et al ., 2008). 

When comparing the ratio of (M v/Ms) to the ilK values for immobilized laccase films, two opposing trends 

are evident - an inverse trend between (M vlMs) and HQ detection sensitivity for immobilized films 

exhibiting low shear modulus (i.e. low rigidity) properties and a positive trend for those possessing higher 

shear values, as determined by modeling of QCM-D results. Figure 8.8 depicts the relational trends occurring 

between film shear (normalized to mass gain, as was perfonmed for viscosity in this section), the (MvlMs) 

ratio and the detection sensitivities for the surfaces examined. 
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Figure 8.9A displays comparisons between ilK values and the ratio of M"/Ms (here putatively termed 

"relative film hydration") obtained for the surfaces studies, while Figure 8.9B displays the reciprocal of ilK 

(ilKrl against the reciprocal ofMv/Ms i.e. the relative protein levels present in films. 
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Arrows depict trends in values discussed further on in-text. 
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Due to the exponential dependence of ilK against the relative hydration levels (Figure 8.9A), the reciprocal 

of both values were plotted against each other in order to linearise the noted dependences (Figure 8.9B). 

Strongly linear, but opposing trends were noted when comparing the reciprocal of the ilK value to the 

relative protein content of the film (Figure 8.9B). These two separate trends result from the two separate 

behaviours noted in Figure 8.9B. Firstly, a decrease in relative hydration levels within non-rigidly attached 

films (i.e. an increase in relative protein mass of highly-solvated films) increases the detection sensitivity, 

most likely through the inclusion of more catalytic protein within the film. This correlation occurs for both 

laccases attached to the electrode surfaces via physical adsorption, and for SAMs 1.1 - 1.3. However, in the 

case of rigidly-attached (i.e. distorted/partially denatured) protein films, an increase in relative hydration 

levels also increases the ilK values, through a decrease in the degree of denaturation undergone by catalytic 

proteins during the attachment process. 

8_6 Conclusions: 

It must be noted at this juncture that the scope of this research was not to design a satisfactory biosensor for 

its functionality - this form of biosensor is primarily fabricated in order to contrast the operating parameters 

of the functional biosensor with the salient rheological parameters and the other film properties determined 

from the QCM-D. Hence, the use of this laccase in this instance fulfills the function of a "model" protein

film system. 

QCM-D technology, coupled with rheological modeling of the results, showed consistent alterations in the 

physical properties of attached laccase films occuring between the surfaces examined in this study. Film 

rigidity (V.I.), bound mass, viscosity and shear modulus values increased when protein was attached to the 

surface via glutaraldehyde-cysteamine covalent bonds (SAM 1.1), compared to laccase attached by physical 

adsorption (SAM I and Au). Rigidity, viscosity and shear modulus values further increased when the density 

of cysteamine in the SAM surface was increased (SAM 2.1). Differences between SAM 2.1 and SAM 1.1 
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surfaces show that the presence of further reactive binding sites on the SAM surface as for SAM 2 do not, by 

themselves, increase the amount of mass gained at the electrode, but greatly influence the rigidity of the 

attached protein film (due to the number of increased bonds occurring between the attaching proteins and the 

electrode surface). The addition of lysine linkers between the piezoelectric sensor and the protein film was 

shown to decrease the rigidity of the attached protein film and increase the mass gain at the electrode surface 

above that found at electrodes without lysine. This is more evident in the rheological parameters once they 

are related to the mass gain at the electrode surface, which show a consistent decrease in the modeled 

viscosity and shear moduli with increasing lysine-glutaraldehyde linkers for SAMs containing low surface 

density of cysteamine (SAM 1.1 - 1.3) and for those containing higher surface densities of cysteamine (SAM 

2.1 - 2.3). This evidence strongly suggests that the extent of distortion undergone by the proteins during 

attachment to the surface decreases as a function of linker addition. When combined with the concomitant 

decrease in film rigidity that was observed with the addition of lysine the increase in bound mass with 

increasing linker length indicated in this instance, that the increase is caused by the desirable addition of both 

additional protein and film-associated water. 

It was of great interest to examine whether differences in the physical parameters of the film were indicative 

of alterations in the kinetic functioning of the laccase molecules when attached (in the manners outlined 

above) to an electrochemical transducer in a biosensor-like configuration. 

Analysis of the biochemical kinetics of laccase attached to the various surfaces investigated indicated that, 

for both SAM I-type and SAM 2-type surfaces, an increase in linker length lead to a significant decrease in 

the apparent Km values of the enzyme film, accompanied by a significant increase of the detection sensitivity 

for the detection of HQ substrate. Additionally, a general increase in imax was noted with an increase in linker 

length (SAMs 2.1 - 2.3, SAM 1.3 compared to SAM 1.1) and the concomitant decrease in rigidity, viscosity 

and shear that was associated with the inclusion of further water into the film. i=, values and detection 

sensitivities were found to increase with a decrease in the lateral density of linkers (SAMs I compared to 

SAMs 2). Biosensor sensi tivities increase significantly with the addition of linkers for all surfaces 
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investigated, most likely due to the significant decreases in Km values noted with increasing spacer-arm 

length. Derivatives of SAM 2 surfaces shows overall decreased sensitivities compared to SAM I surfaces, 

probably due to the aforementioned multiple attachments occurring between surface and enzymes. Indeed, 

HQ detection sensitivity for laccases immobilized onto SAM 1.3 surfaces is nearly 6 times that of SAM 2.1 

and more than three times that of the physically-adsorped surfaces (Au and SAM I). 

Analyses of the combined data extracted from QCM-D and the immobilized enzyme kinetics indicate 

considerations of bound protein mass alone are insufficient to predict the final parameters of the bound 

macromolecules and that inclusion of the rheological parameters obtained from QCM-D are necessary in 

order to correlate the enzyme kinetics of laccase films with the physical film parameters. Trends observed 

between QCM-D and immobilized enzyme kinetic studies indicate that biosensor performance (i=, and 

biosensor sensitivity) is enhanced with those surfaces that exhibit decreased shear/viscosity (e.g. SAMs 1.1 -

1.3), and that increasing rigidity tends to decrease biosensor performance, independently of bound Voigt 

mass. 

Protein film viscosity was found to influence the Km of the resultant laccase-bound surfaces. When viscosity 

(in the form of the average viscosity per unit bound mass) was related to the Km, a positive correlation was 

observed between the Km and mass-normalised viscosity was found to occur, although this trend was 

restricted between surface types and the method of protein attachment used. Nevertheless, this is an 

indication that film viscosity, when assessed carefully, can predict the level of denaturation undergone by the 

proteins during the attachment phase. The degree of protein hydration (indicated by the ratio of Voigt

modelled mass to Sauerbrey mass) was found to correlate to the detection sensitivity. For non-rigid protein 

films, a decrease in this value (i.e. an increase in film protein content) trended with an increase in detection 

sensitivity, while an increase in the hydration level at very rigid protein films (SAMs 2.1 - 2.3) resulted in an 

increase in detection sensitivity. The addition of rheological parameters appears to better nuance the 

differences arising in bound enzyme kinetics due to the differences between immobilization strategies and 

allow for more in-depth comparisons that determinations of the bound mass alone cannot show. 
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While other studies have also linked the film structure of a monolayer of immobilized protein to its function, 

QCM-D offers the opportunity to assess the physical characteristics of that film in a more direct fashion than 

some of the other methods (AFM, STM, Raman-UV-Vis-Spec, etc). Integrating both the inferred rheological 

properties of the film derived from QCM-D and comparing them with those determined by electrochemical 

monitoring of the immobilized laccase monolayer is a potentially viable tool in biosensor design. 

From these fmdings, it can be concluded that monitoring of the film formation using QCM-D, both assessing 

the mass bound and the relevant rheological properties, can be used in predicting the extent of denaturation 

undergone by catalytic proteins during immobilisation. When constructing and optimising thin-film 

biosensors, the QCM-D may prove to be a valuable apparatus for monitoring fundamental film parameters 

that will impact on the operational properties of the said biosensor/so 
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Chapter 9: Overall Conclusions 

This Thesis describes the fabrication of a laccase-based biosensor which possesses a high degree of 

substrate-detection sensitivity and fabrication consistency towards the monitoring of phenolic 

compounds. The laccase was sourced from a commercial supplier and used without purification, which 

demonstrated the wide applicability and ease-of-fabrication of the type of biosensor outlined in this 

Thesis. The biosensor fabricated was used in the detection of a variety of substrates, and the prediction of 

substrate-dependent detection sensitivity performed using a combined, novel, parameter that integrated 

both biochemical and electrochemical measurements of substrate-dependant characteristics. Selective, 

simultaneous determination of a mixed sample of phenolic substrates was demonstrated in principle, 

through the use of a second transducer surface type. Finally, alterations to enzyme mono layers (glucose 

oxidase and laccase enzymes) during immobilisation processes were monitored using QCM-D 

technology and related to the apparent kinetics of the immobilised proteins. 

Regarding the knowledge gaps laccase biosensor technology identified in Chapter I (Section 1.3), the 

following research outcomes are summarised: 

9.1 Sensor reproducibility: 

The selection of an appropriate cleaning strategy for glassy carbon electrodes (GCEs) was performed. 

Anodic pretreatment of the electrode as a cleaning strategy resulted in electrode surfaces showing high 

degrees of electrode-response reproducibility, using both Faradaic and non-Faradaic current 

measurements as a means of establish ing reproducibility. The high degree of non-Faradaic 

reproducibility indicated a consistent chemical composition of the surface, and the technique used in 

monitoring was validated using an established method of determining electrode surface capacitance, both 

in an analytical matrix previously described in literature and the electrolyte system used throughout the 

research reported on in this Thesis. This method of electrode pretreatment was used throughout the 
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research reported in this Thesis, when GCEs were used as the transducer surface type. Details of this are 

available in Chapter 3 of this Thesis. 

Laccase activity assays indicated a non-linear dependence on spectrophotometricaliy-deterrnined activity 

with the concentration of suspended laccase (Chapter 3). This dependence was not considered to be due 

to the experimental conditions under which assaying took place; rather, it is an inherent property of 

highly-concentrated solutions of laccase and is not considered to be of consequence in immobilised 

laccases. Subsequent to these findings, laccase solutions used for enzyme immobilisation were assayed at 

low concentrations of enzyme in order to more accurately determine the specific activity. 

The inclusion of Bovine Serum Albumin (BSA) into cross-l inked films of laccase (Chapter 4) produced 

biosensors with very consistent current-concentration responses, between sensors. This was concluded to 

arise from the consistent protein addition to the electrode surface during immobilisation, which adjusted 

for differences in specific activity of laccases sourced in different batches from the supplier. 

9.2 Detection sensitivity: 

(a) A variety of different immobilisation strategies were performed and the strategy producing the best 

measured biosensor response (cross-l inking of laccase) was selected for further optimisation (Chapter 4). 

The inclusion of BSA during immobilisation resulted in the significant enhancement of biosensor 

operational parameters and resulted in the fabrication of a sensor that produced comparable detection 

sensitivities to those already reported on in the literature. The alterat ions to sensor responses upon 

altering the amounts of laccase or BSA during immobi lisation were detailed and discussed in Chapter 4. 

The role of BSA on the sigmoidal ity of current-concentration responses was investigated and 

sigmoidality was assigned to be a by-product caused by the presence of BSA and its inherent ability to 

bind to substrate oxidation products. Re-use of the cross-linked laccase biosensors, when considering 

catechol as a substrate, resulted in a significant increase in biosensor operational parameters, which was 

concluded to arise from both the cessation of BSA binding oxidation products and the tendency of 

products to attach to the electrode surface, enhancing subsequent biosensor response by increasing the 

maximal laccase-generated current, i=,. The attachment of oxidation products to the electrode surface 
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was found to be restricted to the GCE surfaces studied and does not occur with gold electrode surfaces, 

which themselves do not evidence any significant increases in imn • 

The effect of the selection of enzyme immobilisation strategy at a monolayer level is described in 

Chapters 7 and 8 of this Thesis. Chapter 7 demonstrates proof-of-principle for the use of QCM-D in 

monitoring the formation of immobilised mono layers (both of TCACoPC and Glucose Oxidase) onto 

gold electrode surfaces, demonstrating that QCM-D measurements can be used to assess these 

formations under real-time conditions for the purposes of biosensor fabrication studies. In Chapter 8, the 

measurement of fundamental physical film parameters was undertaken, using a variety of surfaces that 

differed by their means of attaching laccase monolayers. This was performed in order to determine the 

extent to which enzyme-support interactions dictate the enzyme kinetic parameters of the immobilised 

enzymes. The findings from Chapter 8 demonstrated that measurement of the rheological parameters of 

the film can be used in predicting the physical-kinetic relationship for immobilised enzyme thin-films. In 

particular, the measurement of film viscosity was linked to the resultant changes in Km , indicating that 

the extent of protein denaturation may be assessed through this means. The measured indicator of 

relative film hydration also showed correlation with the hydroquinone-detection sensitivity of the films 

immobilised on these surfaces. From the findings in Chapter 8, it can be concluded that monitoring of the 

film formation using QCM-D, both assessing the mass bound and the relevant rheological properties, can 

be used in predicting the extent of denaturation undergone by catalytic proteins during immobi lisation. 

9.3 Inter-substrate selectivity 

Chapter 5 demonstrated that substrate-dependent detection sensitivity of the optimised biosensor 

configuration (Chapter 4) is affected by both electrochemical and biochemical considerations of the 

substrate. Selected substrates were assessed both electrochemically, at unmodified GCEs and 

biochemically, using the aforementioned biosensor and assigned categories of reversibility on the basis 

of the findings of their respective electrochemical characterisation. Readily-reversible substrates 

exhibited the highest detection sensitivi ties, quasi-reversible the next-highest, and irreversible substrates 

exhibited the lowest substrate-dependent detection sensitivities. This was considered to be due to a 

combination of both biokinetic and electrochemical originating factors. A novel parameter that takes 
302 



Chapter 9: Overall Conclusions 

both of these factors into account (%JlKm) was found to correlate to the detection sensitivity, and 

provided more information than the conventional electrochemical method of determining substrate 

oxidation rates (substrate-dependent oxidation potential). Studies conducted primarily using reversible 

substrates under conditions of varying electrolyte pH confirmed the previous statement. 

Chapter 6 offers proof-of-princi ple that MPCA can be successfully deployed to produce substrate

specifi c, representative and separate biosensor response currents that arise from the laccase-based 

oxidation of several phenolic species present in the same analytical sample . 

9.4 Fouling: 

Chapter 4 demonstrated that the attachment of oxidation products to the electrode does not necessarily 

lead to attenuation of biosensor current, but could conceivably be used to enhance biosensor response. 

Chapter 5 further demonstrated this, when considering the detection of those substrates designated as 

reversible. For all other substrates investigated during the course of this research, an attenuation in 

bi osensor response was noted upon re-use and the tendency of a given substrate to passivate the electrode 

surface correlated with the occurrence of fouling, as assessed at bare GCEs. 
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9.5 Future recommendations: 

The following research questions raised in the course of investigation are considered pertinent to better 

understanding and exploiting the mechanisms by which laccase-based biosensors operate. These are 

presented in order of the Chapter under which the original research is reported: 

From Chapter 3: The assessment as to whether the surface area estimations outli ned in this Chapter can 

be used in assessing further surface amendments that are outlined here. A sal ient example lies in the 

conjugation of nanoparticles to the electrodes surface: for a similar purpose behind the inclusion of 

TCACoPc in Chapter 7, nanoparticles are currently being widely-investigated for inclusion within 

current biosensor technology and the formation of nanocomposite sensors. A rapid means of establishing 

whether a surface is sufficiently modified would be of benefit in this technology. 

From Chapter 4: Further optimisation of the immobilisation strategy is recommended. In particular, a 

method whereby sensor re-use response (which showed significantly enhancements in the biosensor 

operational parameters) can be consistently and routinely applied to biosensors prior to detection would 

be of great benefit in enhancing the detection sensitivity of fabricated biosensors. In particular, the link 

between the attachment of oxidation products of reversible substrates to the electrode surface bears 

further investigation and a more complete understanding of the mechanism governing sensor increase 

should be investigated in order to better exploit this phenomenon to enhance both sensor response and 

the degree of inter-analysis response reproducibility. 

Chapter 5: Testing of the correlation of (%I1Km) value with detection sensitivity should be conducted 

with a greater number of substrates than were investigated during the course of this research. While 

effort was made to include substrates on the basis of widely-different electrochemical and chemical 

characteristics, the determined correlation should be broadened in order to demonstrate its applicability 

in predicting sensor response to a given substrate. To this recommendation is added the inclusion further 

substrates in pH studies, for simi lar reasons. The interesting comparisons between the quasi-reversible 

(GOL) and the irreversible (GA) substrates selected for comparison indicate that there exists further 

scope for investigation of the interrel atedness of electrochemical and biochemical interactions. 
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Chapter 6: While Chapter 6 provided convincing evidence that simultaneous signal detection arising 

from the presence of multiple substrates can be provided through the use of MPCA, the applicabi lity of 

this waveform wil l be hampered by the relative proximity of the reducing potentials, and the 

corresponding sacrifice in sensitivity that occurs at the behest of selectivity. The example of HQ in this 

Chapter suffices to demonstrate this. A broader study that includes further substrates is recommended in 

order to critically assess the resolving power of this waveform, as well as to improve upon work 

presented in this Thesis. 

Chapter 8: The measurement of viscoelastic QCM-D is somewhat hampered by the non-trivial concerns 

of the modelling process - as four separate parameters are modelled simultaneously from the raw data, 

some parameters (notably shear) provide less accurate and consistent results between measurements, 

while it is noted that film thickness measurements and viscosity are more consistent and accurate. The 

use of another analytical method to assess the physical structure of attached films in order to produce a 

more nuanced understanding of the film structure is recommended. 
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Appendix 1: Data Treatments of biosensor responses and general 
modelling considerations 

A1.1 Overview 

The first section of this appendix (A 1.2) demonstrates how the sensor response to substrate concentration 

curves (current-concentration functions) was calculated. These values were used as the primary basis of 

assessing biosensor performance, through the calculation of current response to increases in substrate 

concentration. The final sections provide a brief explanatory overview on how the Solver add-in was 

executed in order to obtain the kinetic parameters presented henceforth (A 1.3), as well as contrasting the 

two major parameters used in minima-seeking (Sum of Squared Differences vs. Chi-Squared Statistic), 

and providing background as to their respective strengths and weaknesses as indications of compliance 

between the modelled parameters and the experimental functions (A 1.4). 

A1.2 Biosensor response: data treatment and modelling. 

Al.2.! Current-responses analysis for chronoamperometry of electrochemical 

biosensors 

At portions of a steady-state (i.e. linear) current-time response caused by the addition of substrate to the 

electrochemical cells, the resultant change in current is measured as i1J. Figure A 1.1 displays a section of 

a typical substrate-dependant chronoamperometric response by a laccase modified electrode. 
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Figure A1.1: Typical biosensor response as assessed by chronoamperometry. 

Arrows indicate times at which aliquots of substrate (catechol) were added. TIle electrode was poised at ~O . 17 V vs. AglAgCI 
and the solution was stirred throughout the experiment. Dashed lines indicate linear regressions used to determine.1.1 i.e. I(x) I 
and J(x),. 800Ulml, GeE 2 (cond.) (2) 

By extracting the linear-regressional parameters from the steady-state response at each substrate addition, 

the change of current caused by increase in substrate concentration was calculated as in Eq. A 1. 1: 

y, -y,., = x(m,-m,.,) + (c,-c,_,) = t.1a Eq. AI.l 

And the total current at a given substrate (1,0,) concentration calculated as: 

n 

ltol = ~ (t.!,) 
i = O Eq. A 1.2 
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A1.3. Options settings of the Excel Solver add-in for meta-modelling 

parameters 

For all the analyses henceforth reported on in this Thesis, the following modelling parameters were used 

in minima-seeking of the parameter dictating the goodness-of-fit (see proceeding section): 

• The Maximum number of successive iterations for modelling was set to at least 

1000 iterations / analysis, and modelling was repeated if an unsatisfactory correlation between 

experimental data and modelled data was seen to take place. 

• Precision of modelled parameters was set to 10" (i.e. 0.0001). 

• Tolerance was set to 0.5% 

• Convergence was assumed to have occurred if a maximum difference in the modelled goodness-

of-fit parameter was less than 10.4 of the absolute value of that procedure. 

• Automatic Scaling was activated. 

• Estimate method was set at "Quadratic" 

• Derivatives were "Central" 

• The search algorithm was "Conj ugate" 

The various meaning of the individual parameters adjusted above have been previously discussed by 

Walsh and Diamond (1994). For the purposes of visual summary, Figure A 1.2 is a screenshot depicting 

the format in which these options were set within the Options menu in the Solver add-in. 
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Figure Al.2: Options selected for mOdelling meta-parameters for the Solver add-in. Microsoft Excel version: 2007. 

Figure A 1.3, below, shows the relevant sections of data modelling using the Solver Add-in, in 

this instance, that of biosensor response modelling (Section I of this Chapter). The differences 

between the different goodness-of-fit parameters are outlined in the proceeding Section of this 

Chapter. 
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Fitted Parameters: 
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Figure AI.3: Screcnshot of Solver functions and fitted parameters. 

The x' statistic ("X',,, outlined in purple) is used as a measure of goodness-of-fit (see below section) and is the sum 
of the X' values in Table 1.2. Alterations of the Fitted Parameters (red boxes) alter the modelled current responses 
I model in Table 1.2, which in tum alters the calculated individual X 2 values, altering the resultant X 2 statistic. Re
iterative altering of fitted parameters drives the y. 2 statistic to a minimum to equate model-to-experimental 
convergence. 

AI.4 Modelling "Goodness-or-fit": 

For all electrochemical/enzyme kinetics modelling procedures that were undertaken, goodness-of-fit 

indicators, either the Sum of Squared Differences (SSD) or X 2 statistic were required. Briefly, for each 

individual data-point, the difference between the experimental data and the data as predicted by the 

modelled parameters was measured by a goodness-of-fit indicator in order to measure the modelled 

parameter' s accuracy of detennination. The intersection of parameter values where goodness-of-fit 

criteria underwent their minima were considered to be accurately estimated values. 

In presenting modelled kinetics data in this Thesis, goodness-of-fit is sometimes presented as sample 

variance (SSD in this thesis, more commonly referred to as S2), calculated as in Eq. A 1.3, adapted from 

Rosner, 2000. 

1 
n:1 

n 

L(Xi.exp- Xi .model)2 
;;1 

Eq. A 1.3 
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Where n is the number of observations (experimental determinations in each model), n-l is the degree of 

freedom, Xi.,,,!> is the experimentally-determined value at independent value : i and Xi.mod" is the 

modelled data value (Rosner, 2000). 

This method has the advantage of providing unbiased data-comparison regardless of the number of 

samples used in attaining the standard deviation and allowing for comparison to occur between analyses 

of differing sample numbers (Rosner, 2000). This was used to obtain comparisons between different 

sensor configurations in which varying concentration al iquots of substrate were required to reach near-

saturation conditions for the attached biorecognition layer(s). 

For certain applications, goodness-of-fit was also calculated through the use of the Chi-squared statistic 

(x'). x.' was determined as in Eq. A lA, adapted from Rosner, 2000: 

n 

X2 = L 
i=1 

(Xi,exp- X1,modelF 

Xi .model Eq. AlA 

The above symbols have the same meaning as found in Eq. A 1.3. The use of this comparative method 

has the advantage of including Xi.modd as a divisor. This allows equal weighting of determined x' values 

to be made throughout the possible range of Xi values i.e. if at datapoint : i, Xi.mod" is small, the squared 

difference between Xi.modd and Xi.", should be equally small - if not, this deviation will be represented in 

an unweighted format regardless of the actual value of Xi.,"!> (Rosner, 2000). This was of especial 

importance in the determination of noise effects and was the main method of determining linear 

regressional information in chronoamperometry, from whi ch sensor responses are calculated. 
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Appendix 2: Chronoamperometric determination of double-layer 
capacitance - computer-driven modelling and effects 

A2.1 Validation of modelling systems for short-interval, non-Faradaic 

chronamperometry 

In order to validate the modelling methodology, current samples were varied from between 0.2 

and 1.0 ms and the modelling system described in Eq. 4.13 were applied. In two separate 

modelling experiments, Rs was set at 100 Q and CDL was varied in order to minimise the i 

statistic for the In values of the modelled and experimental currents (Model I), while the second 

experiment varied both Rs and CDL (Model II) 

In order to minimise modelling, i was performed on the logarithmic modelled current vs. the 

logarithm of the experimental data, linearising both datasets and offsetting model-fitting 

prejudice that arises as the current exponentially fell (Figure A2.1). By modelling prejudice, we 

mean to say that model-fitting is predisposed towards fitting the larger current values 

preferentially to the lower current values. 
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Appendix 2: Chronoamperometric determination of double-layer capacitance 

Figure A2.1: Typical current-time data plotted for the non-faradaic processes, primarily electrical double
layer charging. 

Potential was altered from + 0.45 V to + 0.5 V vs. AglAgCI. The GCE was anodically cleaned, followed by 
ultrasonication in subsequent solutions of absolute ethanol and water and subsequently analysed in 0.1 M Kel 
solution. This typical chronamperogram is drawn from the third data-set, GCE 3, prior to electrochemical cycling. 
The arrow indicates the time at which the potential was switched. 

The values of CDL, Rs and the l values were fitted against the current-time curves generated by 

double-step chronoamperometry. Modelling of the parameters was varied from 2 data-points 

used to fit the parameters, to 9. 

Figures A2.2 and A2.3 display data drawn from this set and show trends when both models 

converge and when they diverge from one another. Dashed lines indicate parameters extracted 

with two-parameter model fitting and solid lines indicate values using CDL fitting, alone. The 

dashed-line inset box displays the average Rs calculated from the two-parameter fitting models. 

Please note that l values are presented in a logarithmic format, in order to represent the range 

through which this variable travels under different modelling processes. 
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Figure A2.2: Graph plotting modelled CDL and x' values with an increasing amount of time (datapoints) 
when modelled Rs values converge. 

A) Before cycling in 0.1 M KCI 

B) After cycling. 

Modelled parameters drawn from Model I are plotted as solid lines, values drawn from Model j[ are plotted as 
dashed lines. Inset box: Average Rs values as calculated by Model II , including standard deviation from the mean. 

As is evident from the graphs, there is a large dependence on the time i.e. number of data-points 

on the calculated C DL . This is, as has been previously mentioned, due to the difficulties in short-

time resolutions. However, after 0.4 ms has elapsed (5 data-points), the CDL values for both 

modelling systems undergo minima, followed by an increase in both plotted CDL values and X2 

after ± 0.8 ms (for all data examined). The differences occurring in the calculated Rs and CDL 

values between electrode cycling (Figures A 1.2A and A 1.2B) indicates that electrode cycling in 

O. I M KCl does slightly alter the surface properties of the electrodes, increasing both CDL and 

the Rs (in the above instance, CDL increased from an average of 4.27 x 10-6 F to 4.4 7x' ) 0-6 F). 
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This dataset was represented in order to demonstrate the models' closeness of fit between Model 

I and Model II when Rs values between these sets are nearly equivalent. Calculated CDL values 

for both Model I and Model II follow very closely, and the l values are also very close. 

Figure A2.3 shows model data in which Rs, as calculated by model II, deviates away from the 

100 n set in Model I. 
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Figure A2.3: Graph plotting modelled COL and i values with an increasing amount of time (datapoints) 
when modelled Rs values diverge. 

Modelled parameters drawn from Model I are plotted as solid lines, values drawn from Model II are plotted as 
dashed lines. Inset box: Average Rs values as calculated by Model 11 , including standard deviation from the mean. 

As is displayed in Figure A2.3 , in instances where the Rs calculated by Model II is not 

equivalent to that of Model I, there is a significant difference in the calculated CDL. CDL values 

calculated by Model II are much more stabl e, deviating less with an increase in time I datapoints 

after ± 0.3 ms (Figure A2.3) than values drawn from Model I (Figure A2.2). By contrast, the 

calculated CDL values drawn from Model I increased dramatically with increasing 

time/datapoints, showing an almost linear increase that ranged from 3.4 ~F at 0.35 ms to 4.2 ~F 

at 0.935 ms. In addition, the l values determined using Model II remain IO-fold less than those 

calculated by Model I. 
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Model II, for six of the nine random samples, showed more robust calculations for COL 

regardless of the apparent difference in RS. While in both models used, there was a tendency for 

COL to increase with increasing time/datapoints, this trend is usually less pronounced in Model 

II than Model I (Figures A2.2 and A2.3), with a slight increase in apparent Rs recorded in 

Model II in place of the large COL increases noted when using Model I. In those examples 

where Rs values from Model I coincided with Model II, there was little apparent difference in 

the calculated COL. 

Hence, Model II was preferred as the method to determine COL values. Data drawn from the 

onset of the potential switch to ± 0.6 ms were employed to determine the COL values of the 

various surfaces in Chapter 3 of this thesis. 

A2.2: Effect of electrode cycling on calculated non-Faradaic 
parameters: 

The differences occurring in the calculated Rs and COL values between electrode cycling (Figure A2.2, 

(A) and (B)) indicates that electrode cycling in O.IM KCI does slightly alter the surface properties of the 

electrodes, increasing both COL and the Rs (in the above instance, COL increased from an average of 

4.27 x 10" F to 4.47x' 10" F). However, an examination of the calculated COL and Rs values of 

anodically-pretreated electrodes before and after cycling reveals (Figure A2.4) that no substantial 

alteration of these parameters occurs over the entire population. 
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Figure A2.4: Alterations of the calculated (A) COL and (B) Rs of anodically-pretreated electrodes before and 
after cycling in O.lM. 

For these graphs, intercepts were forced through the origin in order to produce information regarding the slopes of 
these graphs. Number of observations, n = I I. 

As an examination of the slope in Figure A2.4A shows, there is little alteration in the values of CaL after 

cycling beyond a sl ight tendency (m = 1.05) to increase when the entire population (n = 12) is assessed. 

While there is a larger degree of scatter for the calculated Rs (Figure A2.4B)and a corresponding drop in 

the linearity ofthe function (R' = 0.18), the degree of scatter is evenly distributed around a slope of 

1.0044, indicati ng little change of the calculated solution resistance after cycling_ 

From this, we can conclude that cycling of the electrode in 0_1 M KCI does not greatly affect the double-

layer charging characteristics of the electrode, and that comparative surfaces are present both before and 

after cycling of the electrode. 
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Appendix 3: Goodness-of-fit indicators with increasing sigmoidality 
of modelled biosensor current response: 

Two separate criterion dictating the modelled parameters' goodness-of-fit were performed in parallel 

throughout the analyses requiring the use of the sigmoidal model - the Sum of Square Differences (SSD) 

and the Chi-Square stati stic. The selection of the criterion for the goodness-of-fit was somewhat 

complicated during the analysis of highly-sigmoidal (i.e. b> 2.5 for models fitted using SSD minima) 

sensor response curves. As Figure A4.1 displays, s ignificant differences are in evidence when biosensor 

current response was modelled using either the Chi-squared statistic (-/) or the Sum-of-Square 

Difference (SSD) parameters were used as indications of the model' s goodness-of-fit. 
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Figure A3.I: Comparison of modelled current contrasting experimental (blue squares) versus modelled 
current responses when using SSD (red line) or -l (green line) as a measure or goodness-or-fit in highly 
sigmoidal sensor responses. 

Legend: lexp - experimentally-determined current response, Model(SSD) - current responses as calculated through 
the use of the minima of the Sum-of-Square Difference, Model(X2) - current responses as determined through the 
use of X2 -minima. 

Inset boxes present the model parameters extracted from the modelled data at the minima of the goodness-of-fit 
parameter. Bottom-right, green text = X'!. -minima and upper-left, red text::: SSD minima 

Sensor used in example: 0.4 U laccase, I 00 ~Lg BSA, GCE (I). Data not adjusted for surface area, as is presented in 
Chapter 4. 

Summaries of the differences in appl icability of these two statistics as indicators of the model's 

goodness-of-fit are available in Appendix I , Section A 1.4. As Figure A3 .1 indicates, there exists 

significant differences in both the shape of the modelled current responses and the parameters extracted 

from the model when using either of these stati stics as indicators of goodness-of-fit. By evenly weighting 



Appendix 3: Modelling concerns for thick-film laccase biosensors 

the data irrespective of the scale of the current response, the use of the X' statistic underestimates the 

sigmoidality of the sensor response, thus overestimating the modelled i=. (in the absence of surface area 

normalisation, this is referred to as Im .. )and Km values (Figure A3.I). A much closer degree of fitting 

when comparing the experimental data to the modelled data is observed at lower concentration/current 

values through use of 'I.'. Use of the SSD minima as the goodness-of-fit criterion shows the converse i.e. 

a better degree of fitting at higher concentration/current values, with more reasonable 1m" and Km values 

extracted when compared to the experimentally-obtained data. The differences extant between these 

models are represented by the differences in the calculated SSD and i values determined when using 

either criterion as an indication of goodness-of-fit (Figure 4.6 text boxes), with - 30-fold differences 

evident between the models arrived at using either statistic. 

This phenomenon becomes less evident in sensor responses exhibiting either lower degrees of 

sigmoidalities, or lower apparent Km values i.e. when the modelled Km value is less than half the final 

concentration sensor response was assayed at (508 ~M catechol concentration). Lower degrees of 

sigmoidality provide a greater consensus between the modelled 'b' parameter arrived at through use of 

either indicators, allowing for greater unification between the other modelled parameters. Similarly, 

lower apparent Km values presuppose a larger dataset in which [S] » Km (hence that v approches v~.) , 

allowing for a preferential weighting of 'I.' values within this range. This, in turn, is beneficial in uni ting 

parameters elicited from X' with those obtained from SSD. Figure A4.2 shows a very good overlap with 

modelled parameters using either statistic as goodness-of-fit indicators when both of the aforementioned 

criteria are met. 
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Figure A3.2: Comparison of modelled current contrasting experimental (blue squares) versus modelled 
current responses when using SSD (red line) or t (green line) as a measure of goodness-of~fit in systems 
exhibiting a low degree of sigmoidality in biosensor responses. 

Legend as in Figure A4.1 

Sensor used: 0.8 U laccase, 20 ~g BSA. Data not adjusted for surface area, as is presented in Chapter 4. 

For the reasons outlined above, Figure 4.7 shows that, when modelling sensors of lower sigmoidality, 

either statistic method provides very similar values that seem to accurately model the response of the 

biosensor as determined experimentally. In order to provide a model titting that both took into account 

the lower current responses, while adequately describing the shape of the sigmoid curve, parameters 

determined using both goodness-of-tit criteria were performed on each data-set in order to compromise 

between the advantages that these two criteria offer the titting of the data. 
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Appendix 4: Tabulated data of pH-dependent 
investigations at bare GeEs and laccase biosensors. 

substrate 

Thi s section is intended to supplement Chapter 5, Section 5.4.3 , which di scusses the alteration of 

biosensor kinetics for the substrates, BZT,3-MC,HQ,CA T, GA and GOL with alterations of electrolyte 

pH. Presented in this section is a tabulated summary of the biosensor operational kinetics that forms the 

basis for the interpretation of results presented in the aforementioned section. 

Table A4.1: Summary of substrate oxidation/reduction parameters assessed via cyclic voltammetry 
at unmodified GeEs under conditions of varying electrolyte pH 

%1 (Bare GCE) E,. :bare GCE (Y)' E p,. : biosensor (V) II 

Substrate 3.5 4.5 5.5 3.5 4.5 5.5 3.5 4.5 5.5 

Pristine sensors 

BZT 102.3 90.4 78.1 0.217 0. 149 0.060 0.222 0. 157 0.086 

HQ 96.4 94.3 98.2 0.320 0.284 0.203 0.349 0.299 0.2 14 

3-MC 88.6 89.3 91.8 0.394 0.348 0.268 0.385 0.350 0.28 

CAT 86.9 85.3 88 .8 0.452 0.370 0.293 0.504 0.42 1 0.343 

GOL 32.5 34.8 27.3 0.701 0.681 0.590 0.754 0.704 0.65 

GA 3.9 1.2 0.42 0.446 0.358 0.260 0.462 0.40 1 0.339 

All values reported here are drawn from a minimum of 3 mdependent observations. Unless otherwise mdlcated. 

Those with standard errors:: 10% are high lighted in light grey. All potentials are reported herein with < 10 mV 

standard deviation from the mean, and all current yields are reported ± I %, except in the case of GA, which is 
reported ± 0.1 % . 

• - vs. Ag/ AgCl reference electrode. 
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Table A4.2: Summary of biosensor operational parameters obtained using laccase biosensors for 
eacb su bstrate, under conditions of varying pH. 

imax (JlA.cm
o1

) Km (~M) Sensitivity (nA . ~M.cm") 

Substrate 3.5 4.5 5.5 3.5 4.5 5.5 3.5 4.5 5.5 

BZT 374.9 379.7 303.6 63.4 79.3 49.7 2756 2714 2948 

HQ 379. 1 342.7 334.3 119.9 87.0 114.4 1621 1903 1468 

3-MC 317.7 221.6 283.6 133.3 106.0 58.23 1181 1155 2453 

CAT 290.5 236.9 192.0 253. 1 125.6 68.00 743 964 1371 

GOL 159.3 160.9 138.5 219.3 2 15.3 219.9 359 340 449 

GA 115.0 74.85 84.56 344.9 344.9 423.5 174.07 117.8 1 101.83 
.. 

All values reported here are drawn from a mInimum of3 mdependent observatIOns and generated usmg 
pri stine biosensors. 

Unless otherwise indicated, parameters are reported with a standard error < 10% of the mean value 
reported above, with most having a standard error - 5 %. Those with standard errors::: 10% are 
highlighted in light grey. 

'- vs. AglAgCI reference electrode. 
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