A systematic study of Berkheya and

allies (Compositae)

A thesis submitted in the fulfilment of the requirements for the degree of

Master of Science

of

Rhodes University

by

Ntombifikile Phaliso
April 2013

Supervisor: Prof. N.P. Barker
(Botany Department, Rhodes University)

Co-supervisor: Dr. Robert McKenzie
(Botany Department, Rhodes University)

Table of contents:

Title I
Acknowledgements III
Declaration IV
Abstract. 1
Chapter 1: General Introduction 3
Chapter 2: The molecular phylogeny of Berkheya and allies 12
Aims 12
2.1: Molecular (DNA-based) systematic 12
2.2: Methods and Materials 18
2.1.1: Sampling 18
2.1.2: DNA extraction, amplification and sequencing 18
2.1.3: Sequence alignment 19
2.1.4: Phylogenetic Analyses 21
2.3: Results 22
2.3.1: ITS data set 22
2.3.2: psbA-trnH data set 23
2.3.3: Combined data set 24
2.4: Discussion 28
2.4.1: Phylogenetic relationships within the Berkheya clade 28
2.4.2: Insights from the psbA-trnH \& combined data set phylogenies 37
2.4.3: Taxonomic implications: paraphyly of Berkheya 39
2.4.4: Taxonomic Implications: Correspondence with Roessler's classification 40
2.4.5: Biogeographic Implications 44
2.4.6: Conclusions 46
Chapter 3: Achene Morphology of Berkheya 47
3.1: Introduction 47
3.2: Methods and Materials 50
3.3: Results 51
3.3.1: Twin hairs 53
3.3.2: Pappus scales 55
3.4: Discussion and Conclusion 58
Chapter4: Conclusion 67
References 69
Appendix A: Alignment ITS 78
Alignment psbA-trnH 107
Appendix B: Achene Plates 118

B. cardopatifolia (Picture by Dr. R. Clarke)

Acknowledgements:

Sincerest gratitude to Professor Nigel Barker for supervising this project. To Dr. Robert McKenzie for all the assistance behind the scenes and for teaching me so much. To Dr P.O. Karis for his involvement and invaluable input. To the staff and students in the Botany Department, thank you for the moral support and encouragement.

To my family, particularly to my loving mother; God's one true gift to me. Thank you for your undying love, support and for never giving up on me through all the madness. This one is for you.

Declaration

This thesis is the result of the author's original work except where acknowledged or specifically stated in the text. It has not been submitted for any other degree or examination at any other university or academic institution.

Signed: Ntombifikile Phaliso
05p3358

Abstract

Berkheya Ehrh. is a genus of daisies in the tribe Arctotideae, subtribe Gorteriinae with over 80 species, most of which occur in southern Africa. This genus has centres of diversity associated with the montane regions of South Africa, including the Drakensberg Alpine Centre and Mpumalanga escarpment regions. Previous molecular and morphological studies indicate that Berkheya is paraphyletic. I present phylogenies based on nrDNA (ITS; Internal Transcribed Spacer) and cpDNA (psbA-trnH) sequence data analysed with Bayesian Inference and Parsimony. A phylogeny of combined cp- and nrDNA is also presented. These phylogenies are used to assess generic limits and to investigate the biogeographic patterns of Berkheya and its allies. The ITS phylogeny shows five well supported clades of Berkheya, two of which (Clades I and 2) are monophyletic summer rainfall region clades. Clades 3 to 5 are all paraphyletic winter rainfall clades with Cullumia occurring in the third clade, Cuspida occurring in the fourth and Didelta in Clade 5. Both psbA-trnH and combined phylogenies show concordance with the clade distribution shown in the ITS phylogeny. The ITS phylogeny was used to analyse correspondence with Roessler's (1959) Series. It was found that the phylogeny showed considerable agreement with Roessler's series, but B. bipinnatifida and B. spinosa of Series Speciosae may require some revision as well as taxa of monotypic series Cruciatae and Angustae. It is suggested that the latter series be merged with Cullumia species to form a single series. Some consideration should be taken to include Didelta species into Series Fruticosae as Didelta occurs in subclade 5b of Clade 5 with other Series Fruticosae taxa. Achene morphology was examined from species from each of the five clades to investigate the relationships of Berkheya and its allies, as well as to determine if there were any consistent achene features for each clade. The structure of surface cells on the fruit, the presence, absence and morphology of twin hairs as well as the structure of the

pappus scales were found to be most useful in reflecting phylogenetic relationships within the clades. When compared with the clades of the ITS phylogeny, achene morphology showed consistent characters between taxa occurring in the same clades. As the most comprehensive study involving Berkheya, this phylogenenetic investigation was able to confirm that Berkheya is a paraphyletic genus with Didelta, Cullumia and Cuspida needing to be subsumed into Berkheya. An alternative classification is that taxa of Clade 5 could possibly be erected as an expanded Didelta, separate and sister to Berkheya.

Chapter 1: General Introduction

The Compositae (Asteraceae) family is one of the largest angiosperm families worldwide with an estimated 24,000 species in 1600-1700 genera (Funk et al., 2009). On a global scale, Compositae occur on all continents except Antarctica (Funk et al., 2004). At an estimated 250 genera and 2250 species, the Compositae accounts for 10% of the botanical diversity in Southern Africa, with 80% of its species being endemic to this region (Koekemoer, 1996). Morphological characters which define the family are: florets arranged on a receptacle in a flower head (capitulum) surrounded by involucral bracts (a series of these serving a protective function are known as phyllaries) which develops centripetally; anthers typically fused with styles that brush or push pollen out; achenes that are one-seeded and indehiscent (Funk et al., 2009).

The classification of the Compositae has experienced three major milestones; the first was Cassini’s (1816) treatment of the family, in which he defined 20 tribes. In this classification he placed Heliantheae at the centre, Eupatorieae and Vernonieae at one end (grouped together) and Cichorieae (Lactuceae) and Mutisieae on the opposite end (Funk et al., 2009). The second landmark was Bentham's (1873) treatment, developed independently to Cassini's classification, in which he defined two subfamilies and 13 tribes. This treatment prevailed until the 1890s with revisions showing minor deviations from the original treatment such as concepts surrounding the tribes Vernonieae, Liabeae, Senecioneae and Helenieae. This classification was soon followed by that of Hoffman in 1890-1894 which corresponded to Bentham's treatment, defining 13 tribes which mostly corresponded with Cassini's original 20 tribes (Alfonso et al., 2006; Funk et al., 2009).

The development of molecular techniques, especially the use of DNA sequence data, to infer phylogenetic relationships amongst taxa led to a paradigm shift in the systematics of Compositae (Funk and Chan, 2008), and represents the third major milestone in the classification of the family. The pioneering study by Jansen and Palmer (1987) based on cpDNA data led to the description of a third subfamily (the Barnadesioideae). Many systematic studies of Compositae have since included the use of molecular data.

According to Funk and Chan (2008) the recent increase in the use of molecular methods (together with a range of modern phylogenetic analytical methods) led to two main alterations to the higher-level classification of Compositae: firstly, basal clades were identified which re-arranged previous ideas of evolution within the family, and secondly, revisions undertaken using molecular data have lead to the family being divided into 12 subfamilies and 43 tribes.

The Cichoriodeae s.s. (Panero and Funk, 2002, Funk et al., 2005) is one of the subfamilies which has required extensive modification. Prior to the use of molecular data, morphological studies showed that the subfamily was paraphyletic, comprising four large and two small tribes (Karis, 1992). The larger tribes are Arctotideae (African daisies), Lactuceae (dandelions), Liabeae (Andean sunflowers) and Vernoniae (ironweeds), while the smaller tribes are Eremothamneae, Gundelieae and Moquineae. Two unplaced genera, Platycarpha and Heterolepsis, also occur in the subfamily.

Considerable attention has recently been given to the tribe Arctotideae, with both molecular and morphological studies having being undertaken (Wortley et al., 2008; Karis, 2006; Funk et al., 2004; Funk and Chan, 2008, McKenzie et al., 2006a; McKenzie et al., 2006b; McKenzie and Barker, 2008, Karis et al., 2009). The Arctotideae was first described by Cassini (1819) and subsequently merged with the tribe Cardueae by Lessing (1831, 1832). In

1873, Bentham re-established the Arctotoideae and divided the tribe into three subtribes: Arctotidinae, Gorteriinae and Gundeliinae. Between 1890 and 1894, Bentham’s subtribes were adapted by Hofmann (1890-1894), who introduced a few differences in the generic level classification.

Recent studies have suggested that Gundeliinae, a subtribe within Arctotideae, is incorrectly placed within this tribe and may be a sister group to the tribe Lactuceae (Funk and Chan, 2008; Funk et al., 2009). Members of the Arctotideae occur mainly on the African continent, but three species of Arctotideae are indigenous to Australia and a few species (such as Arctotheca populifolia (Merino \& Donat 2011) and Arctotheca calendula (Medina, 2006.) have become naturalised weeds in a range of countries around the world.

The Arctotideae is a fairly small tribe composed of two well-supported monophyletic subtribes; Arctitidinae and Gorteriinae and the poorly supported subtribe Gundeliinae. These subtribes, together with monotypic subtribe Gundeliinae, which is still considered within this tribe, contain 251 species and 17 genera (Funk and Chan, 2008; Funk et al., 2009).

The focus of the present study is the subtribe Gorteriinae. Gorteriinae occurs mainly in southern Africa, with a few species occurring in East Africa. A number of the species are endemic to the Cape Floristic Region (CFR). Karis (2006) gives a detailed description of morphological characters that are characteristic of Gorteriinae, viz.: latex-containing shrubs or herbs bearing leaves that are either spiny or tomentose to hispid; connate involucral bracts; sterile ray florets that often have 4-lobed limbs; disc corolla lobes with sclerified margins; a pappus of scales; and deeply alveolate receptacles.

Roessler (1959) revised the taxonomy of Gorteriinae based on morphological characters and accepted eight genera: Gazania, Gorteria, Cuspidia, Didelta, Heterorhachis, Cullumia,

Berkheya and Hirpicium. Berkheya contains the largest number of species (78 species, 40 subspecies; Funk and Chan, 2008; Funk et al., 2009), followed by Gazania (17 species). Molecular phylogenetic analyses by Funk et al. (2007) suggest that there are three clades within the Gorteriinae: the Gazania clade (GAZ; comprising Gazania, Hirpicium and Gorteria), the Didelta clade (DID; comprising Didelta and Berkheya spinosissima) and the Berkheya clade (BER which includes Cullumia, Cuspidia, Heterorachis and the remaining Berkheya species). Their study, however, only included 20 Berkheya species.

In his treatment Roessler (1959) classified the species of Berkheya into eight series using morphological characters such as envolucral bract structure, receptacle alveole margins, achene morphology (pappus scale morphology); plant growth forms; leaf shape and capitulum structure. However, current phylogenies only support five of these series (Funk and Chan, 2008), which was in part a consequence of the very limited sampling of the large genus Berkheya. Despite this, Berkheya was indicated to be paraphyletic because Didelta and Cullumia were embedded in Berkheya (Figure 1, source Karis et al., 2009).

The phylogeny obtained by Karis et al. (2009) [Figure 1] indicates that the generic limits of Berkheya require reappraisal, and the genus (and subtribe) is hence of great taxonomic interest

Distribution and chorology

A chorological analysis of the distributions of species of Berkheya within southern Africa shows that most species of Berkheya are concentrated within 10 chorological centres of diversity (Figure 2). Some of these are associated with the montane regions of South Africa with the highest species diversity being in the Drakensberg and Mpumalanga escarpment regions. Some species, such as B. johnstoniana, B. tysonii and B. angusta, are narrowly
distributed and occur in single centres of endemism. A topographic map of approximate margins of rainfall regimes (Figure 3) shows the importance of rainfall data in a holistic understanding of the distribution of species. An understanding of the evolutionary relationships of the species of Berkheya will aid in explaining these distribution patterns.

Figure 1: Phylogeny of the subtribe Gorteriinae based on ITS data showing resolution of five Berkheya clades (source: Karis et al., 2009).

Figure 2: Chorology of Berkheya based on PRECIS data at quarter degree resolution. Isochores are in 3-species intervals. Capital letters indicate centres of endemism, named following a variety of authors, lower case letters are ad hoc names used here: A=Albany, C=Caledon, $\mathrm{H}=$ Hantam, $\mathrm{G}=$ Gariep, $\mathrm{Po}=$ Pondoland, $\mathrm{D}=$ Drakensberg, LK=Little Karoo, B=Barberton, $\mathrm{t}-\mathrm{z}=$ Tzaneen, $\mathrm{j}-\mathrm{p}=$ Johannesburg-Pretoria.

The aims of this study are thus:

1) To reconstruct a comprehensive species-level molecular phylogeny of Berkheya and allied genera using DNA sequence data (nrDNA and cpDNA).
2) To use the resultant phylogeny to assess generic monophyly of Berkheya and clarify the relationships of the genera Didelta, Cuspidia and Cullumia.
3) To use the resultant phylogeny to test the validity of Roessler's infrageneric taxonomy of eight series within Berkheya.
4) To use the resultant phylogeny to explore biogeographic patterns.
5) To examine the morphology of the achenes of selected species of Berkheya to obtain novel morphological characters that might support the molecular findings.

Aims 1-4 will be addressed in Chapter 2, while aim 5 will be addressed in Chapter 3. Thereafter, Chapter 4 will synthesise and summarise the findings.

Chapter 2: The molecular phylogeny of Berkheya and allies

The aims of the study presented in this Chapter are:

1) To reconstruct a comprehensive species-level molecular phylogeny of Berkheya and allied genera using DNA sequence data (nrDNA and cpDNA).
2) To use the resultant phylogeny to assess generic monophyly of Berkheya and clarify the relationships of the genera Didelta, Cuspidia and Cullumia.
3) To use the resultant phylogeny to test the validity of Roessler's infrageneric taxonomy of eight series within Berkheya.
4) To use the resultant phylogeny to explore biogeographic patterns.

Molecular (DNA-based) systematics:

The introduction of DNA-based molecular techniques has resulted in a paradigm shift in systematics. DNA sequencing is a direct method of detecting genetic variability of taxa at the DNA level (Galeta, 2007). Originally, plant systematics was reserved for taxa which had sequences that were too divergent for easy interpretation through restriction site mapping. This led to taxa with moderate to slow evolving DNA sequences being predominantly focused on in phylogenetic studies (Baldwin 1995). In recent years however, the ease of generating DNA sequence data through Polymerase Chain Reaction (PCR) technology has allowed for an explosion of molecular genetic analyses. This advancement in PCR technology led to the affordable generation of sequences, which made the use of comparative DNA sequences widespread. This provided a fast, convenient, robust and informative tool for
accumulating data for phylogenetic and systematic studies. Sequence data thus essentially allows an increased precision in phylogenetic data by providing better homology assessment of molecular characters and character states (Baldwin, 1995; Small, et al., 1998; Soltis et al., 1998).

DNA sequences can be used comparatively in various organisms at different taxonomic levels. Baldwin (1995) noted that the major challenge in the use of nucleotide characters in low-level phylogenetic studies was identifying easily amplifiable and relatively rapidly evolving yet unambiguously alignable regions of DNA with which to undertake a study. Three different types of genetic material may be found within the plant cell; chloroplast DNA (cpDNA), nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) which have been explored to varying degrees in phylogenetics (Caputo, 1997). These different genomes show differences in characteristics as per the organelle in which they evolve (Hamza, 2010). Chloroplast DNA (cpDNA) has been recognized as the molecular marker of choice in systematic studies involving plants since the discovery of this genome (Small et al., 2004). However, the use of a second independent source of data in the form of nuclear DNA (nDNA) data has also long been the norm.

The simple genetics of cpDNA makes it ideal for phylogenetic investigations in plant taxa. The abundance of cpDNA within plant tissue is due to the high number of chloroplasts present in each cell in each leaf. Multiple copies of cpDNA are present in each chloroplast within a plant cell, which greatly facilitates the amplification process (Galeta, 2007). Chloroplast DNA typically comprises a circular covalently closed haploid chromosome that occurs within the organelle as monomers and multimers. The main difference between cpDNA and nDNA is thus the fact that nDNA exhibits evidence of both parents, meaning that
gene conversion may go in the direction of either parent. For this reason, nuclear genes show greater genetic variability and thus provide a greater evolutionary signal than cpDNA (Albach and Chase, 2004). The uniparentally (maternally) inherited cpDNA genomes tend to have a genome size of $135-160 \mathrm{~kb}$ in angiosperms and $135-217 \mathrm{~kb}$ in photosynthetic land plants. Two identical segments of roughly 10-75kb (average 25) kb occur in cpDNA which form inverted repeats (IR), which act to separate the rest of the genome into two single-copy sections; one large region (LSC) and a small region (SCC). Structurally the cpDNA molecule in angiosperms is estimated to be ten times the size of the mtDNA of mammals (Caputo, 1997; Galeta, 2007; Hamza, 2010).

As chloroplast DNA is inherited uniparentally, it will report only on the maternal lineage in instances of hybridization. This poses the problem of it not being able to resolve relationships within taxa, which have evolved via processes such as hybridization (including allopolyploidy; Zimmer and Wen, 2012). The slow rates and clonal mode of evolutionary change within cpDNA compared to those of nDNA is attributed to the differences in how nuclear and organelle genomes are transmitted (Hamza, 2010), thus meaning cpDNA will not provide as much resolution (Chapman et al., 2007).

Though many cpDNA regions have been identified and exist for phylogenetic study, the most frequently and widely used regions are the $r b c L$ and matK genes, and the introns and spacers between tRNA genes, most notably the trnT-trnL spacer, the trnL intron and the trnL-trnF spacer. In Compositae studies, the most commonly used intergenic spacer is the trnL-trnF spacer which is a non-coding region which often shows enough variation to be used at or below the species level (Barker et al., 2009). Other frequently used regions are the matK gene and psbA-trnH spacer (Kim et al., 1997; McKenzie et al 2006; Howis, 2006; Hamza, 2010).

The psbA-trnH region is a highly variable non-coding region which has been used in phylogenetic studies in the Compositae at the intrageneric and intraspecific levels. (Smissen et al., 2003).

Kim and colleagues (1999) investigated the phylogenetic viability of the spacer between cpDNA genes $p s b A$ and $t r n H$ in phylogenetic investigations of Compositae taxa at lower taxonomic levels. They compared ITS phylogenies with psbA-trnH phylogenies in the Sonchinae (Compositae). Their results showed that ITS sequences provided three times more variable sites and four times the number of phylogenetically informative sites than $p s b A$ trnH. ITS phylogenies were shown to have more resolved nodes as illustrated by bootstrap and other phylogenetic indices. Although this was expected, this study was also able to illustrate the viability of $p s b A-\operatorname{trn} A$ as they showed that data from this region showed a strong phylogenetic signal despite slower rates of substitution. They showed psbA-trnH to be highly informative in phylogenetic studies at generic rather than interspecific levels, which was found to be congruent with other studies at a generic level; however, this region lacked variation to resolve recently radiated Compositae taxa or congeneric species.

This and related studies thus serve as a testament to the validity of $p s b A-t r n H$ in phylogenetic studies of Compositae.

Of the nuclear regions routinely used in plant systematics, the most commonly used region by far is the nuclear ribosomal DNA (nrDNA). Structurally nrDNA has three coding regions; 18S, 5.8 S and 26 S which are separated by two highly variable Internal Transcriber Spacers ITS1 and ITS 2. Each of these transcriptional units is further separated by a highly variable intergenic spacer (IGS) region. This genome has a high copy number of exceedingly variable sites with numerous well-conserved regions with some being variable enough for micro-
evolutionary studies (Caputo, 1997). With tandem repeats of genes with hundreds to thousands of copies per array, this structure of nrDNA facilitates amplification through the PCR process (Galeta, 2007).

Due to non-coding regions being less functionally constrained, they are found to be more useful in phylogenetic studies at the lower taxonomic levels, as these fragments accumulate phylogenetically informative characters more rapidly (Clegg et al., 1994). In plant studies, and more specifically in Compositae (Asteraceae), the use of the ITS for phylogenetic purposes has been widespread. The utility of this region was first highlighted by Baldwin (1993) who recognized that the intraspecific variability of ITS sequences in Compositae could prove beneficial in resolving species level relationships (Baldwin et al., 1995; Barker et al., 2009). This region has subsequently been widely used in investigating species, genus and most recently intertribal level relationships (Markos and Baldwin, 2001; Wagstaff and Brietwieser, 2004; Lantz and Bremer, 2005; Howis, 2006; McKenzie et al., 2006; Galeta, 2007; Feliner and Rossello, 2007; Funk and Chan, 2008; Barker et al., 2009;). As previously stated, the ITS region occurs in high copy numbers, and hence comprises many paralogous copies within each cell. Numerous analyses have been undertaken to investigate the attributes of ITS which possibly make this an ideal nDNA region for phylogenetic investigations in Compositae (Baldwin, 1992; Baldwin et al., 1995; Kim et al., 1997; Small et al., 1998; Cronn and Wendel, 2003; Alverez and Wendel, 2003; Eidesen et al., 2007). Many of these studies highlight attributes which show ITS to be a robust marker. Biparental inheritance which allows detection of past cases of reticulation, hybrid speciation and parentage in taxa is a fundamentally favourable character of ITS. The simplicity of the region ${ }^{(500-700 \mathrm{bp}}$ in angiosperms and high number of tandem repeats) as well as its intragenomic uniformity, due to rapid concerted evolution via crossing over and gene conversion has resulted in its
extensive use. It mutates at a faster rate than chloroplast DNA and therefore provides a good phylogenetic signal. However, the use of ITS is controversial, as some authors have stated that this region has pitfalls in the form of possible issues with orthology and paralogy, occurrence of pseudogenes, concerted evolution, hybridization and lineage sorting of ancestral polymorphism (Alverez and Wendel, 2003; Bailey et al., 2003; Small et al., 2004; McKenzie et al., 2006). This is said to give potentially misleading phylogenies and it is stated that caution needs to be taken in the interpretation of resultant phylogenies. Despite this, ITS is widely used and as long as limitations are understood, data from this region may still provide meaningful insight into evolutionary history among taxa (Feliner and Rossello, 2007).

One way in which the potentially misleading signals which are given by ITS-based phylogenies may be identified and assessed is through incongruencies. This requires the use of independent sources of evidence such as morphological data or chloroplast DNA data. This can increase one's confidence in the phylogenies in instances where congruence is found between the data sources (Doyle, 1992; Kim et al., 1997; Caputo, 1997; Cronn and Wendel, 2003; McKenzie et al., 2006).

On the basis of the above precedent, nrITS, psbA-trnH and trnL-trnF regions were initially selected for this study. However, trnL-trnF failed to consistently amplify and produce sufficient data, and the use of this region was not pursued beyond the pilot survey phase of the project. For this reason, the cpDNA data set comprises sequences of the psbA-trnH spacer.

Methods:

Sampling:

Samples of 65 of the possible 72 species of Berkheya were obtained from a number of collectors, including Dr. L. Mucina and associates, Dr. R.J. McKenzie and Dr. P.O. Karis from Stockholm, Sweden. Specimens are available both as DNA voucher specimens and as herbarium specimens housed at the Selmar-Schonland Herbarium (GRA). DNA voucher specimens received from Sweden were coupled with digital pictures as well as locality data. In the case of species where samples were not immediately available, efforts were made to outsource representative samples from other botanists and collectors. As a consequence a few key species were obtained but most could not be added to the current study.Many of these specimens were simply to old to extract DNA from. A key example of this is Heterorachis Sch. Bip which was received but was difficult to amplify and sequence, which lead to this genus not being included in the final dataset of this study. Where possible, multiple samples per species or subspecies were sequenced so as to confirm species monophyly. Didelta L’ Herit, Cuspida Gaertn and Cullumia R. Br. specimens were included in the analyses as these taxa are integral in testing the generic limits of Berkheya. All species used in the study were identified using Roessler's key for Berkheya and sister genera.

DNA extraction, amplification and sequencing:

DNA was extracted from $1 \mathrm{~cm}^{2}$ of dried leaf material from each sample using the CTAB extraction method as described by Doyle \& Doyle (1987). The ITS regions was amplified using the primer pairs of "ITS4" and "ITS5" or "ITS1" and "ITS4" (White et al., 1990). The intergenic spacer psbA-trnH was amplified using primers "psbA" and "trnH" (Sang et al., 1997) PCR reactions contained $1 \mu \mathrm{l} 0,1 \%$ Bovine serum albumen (BSA), $2,5 \mu \mathrm{l} 10 \mathrm{x}$ PCR
buffer (bioline, London, UK), $1 \mu \mathrm{l}$ dNTPs (Bioline, London, UK), $1 \mu \mathrm{l} 0,1 \mu \mathrm{M}$ solution of each forward and reverse primer, $0.2 \mu \mathrm{l} \mathrm{BioTaq}^{\circledR}{ }^{\circledR}$ DNA polymerase ($5 \mathrm{U} / \mu \mathrm{l}$, Bioline, London, UK) and $0,75-1,5 \mu \mathrm{l}$ DNA extract. The volume of 50 mM MgCl 2 ranged between $0,75-2 \mu \mathrm{l}(1,5-$ $4 \mathrm{mM})$, and was often optimised for each sample. For all samples, the thermal cycling parameters were as follows:

Denaturation: $95^{\circ} \mathrm{C}$ for 45 s ; Primer annealing: at $54^{\circ} \mathrm{C}-56^{\circ} \mathrm{C}$ (primer dependent) for 30 sec; Extension: $72^{\circ} \mathrm{C}$ for 3 min . This was followed by a final extension cycle at $72^{\circ} \mathrm{C}$ for 10 min .

The number of amplification cycles ranged from 30 to 35 cycles, depending on the quality of the DNA extracts. Amplification success was assessed by running the PCR products through 1\% Agarose gel. Successful PCR reactions were then purified using PRC purification kit (Promega, Invesco) and resuspended in $10-15 \mu$ l elution buffer. Purified PCR products were then sequenced in both forward and reverse directions using the BigDye ${ }^{\circledR}$ Terminator v.3.1. cycle sequencing kit according to manufacturer's protocol. Cycle-sequenced products were precipitated using the sodium acetate/EDTA protocol, and dried down prior to being sequenced using a ABI 3100 Genetic Analyzer (Rhodes University). For ITS, internal primers were also used for ITS. These were: "Chrysanth-5.8F", "Chromo-5.8R" (Barker et al., 2005).

Sequence alignment:

Sequenced data (trace files) were edited using Seqencher 4.2.2 (Gene Codes Corp, Ann Arbor). Forward and reverse sequences from each sample were compiled into contigs and edited visually. Edited sequences were manually aligned using MacClade 4.06 (Maddison
and Maddison, 2000), and additional data from GenBank was also included. As a consequence of some samples having quite divergent ITS sequences, an initial process of automatic alignment was carried out using the CLUSTAL W option as implemented in MEGA 5.05. Default settings were used. Following this process, the automatic alignment was edited by eye to remove minor inconsistencies.

Representatives of related genera in the subtribe (Hirpicium and Gorteria) were included as outgroup taxa. Roessler stated that the closest relatives to Berkheya were Hirpicium alienatum and H. integrifolium, although he provided no morphological evidence in support of this. However, we were guided by both Roessler and studies by Karis (2006) and elected to use Gorteria diffusa Thunb. and Hirpicium echinus Less.as outgroup taxa.

A "combined" data set comprising psbA-trnH and ITS data for species in common between the data sets was also produced (hereafter termed COMBINED). However, as the psbA-trnH data set was much smaller than the ITS data set, and the subset of species in common even fewer, the COMBINED data set included only 37 ingroup species. Some of these were obtained by merging ITS and psbA-trnH data from different specimens, with the assumption that species were monophyletic. Such taxa are termed "fictive taxa" sensu Kellogg \& Linder (1995) or ''hybrid taxa'" (Wiens \& Reeder, 1995). Prior to combination, the reduced ITS and psbA-trnH data sets were analysed and the topologies compared to assess if any well supported incongruence could be detected. Owing to the much smaller sample size of the psbA-trnH data set compared to the ITS data sample size, an Incongruence Length Difference test (Farris, 1994) was not conducted. According to Weins (1998), analyses based on reduced data are problematic, as they have the disadvantage of restricting the taxonomic scope of the study, and where taxa are removed or incomplete, the accuracy of such analyses would be
diminished. This makes such analyses far less reliable than phylogenies with more complete datasets, hence the lack of an ILD analysis in the present study.

Phylogenetic Analyses:

Phylogenetic relationships were assessed by means of Maximum Parsimony (MP) and Bayesian Inference (BI). The MP analysis was performed using PAUP* 4.0b10 (Swofford, 2002). Uninformative characters were excluded and all nucleotide characters were equally weighted and unordered. Gaps were treated as missing data. An initial random input analysis (1000 iterations) was done to ensure all islands of equally parsimonious trees were sampled, followed by a Full Heuristic search on the trees saved in memory using TBR branch swapping with MAXTREES set at 10000 . From the Parsimony analyses, a strict consensus tree was constructed with branch support being assessed using the Quick Bootstrap (BS) method (Felsenstein, 1985) for the ITS data set, and a full heuristic bootstrap for the psbAtrnH and COMBINED data sets.

Prior to the BI analysis, The most appropriate model for sequence evolution for each data set was selected using the Akaike Information Criterion (AIC) test (Akaike, 1974) as implemented in MrModeltest v.2.2 (Nylander, 2004). Bayesian analyses were conducted using MrBayes v.3.1.2 (Huelsenbeck and Roquist, 2001). Each analysis comprised four independent runs of 10 million generations each, using random starting trees with four chains (one cold, three hot), sampling every 1000 generations.

Results

Resultant analysis and tree statistics from the MP analyses of both data sets and a combined analysis on both datasets are presented in Table 1.Table 1: Statistics for phylogenetic analysis of data.

Dataset	Number of ingroup taxa	No. variable/parsimony informative characters	Number of Maximum Parsimony Trees	Tree length	ci	ri	Number of nodes with $>75 \%$ Bootstrap support	Number of nodes with >0.9 BI posterior probabilities
ITS	116	247/184	10000	537	0.486	0.821	26	33
psbA	467	96/31	72	57	0.614	0.847	11	5
Combined data	28	255/152	178	305	0.607	0.751	11	8

The ITS data set

One hundred and sixteen samples of Berkheya are used in this study, representing 63 species of Berkheya. One Cuspida, three Cullumia and two Didelta samples were included as previous studies have shown these to be embedded in Berkheya, and are required to test generic monophyly (Funk et al., 2008. Karis 2006. Wortley et al., 2008). The final ITS alignment was 667 bp long. Of these, 247 sites were variable and 184 were parsimony informative (Table 1). This alignment is presented in Appendix A. The MP analysis of ITS region yielded 10000 Parsimonious trees (i.e. the MAXTREES limit) of 537 steps ($\mathrm{CI}=0$, 490; RI $=0$, 840 ; consensus tree not shown). The BI analysis of the ITS data was obtained using the GTR+G+I model estimated using AIC (Figure 4). Both MP and BI analyses recovered five clades. The clades in the BI analysis correspond entirely with the clades
retrieved by the MP analysis (tree not shown). Support for the clades shown in Figure 4 is high, with the lowest being the probability of Clade $1(\mathrm{PP}=0,95)$.

The BI tree shows five main lineages of Berkheya [Figure 4 (Clade 1-5)]. Of these, Clade 3 has three subclades, one of which being a clade composed of the three samples Cuspida cernua (L.f.) B.L.Burtt.

The five clades show a correlation with rainfall regimes (summer rainfall in the Eastern areas of southern Africa and Africa (Clade $1 \& 2$), a winter rainfall in the west (Clade $4 \& 5$) as well as a year-round rainfall region in the central regions of southern Africa (Clade 3).

The psbA-trnH data set

Due to a number of laboratory and equipment problems, the psbA-trnH dataset is considerably smaller than the ITS dataset. Thirty seven ingroup taxa were used in the psbAtrnH data, comprising 34 Berkheya species, and three sister taxa, namely; one Didelta, one Cuspida and one Cullumia species. The final psbA-trnH dataset was 563bp long, 96 of which were variable and 31 were parsimony informative. Parsimony analysis of the psbA-trnH region resulted in 72 equally parsimonious trees of 57 steps $(\mathrm{Ci}=0,614 ; \mathrm{Ri}=0,847)$. A consensus tree reveals four lineages of Berkheya (tree not shown) The BI phylogeny was obtained using the GTR $+\mathrm{G}+\mathrm{I}$ model and also recovered four clades (Figure 5) and matched the MP topology in this respect. The clades represented in the psbA-trnH data corresponds with the ITS phylogeny, with a distribution of winter and summer rainfall taxa into separate clades. Clade A corresponds with ITS Clade 5, Clade B with ITS Clades 1 and 2, Clade C with ITS Clade 3 and Clade D with ITS Clade 4.

All posterior probability values for the clades are reasonably high, with the exception of Clade A ($\mathrm{PP}=0,41$) being the lowest. However, in this clade, B. schinzii is sister to a well supported subclade of the remaining taxa $(\mathrm{PP}=0.95$; Figure 5$)$.

The COMBINED data set

This analysis included only twenty six ingroup and two outgroup taxa. Cuspida cernua and Didelta spinosa were also included, but as no Cullumia species were found to be common between the two data sets, the genus was omitted. Parsimony analyses resulted in 1178 most parsimonious trees with 305 steps ($\mathrm{Ci}=0.607$, Ri: 0.751). As in the psbA-trnH analysis, four clades were recovered (tree not shown).

The BI phylogeny was obtained using the GTR+G+I model and also recovered four clades (Clades I-IV; Figure 6).

Figure 4: Phylogram obtained from Bayesian inference analysis of the ITS data set. The values at branch nodes represent Bayesian posterior probabilities (above branch) and MP bootstrap percentages (below branch). CI = 0,490, RI = 0, 840 . Clades 1-5 (subclades are designated a, b and c) are indicated together with the region of occurrence and centre of diversity, which corresponding to regions in the chorology (E25ure 1) [ad hoc names used: A=Albany, C=Caledon, $\mathrm{H}=$ Hantam, $\mathrm{G}=$ Gariep, $\mathrm{Po}=$ Pondoland, $\mathrm{D}=$ Drakensberg, $\mathrm{LK}=$ Little Karoo, $\mathrm{B}=$ Barberton, $\mathrm{t}-\mathrm{z}=$ Tzaneen, $\mathrm{j}-\mathrm{p}=$ JohannesburgPretoria.]. Branches highlighted in red are branches common to both MP and BI analyses. Vertical brown bars indicate segregate genera that were placed within the Berkheya clade. The series in which Roessler (1959) placed each Berkheya taxon is indicated by the numbers 1-8 in parentheses after the accession name (Table 3 indicates the names of each of these series).

Figure 5: Phylogram obtained from Bayesian inference analysis of the psbA-trnH data set. The values at branch nodes represent Bayesian posterior probabilities (above branch) and MP bootstrap percentages (below branch). Clades A-D are labelled. The clade colour corresponds with the clade colours in the ITS phylogram (Figure 4). Branches in the phylogeny highlighted in red represent branches common to the MP and BI phylogenies. Vertical brown bars indicate segregate genera that are placed within the Berkheya clade.

0.1

Figure 6: Phylogram obtained from Bayesian inference analysis of the combined (ITS $+p s b A-t r n H$) data set. The values at branch nodes represent Bayesian posterior probabilities (above branch) and MP bootstrap percentages (below branch). Clades I-Vare shown, which are coloured to correspond with those in the ITS phylogram (Figure 4). Branches highlighted in red represent branches common to the MP and BI phylogenies. Vertical brown bars indicate segregate genera that were placed within the Berkheya clade. xx represents fictive taxa that are species common to the ITS and psbA-trnH data sets but sequences were not derived from the same specimen.

Discussion:

Previously, the most comprehensive molecular phylogenetic study of the subtribe Gorteriinae included 39 samples of 30 species representing the Berkheya clade (Funk and Chan, 2008). With 116 samples in total, representing 63 Berkheya species, the ITS phylogenies in the present study represent the most complete analysis of the Berkheya clade to date and this analysis will thus be the main focus for discussion in this chapter.

Funk and colleagues (Funk et al., 2004; Funk and Chan, 2008) both used nuclear and chloroplast DNA sequence data to analyse phylogenetic relationships within Gorteriinae. In their analyses, two main groupings were identified within this subtribe, namely the Gorteria clade containing the genera Gazania, Gorteria and Hirpicium, and the Berkheya clade containing Berkheya, Cullumia, Cuspida, Didelta and Heterorhachis. Most taxa used in the Berkheya clade of Funk et al. $(2004,2008)$ were included in the present study with the exception of Heterorachis, which gave great difficulty in sequencing and thus had to be excluded.

Phylogenetic relationships within the Berkheya clade:

Analysis of the ITS data yielded a phylogeny (Figure 4) in which five clades were resolved. Within these clades, species groupings (although often not well supported) were distinguished as subclades (designated with lower-case letters a, b and c in Figure 4). These clades will be discussed sequentially from the earliest diverging Clade 5 to the terminal Clade 1.

Clade 5

The well-supported Clade 5 is sister to the remaining Berkheya clades. This clade is distributed in the Succulent Karoo and Fynbos biomes with species occurring mainly in the Caledon, Gariep and Hantam-Roggeveld centres of diversity (Figure 2). Subclade 5a comprises B. armata, B. herbacea and B. francisci, which all occur in the Fynbos biome in the Western Cape. The two Didelta species are embedded in subclade 5b and are related to B. barbata and B. angustifolia, and these species collectively sister to a lineage comprising B. spinosissima, B. schinzii and B. chamaepeuce. The geographic range of the species within subclade 5b is in the Fynbos and Nama-Karoo biomes (B. barbata and B. angustifolia) and the Succulent Karoo biome and extends northwards through Namibia into Angola. The two subclades (5a and 5b) were both well supported $(\mathrm{PP}=0.90, \mathrm{BS}=90 \%$; and $\mathrm{PP}=1.00, \mathrm{BS}=$ 99%, respectively). When the distributions of the species in this clade are mapped (based on map information provided by (Roessler 1959) species of subclade 5a are limited to the Cape Floristic region with species also occurring in the Worcester-Robertson Karoo (as per Van Wyk and Smith, 2001) and Little Karroo (Figure 7). This distribution overlaps with that of subclade 5b in the Cape Floristic region. Species of subclade 5b are shown to have a slightly larger range which includes the CFR, Succulent Karoo, Hantam, Gariep and Albany centres of endemism, and overlaps with the range of Didelta species, which also form part of the subclade, in the Gariep and Succulent Karoo centres of endemism.

Clade 4

The relationships between the remaining clades were not strongly supported, although each individual clade was well supported. Clade 4 is comprised of species restricted to the winter rainfall region of southwestern Africa. This clade contains the four specimens of Cullumia for which data was available (in subclade 4c), although these do not form a monophyletic lineage. Currently considered to be a genus separate to Berkheya, Cullumia was also found to be closely related to Berkheya by Funk et al. (2004) and Funk and Chan (2008), who reported that Cullumia species formed a subclade embedded within the Berkheya clade. In the present
study the Cullumia samples were placed in a weakly supported clade $(\mathrm{PP}=0.81)$ with B. angusta and B. cruciata (subclade 4c in Figure 4). The relationship with B. cruciata is consistent with the findings of Funk and Chan (2008), but B. angusta was not included in these authors’ study. Karis (2006) reported that two noteworthy morphological features were common between B. cruciata and Cullumia species. Firstly, the endothecial wall thickening plate is displaced towards the connective-facing side and is sickle-shaped and, secondly, all of the taxa have glabrous achenes. Roessler (1959) states that B. angusta is morphologically very closely related to Cullumia, speculating that the species may assume an intermediate position between the two genera (Roessler, 1959). This relationship is thus not all that surprising.

As noted above, Clade 4 is distributed in the winter rainfall region (Figure 8). Subclade 4 a is distributed along the coastal western regions of South Africa and the south of Namibia. This range includes the Succulent Karoo, Gariep, and CFR centres of endemism. In the CFR, subclade 4a overlaps with the known distribution of B. angusta which is in the WorcesterRobertson Karoo centre. Few species, namely B. coriacea, are found in the coastal CFR and Little Karoo region. Subclade 4b species, B. spinosa and B. cuneata are found in the higher altitude regions of the CFR where the Worcester-Robertson centre of endemism (Van Wyk and Smith, 2001). Here the distribution of these species overlaps with subclade 4c species, B. cruciata and Cullumia species. Cullumia species are found in the CFR and Little Karoo regions. In the CFR region, Cullumia ciliaris, C. bisulca and C. rigida overlap with subclade 4a species. C. rigida is found in the Succulent Karoo centre, while C. ciliaris is distributed in the CFR. In the little Karoo we see an overlap with C. patula, B. cruciata and subclade 4b species. Common among the taxa within this clade is a woody, shrubby structure which may be as a result of the arid habitat in which they occur.

Clade 3

Clade 3 is made up of widespread taxa that are mainly found in the year-round rainfall region, which is distributed across the central portion of southern Africa. Species such as B. pinnatifida sensu Roessler are found in the Drakensberg and Johannesburg-Pretoria centres of endemism. This clade includes Cuspidia cernua, which forms subclade 3c and is sister to the remaining members of Clade 3 , but with weak support ($\mathrm{PP}=0.83, \mathrm{BS}=51 \%$) therefore suggesting an unclear relationship with the rest of the clade. However, the placement of C.
cernua corresponds with previous phylogenetic analyses (Funk et al. 2004, Funk and Chan 2008).

The distribution of the species within this clade is shown in Figure 9. Species from this clade are predominantly distributed in the year-round rainfall regions which include the Albany and Little Karoo centres of endemism. Species of subclade 3a are found along the coastal belt of the southwestern regions of South Africa, covering the Succulent Karoo, CFR and Albany centres of endemism. Clade 3 b has a split distribution with most species of the subclade being found in the grassland biome which is in the summer rainfall region that overlaps with the Highveld biome. The remaining species of subclade 3 b are found in the western Hantam, Gariep and CFR centres of endemism. B. annectens occurs in the Gariep centre, B. eriobasis in the Hantam centre. Cuspida cernua is restricted to the Albany centre and has a fairly wide distribution in this region. Overlap is shown in the occurrence of Cuspida species (subclade 3c) and subclade 3a species. It must also be noted that although the phylogeny suggests this, B. rigida and B. pinnatifida are not monophyletic species. The occurrence of this in Figure 9 may be attributed to false identification of species, most likely B. rigida EU527195, which is a GENBANK specimen, the identity of which could not be verified.

Clade 2

Clade 2 (Figure 10) is composed of taxa that are distributed in the summer rainfall region with the exception of B. carduoides, which is found from the Swellendam district to East London (Roessler 1959) and thus mainly occurs in the year-round rainfall region. Berkheya setifera and B. echinacea subsp. echinacea are found as far north as Tzaneen and Zimbabwe, respectively, and B. echinacea subsp. polyacantha occurs in East Africa.

Distribution of species of Clade 2 (Figure 10) show that this clade has a restricted range which occurs from the Tzaneen centre of endemism down to the Barberton and Pondoland centres along the Sekhukhuneland and Wolkberg Centres. This clade thus occupies Savana and grassland biomes of South Africa. These regions experience summer rainfall and no species occur in the winter rainfall regions.

Clade 1

Clade 1 is also a summer rainfall clade. Most of the species are distributed in eastern parts of South Africa (Figure 11), but B. spekeana and B. angolensis occur in Central and East Africa, and Angola, respectively. This clade is fairly well supported ($\mathrm{PP}=0.93$)

Three subclades are found in Clade 1, the branching of which is not very well supported, and the distribution of these subclades illustrates 3 distinct patterns. Subclade 1a is distributed close to the coast, along the Maputoland-Pondoland regions or the Indian Ocean Coastal Belt sensu Mucina and Rutherford (2006), with some species being distributed inland as far as the Drakensberg Alpine centre and the Johannesburg-Pretoria Centre.

Subclade 1b's distribution forms a 'belt' which extends from the Albany region to the Tzaneen Centre, forming a curved distribution along the escarpment mountains, including the Drakensberg Alpine Centre and Barberton centres of endemism. Subclade 1c species are distributed from the Albany region along the Pondoland region, moving inland to the DAC and Highveld regions towards the Johannesburg-Pretoria region.

Unplaced taxa

B. purpurea and B. ferox var. glandulosa were placed sister to the remainder of the clade. These taxa showed no distinct molecular sequences and are thus not expected to separate from the other taxa in this way as both are found in the Eastern parts of South Africa. It is notable that B. purpurea is unusual in that is possesses a purple inflorescence which is atypical of Berkheya species, which normally have yellow capitulum. Further analyses into these taxa would aid in the understanding of their current placement.

Insights from the psbA-trnH and combined data set phylogenies

The structure of the psbA-trnH tree differed from that of the ITS phylogeny, although the number of taxa for which psbA-trnH data were available was far fewer than for the ITS region. Another contributing factor for the differences in the phylogenies is the difference in the independent evolution of $p s b A-t r n H$ as compared to that of the nuclear ITS. Four clades were resolved in the psbA-trnH phylogeny (Clades A to D). Although much correspondence was observed between the clades retrieved in the ITS and psbA-trnH phylogenies, the psbAtrnH phylogeny was not as well supported as the ITS phylogeny, with the strongest support
of $\mathrm{PP}=1.00$ shown for the separation of Clade A from the other clades. Didelta spinosa was embedded in Clade A, Cuspidia cernua was placed in Clade C and Cullumia setosa was placed in Clade B. Cullumia was embedded in the summer rainfall clade, Clade B, which does not correspond with where it occurs in the ITS phylogeny or the known distribution of Cullumia species inwinter rainfall regions of South Africa. This is one of the main incongruences between the two datasets.

The combined ITS and psbA-trnH data set was analysed to investigate the robustness of the findings. Combination of data sets with congruent phylogenetic signal would be expected to yield a phylogeny with increased support owing to the increased number of informative sets.

The BI phylogeny of the combined data set reveals four clades (Clades I to IV; Figure 6), which correspond with those retrieved in the psbA-trnH phylogenies. Clade I is a winter rainfall clade comparable to Clade 5 and Clade A in the ITS and psbA-trnH phylogenies, respectively, and contains Didelta spinosa. Clade II is a summer rainfall clade that corresponds with Clade 2 and Clade B in the ITS and psbA-trnH phylogenies, respectively. Clade III contains Cuspida cernua and corresponds with Clade 3 and Clade C in the ITS and psbA-trnH phylogenies, respectively. No Cullumia species were in common between psbAtrnH and ITS data, therefore Cullumia was not included in the combined data analysis. Posterior probability values for Clades I and II were both strongly supported ($\mathrm{PP}=1.00$). Clades III ($\mathrm{PP}=0.95$) and IV $(\mathrm{PP}=0.85)$ have much lower posterior probability values, and the sister relationship of these two clades received poor support ($\mathrm{PP}=0.50$). The decrease in clade support could be a consequence of the incongruence between the ITS and psbA-trnH data sets. The possibility of Cullumia (which was not included in the COMBINED data set) having arisen as a consequence of an ancient hybridization event cannot be excluded; the $p s b A-t r n H$ data resolve the maternal ancestry, while the ITS indicates the paternal ancestry.

Previous studies (Funk et al., 2004, 2008. Karis, 2006, 2009) included species from sister genera so as to investigate the possibility of Berkheya being a paraphyletic genus. However, despite some results suggesting paraphyly, Berkheya was retained as a monophyletic genus. Here I present a comprehensive ITS dataset which includes a majority of Berkheya species. From the phylogenies presented here, it is clear that Berkheya is paraphyletic, as Cullumia, Didelta and Cuspida are deeply embedded within Berkheya.

Funk and Chan (2008) previously noted the close relationship between Didelta and B. spinosissima. We concur with their findings but would further suggest that the Didelta clade, shown in this study as Clade 5 (ITS), may be a clade worthy of generic status. Berkheya species are said to have convex phyllaries as a distinctive morphological character, while Didelta has free phyllaries (Karis, 2006). Didelta species have also been shown to have a close similarity to morphological structures in B. spinosissima and B. angustifolia, such as pollen structure (Wortley et al. 2008); this group has sub-lophate, elliptic and echinate pollen grains with spines clumped on ridges of the pollen. This further illustrates the morphological similarities of Didelta to these Berkheya species as shown in previous studies (Karis, 2006; Funk and Chan, 2008; Funk et al., 2009). Such studies could be used to support the recognition of an expanded Didelta. However, similar data from other species in this clade (eg. B. armata and B. herbacea) is required to confirm these morphological synapomorphies, and hence any such taxonomic change is premature. Thus, while the need for appropriately names monophyletic taxa is recognised

Within taxonomy, great debate has occurred over the years over the recognition of paraphyletic groups as opposed to monophyletic taxa, with monophyly being the recognized criterion for grouping taxa in phylogenetic studies (Horandl, 2006). The identification of
"good" genera is defined by Humphreys and Linder (2009) as being those that are predictive and stable. The former implies taxa that have not yet been characterized whose attributes may be easily predicted, while the latter refers to taxa which have increased communication power in their classification using already known and accepted names. Humphreys and Linder (2009) argue that monophyly only becomes important as it increases the probability of a genus being both stable and predictive. In this study, an enlarged and monophyletic Berkheya is an appropriate solution, as is the recognition of an expanded Didelta and slightly smaller monophyletic Berkheya.

Taxonomic Implications: Correspondence with Roessler's classification.

Roessler identified eight series within Berkheya. In his revision of Gorteriinae, he lists Berkheya species by numbering them (1 to 72), a number system in which each species has a single number under which its subspecies would also fall. The allocation of each species to series is given in Table 3.

Table 2: Table showing Berkheya Classification by Roessler (1959) with species used in this study, coupled with distribution of taxa in centres of diversity

Series	Type	Roessler’s sp. No.	Taxa sampled (ITS)	Centre of Diversity as indicated in Figure 2 (ad hoc names used here: A=Albany, C=Caledon, H=Hantam, G=Gariep, Po=Pondoland, D=Drakensberg, LK=Little Karoo, B=Baberton, t- z=Tzaneen, j- p=Johannesburg- Pretoria.)
1.Fruticosae	B. fruticosa (L.) Ehrh.,	$1-13$	B. barbata,	G, H, LK, C

			B. angustifolia, B. schinzii, B. cuneata, B. coriacea, B. chamaepeuce, B. canescens, B. fruticosa, B. spinosissima, B. carlinopsis	
2.Angustae	B. angusta Schlechter	14	B. angusta	LK
3.Cruciatae	B. cruciata (Houtt.) Willd.,	15	B. cruciata	LK
4. Armatae	B. armata (Vahl) Druce	16-21	B. armata, B. herbacea, B. carlinoides, B. francinsci	C, LK
5.Speciosae	B. speciosa (DC.) O. Hoffm.,	22-30	B. purpurea, B. rhapontica, B. setifera B. echinacea, B. speciosa, B. spinosa	A, D, Po, B, tz,
6. Rigidae	B. rigida (Thunb.) Adams. \& Salt.	31-44	B. rigida, B. heterophylla, B. onobromoide, B. pinnatifida, B. cardopatifolia, B. eriobasis, B. bipinnatifida,	$\begin{aligned} & \text { G, H, D, j-p, C, } \\ & \text { LK, A, } \end{aligned}$

			B. calinifolia, B. annectance, B. ferox, B. draco	
7.Subulatae	B. subulata Harv.	45-55	B. zeyheri, B. seminivea, B. coddii, B. subulata, B. spekeana, B. insignis, B. angolensis,	Po, D, tz, j-p, B,
8.Decurrentes	B. decurrens (Thunb.) Willd.	56-72	B. decurrens, B. radula, B. maritima, B. montana, B. erysithales B. carduoides, B. cirsiifolia, B. acanthopoda, B. robusta, B. discolor, B. onopordifolia,	A, D, Po, B, tz,

The ITS phylogeny obtained here corresponds reasonably well with some of Roessler's series, but discrepancies were also found.

Species from series Fruticosae are found to occur in the ITS phylogeny in Clades 4 and 5. Subclade 4a is composed entirely of Series Fruticosae species, while in Clade 5, Subclade 5b is all Series Fruticosae species, which is the subclade with Didelta embedded in it. However, not all species from this Series occur in these clades as B. spinosa and B. carlinopsis are found in Clade 1, completely separated from other Series Fruticosae species. The occurrence of these species in Clade 1 is unexpected. As previously stated, B. carlinopsis is a winter
rainfall species and is therefore unexpected in the clade in which it occurs. The identification of this specimen cannot, however, be checked due to this being a sequence from GENBANK.

As discussed earlier, Berkheya cruciata of the monotypic Series Cruciata has been shown earlier to be closely related to Cullumia species in subclade 4c. Similarly, B. angusta which forms the monotypic Series Armatae, is also found in sublade 4c with Culumia. B. armata and B. cruciata are found to be closely related to Cullumia. It could be hypothesised that the reason why these species were each grouped into separate Series by Roessler was due to morphological characters which liken them to Cullumia and not Berkheya species. A detailed morphological study of this subclade is needed to form a better understanding of the results shown in this study.

Series Armatae species, namely B. herbacea, B. francisci and B. armata form subclade 5a. With the exception of Cuspida, Clade 3 is composed entirely of species of Series Rigidae. Similarly, with the exception of B. carduoides which is in Series Decurrentes species, Clade 2 corresponds to Series Speciosae.

Species of Series Subulatae are found in Subclades 1a and 1b of Clade 1. Series Decurrentes exclusively makes up subclade 1c with the exception of B. cirsiifolia that is found in subclade 1 a.

Molecular data presented here thus supports much of Roesler's Series. The phylogeny shows species of Series Fruticosae, Angustae, Cruciatae and Armatae to occur in the Winter rainfall clades, Series Subulatae and Decurrentes taxa falling in the Summer rainfall clades and Series Rigidae species occurring entirely in the year-round rainfall clade. A summary tree (Figure 12) shows the distribution of the Series according to the clades shown in the ITS phylogeny.

Few species were found not to correspond with Roesler's series. Firstly, it may be suggested that in the instance of B. bipinnatifida and B. spinosa of Series Speciosae, that the series be revised as Series Speciosae taxa are found to occur in Clade 2 and these species do not occur here in this review. Also, taxa of series Cruciatae and Angustae be merged with Cullumia species to form a single series. Furthermore, consideration should be taken to include Didelta species into Series Fruticosae, if subclade 5b and Clade 5 as a whole is not considered a separate genus.

Biogeographic implications:

Funk and Chan (2008) identified five of Roesler’s series within the Berkheya clade (Figure 1), but their molecular analysis was based on far fewer species that shown in this study. Their study separated Didelta, Cullumia and Cuspida from Berkheya. We propose that once revised using both molecular and morphological data, the relevant series should include these other genera as it has been conclusively shown that these genera to be embedded within Berkheya.

According to the oldest pollen fossil evidence, Calyceraceae and Asteraceae diverged within the last 60 million years (Zavada and de Villiers, 2000), followed by divergence within the Liabeae-Arctotideae-Vernonieeae clade approximately 25Mya. Gorteriinae diverged from Arctotidinae 24Mya. Within the subtribe Gorteriinae, according to the structure of our phylogenies, it may thus be hypothesised that the five clades diverged from a common ancestor, Clade 5 diverging first from the remaining clades forming a winter rainfall clade. Taxa in the remaining clade then radiated eastward, resulting in the formation of the Clade 4 (also a winter rainfall clade) and the remaining Eastern clades. From this we can see a clear

Figure 12: Line diagram summarizing Roessler’s Series within clades according to ITS data.
distinction of species that occur in the Eastern and Western parts of southern Africa. This is supported by Karis et al. (2009) who hypothesise that Gorteriinae has its centre of origin in the Greater Cape Floristic Region, which includes the Cape Floristic region (CFR) and its surrounding winter rainfall areas. These findings correspond with those of Gazania (Howis 2009), which also illustrate a pattern of species originating in the CFR radiating outwards.

This chapter has thus presented the most comprehensive molecular phylogenetic investigation of Berkheya and its allies to date. For the present study, ITS sequence data therefore provides further evidence, along with previous phylogenies that Berkheya is a paraphyletic genus, with Cuspida, Didelta and Cullumia embedded within it.

In addition, this study highlights the necessity for further phylogenetic analyses of plastid data for Gorteriinae, as the limited amount of data in the present $p s b \mathrm{~A}-t r n \mathrm{H}$ data set does not allow robust comparative analyses of nrDNA and cpDNA sequence data. Further studies into morphology would also be beneficial within this subtribe and Berkheya in particular. The following chapter focuses on the use of achene morphology as a possible additional data set for the investigation of Berkheya and its closely related genera.

Chapter 3: Achene morphology of Berkheya

The aim of the study presented in this Chapter is:

1) To examine the morphology of the achenes of selected species of Berkheya to obtain novel morphological characters that might support the molecular findings.

Morphology Introduction

In his taxonomic revision of the subtribe Gorteriinae, Roessler (1956) used morphological data to delimit taxonomic groupings. He noted that diagnostic features within the group were; presence or absence of latex; conate involucral bracts; deeply alveolate receptacles with 4 lobes and sterile ray florets. This recognition of diagnostic features for Gorteriinae is maintained in the more modern work done on the subtribe (Funk et al., 2009 Ch11). For his delimitation of his series for Berkheya, Roessler used receptacle alveole margins, achene morphology (focussing mainly on pappus scale morphology); growth form; leaf shape and capitulum structure to divide the group into eight sections.

In 1977 Norlindh retained the Benthamian subtribes with an additional monotypic subtribe, Eremothamninae, which was first proposed by Leins (1970) based on palynological data. Subsequent morphological studies of Gorteriinae have looked at diagnostic morphological features for species and genera within the group (Karis, 2006; Bremmer, 1994). These studies have highlighted various features over the years. Synapomorphies identified as crucial are: Deeply alveolate receptacles, connate phylleries, four-lobed ray florets, sclerified disc corolla and most recently, laticifers have been discovered as alleged synapomorphies. A study on external achene anatomy by Reese (1989) stated that the fruits of all Gorteriinae species analysed had laticifers within the capitula, which allowed further use of this feature by

Bremer (1994), for cladistics research of the tribe Arctotidae. Here 24 species, representative of all genera of the subtribe Gorteriinae, were found to have conspicuous laticifers in fresh cross sections of their leaves. External achene morphology, ray limb epidermis, embryology and cladistics analyses have also since been identified as essential features in species delimitation in this group

In his 2006 study of Gorteriinae, Karis analysed morphological data from 43 taxa which showed that within the subtribe two clades could be found, namely the Gorteria and Berkheya clades (Karis, 2006). The idea of these two lineages was first introduced by Leins and Thyret (1971) based on pollen features and later confirmed by phylogenetic analyses of molecular data by Funk et al. (2004) and Funk and Chan (2008), which resolved two lineages within the Gorteriinae. One lineage included Gazania, Gorteria and Hirpicium, which they called the Gazania Clade (GAZ), The second lineage identified in this analysis included both the Didelta Clade (DID) comprising Didelta and Berkheya spinosissima, as well as the Berkheya Clade (BER) which included Cullumia, Cuspida, Heterorachis and Berkheya, but excluding B. spinosissima (Funk et al., 2008). The two analyses done by Funk et al.(2004, 2008), which focused on molecular data, and Karis (2006), which was based solely on morphological data, clearly illustrate two separate lineages. This showed that use of morphological data as shown by Karis was able to produce a phylogeny which successfully resolved the clades which the subtribe is currently understood to comprise.

Karis (2006) also demonstrated that according to morphological data, Berkheya and Hirpicium were both paraphyletic. He found floral micromorphological data to be phylogenitically informative, and also found both sister groups to be defined by sets of diagnostic synapomorphies within the anthers, styles and external morphologies. His studies
showed that Heterorachis, Cullumia, Cuspida and Didelta were embedded within Berkheya (Karis, 2006).

Authors have differed in the characters emphasised when delimiting genera. For example, Lessing (1832) placed emphasis on fruit morphology, pappus morphology, ray floret fertility as well as filament ornamentation when revising the subtribe Arctotidinae, but pappus characters and fruit pubescence were subsequently seen as unreliable (Beauverd, 1915; Lewin, 1922). The use of fruit morphology in the taxonomic classification of Compositae species, in particular external achene and pappus characters has been exploited by workers in a number of tribes in the family, notably the Calendulae, Anthemideae and Arctotideae, which show striking evolution in achene morphology during diversification (Funk et al., 2009).

Value of achene morphology to systematics of the Compositae

Cheheregani and Mahanfar (2007) used achene data to study 11 species which represented five genera of the tribe Anthemideae (Compositae). Achene morphology was important to distinguish the genera, even when used alone, and these workers examined characters of the achenes which they found to be most suitable for systematic application and used these to delineate taxa. The character found to be most taxonomically informative were achene length, as there were few minor variations between the achenes of different species. Shape was found to be highly specific to genera and differed only between species. Pappus scales, where present, were found to show a great degree of variation among species. Their surface features, sulcus, wart, tubercule and lacune morphologies were also studied, with lacune morphology being found to be most informative within the group as it was found to be distinct at a species level (Cheheregani and Mahanfar, 2007).

Furthermore, the use of morphological data in conjunction with DNA data has become more popular over the years as this allows comparative analyses of taxa. In their study, Cheheregani and Mahanfar (2007) found that a combination of their achene morphological data with existing molecular data of the same group showed clear boundaries within the monotypic genera and distinct achene morphologies in homogenous genera.

McKenzie et al. (2005) studied Arctotidinae which allowed them to identify "natural" species groups within this subtribes, using external morphological characters of the achenes. Following this example I used scanning electron micrographs of achenes taken from herbarium specimens, supplemented with observation with a dissecting microscope, to examine the external achene morphology of representative species in the Didelta and Berkheya clades. The information obtained was used to infer relationships among the species, and to assess if there is a correlation between the groupings suggested by the morphological data and the clades resolved by molecular data in the Chapter 2.

Methods and Materials:

Mature achenes were obtained from herbarium specimens found in the Selmar Schonland Herbarium, Grahamstown. As these samples were dry, no treatment was necessary prior to them being mounted on stubs and sputter coated with gold-palladium. The achenes were examined using the JEOL JSM 840 Scanning Electron Micrograph (SEM) found at the Rhodes University Electron Microscope Unit. Various features of the achene and pappus scales were noted as being variable. In particular twin hairs, surface sculpturing of the fruit, ribs on the achene, and pubescent cells are described and assessed for their taxonomic utility.

These features were initially described and analysed for each species, but subsequently species were grouped according to clades found in the molecular phylogeny of Figure 4 in

Chapter 2, and features specific to, or consistent within, each clade or subclade were determined.

The maturity of a fruit is important in such a study and it is for this reason that mostly mature fruits were selected and used in this study. Where mature fruits could not be found, immature fruits were used and were labelled as such.

Observations of pappus morphology and trichome structure were made. Where necessary, further examinations were done using a dissecting microscope. Care was taken to standardize achenes selected and features studies so as to avoid features which are highly variable according to stages in development and growth conditions. (Breitwieser \& Ward, 2003)

Results:

Achene data is presented in the form of a table of all characters (Table 4.1), an appendix of plates (pictures of achenes from each clade; Appendix B) as well as tables with corresponding achene pictures illustrating character state descriptions within the discussion below.

	Achene						Pappus scales						
Characters	Twinhairs	Twinhair character	Swollen cells	Surface cells	Cell structure	ribs	Pappilae	praemorsus	Scale margins	Scale structure	coronate	Scale series	no. scales
Species name:													
B. cirsiifolia	0	0	0	1	2	1	1	0	2	3	0	1	20
B. bipinnatifida	1	2,4,8	0	1	3	1	1	0	2	5	0	1	10
B. speciosa (immature)	0	0	0	1	1,3	0	0	1	2	3	1	1	14
B. subulata	1	1,4,7	1	0	0	0	1	0	2,3	3	0	1	30
B. acanthopoda	0	0	1	1	1,2	1	0	1	1	1,4	0	1	10
B. draco	0	0	1	1	1,3	0	1	0	2	3	1	1	8
B. erysthales	0	0	1	0	1,3	1	0	0	2	3	0	1	20
B. maritima	0	0	1	0	1	1	0	1	2	3	0	2	20
B. onopordifolia	0	0	1	0	1,3	1	0	1	1	3	1	1	8
B. robusta	0	0	1	0	1,3	0	0	1	1	1,3	1	1	20
B. discolor	0	0	0	1	0	0	0	1	1	4	0	1	10
B. decurrens	0	0	0	1	1,3	1	0	0	2	4	1	2	10
B. rhapontica	1	1,3,4,7	1	0	2	0	0	1	2	4	0	2	20
B. echinacea	1	1,4,7	0	0	0	0	1	0	2,3	1,3	0	1	20
	0	0	1	1	1	1	0	1	1	5	1	1	8
B. carlinifolia	1	2,4,7	0	0	3	1	0	0	2	5	1	2	18
B. onobromoides	1	2,4,6,8	1	0	3	1	1	1	1	1	0	1	20
B. cardopatifolia	1	2,6,8	1	1	2	1	1	1	2	1,4	0	1	
B. pinnatifida	1	2,4,7	0	0	0	1	1	0	2,3	2	0	1	24
B. heterophylla	1	2,4,6,8	1	0	3	1	0	1	1	1	0	1	20
	1	1,4,7	0	1	0	0	1	0	2,3	2	0	1	12
B. canescens	1	1,4,7	0	0	0	0	1	0	2,3	2	0	1	20
B. fruticosa	1	1,4,7	0	0	0	0	1	0	2	2,3	1	2	20
B. cruciata	1	1,4,7	1	0	2	1	1	0	2	2,3	0	1	8
B. coriacea	1	1,4,7	0	0		0	1	0	2	2,3	1	1	10
	1	1,4,7	0	0	0	0	1	0	2,3	2	0	1	20
B. herbacea	1	1,4,7	0	0	0	0	1	0	2,3	2	0	1	20-30
B. armata	1	1,4,7	0	0	0	0	1	0	2,3	2	0	1	20
	1	1,4,7	0	0	0	0	1	0	2,3	2,3	0	1	10

Twin hairs:

The structure and position of the twin hairs (when present) differed considerably among the species. As shown in Table 4.2 below, seven character states were identified.

Table 4: Illustrated character states describing variability in twinhair structure.

Twinhair character states:		
0: Absent		
1: Long given approximate		
length compared to fruit		
2: Short given approximate		
length in relation to fruit		
3: Swollen basal cell		

| 4: Twisted |
| :---: | :---: | :---: |
| 5: Twin hairs arise from base of |
| achene |\quad| Twin hairs arise from apex of |
| :---: |
| achene |\quad| 7: Achene densely covered in |
| :---: |
| twin hairs |
| 8: Achene sparsely covered in |
| twin hairs |

Epidermal cells of the achene:

As previously stated, the relative maturity of sampled achenes was of great importance in this study (Table 5). Although concerted attempts were made to select mainly mature samples for use, in some instances it must be acknowledged that these varying degrees of maturity are
expected to affect the physical appearance of selected features. An example of this would be a seemingly reticulate achene which may have been colliculate, but over time dried out possibly due to being immature at the time of collection, resulting in a reticulate appearance.

Table 5: Illustrated character states describing surface sculpturing of achene with very sparse or no twin hairs.

| Surface sculpturing | neticulate: cells on surface |
| :---: | :---: | :---: |
| 1: Rave a rectangular appearance | |

Pappus scales:

All achenes examined possessed pappus scales, and a number of features of these were identified as variable. The presence / absence of papillae, whether or not they are praemorse
(has a bitten impression; Figure 13), the presence of coronate scales and the number of scales were assessed. In addition, the following multistate characters were selected with multiple character states.

Figure 13: Images illustrating pappus scale characters. A: Papillate scale, B: praemorse scale.

Pappus scale margins:

Table 6: Pappus scale margin structure.

Scale margins	
1: Entire	
2: Serrated	

Pappus scale shape:

Table 7: Pappus scale shape

Scale shape	1: Truncate: square apex
2: Accuminate: gradually taper	
off to a highly acute tip	

Pappus scale series:

Table 8: Pappus scale series

Series	
1: Uniseriate: single whorl of scales at fruit apex	

Discussion:

All Berkheya species studied possess pappus scales, which is a notable and useful feature as they show variation between species. Surface structures of the achenes, such as twin hairs and surface cells, are quantitative and also were also shown to be taxonomically informative. The features of the species of each of the five Clades are described and discussed below. The phylogeny (Figure 4) was split into five images, each representing one clade Images of corresponding achenes were added to each clade and labelled alphabetically from A to U .

Clade 1.

Upon grouping the species into the clades identified by the ITS data, it was found that the majority of the fruits of Clade 1 (Figure 14) have no twin hairs, except for B. circiifolia and B subulata, which are found in subclades $1 a$ and b respectively (see plates $1 A-1 L$). The characters of these achenes corresponded with the subclades found in the phylogenies, as the species found in subclade 1a all have glabrous cells (B. circiifolia has visible swollen cell at the base of the twin hairs) on the surface of the fruit, while species of subclades 1 b and 1 c have more flattened cells. Achenes of all species of Clade 1 are ribbed, as were some species of Clade 3 and Clade 4. The pappus scales of these species are variable as B. circiifolia, B. bipinnatifida, B. subulata and B. draco are papillate, while the rest have smooth scales (the former two species are in sublade 1a while B. subulata and B. draco are in subclade 1b). Premorse pappus scales seem to be the structure typical of species in subclade 1c, with the exception in this case being B. speciosa. Clade 1 species have between 10 and 20 uniserate pappus scales. From this it may be noted that in the first clade, both the surface structure and the scales are informative.

Figure 14: Clade 1 of ITS BI phylogeny with achene samples of species in this clade shown. A: B. cirsiifolia, B: B. speciosa C: B. speciosa, D: B. subulata, E: B. draco, F: B. acanthopoda, G: B. deccurens

Clade 2

Clade 2 species (Plates 2A - 2B; Figure 15) all have long dense and twisted twin hairs with the exception of B. setifera. B. rhapontica possesses swollen cells at the base of the twin hairs. Pappus scales within this clade were found to have a consistent structure with all species having 20 scales except for B. setifera which has 8 . The difference in morphology of B. setifera is most notable within the clade. This species is also a little anomalous for this clade, as it is distributed further north than the remaining species of the clade.

Figure 15: Clade 2 of ITS BI phylogeny with achene samples of species in this clade shown. I: B. setifera, J: B. echinacea

Clade 3

Species in Clade 3 (Plates 3A-3F; Figure 16) are characterised by twin hairs which are present in all species, and where visible, basal cells are swollen in all species except for B. cardopatifolia. These twin hairs are characteristically short and sparse in B. onobromoides, B. cardopatifolia and B heterophylla (all of clade 3a). Achenes of Cuspida are shown to have long, twisted and dense twin hairs, which is not found in the other species of this clade. Similar to B. pinnatifida, Cuspida achenes have short, mildly acuminate scales which are highly papillate. This is arguably a feature restricted to Cuspida and may be used to further support the separation of Cuspida into a subclade separate from the other species of Clade 3.

Figure 16: Clade 3 of ITS BI phylogeny with achene samples of species in this clade shown.
K: B. carlinifolia, L: B. onobromoides, M: B. pinnatifida, N: B. heterophylla, O: C. cernua

Clade 4

Clade 4 (Plates 4A-4E; Figure 17) species show a general achene structure which is uniform; all taxa examined possess long, twisted and dense twin hairs. In addition, pappus scales have the same structure throughout, with all scales being acuminate and varying in the length. The longest are found in B. canescens and B. cuneata (observed from an immature achene). All scales in this clade are papillate. B. cruciata, which occurs in the same subclade as Cullumia and B. angusta, seems to exhibit a varied structure which includes a very dense cover of visibly swollen cells at the base of the twin hairs. Karis (2006) highlighted glabrous achenes as a feature common between B. cruciata and Cullumia species. This may thus be a character which helps define the species of subclade 4 b in addition to other characters common to B. cruciata and Cullumia species. The ability to make clear comparisons between B. angusta and Cullumia is complicated by the fact that collections of B. angusta are rare, so it is therefore difficult to accurately assess the structure of these fruit and thus compare them to current findings.

Figure 17: Clade 4 of ITS BI phylogeny with achene samples of species in this clade shown. P: B. canescens, Q: B. cuneata, R: B. cruciata

Clade 5

Species of Clade 5 (Plates 5A-5C, Figure 18) exhibit an almost identical or uniform achene structure in all species examined. Fruits possessed long, twisted and dense twin hairs while the scales exhibit papillate, mildly accuminate scales which all have deeply serrated margins, giving them a spinescent morphology. The availability of a Didelta species for achene morphology would have allowed for further analyses into the overlap in structure within the clade and its subclades. Three species were sampled from this clade, with only a single species, B. spinosissima, being from subclade 5b. Although the achenes of this species showed the most morphological variation, shown in the scale structure an number, compared to the other species analysed within this clade, more sampling (as those done by Roessler 1959) would be needed to gain a better understanding of the morphology of the achenes of species within this clade.

Figure 18: Clade 5 of ITS BI phylogeny with achene samples of species in this clade shown. S: B. herbacea, T: B. armata, U: B. spinisissima

Although Clades 4 and 5 have Cullumia and Didelta embedded within them, mature flower heads were not found on available herbarium specimens, which unfortunately meant that achenes of these could not be examined and described here.

Synthesis: the value of achene morphology in Berkheya and allies.

Data in Table 4 indicate that the morphology of achenes within different clades, and even subclades is uniform. Common traits were successfully identified in the structure of achenes within clades, showing that specific combinations of morphological characters may be associated with each clade, which can be compared to existing phylogenetic data (As shown in Figure 19). Clade 1 species typically have no twin hairs, which is characteristic of this clade, as all other clades possessed twin hairs of various structures. Clade 3 showed a characteristic feature of twin hairs with swollen basal cells, which were also shown by Cuspida, which falls into this clade. Species of Clade 4 and Clade 5 on the other hand have dense twin hairs, but most characteristic were the pappus scales, which were highly acuminate and typically long in Clade 4, while clade 5 possessed distinctly mildly acuminate
scales for all sampled taxa. An understanding of the species distributions within the clades on a molecular level coupled with insight into the morphological characters of these species allows for a comparison of datasets which allows for a robust analysis of this data, thus creating a clearer understanding of the systematic within the group. This chapter has thus successfully illustrated the importance of achene data as a phylogenetic indicator.

[^0]Results presented here illustrate the importance of achene morphology in supporting the relationships within Berkheya and its sister genera, as elucidated by ITS sequence data. Clear consistencies were found in morphological data within clades (Figure 19). Figure 19 illustrates how the understanding of these characters aids in the confirmation of known species groupings, as shown in the clades of Berkheya data and its allies. The relative ease of the close inspection of scanning electron micrographs at high resolutions, and where necessary, the use of light microscopy, further increases the credibility of this data, and thus the potential for increased use of this type of data in future studies. A closer look into these fruits and their characters, coupled with increased numbers of species sampled, would allow for a more robust result in this respect. Achenes should thus be investigated further in future studies, ideally in conjunction with other morphological features such as pollen, floret and other capitulum characters as has been suggested in previous studies.

Chapter 4: General Conclusions

Individual and combined analyses of ITS and psbA-trnH data has provided a clear demonstration of the paraphyly of the genus Berkheya. The large number of taxa sampled in this study confirms the conclusions of previous studies (based on very small sample sizes) which noted the possible paraphyly of Berkheya (Funk and Chan, 2008; Karis, 2006). The addition of further genera known to be linked to Berkheya and its allies such as Heterorachis, as well as further phylogenetic analyses of plastid data in particular is needed as there is some evidence of incongruence (notably, involving the placement of Cullumia), possibly as a consequence of past hybridisation. Greater sample sizes are expected to improve the signal within the data and it is anticipated that this data will confirm congruence with the ITS findings.

Humphreys and Linder (2009) place a preference on monophyly as it provides both predictable and stable attributes within described genera. They state that taxa should be monophyletic and classification be constructed in a way that is illustrated clearly in phylogenies, and therefore show a preference for the recognition of larger monophyletic groups to generic rank. For this reason we find that consideration should be given to sinking Didelta, Cullumia and Cuspida into Berkheya. If this is carried out, then all taxa will become Berkheya species as the publication of the genus Berkheya (1784) preceeds those of its sister genera. As an alternative, Clade 5, which includes Didelta, could be defined as a separate genus which would result in Berkheya species within this clade then being renamed as Didelta. These two options would, according to our findings, create monophyletic, named clades, and thus decrease the amount of discrepancies shown in classifications of Gorteriinae.

The agreement between the molecular data and Roesler's (1959) Series-level taxonomy further strengthens the confidence in the use of morphological data, as well as the value and validity of Roessler's original classification. Species found in Series Fruticosae, Angustae, Cruciatae and Armatae are shown to constitute the winter rainfall clades of the ITS phylogeny, while Series Subulatae and Decurrentes taxa form the Summer rainfall clades, with Series Rigidae occurring entirely in the year-round rainfall clade. Very few species were found to deviate from Roesler's classification, which suggests only minor revision of this classification is needed, such as B. bipinnatifida and B. spinosa, which are found in Roessler's Series Speciosae. And taxa of monotypic series Cruciatae and Angustae, which are associated with Cullumia and Didelta illustrate the need for such a revision.

The examination of achene morphology provided further support to the molecular findings, including support for the inclusion into Berkheya of some of the segregate genera. The use of morphological data in Chapter 3 illustrates the importance of achene characters as being potentially phylogenetically useful, as these data showed the clades and even subclades retrieved by the ITS data to each be morphologically homogeneous. These data allowed the identification of common traits in the achenes of taxa occurring in the same clades, thus showing that specific combinations of morphological characters may thus be associated with each clade, which can be used as to support results shown in molecular data.

Unfortunately, this study is limited by a lack of a comprehensive parallel plastid data set, and the expansion of the $p s b A$-trnH is a research priority. However, the comprehensive ITS data set provides valuable insights into the taxonomy and biogeography of the genus, and thus forms a sound base for further research into this fascinating group of plants.

References:

Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:716-723

Albach, D.C. \& Chase, M.W. 2004. Incongruence in Veroniceae (Plantaginaceae): evidence from two plastid and a nuclear ribosomal DNA region. Molecular Phylogenetics and Evolution. 32(1): 183-197

Alfonso, S., Nuria, G-J., Oriane, H., Roser, V and Teresa, G. (2006). The Cardueae (Compositae) revisited: Insight from ITS, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Annals of the Missouri Botanical Garden. 93: 150-171

Alvarez, I. and Wendel J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution. 29: 417-434

Bailey, C.D., Hughes, C.E., Harris, S.A., Carr, T.G., 2002. Characterization of angiosperm nrDNA polymorphism: Paralogy and pseudogenes. Molecular Phylogenetics and Evolution. 29(3): 435-455

Baldwin B. G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution. 1:3-16.

Baldwin, B.G., 1993. Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: Chromosomal and morphological evolution reexamined. American Journal of Botany. 80: 222-238.

Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C. and

Donoghue, M.J. 1995. The ITS Region of Nuclear Ribosomal DNA: A Valuable Source of Evidence on Angiosperm Phylogeny. Annals of the Missouri Botanical Garden. 82(2): 24727

Barker, N.P., Howis S., Nordenstam, B., Källersjö, M., Eldenäs, P., Griffioen, C., Linder, H.P. 2009. Nuclear and chloroplast DNA-based phylogenies of Chrysanthemoides Tourn. ex Medik. (Calenduleae; Asteraceae) reveal extensive incongruence and generic paraphyly, but support the recognition of infraspecific taxa in C. monilifera. South African Journal of Botany. 75 : 560-572

Beauverd, G. 1915. Contribution a` l'étude des Composées: suite X. Bulletin de la Socie'té botanique de Gene ve (serie 2) 7: 21-56.

Breitwieser, I. and Ward, J.M. 2003. Phylogenetic relationships and character evolution in New Zealand and selected Australian Gnaphalieae (Compositae) inferred from morphological and anatomical data. Botanical Journal of the Linnean Society. 141: 183-203

Bremer, K. 1994. Asteraceae: cladistics and classification. Timber Press, Portland, Oregon, USA.

Caputo, P. 1997. DNA and phylogeny in plants: History and new perspectives. Lagascalia. 19(1-2): 331-344

Cassini, H. 1816. Tableau exprimant les ai nités des tribus naturelles de famille des Synanthérées, suivant la methode de classification de M. Henri Cassini. In: Cuvier, G. (ed.), Dictionnaire des Sciences Naturelles, ed. 2, vol. 3. Le Normant, Paris.

Cassini, H. 1826. Opuscules Phytologiques, vols. 1-2. Levrault, Paris

Chapman, R.D., Heidenmann, M., Albert, T.K., Mailhammer, R., Flatley, A., Meisterernst, M., Kremmer, E. \& Eick, D. 2007. Transcribing RNA Polymerase II is phosphorylated at CTD residue serine-7. Science. 318(5857): 1780-1782.

Cheheregani, N. \& Mahanfar, N. 2007. Achene Micro-morphology of Anthemis (Asteraceae) and its Allies in Iran with Emphasis on Systematics. International Journal of Agriculture and Botany. 9(3): 486-488.

Clegg, M.T., Gaut, B.S., Learn, Jr. G.H. \& Morton, B.R. 1994. Rates and patterns of chloroplast DNA evolution. PNAS. 91(15): 6795-6801

Cronn, R. \& Wendel, J.F. (2007) Cryptic trysts, genomic mergers and plant speciation. New Phytologist. 161: 133-142

Cronquist, A. 1985. History of generic concepts in the Compositae. Taxon 34: 6-10.

Doyle, J.J. 1992. Gene trees and species trees: molecular systematic as a one-character taxonomy. Systematic Botany. 17: 144-163

Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin Botanical Society of America. 19:11-15.

Drummond, A.J. and Rambaut, A. 2007. BEAST: Bayesian Evolutionary analysis by sampling trees. BMC Evolution Biology. 7: 214

Eidesen, P.B., Alsos, I.G., Popp, M., Stensrud, O., Suda, J. \& Brochmann, C. 2007. Nuclear vs plastid data: complex Pleistocene history of a circumpolar key species. Molecular Ecology. 16: 3902-3925

Farris, J.S., Kallersjo, M., Kluge, A.G. \& Bult, C. 1994. Testing significance of incongruence. Cladistics 10: 315-319

Feliner, G.N., Rossello, J.A. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution. 44: 911-919

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791

Funk, V.A., Bayer, R.J., Keeley, S., Chan, R., Watson, L., Gemeinholzer, B., Schilling, E., Panero, J.L., Baldwin, B.G., Garcia-Jacas, N., Susanna, A. \& Jansen, R.K. 2005. Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter 55: 343-374.

Funk, V.A., Chan, R. 2008. Phylogeny of the spiny African Daisies (Compositae, tribe Arctotideae, subtribe Gorteriinae) based on trnL-F, ndhF, and ITS sequence data. Molecular Phylogenetics and Evolution. 48: 47-60

Funk,V.A., Chan, R. and Keeley, S.C. 2004. Insights into the evolution of the tribe Arctoteae (Compositae: subfamily Cichoriodeae s.s.) using trnL-F, ndhF and ITS. TAXON. 53(3): 637655

Funk, V.A., Koekemoer, M., Robinson, H.E. and Skvarla, J.J. 2009. Platycarpheae. pp.471476. In: Funk, Vicki A., Susana, A., Stuessy, T. F. and Bayer, Randall J., Systematics, Evolution, and Biogeography of Compositae. Vienna, Austria: International Association for Plant Taxonomy (IAPT).

Funk, V.A., Robinson H. and Dillon M.O. 2007. Liabeae (Asteraceae). Pp 175-180. In K. Kubitzki (ed.), The Families and Genera of Vascular Plants. Vol. VIII. Springer Verlag, Berlin.

Funk, V.A., Susanna, A., Steussy, T.F. and Robinson, H.E.. 2009. Classification of Compositae. pp.171-189. In: Funk, Vicki A., Susana, A., Stuessy, T. F. and Bayer, Randall J., Systematics, Evolution, and Biogeography of Compositae. Vienna, Austria: International Association for Plant Taxonomy (IAPT).

Galeta, M. 2007. Genetic Diversity, Phylogenetics and Molecular Systematics of Guizotia Cass. (Asteraceae). Doctoral thesis. Swedish University of Agricultural Sciences. Alnarp 2007

Hamza, N.B. 2010. Cytoplasmic and nuclear DNA markers as powerful tools in populations’ studies and in setting conservation strategies. African Journal of Biotechnology. 9(29): 45104515

Horandl, E. 2006. Paraphyletic versus monophyletic taxa - evolutionary versus cladistic classifications. TAXON. 55(3): 564-570

Howis, S., Barker, N.P. and Mucina, L. 2009. Globally grown, but poorly known: species limits and biogeography of Gazania Gaert. (Asteraceae) inferred from chloroplast and nuclear DNA sequence data. TAXON. 58: 1-12

Huelsenbeck, J. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 17: 754-755

Humphreys, A.M. and Linder, H.P. 2009. Concepts versus data in delimitation of plant genera. TAXON. 58(4): 1054-1074

Jansen, R.K. \& Palmer, J.D. 1987. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proceedings of the National Academy of Sciences of the United States of America 84: 5818-5822

Karis, P.A. 1992. Hoplophyllum DC., the sister group to Eremothamnus O. Hoffm. (Asteraceae)? TAXON. 41: 193-198

Karis, P.A., Funk, V.A., McKenzie, R.J., Barker, N.P. and Chan, R. 2009. Arctotideae. Chapter 25. pp. 407-432. In: Funk, V.A., Susanna, A., Stuessy, T.F. and Bayer, R.J. (eds). Systematics, Evolution and Biogeography of Compositae. International Association for Plant Taxonomy, Vienna: International Association for Plant Taxonomy (IAPT).

Karis, P.A. 2006. Morphological data indicates two major clades of the subtribe Gorteriinae (Asteraceae-Arctotidineae). Cladistics. 22: 199-221

Kellogg, E. A. \& H. P. Linder. 1995. Phylogeny of Poales. Pp. 511-542 In: P. J. Rudall, P. J. Cribb, D. F. Cutler \& C. J. Humphries (editors), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew.

Kim, K.-J., Jansen, R.K., 1996. Phylogenetic implications of rbcL and ITS sequence variation in the Berberidaceae. Systematic Botany. 21:381-396.

Kim, S-J., Crawford, D.J., Jansen, R.K. and Santos-Guerra, A. 1997. The use of a noncoding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuceae). Plant Systematics and Evolution. 215:85-99

Koekemoer, M. 1996. An overview of the Asteraceae of southern Africa. In: Hind, D.J.N. and Beentje, H.J. (eds). Compositae: Systematics. Royal Botanic Gardens, Kew. Pp. 95-110

Lantz, H. \& Bremer, B. 2005 Phylogeny of the complex Vanguerieae (Rubiaceae) genera Fadogia, Rytigynia \& Vangueria with close relatives \& a new circumscription of Vangueria. Plant Systematics and Evolution. 253: 159-183

Leins, P. \& Thyret, G. 1971. Pollen phylogeny and taxonomy exemplified by an African Asteraceae group. Mitteilungen der Botanischen Staatssammlung, München. 10: 280-286.

Markos, S and Baldwin, B.G. 2001 Higher-Level Relationships and Major Lineages of Lessingia (Compositae, Astereae) Based on Nuclear rDNA Internal and External Transcribed Spacer (ITS and ETS) Sequences. Systematic Botany. 26(1):168-183

McKenzie, R.J. and Barker, N.P. 2008. Radiation of Southern African daisies: Biogeographic inferences for subtribe Arctotidinae (Asteraceae, Arctotideae). Molecular Phylogenetics and Evolution. 49: 1-16

McKenzie, R.J. Muller, E.M., Skinner, A.K.W., Karis, P.A. and Barker, N.P. 2006. Phylogenetic relationships and generic delimitations in subtribe Arctotidinae (Asteraceae: Arctotideae) inferred by DNA sequence data from ITS and five chloroplast regions. American Journal of Botany. 93(8): 1222-1235

McKenzie, R.J., Samuel, J., Muller, E.M., Skinner, A.K.W. and Barker, N.P. 2005. Morphology of cypselae in subtribe Arctotidinae (Compositae- Arctotideae) and its taxonomic implications. Annals of the Missouri Botanical Garden. 92(4): 569-594

Medina, N.M. 2006. Arctotheca calendula (L.) Levyns; Asteraceae (Compositae); invasive species on sandy soils in Araucania region (IX), Chile. In: Chloris Chilensis - Revista Chilena de Flora y Vegetacion 2006 Vol. 9 No. 1

Merino, F.F. and Donat, P.M. 2011. Invasive plants in the coastal vegetal communities in Valencia (Spain). Not Bot Hort Agrobot Cluj, 2011, 39(1):09-17

Mucina, L. \& Rutherford, M.C. (eds.). 2006. The Vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria.

Nylander, J.A.A. 2004. MrModeltest, version 2. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.

Panero, J.L. \& Funk, V.A. 2002. Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). Proceedings of the Biological Society of Washington 115: 909922.

Posada, D. and Crandall, K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics.14:817-818

Roessler, H. 1959. Revision der Arctotideae - Gorteriinae (Compositae). Mitt. Bot. Staatssamml. München 3: 71-500.

Reese, H. 1989. Die Entwicklung von Pericarp und Testa bei Calenduleae und Arctotideae (Asteraceae) ein Beitrag zur Systematik. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 110: 325-420.

Sang, T., Crawford, D.J. \& Stuessy, T.F. 1997. Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). American Journal of Botany. 84: 1120-1136.

Small, R.L., Ryburn, J.A., Cronn, R.C., Seelanan, T., Wendel, J.F. 1998. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany. 85: 13011315.

Small, R.L., Cronn, R.C., Wendel, J.F., 2004. Nuclear genes and plant phylogeny reconstruction. Australian Systematic Botany. 17:145-170

Van Wyk, A.E. \& Smith, G.F. 2001. Regions of Floristic Endemism in Southern Africa. Umdaus Press, Hatfield.

Wagstaff, S.J. \& Brietwieser, I. 2004. Phylogeny and classification of Brachyglottis (Senecioneae, Asteraceae): An example of a rapid species radiation in New Zealand. Systematic Botany. 29(4): 1003-1010

White, T.J., Bruns, T., Lee, S. \& Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-324 in: Innis, M.A., Gelfand, D.H., Sninsky, J.J. \& White, T.J. (eds.), PCR Protocols:A Guide to Methods and Applications. Academic Press, San Diego.

Wiens, J. J. \& T. W. Reeder. 1995. Combining data sets with different numbers of taxa for phylogenetic analysis. Systematic Biology. 44: 548-558

Wiens, J. J. 1998. Does adding characters with missing data increase or decrease phylogenetic accuracy? Systematic Biology 47(4): 625-640

Wortley, A.H., Funk, V.A., Robinson, H., Skvarla, J.J., Blackmore, S. 2007. A search for pollen morphological synapomorphies to classify rogue genera in Compositae (Asteraceae) Review of Palaeobotany \& Palynology. 146: 169-181

Wortley, A.H., Funk, V.A. and Skvaria, J.J. 2008. Pollen and the Evolution of Arctotideae (Compositae). Botanical Review 74:438-466

Zavada, M.S., de Villiers, S.E. 2000. Pollen of the Asteraceae from Paleocene-Eocene of South Africa. Grana. 39:39-45

Zimmer, E.A. \& Wen, J. 2012. Using nuclear gene data for plant phylogenetics: Progress and prospects. Molecular Phylogenetics and Evolution. 65: 774-785

APPENDIX A

ITS Alignment:

Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022
B_insignis_MK2133
B seminivea RM1140
B_coddii_IVS
B_subulata_EU527203
B carlinopsis AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193
B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B cirsiifolia CK9
B_cirsiifolia_EU527207
B_robusta_LM080701_1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn

TCGAACCCTGCATAGCAGAA-CGACCCGCGAACASGTAAC-CACAACCGGGTGTCAAGGG TCGAACCCTGCATAGCAGAA-CGACCCGCGAACACGTACC-CACAACCGGGTGTCAAGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG ????????TGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATTGAGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATTGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGKAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-?GACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAAACGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG -

B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a_B_r
B_rhapontica_ssp_rhapontica_POK1
B_rhapontica_EU527207
B carduoides NB1924 B carduoides
B_setifera_NN20
B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B_echinacea_EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B_pinnatifida_SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B pinnatifida EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B fruticosa_RM1301
B_fruticosa_EU527199
B_canescens_CAM2117
B_canescens_LM290806_32
B_canescens_EU527201

TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACAYGTAACATATAACCGGGCGTCAGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAAACGACCCGTGAACACGTAAA - TACAACCGGGCATCGGGG-TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCGTGCACAGCAGAA-CGACCCGTGAACACGTAAA-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG-TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TAGAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATTGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGGGG ?????????GCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCAGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACATGTAAC-TACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAACCGGGCATCGAGG TCGAWCCCTGCACRGCAKAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCGAGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCACCGAGG ????????????????????-???????????????????-?????CCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCAGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAWTCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG

B_cuneata_LM160601_6
B_cuneata_AY504711
Cul bisulca EU527215 Cul bisulca B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B_pauciflora NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B_herbacea_LM101001_2
B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21
B_spinosissima_namaensis_RM1481
B_spinosissima_argentifolia_RM27
B_spinosissima_EU527200
B spinosissima AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B carlinoides MK2022
B_insignis_MK2133

TCGAACCCTGCACAGCAGAA-CGACCCGTGAACATGTAAC-AACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACATGTAAC-AACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC - TACAATCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG-TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCTGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACAACGCATCAGGA-TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAACCGGGCATCAAGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACTCGTAAC-TACAACAACGCATCGGGG-TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-TACAATCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCGGGCATCGGGG -TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCGGGCATCGGGG TCGAACCCTGCACAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCGGGCATCGGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG -TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAT-GACAACCTGGCATCGGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG-TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG -TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCGGGG -TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCAGGG TCGAACCCTGCATAGCAGAA-CGACCCGTGAACACGTAAC-GACAACCTGGCATCAGGG

GGACAGGCTCTAGCCGGCGACCCTTGGTGCCT-GGCCTATGTGCGTGCATGTTGCCCCGT GGACAGGCTCTAGCCGGCGACCCTTGGTGCCC-CGCCAACGTGCGTGCATGTTGCCTC-T GTACGG-CTCATGCTTGCAACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGCGCCCCAA GTACGG-CTCATGCTTGCAACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGCGCCCCAA GTACGG-CTCATGCCTGCAACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGCACCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGCGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTACGTGCATGGCGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA

B_seminivea_RM1140
B_coddii_IVS
B subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm B_zeyheri_EU527193
B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B cirsiifolia_RM973
B_cirsiifolia_CK9
B_cirsiifolia_EU527207
B_robusta_LM080701_1
B maritima SR462
B_radula_NN1
B_decurrens_RM1189
B discolor NN9
B_draco_CK20
B_erysithales_K871
B montana SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a_B_r
B_rhapontica_ssp_rhapontica_POK1 B rhapontica EU527207
B_carduoides_NB1924_B_carduoides
B_setifera_NN20
B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B echinacea EU527204
B_onobromoides EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213
B carlinifolia LM010204 1

GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCT-GCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCATGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCTAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGCGCCTCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGCGCCTCAA GTACGG-CTCATGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCTAA GTACGG-CTCATGCTTGCGACCCTTGGTGCCT-TGCCGAWGTGCGTGCATGGTGCCCTAA GTACGG-CTCATGCTTGMGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCTAA GTACGG-CTCACGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCTAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAG GTACGG-CTCACGCTWGTAACCCTTGKTGYCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCG-CCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCAACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGTCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCAACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGKGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGTCT-TGCCGATGTGCGTGCATGGTGCCCCAA ITACGG-CTCACGCTTGCGACCCTTGGTGTCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGTCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTTCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTTCTACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA -TACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGTCGATGTGCGTGCATGGTGCCCCAA - TACGG-CTCACGCTTGTGACCCTTGGTGCCT-TGTCGATGTGCGTGCATGGTGCCCCAA -TACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A

B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B cardopatifolia CSW13
B_glabrata_X48
B_rigida_LM170601_1
B annectens 644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B pinnatifida SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B_fruticosa_RM1301
B_fruticosa_EU527199
B_canescens_CAM2117
B_canescens_LM290806 32
B_canescens_EU527201
B_cuneata_LM160601_6
B_cuneata_AY504711
Cul_bisulca_EU527215_Cul_bisulca B_spinosa_K861
B spinosa EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul patula AY504714
B_herbacea_LM101001_2

GTACGG-CTCGCGCTTGCGACCCTTGGTGCCT-TGCTGAAGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGCGACCCTTGATGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGCGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTAATGTGCGTGCATGGTGCCCC-A GTACGG-CTTGCGCTTGTGTCCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCT-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCT-A GTACGG-CTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATGTGCGTGCATGGTGCCCC-G GTACGG-TTCGCGCTTGTGACCCTTGGTGCCT-TGCTGATATGCGTGCATGGTGCCCC-A GTAAGG-CTCACGCTTGCAACCCGCGGTGCCT-TGCTGACGTGCGTGCATGGTGCCCTGA GTAAGG-CTCACGCTTGCAACCCGCGGTGCCT-TGCTGAMGTGCGTGCATGGTGCCCTGA GTAAGG-CTCACGCTTGCAACCCGCGGTGCCT-TGCTGACGTGCGTGCATGGTGCCCTGA AGACGG-CTCATGCTTGCGACCCTTGGTGCCC-TGCCGATGTGCGTGCATGGTGCCCTAT GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGTTGTACGCGCATGGTGCCCCGA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGTTGTGCGCGCATGGTGCCCCGA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCGT GTACGG-CTCACGCTTGCGACCCTTGGTGCCC-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGGACTCACGCTTGCGACCCTTGGTGCCC-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGCGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTAGCGACCCTTGGTGCCT-TGCCGATGTACGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGAGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTACCCCAA GTACGG-CTCACGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA GTACGG-CTCACGCTTGTGACCCTTGGTGCCT-TGCCGATGTGCGTGCATGGTGCCCCAA AGACGG-CTCATGCTTGCGACCCTCGGTGCCC-TGCCGATGTGCGTGCATAGGGCCCTAT

B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21 B_spinosissima_namaensis_RM1481 B_spinosissima_argentifolia_RM27 B spinosissima EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor sp EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B bipinnatifida EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B carlinoides MK2022
B_insignis_MK2133
B_seminivea_RM1140
B coddii IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193
B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B_cirsiifolia_CK9
B cirsiifolia EU527207
B_robusta_LM080701_1

AGACGG-CTCATGCTTGCGACCCTCGGTGCCC-TGCCGATGTGCGTGCATAGGGCCCTAT AGACGG-CTCATGCTTGCGACCCTCGGTGCCT-TGCCGATGTGCGTGCATAGGGCCCTAT AGACGG-CTTATGCTTGCGACCCTTGGTGCCC-TGTCGACGTGCGTGCATGGTGCCCCTT AGACGG-CTTATGCTTGCGACCCTTGGTGCCCCTGTCGACGTGCGTGCATGGTGCCCCTT AGACGG-CTCATGCTTGCGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTCCTCCTT AGACGG-CTCATGCTTGTGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTGCTCCTT AGACGG-CTCATGCTTGCGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTCCTCCTT AGACGG-CTCATGCTTGCGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTSCTCCTT AAACGG-CTCATGCTTGCGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTCCTCCTT AGACGG-CTCATGCTTGCGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTCCTCCTT AGACGG-CTCATGCTTGTGACCCTTGGTGCCT-TGCCGACGTGCGTGCATGGTGCTCCTT AGACGG-CTTATGCTTGCGACCCTTGGTGCCC-TGCCGACGTGCGTGCATGGTGCCCCTT AGACGG-CTTATGCTTGCGACCCTTGGTGCCC-TGTCGACGTGCGTGCATGGTGCCCCTT

T-TGGGGC-TCGTGAACGTCATGTTGGCATCAAAA-CAAAACCCGGCACGGCATGTGCCA A-TAGGGC-TCATGAACGTACTGTCGGCATCAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACCAAAA- CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACTAAAA-CCAACCCCGGCACGGCACGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACTAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACTAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACTAAAA-CCAACCCCGGCACGGCACGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTATGTCGGCACTAAAA - CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCRGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACTAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGAGGTGTTGTGGACGTTATGTCGGCACCAAAAACCAACCCCGGCACGGCATGTGCCA A-TGAGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATCGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA

B_maritima_SR462
B_radula_NN1
B_decurrens RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340

B_rhapontica_EU527207
B_carduoides_NB1924_B_carduoides
B setifera_NN20
B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B echinacea EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B cardopatifolia EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B cardopatifolia C R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644
B_rigida_EU527195
B pinnatifida stobaeoides NN15
B_pinnatifida_SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896

B_cf_rhapontica_LM020406_37a_B_r ATGGGG-TGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA B_rhapontica_ssp_rhapontica_POK1 ATGGGG-TGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA

A-TGGGGTGTTGTGGACGTCACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGATGTTACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGATGTTACGTCGGCACCAAAA - CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGCTGTGGACGTTACGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTTACGTCGGCACCAAAA- CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGAACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA ATGGGG-TGTTGTGGACGTATAGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGTATGTGCCA ATGGGG-TGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA ATGGGG-TGTTGTGGACGTAATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA ATGGG--TGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA ATGGG-- TGTTGTGGACGTATTGTCGGCACCAAAA- CCAACCCCGGCACGGCATGTGCCA ATGGGG-TGTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA AAGGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTATTGTTGGCACTAAAA - CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTATTGTTGG-ACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTTATGTTGGCACTAAAA - CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTTATGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTATGGACGTTATGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTATGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTTATGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTTATGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTTATGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTATTGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGCCGTGGACGTTATGTTGGCACTAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTATTGTAGGCACTAAAA- CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTTATGTTGGCACCAAAA-CAAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTTATGTTGGCACCAAAA-CAAACCCCGGCACGGCATGTGCCA

Cus_cernua_RM2600
B_francisci_T707
B cf carlinopsis LM300806 1
B_fruticosa_RM1301
B_fruticosa_EU527199
B canescens CAM2117
B_canescens_LM290806_32
B_canescens_EU527201
B cuneata_LM160601 6
B_cuneata_AY504711
Cul_bisulca_EU527215_Cul_bisulca
B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul patula AY504714
B_herbacea_LM101001_2
B_herbacea_RM1176
B armata RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B schinzii CM2793
B_spinosissima_spinosissima_SB21
B_spinosissima_namaensis_RM1481
B spinosissima argentifolia_RM27
B_spinosissima_EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B barbata RM1077
B_angustifolia_K979
Hir_echinus_DQ444719

A-TGGGGCGTTGTGGACGTATTGTTGGCACCAAAA - CAAACCCCGGCACGGCATGTGCCA A-TGGGGCCTTGTGGACGTCTTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA T-TGGGGCGTTGTGGACGTTATGTTGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA T-TGGGGCGTTGTGGACGTTATGTTGGCACCAAAA - CCAACCCCGGCACGGCATGTGCCA T-TGGGGTGTTGTGGACGTATTGTTGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA T-TGGGGCGTTGTGGACGTTATGTTGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA T-TGGGGCGTTGTGGACGTTACGTTGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA T-TGGGGCGTTGTGGACGTATCGTTGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTTATCTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTATTCTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGGCTTCTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTATGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTTATGTTGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-CGGGGCGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGMATGTGCCA A-CGGGGCGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTTGTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGTGTTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCGTTGTGGACGCTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA AATGGGGTGTTGTGGACGTATTGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGGCTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-CGGGGGCTTGTGGACGTTATGTCGGCACCAAAA-CCAACCCCGGCACGGCATGTGCCA A-TGGGGCCTTGTGGACGTTCTGTCGGCACCAAAA- CCATCCCCGGCACGGCATGTGCCA A-TGGGGCCTTGTGGACGTTCTGTCGGCACCAAAA-CCATCCCCGGCACGGCATGTGCCA A-TGGGTCCTTGTGGACGTTCTGTCGGCACCAAAA-CCATCCCCGGCACGGCATGTGCCA A-TGGGGTGTTGTGGACGTGTTGTCGGCATCAAA - - CCAACCCCGGCACGGAATGTGCCA A-TGGGGTGTTGTGGACGTCTTGTCGGCATCAAA--CCAACCCCGGCACGGAATGTGCCA A-TGGGGTACTGTGGACGTTCTGTCGGCATCAAA - - CCAACCCCGGCACGGAATGTGCCA A-TGGGGTATTGTGGACGTTCTGTCGGCATCAAA- -CCAACCCCGGCACGGAATGTGCCA A-TGGGGTATTGTGGACGTTCTGTCGGCATCAAA-- CCAACCCCGGCACGGAACGTGCCA A-TGGGGTATTGTGGACGTCTTGTCGGCATCAAA--CCAACCCCGGCACGGAATGTGCCA A-TGGGGTATTGTGGACGTCTTGTCGGCATCAAA-- CCAACCCCGGCACGGAATGTGCCA A-TGGGGTACTGTGGACGTCTTGTCGGCATCAAA--CCAACCCCGGCACGGAATGTGCCA A-TGGGGTATTGTGGACGTCTTGTCGGCATCAAA - - CCAACCCCGGCACGGAATGTGCCA A-TGGGGTGTTGTGGACGTCGTGTTGGCATCAAA--CCAACCCCGGCACGGAATGTGCCA A-TGGGGTGTTGTGGACGTCGTGTCGGCATCAAA-- CCAACCCCGGCACGGAATGTGCCA

AGGAAAACAAAACAATAGAAGGGCTCGTATCGTGTC-GTCCCGTTCGCGGTGTGCGCATG

Gor_sp_EF556363
B_spinosa_MK1457 B_bipinnatifida_EU527198
B_spekeana_NB1901
B speciosa LM081103 1
B_carlinoides_MK2022
B_insignis_MK2133
B_seminivea_RM1140
B_coddii_IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm B_zeyheri_EU527193
B densifolia NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B_cirsiifolia_CK9
B cirsiifolia EU527207
B_robusta_LM080701_1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B draco CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a_B_r
B_rhapontica_ssp_rhapontica_POK1
B_rhapontica_EU527207
B_carduoides_NB1924_B_carduoides B_setifera_NN20

AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG B bipinnatifida var pinnatida SR AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG

AGGAAAACAAAACATAAGAAGGGCTCGTATCGTGTC-GTCCCGTTCGCGGTGTGCGCATG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCGCG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTTTGCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTTTGCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCACACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGATCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGATCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTTGCGGTGTGCGCACG AGGAAAACATAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACCAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCGCG AGGAAAACATAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTAAAGAAGGGCTCGTTTCGTGTT-ACCCCATTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGCCTCGTGTT-GCCCCGTTCGCGGTGTGCCCACG

B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B_echinacea_EU527204
B_onobromoides_EU527212
B annectens EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B_pinnatifida_SR552
B_eriobasis_EU527214
B eriobasis EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus cernua LM210706 3
Cus_cernua_NB1896
Cus_cernua_RM2600
B francisci T707
B_cf_carlinopsis_LM300806_1
B_fruticosa_RM1301
B fruticosa EU527199
B_canescens_CAM2117
B_canescens_LM290806_32
B_canescens_EU527201
B_cuneata_LM160601_6
B_cuneata_AY504711
Cul_bisulca_EU527215_Cul_bisulca
B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204 1
B_angusta_POK1090

AGGAAAACATAACTTAAGAAGGGCTCGCCTCGTGTT-GCCCCGTTCGCGGTGTGCCCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCCCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCCCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCCCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTTGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCCGTGTT-GCCCCGTTCGCGGTGTGCGCATG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTTGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTAAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTTGATTCGTGTT-GCCCCGTCCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTTGATTCGTGTT-GCCCCGTCCGCGGTGTGCGCACG AGGAAAACATAACTTAAGAAGGGCTTGATTCGTGTT-GCCCCGTCCGCGGTGTGCGCACG AGGAAAACAAAACATAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGCT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAGAACAAAACTTAAGAGGGGCTCGTTTCGTGTT-GCCCCGTTTGCGGTGCGCGCACG AGGAGAACAAAACTTAAGAGGGGCTCGTTTCGTGTT-GCCCCGTTTGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGACTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG

B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B cruciata AY504712
B_sp_LM021106_5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B_herbacea_LM101001_2
B herbacea RM1176
B_armata_RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21
B_spinosissima_namaensis_RM1481
B_spinosissima_argentifolia_RM27
B_spinosissima_EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022
B insignis_MK2133
B_seminivea_RM1140
B_coddii_IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193

AGGAAAACAAAACTTAAGAAGGGCTCGACTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGACAACAAAACTTAAGAAGGGCTCGATTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGACAACAAAACTTAAGAAGGGCTCGATTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGATTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACATAACTTAAGAAGGGCTCGTTTCGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGATTCGTGTT-GCCCCGTTTGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGATTCGTGTT-GCCCCGTTCGCGGTGCGCGCACG AGGAAAACAAAACTTAAGAAGGKCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGKCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCACGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCCCG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTYGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCCCG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG AGGAAAACAAAACTTAAGAAGGGCTCGTTCGGTGTT-GCCCCGTTCGCGGTGTGCGCACG

TACGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC TTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GACGTGTCTTTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GACGTGTCTTTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC ATCGTGTCTCTTTTATAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC

B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B cirsiifolia CK9
B_cirsiifolia_EU527207
B_robusta_LM080701_1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a_B_r
B_rhapontica_ssp_rhapontica_POK1
B_rhapontica_EU527207
B carduoides_NB1924_B_carduoides
B_setifera_NN20
B_setifera_EU527208
B echinacea 169
B_echinacea_ssp_polyacantha_179
B_echinacea_EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644
B_rigida_EU527195

GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCATAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCAGGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTTTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTATAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC ATCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC

B_pinnatifida_stobaeoides_NN15
B_pinnatifida_SR552
B eriobasis EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B pinnatifida EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B fruticosa RM1301
B_fruticosa_EU527199
B_canescens_CAM2117
B_canescens_LM290806_32
B canescens EU527201
B_cuneata_LM160601_6
B_cuneata_AY504711
Cul bisulca EU527215 Cul bisulca
B_spinosa_K861
B_spinosa_EU527202
B_coriacea LM230204 1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B pauciflora NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B herbacea_LM101001 2
B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D carnosa EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21
B spinosissima namaensis RM1481

GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GCCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC ATCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC ATCGYGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC ATCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGCGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCCCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCCCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCCCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGT?TCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC

B_spinosissima_argentifolia_RM27 GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC

B_spinosissima_EU527200
B spinosissima AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B bipinnatifida EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022
B_insignis_MK2133
B_seminivea_RM1140
B_coddii IVS
B subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193
B_densifolia_NP66
B coddii EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B cirsiifolia RM973
B_cirsiifolia_CK9
B_cirsiifolia_EU527207
B robusta LM080701 1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B montana SR464

GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC ATCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC GTCGTGTCTCTTTTGTAATCACAAACGACTCTCGGCAACGGATATCTCGGCTCACGCATC

GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG

B_purpurea_JFsn
B_pannosa_EU527209
B ferox var glandulosa 1340
B_cf_rhapontica_LM020406_37a_B_r B_rhapontica_ssp_rhapontica_POK1 B rhapontica EU527207
B_carduoides_NB1924_B_carduoides
B_setifera_NN20
B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B_echinacea_EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B cardopatifolia C R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B annectens 644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B pinnatifida SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B_fruticosa_RM1301
B_fruticosa_EU527199
B_canescens_CAM2117
B_canescens_LM290806_32

GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCGCGTCAACCATCG GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG

B_canescens_EU527201
B_cuneata_LM160601_6
B_cuneata AY504711
Cul_bisulca_EU527215_Cul_bisulca B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106 5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B_herbacea_LM101001_2
B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B_schinzii_CM2793
B spinosissima spinosissima SB21
B_spinosissima_namaensis_RM1481
B_spinosissima_argentifolia_RM27
B spinosissima EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B barbata RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022

GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG GATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCG

AGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAACCATTCGGTCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT

B_insignis_MK2133
B_seminivea_RM1140
B coddii IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193
B densifolia NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B_cirsiifolia_CK9
B cirsiifolia EU527207
B_robusta_LM080701_1
B_maritima_SR462
B_radula_NN1
B decurrens RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a B r
B_rhapontica_ssp_rhapontica_POK1
B_rhapontica_EU527207
B_carduoides_NB1924_B_carduoides
B setifera_NN20
B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B echinacea EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213

AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCACCCGAAGSCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT

B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B cardopatifolia C R303
B_cardopatifolia_CSW13
B_glabrata_X48
B rigida LM170601 1
B_annectens_644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B_pinnatifida_SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B cf carlinopsis LM300806 1
B_fruticosa_RM1301
B_fruticosa_EU527199
B canescens CAM2117
B_canescens_LM290806_32
B_canescens_EU527201
B cuneata LM160601 6
B_cuneata_AY504711
Cul_bisulca_EU527215_Cul_bisulca
B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B cruciata AY504712
B_sp_LM021106 5
B_pauciflora_NP65
Cul_rigida AY504714
Cul_patula_AY504714

AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCAAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCAAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT

B_herbacea_LM101001_2
B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21
B_spinosissima_namaensis_RM1481
B_spinosissima_argentifolia_RM27
B_spinosissima_EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022
B_insignis_MK2133
B_seminivea_RM1140
B_coddii_IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri EU527193
B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B cirsiifolia CK9
B_cirsiifolia_EU527207

AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCTCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGRCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCTGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT AGTTTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGCGT

CACGCATCGCGTCGCCCCCCCACAACTCCTCCCTAT--TAGGTACGTGTTGTGTT-GGGG CACGCATCGCGTCGCCCCCCCACAACTCCTCCCTAT--TAGGTACGTGTTGTGTC-GGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCTCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCCT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCC?TACCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCRTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCTTT-CTCAT--TGGGAAAGTGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTT-CCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAA--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCC-TTCCCAT--TGGGAAAGCGTG-TTTTGGGGG

B_robusta_LM080701_1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B draco CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM02040637a_B_r
B_rhapontica_ssp_rhapontica_POK1
B_rhapontica_EU527207
B_carduoides_NB1924_B_carduoides B_setifera_NN20
B_setifera_EU527208
B echinacea 169
B_echinacea_ssp_polyacantha_179
B_echinacea_EU527204
B_onobromoides_EU527212
B annectens EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B_pinnatifida_SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3

CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TWTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAACGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGCG-TGTTGGGGG CACGCATATCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG---TTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGCG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGCG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGCG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGCG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGTG-TGTTGGGGG CACGCATCGTGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-CCACCCCTTCCCAT--TTGGAAAGAGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-CCACCCCTTCCCAT--TTGGAAAGAGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAATCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTTTCCCAT--TGGGAAAGCATG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTTTCCCAT--TGGGAAAGCATG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCTTTTCCCAT--TGGGAAAGCATG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTTTCCCAT--TGGGAAAGCATG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTTTCCCAT--TGGGAAATCATG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTTTCCCAT--TGGGAAAGCACG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCTTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-GCCCCTTCCCATATTGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCACCCCCTC-C-GCCCCTTCCCAT--TGGGAAAGTGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-GCCCCTTTCCATATTGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-GCCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-GCCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-TCCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-GCCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--CGGGAAACGGCG-TGTTGGGGG

Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B_fruticosa_RM1301
B fruticosa EU527199
B_canescens_CAM2117
B_canescens_LM290806_32
B_canescens_EU527201
B_cuneata_LM160601_6
B_cuneata_AY504711
Cul_bisulca_EU527215_Cul_bisulca B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B_herbacea_LM101001_2
B herbacea RM1176
B_armata_RM1500
D_spinosa_AY504717
D carnosa_EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21
B_spinosissima namaensis RM1481
B_spinosissima_argentifolia_RM27
B_spinosissima_EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979

CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--CGGGAAACGGCG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--CGGGAAACGGCG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-AACCCTTCCCAT--TGGGAAAGAGTTTTGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCRTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCTTC-C-ACCCCTTCCCAT--TCGGAAATGGTG-TGTTTGGG-CACGCATCGCGTCGCCCCTTC-C-ACCCCTTCCCAT--TCGGAAATGGTG-TGTTTGGG-CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAC--TGGGAAAGCGTG-TGTTAGGGG CACGCATCGCGTCGCCCCCTC-C-TCCCCTTCCCAT--TGGGAAATGGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-TCCCCTTCCCAT--TGGGAA-TGGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TKGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TTGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--CGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-AGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCTCAT--TGGGAAAGCGTG-TTTTGGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-AGTTAGGGG CACGCATCGCGTCGCCCCCTC-C-ACCCCTTCCCAT--TGGGAAAGCGTG-TGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-AACCCTTCCCAT--TGGGAAAGAGTTCTGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-AACCCTTCCCAT--TGGGAAAGAGTTCTGTTGGGGG CACGCATCGCGTCGCCCCCTC-C-AACCCTTCCCAT--TGGGAAAGAGTTCTGTTGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCATT--GGGAAAGCTTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCATT--GGGAAAGCTTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCMTT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCATT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCCTT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCATT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCCTT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCCTT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTC-C-AAGCCTTCCCATT-TGGGAAAGTGTTGTGACGGGGG CACGCATCGTGTCGCCCCCTT-C-AAGCCTTCCCATT--GGGAAAGCTTTGTTACGGGGG CACGCATCGTGTCGCCCCCTT-C-AAGCCTTCCCATT--GGGAAAGCTTTGTTACGGGGG

Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B spekeana NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022
B_insignis_MK2133
B_seminivea_RM1140
B_coddii_IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193
B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_Cirsiifolia_RM973
B cirsiifolia CK9
B_cirsiifolia_EU527207
B_robusta_LM080701_1
B maritima SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B montana SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a_B_r
B_rhapontica_ssp_rhapontica_POK1
B_rhapontica_EU527207
B carduoides NB1024 B carduoid CGGAAATTGGTTTTCCGTGCTAGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTTCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG

B_setifera_NN20
B_setifera_EU527208
B echinacea 169
B_echinacea_ssp_polyacantha_179
B_echinacea_EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644
B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B_pinnatifida_SR552
B_eriobasis EU527214
B_eriobasis_EU527210
B_pinnatifida_pinnatifida_NN2
B pinnatifida EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus cernua RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B fruticosa RM1301
B_fruticosa_EU527199
B_canescens_CAM2117
B_canescens_LM290806_32
B_canescens_EU527201
B_cuneata_LM160601_6
B_cuneata_AY504711
Cul_bisulca_EU527215_Cul_bisulca B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1

CGGAAATTGGTTTTCCGTGCTTGCGCCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTTCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTTCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTTCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC -TTCGGTG CGGAAATTGGTTTTCCGTGCTAGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACTGTGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCTGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATTTGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCTGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCAAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCTGTGCTTACGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTACGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTCGCGCGGTTATCCGAAATAAGAGTCCCCCTTCGGTG CGGAAATTGGTTTCCCGTGCTTGTCGCGCGGTTATCCGAAATAAGAGTCCCCCTTCGGTG CGGAAATTGGTTTCCCGTGCTTGTCGCGCGGTTATCCGAAATAAGAGTCCCCCTTCGGTG CGGAAATTGGTATCCCGTGCCTGCGGTGCGGTTTTCTGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTTCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTTCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTTCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTTTGGCGCGGTTATCCGAAATAGGAGTCCCC-TTTGGTG CGGAAATTGGTTTCCCGTGCTTTTGGCGCGGTTATCCGAAATAGGAGTCCCC-TTTGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC -TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGTGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG

B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B_herbacea_LM101001_2
B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D carnosa EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21
B spinosissima namaensis RM1481
B_spinosissima_argentifolia_RM27
B_spinosissima_EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B_barbata_RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor sp EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B bipinnatifida EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B carlinoides MK2022
B_insignis_MK2133
B_seminivea_RM1140
B_coddii_IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B angolensis EU527205
B_zeyheri_ssp_rehmannii_var_rehm

CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAAGAGTCCCC-TTCAGCG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTTTCCCGTGCTTGCAGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGCG CGGAAATTGGTTTCCCGTGCTTGCGGCGCGGTTATCCGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTACGGTGCGGTTTTCTGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTACGGTGCGGTTTTCTGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTACGGTGCGGTTTTCTGAAATAGGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCGGCGGTGCGGTTGTCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGAGGTGCGGTTGTCTGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGCCTGAAATAAGAGTCCCC-TTCGGTG CGGAAACTGGTCTCCCGTGCCTGCGGTGCGGTTGTCTGAAATATGAGTCCCC-TTCGGTG CGGAAATTGGTCTCCCGTGCCTGCGGTGCGGTTGTCTGAAATATGAGTCCCC-TTCGGTG

GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGGTGTCGTGC----TAAGCT GACGCACGGCTAGTGGTGGTT-- - GACAAGACCCTCGTCTGGTGTCGTGC-- - TAAGCT GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCCCCTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT-- - GATAAGACCCTCGTCTGGTGTCGTGCGTTGCGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATGAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GATGCACGGCTAGTGGTGGTT-- - GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT-- - GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC

B_zeyheri_EU527193
B_densifolia_NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B cirsiifolia RM973
B_cirsiifolia_CK9
B_cirsiifolia_EU527207
B robusta_LM080701 1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871
B_montana_SR464
B_purpurea_JFsn
B_pannosa_EU527209
B_ferox_var_glandulosa_1340
B_cf_rhapontica_LM020406_37a_B_r
B_rhapontica_ssp_rhapontica_POK1
B rhapontica EU527207
B_carduoides_NB1924_B_carduoides
B_setifera_NN20
B_setifera_EU527208
B_echinacea_169
B_echinacea_ssp_polyacantha_179
B echinacea EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B_cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B_rigida_LM170601_1
B_annectens_644

GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGWGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GAWAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTACGTTGTGAGCC GACGCACGGCTAGTGGTGGTT-- - GATAAGACCCTCGTCTGGTGTCGTACGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGAGCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAACC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTAAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAACC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTATTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTTAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTTAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTTAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTTAGGTGTCGTGCGTT??????? GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTTAGCC GACGCACGACTAGTGGTGGTT---GATAATACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCT GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGACTAGTGGTGGTT---GTTAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GTTAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCCTTGTGAGCC GACGCACGACTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCT

B_rigida_EU527195
B_pinnatifida_stobaeoides_NN15
B pinnatifida SR552
B_eriobasis_EU527214
B_eriobasis_EU527210
B pinnatifida pinnatifida NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3
Cus cernua NB1896
Cus_cernua_RM2600
B_francisci_T707
B cf carlinopsis LM300806 1
B_fruticosa_RM1301
B_fruticosa_EU527199
B_canescens_CAM2117
B canescens_LM290806_32
B_canescens_EU527201
B cuneata LM160601 6
B cuneata AY504711
Cul_bisulca_EU527215_Cul_bisulca
B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B angusta NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B sp LM021106 5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul_patula AY504714
B_herbacea_LM101001_2
B_herbacea_RM1176
B armata RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B_schinzii_CM2793
B_spinosissima_spinosissima_SB21

GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTAGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTTTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTTGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCCTCTGGTGTCCTGCGTCGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTCGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTCGTGAGCC GACACACGGCTAGTGGTGGTT--AACAAAGACCCTCGTCAGGTGTCGTGCGCTTTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGTTGTCGTGCGTTGTGAGCT GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGTTGTCGTGCGTTGTGAGCT GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTTTATAATAAGACCCTCGTCCGATGTCGCACGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCCTGCGTTGTGACCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCTTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT-- - GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCTTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT---GATAAGACCCTCGTCTGGTGTCGTGCGTTGTGAGCC GACGCACGGCTAGTGGTGGTT--GACAAAGACCCTCGTCTGGTGTCGTGCGTTCTGAGCC GAYGCACGGCTAGTGGTGGTT--GACAAAGACCCTCGTCTGGTGTCGTGCGTTCTGAGCC GACGCACGGCTAGTGGTGGTT--GACAAAGACCCTCGTCTGGTGTCGTGCGTTCTGAGCT GACGCACGGCTAGTGGTGGTT-- - GACAAGACCCTCGTCTGGTGTCGTGCGTTCTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGGTGTCGTGCGTTTTGTGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTTGTCGTGCGTTCTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTCGTCGTGCGTTCTGAGCC

B_spinosissima_namaensis_RM1481 GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTTGTCGTGCGTTCTGAGCC
B spinosissima_EU527200
B_spinosissima_AY504710
B_chamaepeuce_CM4144
B barbata RM1077
B_angustifolia_K979
Hir_echinus_DQ444719
Gor_sp_EF556363
B_spinosa_MK1457
B_bipinnatifida_var_pinnatida_SR
B_bipinnatifida_EU527198
B_spekeana_NB1901
B_speciosa_LM081103_1
B_carlinoides_MK2022
B_insignis_MK2133
B_seminivea_RM1140
B_coddii_IVS
B_subulata_EU527203
B_carlinopsis_AY504709
B_angolensis_EU527205
B_zeyheri_ssp_rehmannii_var_rehm
B_zeyheri_EU527193
B densifolia NP66
B_coddii_EU527194
B_onopordifolia_LM021001_5M
B_acanthopoda_NBsn
B_cirsiifolia_RM973
B_cirsiifolia_CK9
B_cirsiifolia_EU527207
B_robusta_LM080701_1
B_maritima_SR462
B_radula_NN1
B_decurrens_RM1189
B_discolor_NN9
B_draco_CK20
B_erysithales_K871

B_spinosissima_argentifolia_RM27 GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTTGTCGTGCGTTCTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTTGTCGTGCGTTCTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTTGTCGTGCGTTTTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGTTGTCGTGCGTTCTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCCCGTCTGGTGTCGTGCTTTCTGAGCC GACGCACGGCTAGTGGTGGTT---GACAAGACCCTCGTCTGGTGTCGTGCGTTCTGAGCC

GTATGGGAAGTACTCAAGAAACGACCCCAACGCATTGTCTTCTGAC-GAT-GCTTCG ATTTGGGAAGTACTCAAGAAAAGACCCCAACGCATTGTCTTGYGAT-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCATCGTCTTGTGAC-GAT-GCTTCG CCAAGGGAAGC-CTCA-TCATAGACCCCAACGCATCGTCTTGTGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCATCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCTAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAAC?CGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTCG-GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCTAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-TCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGTGAC-GAT-GCTTCG GCAAGGGAAGC - CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG

B_montana_SR464
B_purpurea_JFsn
B pannosa EU527209
B_ferox_var_glandulosa_1340

B_rhapontica_EU527207
B_carduoides_NB1924_B_carduoides
B_setifera_NN20
B_setifera_EU527208
B_echinacea_169
B echinacea_ssp_polyacantha_179
B echinacea EU527204
B_onobromoides_EU527212
B_annectens_EU527211
B cardopatifolia_EU527213
B_carlinifolia_LM010204_1
B_heterophylla_var_radiata_NN8
B_cardopatifolia_C_R303
B_cardopatifolia_CSW13
B_glabrata_X48
B rigida LM170601 1
B_annectens_644
B_rigida_EU527195
B pinnatifida stobaeoides NN15
B_pinnatifida_SR552
B_eriobasis_EU527214
B eriobasis EU527210
B_pinnatifida_pinnatifida_NN2
B_pinnatifida_EU527196
Cus_cernua_LM210706_3
Cus_cernua_NB1896
Cus_cernua_RM2600
B_francisci_T707
B_cf_carlinopsis_LM300806_1
B_fruticosa_RM1301
B fruticosa EU527199
B canescens CAM2117
_r GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGTGAC-GAC-GCTTCG

GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGTGAC-GAC-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGCGTCGTCTCGCGAT-GAT-GCTTCG GCAAGGGAAGC - CTCG - TCATAGACCCCAACGTGTCGTCTCGTGAC-GAC-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAAGGTGTCGTCTTGTGAT-GAC-GCTTCG GCTAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAC-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAC-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAC-GCTTCG ???????????-??-GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAC-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAGGC-CTCG-TAATAGACCCTAACGTGTCGTCTCGCGGC-GAC-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTAACGTGTCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTA???TGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TAATAGACCCTAACGTGTCGTCTCTCGAC-GAT-GCTTCG GCAAGGGAAGC - CTCG-TAATAGACCCTAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGAAAGG-CTCG-TCA-AGACCCCAACGTGTCGTCTCGCGAC-GAT-ACTTCG GCAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTTGCGAC-GAT-ACTTCG GCAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTTGTGAC-GAT-ACTTCG GTAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTCGTTAC-GAT-ACTTCG GCAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTCGCGAC-GAT-ACTTCG GCAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTCGCGAC-GAT-ACTTCG GCAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTCGCGAC-GAT-ACTTCG GCAAGGAAAGG-CTCG-TCATAGACCCTAACGTGTCGTCTCGCGAC-GAT-ACTTCG CCAAGGGAAAC-CTCT-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GGTTCC GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTCGTCTC?????-???-?????? GCAAGGGAAGC-CTCA-TCATAGACCCCAAC?CGTTGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC - CTCA-TCATAGACCCCAACGCGTTGTCTCCCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTTGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC - CTCA-TCATAGACCCCAACGCGTTGTCTCAAGAC-GAT-GCTTCG

B_canescens_LM290806_32
B_canescens_EU527201
B cuneata LM160601 6
B_cuneata_AY504711
Cul_bisulca_EU527215 Cul bisulca
B_spinosa_K861
B_spinosa_EU527202
B_coriacea_LM230204_1
B_angusta_POK1090
B_angusta_NHsn
B_cruciata_ssp_integra_MK2637
B_cruciata_AY504712
B_sp_LM021106_5
B_pauciflora_NP65
Cul_rigida_AY504714
Cul_patula_AY504714
B_herbacea_LM101001_2
B_herbacea_RM1176
B_armata_RM1500
D_spinosa_AY504717
D_carnosa_EU527222
B schinzii_CM2793
B_spinosissima_spinosissima_SB21
B_spinosissima_namaensis_RM1481
B spinosissima argentifolia RM27
B_spinosissima_EU527200
B spinosissima AY504710
B_chamaepeuce_CM4144
B_barbata RM1077
B_angustifolia_K979

GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTTGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTTGTCTCGCGAC-GAT-GCTTCG GTAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTTGCGAT-GAT-GCTTCG GTAAGGGAAGC-CTCG-TCATAGACCCCAACGTGTCGTCTTGCGAT-GAT-GCTTCG GCAAGGGAAGC - CTCA-TCATAGACCCCAATGCATCGTCTTGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCT-TCATAGACCCCAACGCGTCGTCTCAAGAC-GAC-GCTTCG GCAAGGGAAGC-CTCTATCATAGACCCCAACGCGTCGTCTCACGACTGACTGCTT--CCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCTAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC - CTCA-TCATAGACCCTAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGTGTCGTCTCGTGAC-GAT-GCTTCG GCAAGGGAAGC - CTCG -TCATAGACCCCAACGCGTCGTTTCGCGAC-GAT-GCTTCG GCAAGGGAAGC - CTCA-TCATAGACCCCAACGCGTCGTCTCGCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCTACGCGTCGTCTCACTAC-TAT-CCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAT-GCTTCG GCAAGGGAAGC-CTCA-TCATAGACCCCAACGTGTCGTCTCTCGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCTTGAC-GGT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCCTGAC-A-T-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCRTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC - CTCA-TCATAGACCCTGACGCGTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACG??TCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAAYGCRTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCTTGAC-GAT-GCTTCG GCAAGGGAATC-CTCG-TCATAGACCCCAACGCGTCGTCTCTTGAC-GAT-GCTTCG

psbA-trnH alignment:

Hirpicium echinus RM861 Gorteria_diffusa
Didelta_spinosa_LM160704_4
Berkheya_armata_RM1500
Berkheya_armata_RM1206
Berkheya_barbata_RM1077
Berkheya_carduoides_NB1924
Berkheya_carlinifolía_LM_010204
Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 Berkheya_canescens_LM290806_32_e Berkheya_cruciata_ssp_integra_MK Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9 Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176 Berkheya_heterophylla_var_hetero Berkheya_heterophylla_var_radiat Berkheya_codii_IVS
Berkheya_insignis_MK2133 Berkheya_multijuga_LM030103_35 Berkheya_rigida_LM170601_1 Berkheya montana SR464 etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001 2

Berkheya_pinnatifida_ssp_ingrata GAAGCTCCATCTACAAAAGGATAAGACTTTGGTCCGATTGTATAGGAGTTTTTGAACTAA Berkheya_pinnatifida_ssp_pinnati GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA Berkheya_buphthalmoides_C_R241_e GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA

GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATACGAGTTTTTGAACTAA ???????CATCTACAAATGGATAAGACTTTGGTCTGATTGTATACGAGTTTTTGAACTAA ????????ATCTACAA-TGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA ??????????????????????????????????TCTGATTGTATA?GAGTTTTTGAACTAA ??? GAAGCTCCATCTACAAATGGATAAGACTTTGGTCCGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCCTCTTCAAATGGATAAGACTTTGGTCCGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA ??????????????????????????????????????TGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA ???GCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GGGGCGCTCCTCACAAA-GGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA ??? GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA ?????????????????????????????????????GATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTC?GATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCAT?TACAAATGGATAAGACTTTGGTTTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTTTGATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAAATAA

Berkheya_sp_NN11 Berkheya acanthopoda NBsn Cullumia_setosa_var_setosa_RM107 Cuspidia_cernua_NB1896

Hirpicium_echinus_RM861 Gorteria_diffusa Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9
Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176 Berkheya_heterophylla_var_hetero Berkheya_heterophylla_var_radiat Berkheya_codii_IVS
Berkheya_insignis_MK2133
Berkheya_multijuga_LM030103_35 Berkheya_rigida_LM170601_1 Berkheya_montana_SR464_etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc

Berkheya_canescens_LM290806_32_e AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT Berkheya_cruciata_ssp_integra_MK AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT 103_35 ? 2 ? 2 ? 2 ? 2 ? Berkheya_pinnatifida_ssp_ingrata AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT Berkheya_pinnatifida_ssp_pinnati AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT Berkheya_buphthalmoides_C_R241_e AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT
??TGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAAACTTTGGTTTGATTGTATAGGAGTTTTTTGAACTAA GAAGCTCCATCTACAAATGGATAAGACTTTGGTCTGATTGTATAGGAGTTTTTGAACTAA

AAAAGGAGCAATAGCTTCCCTCTTGTTT-- - - TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCATCTTGTTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTGATA-----AAACAAGAGGGCATTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTGATA-----AAACAAGAGGGCGTTATTGCTCCTTTT AAAAGGA?CAATAGCTTCCCTCTTGATA-----AAACAAGAGGGCGTTATTGCTCCTTTT ?? AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT---- -TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT---- TATCAAGAGGGCGTTTTTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTGATA---- AAACAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT---- -TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT----TATCAAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT ??CCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAAAAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTGTTT---- -TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT

Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 Berkheya_rhapontica_ssp_aristosa Berkheya_acanthopoda_NBsn_etc Cullumia setosa var setosa RM107 Cuspidia_cernua_NB1896

Hirpicium echinus RM861 Gorteria_diffusa Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 Berkheya_canescens_LM290806_32_e Berkheya_cruciata_ssp_integra_MK Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9
Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301
Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176
Berkheya_heterophylla_var_hetero Berkheya_heterophylla_var_radiat Berkheya_codii_IVS Berkheya_insignis_MK2133 Berkheya multijuga LM030103 35 Berkheya_pinnatifida_ssp_ingrata Berkheya_pinnatifida_ssp_pinnati Berkheya_buphthalmoides_C_R241_e Berkheya_rigida_LM170601_1 Berkheya_montana_SR464_etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793

AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTTTCCCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT AAAAGGAGCAATAGCTTCCCTCTTATTT-----TATCAAGAGGGCGTTATTGCTCCTTTT

TTTTATTTAGT-----ACTCTTTTCCTTACATAGTTTCTTTAAAAATAAGAAGGGCTTTT TTTTATTTAGT-----ACTATTTGACTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAGT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAGT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAGT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT ?????????????????ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT---- ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ATTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT---- ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAGT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT---- ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT---- ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----AC??TTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAGT---- ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT

Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11
Berkheya_rhapontica_ssp_aristosa Berkheya_acanthopoda_NBsn_etc
Cullumia_setosa_var_setosa_RM107 Cuspidia_cernua_NB1896

Hirpicium_echinus_RM861 Gorteria_diffusa
Didelta_spinosa_LM160704_4
Berkheya_armata_RM1500
Berkheya_armata_RM1206
Berkheya_barbata_RM1077
Berkheya_carduoides_NB1924
Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973
Berkheya_canescens_LM290806_32_e Berkheya_cruciata_ssp_integra_MK Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9
Berkheya decurrens SR473 etc Berkheya_fruticosa_RM1301
Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176
Berkheya_heterophylla_var_hetero Berkheya_heterophylla_var_radiat Berkheya_codii_IVS
Berkheya_insignis_MK2133 Berkheya_multijuga_LM030103_35 Berkheya_pinnatifida_ssp_ingrata Berkheya_pinnatifida_ssp_pinnati Berkheya_buphthalmoides_C_R241_e Berkheya rigida LM170601 1 Berkheya_montana_SR464_etc

TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTAAAT-----ACTATTTGCTTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT TTTTATTTAAT-----ACTATTTGCCTTACATAGTTTCTTTAAAAATAACAAGGGCTTTT

TATAGTTTGGTTCAATTAGCGTGTTTTATCTTTGTATTAATTGATATT------------
 TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATTTTCTCT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT---TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-----TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATTTTCTCT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-.... TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT-
TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT
 TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT-------------TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT--------------TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT----------1. TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-----TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-- $-\ldots$ TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT---------1. TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-.... TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-----TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT------------TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT------------TATAGTTTGGTTCGATTAGCGTGTTTTCCCTTTGTATTAATTTATATTATAATT-TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-----TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT------------TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT---------------TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT-------------
 TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT-
TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT

Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 Berkheya_rhapontica_ssp_aristosa Berkheya_acanthopoda_NBsn_etc Cullumia_setosa_var_setosa_RM107 Cuspidia_cernua_NB1896

Hirpicium_echinus_RM861 Gorteria_diffusa Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 Berkheya_canescens_LM290806_32_e Berkheya_cruciata_ssp_integra_MK Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9 Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176 Berkheya_heterophylla_var_hetero Berkheya_heterophylla_var_radiat Berkheya_codii_IVS Berkheya_insignis_MK2133 Berkheya_multijuga_LM030103_35 Berkheya_pinnatifida_ssp_ingrata Berkheya_pinnatifida_ssp_pinnati Berkheya_buphthalmoides_C_R241_e

TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATTTATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT \qquad TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT
 TATAGTITGGITGGATTAGGGTGITTICTCTTTGTATTAATTTATATIATAATT TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATTATAATT-----TATAGTTTGGTTCGATTAGCGTGTTTTCTCTTTGTATTAATTTATATT------------
--------------------- CTAATTAGAATATTATA-GGTTTATATATCCTTTT--
-------------------------TAGAATATTATAAGGTTTATATATCCTTTT---
TTGTATTAATTTATATTATAATCATAT---------ATA-GGTTTATATATTCTTTTCCG ----------------ATA-T-------------ATA-GGTTTATATATCCTTTTCCG ----------------ATA-T-------------ATA-GGTTTATATATCCTTTTCCG TTGTATTAATTTATATTATAATTATAT---------ATA-GGTTTATATATCCTTTTCCG ----------------ATAATC------------ATA GGTTTATATATCCTTTT-------------------ATAATC------------ATA GGCTTATATATCCTTTT-------------------ATAATC------------ATA GGCTTATATATCCTTTT--
-----------------ATAATC-------------ATA GGTTTATATATCCTTTT---
-----------------ATAATC------------ATA GGCTTATATATCCTTTT-------------------ATAATC-------------AGA GGCTTATATATCCTTTT--
----------------ATAATC------------ATA GGCTTATATATCCTTTT---
---------------ATAATC------------ATA GGTTTATATATCCTTTT---
----------------ATAATC------------ATA-GGTTTATATATCCTTTT---
----------------ATAATC------------ATA GGCTTATATATCCTTTT---
---------------ATAATC------------ATATATATATATCCTTTT--
----------------ATA-T-------------ATA-GGTTTATATATCCTTTTCCG
----------------ATAATC------------ATATATATATATCCTTTT---
-----------------ATAATC------------ATA GGCTTATATATCCTTTT---
---------------ATAATC------------ATA GGTTTATATATCCTTTT---
----------------ATAATC-------------ATA-GGTTTATATATCCTTTT---
---------------ATAATC------------ATA GGTTTATATATCCTTTT--
-----------------ATAATC------------AGA-GGCTTATATATCCTTTT-
--------------- - ATAATC---------------ATATATATATATCTTTTT-
ATAATC----------- - - ATA GGCTTATATATCCTTTT- -

Berkheya_montana_SR464_etc Berkheya rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 Berkheya_rhapontica_ssp_aristosa Berkheya_acanthopoda_NBsn_etc Cullumia_setosa_var_setosa_RM107 Cuspidia_cernua_NB1896

Hirpicium_echinus_RM861 Gorteria diffusa Didelta_spinosa_LM160704_4 Berkheya armata RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 Berkheya_canescens_LM290806_32_e Berkheya_cruciata_ssp_integra_MK Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9 Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176 Berkheya_heterophylla_var_hetero Berkheya_heterophylla_var_radiat Berkheya_codii_IVS
Berkheya_insignis_MK2133
Berkheya_multijuga_LM030103_35 Berkheya_pinnatifida_ssp_ingrata

Berkheya_rigida_LM170601_1 ----------------ATAATC-------------ATA

----------------ATAATC------------ATA GGTTTATATATCCTTTT--
--------------ATA-T-----------ATA-GGTTTATATATTCTTTTCCG
----------------ATAATC------------ATA GGTTTATATATCCTTTT---
-----------------ATAATC------------ATA GGTTTATATATCCTTTT- -
----------------ATAATC-----------ATATATTATATATCCTTTT-
----------------ATAATC------------ATATATTATATATCCTTTT--
----------------ATAATC------------ATA GGTTTATATATCCTTTT-
-----------------ATAATC------------ATA GGTTTATATATCCTTTT--
----------------ATAATC------------ATA-GGTTTATATATCCTTTT--
------------------ATAATC-------------ATATAGTTATATATCCTTTT---
----------------ATAATC------------ATA-GGCTTATATATCCTTTT--
---------------CCCAATCTTTTATGAAGTTTTATTTATAATTCAATTTCAATCTA ----------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTCAATCTA ATTTAAATATCCTTTTCCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTCAATCTA ATTTATATATCCTTTTCCCAATCTTTTATGAAATTTTATTTCCAATTCAATTTCAATCTA ATTTATATATCCTTTTCCCAATCTTTTATGAAATTTTATTTCCAATTCAATTTCAATCTA ATTTAAATATCCTTTTCCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTCAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATTTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA
----------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA -----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ATTTATATATCCTTTTCCCAATCTTTTATGAAATTTTATTTCCAATTCAATTTCAATCTA ---------------CCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATTTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA - CCCAATTTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA

Berkheya_pinnatifida_ssp_pinnati --------------CCCAATTTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA Berkheya_buphthalmoides_C_R241_e ----------------CCCAATTTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA Berkheya_rigida_LM170601_1 Berkheya_montana_SR464_etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 ---------------CCCAATTTTTTATGAAGTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ATTTAAATATCCTTTTCCCAATCTTTTATGAAGTTTTATTTCCAATTCAATTTCAATCTA ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA Berkheya_acanthopoda_NBsn_etc Cullumia_setosa_var_setosa_RM107 ---------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA ----------------CCCAATCTTTTATGAACTTTTATTTCCAATTCAATTTGAATCTA Cuspidia_cernua_NB1896

Hirpicium_echinus_RM861 Gorteria_diffusa Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya cf carlinopsis LM300806 Berkheya_cirsiifolia_RM973

AAATAGATTGAAATGATAA------------------TTTTGCTTATTTATTATTATTAC AAATAGATAAAAATGATAA------------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTAGAA------------------ TTTTCCTTAT----- -- TTATTAC AAATAGATAAAAATTATAA-----------------TTTTGCTTAT----- - TTATTAC AAATAGATAAAAATTATAA-------------------TTTTGCTTAT------AAATAGATAAAAATTAGAA------------------ -- TTTTCCTTAT---- - TTATTAC AAATAGATAAAAATTCTAA-----------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTCTAA-----------------TTTGCTTAT------TTATTAC

 Berkheya_canescens_LM290806_32_e AAATAGATAAAAATTCTAA-------------------TTTTGCTTAT------TTATTAC Berkheya cruciata ssp integra MK AAATAGATAAAAATTAGAA-------------------TTTTGCTTAT------TTATTAC Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9 Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 AAATAGATAAAAATTATAA----------------- TTTTGCTTAT----- - TTATTAC AAATAGATAAAAATTCTAA-----------------TTTTGCTTAT-----AAATAGATAAAAATTCTAA------------------TTTTGCTTAT------AAATAGATAAAAATTATAA-----------------TTTTGCTTAT------ TTATTAC Berkheya_bipinnatifida_ssp_bipin AAATAGATAAAAATTCTAA-------------------TTTTGCTTTT------TTATTAC Berkheya_herbacea_RM1176 AAATAGATAAAAATTATAA------------------TTTTGCTTAT------TTATTAC Berkheya_heterophylla_var_hetero AAATAGATAAAAATTCTAA-------------------TTTTGCTTAT------TTATTAC Berkheya_heterophylla_var_radiat AAATAGATAAAAATTATAA-------------------- TTTTGCTTAT-----TTATTAC Berkheya_codii_IVS AAATAGATAAAAATTCTAA----------------ATTTTGCTTAT-------TTATTAC Berkheya_insignis_MK2133 AAATAGATAAAAATTCTAA---------------- - TTTTGCTTAT - TTATTAC

Berkheya_multijuga_LM030103_35 AAATAGATAAAAATTATAA------------------- TTTTGCTTAT-----TTATTAC Berkheya_pinnatifida_ssp_ingrata AAATAGATAAAAATTCTAA-------------------TTTTGCTTAT------TTATTAC Berkheya_pinnatifida_ssp_pinnati AAATAGATAAAAATTATAA-------------------TTTTGCTTAT------TTATTAC Berkheya_buphthalmoides_C_R241_e AAATAGATAAAAATTCTAA------------------ --TTTTGCTTAT-----TTATTAC Berkheya_rigida_LM170601_1 Berkheya_montana_SR464_etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 AAATAGATAAAAATTATAA-----------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTCTAA-----------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTATAA-----------------TTTTGCTTAT----- - TTATTAC AAATAGATAAAAATTATAAAATAGATAAAAATTATAATTTTCCTTAT------TTATTAC AAATAGATAAAAATTCTAA-----------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTATAA------------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTATAA-----------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTCTAA-----------------TTTTGCTTAT------TTATTAC AAATAGATAAAAATTTTAA----------------TTTGATTAT------TTATTAC Berkheya_rhapontica_ssp_aristosa AAATAGATAAAAATTCTAA-------------------TTTTGCTTAT-----TTATTAC Berkheya_acanthopoda_NBsn_etc AAATAGATAAAAATTCTAA------------------TTTTGCTTAT------TTATTAC Cullumia_setosa_var_setosa_RM107 AAATAGATAAAAATTATAA-------------------TTTTGCTTAT------TTATTAC Cuspidia_cernua_NB1896 AAATAGATAAAAATTCTAA-----------------TTTTGCTTAT----- - TTATTAC

Hirpicium_echinus_RM861 Gorteria_diffusa
Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806

TTTAATTTCAGAAATAAGAAAGAAAAA-TA-G---AATATTTTTT----C-ATGTTAATG TTTTATTTCAGAAATAAGAAAGAAAAA-TATGATCTTTTTTTTTTTTT-- C-TTGTTAATG TTTGATTTCAGAAAAAAGAAAGA-----TATGCTCTTTTTTTTTTTT--C-?GGT?AAGG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTT-- C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTTT-- C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTTT-C?????????? TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGC--TTTT----------C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAATATGCTCTTTTTTT--------C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTTTT-CCAGGTTAATG Berkheya_canescens_LM290806_32_e TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTT-------C-ATGTTAATG Berkheya_cruciata_ssp_integra_MK TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTT-------C-ATGTTAATG Berkheya_cuneata_LM160601_6 TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTT-------C-ATGTTAATG Berkheya_discolor_NN9 Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176 TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTTT----C-AGGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTT-----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTT-------C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTT----C-ATGTTAATA Berkheya heterophylla var hetero TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTT-------C-ATGTTAATG Berkheya_heterophylla_var_radiat TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGC--TTTT-----------C-ATGTTAATG

Berkheya_codii_IVS
Berkheya_insignis_MK2133 Berkheya_multijuga_LM030103_35 Berkheya_rigida_LM170601_1 Berkheya_montana_SR464_etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 Berkheya_rhapontica_ssp_aristosa Berkheya_acanthopoda_NBsn_etc Cullumia_setosa_var_setosa_RM107 Cuspidia_cernua_NB1896

Hirpicium_echinus_RM861 Gorteria_diffusa Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya armata RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 Berkheya_canescens_LM290806_32_e Berkheya_cruciata_ssp_integra_MK Berkheya_cuneata_LM160601_6 Berkheya_discolor_NN9 Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 Berkheya_bipinnatifida_ssp_bipin Berkheya_herbacea_RM1176

TMTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTT--- - - ATGTTAAT Berkheya_pinnatifida_ssp_ingrata TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGC--TTTT----------C-ATGTTAATG Berkheya_pinnatifida_ssp_pinnati TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGC--TTTT----------C-ATGTTAATG Berkheya_buphthalmoides_C_R241_e TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGC--TTTT----------C-ATGTTAATG

TTTGATTTCAAAAAAAAGAAAGAAAAAA-AGGCTCCTTTTTTTTTC---CT-GGTTAATC TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTT---C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGC--TTTT----------C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTTTTC-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTTTTC-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-AATACTCTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTTTTT-C-ATGTTAATG TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-AATGCTCTTTTTTTTTTT----C-ATGTTAATA TTTGATTTCAGAAAAAAGAAAGAAAAA-TATGCTCTTTTTTTT------C-ATGTTAATG

GAAAAATATAGTA--------------ATACTAGATAATACTAGATAATAGGAGAGGGGC GAAAAATATAGTATTACAAATATAGTAATACTAGATAATACTAGATAATAGTAAAGGGGC GAAAAATAT?G?A-----------ATACTAGATAATACTAGATACTAGTAAAGGGGC GAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC GAAAAATATA?TA--------------ATACTAAATAATACTAAATACTA?TAGAGGGGG ?????????????------------- - ????????????????????????????????? CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-----------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAAAGGGGC CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-----------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC GAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC

Berkheya_heterophylla_var_hetero CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_heterophylla_var_radiat CAAAAATATAGTA---------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_codii_IVS
Berkheya_insignis_MK2133 CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_multijuga_LM030103_35 CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_pinnatifida_ssp_ingrata CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_pinnatifida_ssp_pinnati CAAAAATATAGTA--------------ATACTAGATAATACTAGATA???????????? Berkheya_buphthalmoides_C_R241_e CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_rigida_LM170601_1 CAAAAATATAGTA---------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_montana_SR464_etc Berkheya_rosulata_LM030103_24 Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 CAAAAATAT CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATAT????-------------????????????????????????????????? GAAAAATAT?GTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATA?TA--------------ATA?TAGATAATA?TA?ATA????????????? CAAAAATATAGTA-----------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA------------ATACTAGATAATACTAGATACTAGTAGAGGGGC CAAAAATATAGTA-------------ATCCTA?ATAATACTA?ATTCTAGAAAAGGGGC Berkheya_rhapontica_ssp_aristosa CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Berkheya_acanthopoda_NBsn_etc CAAAAATATAGTA-------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Cullumia_setosa_var_setosa_RM107 CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC Cuspidia_cernua_NB1896 CAAAAATATAGTA--------------ATACTAGATAATACTAGATACTAGTAGAGGGGC

Hirpicium_echinus_RM861 Gorteria_diffusa Didelta_spinosa_LM160704_4 Berkheya_armata_RM1500 Berkheya_armata_RM1206 Berkheya_barbata_RM1077 Berkheya_carduoides_NB1924 Berkheya_carlinifolia_LM_010204 Berkheya_cf_carlinopsis_LM300806 Berkheya_cirsiifolia_RM973 GGATGTAGTCAAGYGGAT????? GGATGTAGCCAAGTGGATCA??? GGATGTACCCAAGGG?ATCA?GG GGATGTAGCCAAGTGGATCAAG? GGATGTAGCCAAGGGGAT-AAGG ??????????????????????? GGATGTAGCCAAGTGGATCAAGG GGATGTAGCCAAGTGGATCAAGG GGATGTAGCCAAGTGGATCAAGG GGATGTACCCAAGTGGATCAAGG Berkhy_crens_LM2908_32_e GGATGTAGCCAAGTGGATCAAGG Berkheya_cuneata_LM160601_6 GGATGTAGCCAAGTGGATCAAGG Berkheya_discolor_NN9
Berkheya_decurrens_SR473_etc Berkheya_fruticosa_RM1301 GGATGTAGCCAAGGGGATCAAGG GGATGTAGCCAAGTGGATCAAGG GGATGTAGCCAAGTGGATCAAGG

Berkheya_bipinnatifida_ssp_bipin GGATGTAGCCAAGTGGATCAAGG Berkheya_herbacea_RM1176 GGATGTAGCCAAGTGGATCAAGG Berkheya_heterophylla_var_hetero GGATGTAGCCAAGTGGATCAAGG Berkheya_heterophylla_var_radiat GGATGTAGCCAAGTGGATCAAGG Berkheya_codii_IVS Berkheya_insignis_MK2133 GGATGTGCCCAAGGGCATCAAGG GGATGTAGCCAAGTGGATCAAGG Berkheya_multijuga_LM030103_35 GGATGTAGCCAAGTGGATCAAGG Berkheya_pinnatifida_ssp_ingrata GGATGTAGCCAAGTGGATCAAGG Berkheya_pinnatifida_ssp_pinnati ??????????????????????? Berkheya_buphthalmoides_C_R241_e GGATGTAGCCAAGTGGATCAAGG Berkheya_rigida_LM170601_1 Berkheya_montana_SR464_etc GGATGTAGCCGAGTGGATCAAGG Berkheya_rosulata_LM030103_24 ??????????????????????? Berkheya_schinzii_CM2793 Berkheya_seminivea_RM1140 Berkheya_decurrens_RM1189_etc Berkheya_speciosa_SR565 Berkheya_sp_LM0201001_2 Berkheya_sp_NN11 GGA???????????????????? ??????????????????????? GGATGTAGCCAAGTGGATCAAGG GGATGTAGCCAAGTGGATCAAGG GGATGTAGCCAAGTGGATCAAGG GGATGTAGCCAAGGGGATCAAGG Berkheya_rhapontica_ssp_aristosa GGATGTAGCCAAGTGGATCAAGG Berkheya_acanthopoda_NBsn_etc GGATGTAGCCAAGGGGATCAAGG Cullumia setosa var setosa RM107 GGATGTAGCCAAGTG???????? Cuspidia_cernua_NB1896 GGATGTAGCCAAGTGGATCAAGG

APPENDIX B: Achene plates showing achenes represented in morphological study in Chapter 3. Achenes shown with species names and numbered according to the clades which they belong tp.

Clade 1:

Clade 2:

Clade 3:

Clade 4:

Clade 5:

[^0]: Figure 19: Line diagram summarizing achene morphological features within each clades as per ITS BI data.

