
DESIGN PATTERNS AND SOFTWARE TECHNIQUES FOR
LARGE-SCALE, OPEN AND REPRODUCIBLE DATA

REDUCTION

by
Gijs Jan Molenaar

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

Supervised by
Prof. Oleg Smirnov

2021

Contents

Abstract v

Declaration of Authorship vii

Acknowledgements viii

Preface x

Publications xi

Source Code xii

1 History of data reduction pipelines 1
1.1 Introduction . 2
1.2 1930s . 2
1.3 1940s . 2
1.4 1950s . 5
1.5 1960s . 5
1.6 1970s . 7

Zero-generation calibration to first-generation calibration 8
Astronomical Image Processing System . 10
CANDID . 10
CLEAN . 11

1.7 1980s . 11
Self-calibration and the second generation of calibration algorithms 13
GIPSY . 13
DWARF . 14
IRAF . 15
Miriad . 15

1.8 Meanwhile in South Africa . 15
1.9 1990s . 17

AIPS++ . 17
NEWSTAR . 18
The Measurement Set version 1 . 18
The Measurement equation . 19
DIFMAP . 19

1.10 2000s . 19
The Measurement Set version 2 . 19

i

CONTENTS ii

MeqTrees, third-generation calibration algorithms 19
Obit . 19
CASA . 20
Casacore . 20

1.11 2010s . 21
Cuisine . 21
Docker . 21
The ALMA pipeline . 21
Common Workflow Language . 22
DDFacet and killMS . 22
Kliko . 22
Stimela . 23
CARACal (formerly known as MeerKATHI) 23
Default pre-processing pipeline . 23
The LOFAR two-metre survey pipeline . 24

1.12 Overview of events . 25
1.13 Discussion . 27

2 Fundamentals 29
2.1 Electromagnetic radiation . 30
2.2 Interferometry . 33

Aperture synthesis . 34
The (u, v, w) coordinate system . 36
The radio interferometer measurement equation 37

2.3 Image reconstruction . 40
2.4 Calibration . 42

Reference calibration . 42
Self-calibration . 44

3 KERN 46
3.1 Introduction . 47
3.2 The target platform . 47
3.3 Other packaging methods . 48

Anaconda . 48
Python and pip . 48
Collaboration with Debian . 49

3.4 Usage . 50
3.5 Notable packages . 50

Casacore . 50
Casacore data . 51
MeqTrees . 51
CASA . 51
AIPS . 52
LOFAR . 52
Pulsar software . 53
Unversioned packages . 53

3.6 Containerisation . 53
Docker . 53

CONTENTS iii

Singularity . 53
3.7 Project structure . 54

The release cycle . 54
Technical structure . 54

3.8 Recommended usage . 55
3.9 Usage numbers . 55
3.10 Conclusions . 56

4 Kliko 57
4.1 Introduction . 58

Software in science . 58
Software containerisation with Docker . 58

4.2 The Kliko specification . 60
The Kliko image . 60
Expected run-time behaviour . 60
Flavours of Kliko images . 61
The /kliko.yml schema . 61
The /parameters.json file . 62

4.3 Running Kliko containers . 63
Running a container manually . 63
Inside the Kliko container . 64
Kliko-run . 64

4.4 Chaining containers . 65
4.5 Example of usage of Kliko . 66

VerMeerKAT . 66
RODRIGUES . 67

4.6 Software availability . 70
4.7 Discussions and prospects . 70

Limitations . 70
Future work . 71

4.8 Conclusions . 71

5 CWL and Buis 73
5.1 Introduction . 74
5.2 The CommonWL standard . 74

CommandLineTool class file . 75
Job file . 75
Workflow class file . 75
Runners . 76

5.3 Buis – the web-based frontend for CommonWL runners 76
Functional design . 76
Technical design . 78
Usage . 79

5.4 Use case example: a 1GC pipeline . 80
5.5 Discussion . 83

CONTENTS iv

6 Vacuum Cleaner 85
6.1 Introduction . 86
6.2 Radio interferometric imaging . 86
6.3 Method . 87

Network architecture . 88
Objective function . 89
Implementation . 90
Training . 90

6.4 The simulation . 91
6.5 The results . 93

Scoring . 93
Evaluation . 93
Computational performance . 94

6.6 Conclusion and discussion . 96
6.7 Future work . 97

7 Conclusions 98

A KERN packages 101

B Kliko specification and example 109
B.1 An example of a kliko.yml file . 110
B.2 The Kliko validation specification . 111

Abstract

The preparation for the construction of the Square Kilometre Array, and the introduction
of its operational precursors, such as LOFAR and MeerKAT, mark the beginning of an
exciting era for astronomy. Impressive new data containing valuable science just waiting
for discovery is already being generated, and these devices will produce far more data
than has ever been collected before. However, with every new data instrument, the data
rates grow to unprecedented quantities of data, requiring novel new data-processing tools.
In addition, creating science grade data from the raw data still requires significant expert
knowledge for processing this data. The software used is often developed by a scientist
who lacks proper training in software development skills, resulting in the software not
progressing beyond a prototype stage in quality.

In the first chapter, we explore various organisational and technical approaches to
address these issues by providing a historical overview of the development of radio-
astronomy pipelines since the inception of the field in the 1940s. In that, the steps
required to create a radio image are investigated. We used the lessons-learned to identify
patterns in the challenges experienced, and the solutions created to address these over
the years. The second chapter describes the mathematical foundations that are essential
for radio imaging. In the third chapter, we discuss the production of the KERN Linux
distribution, which is a set of software packages containing most radio astronomy soft-
ware currently in use. Considerable effort was put into making sure that the contained
software installs appropriately, all items next to one other on the same system. Where
required and possible, bugs and portability fixes were solved and reported with the up-
stream maintainers. The KERN project also has a website, and issue tracker, where users
can report bugs and maintainers can coordinate the packaging effort and new releases.
The software packages can be used inside Docker and Singularity containers, enabling
the installation of these packages on a wide variety of platforms.

In the fourth and fifth chapters, we discuss methods and frameworks for combining
the available data reduction tools into recomposable pipelines and introduce the Kliko
specification and software. This framework was created to enable end-user astronomers
to chain and containerise operations of software in KERN packages. Next, we discuss the
Common Workflow Language (CommonWL), a similar but more advanced and mature
pipeline framework invented by bio-informatics scientists. CommonWL is supported by
a wide range of tools already; among other schedulers, visualisers and editors. Conse-
quently, when a pipeline is made with CommonWL, it can be deployed and manipulated
with a wide range of tools.

In the final chapter, we attempt something unconventional, applying a generative
adversarial network based on deep learning techniques to perform the task of sky bright-
ness reconstruction. Since deep learning methods often require a large number of training
samples, we constructed a CommonWL simulation pipeline for creating dirty images and

v

ABSTRACT vi

corresponding sky models. This simulated dataset has been made publicly available as
the ASTRODECONV2019 dataset. It is shown that this method is useful to perform
the restoration and matches the performance of a single clean cycle. In addition, we
incorporated domain knowledge by adding the point spread function to the network and
by utilising a custom loss function during training. Although it was not possible to
improve the cleaning performance of commonly used existing tools, the computational
time performance of the approach looks very promising. We suggest that a smaller scope
should be the starting point for further studies and optimising of the training of the
neural network could produce the desired results.

Declaration of Authorship

I, Gijs Molenaar, declare that this thesis titled, ‘Design patterns and software techniques
for large-scale, open and reproducible data reduction’ and the work presented in it are
my own.

I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:
Date:

vii

Acknowledgements

During this study, I spoke to many people in the field about the history of radio astronomy
pipelines. I found it fascinating, but also challenging, to give a proper overview of the
essential subjects, while not getting lost in the volumes of information and the details.
I hope I was still able to give a decent overview of the field. However, I have to admit
that it feels as if the history chapter does not do justice to the greatness of this subject
itself and I am sorry if I neglected to mention essential names or milestones that I may
have forgotten.

First and foremost, I want to thank my supervisor, Oleg Smirnov, for his overall
guidance and wise words and advice, which always seem to be given at the perfectly timed
moment to keep my productivity up. I want to thank Landman Bester and Sphesihle
Makhathini for working together with me on chapters five and six; I would not have been
able to complete these without their invaluable input.

The incomplete and randomised list of people who contributed to the history chapter
of this thesis is:

• Oleg Smirnov, Rhodes University and SARAO

• Elizabeth Waldram, University of Cambridge

• Bernie Fanaroff, SKA South Africa

• Jan Noordam, ASTRON

• Tim Pearson, CIT

• Ger van Diepen, ASTRON

• Wim Brouw, Kapteyn Institute

• Bob Sault, ATNF

• Gareth Hunt, NRAO

• Bill Cotton, NRAO

• Eric Greisen, NRAO

• Jeff Kern, NRAO

• Brian Glendenning, NRAO

• Rick Perley, NRAO

viii

ACKNOWLEDGEMENTS ix

• Peter Teuben, University of Maryland

• Andre Offringa, ASTRON

• Cyril Tasse, GEPI, Observatoire de Paris, CNRS

• Justin Jonas, Rhodes University and SARAO

• Sarah White, Rhodes University

I want to thank these people who took the time to answer my e-mails containing
numerous questions. My thesis is finished, and I hope it is a testament to these people
listed above and to the fantastic field that radio astronomy is.

Last, but by far not least, I want to thank and praise my fiancée, best friend and
future wife, Megan Galloway, who I bored to death with reviewing this thesis. Without
her invaluable input, comments and corrections, this document would not have reached
its current quality.

Preface

My PhD journey started when I was invited to South Africa by my supervisor, Oleg
Smirnov, to help him create packages for the tools used in aperture synthesis. While
working at SKA South Africa (now SARAO) in Cape Town, I decided that I wanted
to contribute to this field of science and progress my career as a research engineer by
furthering my studies through a PhD.

When Oleg and I sat down to determine the subject and direction of my research, he
suggested I should focus on data reduction pipelines. I was unaware then, that this is
a very active and exciting topic, which offers the opportunity to have an impact on the
field. I started my work by creating KERN packages of existing software. I find this part
of my work to be the least scientific, as it is pure software engineering, but ironically this
work seems to have the highest impact, as it is used by scientists all around the world.
This fills me with great pride. I hope the other chapters in this thesis will be contributing
to the start of a worldwide collaboration on constructing cross-platform data reduction
pipelines.

Since I started working on my thesis, science and the software industry have become
even more closely linked. Even a company such as Microsoft, once the detractor of
free software, became one of the most prominent open-source companies in the world.
I believe there is only one way forward, and that is to grow the openness of the radio
astronomy software development process and encourage collaboration around the world.

Relating to this, over the last few years the scientific world has changed slightly.
The appreciation for non-scientists working in science is growing, and the community
has coined a name for these professionals: the research engineer. James Watson, the
molecular biologist, famously advised to try to avoid being the smartest person in the
room. I think being a research engineer is the best possible way of doing this, as it allows
you to be close to, and learn from, the most intelligent and inspiring people in the world.
I am grateful for the opportunity to do so during my research and hope to be able to
continue doing so throughout my career.

x

Publications

Over the course of this research project, the author was involved with the following
publications:

• ‘Kern’, Astronomy and Computing 24 (Molenaar and Smirnov, 2018)

• ‘Kliko; The scientific compute container format’ (Molenaar, Makhathini, et al.,
2018)

• ‘The LOFAR transients pipeline’ (Swinbank et al., 2015)

• ‘LOFAR MSSS: detection of a low-frequency radio transient in 400 h of monitoring
of the North Celestial Pole’ (A. J. Stewart et al., 2015)

• ‘Pulsar polarisation below 200 MHz: Average profiles and propagation effectsd’ (Nout-
sos et al., 2015)

• ‘Low-radio-frequency eclipses of the redback pulsar J2215+ 5135 observed in the
image plane with LOFAR’ (Broderick et al., 2016)

• ‘PySE: Software for extracting sources from radio images’ (Carbone et al., 2018)

• ‘AARTFAAC flux density calibration and Northern hemisphere catalogue at 60
MHz’ (Kuiack et al., 2018)

xi

Source Code

New software projects

In the course of this research project, the software programs listed hereafter were pro-
duced. These are all open-source and available for use free of charge. The source code
for these programmes should be considered an integral part of this work.

KERN

KERN is a Linux distribution of radio astronomy tools. KERN is further discussed in
Chapter 3.

website: https://kernsuite.info/

Kliko

Kliko is the scientific compute container specification and implementation. Kliko is
discussed in Chapter 4.

website: https://github.com/gijzelaerr/kliko

RODRIGUES

RODRIGUES is a web-frontend for Kliko, which is also discussed in Chapter 4. website:
https://github.com/ska-sa/rodrigues/

Buis

Buis is a web-frontend for CWL runners. The software is discussed in Chapter 5.
website: https://github.com/gijzelaerr/buis/

Vacuum Cleaner

Vacuum Cleaner is a deep learning (TensorFlow) based image brightness reconstruction
program for radio astronomy images The project architecture and performance are dis-
cussed in Chapter 6.

website: https://github.com/gijzelaerr/vacuum-cleaner

Contributions to existing projects

In addition, the author was involved with the following open-source software projects.

xii

https://kernsuite.info/
https://github.com/gijzelaerr/kliko
https://github.com/ska-sa/rodrigues/
https://github.com/gijzelaerr/buis/
https://github.com/gijzelaerr/vacuum-cleaner

SOURCE CODE xiii

Common Workflow Language

The Common Workflow Language plays a vital role in the second half of this thesis.
The author was in close dialogue with the upstream maintainers, fixing and reporting
bugs, testing new features and last but not least, contributing modifications to the CWL
specification crucial for the adaptation of the library in the radio astronomy field. This
feature is enabled with the InplaceUpdateRequirement flag1. The Common Workflow
Language is further discussed in Chapter 5.

website: https://github.com/common-workflow-language

Casacore and Python-Casacore

The astronomy packages to which the author contributed the most time by far are
Casacore and Python-Casacore. Casacore is a suite of C++ libraries for radio as-
tronomy data processing, while Python-Casacore is the Python wrapper for these li-
braries. Casacore contains the core libraries of the old AIPS++/CASA package. For
both projects, the author operated as a release manager and coordinated new releases,
including feature management. The author moved the projects to Github, introduced
containerised continuous integration infrastructure, and constructed binary wheels for
Python-Casacore.

Website for Casacore: https://github.com/casacore/casacore
Website for Python-Casacore: https://github.com/casacore/python-casacore

1https://www.commonwl.org/v1.1/CommandLineTool.html#InplaceUpdateRequirement

https://github.com/common-workflow-language
https://github.com/casacore/casacore
https://github.com/casacore/python-casacore
https://www.commonwl.org/v1.1/CommandLineTool.html#InplaceUpdateRequirement

Chapter 1

History of data reduction pipelines

1

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 2

1.1 Introduction

To understand why making data reduction pipelines for aperture synthesis is still a
challenging problem requiring active research, it is necessary and exciting to look at the
history of aperture synthesis and the attempts that have been made to create one-for-all
data reduction pipelines.

Since radio astronomy is a relatively young field, the current radio astronomy gener-
ation is fortunate in that many legendary people who have defined the path of this field
are still alive. This introduction gives a summary of the events, insofar as it is possible.
This summary includes the often accidental discovery of phenomena or computational
behaviour, the invention of algorithms and the birth of essential software projects, which
are often still in use today. It is easy to get distracted by the many interesting facts
and factoids about this young science, but the focus of this thesis is aperture synthesis
and software pipelines. Meanwhile, an attempt is made to learn from success and failure
stories and extract valuable lessons for future data reduction work.

Much of this chapter is based on personal (or e-mail) interviews with the various
players in the field conducted by the author. In the interest of flow, the author omits the
ubiquitous (private communication) citation where such interviews are cited. Private
communication should be assumed unless a citation is explicitly given. Please note
that the level of detail in what follows is not always consistent from subject to subject.
Some interviewees were able to provide rich detail and anecdotes, while sources for other
subjects remained sparse. We have taken the editorial decision to present the available
content as is.

1.2 1930s

A historical overview of radio astronomy is incomplete without mentioning the field’s
founding father, Karl Guthe Jansky. In 1931, at the age of 26, while working for Bell Labs
investigating sources of static that might cause interference to radio voice transmissions,
Jansky discovered radiation in the radio spectrum coming from the Milky Way. This
discovery was the first time this kind of radiation was measured (see Figure 1.1). Jansky
(1933) published a paper titled ‘Electrical disturbances apparently of extraterrestrial
origin’. Unfortunately for Jansky, the astronomy community mostly ignored this paper.
It was only after his death in 1950 that astronomers started looking more closely at his
findings.

Fortunately, at least one person did not ignore Jansky’s results. In 1938 a young man
named Grote Reber made the first purpose-built parabolic radio telescope in his backyard
to continue the research of Jansky. In 1940 he published a paper in the Astrophysical
Journal and remained the only radio astronomer for nearly a decade. His radio sky map,
finished in 1941, first showed the existence of the bright radio sources Cygnus A and
Cassiopeia A (Baade and Minkowski, 1954).

1.3 1940s

Meanwhile, in 1944, the Dutch scientist Hendrik van de Hulst predicted that neutral
hydrogen should produce electromagnetic radiation as a result of energy state change.
The radiation was predicted to have a frequency of f ≈ 1420 MHz or a wavelength of

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 3

Figure 1.1: Jansky’s strip chart recording of intensity changes, one of the few documents
remaining from this work. Image taken from Sullivan (2009)

λ ≈ 0.21 m. This phenomenon became known as the hydrogen line, 21-centimetre line,
or Hi line. Since hydrogen is the most abundant element in the universe, van de Hulst
expected the sky to be saturated with this signal. Furthermore, electromagnetic radiation
in this frequency range can pass through the earth’s atmosphere with little interference,
and therefore should be observable from the ground. Van de Hulst realised this, and
together with his supervisor, Jan Oort, successfully lobbied for the development of radio
telescope technology in the Netherlands.

Oort was one of the first astronomers to realise the potential of radio astronomy and
foresaw the engineering challenges this novel field would encounter. In subsequent years,
Oort would eventually build up a network of both astronomers and engineers, gather
funds and lay the foundations for making the Netherlands one of the top players in the
field.

Around the same time, the Second World War in Europe ended. The upcoming
reconstruction era became the perfect birthplace for the radio astronomy field in the
Netherlands specifically, since it was easier to argue for funds for radio telescopes than

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 4

other telescopes. Radio telescopes can be built and operated at sea level, meaning the
money would be spent inside the Netherlands, which would benefit the reconstruction
of the country. In addition, the field would go on to benefit from the radar technology
developed during the war all around the world.

Radio astronomy has benefited from radar technology, since they are technically
closely related. Radar is based on broadcasting a radio signal and detecting its reflection
from metallic objects of interest at a considerable distance, while astronomy observes
natural radio waves from outer space. Radar technology developed during the war be-
came of great use for radio astronomy. A prime example inspired by cutting edge radar
technology is the telescope constructed in 1946 on the cliff at Dover Heights by The
Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia to
measure the interference between the direct waves and waves reflected by the sea. This
cliff interferometer was built to locate the origin of the solar radio emission. The idea of
a cliff interferometer came from multiple-path interference already used in ship-mounted
radar in the war, which was used to improve positional estimates. With the additional
resolution resulting from employing interferometry, Ruby Payne Scott discovered that
radio waves from the sun were related to sunspots.

Figure 1.2: The sea cliff interferometer

The Owens Valley Radio Observatory (OVRO), which would later become an impor-
tant player in the field, was founded by the California Institute of Technology (Caltech)
in the late 1940s.

At Cambridge, Ryle and Vonberg (1946) were the first astronomers to apply inter-
ferometry to astronomical measurements at radio wavelengths successfully. Aperture
synthesis was born.

Meanwhile, in the Netherlands, the Netherlands Institute for Radio Astronomy (AS-
TRON) was founded in 1949, initially named the ‘Foundation for Radio Radiation from
the Sun and Milky Way’ (SRZM).

The first British electronic computer, named Edsac (for Electronic Delayed Storage
Automatic Computer), came into service in 1949 (Edsac will be further elaborated on
below). Computers began to play a vital role in radio astronomy, and the development
of these fields over the next decades are closely linked. The memory unit of Edsac was
based on primitive mercury tubes carrying acoustic signals, and contained a total of 3800
valves.

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 5

1.4 1950s

At the beginning of the 1950s, Jansky passed away due to a heart condition, sadly missing
most of the impact of his findings.

IBM created the Fortran computer programming language for scientific and engineer-
ing applications. This language has been used extensively in radio astronomy, and is still
frequently used to this day, especially in scientific computations.

Meanwhile, Martin Ryle published a paper that described the use of the earth’s
rotation to improve the (u, v) coverage (this principle is explained further in the funda-
mentals, Chapter 2) of an observation (Ryle, F. G. Smith, et al., 1950). It would take a
decade before this method could be put to the test, simply because computers were not
powerful enough to perform computations on the required scale.

Around the same time in the USA, the predicted 21 cm (1420 MHz) hydrogen line was
first detected by Ewen and Purcell (1951). Both had experience with radar technology
and they decided to use a horn-shaped dish in an attempt to detect the hydrogen line
- with success. Dutch astronomers detected the line around six weeks later, and both
teams published their findings simultaneously.

The National Radio Astronomy Observatory (NRAO) was founded in 1956 in Green
Bank, West Virginia, USA. Given the strength of the US economy, and the overlap with
related fields involved in the Cold War, this group was well-funded. Native English-
speaking countries such as Australia and the UK could benefit greatly from this fast
progress. Some other countries also benefited from the US slipstream: the Dutch, with
their early participation in the field and excellent English language skills, were assured
of a position among the top radio astronomy countries.

In 1958, the Edsac II electronic computer replaced the Edsac I computer in Cam-
bridge. In this design, the memory was based on small ferrite rings, which could be
magnetised in one or two directions for boolean values, and contained about 6 000 valves.

In 1958, two unnamed 27-metre telescopes were constructed at OVRO. Eric Greisen,
who has been interviewed for this chapter, would later use these to study interferometry.

1.5 1960s

Both the One-Mile Telescope in Cambridge, UK and the two-dish version of the Green
Bank Interferometer (GBI) in West Virginia, USA were completed in 1964. In 1967,
GBI was extended to a three-dish configuration. The One-Mile Telescope was the first
telescope to utilise the earth’s rotation to improve (u, v) coverage.

When Elizabeth Waldram – who joined the Cambridge group in 1960 – was asked in
an interview for the Cavendish magazine (February 2014) about early radio astronomy
software and pipelines, she stated that it was Ann Neville1 (Figure 1.3) who, as a research
student, implemented Ryle’s idea to utilise the earth’s rotation. Waldram continues: ‘It
proved a tremendous success: a region of diameter 8◦ about the North Celestial Pole
(NCP, Figure 1.3) was mapped with a resolution of 4.5 arcmin and with some eight
times the sensitivity of earlier surveys’. Neville was responsible for the huge programming
task of organising the raw data and programming the Fourier transform. Waldram very
modestly overlooks her own crucial contribution, which was, arguably, the invention of
convolutional gridding. Gridding is the process of converting irregularly sampled visibility

1née Neville, subsequently known by her married name, Gower.

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 6

Figure 1.3: On the left, Neville feeding paper tapes from observations for the North Pole
Survey into Edsac II. On the right, a radio map of the North Celestial Pole region. This
was the deepest image of the sky at the time (Ryle and Neville, 1962)

data onto a regular grid prior to the Fourier transform, and it remains a crucial piece of
every interferometric imaging package to this day.

Figure 1.4: On the left, one of the original 35 mm negatives used to construct the map
in Figure 1.3. On the right, Waldram in 2019 (with Steve Gull and James Kent, photo
by Smirnov.)

All these computations were performed on the Edsac II computer at the University
Mathematical Laboratory of Cambridge, which was quite a challenge in itself. The com-
puter was controlled by paper tape and all programming was done in machine language.
The central compute unit was based on thermionic valves with limited life, so the ma-
chine would fail on average every few hours. Fires were frequent. Meanwhile there was
an intense competition for computing among various fields - genetics, physics, number

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 7

theory, economy and molecular biology all wished to crunch numbers on this computer.
This was, perhaps, also the birth of computer-based visualisation. The Neville-Ryle

map in Figure 1.3 was produced by plotting small sections of the countour plot on a
cathode-ray tube attached to the Edsac II, photographing the display, and then combin-
ing the 48 individual 35 mm photographs. The plotting software was also developed by
Waldren.

Figure 1.4 is a photograph of one of the original 35 mm negatives.
Around 1963 the Edsac II was slowly replaced by the Titan computer built by the

Belgian computer manufacturer, Ferranti. At the time the Titan was a technological
wonder, with 32 K of 38-bit words of memory, compared to the 1 K of 40-bit words of
memory in Edsac II. Nonetheless, the large quantities of data that had to be processed
were pushing the machine to its limits, and low-level machine code optimisation involving
manipulation of bit patterns was required. Waldram writes in an article in Cavendish
magazine that thanks to the help of David Wheeler from the Cambridge Mathematics
Laboratory the group got access to the new Fast Fourier Transform (FFT) algorithm,
years before it was officially published. Still, it took an hour or more of machine time to
map 10 square degrees of sky. 2

In 1966 Greisen joined Caltech as a graduate student. He used a ‘package’ of Fortran
programs to process the data from the two 90-foot CalTech telescopes. Greisen had
to study this package to make sure that an observational strategy would not run into
computation issues. That led to him becoming the expert on that software, to eliminate
several bugs in it, and eventually to rebuild the code to handle a three-element array.

Meanwhile, the PDP-10 mainframe computer family, also known as the DEC-10, was
taken into production by Digital Equipment Corporation (DEC) in 1966. This computer
would play a significant role in the digital processing of the radio astronomy data and
would be used at all institutes around the world. The PDP-10 architecture is based on
a 36-bit word length, which is surprising by modern standards.

Construction of the Westerbork Synthesis Radio Telescope (WSRT) in the Nether-
lands began in 1966. The telescope was initially conceived as the Benelux Cross Antenna
Project and was to be built close the Belgian border. However, Belgium dropped out
of the project, and the decision was taken to scale down and relocate the project to
Westerbork.

1.6 1970s

DEC launched the PDP-11, a series of 16-bit minicomputers. There is no clear definition
of a minicomputer. However, the New York Times suggests this definition: ‘costing
less than $ 25 000 ($ 163 500 in 2018), has some type of input-output devices such as
a teleprinter, memory of about 4 000 words, and with circuitry capable of performing

2To transform the radio astronomy data from the visibility space to the image space, the Discrete
Fourier Transform (DFT) is used. Calculating the DFT requires N2 arithmetic operations, making it
a very costly algorithm. Fortunately, in 1965, Cooley and Tukey (re-)discovered a much faster method
to compute the same results (Cooley and Tukey, 1965). They named this algorithm the Fast Fourier
Transform (FFT), which only requires N logN arithmetic operations and is today still the preferred
way for calculating the DFT. The word rediscovered is used, since Gauss actually wrote down similar
techniques to calculate the FFT around 1805. These writings went mostly unnoticed for more than a
hundred years until rediscovery (Heideman et al., 1984).

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 8

calculations under the control of stored programs written in some form of higher-level
computer languages such as Fortran or Basic’ (W. D. Smith, 1970).

About 600 000 PDP-11s were sold, making it one of the most successful minicom-
puters ever produced. Several innovative features in its instruction set and an additional
set of general-purpose registers made the system more comfortable to use than previ-
ous models and inspired the design of now popular microprocessor architectures such as
the Intel x86. The PDP-11 would dominate data-processing in radio astronomy for the
following period.

Queen Juliana of the Netherlands officially opened the WSRT in 1970. WSRT consists
of 14 dish antennas, each with a diameter of 25 metres. The array is placed on an
east-west line, with the most extended baseline spanning three kilometres. Ten of the
dishes are located at a regular interval of 144 metres on a straight line. Nowadays,
this configuration would be considered inefficient, since it contains multiple redundant
baselines that observe the same (u, v) point. At the time, computers were not powerful
enough to be able to handle calibration algorithms with too many baselines, so the
configuration made sense, and the original plan called for correlating only the fixed-
movable pairs of dishes.

Tim Pearson, who would later create the famous PGPlot and the Caltech Package,
started his career in 1972 at Cambridge, where he worked with the One-Mile Telescope.
There he started working on data reduction/mapping programs in Fortran.

Ryle and Antony Hewish received a Nobel prize for physics in 1974, which was the
first Nobel prize that recognised astronomical research. Hewish received the award for
his role in the discovery of pulsars. This award is not without controversy, since it was
his PhD student, Jocelyn Bell, who discovered the first pulsar. In 2018 Bell was awarded
the $ 3 million Breakthrough Prize for her discovery.

Around 1975, Jan Noordam joined ASTRON, and Ger van Diepen joined the same
institute in 1978. At that point, WSRT data was supposed to be reduced in Leiden
on IBM computers. Van Diepen joined a team of four, under supervision of Harten,
with the team goal being to bring the processing, and specifically the calibration, to
ASTRON. This was based on software written initially by Wim Brouw. A PDP-11 run-
ning the RSX11M operating system was used, but later also VAX-780 running VMS, a
computer based on the PDP-11 but using a 32-bit architecture. These machines were
also programmed in Fortran, with some manual assembler programming. Although all
imaging and calibration was supposed to be performed in Leiden, Johan Hamaker (AS-
TRON) had been secretly working on a calibration method called kneading (Hamaker,
1979). Kneading is a systematic approach to adjust the instrumental phase and gaining
parameters to suppress error patterns in a synthesis map. The results can be seen in
Figure 1.5. Hamaker stored his data in an improvised ‘uv-data’ format, which was later
used by Noordam to develop redundant spacing calibration (RSC).

Zero-generation calibration to first-generation calibration

The 1970s marked what was, in hindsight, a crucial development: the emergence of
antenna-based calibration. The thought process leading to this has been remarkably
difficult to pin down in the literature. However, one may safely assume that early ra-
dio interferometers were calibrated in what is physically the most straightforward and
obvious way, i.e. by treating each baseline as an independent measurement device, and
estimating the baseline-based gain from observations of a reference source. As correlator

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 9

Figure 1.5: Map of 3C236 made from four 12-hour observations. The figure on the left is
a dirty map with the bright centre point source subtracted, the one on the right shows
the image after kneading was applied. Images taken from Hamaker (1979)

technology improved (thus reducing the influence of the correlator errors on the out-
put), it was realised that the response of a given baseline was actually a product of two
antenna-based gains (see, e.g. the radio interferometer measurement equation (RIME),
Eq. 2.50, for a modern treatment of this.) For a three-element interferometer, this offers
no real advantages (three baseline gains are refactored into three-antenna gains), but for
larger numbers of elements, this quickly leads to a significant reduction in the number of
unknowns needing to be estimated during calibration – a line of reasoning that eventually
resulted in the idea of self-cal (see the 1980s).

According to Rick Perley, the antenna-based calibration approach was originally pi-
oneered by Barry Clark on the Green Bank three-element interferometer. Clark would
later fully adopt this method for the very large array (VLA) from the very start. By
contrast, Michiel Brentjens confirms (Perley, priv. comm.) that the WSRT initially
employed a baseline-based approach. (Since only the fixed-movable antenna pairs were
to be correlated, an antenna-based approach would not have offered obvious advantages
anyway.) Early VLA calibration linearised the antenna-based calibration equations by
taking the logarithms of the visibilities. This simplified the calculations but did not treat
the measurement noise in a statistically correct way. Finally, in 1975, D’Addario intro-
duced a least-squares approach (VLA Memo #1193), which still underpins antenna-based
calibration to this day.

In the three generations of calibration nomenclature introduced by Noordam and
Smirnov (2010), this historical distinction is overlooked. The authors propose the term
first-generation calibration (1GC) to refer to calibration using reference sources. In mod-
ern parlance, 1GC is most often used specifically in reference to antenna-based calibration
using reference sources. In the interest of historical accuracy, we propose the term zero-
generation calibration (0GC) for the older baseline-based approach.

3https://library.nrao.edu/public/memos/vla/sci/VLAS_119.pdf

https://library.nrao.edu/public/memos/vla/sci/VLAS_119.pdf

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 10

Astronomical Image Processing System

Around this time, the first predecessor of modern data reduction packages started emerg-
ing. In 1978, first steps were taken to create the Astronomical Image Processing System
(AIPS) in Charlottesville, Virginia. One of the target platforms for AIPS was the VAX
11/780.

Figure 1.6: AIPS from the user’s point of view. Image taken from Greisen (2003)

Another crucial development was the emerging of data standards. Until that time, all
institutes used their own storage format, making it hard to exchange data. The Flexible
Image Transport System (FITS) standard was created by Wells and Greisen (1979). This
standard was an attempt to serve all astronomers in all frequencies and was tape storage
and punch card friendly. Unfortunately, the first FITS version did not support all radio
interferometric feature requirements. Initially, the standard only supported basic images
and visibilities, while the AIPS developers envisioned a more versatile format that would
support clean component tables, antenna tables, and more. This led to the formalisation
of the generalised extension format for FITS (Harten et al., 1988), which enabled the
AIPS developers to extend the storage format to their needs, eventually resulting in the
UVFITS format. Thanks to the popularity of AIPS, UVFITS remains in use to this day.

Greisen states: ‘the initial VLA data-processing software was a translation of the
GBI software. Then on a dare from the programmers at the VLA, Schwab and Greisen
wrote a new package in 7 days in PL/1 which did all sorts of calibration, including basic
self-cal (not called that then), and imaging and map-plane Clean.’

CANDID

Bill Cotton (NRAO) stated that in 1974, Bob Hjellming developed the first data-processing
software for the VLA. All VLA data calibration was performed on a DEC-10 running
the TOPS10 operating system and was written in the ‘SAIL’ programming language.
SAIL stands for ‘Stanford Artificial Intelligence Language’ and is a modified version of
ALGOL. ALGOL itself is short for ‘algorithmic language’, an imperative programming
language developed in the mid 1950s. The code to do the calibration was called CANDID

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 11

(Command and Algorithm Notation for Data Inundation Device). Here, ‘inundation de-
vice’ refers to the VLA, since it was the first device ever to generate this much data. This
was 1970s slang for ‘Big Data’ (thus proving that neither Big Data nor humorous and
somewhat contrived acronyms are a modern phenomenon). CANDID included a control
language with the vision of doing pipelined analysis. However, the implementation was
much too slow. It was replaced by a suite of programs that used the same underlying
disk format, but was completely independent. The identity of the author of this rewrite,
unfortunately, is unknown. These were loosely known as the ‘DEC-10 package’. They
were usually executed manually, although a few did use the TOPS10 command language
to string jobs together.

Figure 1.7: Response to a point-source, from the VLA user manual, April 1977: ‘Syn-
thesised beam of the 1977 VLA. Declination 40◦, hour angle coverage −6 to +6 hours.
Contour levels are at intervals of 10% of the peak response. 10% contour is shown faint,
zero contour is omitted, negative contours are dashed.’

CLEAN

In the same year, Högbom (1974) published a paper describing CLEAN, the legendary
algorithm still in use today for removing convolution artifacts in radio astronomy images
(deconvolution). The algorithm assumes that the sky consists of discrete point sources.
It proceeds by finding the peak value in the image, and subtracting the point spread
function (PSF) at that position, multiplied by a fraction of the peak value (given by the
loop gain parameter, typically . 0.1). This process is iteratively repeated until the peak
value becomes smaller than a specified threshold, or a set number of iterations is reached.

1.7 1980s

During the 1980s, work began on a software pipeline to produce images directly from
the DEC-10 computer. Clark worked on a pipeline named ISIS, which took data directly

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 12

Figure 1.8: Offline processing, from the VLA user manual, April 1977: ‘Circles represent
data storage on disk, squares represent magnetic tapes, ovals represent things to be
accomplished, and arrows are associated with program names to indicate what data is
accessed to accomplish what purpose with what program. A dashed arrow indicates
features that will be implemented later in 1977.’

Figure 1.9: VLA layout, from the VLA user manual, April 1977

from the DEC-10 and processed it using a Convex array of vector processors controlled
by PDP-11s. According to Gareth Hunt, this was not successful for a variety of reasons:
‘First, the DEC-10 had a word length of 36-bits (this was built before the world stan-
dardised on 8-bit bytes) with its own floating-point format. The PDP-11s did have 8-bit
bytes, but the data formats had to be translated to its floating-point format. The array
processors had yet another word length; these led to data conversion issues. Second, with
a variety of computer hardware, error handling was inconsistent. Thus the whole system

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 13

was not stable enough’.
Brouw was at the VLA in 1980/1981 where he worked on a special array processor

with large RAM, which was used in between two PDP 11/45s, raw data on one side and
calibrated images on the other. Maps of up to a resolution of 2 000 by 2 000 pixels were
produced. Meanwhile, in 1980 the construction of all the 27 dishes of the Very Large
Array (VLA) was completed. At the same time, the first public version of AIPS was
released (Wells, 1985).

In 1989 Hunt joined the AIPS group and worked with the system developed by
Greisen and Cotton. By that time, AIPS also included synthesis calibration, which was
required to support very long baseline interferometry (VLBI). Many of the tasks in AIPS
developed around that time are still used for the VLA.

Self-calibration and the second generation of calibration algorithms

With the advent of digital correlators and the emergence of antenna-based calibration
(see discussion on 0GC and 1GC above), astronomers slowly came to the realisation that
their calibration problem was overconstrained. When a digital (and thus, presumably,
error-free) correlator is used, it can be assumed that the instrumental gain of a baseline
is the product of the complex gains of two antennas. For example, for WSRT, this
implies that the measurements made by 91 baselines share only 14 independent errors
that require calibration. This reduction in free parameters gave rise to the ability to
self-calibrate the telescope during an observation. This gave rise to the era of self-cal, or
second-generation calibration (2GC), explained in more detail in Subsection 2.4.

The essentials of self-cal (in the guise of hybrid mapping) were described by Cornwell
and Wilkinson (1981). As often seen in history, some discoveries are arrived at almost
simultaneously because ‘the time is right’. Around that time, Noordam and Ger de
Bruyn devised a way to exploit the redundant configuration of WSRT for calibration.
They named this technique RSC (Noordam and De Bruyn, 1982), see above. RSC
exploits the fact that two equal baselines observe the same visibility values. In practice,
these values differ, which is caused by instrumental effects. Similar stories are told by
Greisen, and Frazer Owen, who both applied self-cal-like techniques before this name
was current. Owen claims that he ‘showed a 4-antenna VLA self-cal to the trustees well
before AIPS could do this’. In a review Pearson and Readhead (1984) summarised this
and related techniques, and coined the term self-calibration.

GIPSY

In 1983 the Kapteyn Institute in Groningen, the Netherlands, released GIPSY, the
Groningen Image Processing SYstem (Van der Hulst et al., 1992). The main objec-
tives of the design of GIPSY were to ‘have the ease of adding application programs, to
have a flexible, self-descriptive, a multidimensional data structure, to make use of the
de facto-standard X11 environment for graphics and image display and to code the sys-
tem in ANSI C and the applications in either ANSI C or standard Fortran 77.’ GIPSY
was initially developed to process WSRT data but was later extended to process other
instrument data as well.

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 14

DWARF

In early 1980, ASTRON launched the Dwingeloo-Westerbork Astronomical Reduction
Facility (DWARF) (Hamaker, Harten, et al., 1985). Few astronomers had experience
with indirect imaging or were familiar with the complex operations required to process
data fromWSRT. For this reason, it was decided that the WSRT data reduction would be
executed by experts, using programs written mostly by Brouw. Data would be received
at ASTRON, but then moved by train, on tape, to Leiden, where the maps would be
produced. Below are the motivations quoted from the DWARF paper:

A good environment should minimise the efforts required on the parts of the
user and of the programmer to work with it. It should provide in the simplest
possible way for all operations except those specific to individual applications.
Such operations include:

1. Program-user interaction: The interface must cater for all modes of
operation ranging from straight batch to highly interactive. It must free
the user from all redundant typing. As much as possible, user input
should be checked immediately for validity.

2. Creation and administration of data files.

3. I/O on a variety of data files, including those created by other systems.

4. Error reporting.

5. Record-keeping should minimise the need for manual administration.

6. Simultaneous execution from one terminal of more than one program,
either interactively or in batch mode.

7. Programming: The interface for application programs should be as sim-
ple as possible, in terms of number of subroutine calls and number of
arguments per call, as well as in terms of special declarations (e.g. of
control arrays) to be made on behalf of the system. Not only does all
this make programming per se easier; as a consequence it also promotes
easy exchange of programs with other systems.

We found all environments existing or planned a few years ago unsatisfactory
in one or several of the above areas. In particular the user, data I/O and
program interfaces fell short of what was wanted and judged to be feasible.

Noordam’s theory is that Ron Ekers, then a professor at the University of Groningen,
was frustrated by the limited involvement and freedom for the astronomer in the process-
ing of radio data. While the astronomer had the option to supply various parameters,
the operators would apply during image production, the process would sometimes take
weeks. These delays made it very hard to adjust the parameters iteratively. This would
later be of influence in the formation and design of AIPS and the surrounding infrastruc-
ture. AIPS gave astronomers the opportunity and freedom to build and run pipelines
with manually modified parameters. We feel this is a very important sentiment, and
its influence is clear to see in the development of radio astronomy software since then.
Modern software often tries to give the users this freedom.

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 15

IRAF

In 1986, The ‘Image Reduction and Analysis Facility (IRAF)’ package was created. Al-
though this package is mostly oriented towards optical astronomy, parts of it have been
inherited by packages such as AIPS++ and Common Astronomy Software Applications
(CASA).

Miriad

In 1988, the Berkeley Illinois Maryland Association (BIMA) had a debate with experts
from the AIPS, GIPSY and IRAF camps, and decided that the existing tools were not
flexible enough. Thus, Miriad was born. This software aimed at being a ‘full service’
radio interferometry data-reduction package. Miriad was initially designed for compact
array millimetre radio astronomy but was later also used at lower frequencies. Despite
its age, Miriad is still being developed and used. One of the difficulties with Miriad is
a lack of versioning and a public and open software development process. The source
code and binaries are published on the CSIRO FTP server, but apart from the upload
timestamp, it is not trivial to work out the latest changes. This makes it hard to monitor
the development process, track changes, and make Debian packages, as is described in
Chapter 3. In 1995, a retrospective view paper was published (Sault et al., 1995), which
gives an exciting view of the design considerations of Miriad.

1.8 Meanwhile in South Africa

Figure 1.10: Contour map with a grid of galactic coordinates superimposed, image taken
from Jonas et al. (1985)

Given the institution hosting this research, it would be amiss not include some South
African context. Rhodes University was the first university in South Africa to establish
a radio astronomy effort, with Jack Gledhill’s work in the area of solar system astronomy
in the 1950s. He was followed by such names as Eddie Baart, Graeme Poole, Gerhard
de Jager and Gerhard Verschuur. Justin Jonas, effectively the father of the MeerKAT
telescope, and now chief technologist at the South African Radio Astronomy Observatory

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 16

(as well as remaining a professor at Rhodes), has been with the university since his
undergraduate studies in the late 1970s.

Figure 1.11: Photograph of the first plot made by the Edsac II computer of the radio
image of the supernova remnant Cassiopeia A, observed by the One-Mile Telescope. The
plot was made using a Calcomp drum plotter - one of the first commercial ‘computer
graphics’ peripherals.

After reading an early draft of this work, Justin Jonas contributed the following
account, which is reproduced verbatim and in full:

[Fig 1.11] shows a Calcomp drum plotter in action – one of the first com-
mercial ‘computer graphics’ peripherals. We inherited a large one from the
Rhodes Computer Centre when the ICL mainframe was decommissioned. I
interfaced it to the 16-bit parallel port on our VAX 11/730 using an ‘open-
source’ Centronics printer driver for VMS, a Motorola 6800 evaluation board
with some assembler code (this was the basis for my Honours computer in-
terfacing course for many years, and I still have the 6800 board somewhere),
and some random electronics to drive the plotter stepper motors and pen
solenoid. I see now that what I reinvented then is called Bresenham’s line
algorithm (Bresenham, 1965).

I wrote a number of plotting libraries that provided rudimentary plotting
functions, and some higher-level functions like contour plotting. I also wrote
emulators for some popular plotting libraries of the era - such as HPGL.
Everybody was doing this re-invention - before the Internet there was little
opportunity to share code, particularly in Apartheid era in South Africa.

We used this system to plot early contour maps from the SKYMAP 2.3 GHz
survey, but it was infuriatingly slow - a single map would take 8 hours to
plot. And the liquid-ink drafting pen would often give up the ghost half-way
through, requiring ultrasonic cleaning of the pen and a restart. Ball-point
pens were more reliable, but the lines were too fine and “Astronomy and
Astrophysics” would not accept the plots for publication.

The figures for Jonas et al. (1985) (see Fig. 1.10 for an example) took more
than a month to plot, and longer still for the maps in my MSc thesis. Students
have it too easy today!

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 17

When dot-matrix printers arrived I wrote a VAX assembler programme that
emulated the functionality of the low-level Calcomp primitives, and modified
this for laser printers when they appeared. I made a multi-pole switch to
allow use of all three plotter options from the single VAX Centronics port.

We ran Starlink on the VAX - thought it might have been mentioned, but
I guess its use was largely limited to the UK and former colonies. Many of
today’s radio observatory directors were VAX/VMS/Starlink system admin-
istrators back in the day (Michael Garrett, Phil Diamond, etc). We ran our
own SKYMAP single-dish analysis pipeline on top of the Starlink platform
- this had many authors over time, starting with Pete Mountfort. We had
the Fortran source code for Glynn Haslam’s NOD 2 package, which was used
for all of the Bonn surveys (Haslam 408 MHz, Reich 2700 MHz, etc), but it
was notoriously impenetrable, and we used a different raster scanning pat-
tern for SKYMAP. Starlink faded away with the advent of Linux on Intel ’86
desktops, and I migrated our pipeline to Linux. I also discovered Pearson’s
PGPLOT, and all of my plotting legacy was binned! A real privilege to be
working with Tim today in the C-BASS consortium.

1.9 1990s

The AIPS package moved to a version control system for the first time. Version control
refers to methods for tracking and keeping a history of changes to text files. Nowadays,
it is standard practice for software engineers to use revision control software to maintain
documentation and source code and configuration files. As developers create software, it
is common for multiple versions of the same software to be used in different situations
while simultaneously receiving bug fixes and new features. These bugs and features of
the software are frequently only present in specific versions. Therefore, to locate and
fix bugs, it is vitally important to be able to retrieve and run different versions of the
software to determine in which version(s) the problem occurs.

At the most primitive level, developers could retain multiple copies of the program’s
different versions and label them appropriately. Until roughly this time, this was how
astronomers developed AIPS, and, presumably, other radio software packages. While
this method can work, it is inefficient and error-prone, as many near-identical copies of
the program have to be maintained. This approach requires a lot of self-discipline on the
part of developers.

To automate this process and reduce human error, software to automate some or all
of the revision control process was created. This software ensures that the majority of
management of version control steps is hidden from the developer. Many version control
software solutions have been introduced, and their popularity and usage have varied
over time. The de-facto standard in software engineering is currently git, but mercurial,
subversion and CVS, to name a few, are still used.

AIPS++

In 1988, Paul Vanden Bout, the director of the NRAO, called together an independent
review panel: the Software Advisory Group (SWAG). This review panel later evolved
into the international AIPS++ consortium (Croes, 1993). The group was chaired by

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 18

Tim Cornwell (CSIRO), who declined to be interviewed for this work. Other members
included Noordam (ASTRON), Hunt (NRAO), Geoff Croes (DRAO), and Ray Norris
(CSIRO). The goal was to set up a new universal software infrastructure that would
serve the needs of all radio astronomy institutes around the world. AIPS++ started off
using C++ and Glish. Glish is a scripting language developed by Vern Paxson, now a
professor of computer science at the University of Berkeley. Unfortunately, this language
never developed the required momentum to survive. AIPS++ eventually stopped using
it, replacing it with a Python interface.

The consortium was initially an effort by the most significant radio astronomy in-
stitutes around the globe: the already mentioned ASTRON and NRAO, but also the
Australia Telescope National Facility (ATNF now CSIRO), the Jodrell Bank Observa-
tory (JBO), the MERLIN/VLBI National Facility (MERLIN/VLBI), BIMA and Tata
Institute of Fundamental Research in India (TIFR). Although all these institutes man-
aged their telescope(s), some did not write their processing software, but used AIPS or
Miriad.

NEWSTAR

Brouw, at that time working at ASTRON, tried to get modifications into AIPS to im-
prove support for WSRT. However, according to him, this code kept on disappearing
for ‘unknown reasons’. These disappearances could be blamed on the then missing,
but now widely available and used, software project management tools such as Git and
contribution workflows such as pull requests (Dabbish et al., 2012).

Around 1990, Brouw started working on the famous NEWSTAR package for process-
ing WSRT data. In 1992, Brouw tried to get NEWSTAR working at CSIRO in Australia,
but this turned out to be less trivial than initially thought. It was hard, at that time
at least, to keep software universal enough to support multiple types of radio telescopes.
He says that this attempt was eventually a failure.

The Measurement Set version 1

In October 1996, the Measurement Set (MS) version 14 standard was finalised. Although
the astronomy field already had a storage standard (FITS), this format was not suitable
for storing the massive tables with visibilities used in radio astronomy. A measurement
set, or casacore table, is similar to a relational database table with the addition that
table cells can contain n-dimensional arrays. It also has a rich SQL-like query language
named Table Query Language (TaQL). Each table consists of numbered rows and named
columns. A column can hold scalar values or arrays of any dimensionality and shape.
Furthermore, the table and each column can hold a set of keywords, which, for example,
can be used to define the units. A table is nestable; thus, a keyword’s value can be a
keyword set in itself. This MS format is flexible enough to contain a huge variety of
shapes and sizes of data, and is widely used to transport data between programs and
astronomical institutes.

4https://casacore.github.io/casacore-notes/191.pdf

https://casacore.github.io/casacore-notes/191.pdf

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 19

The Measurement equation

Two orthogonal receptors dipoles are required to observe the polarisation of an electro-
magnetic signal. To describe these waves, the receptor’s signals are correlated, resulting
in four complex numbers, commonly referred to as XX, XY , Y X, and Y Y (or RR, RL,
LR, LL if circularly polarised receptors are used). Until that time, it was not well under-
stood how to model and process the polarised characteristics of electromagnetic waves.
Separate expressions and calculations were performed for each correlation combination,
and each had to use approximations to make the calculations feasible. That changed
when Hamaker realised that using the Kronecker matrix product would result in elegant
expression without the need for approximations. In 1995, the measurement equation
was introduced to the world of aperture synthesis imaging by Hamaker, Bregman, et al.
(1996a). The mathematical foundations of the measurement equation are discussed in
depth in Chapter 2.

DIFMAP

In 1994 Shepherd et al. (1994) created DIFMAP, written in C. DIFMAP is described
as an ‘interactive program for synthesis imaging’ and performs all the interferometry
calibration-loop steps in an interactive matter. Initially, it was a wrapper around all the
steps in the Caltech VLBI programs (CITVLB)5. Pearson writes, ‘Difmap has had a long
life and is still used in some VLBI experiments’.

1.10 2000s

The Measurement Set version 2

A new version of the MS was created in early 20006. The changes were mostly of a
data-structuring nature (schematical). Van Diepen adds that changes were made in the
underlying table code, specifically the MultiFile option, to merge multiple tables into
one file. In addition, many improvements to the table query language (TaQL) were
added.

MeqTrees, third-generation calibration algorithms

Around 2000 Noordam and Smirnov (2010) started working on MeqTrees. The original
idea can be traced to ‘MNS-trees’ (Noordam, 1997). MeqTrees was arguably the first soft-
ware package to fully utilise the powerful simplifications made possible by the measure-
ment equation. It was also the first software to take direction-dependent effects (DDE)
into account. The incorporation of DDE treatment gave rise to the third-generation
calibration era (3GC).

Obit

Somewhere at the beginning of the 21st century, Cotton (2008) started Obit, a ‘develop-
ment environment for astronomical algorithms’. Cotton writes that Obit branched away
from AIPS over time, and the code has a very different design from AIPS, although it

5https://www.cv.nrao.edu/adass/adassVI/shepherdm.html
6https://casa.nrao.edu/Memos/229.html

https://www.cv.nrao.edu/adass/adassVI/shepherdm.html
https://casa.nrao.edu/Memos/229.html

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 20

can invoke AIPS if needed. Greisen writes that this project is more research-oriented,
while AIPS remains oriented to serving the majority of NRAO’s telescope users. The
limitations of Fortran77 drove Cotton’s motivation to create Obit. Dropping Fortran77
support enabled the usage of third-party libraries for features such as threading and
FFTs. Furthermore, the fork enabled Cotton to make serious breaking changes in a ma-
jor production package. Obit also has a Python interface called Parseltongue (Kettenis
et al., 2006) which interfaces to AIPS and is maintained by JIVE.

According to Cotton (2019, priv. comm.), Obit has a small but active user commu-
nity: the (USA) Naval Research Laboratory’s commensal 1-metre system (VLITE) on
the VLA uses Obit for the astronomical calibration/imaging. Menton’s MPIfR group
is using Obit for the continuum imaging of their EVLA Galactic plane C-band survey.
Lastly, the SARAO SDP group is using Obit in its MeerKAT calibration pipeline for
spectroscopic data.

Cotton states that he intends to continue using and developing Obit for the foreseeable
future, but there is no real long-term vision. The work on Obit is ‘tolerated by NRAO
but not exactly encouraged’.

CASA

In 2006 the AIPS++ consortium was disbanded. At the same time, NRAO needed a
modern data-processing system to support the new ALMA telescope. Thus, AIPS++
was forked and CASA was born (McMullin et al., 2007a).

CASA is distributed as a self-contained and monolithic package providing tools ori-
ented to data post-processing for modern radio telescopes. This monolithic nature makes
CASA easy to get started with, but more awkward for the more advanced user. The pack-
age is bundled with its own Python interpreter, making it hard and often impossible to
integrate with other software packages. Fortunately, NRAO recently changed the de-
scribed architecture, and in December 2019 NRAO released a new CASA 6. This release
is based on Python 3 and moves away from the monolithic design. This means CASA
is now distributed as a binary wheel and can be installed in an existing Python envi-
ronment, next to other radio astronomy utilities. Not all components, specifically some
graphical user-interface parts, have been ported to the new design yet, so this release is
for the time being oriented towards developers and power users.

Casacore

The core of the AIPS++ libraries is still being maintained and developed by a subset of
the original consortium members and is now known as Casacore. A Boost-Python based
Python wrapper named python-casacore also exists, which has mainly been developed
by ATNF and ASTRON to replace Glish. Python-Casacore is not used by CASA. The
project internally maintains an alternative set of Python bindings (CASApy). The most
important component of Casacore is the measurement set accessor module.

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 21

1.11 2010s

Cuisine

In 2010, Renting (ASTRON) created Cuisine7, a Python-based pipeline framework for
building data reduction pipelines. Although LOFAR and the Transient Pipeline (TraP) (Swin-
bank et al., 2015) used the software for a while, there appear to be no projects remaining
using this framework.

Docker

In 2013 a company named dotCloud released Docker, an OS-level virtualisation platform
to deliver software in packages called containers. Although virtualisation was not new,
the use of the recently introduced process isolation features to the Linux kernel made the
product popular and accelerated adaptation. Docker caused an interdisciplinary shift in
deployment strategies, from scientific pipelines to websites. Docker will be discussed in
more detail in Chapter 4.

The ALMA pipeline

The Atacama Large Millimeter/submillimeter Array (ALMA) became operational in Oc-
tober 2011. The initial ALMA configuration consisted of 66 high-precision antennas and
observed at wavelengths of 9.6 to 0.3 millimetres (31 to 1000 GHz). Of these 66 antennas,
54 antennas are 12 metres in diameter, and the remaining 12 antennas are 7 metres in
diameter. ALMA was initially a split responsibility collaboration between the NRAO
and European Southern Observatory (ESO). This collaboration was later extended with
Japanese, Taiwanese, and Chilean partners. ALMA is the most expensive ground-based
astronomical project, costing between 1.4 and 1.5 billion US dollars. This amount dates
from approximately 2013, and has not been corrected for inflation.

In October 2014 the first ALMA pipeline based on CASA was released. Since this
release, the CASA software itself is bundled with the full ALMA pipeline. The ALMA
pipeline is renowned and praised in the radio astronomy community as being one of the
first fully automated data-processing pipelines. Glendenning, Head of Data Management
and Software Department at NRAO, cites multiple reasons for its success. First of all,
the location of the telescope is ideal, high up and far away from interference caused
by humans. Also, the observation scope is more limited than that of many other radio
astronomy observatories, the field of view is small, and the dynamic range is generally
low. However, implementing the data-processing took time; the pipeline was not a success
from the start. It was only after five years that the pipeline effort started to be successful.
Glendenning also says that NRAO sees the pipeline development primarily as a science
operations organisational problem, and less as a software problem. There are currently
less than five full-time equivalent (FTE) units working on the ALMA pipeline software,
whereas there are more than 20 non-software FTE units involved. These positions include
heuristics development, quality assurance evaluation and queue management.

Jeff Kern, the Project Director for Science Ready Data Products at NRAO, underlines
this. He says that it took a while to get everyone to understand what is involved in really
defining a heuristic. If it works on one data set, only a fraction of the work towards

7https://www.astron.nl/~renting/cuisine.html

https://www.astron.nl/~renting/cuisine.html

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 22

creating a functional pipeline for another dataset is done. Kern also claims that the
ALMA pipeline is successful because it constrains the problem space. ALMA is very
prescriptive about how users may operate the telescope and limits the freedom to apply
smart ideas. These restrictions are important for the pipeline. Data needs to be well
structured, regular (the pattern should be the same for all observations), and of high
quality. This change was a culture change for many of the radio astronomers. Kern
explains: ‘There was a period where the operations group would throw an extra antenna
on a long baseline into the array because more data is always better, and it cannot
hurt. However, this made the pipeline almost unusable for these data sets (there was an
objection to just throwing the extra antenna away), so they ended up going through a
manual process until the culture changed. I still hear occasional grumblings about how
ALMA prevents people from doing clever things in the Observation tool (Bridger et al.,
2012), I think that is part of why the pipeline succeeded.’

Meanwhile, around 2014 CASA developers switched back to using the upstream
Casacore again, improving the collaboration and reducing duplicate efforts between AS-
TRON, NRAO, SARAO and other involved parties.

Common Workflow Language

In 2014 the Common Workflow Language (CWL) project, which is covered in Chapter 5,
published its first release. CWL can be seen as the HTML of pipelines, enabling pipeline
creators to define a pipeline in an abstract domain-specific language. In June 2019 the
1.1 version of the specification was released, including improvements to the handling of
writable directories, which are important for directory-based datasets such as the MS used
in radio astronomy, to which the present work contributed. CWL is a wrapper around
the command line interface of existing software, and does not require any modifications
to the original software, making it ideal for wrapping legacy software and chaining these
together in high-level abstractions.

DDFacet and killMS

Around 2015 Tasse et al. (2018) started realising their 3CG ideas into a new product
called DDFacet. DDFacet is a wide-band wide-field spectral deconvolution framework
based on image plane faceting, that takes into account generic DDE and is based on the
RIME. The development was primarily driven by the need to address the ionospheric
effects for the LOFAR telescope. The purpose of faceting is to approximate a wider
field of view with multiple small narrow-field images. The companion killMS (Smirnov
and Tasse, 2015; Tasse, 2014a; Tasse, 2014b) package performs direction-dependent cal-
ibration on individual tessels (tessels are collections of facets), while DDFacet can apply
these solutions during imaging.

Kliko

At the beginning of 2016, unaware of the existence of CommonWL, the author of this
thesis started working on a container-based pipeline abstraction framework, which is
discussed in detail in Chapter 4. Since over time it became clear Kliko has a signifi-
cant overlap in design and functionality with CommonWL, while the latter has a solid

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 23

adaptation base, it was decided to discontinue development and maintenance of Kliko. 8

Stimela

Meanwhile, Sphesihle Makhathini (Rhodes University) was inspired by Kliko and de-
cided to create a similar product called Stimela9. Stimela is quite similar to Kliko and
inherits various design decisions. The most significant difference between Stimela and
Kliko is that the former is less strict about handling IO purity and dealing with func-
tional side-effects. Kliko is, in that sense, similar to CommonWL, which by default only
allows modifications on copies of the intermediate data products, ensuring that the orig-
inal data is not affected. That makes Stimela more flexible when data consistency and
reproducibility are less of a worry, or when the data volumes are so massive that stor-
ing copies is not feasible. Moreover, Stimela scripts can be transpiled to CommonWL
projects, a feature used in Section 5.4. Stimela is oriented to radio astronomy only and
is bundled with scripts for various tasks (e.g., CASA, MeqTrees, AOflagger, SoFiA, etc.)
from various data reduction packages.

CARACal (formerly known as MeerKATHI)

CARACal (Józsa et al., 2020a) is a relatively new effort (its first public release was in
May 2020) to make a pipeline for radio interferometry continuum and spectral line data
in full polarisation. It is based on Stimela. While mostly in use with MeerKAT data,
as the original name suggests, the pipeline is actually evolving to become telescope-
independent, and a few astronomers (though mostly from the core development team)
have already applied it to data from VLA, LOFAR, ASKAP and uGMRT. Since CARA-
Cal is based on Stimela, it runs on any platform supporting containerisation technology.
CARACal is actively developed, mostly by astronomers at SARAO, Rhodes University,
and Osservatorio Astronomico di Cagliari INAF (OAC). It offers support for all modern
imaging and calibration tools, including 3GC.

Default pre-processing pipeline

The default pre-processing pipeline (DPPP or DP3) (van Diepen and Dijkema, 2018) is a
streaming processing pipeline for radio interferometric data, mostly used for preprocess-
ing data coming from the LOFAR telescope. DPPP’s functionality includes averaging,
flagging and various kinds of calibration techniques. DPPP goes through visibilities in
temporal order and can perform standard operations such as averaging, phase-shifting
and flagging misbehaving stations. The data is not written to disk between the steps
in a pipeline, making this tool suitable for operations where I/O dominates. DPPP has
a plug-in architecture; other computing steps can be provided by loading a shared li-
brary. AOFlagger (Offringa, 2010) is one of the packages made available as a plug-in

8Initially, the author was disappointed about the waste of time spent on developing a product that
already existed. In addition, he was disappointed in himself for not having put more effort into re-
searching existing solution. However, over time he became proud of the similarities between Kliko and
CommonWL, feeling reinforced about various design decisions taken while creating Kliko. In the end,
the CommonWL team took well-considered decisions, which resulted in a cleaner design. Also, the Com-
monWL community is much more matured, leading to the decision to stall the Kliko development, and
focus all efforts on CommonWL.

9https://github.com/SpheMakh/Stimela

https://github.com/SpheMakh/Stimela

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 24

to DPPP using the described plug-in mechanism. The framework also contains a bridge
that enables loading Python steps. Consequently, and contrary to CWL, a DPPP plug-
in requires significantly more effort to create. Where a CWL step would only involve
the creation of a YAML text file, a DPPP plug-in requires writing and compiling a
C(++) intermediate layer. These are skills not every astronomer or even programmer
possesses. On the other hand, the memory-based transfer of intermediate data product
makes DPPP much more suitable for high volumes of data, which are typical in radio
astronomy.

The LOFAR two-metre survey pipeline

The LOFAR two-metre sky survey (LoTSS) (Shimwell et al., 2017) is an ongoing high-
resolution, high-sensitivity survey of the northern sky in the low 120 − 168 MHz range.
The survey is currently about 20% complete. The total raw data volume of this survey
will hold an impressive amount of about 50 PetaBytes, and a total of 13 000 hours of
observation time is required. The LoTSS data is stored in the LOFAR long-term archive
(LTA)10, which is distributed over three sites in Europe.

The processing consists of the two steps, a direction-independent effect (DIE) pre-
processing step and a DDE step. The DIE calibration step (Van Weeren et al., 2016)
makes use of the DPPP in combination with BlackBoard self-cal (Pandey et al., 2009)
for averaging and calibration. The DIE pipeline has been mostly automated (Mechev et
al., 2018), and the processing is performed on the SURFsara grid facilities. To facilitate
the processing, custom tools have been created, which are based on PiCaS11. PiCaS
is an in-house developed CouchDB-based token pool server for heterogeneous compute
infrastructure. Unfortunately, the data is spread out over the three LTA sites, while
only one site has a direct fast link to the SURFsara grid facilities. Transporting the
data between sites is slow and expensive, so it is more cost- and time-effective to process
the data at the storage site. Unfortunately, the DIE pipeline has been tailored for the
SURFsara grid environment. Consequently, the current processing software needs to be
modified to run on the infrastructure available locally at the storage sites. The DDE
calibration pipeline has been handcrafted with Python12 and makes use of KillMS and
DDFacet. This pipeline is manually run on a local cluster.

10https://lta.lofar.eu/
11http://doc.grid.surfsara.nl/en/latest/Pages/Practices/picas/picas_overview.html
12https://github.com/mhardcastle/ddf-pipeline

https://lta.lofar.eu/
 http://doc.grid.surfsara.nl/en/latest/Pages/Practices/picas/picas_overview.html
https://github.com/mhardcastle/ddf-pipeline

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 25

1.12 Overview of events

Table 1.1: A brief timeline of radio astronomy and data reduction pipelines

Year Who / Where Event
1931 Karl Jansky Discovers radiation in the radio spectrum coming

from the Milky Way.
1938 Grote Reber Produces first radio map of Cygnus A and Cassiopeia

A.
1944 Hendrik van de Hulst Predicts Hi line.
1946 Martin Ryle & Derek Vonberg,

Cambridge
First to apply interferometry to astronomical mea-
surements at radio wavelengths.

1950 Martin Ryle, Cambridge Describes the use of the Earth’s rotation to improve
the (u, v) coverage.

1951 Harold Ewen & Edward Pur-
cell, Harvard University

Hi line first detected.

1956 NRAO The National Radio Astronomy Observatory is
founded.

1966 WSRT Construction of the Westerbork Synthesis Radio
Telescope begins.

1970 WSRT Westerbork telescope construction completed.
1973 NRAO Construction of the VLA begins.
1974 Robert Hjellming, NRAO CANDID, the first data-processing software for the

VLA is created.
1974 Jan Högbom The CLEAN algorithm is formulated.
1975 NRAO The first VLA antenna is put into place.
1978 Charlottesville, Virginia Development of the AIPS software project begins.
1979 Ron Harten, ASTRON FITS format is created.
1979 Johan Hamaker, ASTRON Introduces Kneading.
1980 NRAO VLA is officially inaugurated.
1980 ASTRON DWARF project is initiated.
1980 NRAO ISIS pipeline for VLA is created.
1981 Tim Cornwell & Peter Wilkin-

son
Self-cal is developed, ushering in the 2GC era.

1983 Kapteyn Institute GIPSY software for processing WSRT data is cre-
ated.

1985 NRAO First public release of AIPS.
1986 NOAO The ‘Image Reduction and Analysis Facility (IRAF)’

package is created.
1988 BIMA The MIRIAD package is created.
1988 The SWAG, later AIPS++ consortium is formed.
1990 NRAO The AIPS software package moves to a version con-

trol system.
1990 Wim Brouw, ASTRON The NEWSTAR software project is created.
1994 Martin Shepherd DIFMAP is created, oriented towards Very Large

Baseline Interferometry specifically.
1995 Johan Hamaker & Jaap Breg-

man & Bob Sault
The Measurement Equation is developed.

1996 Measurement Set format version 1 is formalised.
Continued on next page

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 26

Table 1.1 – continued from previous page
Year Who / Where Event
2000 Jan Noordam & Oleg Smirnov,

ASTRON
The incorporation of DDE treatment in calibration
gives rise to the 3GC era.

2006 AIPS++ consortium is disbanded, AIPS++ soft-
ware forked into CASA.

2008 Bill Cotton, NRAO OBIT is forked from AIPS, enabling more research-
oriented development.

2009 ASTRON The default pre-processing pipeline (DP3), a stream-
ing processing pipeline for radio interferometric
data, is created.

2011 NRAO The Atacama Large Millimeter/submillimeter Array
(ALMA) becomes operational.

2012 ASTRON The LOFAR telescope is officially inaugurated.
2013 Docker is released, introducing containerised deploy-

ment to a wider audience.
2014 NRAO The first ALMA pipeline based on CASA is released.
2014 NRAO CASA switches back to using casacore.
2014 The Common Workflow Language (CWL) project is

initiated.
2015 Cyril Tasse & Oleg Smirnov,

OPM & SKA-SA
DDFacet and killMS are introduced.

2016 Gijs Molenaar, SKA-SA The Kliko containerised pipeline construction frame-
work is created.

2016 Sphesihle Makhathini, SKA-
SA

The Stimela framework and Caracal pipeline is cre-
ated.

2018 SARAO The MeerKAT telescope is officially inaugurated.

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 27

1.13 Discussion

Programming is the process of
sequential framing and solution of
problems.

Mikhail Donskoy

The supervisor of this thesis first heard this profundity (or perhaps platitude) from
the developer of the inaugural world computer chess champion (Berliner, 1978), who
presumably knew a thing or two about solving problems. Looking at the history of radio
astronomy software, no problem seems too difficult. From Gower battling a combustible
Edsac II, to Tasse struggling with an uncooperative ionosphere, there is a golden thread
running through the field of talented individuals and teams coming up with solutions
to seemingly insurmountable problems, and dealing with experiments, surveys and tele-
scopes successfully. On the other hand, while these solutions are never (or hardly ever)
secret, only certain kinds of solutions seem to be successfully shared. The author him-
self, being a software engineer brought up in the era and ethos of open-source software, is
naturally interested in the process of solving other people’s problems through the sharing
and interoperability of software.

It is interesting to see where this process has succeeded and failed. Firstly, one needs
to discount cases where sharing of software is not intended or attempted because the
software was never meant to solve other people’s problems in the first place. There
is no historical record of the early Cambridge software being used anywhere else, but
presumably, no other group had an Edsac II to run it on anyway. To take a more
recent example, the LoTSS pipeline is highly survey-specific: it is built, maintained and
operated by a core team, it is not being used with other LOFAR data or by external
users, nor is it in the team’s remit to support this (that said, one should recognise that
a significant part of the LoTSS development has fed back into its constituent packages,
in particular DDFacet and killMS, which are widely used). We will only consider user-
facing software – and, in particular, user-facing pipelines. User-facing software in this
context refers to software that is being used by astronomers, and not for the lower-level
(and often telescope-specific) operations of the telescope.

Many other instances are documented here where software was built to be user-facing.
Imagine a two-dimensional phase space with use cases (i.e. telescopes and observational
regimes) loosely lined up along the X-axis and individual processing tasks along the
Y-axis. A package such as WSClean or DDFacet would have a footprint that is very
broad but shallow: successfully used across many telescopes, but restricted to one spe-
cific task – imaging. NEWSTAR would be very tall and thin: only supporting WSRT
data, but implementing most tasks. Monolithic packages such as CASA and AIPS and
Miriad would form large, patchy clouds: supporting many telescopes and most tasks,
but with the occasional yawning gap in functionality. A complete pipeline would be a
tall, unbroken column stretching from the top to the bottom. At present, there is only
one successful example of this – the CASA-based ALMA pipeline – a very thin and tall
column in the phase space.

The ALMA example is instructive. As discussed above, success was achieved by
applying a ruthlessly narrow focus, with a large and relatively centralised team, including
over 20 non-software FTEs. Although the resulting software itself is fully open-source,

CHAPTER 1. HISTORY OF DATA REDUCTION PIPELINES 28

the development process is nearly the polar opposite of the open-source ‘bazaar’ model.
Perhaps this is the only way to write successful pipelines, and more general pipelines are
impossible?

At the same time, if one shoud pick any telescope/use case along the X-axis, and draw
an imaginary vertical line up, more often than not one would be drawing a line through
an unbroken sequence of packages providing all the required tasks. In fact, many users
can perform virtually all their processing without leaving the confines of CASA (and
earlier, AIPS), just not in a pipelined and automatic way. Many tasks will also have
multiple packages available for the job. Thanks to standards such as FITS and the MS,
these packages are likely to speak the same formats. Moreover, one would also find that
the sequence of tasks is the same for many use cases. All the functionality is there, so it
seems a little paradoxical that there have been so few successful user-facing pipelines.

One aspect of the problem is that radio interferometry itself has been described as
death by a million papercuts. Every telescope and every observation is slightly different
in annoying little detail. Kern and Glendenning’s remarks on the ALMA pipeline allude
to some of this difficulty and show that an army of 20 FTEs is one way of developing the
necessary pipeline heuristics to stave off such a death.

A second aspect is that the mere process of software installation (not even considering
interoperability) has often been death by another million papercuts. Software design and
engineering are easy to get into but hard to do well, and authors of astronomy software
tend to be astronomers, rather than professional software engineers. As a result, widely
used packages have different and confusing build systems and a tangled (and sometimes
contradictory) web of dependencies. Just getting all the software components built and
running on one machine has, in the past, been a major job. Reproducing the same setup
on a different system would often start from square zero. Moreover, all of this has to
happen before one can even starts thinking about pipeline heuristics!

It is this second aspect of the problem to which the author of the present work hopes
to make a modest contribution. If the existing software pieces were easier to put together,
perhaps more astronomers’ time would be available to solve the truly interesting parts
of the pipeline problem13.

13One should note that, of the recent software efforts described above, CARACal is the first attempt
at a user-facing pipeline that extensively uses the technologies and ideas developed in the course of this
work. It will be interesting to see whether it proves any more successful than previous efforts!

Chapter 2

Fundamentals

29

CHAPTER 2. FUNDAMENTALS 30

The aim of this chapter is to introduce some of the key concepts and the notation
encountered in radio astronomy. These aspects are addressed informally in the chapter
and we refer to Hamaker, Bregman, et al. (1996a), Smirnov (2011a), and Thompson et al.
(2017) for full details.

2.1 Electromagnetic radiation

Astronomy is the scientific field that studies celestial objects and phenomena. Radio
astronomy focuses on objects that emit electromagnetic energy at lower (radio) frequen-
cies. As radio waves cannot be observed with the human eye, it was only in the 20th
century that it was realised that there is a wealth of study material in the lower frequency
electromagnetic emission originating from outside the atmosphere. It is not surprising it
took humans so long to discover these emissions. Before we can construct an image of
the radio sky, a tremendous amount of engineering, computation, mathematical insight
and precision is required.

Radio telescopes can observe celestial objects from within the earth’s atmosphere
between the frequencies of approximately 10 Mhz (30 m) and 1 THz (0.3 mm). At
higher frequencies, we enter the infrared domain. The absorption of infrared radio waves
by molecules such as water vapor and CO2 makes the atmosphere opaque to telescopes
operating at frequencies above approximately 1 THz. Optical astronomy, for example,
is more affected by atmospheric absorption than most telescopes operating in the radio
window. As a result, optical telescopes need to be constructed at higher altitudes where
the atmosphere is less distorting. On the other hand, at much lower frequencies, the
ionosphere is troublesome, since it contains free electrons that distort radiation coming
from outside the atmosphere. Fortunately, within the 10 Mhz - 1 THz window, obser-
vations are less sensitive to atmospheric distortions. This means that, for example, a
useful radio telescope such as LOFAR can also be built at sea level in a country like the
Netherlands, while a useful optical telescope cannot, or not without major limitations.
It is also significantly cheaper to construct and easier to operate than a telescope in
high-altitude, remote locations. In addition, the window of frequencies that is relatively
unobstructed by the atmosphere is much wider for radio telescopes.

To understand how a radio map is created, it is crucial to understand what a radio
telescope measures. Astronomical observations all aim to infer the physical properties of
celestial objects.

Consider the situation in Fig. 2.1, which depicts the observation of radio emission
from an astronomical source. This can be described as:

dP = Lν cos (θ)dΩdAdν, (2.1)

where dP is the power (W) intercepted by the surface area dA (m2) of the source element
dΩ (sr) in the bandwidth dν (Hz). Note that these equations are only valid if the source
of emission is sufficiently far away that the emission arrives at the receivers as plane
waves.

The specific brightness Lν is then defined as:

Lν =
dP

cos (θ)dΩdAdν
, (2.2)

CHAPTER 2. FUNDAMENTALS 31

Figure 2.1: Relationship between solid angle dΩ, surface area dA and θ, the angle between
the line normal to dA and the centre of dΩ. Image taken from Rohlfs and Wilson (2013).

Emission Frequency Description
1.6 KJy 1.4 GHz Cygnus A, the closest extragalactic radio source

2 KJy 10 GHz The Milky Way
1.6 MJy 1.4 GHz The sun

4 MJy 10 GHz The sun

110 MJy 1.8 GHz Radio-frequency interference from a GSM tele-
phone transmitting 0.5 W at a distance of 1 km

Table 2.1: A list of sources, their emission at the indicated frequency, as in Kraus (1986).

in units of W m−2 Hz−1 sr−1. Integrating over the solid angle we obtain the flux
density (Sν):

Sν =

∫
Ω
Lν cos (θ)dΩ (2.3)

in units of Wm−2 Hz−1. Since radio signals from astronomic objects are usually ex-
tremely weak, radio astronomers commonly measure the flux density in units of Jansky
(Jy) defined as

1 Jy = 10−26 Wm−2 Hz−1. (2.4)

Table 2.1 lists some well-known sources and their flux densities. The last row in
the table clearly shows that artificial sources can be orders of magnitude stronger than
natural sources. Such unwanted interference is commonly referred to as radio frequency
interference (RFI) and has to be removed from the data, a topic that we will not elaborate
on further in this thesis.

Astronomers often refer to the brightness temperature of a source even when the
radiation is not of thermal origin (e.g. synchrotron radiation) (Thompson et al., 2017).

CHAPTER 2. FUNDAMENTALS 32

This assumes that the emitter is a black body operating in the regime where Rayleigh-
Jeans approximation holds, i.e. hν � kbT , where h is the Planck constant, kb is the
Boltzmann constant and T is the temperature of the black body. In this regime, the
brightness (specific intensity) is:

Lν =
2ν2kbT

c2
, (2.5)

where it should be noted that Lν does not necessarily have a thermal origin. The source
temperature Tsrc is defined as the brightness temperature associated with the power
received by the telescope from the source under observation:

Pν =

∫
A

∫
Ω
LνdAdΩ (2.6)

=

∫
A

∫
Ω

2kTsrc
λ2

dAdΩ (2.7)

= 2kTsrc. (2.8)

The last step can be made using the antenna theorem (Siegman, 1966), which states
that dAdΩ = λ2. Once a link has been made between the power Pν received by the
antenna at a given frequency, the source temperature Tsrc, and the observed intensity
Lν , we can proceed with the conversion between flux density and brightness temperature
for an unresolved source:

Pν = LνAeΩa (2.9)
2kTA = SνAe (2.10)

TA =

(
Ae
2k

)
Sν , (2.11)

(2.12)

where Ae is the ‘effective area’. Ae is described as Ae = ηaAp, where ηa is the aperture
efficiency and Ap is the projected area of the telescope. The conversion between K and
Jy, also known as the ‘forward gain’ of an antenna, now becomes:

K/Jy =
Ae
2k
. (2.13)

In effect, brightness temperature is just another measure to describe the brightness
of a source. The source temperature Tsrc describes the energy received from the source
we are interested in; the system temperature Tsys describes the actual power received as
a function of both the sky (Tsky) and the receivers (TRx):

Tsys = Tsky + TRx. (2.14)

The dominant component is the receiver temperature, TRx, which comes from the thermal
noise from the receiver electronics. Depending on the observation frequency, receivers
can be cooled to reduce TRx. Tsky describes the power generated by everything in the
sky that we do not want to observe. This includes background sources, water vapor in
the atmosphere, galactic backgrounds and more. In order to detect the target source,

CHAPTER 2. FUNDAMENTALS 33

we need Tsrc > Trms, where the observation-dependent quantity Trms is the noise in our
measurement of the observation-independent quantity Tsys:

Trms =
Tsys√
N
, (2.15)

where N is the number of independent data points. For a telescope operating in the
radio regime, the number of independent samples is equal to ∆ν · τ , where ∆ν is the
bandwidth (in Hz) and τ is the integration time in seconds (Thompson et al., 2017).
This gives us:

Trms =
Tsys√
τ∆ν

. (2.16)

Now we can write down the the radiometer equation, an expression for the signal-to-
noise ratio:

S

N
=

Tsrc
Trms

=
Tsrc
Tsys

√
τ∆ν. (2.17)

A typical value for ∆ν is 10 MHz and for τ it is 1 sec, which makes
√
τ∆ν ∼ 3× 103.

Tsys is usually between 40 − 200K. Now, the system equivalent flux density (SEFD) is
the flux density equivalent of Tsys:

SEFD =
Tsys

(K/Jy)
=

Tsys
Ae/2k

=
2kTsys
Ae

. (2.18)

The SEFD is useful for comparing the sensitivity of two different systems, as it contains
both Tsys and Ae. Furthermore, the sensitivity calculation is simplified, since if the flux
of the observed source and the SEFD are both known, then the required integration time
to make a given S/N detection is calculated as follows:

S

N
=
Sν(Jy)

SEFD

√
τ∆ν. (2.19)

If we substitute for S in the temperature-based radiometer equation the following ex-
pression for the RMS variations in flux density Sν,rms is produced:

Sν,rms =
SEFD√
τ∆ν

. (2.20)

In the temperature-based radiometer equation, signal-to-noise will go up with increased
∆ν and τ , while in the flux-density-based radiometer equation, RMS flux density varia-
tions will go down with increased ∆ν and τ .

The use of temperature in previous equations is convenient because it provides the
means to relate signals to the actual power received by a telescope. Before going into
these details, we next consider how radio signal are measured in practice.

2.2 Interferometry

The diffraction limit places an upper bound on the maximum amount of detail that can
be distinguished when making electromagnetic observations. This limit, the so-called
angular resolution θ (in radians) of a telescope, is given approximately by:

CHAPTER 2. FUNDAMENTALS 34

θ ≈ 1.22
λ

D
, (2.21)

where λ is the observed wavelength and D is the diameter of the aperture. The 1.22
coefficient is based on the intensity of diffracted light from a circular aperture (in the
Fraunhofer limit), which is derived using a Bessel function of the first kind, of order
one. The constant may be different for different aperture shapes, but the λ

D relationship
remains the same.

To distinguish two points, they need to be separated by an angle larger than θ. For
example, at an optical wavelength of 500 nm, this means a three-metre dish would be able
to distinguish sources separated by approximately 2× 10−7 rad (≈ 0.05 arcseconds). To
reach the same resolution when observing neutral hydrogen H1 emission (λ ≈ 0.021 m)
we would need a dish with a diameter of more than 100 kilometers. The radio telescope
with the largest diameter ever constructed is the 500-metre aperture spherical telescope
(FAST) (Peng et al., 2001). A telescope of this scale is already extremely complex to
build, comes at great financial costs and has a significant negative ecological impact.
Building larger telescopes on earth is impractical and eventually becomes impossible as
we near the structural limits imposed by material science. Fortunately, it is possible to
synthesise a larger telescope from multiple smaller telescopes using a technique called
interferometry.

Aperture synthesis

A radio interferometer is an array of radio antennas that are used simultaneously to
simulate a discretely-sampled single telescope of very large aperture. The maximum
angular resolution of such a telescope depends on the distance between the two antennas
with the largest separation. Each pair of antennas in the array is called a baseline. The
number of unique baselines Nb for an array of N antennas is Nb = (N2−N)/2, excluding
auto-correlations. The angular resolution of an interferometer is defined by:

θ ≈ 1.22
λ

Bmax
, (2.22)

where Bmax is the maximum baseline.
Let us consider the simplified case where we have only two antennas p and q, depicted

in Fig. 2.2. The antennas are at positions rp and rq respectively. An astronomical source
emits emission e from direction s, which arrives at the two antennas separated by a
separation vector or baseline

b = rp − rq. (2.23)

As mentioned before, the source is sufficiently distant so we can safely assume the
emission arrives at the antennas as plane waves. This means when a wavefront arrives
at rq at time t, the same wavefront will arrive at rp at time t+ τg. The geometric delay,
τg, resulting from the difference in path length traversed by the signal, can be computed
with

CHAPTER 2. FUNDAMENTALS 35

Figure 2.2: A basic interferometer with two antennas

τg = b · s/c, (2.24)

where c is the speed of light in a vacuum (2.99 × 108 ms−1) and s is a unit vector
directed at the source. Thus it is possible to compensate for the difference in path length
traversed by the signal by artificially retarding the signal at rq by τg. To see how this is
done we need to first look more closely at what is actually measured by an interferometer.

Interferometers actually only have access to the voltage induced across the feeds of
its receivers. The signal, an electric field e, is an incident plane wave and so can be
described by a 2 dimensional complex vector (see Hamaker, Bregman, et al. (1996b) and
Smirnov (2011a) for example). When using an orthonormal xyz coordinate system with
z along the direction of propagating, e can be represented as

e =

[
ex
ey

]
, (2.25)

where each of ex and ey are complex numbers representing the amplitude and phase
of the incident wave in these respective directions. The voltage, v, induced across the
feeds will be related to e via a 2× 2 (R. C. Jones, 1941), J , so that

v =

[
vx
vy

]
= Je. (2.26)

For the sake of simplicity here, we consider only a single component of this vector
v = vx. Now, we can write the voltage at antennas p and q, vp and vq respectively, as

vp(rp, ν, tp) = εp(s, ν, tp)e
−ıωtp , (2.27)

CHAPTER 2. FUNDAMENTALS 36

and

vq(rq, ν, tq) = εq(s, ν, tq)e
−ıωtq , (2.28)

where ε is the amplitude, φ = ωt is the phase of a plane wave with angular frequency
ω. If we now form the correlation between vp and v∗q we find

vpq = 〈vp, v∗q 〉 = 〈εpεq〉e−ıωτg , (2.29)

where angle brackets denote averaging over time, a superscript ∗ denotes the complex
conjugate and we have used the fact that tq = tp−τg. Thus it is evident that, given suffi-
cient information about the Jones matrices Jp and Jq, it is possible to recover information
about the signal from the quantity vpq. This is the essence behind aperture synthesis.
By placing multiple antennas at different locations we can measure correlations between
the induced voltages across distances much larger than the diameter of a single dish. If
the feeds are ideal (i.e. Jp = Jq = I) and the source amplitude does not change over
time (i.e. εp = εq = A), we simply recover

vpq = A2e−ıωτg , (2.30)

which is a complex sinusoid as a function of τg, which depends on the relative positions
between antennas p and q. This is the simplest form of a visibility function. It describes
what an ideal pair of antennas located b apart would measure if there was only a single
source in direction s. We now need a convenient coordinate system in which to express
b and s.

The (u, v, w) coordinate system

In order to relate the visibility function Eq. (2.29) to the properties of the source we
first need to introduce a coordinate system. A convenient way to do this is to introduce
a Cartesian coordinate system XY Z relative to standard equatorial coordinates (H, δ)
where H denotes hour angle and δ declination (Thompson et al., 2017). Using the
convention that X points towards (0h, 0), Y due east towards (−6h, 0) and Z towards
the celestial north pole (δ = 0), we can then define the components of any baseline vector
in the XY Z coordinate system, i.e. b = (bx, by, bz). Now suppose that the interferometer
points towards the reference direction s0 = (H0, δ0). Then, defining (u, v, w) coordinates
such that uv

w

 =

 sinH0 cosH0 0
− sin δ0 cosH0 sin δ0 cosH0 cos δ0

cos δ0 cosH0 − cos δ0 sinH0 sin δ0

bx/λby/λ
bz/λ

 , (2.31)

defines a plane relative to s0 where u and v span the plane and w is orthogonal to it. As
illustrated in Figure 2.3, we can now specify an arbitrary position on the celestial sphere
relative to s0, s′ = s − s0 say, using the direction cosines (l,m, n =

√
1− l2 −m2) of

(u, v, w) i.e.

s′ =s− s0, where s =

 lm
n

 , s0

0
0
1

 . (2.32)

CHAPTER 2. FUNDAMENTALS 37

Figure 2.3: The (l,m, n) and (u, v, w) coordinate system used to express source brightness
distribution and interferometer baselines, respectively. Image taken from G. B. Taylor
et al. (1999).

Then, given the relative coordinates of an arbitrary pair of antennas as bpq = (upq, vpq, wpq),
we can rewrite Eq. (2.30) for an arbitrarily located pair of antennas and (single) point
in the sky as

v(upq, vpq, wpq) = Ie−2πı ν
c

(upql+vpqm+wpq(n−1)), (2.33)

where we have introduced the positive quantity I = A2, a property of the source which
we have assumed to be constant in time.

Thus far we have over-simplified the discussion. In practice, antenna feeds are not
ideal so it is, in general, not possible to consider only a single component of v. In addition,
Jones matrices describing transformations of the signal as it goes from source to observer
may also vary over time and frequency. In practice, this means the averaging interval in
Eq. (2.29) has to be small enough so that the Jones matrices are approximately constant
across it. Furthermore, there are actually multiple sources contributing to the visibilities
and these have to be combined in a meaningful way. All these effects can be accounted
for using the Radio interferometer measurement equation (RIME) (Hamaker, Bregman,
et al., 1996b; Smirnov, 2011a).

The radio interferometer measurement equation

We now go back to the more realistic signal propagation model Eq. (2.26). One of
the fundamental assumptions underpinning the RIME is that all transformations of the
signal along its path of propagation are linear. As a result, multiple transformations of
the signal can be described as consecutive applications of Jones matrices in a model of

CHAPTER 2. FUNDAMENTALS 38

the form

v =JnJn−1 · · ·J1e = Je, (2.34)

where the numbering corresponds to the order in which the transformations are applied1.
Next we define the visibility matrix, Vpq, as the average of the outer product between the
voltages measured by two spatially separated antennas i.e.

Vpq = 2〈vp,vHq 〉, (2.35)

where p and q label antennas, a superscript H denotes complex conjugate transpose and
the introduction of the factor two is for convenience as explained in Smirnov (2011a).
Using Eq. (2.34) we can now rewrite Eq. (2.35), as

Vpq = 2
〈
Jpe (Jqe)H

〉
= 2

〈
Jp
(
eeH

)
JHq
〉
, (2.36)

where Jp and Jq denote the total Jones matrices of antennas p and q respectively. As-
suming that Jp and Jp are constant over the averaging interval, or that the averaging
interval is small enough so that they can be considered constant, both can be pulled out
of the averaging operator to get

Vpq = 2Jp
〈
eeH

〉
JHq = 2Jp

[
〈exe∗x〉

〈
exe
∗
y

〉
〈eye∗x〉

〈
eye
∗
y

〉]JHq . (2.37)

As described in Hamaker, Bregman, et al. (1996b) the quantities in angle brackets can
be related to the Stokes parameters (Born and Wolf, 1964). For example, for linear feeds,
we can write these in terms of the brightness matrix B as

B = 2

[
〈exe∗x〉

〈
exe
∗
y

〉
〈eye∗x〉

〈
eye
∗
y

〉] =

[
I +Q U + iV
U − iV I −Q

]
. (2.38)

This brings us the RIME for a single point source, which can be written as:

Vpq = JpBJHq . (2.39)

Eq. (2.39) describes the relationship between the observed visibilities Vpq with the
source brightnessB, and the per-antenna Jones terms Jp and Jq. To incorporate multiple
discrete sources we can simply sum their contributions i.e.

Vpq =
∑
s

Jp,sBsJ
H
q,s, (2.40)

where s labels the source. Then, the phase difference induced by the geometric delay
Eq. (2.24) can be accounted for with a combined Jones matrix of the form

Kpq,s = e−2πı ν
c

(upqls+vpqms+wpq(ns−1))

[
1 0
0 1

]
, (2.41)

1It is important to note that the order is essential, since matrix multiplication is not commutative in
general.

CHAPTER 2. FUNDAMENTALS 39

where, since the individual scalar matricesKp,s andKq,s commute, they can be combined
into a single matrix that can be placed anywhere in the chain. This allows us to write
Eq. (2.40) as

Vpq =
∑
s

Jp,sBsJ
H
q,se
−2πı ν

c
(upqls+vpqms+wpq(ns−1)). (2.42)

To incorporate a continuous brightness distribution B(l,m), it is necessary to replace
the summation by an integral over the unit sphere, i.e.

Vpq =

∫
Jp(l,m)B(l,m)JHq (l,m)e−2πı ν

c
(upql+vpqm+wpq(n−1))dldm

n
, (2.43)

where we have used dΩ = dldm
n to write the integration over the sphere in terms of l and

m. This is the continuous form of the RIME that describes the measurement process of
an interferometer. Since we are treating the sky as fixed with the earth rotating under it,
the baseline coordinates change with time in a way dictated by Eq. (2.31). As the earth
rotates, the baselines trace out ellipses, a process commonly referred to as earth rotation
synthesis. In addition, the individual Jones matrices can change over time in a non-
trivial way. It is by now customary to separate the Jones terms into direction-dependent
and direction-independent terms. Recall that the order in the Jones chain needs to be
preserved, as matrices do not, in general, commute. Splitting the Jones matrices as

Jp(l,m) = GpEp(l,m), (2.44)

where Gp describes DIEs and Ep(l,m) DDEs, then reflects the fact that DIEs tend to
be instrumental effects that happen close to the receiver, whereas DDEs tend to describe
transformations happening closer to the source (atmospheric distortions for example).
We can then go a step further and write Eq. (2.43) as

Vpq = Gp

∫
Ep(l,m)B(l,m)EH

q (l,m)e−2πı ν
c

(upql+vpqm+wpq(n−1))dldm

n
GH
q . (2.45)

We will look at this form of the RIME in more detail when we discuss calibration in
Section 2.4. For the moment, things are simplified somewhat further in an attempt to
gain deeper insight into the nature of the mapping Eq. (2.45). Firstly, assuming that the
DIEs are trivial (i.e. the identity), and that there are no atmospheric effects corrupting
the signal, the only Jones terms that remain are the direction-dependent sensitivity
patterns of the antennas, also known as the primary beam pattern. These will be given
by the instantaneous Fourier transforms of the individual dish aperture functions, which
we assume to be fixed and known for each antenna in the array. Doing so, we can write
down the Mueller form of Eq. (2.45) (Hamaker, Bregman, et al., 1996a) as

Vpq =

∫
Ep ⊗E∗qvec(B)e−2πı ν

c
(upql+vpqm+wpq(n−1))dldm

n
GH
q , (2.46)

where ⊗ denotes the Kronecker product Murnaghan (1938), vec(·) vectorises matrices
by stacking columns and we have left the dependence on l and m implicit for notational
convenience. The 4× 4 matrix defined by

CHAPTER 2. FUNDAMENTALS 40

Mpq = Ep ⊗E∗q , (2.47)

is known as the Mueller matrix (R. C. Jones, 1947). The diagonal terms of this ma-
trix can, roughly speaking, be related to the instrumental response to the individual
Stokes parameters. For an ideal unpolarised interferometer observing an unpolarised
source, only the first and last diagonal elements will be non-zero and will describe the
instruments’ sensitivity to the total intensity

I = 〈|ex|2 + |ey|2〉. (2.48)

Combining these terms and assuming that all antennas are identical (so that they have
the same primary beam patterns), we finally arrive at the renowned van Cittert-Zernike
(vCZ) theorem (Zernike, 1938)

V (u, v, w) =

∫
A(l,m)I(l,m)e−2πı ν

c
(ul+vm+w(n−1))dldm

n
, (2.49)

where A(l,m) represents the combined sensitivity to the total intensity, also sometimes
referred to the power beam. In going from Eq. (2.43) to Eq. (2.49), we have made a number
of crucial simplifying assumptions. In particular, our assumption that all antennas share
the same (stationary) primary beam patterns means thatA(l,m) is baseline-independent,
something which is never really true in practice. That being said, Eq. (2.49) is a valu-
able theoretical tool that can be used to understand how Eq. (2.49) can be inverted to
reconstruct the thing we are really interested in: creating an image I(l,m) of the sky.

2.3 Image reconstruction

We can now describe how radio maps are actually made, at least in the un-polarised
case. In practice, since all computations eventually have to be evaluated numerically
on a computer, the measurement operator Eq. (2.49) is implemented by discretising the
image I(l,m) into pixels. If we also assume Gaussian noise during the measurement
process, the discretised measurement operator can be written as

V = RI + ε, where ε ∼ G (0,Σ) , E
[
εεH
]

= Σ, E
[
εεT
]

= 0, (2.50)

where R is a discretisation of the linear mapping defined by Eq. (2.49), I ∈ RN is a
discretisation of the image into N pixels and ε is a realisation of Gaussian noise described
by the zero mean circularly complex Gaussian distribution with covariance Σ. Note that
our definition of R may include the assumed known quantity A(l,m). If this term is
omitted the algorithm reconstructs the apparent image, i.e. the image attenuated by the
power beam A(l,m)I(l,m).

An interferometer with Na antennas measures V ∈ CM data points (some of which
may be redundant) withM = NtNνNa(Na−1)/2 where Nt is the number of time stamps,
Nν the number of frequency channels of the observation and Na(Na−1)/2 is the number
of antenna pairs, excluding auto-correlations. Therefore, a naive implementation of the
measurement operator would cost O (MN) in time and storage corresponding to a matrix
multiplication with M ×N matrix R. This is not usually feasible, even for modest data
and image sizes. It is possible to drastically reduce the time and memory complexity by
making use of the approximate Fourier relationship of Eq. (2.49). To be able to do this,

CHAPTER 2. FUNDAMENTALS 41

note that, when w ≈ 0 or n� 1, the final term in the exponent of Eq. (2.49) is negligible.
In this case, the mapping Eq. (2.49) corresponds, approximately, to a two-dimensional
non-uniform Fourier transform and the measurement operator can be approximated using
the non-uniform Fast Fourier Transform (NUDFT) (Bagchi and Mitra, 2012; Gentleman
and Sande, 1966). Combined with w-stacking (Offringa, McKinley, et al., 2014) or
w-projection (Cornwell, Golap, et al., 2008) techniques, this means the measurement
operator can be approximately implemented with a complexity of O (jM +N log2N)
where j is the support of the convolution kernel used for gridding and degridding.

As the uv-plane is only partially sampled, the image reconstruction problem from
Eq. (2.50) is ill-posed. Thus it is not possible to invert Eq. (2.50) directly and some
additional prior information is required to regularise the problem. The most common
approach uses sparsity-promoting priors (e.g. the Laplace prior) to promote sparsity in
some appropriate dictionary of functions, for example I = Ψα. In this case, the problem
can be solved by minimising an energy function of the form

Φ(I) = − log(P (V, I)) ∝ (V −RI)†Σ−1 (V −RI) + λ‖Ψ†I‖1, (2.51)

where P (V, I) is the joint probability of data and signal and ‖Ψ†I‖1 is the l1 norm of
the image projected onto the space of the dictionary (typically some wavelet basis; the
exact details are not of concern here), and λ is the strength of the regulariser relative
to the data fidelity term. Importantly, any iterative image reconstruction algorithm will
have to implement the measurement operator R multiple times. Since data rates from
modern interferometers are approaching the PetaByte scale, the number of times that
an algorithm has to apply the measurement operator can become a prohibitive factor in
algorithm design. Fortunately, because of the Fourier-like nature of Eq. (2.50), there is
a fast approximation of Eq. (2.51), which can yield significant computation performance
improvements. The approximation relies on projecting the data fidelity term into image
space by noting that

(V −RI)†Σ−1 (V −RI) = V †Σ−1V − 2I†R†Σ−1V + I†R†Σ−1RI, (2.52)

≈ V †Σ−1V − 2I†ID + I†IPSF ∗ I, (2.53)

where ID = R†Σ−1V is known as the dirty image and IPSF = R†diag(Σ−1) is the PSF
of the instrument and, because of the approximate Fourier nature of the measurement
operator, we can approximate the operator R†Σ−1R as a convolution with the PSF.
Taking the gradient of Eq. (2.53) and setting it to zero we find

ID = IPSF ∗ I, (2.54)

i.e. we recover the familiar result that the dirty image is simply the model convolved
by the PSF. It is important to realise the significance of Eq. (2.54), as Chapter 6 is based
on this principle. This is why the interferometric imaging problem is often referred to as
a deconvolution problem, but it has to be understood that this is an approximation that
becomes worse with increasing field of view (FOV) and increasing spread in w coordinate
2. Historically, this problem has been solved by using the idea of major and minor cycles
(as was done for the Cotton-Schwab CLEAN algorithm (Schwab, 1984)). The main

2This approximation becomes exact only when there are not DDEs (eg. w-term) present.

CHAPTER 2. FUNDAMENTALS 42

idea here is to utilise the image space approximation Eq. (2.53) some of the time (the
so-called minor cycle) but also to reconsider the full data occasionally to compute the
mismatch between model and data more accurately. Such an approach, the precise details
of which are again not relevant here, can significantly reduce the number of evaluations
of the full measurement operator. However, we should be aware that any approach that
exclusively utilises the image space approximation Eq. (2.53) during the model update
step might never converge exactly to the minimum of Eq. (2.51) and may limit the
obtainable dynamic range.

In Chapter 6, we evaluate a deep neural network approach, which uses the approxi-
mation Eq. (2.53) in an attempt to solve this problem in an efficient way. However, as
discussed in Subsection 2.2, raw interferometric data is usually corrupted by instrumen-
tal and atmospheric affects. Calibration is therefore required before any imaging can be
performed.

2.4 Calibration

Generally, calibration can be thought of as adjusting a measurement process so that
an instrument responds as expected to a known model. For radio interferometers this
is usually achieved using successive refinements of the model in Eq. (2.45), or some
discretisation thereof. This is particularly difficult when observing celestial objects since
it places us in a classic "chicken and egg" situation, i.e. we do not usually have a perfectly
known model to calibrate with in the first place. In this section we give a brief overview
of the steps required to calibrate radio interferometers. We will restrict the discussion
to calibration of dish based tracking telescopes but there are similar considerations for
phased array feeds, for example.

Reference calibration

Usually, whenever we embark on a new observation, only a few bright sources in the vicin-
ity of the target field are known. Because of their relative strength compared to most
other sources in the field, they completely swamp the visibilities. If they are sufficiently
stable in time and we know enough about them (eg. known position, frequency depen-
dence (spectrum) and polarisation structure) they can be used to start the calibration
process. Ignoring all other sources in the field, we have, from Eq. (2.39), a measurement
model of the form

Vpq = JpMpqJ
H
q + ε, (2.55)

where Mpq = BKpq is known as the source coherency and we recall that Kpq is the
scalar phase delay matrix. If we again assume Gaussian noise, calibration consists of
finding the Jones matrices Jq and Jp that minimise

χ2 =
∑
pq

‖Vpq − JpMpqJ
H
q ‖F , (2.56)

where ‖·‖F denotes the Frobenius norm (Golub, 1968). Since there are more baselines
than antennas, this usually results in an over-determined optimisation problem, which
can be solved using for example non-linear least-squares. However, since the model is not
perfect, some care has to be taken to prevent the algorithm from over-fitting which, in

CHAPTER 2. FUNDAMENTALS 43

this context, means mistaking some unmodelled signal (or the unwanted RFI mentioned
in Section 2.1) for noise. This can be achieved by prescribing a parametrisation for the
Jones matrices, which corresponds to the physical effects we expect to be present in the
data and only solving for these effects. We might, for example, specify a model of the
form

Jp = Gp(t)Bp(ν)Γp(t, ν), (2.57)

where we restrict Gp to be a complex diagonal matrix that only depends on time, Bp(ν)
is a complex 2 × 2 matrix which only depends on frequency and Γp(t, ν) is further
parametrised as

Γ =

[
eı(a(t)ν+b(t)) 0

0 eı(c(t)ν+d(t))

]
. (2.58)

The parametrisation Eq. (2.57) attempts to parametrise certain instrumental effects.
For example, the Γ term can account for delay errors (eg. incorrect cable length when
steering the telescope). The diagonal part of B models the overall frequency response of
the antenna feeds (bandpass) to incoming electromagnetic radiation. Similarly, the off-
diagonal terms can model leakages between feeds. Both of these effects are expected to be
stable in time. Finally, the G term can describe the time dependence of the instrumental
gain.

In general, there can be many different effects to account for and these depend on a
number of factors, for example the frequency of the observation and the type of interfer-
ometer being calibrated. The more complicated we make the model, the more parameters
are introduced, meaning that more signal is required to be able to solve for all of them.
Thus, because of the scarcity of bright, well-modelled compact sources, there are practical
limitations on how accurately an interferometer can be calibrated using only calibrator
sources. In particular, since the frequency response of an instrument can be quite vari-
able, there are only a handful of sources that can be used for bandpass calibration. These
sources are sometimes referred to as primary calibrators and, for most observations, these
are usually situated quite far away from the target field. As a result, observations usually
consist of multiple scans where, during calibrator scans the instrument tracks calibrators
and during the target scan it is pointing squarely at the field of interest, which is the
target field. These scans have to be combined in a way that results in us being able to
calibrate the observation. For example, it is not uncommon for an observation to start
and end with scans of very bright primary calibrators, which can be used to infer effects
that do not change quickly over time, eg. bandpass and leakages. Unless the primary
calibrator is very close to the target field, it is also usually necessary to observe objects
that are closer to the target field to capture the time variation of the Jones matrices.
These objects, known as secondary calibrators, are usually dimmer and astronomers do
not necessarily have good models for them.

The previous discussion focuses on using external or reference sources to calibrate
the instrument. Since the Jones matrices are dependent on time (and the sources are
in a different position in the sky), the solutions derived from these calibrator scans are
not necessarily valid for the target field. To derive solutions for the target field, it is
customary to interpolate these solutions across scan boundaries. It is then possible to
roughly correct the data for the target field by applying the inverse of the interpolated
solutions as

CHAPTER 2. FUNDAMENTALS 44

V ′pq = J−1
p Vpq[J

H
p]−1, (2.59)

where V ′pq then gives the corrected data. The above procedure is sometimes called cal-
ibrator transfer or first-generation calibration (1GC) (Noordam and Smirnov, 2010).
It provides a starting point for calibrating the target field in a process known as self-
calibration.

Self-calibration

Armed with an approximately correct model for the telescope we can finally move on
to the target field. Self-cal (Pearson and Readhead, 1984), is a technique that enables
obtaining calibration solutions for the target field in an iterative manner. The process
starts by imaging the corrected data Eq. (2.59) to obtain an approximate model for the
target field. Since the solutions derived during 1GC are not perfect, these models usually
contain calibration artefacts and only the brightest features in the derived maps can be
assumed to be correct. If we were to rerun the calibration using these maps, there is a
significant risk of biasing the calibration solutions in a way that enhances artefacts. On
the other hand, if only the brightest features in the map are included in the model, there is
a risk of absorbing some of the unmodelled flux into the calibration solutions. Fortunately,
the calibration problem is usually over-determined with the number of degrees of freedom
in the data usually about Na times the number of parameters, at least in the direction-
independent case. This, combined with the fact that we expect the Jones matrices to
be smooth functions of time, frequency and direction, implies that the latter option is
usually the safer route. And, the more parameters we include in the model, the fewer
the effective degrees of freedom and the easier it becomes to take into account the model
flux into the calibration solutions. Thus, it is customary to first perform direction-
independent self-cal, or in the language of Noordam and Smirnov (2010), 2GC. The idea
behind 2GC is to successively enhance the calibration solutions and model by alternating
between making images of the corrected data obtained using Eq. (2.59), and then using
the brightest features in this model to recalibrate the data. The steps can be summarised
as follows:

1. Image and deconvolve the corrected data obtained by applying the gain solutions
to the data using Eq. (2.59).

2. Select the brightest features in the map, compute the model visibilities and recali-
brate using a model of the form Eq. (2.45).

3. Repeat until there is no significant improvement in the model.

While this procedure has been shown to be quite successful in practice, the model
that results from it is still corrupted by DDEs. The process of correcting for DDEs during
self-cal is know as 3GC. From the above discussion about the dangers of increasing the
number of degrees of freedom, it should be clear that correcting for direction dependent
effects is a subtle process that can lead to flux absorption and ghosting (Grobler et al.,
2014; Wijnholds et al., 2016). Thus, 3GC is usually only performed when an experienced
astronomer spots that there are actually DDEs corrupting the data and special care is
required to limit the number of parameters of the model. At present, this remains largely
a dark art, and no formal quantitative criteria have been developed. This is typically

CHAPTER 2. FUNDAMENTALS 45

done by manually isolating troublesome sources (usually corresponding to the brightest
sources in the field), computing per source model visibilities and using the model given
by Eq. (2.40) to solve for the gains in the direction of the troublesome sources. Unlike
DIEs, DDEs cannot be used to form corrected data. Instead, these sources are usually
subtracted from the data (Noordam and Smirnov, 2010). The remaining data can then
be imaged to obtain a final map of the target field.

Chapter 3

KERN

46

CHAPTER 3. KERN 47

3.1 Introduction

The installation of scientific software for use in astronomy can be notoriously challenging.
The radio astronomy community has a limited number of dedicated software engineers
and often lacks the human resources to dedicate to industrial-quality software develop-
ment and maintenance. It is not uncommon that poorly written and maintained software
packages of high complexity are used by scientists around the world, as these provide
some set of algorithmic features not available elsewhere. These packages are often difficult
to install and compile, since they have not been created with portability in mind.

To prevent repetition, frustration and mistakes during the tedious task of software
installation, a more organised structure is desired. In this chapter, we describe KERN,
which deals in detail with the described issues. KERN is the name of the project to
structure and automate the packaging of scientific software. The main deliverable is
the KERN suite, a bi-annually released set of third-party open-source scientific software
packages. This relieves the astronomers from the problem of working out installation
procedures and enables focus on the relevant science.

The primary goals of the KERN project are: to make it easier to install the scien-
tific software, to supply a consistent working environment to a scientist and to improve
interoperability and interchangeability.

Because of human resource limitations, we target KERN at one operating system
and distribution. This is unfortunate, but recent development and adaptation of con-
tainerisation technology make it easier to deploy packaged software on most platforms.
Limiting us to only one platform enables us to focus on performing the packaging only
once, and to do this well. The choice of this one platform is then based on install base
(desktop, server) and ease of use for user and developer (package creator).

The people who would benefit most from the KERN project are:

• the astronomer, who is interested in using the software bundled with KERN,

• the developer, who wants his radio astronomy software available to a wider range
of users and

• the system administrator, who is setting up systems intended to be used for radio
astronomical data reduction.

The name KERN means ‘core’ in Dutch and Afrikaans.

3.2 The target platform

A quick look around various astronomy institutes and universities shows that GNU/Linux
and OS X are the most frequently used personal computing platforms. On the server side
it is without question GNU/Linux. Compared to OS X, GNU/Linux is an open-source
and a freely available platform, which is also a clear advantage. These facts combined
result in the choice of Linux as the KERN platform.

However, further consideration was required before selection of the most suitable plat-
form. There are numerous variations of GNU/Linux distributions, with different design
philosophies and varying packaging formats. The most popular distributions can be split
into two groups, RPM (Red Hat Package Manager) package and Debian package-based
distributions. There is no major advantage or disadvantage to either package format.

CHAPTER 3. KERN 48

Although there are diverse local trends, it is our experience that in the South African
radio astronomy community, the majority of frequently used platforms are Debian-based,
specifically Ubuntu LTS. This distribution also appears to enjoy popularity worldwide.
Therefore, it was the most logical choice as KERN’s target platform.

3.3 Other packaging methods

In this section we discuss other packaging systems available to us, and discuss their
relationship to KERN.

Anaconda

A packaging effort named Anaconda is currently gaining popularity. Anaconda is a cross-
platform set of scientific software, with a focus on Python. It supports GNU/Linux, Win-
dows and OS X. OS X is also often used as a desktop environment in radio astronomy.
Supporting OS X would be advantageous for many end users. We have performed ex-
periments with packaging packages for Anaconda. Users have reported that Anaconda is
easy to operate; however, at the time of writing, the packaging procedure is cumbersome
for the developer. In effect, developers cannot generate the same high-quality, seamlessly
installable packages as are achievable with native Linux packaging methods. Addition-
ally, Anaconda lacks an equivalent to Debian’s Lintian, a packaging tool that dissects a
Debian package in an attempt to find bugs and violations of the Debian policies.

A significant number of software packages in KERN are not created with OS X
support in mind, thus requiring modifications to the source code. Also, compilation
procedures can vary greatly across platforms, doubling the packaging and maintenance
effort if we would support OS X as a platform.

In addition, Linux distributions come with a large set of prepackaged software, which
eliminates the need to package many dependencies. Using Anaconda would necessitate
packaging up many dependencies ourselves.

The limitations of Anaconda led to the preference for Debian- over Anaconda pack-
ages.

Python and pip

The Python programming language has become the most widely used language in as-
tronomy (Momcheva and Tollerud, 2015). Moreover, this language is bundled with a
package manager called pip. Pip assists in downloading and installing Python packages
from the Python package index (PyPi). Another useful tool for setting up Python envi-
ronments is called virtualenv. Virtualenv enables a user to set up one or more isolated
Python environments without system administrator rights. The combination of these two
tools enables the end-user to set up various custom environments with specific versions
of dependencies. For pure Python projects, pip and virtualenv are cross-platform and
independent of the host operating system package manager. However, pip is less suitable
for impure Python projects. Some Python libraries depend on non-Python run time
libraries and/or non-Python development headers compile-time, making them ‘impure’.
A recent improvement to the Python packaging system is the introduction of wheels.
Wheels are pre-compiled binary Python packages. These do not require compilation and
will work if the packaged library does not have unusual requirements. An example of an

CHAPTER 3. KERN 49

independent binary wheel is Numpy. Numpy only depends on Python and a small set
of system libraries. The Application binary interface (ABI) differs across host platforms
and Python versions, requiring a wheel for every platform and Python combination.
These are supplied on PyPi, and the correct version is automatically selected by pip on
installation.

Although KERN supports both Python 2 and Python 3, most Python packages in
KERN only support Python version 2. This will soon become an issue, since Python 2
is reaching the end of life phase, meaning it will not receive any (security) updates and
support in major Linux distribution will be dropped. Fortunately, the software packages
with an active developer community, such as Meqtrees, are rewriting the software to
add Python 3 support. At the time of writing, the only package KERN that supports
Python 3 is Python-Casacore, but more will follow shortly. All Python 3 packages have
the python3 -prefix, so the KERN Python 3 package for Casacore is named python3-
casacore.

Although the binary Debian packages are the preferred way to guarantee a stable and
compatible runtime environment, it is not always possible for a user to install packages
with administrator rights on a system. In the case of a Python package with a binary
part like Python-Casacore, users are forced to compile the package from scratch. To
avoid disregarding this use-case, binary wheels for Python-Casacore were created. Binary
wheels are special Python packages that contain the Python code combined with a pre-
compiled form of the code requiring compilation. We follow the ‘manylinux2010’ platform
specification, which is defined in the ‘Python Enhancement Proposal’ (PEP) number
5711. Making a binary wheel that is likely to function on the great variety of available
Linux platforms is not a trivial task. To guarantee binary compatibility, an older Linux
platform is used to make the packages, hence the 2010 date in the specification. The
binary wheel is made using Docker containers based on an old CentOS 6 version. The
assumption is that it is extremely like the user’s system is be backwards compatible with
the older CentOS 6 on the library and binary level.

To keep the binary wheel reasonably small, it was decided not to include the Casacore
data. The size of the data is significant, and not all Casacore functionality like opening
MSs, requires the data. In addition, the data requires regular updates. The binary data
is available for download independently, as a tarball or KERN package.

Collaboration with Debian

Ubuntu is directly based on Debian and is thus similar to Debian. Nonetheless, due
to version differences in the bundled libraries in each distribution, KERN packages are
unlikely to run on Debian. Fortunately the packaging procedure is identical for Debian
and Ubuntu, which makes creating true Debian packages a matter of a recompilation of
the source package.

In contrast, the build system, dependency management and library management
for RPM are completely different. Porting our packages to RPM is non-trivial, and
maintaining support for RPM-based distributions would imply doubling the required
effort. That said, the Linux packaging landscape is a constantly evolving world, and
basing KERN on RPM is not ruled out for future releases. Fedora and other RPM-based
distributions have useful online build tools and hosting facilities, such as the open build

1https://www.python.org/dev/peps/pep-0571/

https://www.python.org/dev/peps/pep-0571/

CHAPTER 3. KERN 50

service2 and Fedora Copr3.
We have established collaboration with Debian developers, and some packages from

KERN (e.g. casacore and aoflagger) have been incorporated into Debian directly.
These packages have been uploaded to the Debian archive, and changes are synchronised
between KERN and the Debian archive.

Not all KERN packages are suitable for uploading to Debian. Packages with a small
user base or packages that are fragile and receive continuous fixes (as opposed to formal
release) are not well suited to this distribution model, since it can take some time before
a package ends up in a Debian release. For the more stable packages in KERN, a
continuation of this effort is expected, with more packages ending up in Debian in the
future.

3.4 Usage

To use the packages of KERN, one needs to add the KERN remote repository to the
system. It is recommended to use the latest released version, which is KERN-5 at the
time of writing. KERN-5 is packaged for Ubuntu 18.04; using the packages on a different
distribution or version will most likely fail. If running Ubuntu 18.04 is not an option
on a particular system, using Docker, Singularity (see below) or a virtual machine is
recommended.

The add-apt-repository command, which is a Ubuntu utility to configure remote
repositories, should be used to add the KERN repository to a system. Some packages
in KERN depend on Ubuntu packages in the multiverse and restricted repositories.
CUDA, the library required for utilizing a NVidia branded GPU, is an example of a
dependency contained in the restricted repository. Once the local cache is updated using
apt-get update the package cache can be searched using apt-cache search PACKAGE
and packages can be installed using the apt-get install PACKAGE command.

In case of an unexpected fault, it is important to ensure that the latest versions of
all packages are being used (by running apt update and apt upgrade), before reporting
new issues. Missing packages can be nominated for inclusion in KERN by requesting the
packaging on the issue tracker4. For further instruction on how to install and use KERN
packages, refer to the KERN suite documentation5.

3.5 Notable packages

Here we discuss the important or non-trivial packages part of KERN. Note that this is
not the full list of packages. The full list of packages contained in KERN-5 is provided
in Table A.1 in Chapter A.

Casacore

Most of the packages in KERN depend on Casacore (van Diepen, 2015). Casacore is a
suite of C++ libraries for radio astronomy data processing. The most important library

2https://openbuildservice.org/
3https://copr.fedorainfracloud.org/
4https://github.com/kernsuite/packaging/issues
5http://kernsuite.info/

https://github.com/kernsuite/packaging/issues
http://kernsuite.info/

CHAPTER 3. KERN 51

is the table system for working with MSs, which is currently the most frequently used
data storage format in radio astronomy. Since it is such an important package, additional
effort has been put into making the quality of this package quality high, and it should
be seen as an example and reference for all other packages. The package has also been
accepted in the main Debian repository and updates are synchronised between Debian
and KERN6.

Casacore data

Casacore has a ‘soft’ dependency on the ‘casacore data’ package. The latter contains
ephemerides, geodetic data and other tables required for performing calculations such
as coordinate conversions. Strictly speaking, the Casacore data package is not required
if one is not calculating e.g. coordinate conversions, but in practice many components
of Casacore will fail or give warnings if the data package is missing. The Casacore
data package is updated on a regular basis using a cron job7. Updated content typically
consists of accurate GPS movements of the tectonic plates, new or updated radio telescope
positions, leap seconds, etc. There is no central authority controlling the content of the
Casacore data package, and various institutes around the world create their own versions.
We base the KERN package on the data supplied and updated weekly by the ASTRON,
which is published on its public FTP server8.

MeqTrees

MeqTrees (Noordam and Smirnov, 2010) is a software suite developed at ASTRON and
subsequently Rhodes and SARAO. MeqTrees is aimed at implementing various versions
of the RIME (Smirnov, 2011a), which is used for simulation and calibration of radio
interferometric data. MeqTrees consists of two core packages: Timba (the C++-based
computational implementation) and Cattery (a set of Python frameworks providing end-
user tools). Other packages in the suite include Tigger (a sky model and FITS image
viewer), Owlcat (a set of MS manipulation utilities) and Pyxis (a scripting/pipelining
framework).

CASA

CASA (McMullin et al., 2007b), is a popular system for the reduction of radio astronomy
data. CASA is maintained by the National Radio Astronomy Observatory9. It has proven
to be one of the most challenging pieces of software to construct a package of. CASA
is delivered as one monolithic self-contained tarball, which bundles a complete set of
dependencies, including its own Python interpreter and IPython interface. This scheme
has the advantage that it runs on most systems without modification or additional library
requirements. However, the tarball is sizable (over 1 Gb at the time of writing). In
addition, various dependencies bundled with CASA are dated (for example, the bundled
IPython package is version 0.10, dating from 2010). This makes it hard to install updated
packages into the CASA bundled Python, since CASA itself may break if packages are
updated. Since CASA depends on so many old libraries, it is close to impossible to

6https://packages.qa.debian.org/c/casacore.html
7https://github.com/casacore/casacore-data-update
8ftp://ftp.astron.nl/outgoing/Measures/
9http://casa.nrao.edu/

https://packages.qa.debian.org/c/casacore.html
https://github.com/casacore/casacore-data-update
ftp://ftp.astron.nl/outgoing/Measures/
http://casa.nrao.edu/

CHAPTER 3. KERN 52

install it as an overlay on the default Debian filesystem and make use of the system
Python interpreter and libraries. Some effort has been made towards unbundling an
earlier version of CASA (4.3) into individual packages, but the CASA team was unable
to dedicate resources to this effort in further releases. We have therefore adopted the
single large package option as the only practical possibility for now. Other attempts have
been made to bridge the gap between the system and CASA Python interpreter, but the
result is still far from ideal (Staley and Anderson, 2015).

We have decided to take a pragmatic approach and package a subset of CASA and
instead of installing it as an overlay on the system, choosing to do so in a separate direc-
tory. Having a package simplifies the installation and helps users to manage dependencies
since there are packages that depend on CASA. We reduced the installation size by un-
bundling the experimental Carta viewer, which reduced the final installation footprint by
about 1 Gb. In the case of CASA 4.7.1 the tarball is reduced by 60% to about 400 MB.
The software is installed in /opt/casa and a symlink to the casa binary is created under
/usr/bin. The package works exactly like the upstream CASA installation (apart from
the omitted Carta), but unfortunately still cannot interoperate with the Debian system
Python installation. Since the package is a modified version of the original release, we
decided to rename the package to casalite.

Since 17 December 2019, CASA 6 has been available as a binary wheel. This greatly
enhances the operability of CASA in combination with other Python packages in a custom
Python environment. Unfortunately, the new package layout has not been adopted in
KERN yet.

AIPS

NRAO’s venerable AIPS is the predecessor of CASA and, despite its age, maintains
an extensive and enthusiastic user base. AIPS has some of the oldest code of all the
packages in KERN and depends on various (nowadays rather arcane and archaic) system
configuration modifications. We bundle AIPS with a minimal configuration that assumes
a single system (localhost) setup. All software is installed under /opt/aips , similar to
CASA. The software requires a writable data folder in order to operate, and thus when
the package is installed, an aips group is created if it does not exist. Users who want to
use AIPS need to be added to this group. Owing to the complexity of AIPS compilation,
the KERN packages are not compiled from source, but are instead based on the binary
tarball distribution.

LOFAR

Another notable package is the lofar package, which contains all the code bundled in
the LOFAR imaging pipeline. Most of it is used by astronomers working with data from
the LOFAR radio telescope; however, it has a number of general-interest components,
such as the PyBDSM / PyBDSF source finder and the makems MS creation tool. For the
reader familiar with building and using the LOFAR pipeline, it is relevant to know that
the full ‘Offline’ bundle is contained in the KERN package. The LOFAR software is one
of the most frequently used KERN packages.

CHAPTER 3. KERN 53

Pulsar software

KERN contains a number of software packages from the pulsar community, such as tempo,
presto and psrchive. These tools were particularly difficult to create packages from,
since most of them do not perform normal release management and tend to have broken
build scripts. For packages without version numbers, we introduce our own date-based
versioning scheme and the packages are updated on request.

Unversioned packages

The pulsar software developers are not the only astronomers who do not use software
versioning. For example, the Miriad software developers do not version this software
either. For the KERN versioning and as a method to check if the source might have
changed, the upload timestamp on the publishing FTP server is used. This is far from
ideal. To check if there have been improvements to the software, the timestamp needs
to be manually checked, which is a deviating workflow compared to all other astronomy
packages. In addition, a change in modification timestamp does not always imply an
update to the package content.

3.6 Containerisation

Docker

Docker is a mature and popular concept for distributing software and managing pro-
cesses. Although it is easy to create a Docker container from a piece of software, it is
no replacement for proper software packaging. We are of the opinion that proper pack-
aging and containerisation go hand in hand: Debian packages provide robustness and
dependency management while containerisation provides portability and distributability.

We have prepared an easy-to-use base Docker image that can be used to create custom
Docker images containing all the KERN packages combined with end-user scripts. The
Dockerfile below is all that is needed to set up a Docker container for any given package
in KERN. The example below is for AOFlagger:

FROM kernsuite/base:5
RUN docker-apt-install aoflagger

The kernsuite Docker image is a clean Ubuntu system with the KERN suite repos-
itory enabled. It also contains an up-to-date pip so that one can directly install Python
libraries. The docker-apt-install command is just a wrapper script that updates the
apt cache before installing the package, then removes the cache. The latter is done to
prevent cluttering of the Docker image, which could otherwise lead to exploding image
sizes.

Singularity

A number of assumptions made by Docker creators have created security concerns and
have made Docker a poor fit to the typical high performance computing (HPC) environ-
ment. This has motivated the development of an alternative containerisation technology
called Singularity. While this is at present less popular, Singularity is more suitable for

CHAPTER 3. KERN 54

deploying software in a multi-tenant cluster environment, which is the most common
environment in science. We have created scripts to set up Singularity images contain-
ing all KERN software easily; these can be used to deploy all of KERN on any cluster
supporting Singularity10.

3.7 Project structure

All the packaging effort of KERN is strictly open-source and open-development. All
source code is publicly available on Github11. We use the Github bug tracker to interact
with users. Users can report problems, ask questions and request new features via the bug
tracker. Participation is encouraged by the means of pull requests. There is a central
entry point website that contains a list of common questions and links to all related
services and pages12.

The release cycle

Originally it was anticipated to have a KERN release recycle of approximately six months,
but in practice it has proven difficult to keep up this pace. At the time of writing, the
latest release is KERN-6, released on 17 June 2020. The previous release, KERN-5, was
released on 15 January 2019. Meanwhile, KERN-7 is planned to be released in March
2021, which again violates the six-months commitment. The delays are caused by limited
available manpower and a lack of funding.

Every KERN release is ‘fixed’, in the sense that no package updates are planned
post-release, unless some critical issues need to be addressed. Between KERN releases,
development activity proceeds on an active development branch called KERN-dev. This
repository will constantly be updated with new packages, but these should only be used
for testing and experiments rather than for production science.

KERN is an open-source and open-development effort; any institute or individual
is free to contribute work, fund the project or pick up responsibilities. In practice, the
project is currently managed by two individuals, Gijs Molenaar and Athanaseus Ramaila.
To guarantee the project’s continuation in case of an unexpected incident, administrative
access to the repositories and project secrets have been shared with a small set of trusted
individuals working at ASTRON and SARAO. Nonetheless, the coordination of the
KERN releases costs developer time and thus money, so the long-term continuation of
the KERN project depends on institutes’ willingness to fund the project.

Technical structure

The proposed packaging procedure makes extensive use of git. Every release of every
package added to KERN is mirrored on a packaging Github repository13. Every new
release is a new commit to the git repository. These commits are then augmented with
Debian metadata files. The metadata files contain a description, build and runtime
dependencies as well as a robust script to build, install and clean the package. These

10https://github.com/kernsuite/singularity
11http://github.com
12http://kernsuite.info/
13https://github.com/kernsuite-debian

https://github.com/kernsuite/singularity
http://github.com
http://kernsuite.info/
https://github.com/kernsuite-debian

CHAPTER 3. KERN 55

Table 3.1: KERN download statistics

KERN Version Released Number of Packages Total Download Count
1 August 2016 65 12 544
2 March 2017 69 41 655
3 November 2017 78 120 447
4 June 2018 88 64 460
5 January 2019 117 166 669
6 June 2020 65 4 907

total 410 682

metadata files can be very minimal if properly written build scripts are provided by the
original software authors, but can be more complicated in the absence of these.

New packages are published to Launchpad, which is a free to use service maintained
by Canonical, the company responsible for the Ubuntu distribution. Packages are built
on the Launchpad build farm, and we simply upload the base source image. This is an
extra quality check since the build farm makes sure that the package compiles correctly
and that all the dependencies are correctly defined.

If the original source is provided with (unit)tests, as is the case for Casacore, we run
these tests during the creation of the package. Unfortunately, most software packages in
KERN do not have a test suite provided by the developers.

All scripts and packaging files are released under the conditions of the Massachusetts
Institute of Technology (MIT) license. The MIT license is a permissive and straight-
forward license; it only requires preservation of copyright and license notices. Licensed
works, modifications and larger works may be distributed under different terms and with-
out source code. Note that this only applies to the KERN files and not to the software
contained by the KERN packages. The licenses of these packages are respected and are
bundled with every package.

3.8 Recommended usage

KERN is freely available and maintained as a service to the community. If one uses
KERN in a published work, it should be stated which version of KERN was used and
include it as a citation and/or an acknowledgment.

3.9 Usage numbers

The launchpad website hosts a public API, which can be queried for usage statistics14.
Table 3.1 lists the total number of package downloads. A growth in numbers is clearly

visible. There has been a dip in the usage for KERN-4, which is most likely due to two
‘core’ (Casacore and Python-casacore) packages migrating from KERN into the standard
Debian and Ubuntu distributions. From KERN-4 onwards, KERN packages that depend
on the core packages use the versions in the Debian/Ubuntu archives by default, so the
core downloads are not counted by launchpad. (However, when a newer version of a
core package needs to be released to the community, this is initially uploaded to KERN,

14https://help.launchpad.net/API/

https://help.launchpad.net/API/

CHAPTER 3. KERN 56

Table 3.2: Top 10 packages per KERN release

KERN-1 KERN-2 KERN-3 KERN-4 KERN-5 KERN-6
1. casacore casacore casacore lofar casacore casacore
2. python-casacore lofar python-casacore losoto casarest casarest
3. casarest python-casacore casarest casarest meqtrees python-casacore
4. kittens casarest lofar meqtrees kittens meqtrees
5. meqtrees kittens kittens prefactor makems aoflagger
6. tigger meqtrees meqtrees factor aoflagger pybdsf
7. pyxis pyxis wsclean tempo2 wsclean casalite
8. aoflagger aoflagger makems casalite pybdsf wsclean
9. lofar wsclean tigger blimpy miriad makems
10. wsclean tirific losoto psrchive lsmtool stationresponse

and is then served up from KERN until the Debian/Ubuntu versions catch up. During
such interim periods, downloads of the core packages are counted by launchpad, which
explains why they appear in the top 10 anyway.) Other popular KERN packages that
have found their way into the Debian and Ubuntu archives are AOFlagger and WSClean.
Because of these successes, the true number of package downloads for which KERN should
be credited is probably much higher than the launchpad numbers alone.

Table 3.2 lists the top 10 most popular packages per KERN release. Casacore and
Python-casacore are clearly the most popular, which is not surprising, since most other
packages depend on these libraries. Surprisingly, the top 10 for the KERN-4 release
contains a number of LOFAR packages, which could be explained by the activities for
the European Open Science Cloud For Research Pilot Project15 around that time.

3.10 Conclusions

Although the KERN project does not introduce any novel algorithmic techniques as such,
we believe that it is a foundational block for a robust radio astronomy software environ-
ment. Radio astronomy software has historically been challenging to build and install
for the end-user. A growing number of radio astronomers use the packages distributed
via KERN (Creaner and Carozzi, 2019; Sabater et al., 2018; Sabater et al., 2019; van
Hateren, 2019).

Based on the subjective observation of users within our team at SARAO, ease of
software installation was vastly improved after KERN became available. Subsequently,
the KERN ready-to-install packages resulted in a noticeable reduction in time and effort
required to achieve successful software installation. While we believe this experience will
not be unique to SARAO, a further quantitative survey of the global community could
not be carried out.

We believe that these packages, as well as the regular release cycle, are an excel-
lent improvement for reproducible science, problem isolation and discoverability of tools.
KERN is not only of benefit to astronomers, but also to system administrators, who now
have to spend less time installing software and tracking updates and changes.

15https://eoscpilot.eu

https://eoscpilot.eu

Chapter 4

Kliko

57

CHAPTER 4. KLIKO 58

4.1 Introduction

Software in science

The use of computer software in research has resulted in significant hardware and software
developments in computing science. Nowadays, the number of different scientific software
packages is overwhelming, and it has become progressively difficult for users (e.g. a
scientist) to evaluate the relevance, usage and performance of these packages.

Firstly, installing scientific software can be cumbersome, especially when the installa-
tion and/or compilation is poorly designed. The software code, the library dependencies,
the host platform and the compilers may change over time, making it unclear how the
original developer(s) intended to install and use the software. Secondly, conflicting depen-
dencies may arise when different software packages are built together, making it difficult
to install them on the same system. Thirdly, software packages have non-uniform inter-
faces, as they have varying expectations of interaction with a user or with other packages
on the same system.

Kliko is a Docker-based encapsulating and chaining framework that purports to mit-
igate these issues by creating a container of the software, thereby solving the first and
second issues above. The third issue can then be solved by building a Docker container
that has minimal extra requirements, i.e. the Kliko definition.

Kliko consists of two parts: i) a set of utilities for creating a container, including
parsers to check if all (meta) data is valid; and ii) a support library that can be used to
schedule a Kliko container and run it from a command line or from a web interface.

Kliko is not a pipeline construction tool itself, nor a web interface, but it can assist
in making these.

Software containerisation with Docker

Containerisation is a method for building self-contained environments (called ‘contain-
ers’) for applications. These containers can then be distributed and used with minimal
effort on a large variety of platforms.

Containerising applications is not novel. Similar techniques have been applied be-
fore, e.g. jail for FreeBSD 1, zones for Solaris (Price and Tucker, 2004) and chroot for
GNU/Linux 2. However, their application was mostly limited to enhancing security and
carrying out clean builds of the UNIX system. The addition of an operating system (OS)
level process isolation, named control groups or cgroups (Rosen, 2013)), to the popular
Linux kernel (since 3.8, 2008) accelerated the adoption of containerisation for the usage
of software distribution.

There are multiple software projects leveraging cgroups, for example rkt3, Docker (Boet-
tiger, 2014)4, Singularity (Kurtzer, 2016; Veiga et al., 2019)5 and LXC6. Docker (Merkel,
2014) is currently the most popular container technology with the largest community
of users and most momentum for future development and support. Kliko aims to be

1https://www.freebsd.org/doc/handbook/jails.html
2http://man7.org/linux/man-pages/man2/chroot.2.html
3https://github.com/coreos/rkt
4https://www.docker.com
5http://singularity.lbl.gov
6https://linuxcontainers.org

https://www.freebsd.org/doc/handbook/jails.html
http://man7.org/linux/man-pages/man2/chroot.2.html
https://github.com/coreos/rkt
https://www.docker.com
http://singularity.lbl.gov
https://linuxcontainers.org

CHAPTER 4. KLIKO 59

agnostic of the container technology, but since Docker has the biggest user community,
we focus on this implementation.

In Docker, an image is built using an initialisation script (a ‘Dockerfile’), which con-
tains the recipe to install or build the application. The Dockerfile is a series of commands
applied to a basic and clean Docker image, typically a headless Linux distribution. These
base images are retrieved from an online database provided by Docker, and stored locally.
The Dockerfile, when executed, will create an ‘image’, which is a ‘inactive’ snapshot of
the virtualised application. An image becomes a container when instantiated (e.g. the
application runs). The difference between active and inactive is important; a container
is an image in an unwritten (dirty) state.

An application that is containerised is self-contained and can be seen as a complete
OS without a kernel. The container could even only contain a statically compiled binary,
but in practice, it is useful to have the tools and package manager of a Linux distribution
available inside the container. Theoretically, to run a Docker container using Docker on
a host machine, the only requirement is to have the Docker daemon running on the host.
Unfortunately, there are some hardware-specific edge cases such as CPU register usage
optimisation and GPU acceleration. These cases will be discussed in Subsection 4.7.

A Docker container ‘image’ is basically a file system snapshot of a minimal OS The
‘target’ application (i.e. the one to host) and its library dependencies are installed inside
this virtual isolated file system. When the application is started, the container file system
is exposed to the application as the working environment.

On a kernel level, cgroups and namespaces are used to create a new isolated environ-
ment for the application, limiting access to other processes to the host and presenting
the isolated environment as if it is a separate host to the application. Intuitively, this
can be seen as similar technology as CPU level OS virtualisation such as VirtualBox;
however, in the case of containers, the kernel is shared by the host and the guest.

By default, a Docker container is assigned a private IP address on an internal network
range. This makes the container appear as a separate networked machine to the host.
By default, access to network ports are restricted, and access needs to be granted per
port. One can also forward the port to an external interface where it will appear as the
service is running on the host itself.

All of the above might appear similar to simple virtualisation, but containerisation
has some clear additional advantages. Firstly, when using Docker, available physical
resources do not need to be partitioned between the host and the guest. While memory
size allocated to a virtual machine is fixed or not easy to change, running containers does
not require the user to fix this memory size, although it is still possible to limit the amount
of memory allocatable by the process. Secondly, there is no CPU instruction emulation,
as the process is directly executed on the host kernel. Thirdly, there is minimal startup
and shutdown overhead for starting containers, as the containerised OS is reduced to
minimal consumption. Startup time is instantaneous (in the millisecond range), and
loading time will only become noticeable when high numbers of containers are spawned.

In addition to containerisation, Docker also offers other features: it uses a ‘union’ file
system to join multiple layers of file systems together. The intermediate result of each
command in the Dockerfile is cached and stored in layers. These layers can be reused
by other containers, allowing data sharing between them, which reduces the size of the
storage requirements. These layers can also be stored in a central location, where they
can be distributed and reused in either a public or a private way.

CHAPTER 4. KLIKO 60

4.2 The Kliko specification

The Kliko specification is designed to extend containerisation with a uniform interface,
resulting in simplified interaction with the containerised application.

The Kliko specification describes what a Kliko container should look like and what a
Kliko container should expect during run-time. The relevant terminology is listed below:

Def 1: The Kliko image
A Docker image complying to the Kliko specification. An image is a read-only ordered
collection of root file system changes and the corresponding execution parameters for use
within a container run-time.

Def 2: The Kliko container
A container is an active (or inactive if exited) stateful instantiation of a Kliko image.

Def 3: The Kliko runner
A process that can run a Kliko image to make a container. For example the Kliko-run
command line tool, or RODRIGUES (see Section 4.5).

Def 4: The Kliko parameters
A list of parameters that can influence the behaviour of the software in the container.
The list can be arbitrary in size and may consist of any combination of primitive types
listed in Table 4.2.

The Kliko image

A Kliko image should contain a /kliko.yml file in YAML7 syntax following the Kliko
schema described in Section 4.2. YAML is a human-readable data serialisation language
and stands for YAML Ain’t Markup Language. The Kliko image should also contain a
/kliko file that is called during run-time by the Kliko runner. This Kliko script can be
anything executable but in most cases, it will be a Python script using the Kliko library
to check and parse all related Kliko tasks during run-time. Note that we have deliberately
chosen not to use the ENTRYPOINT or CMD statements supported by Docker. This
way, Kliko is non-intrusive and can easily be added to existing containers that already
set an ENTRYPOINT or CMD.

Expected run-time behaviour

During run-time, the Kliko runner will gather the parameters and expose them to the
Kliko container. The content of the variables is exposed by the Kliko runner in the
/parameter.json file, which should contain a flat dictionary in JSON syntax8. JSON
and YAML are structurally very similar, but YAML is designed to be more human-
readable, hence the choice of YAML for the Kliko definition. Future versions of Kliko
will support both formats.

While reading this text, one might get confused by the context of the file location
(inside or outside the container). As a rule of thumb, if a path in this text starts with a
slash (/), it is inside the container.

If one or more of the parameters is a file, those will be exposed by the Kliko runner in
the read-only /param_files folder during run-time. It is the responsibility of the Kliko

7http://www.yaml.org
8https://www.json.org

http://www.yaml.org
https://www.json.org

CHAPTER 4. KLIKO 61

container to parse the /parameters.json file, perform the potential run-time housekeep-
ing and convert the parameter keys, values and/or files into an eventual command to be
executed.

It is recommended to write logging to stdout and stderr. This makes it easier for the
Kliko runner to visualise or parse the output of a Kliko image.

Flavours of Kliko images

We distinguish two flavours of Kliko containers, joined Input/Output (read-write) and
split IO (read-only). The style of container is specified in the io field in the /kliko.yml
file inside the container; see Section 4.2.

The difference is in the way the contained software interacts with the working data.
In the case of split IO the Kliko runner exposes the input data to the container in the
/input folder. This folder is read-only, to prevent accidental manipulation of the data.
The Kliko container is expected to write any output data into the /output folder. The
Kliko runner will then handle this output data after the container reaches the end of its
lifetime. A split IO Kliko container should always yield the same results for multiple
independent runs when presented with the same data and parameters (formally is called,
‘having no side effects’). This is basically the essence of the functional programming
paradigm.

In the case of joint IO the /work path is the only one point of interaction with the
Kliko host and is exposed as a read/write volume. Basically, the input and output folders
are combined into one that is mounted with read/write permissions. Contrary to the split
IO flavour, this might be potentially dangerous for data processing, as it can alter the
original data.

From a run-time parallelisation perspective, the split IO flavour is preferred. A
container without side effects enables the Kliko runner to make a graph-based logical
inference of dependencies and execution scheduling, reuse results and also run various
containers in parallel, potentially resulting in faster execution. In practice, existing
software does not always support this type of operation, or it is simply not feasible to
create a copy of the data. In that case, the joined IO style has to be used.

The /kliko.yml schema

A kliko.yml file is a YAML file and it should contain the fields listed in Table 4.1.
Each section contains a list of fields. Each field’s statement should contain a list of

field elements. Each field element has two mandatory keys, a name and a type. Name is
a short reference to the field which needs to be unique. This will be the name for internal
reference. The type defines the type of the field; possible types are listed in Table 4.2.
Depending on the type there are optional extra fields, listed in Table 4.3.

The schema described above is defined in the Kwalify format. The full schema is
listed in Appendix B Kwalify is a parser and schema validator for YAML and JSON9.
The definition itself is also written in YAML . The Kliko library pykwalify10 is used to
validate the YAML file against a schema. The full Kliko version 2 schema is listed as
Listing 10 in Section B.1.

9http://www.kuwata-lab.com/kwalify
10https://github.com/Grokzen/pykwalify

http://www.kuwata-lab.com/kwalify
https://github.com/Grokzen/pykwalify

CHAPTER 4. KLIKO 62

Table 4.1: Required Kliko fields

field description
schema_version The version of the Kliko specification, independent of the ver-

sioning of the Kliko library
name Name of the Kliko image. For example ‘radioastro/simulator’

for RODRIGUES.
description A more detailed description of the image.
url Website of project or repository where project is maintained
io ‘join’ or ‘split’. See the two flavours of Kliko containers in

Subsection 4.2
Sections A list of one or more sections, grouping fields together.

Table 4.2: Kliko variable types

Type Description
choice Field with a predefined set of options, see the optional choices field

below
str String value
float Float value
file A file path. This file will be exposed in /param_files at run-time by

the Kliko runner
bool A boolean value
int An integer value

The /parameters.json file

When a container is started, the Kliko runner will mount a /parameters.json file into
the container. This file contains all parameters for the container in the JSON for-
mat. The /kliko script supplied by the container author should read and parse the
/parameters.json file. The Kliko library (Subsection 4.3) supports helper functions
and scripts to parse and validate this file. Validation is done based on the /kliko.yml
definition, which is useful for preventing or tracking down problems.

An example of a parameter file that could be generated based on the kliko.yml defi-
nition is shown in Listing 1.

{
"int": 10,
"file": "some-file",
"char": "gijs",
"float": 0.0,
"choice": "first"

}

Listing 1: Example parameters.json file

Note that the sections are not supplied, since they are only used for grouping and
representation to the user.

CHAPTER 4. KLIKO 63

Table 4.3: Kliko field types

Field Description
initial Supply an initial (default) value for a field
max_length Define a maximum length in case of string type
choices Define a list of choices in case of a choice field. The choices should be

a mapping
label The label used for representing the field to the end user. If no label is

given, the name of the field is used
required Indicates if the field is required or optional
help_text An optional help text that is presented to the end user next to the field

4.3 Running Kliko containers

Running a container manually

As an example, we will describe a straightforward Kliko container named ‘fitsimagerescaler",
available on the github repository described in Section 4.6. This container takes a FITS
image file, which resides in the /input directory, opens it, multiplies the pixel values
by a parameterised value (2 by default) and exports the result as a new FITS image in
/output. The actual code that is run in /kliko is shown in Listing 5.

Starting the Kliko container is nothing more than starting the container using Docker
with some specific flags. If the parameters.json file already exists, starting the container
from the command line looks like this:

$ docker run -t -i \
-v `pwd`/parameters.json:/parameters.json:ro \
-v `pwd`/input:/input:ro \
-v `pwd`/output:/output:rw \
kliko/fitsimagerescaler /kliko

Listing 2: Command for running a Kliko container manually. The /parameters.json
file is mounted, as well as the input and output directories, in the ‘split’ mode. The
kliko.yml is already inside the container.

‘pwd‘/input and ‘pwd‘/output are input and output folders in the current working
directory outside the container. ‘pwd‘ is required since the Docker engine can only work
with absolute paths.

This command fires up the fitsimagerescaler container, mounts the parameters.json
file as well as input/output directories and runs the /kliko script located in the root
directory. In this case, the FITS image file has to be present in the local input directory
for the script to run correctly.

For the reader unfamiliar with Docker, this command might look cumbersome and
error-prone. However, the command constitutes the fundamental principle of Kliko (in
addition to specification and the extensive test suite). This can be used as a base to
create a Kliko runner in any language that has Docker bindings.

This way of implementing inputs, outputs and running generic scripts demonstrates
that it becomes relatively easy to connect the input parameters and data (generated by

CHAPTER 4. KLIKO 64

scripting and/or a web form) to software living inside the container. Kliko implements a
set of tools to ensure the robustness of this implementation.

Inside the Kliko container

The /kliko script is the first entry point into the specifics of the container. We can
easily parse the /parameters.json file using a JSON parser in Python, by performing
the commands in code Listing 3.

import json
parameters = json.load(open('/parameters.json', 'r'))

Listing 3: Example of how to parse parameters.json file with standard Python packages.

However, at this point, the parameter file has not yet been validated. We can be sure
that the parameters file is generated from our Kliko definition by installing the Kliko
library inside the Kliko container and using it from the /kliko Listing 4. Validation
helps reduce human or programming error.

from kliko.validate import validate
parameters = validate()

Listing 4: Example of how to parse parameters.json using the Kliko library

After the Kliko validation has been performed, a dictionary is created, and all values
can be used freely inside the script itself (by passing them to functions) or passed directly
to the container OS as environment variables. All this validation is intended to reduce
human or programming error as early as possible.

import kliko
from kliko.validate import validate
from astropy.io import fits

parameters = validate()
file = parameters['file'] # filename in /input
factor = parameters['factor'] # multiplying factor

print('welcome to fits multiply!')
print("'%s' multiplied by '%s':" % (file, factor))

data = fits.getdata(file)
multiplied = data * factor
output = path.join(kliko.output_path, path.basename(file))
fits.writeto(output, multiplied, clobber=True)

Listing 5: Example of /kliko file scale the values in a FITS image

Kliko-run

Instead of calling Docker directly, Kliko is bundled with kliko-run, a command-line
utility that enables a user to run a Kliko container seamlessly. It also assists in exploring

CHAPTER 4. KLIKO 65

the parameters that a given Kliko container supports. Listing 6 shows the docstring
of the kliko-run command for a simple container (available as a test container shipped
with Kliko). The optional arguments are generated automatically from the YAML file.
It shows how any shipped application can easily be interfaced with the host system, in
such a way that part (or all) of the variable names of the application can be modified
directly from the command line. This enables Kliko, with the help of Docker, to ship
sophisticated software as an application that is equipped with a simple interface. Kliko
provides a simple way to implement this interface in a controlled and robust way while
being completely agnostic about the mechanics happening inside the container.

$ kliko-run kliko/fitsimagerescaler --help

usage: kliko-run [-h] [--target_folder TARGET_FOLDER] --choice {second,first}
--char CHAR [--float FLOAT] --file FILE --int INT
image_name

positional arguments:
image_name

optional arguments:
-h, --help show this help message and exit
--target_folder TARGET_FOLDER

specify output or work folder (default: ./output)
--choice {second,first}

choice field (default: second)
--char CHAR char field, maximum of 10 chars (default: empty)
--float FLOAT float field (default: 0.0)
--file FILE file field, this file will be put in /input in case

of split io, /work in case of join io
--int INT int field

Listing 6: Output of the kliko-run command

4.4 Chaining containers

Kliko containers can also be chained. Chaining means that the output of a container is
connected to the input of a consecutively executed container. This enables the creation
of workflows. In addition, if the Kliko containers are ‘split IO", we can execute containers
that do not depend on each other in parallel. Their intermediate results can be cached,
which can speed up the execution time of future workflow runs and can help debugging
problems with the workflow by examining intermediate results.

There are various workflow creation frameworks and libraries available. We evalu-
ated two popular Python-based workflow management libraries, airflow11 and Luigi12.
Although Kliko is designed to be workflow management independent, Luigi is a better
fit. Airflow is intended to visualise automated repetitive tasks such as cron jobs, while
Luigi is more oriented towards once-off batch processing. Luigi is an open-source Python
library that handles dependency resolution, does workflow management, optionally visu-
alises data in a web interface and can handle and retry failures. At the core of a Luigi
workflow is the task, which is a Python class that defines what is to be executed, how to

11https://airflow.apache.org
12https://github.com/spotify/luigi

https://airflow.apache.org
https://github.com/spotify/luigi

CHAPTER 4. KLIKO 66

check if this task has already been executed and optionally if it depends on the result of
another task. This is a straightforward but powerful concept that integrates fluently with
Kliko. The Kliko library contains a KlikoTask definition that can be used to integrate
Kliko in a Luigi pipeline.

4.5 Example of usage of Kliko

VerMeerKAT

Figure 4.1: Flow diagram of the VerMeerKAT data reduction pipeline.

To illustrate the mechanics of chaining containers together, we explain a real-world
application here, the VerMeerKAT pipeline.

VerMeerKAT is a semi-automated data reduction pipeline for the first phase of de-
ployment of the MeerKAT telescope13 (Booth et al., 2009; Jonas, 2009). All steps in
this pipeline are shown in Fig. 4.1. It is a closed source project used internally at SKA
South Africa and is based on a set of bash scripts. Using bash for this is not ideal;
it is hard to make a portable pipeline, not trivial to recover and continue from errors,
reusing intermediate results. Parallelisation is possible, but this needs to be manually
and explicitly defined in the scripts.

For this paper, we made a Kliko version of this pipeline14. Using Kliko for composing
this pipeline has some key advantages: i) easy installation and deployment of the software;
ii) optional caching of intermediate data products; ii) implicit parallelisation of task-
independent steps; and iii) progress visualisation and reporting using a tool such as
Luigi.

The VerMeerKAT pipeline, (see Fig. 4.1), starts by querying the MeerKAT data
archive for a given set of observations (step 1), along with the meta-data for those
observations. The next step is to convert the downloaded data from the hdf5 format
to a MS (Kemball and Wieringa, 2000) (step 2), since most radio astronomy tools only
support this format. Once the data is in the MS format, it is then taken through a series
of manual and automated tools that excise data points that are contaminated by radio
frequency interference (Offringa, van de Gronde, et al., 2012; Prasad and Chengalur,
2012) (step 3, 4 and 5). The data is then calibrated (Hamaker, 2006; Smirnov, 2011b)
and imaged (D. S. Briggs et al., 1999) (step 6).

For the creation of the VerMeerKAT Kliko containers, we make use of the packages
from KERN (Molenaar and Smirnov, 2018). KERN is a bi-annually released set of radio
astronomical software packages. This suite contains most of the tools that a radio as-
tronomer needs to process radio telescope data. These packages are precompiled binaries

13http://www.ska.ac.za/gallery/meerkat/
14https://github.com/gijzelaerr/vermeerkat-kliko

CHAPTER 4. KLIKO 67

in the Debian format and contain all the metadata required for installing the package,
such as dependencies and conflicts. KERN is only supported on Ubuntu 18.04 at the
time of writing, but that is no problem when running inside a Docker container.

Listing 7 is an example of Dockerfile for the WSClean (Offringa, McKinley, et al.,
2014) Kliko container in VerMeerKAT. When this file is built, it will install the KERN
package of WSClean inside the container and bundle the container with the Kliko defi-
nition and parser script. The Docker files for the other steps are very similar.

FROM kernsuite/base:1
RUN docker-apt-install wsclean
ADD kliko.yml /
ADD kliko /

Listing 7: Dockerfile for a KERN package

Listing 8 is an example of a Kliko task definition. This example will use the rfi-
masker Kliko containers. It depends on the H5tomsTask Kliko task. When this task
is invoked using Luigi, Luigi will make the dependency resolution, check if the required
tasks have run and if not, run them. The progress can be visualised with the Luigi
interface (Fig. 4.2). All other steps in the workflow are very similar to this example.

Figure 4.2: Screenshot of Luigi, running the vermeerkat pipeline

RODRIGUES

Another project using Kliko is RODRIGUES (RATT Online Deconvolved Radio Image
Generation Using Esoteric Software)15. RODRIGUES is a web-based Kliko job schedul-
ing tool, and it uses Kliko as a required format for the job. RODRIGUES acts as a

15https://github.com/ska-sa/rodrigues

https://github.com/ska-sa/rodrigues

CHAPTER 4. KLIKO 68

from kliko.luigi_util import KlikoTask

class RfiMaskerTask(KlikoTask):
@classmethod
def image_name(cls):

return "vermeerkat/rfimasker:0.1"

def requires(self):
return H5tomsTask()

Listing 8: An example of a KlikoTask

Figure 4.3: Screenshot of RODRIGUES; the result visualiser.

‘kliko runner’. A user of RODRIGUES can log into RODRIGUES and add a new Kliko
container. RODRIGUES will open the Kliko container, parse the parameters and expose
these parameters to the user using a web form (Figure 4.4). The user can then fill in
the parameters in this form and submit the job into the RODRIGUES container queue.
The container will be run on the system configured by the RODRIGUES system admin-
istrator. Once the job is finished, the results are presented to the user in the same web
interface (Figure 4.3).

RODRIGUES makes it considerably more convenient to schedule new jobs with vary-
ing parameters, enabling scientists with minimal programming or computing knowledge
to run experiments in a clean, visual, structured and reproducible procedure.

CHAPTER 4. KLIKO 69

Figure 4.4: Screenshot of RODRIGUES, parameter form is generated from Kliko defini-
tion.

CHAPTER 4. KLIKO 70

4.6 Software availability

Kliko and the Kliko library are open-source, licensed under the GNU Public License
2.016. Kliko is bundled with an extensive test suite, which covers 80% of the source code
as of the current release 0.6.1. The Kliko library is written in Python and is compatible
with Python 2.7, all Python 3 versions and even PyPy. Development and distribution
are done on Github, and a third-party continuous integration service runs the full test
suite on all supported platforms for every commit and every Github pull request.

4.7 Discussions and prospects

Limitations

While developing Kliko, we encountered various problems with Docker, which might limit
its applicability. It is up to the user to decide if this affects the usefulness of Docker and
Kliko. These issues are listed hereafter for the user’s consideration. That said, the field
of containerisation is evolving very fast, and it is hoped that, most of these issues will be
resolved soon or can be worked around.

First of all, being able to run a Docker container on a system is very similar to giving
the user administrative access to the machine; that is, the user can escalate quickly to
root privileges (Bui, 2015)17. The singularity containerisation technology has a more
secure design, and we are planning to add support for this framework in future versions
of Kliko.

In addition, using GPU acceleration with NVidia hardware is not trivial, since the
kernel driver version and library version need to match up, breaking the independence
between host and container. There is a workaround available, but this requires a replace-
ment of the Docker daemon with a custom one18.

A similar issue arises with optimisation flags. For example, SIMD instructions can
significantly enhance the run-time speed, but not all x86 processors support all SIMD
optimisation. Enabling these optimisations will result in crashes of the binary if it is
compiled with optimisation not supported by the host. Again, this breaks the platform
independence assumption. A good strategy is to be conservative and compile binaries
for the oldest architecture one intends to support. The good news is that it is easier
to support multiple target platforms in the same binary when using modern versions of
GCC 19.

Another issue is that it is easy to inherit Docker definitions from other Docker defi-
nitions, but it is currently not possible to combine Docker definitions or to inherit from
multiple Docker definitions at the same time (merge). Following the Docker philosophy,
Docker containers should have a single responsibility, so this should not be a problem;
it does not require mixing of Docker definitions. However, in practice, this is not al-
ways possible: sometimes various big libraries need to communicate in the same memory
space, so a new Docker container with all software needs to be created. The results are
far away from minimal small single-purpose Docker containers.

16https://github.com/gijzelaerr/kliko
17https://github.com/docker/docker/issues/6324
18https://github.com/NVIDIA/nvidia-docker
19https://lwn.net/Articles/691932

https://github.com/gijzelaerr/kliko
https://github.com/docker/docker/issues/6324
https://github.com/NVIDIA/nvidia-docker
https://lwn.net/Articles/691932

CHAPTER 4. KLIKO 71

For network-intensive applications, Docker may be less suitable, since the use of
network address translation (NAT) for network isolation (Felter et al., 2015). In this case
too a workaround is available by disabling the translation and using the host network
stack directly.

Future work

During the development and usage of Kliko we became aware of CommonWL (Amstutz
et al., 2016), a more generic approach to describe applications input/output flow and
parameters. We will investigatemethods to incorporate CommonWL into Kliko to extend
the usability and user base.

At the moment Kliko is designed with other container solutions in mind. Singularity
is an alternative that seems to be gaining momentum within the HPC community, since
it is more aware and careful of the security implications that result from allowing running
containers on a shared infrastructure.

Streaming Kliko

Kliko was born in the field of radio astronomy. Most tools in this field operate on data
living on disk. Radio astronomy uses several file formats, for example, Casacore MSs,
FITS images and, in some cases HDF5. Using the file system is an easy to understand
and technically stable approach, but problems arise when the size of the dataset grows.
Emerging telescope arrays such as MeerKAT, followed by SKA phase 1, will result in an
exponential growth in data rates. Repeatedly reading and writing data from the slowest
medium in a computer – the disk – is not going to scale and a new strategy is needed.
Directly streaming data between processing tasks will be required. Although this is
already being done 20 in some pipelines, there is no field-wide accepted standard that fits
all needs. Our plan of action is to investigate existing solutions being used, investigate
industry standards 21, optionally create a sub-specification and open-source reference
implementation with support libraries for the most frequently used public languages22.

Runtime limits

System administrators sometimes want to set limits on resources allocated to a process.
Kliko could help here. The Kliko specification could be extended to support defining the
(absolute) minimal requirements for an encapsulated process. Kliko could also be useful
the other way around; if a Kliko runtime would be resource-limited, the numerical values
used for setting up the limits could be exposed using the Kliko interface.

4.8 Conclusions

Kliko is a Docker-based container specification. It is used to create abstract descriptions
of the input and output of existing software resulting in Kliko containers. These Kliko
containers can be used to encapsulate a single job or can be chained together in a pipeline.
In the future, we will probably adopt the CWL standard to extend the interoperability

20https://github.com/ska-sa/spead2
21https://github.com/google/protobuf
22http://arxiv.org/pdf/1507.03989.pdf

https://github.com/ska-sa/spead2
https://github.com/google/protobuf
http://arxiv.org/pdf/1507.03989.pdf

CHAPTER 4. KLIKO 72

with other existing workflow tools. Kliko is written in Python and is open-source and
available free to use.

Chapter 5

CWL and Buis

73

CHAPTER 5. CWL AND BUIS 74

5.1 Introduction

In Chapter 4 we introduced Kliko, a container-based pipeline modelling framework. Un-
fortunately, shortly after finishing the bulk of the work, it became apparent that a very
similar solution already existed. This project is called the CommonWL. CommonWL
is an open standard for describing analysis workflows and is similar to the design of
Kliko, while being more mature and having a significantly larger user and developer
base. The project originates from the bioinformatics field, where it is rapidly grow-
ing (Leipzig, 2017). The CommonWL project composed an extensive list of existing
pipeline frameworks, which have similar functionality to CommonWL1. Since a great va-
riety of workflow frameworks already exist, there is no point in investing time and energy
in the enhancement and maintenance of yet another framework. Therefore, we decided to
focus on the CommonWL standard and the vast ecosystem of tools around it. Adopting
the CommonWL standard would open up a useful repertoire of existing tools for running,
monitoring and deploying data reduction pipelines on most, if not all, relevant platforms.
In addition, if we could develop new tools that supports the CommonWL language, these
tools could process existing CommonWL pipelines.

One of the missing tools in the CommonWL ecosystem was a standalone web-based
pipeline scheduling and monitoring tool. Multiple full-fledged frameworks exist, of which
Arvados2 is arguably the most mature. Setting up an Arvados environment is not trivial,
and the framework is bundled with its own runner and scheduler. This complicates the
integration in an existing environment. A more lean front-end would be more suitable
for assisting in small experiments. Our own narrow purpose-focused web interface was
created to address this issue. This program, named ‘Buis’, after the Dutch word for
‘tube’, is described in this chapter. Buis is free and open-source software, available
online3. Note that Buis is intended as a prototype software, which might evolve into
maturity if the community should decide it is a valuable tool. The project is currently in
an alpha stage, and not all planned features have been implemented yet. In particular,
data management functionality is virtually non-existent, as data sets need to be set up
manually.

5.2 The CommonWL standard

Before elaborating on Buis, it is necessary to explain a little more about CommonWL.
CommonWL is not a framework or library, but an open standard for creating pipelines. In
that respect, it is similar to the Kliko specification described in Section 4.2. The standard
is developed by a multi-vendor working group to guarantee an open standard and open
development process. It differs from the Kliko specification mainly in that the Kliko
specification expects one to bundle every container with a Kliko file, while CommonWL
has an optional configuration statement for specifying a container name. In retrospect,
the design of the latter is leaner, since it decouples the container and pipeline specification
fully. Moreover, this approach does not require a custom container. A CommonWL
workflow can also nest other CommonWL workflows, enabling the construction of a graph
of sub-graphs. A CommonWL project consists of one or more CommonWL files and

1https://github.com/common-workflow-language/common-workflow-language/wiki/
Existing-Workflow-systems

2https://arvados.org/
3https://github.com/gijzelaerr/buis

https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/gijzelaerr/buis

CHAPTER 5. CWL AND BUIS 75

optionally other arbitrary files such as documentation or input files. Each CommonWL
file has a class and can be written in either YAML or JSON.

CommandLineTool class file

The CommonWL describes a series of abstract units called classes. The most important
class is the CommandLineTool class (CLT). Just like Kliko, CommonWL is in essence a
wrapper around command line applications. A CLT file describes a command line tool
and lists all possible arguments and flags.

cwlVersion: v1.0
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
message:
type: string
inputBinding:
position: 1
outputs:
example_out:
type: stdout

Listing 9: Example of CWL command line tool definition

Listing 9 shows a simple CommonWL definition of the echo command. This defini-
tions accepts one argument, which is passed on to the echo command. This argument in
this case has the label ‘message’. It produces no output files, since echo by default prints
the given argument to stdout.

Job file

It is the responsibility of the CommonWL runner (discussed later) to present a pipeline
with the relevant input files. These files can be gathered on the console as command-line
arguments, in a graphical interface such as Buis, or can be defined in a job file. A job file
is usually defined in YAML format and is a mapping from labels to values. Each value
can be a primitive type, such as a string, int or a reference to a file. In short, a job file
is just a list of values for variables that act as input for the pipeline.

Workflow class file

The workflow CommonWL file brings two or more CLT steps together into a directed
acyclic graph (DAG). Each step is a wrapped command line program. If two steps depend
on each other because the second step needs input from the first step’s outputs, their
execution will be performed in serial. If there are no indirect dependencies, the steps
could be run in parallel. This execution could even be distributed over multiple machines,
but this depends on the CommonWL runner and scheduler used, which will be discussed
later.

CHAPTER 5. CWL AND BUIS 76

Runners

There is a wide variety of software that support the CommonWL standard. If the software
can parse a CommonWL definition and can run the listed commands, it is called a
CommonWL runner. The CommonWL website has compiled a full list of all platforms
supporting the standard4.

Discussing all runners is out of scope for this thesis, but we will describe the most
relevant runners below.

CommonWL reference runner. The CommonWL reference runner is maintained by
the CommonWL consortium, and was created primarily as a reference implementation.
The project follows the CommonWL specification strictly, and will be the first runner
to implement changes in the specification. Since this runner is very strict in following
the CommonWL standard, it is a suitable runner to develop a pipeline and verify all
files are following the standard. The capabilities of the reference runner are limited on
purpose, and although parallel execution is supported, there is no support for external
schedulers. In production, a more advanced runner with support for more multi-host and
industry-standard schedulers such as Slurm can be desired.

Toil. Toil is a popular CommonWL runner, since it easy to install and requires minimal
to no post-installation setup. The software is purely Python and is installed using the pip
installer. In addition, it offers support for various schedulers and distributed computing
platforms. This list includes among others AWS, Azure, GCP, Mesos, OpenStack, Slurm
and PBS/Torque.

Rabix Composer. Rabix Composer is an open-source editor for CommonWL docu-
ments. It has a graphical wizard-like mode allowing drag and drop creation of workflows
of individual tools. Figure 5.1 shows a screenshot of Rabix.

5.3 Buis – the web-based frontend for CommonWL runners

Together with introducing the CommonWL standard to astronomers for pipeline deploy-
ment, the need for a graphical parameter input method emerged. Astronomers wanted a
quick way to deploy an existing pipeline, change the parameters and dataset, and initiate
the processing. Unfortunately, such a tool was not available yet. We decided to compile
a list of minimal functional requirements given below.

Functional design

When building a web-frontend, it is tempting to build a full-featured product with nu-
merous additional features. For Buis we wanted to keep the design neat and simple,
reuse existing tools and frameworks where possible, and try to provide an addition to the
CommonWL ecosystem. Buis was created with emphasis on the following requirements:

• Distinct administrator and user roles. There should be a clear split between
administrator activities and user activities. Administrator activities are related to

4https://www.commonwl.org/#Implementations

https://www.commonwl.org/#Implementations

CHAPTER 5. CWL AND BUIS 77

Figure 5.1: A screenshot from the Rabix composer, made by Tammo-Jan Dijkema, AS-
TRON

configuring the interaction with the CommonWL runner, or exposing datasets that
are too big in size to upload manually through a web interface.

• CommonWL runner configurable by administrator. A custom CommonWL
runner should be configurable by the administrator by means of a configuration
file. The CommonWL runner can be configured to handle containerisation back-
ends such Singularity and Docker, but also make use of supported distribution
schedulers, such as Slurm.

• The user role functionally should be fully web-based. The software should
be accessible, and all features should be usable through a web browser. The admin-
istrator activities could be a mix of web interface action and command-line actions
or configuration scripts.

• A multi-user authenticated environment. The software should have an au-
thentication procedure, where optionally, some aspects from the program are pub-
licly accessible. In addition, it should be possible to have multiple users.

• Checkout existing pipelines from Github. There are countless ways a user
could upload or define a pipeline, but for the first release of Buis, we will focus
on a git-based workflow. Users will have to create or modify a pipeline on their
own machines and put all pipeline files into a git repository. This git repository
should be publicly available, from where Buis would be able to download it. The
repository acts as the central place for distributing changes. These changes should
be pushed by the astronomer to the repository, from where Buis can be triggered
to pull the changes. Since astronomical datasets are typically too large in size to
be contained in a git repository, these datasets need to be exposed to the workflow
by a different route, discussed later.

CHAPTER 5. CWL AND BUIS 78

• Scheduling of a CommonWL pipeline to a CommonWL runner. The
software should be able to submit a parameterised pipeline to the configured Com-
monWL runner.

• User-configurable job parameters. The software should be able to inspect a
given pipeline and extract the parameters. These parameters should be exposed to
the user, where the user can change their default values. These tuned parameters
should be stored for later reuse.

• Ability to monitor pipeline status and progress while running. After a
user has submitted a parameterised pipeline to the runner, the user should be able
to visualise the progress.

• Ability to stop and delete failed, successful or stopped runs. The users
should be able to clean up previous runs by cancelling and/or deleting a run.

• Configuration of dataset functionality. The administrator should be able to
configure multiple files or directories, which can be used as inputs to the pipeline.
Since managing large datasets is a complex task depending on available storage
managers and business logic, we decided that for now, a Buis user needs to request
a Buis administrator to add a large dataset to Buis manually.

• Visualisation of compute graph. The software should be capable of visualising
the graph of the CommonWL pipeline.

• Visualisation of pipeline output. The software should be capable of visual-
ising the output of the pipeline run. The most common data formats should be
supported. For the first release of Buis we will focus on radio image astronomy
formats, foremost the FITS format.

Technical design

Buis is similar to RODRIGUES in its design (see Section 4.5). The most significant
difference is that Buis only supports CommonWL pipelines, while RODRIGUES only
supports Kliko. Since Kliko is not maintained anymore, RODRIGUES has also been
abandoned.

• Django. Django5 is the web framework used to create Buis. The framework
is based on Python, is mature and contains most of the features needed. These
include the creation of models for storing temporary results, authentication and
authorisation of users, a useful administrator panel for managing users, in-browser
debugging facilities, a bundled HTML templating engine, and more. Django has a
large user community writing reusable Django components (apps), which could be
reused and recombined with other software. Django can be modified and reconfig-
ured to integrate with other supported tools by the Buis administrator.

• Database. A metadata storage location for keeping track of the Buis internal
state is required. For storing meta-data, a database back-end is required. Django
supports multiple back-ends. An example of a backend is the high-performance
PostgreSQL6 backend, which is a popular open-source service-based database en-

5https://www.djangoproject.com/
6https://www.postgresql.org/

https://www.djangoproject.com/
https://www.postgresql.org/

CHAPTER 5. CWL AND BUIS 79

gine. Another supported backend is the file-based SQLite7 environment, which
does not require a running daemon. Since it is not expected that more than a
few simultaneous users will be accessing Buis, the storage configuration of Buis
can be kept simple, and the non-service file-based SQLite solution is used. Other
databases can be used if required and can be configured in the Django settings.

• Celery. Celery8 is the job distribution and management platform we use which
integrates neatly with Django. Celery is commonly used for websites where it is
important to return a response to a website visitor as quickly as possible to guaran-
tee a smooth user experience. Non-critical tasks that take longer, such as updating
an extensive database, are not always required to be processed and executed be-
fore a response is sent back to the client. By executing the job asynchronously
using Celery, the website stays responsive. In present case, the tasks we schedule
asynchronously are the cloning and updating of Github repositories and running
the actual pipelines. When a user starts a pipeline, the tasks are delegated to the
Celery framework, which will forward the request to a broker service controlled
by Celery. In the background, multiple Celery workers are monitoring the broker
queue for new tasks. When one comes in, the worker executes the job, and will
update the database when the job finishes or fails for whatever reason. Django will
then visualise these updates on the website, so the user stays up to date about the
status of the job.

• Bootstrap. For the frontend in the browser, we use Bootstrap9, which is a set of
CSS rules and icons that make visually attractive and user-friendly websites. Also,
Bootstrap is a widely used platform and an industry standard.

Usage

As discussed before, there is a distinction between a Buis administrator and a Buis user.
The Buis administrator sets up the Buis installation and modifies the configuration to
match the deployment environment. In the role of an administrator, there are multiple
ways to deploy Buis. The best way is dependent on the requirements on the deployments.
We have added a Makefile with shortcuts that act as examples on how to proceed. The
Makefile should be examined for all the commands and options. The main options are:

• A manual deployment. The manual strategy is useful for development. This
strategy requires the installation and configuration of a message broker. During
the development of Buis, the RabbitMQ10 broker, a fast open-source message bro-
ker, was used. This broker is also configured as the default broker. Next, one
needs to manually start a webserver (make django-server), which will accept
web requests from the client. Note that one also needs to initialise the database
(make django-migrate) and create a user for authentication on the website (make
django-createsuperuser). To be able to schedule the jobs in the background, a
Celery worker also needs to be started (make celery-worker).

7https://www.sqlite.org/
8http://www.celeryproject.org/
9https://getbootstrap.com/

10https://www.rabbitmq.com/

https://www.sqlite.org/
http://www.celeryproject.org/
https://getbootstrap.com/
https://www.rabbitmq.com/

CHAPTER 5. CWL AND BUIS 80

• Using docker-machine. If one has Docker installed on one’s system, one can
use docker-machine11. This is a more robust strategy, and suitable for a quick,
permanent deployment. First, one has to start with the make docker-compose-up
command, which will create and download the required Docker containers, followed
by a start of all the defined services, including the Celery worker. Next, one needs to
also initialise the database and create a user with make docker-compose-migrate
and make docker-compose-createsuperuser. For further details, for example of
how to start these services during booting of the machine, users are advised to read
the docker-compose manual.

• A advanced manual deployment behind a webserver. This is the recom-
mended permanent setup if one wants to integrate Buis into one’s existing infras-
tructure. The details of this deployment are beyond the scope of this thesis. If
this strategy is of interest, the user should read to read the Django deployment
manual12.

When a user is created by the administrator, this user can navigate to the Buis
web server using a browser and the credentials used during the creation of this account.
The user is then confronted with three main menu options, Repositories, Workflows and
Datasets. The repositories are the git repositories containing CommonWL pipelines. The
user should add one or more git repositories here, and once added, the user can select
a pipeline, load in parameters and start a workflow job. The workflows page lists all
running and completed pipeline runs. The datasets page lists all configured datasets
added by the administrator. As discussed before, for now, if a user wants to add a
dataset to Buis, this needs to be coordinated with the Buis administrator.

5.4 Use case example: a 1GC pipeline

To demonstrate the functionality of Buis, a simplified version of an existing science
pipeline is taken and converted to CommonWL. This pipeline is based on a small subset
of the CARACal (Józsa et al., 2020b) workflow (Subsection 1.11), which uses Stimela.
Stimela can transpile (compiler from source to source) a Stimela script into the Com-
monWL format. The CommonWL transpiled 1GC pipeline is available on github13.

The pipeline performs 1GC (Subsection 2.4), a.k.a. reference calibration (see Sec-
tion 2.4), on a given dataset. The calibration procedure consists of multiple sub-tasks,
each either modelling and solving for a particular gain effect (se eq. 2.57), or manipulat-
ing the results. The calibration is based on a nearby bright reference source observation
with known properties.

The CARACal transpiled pipeline consists of the parts listed below. Note that, from
a functional point of view, most of these are wrappers around the eponymous CASA
tasks:

• Listobs: This step is a wrapper around the CASA listobs task. This task is
diagnostic in nature, and does not manipulate the incoming data: the only action
taken is printing a summary of the data to the console.

11https://docs.docker.com/machine/
12https://docs.djangoproject.com/en/3.0/topics/install/#install-apache-and-mod-wsgi
13https://github.com/gijzelaerr/1gc-pipeline

https://docs.docker.com/machine/
https://docs.djangoproject.com/en/3.0/topics/install/#install-apache-and-mod-wsgi
https://github.com/gijzelaerr/1gc-pipeline

CHAPTER 5. CWL AND BUIS 81

• Setjy: This is the first step of the absolute flux calibration. Here the MODEL_DATA
column of the MS is filled with the visibilities corresponding to the calibrator
sources. This is the M term in eq. 2.56.

• Delay calibration: The first Jones term to be solved for is usually delay (Γ
in eq. 2.57). Multiple phenomena can cause delays in signal propagation, caus-
ing a mismatch in correlating the signals. The most dominant corrupting effects
are caused by the atmosphere, inaccuracies in the electronics and inaccuracies in
the geometric model of the array. Regardless of how well the array hardware is
produced, modelled and maintained, the the inaccuracies in electronics and the
geometric model are unavoidable and should always be accounted for. Since the
effect of delay is a linear ramp in phase, unaccounted-for delays will influence all
other Jones solutions downstream, therefore this effect needs to be solved for first.

• Complex gain calibration: Incoming signals are time-variable owing to atmo-
spheric and environmental influences, causing fluctuations in mostly the phase but
also the amplitude of the gain. Gain calibration mitigates the large fluctuations,
which increases the coherence of the signal. This is the G term of Eq. 2.57.

• Bandpass calibration: This calculates a bandpass calibration solution, i.e. the
frequency-variable B term in Eq. 2.57. Multiple external conditions can influence
the receivers’ response to an incoming signal and each effect influences the response
per frequency differently. The effects are specific and unique to the array itself,
but are also affected by external influences such as temperature. The bandpass
calibration step is used to estimate and compensate for these influences (using a
known calibrator source frequency spectrum, which we set up at step setjy).

• Plot_bandpass: This is another diagnostic step, which plots the bandpass solu-
tion found in the previous step. An astronomer can use these plots to identify any
potential problems with the observation.

• Plot_gains: This is another diagnostic step, taken for the same purposes.

• Fluxscale: This is the second step of absolute flux calibration. Note that bandpass
calibration, above, requires a very bright reference source with a well-known flux
and spectrum. Very few such calibrator standards exist, so it is rare to have one
suitably close to the observational target. This usually means a large difference in
atmospheric phase between the two, making the bandpass calibrator unsuitable for
gain calibration. Typically, this is overcome by selecting a ‘secondary’ calibrator
source close to the target. Provided this secondary calibrator is sufficiently bright
and point-like, complex gain calibration can be done using the secondary without
knowing its absolute flux. The unknown absolute flux scaling is then corrected for
by transferring the flux scale from the primary to the secondary solutions, using
this task.

• Applycal: This step applies calibrations solutions derived from the previous cali-
bration steps to visibilities in the MS, forming up the so-called corrected visibilities.

• WSClean: The final step is imaging (Sect. 2.3). Here, this is done by the WSClean
task (a wrapper around the eponymous software package14). WSClean uses the

14https://sourceforge.net/p/wsclean/

CHAPTER 5. CWL AND BUIS 82

corrected visibilities and the uv-sampling to produce a dirty image and a PSF, then
applies one of several possible deconvolution techniques to derive a deconvolved
(‘clean’) image.

To run the pipeline, the user adds the public 1GC repository on the repository page.
A Celery worker will clone the Github repository on the machine running Buis and
will update the status page when ready. Next, the user can explore the content of the
repository. Buis will list all the CommonWL files in the repository (Figure 5.2), and give
the option to visualise the pipeline or prepare a workflow run. Figure 5.3 shows how Buis
visualises the full 1GC pipeline.

Figure 5.2: The repository view of the 1GC pipeline project

Figure 5.3: A graph representation of the 1GC pipeline

Note that Buis presents the user with all CommonWL files. The 1GC repository
contains multiple CLT files, and one Workflow file, the latter chaining the former into
the 1GC workflow. When the user proceeds to the workflow job preparation step, Buis
will list all job files in the repository containing presets for the variables in the pipeline.
The user can select a preset or choose to start with the default values defined in the
workflow. Next, the user is presented with all the parameters, which can be modified
when needed (see Figure 5.4). If the pipeline has files or directories as input, the user
can attach prepared datasets here.

CHAPTER 5. CWL AND BUIS 83

Figure 5.4: The Buis workflow parser view, the user can change parameters here.

Finally, the user can initiate the workflow run. When the run button is pressed, the
job is submitted by Celery to the CommonWL runner, which will deploy the pipeline
depending on the setup configured by the administrator. Once the run is complete,
Celery will update the website with all the command output and output files. Figure 5.5
shows the final page listing all output data products. Note how Buis offers support for
astronomy-specific files such as FITS.

Figure 5.5: The Buis workflow detail view for the 1GC workflow run

5.5 Discussion

In this chapter, we presented the Common Workflow Language, a workflow abstraction
framework. We also described Buis, a CommonWL pipeline scheduling web framework
and result set visualiser. Buis is a prototype, but this does not imply that it is not
ready for use nor that it cannot grow into a complete project. During the writing of this

CHAPTER 5. CWL AND BUIS 84

chapter, we became aware of the release of a new but similar tool named CWLab15. In
design Buis and CWLab seem similar, but a feature that is missing from CWLab is a
result viewer. Since both projects are open-source, future work could involve comparing
the two frameworks and see if concepts can be copied in one way or another. If all
parties are interested, it might even be fruitful to combine the work efforts and merge
the project.

15https://github.com/CompEpigen/CWLab

https://github.com/CompEpigen/CWLab

Chapter 6

Vacuum Cleaner

85

CHAPTER 6. VACUUM CLEANER 86

6.1 Introduction

With the advent of new radio telescopes such as MeerKAT (Jonas, 2015), ASKAP (John-
ston et al., 2008), LOFAR (de Vos et al., 2009) and the soon to be built SKA (Dewdney
et al., 2009), it would seem that radio interferometry is entering an unprecedented era
of expansion. While the increased FOV, bandwidth and angular resolution possible with
modern instruments significantly improves the science capability of radio telescopes, it
comes at the cost of greatly increased data rates (D. L. Jones et al., 2012). The science,
on the other hand, still relies very strongly on our ability to turn the data measured by
an interferometric array (known as visibilities) into an image of the sky. As a result,
legacy image reconstruction algorithms such as Hogbom’s CLEAN algorithm (Högbom,
1974) are continually being optimised and extended (Offringa, McKinley, et al., 2014;
Offringa and Smirnov, 2017; Tasse et al., 2018). While these algorithms are computa-
tionally inexpensive, it is known that they are sub-optimal at capturing the complex
morphologies uncovered by modern radio interferometers. On the other hand, with the
recent demonstration of super-resolution (Dabbech, Onose, et al., 2018), it has been re-
alised that sparsity-promoting techniques (Carrillo et al., 2014; Dabbech, Ferrari, et al.,
2014; Onose et al., 2016) as well as techniques based on Bayesian inference (Junklewitz
et al., 2016) can greatly improve the quality of reconstructed images. This is important
in the context of modern instruments, which aim to maximise the the science capability
of an instrument built from finite resources. Unfortunately, the computational complex-
ity of these more sophisticated techniques render them impractical to the majority of
astronomers who do not have access to supercomputing facilities or to readily available
implementations of these algorithms. In addition, with current data sets already easily
reaching Terabytes, it becomes more and more impractical to ship the raw data from the
storage facility to the user.

Previously mentioned challenges make any machine learning based approach based
on interferometric image data extremely attractive. In this chapter we demonstrate that
such an approach is indeed feasible and discuss some of the challenges and benefits that it
offers. We specifically focus on deep neural networks, since these networks have recently
shown impresive results in the domain of computer vision. The technology has been ap-
plied to deal with related problems such as image denoising (Fu et al., 2017; Mao et al.,
2016; Schuler et al., 2013; Zhang et al., 2017), inverse problems (Adler and Andöktem,
2017; Jin et al., 2017; McCann et al., 2017; Xu et al., 2014), medical (MRI) deconvolu-
tion (Mardani et al., 2018). In the radio astronomy field these methods are also gaining
traction, for example translation between different radio astronomy surveys (Glaser et
al., 2019) and classification of fast radio bursts (Connor and van Leeuwen, 2018).

6.2 Radio interferometric imaging

In Section 2.3 we explained the basic principles of radio interferometric imaging and image
brightness reconstruction. This chapter describes a series of experiments performed to
reconstruct the original image from an observation using a deep neural network. However,
there are a number of complicating factors. Consider that we are essentially trying to
infer how to invert the mapping Eq. (2.50) from training data. Clearly, since the problem
is ill-posed, it would be necessary infer the correct prior with which to regularise the
problem. This however, is not the main difficulty. The main complication that arises is

CHAPTER 6. VACUUM CLEANER 87

that the (u, v, w) locations at which we have measured data changes from observation to
observation and it is simply not feasible to train a separate network for each observation.
The lack of sufficient realistic training data also makes drowning the problem in training
data infeasible. A practical solution would therefore have to incorporate knowledge of the
sampling pattern during training and prediction, and also perform well with relatively
little training data. The approximation Eq. (2.53) suggests an attractive possibility that
circumvents many of these complications.

We could utilise the expression Eq. (2.53) during training of a neural network using
a loss function looking like:

Φ(I) =
(
I†IPSF ∗ I − 2I†ID

)
, (6.1)

with a network that has the dirty image ID and PSF IPSF as inputs, I is the model and I†

is the ground truth. Loss functions will be discussed further in Subsection 6.3. Note that
by using the PSF as one of the inputs, we are effectively incorporating knowledge of the
sampling function during both training and prediction. Furthermore, by incorporating
the notion of convolution with the PSF as part of the loss function, we are informing the
network of the relation between the dirty image and the PSF, albeit only approximately
and only during the training phase. This should drastically reduce the training time of
the network and improve performance in cases where the sampling pattern changes from
observation to observation.

6.3 Method

A deep neural network is a machine learning method based on artificial neural networks
(ANNs). Such a network is inspired by the biological neural network of animal brains, al-
though current ANNs are not even close to approaching the complexity of natural neural
networks (Barrett et al., 2019; Geirhos et al., 2017; Sinz et al., 2019). An ANN consists
of multiple nodes or neurons, where subsets of the nodes are grouped into layers. These
layers are connected to one another by edges. Each node has one or more inputs and out-
puts. In operation, each neuron receives signals from the connected input nodes, and the
output is computed by applying a non-linear function of the sum of the weighted inputs.
In this paper we explore convolutional neural networks (CNNs). CNNs are a specific
type of multilayer perceptron. Multilayer perceptrons usually refer to fully connected
networks, while CNNs are typically not fully connected. These networks are sensitive
to overfitting and are computationally expensive, since their number of connections be-
tween layers grows exponentially. As the name suggests, CNNs employ a mathematical
operation called convolution. In the deep learning context, convolution means that a
node is only connected to neurons in the previous layer that is spatially nearby.

Before we can use the network, it requires training to make sure it maps the correct
output to the given input. Training a neural network is accomplished by adjusting the
weights inside the network. For weight optimisation, we use an algorithm called the adam
optimiser (Kingma and Ba, 2014). During training, the network is given an input image,
which will propagate through the network and generate a prediction. This prediction is
compared to a ground truth using a loss function, which will be described later. The loss
function indicates how wrong the prediction is. The adam algorithm estimates how much
each weight contributed to this error, and will update the weight accordingly. Training is
done multiple times on the same dataset, where each iteration is referred to as an epoch.

CHAPTER 6. VACUUM CLEANER 88

Network architecture

Most neural network frameworks have a notion of channels that are used to encode
colour information. Since, in this context, we only use a singly frequency, we only use
one channel (grayscale). For the base of our network, the autoencoder architecture
is used. An autoencoder is a type of NN used to learn efficient data codings in an
unsupervised manner. The aim of an autoencoder is to learn a dimensionality reduction
representation (code) of a set of data. Along with the reduction side, a reconstruction side
is learnt, where the autoencoder tries to generate a representation as close as possible
to its original training target from the reduced encoding. Intuitively an autoencoder
can be seen as a universal dimensionality reduction tool, similar to PCA analysis and
compression techniques. The method projects the original data in a feature space that
facilitates sorting by the most significant shared features of the input data. Next, the
dimensions representing the less prominently shared features (which are assumed to be
noise) can be discarded, reducing the computational storage requirements, but, more
importantly, and it is to be hoped, removing the noise or artifacts. We call the reduction
side the encoder function φ and the reconstruction side decoder function ψ. The input
image and target output image are directly fed into these functions during usage. Also,
the input of the encoder matches the shape of the input image, the dirty image.

A spatial discrete convolution is defined as:

f [x, y] ∗ g[x, y] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2]ġ[x− n1, x− n2]. (6.2)

Each layer f [x, y] in the encoder is a spatial convolution layer with a normalised kernel
g[x, y] and stride (how far the filter moves every step in one direction) of 2, resulting in
each consecutive layer having half the neurons in each spatial dimension. The decoder
has exactly the opposite structure, and the final layer matches the dirty spatial image
dimensions.

During training, φ and ψ are optimised such that:

φ : ID → F
ψ : F → IM

φ, ψ = arg min
φ,ψ

‖ID − (ψ ◦ φ)IM‖2,
(6.3)

where ◦ is a function composition and F is the dimensionally reduced representing code.
Since we expect high spatial similarity between the dirty and clean images, we use skip
connection (direct propagation connections without convolution) between the encode and
decode layers, making the network a ‘U-Net’ architecture (Ronneberger et al., 2015).
Here, ‘similar’ means that there is a positional correlation between input and output
pixels. Input pixels in one corner of the image correlate with output pixels in the same
corner, but much less (although not zero) with output pixels in the opposite corner. The
rationale behind adding these skip layers is that the network has additional information
about the input data and can converge faster. The architecture of the Vacuum Cleaner
network is shown in Fig. 6.1.

CHAPTER 6. VACUUM CLEANER 89

Figure 6.1: The architecture of the network

Objective function

To update the weights in the network, an objective function is required. This could be any
function, as long as it is differentiable. Usually, this function represents the distance S
between the target value (yi) and the estimated value f(xi). Commonly used definitions
for distance are the L1-norm, also known as the Manhattan distance:

SL1 =
n∑
i=1

|yi − f(xi)| (6.4)

and the L2-norm, also known as the Euclidean norm:

SL2 =

n∑
i=1

(yi − f(xi))
2. (6.5)

Using these norms as an objective function often results in blurry output images (Pathak
et al., 2016). To address this issue, we use a conditional generative adversarial network
(GAN) (Goodfellow et al., 2014). GAN’s consist of two networks, the generator and
discriminator. The generator generates the images, while the discriminator is trained
to distinguish between real and fake data. We use the previously described U-net as
the generator. The judgement of the discriminator is used as an objective function to
train the generator. Eventually, the generator should produce outputs that cannot be
distinguished from the training data by the discriminator. The discriminator network
evaluated has a PatchGAN architecture (Isola et al., 2016), is only used during training
and acts as a loss function.

Conditional GANs learn a mapping from a dirty image ID and a random noise vector
Z to clean image IM :

ε : ID, Z → IM , (6.6)

CHAPTER 6. VACUUM CLEANER 90

where ε is the generator. The network could learn a mapping from ID to IM without
noise vector Z, but this would produce deterministic outputs. Consequently, it would
fail to learn anything except a delta function. The noise is provided in our GAN model
in the form of dropout (Srivastava et al., 2014). The discriminator δ is trained to score
how likely it is that a dirty image IM was generated by ε or is real data from the training
set.

A GAN can be seen as a two-player minimax game (Aumann and Maschler, 1972)
with loss function Lgan(ε, δ):

G∗ = min
δ

max
ε
Lgan(δ, ε)

=EID,IM [log δ(ID, IM)]+

EID,Z [log(1− δ(x, ε(ID, Z)))].

(6.7)

where E is the expectation, or the weighted average over the values in subscript.
δ is trained to distinguish between training examples and generated samples from ε.

Simultaneously, ε is trained to minimise log(1− δ(ε(Z))), which means it tries to reduce
the performance of the discriminator.

Previous experiments have shown that it can be beneficial to regulate the loss function
with the L1 distance between the output of ε and the training data IM (Isola et al., 2016;
Pathak et al., 2016), making the final objective:

G∗ = min
δ

max
ε
Lgan(δ, ε) + λLL1(G), (6.8)

where λ is a hyper-parameter that can be fine-tuned.
In this chapter we will describe using a conditional GAN applied to the image re-

construction in radio astronomy. In addition, we will investigate if adding additional
information in equation Eq. (6.1) described in the introduction of this chapter, to the
loss function will improve the results.

Implementation

Our work is based on the open-source tensorflow (Abadi et al., 2016) implementation
of the pix2pix network (Isola et al., 2016). The modified network is available on github
under the name Vacuum Cleaner1; it is also available on pypi2.

We have modified the code to make it easier to load and write astronomical (FITS (Wells
and Greisen, 1979)) data. The network operates internally with pixel values in a fixed
range between -1 and 1. Meanwhile, astronomical images can have a huge dynamic range
so FITS files do not have a predefined range. For this reason we preprocess and scale the
dirty image to the (−1, 1) range, and uses the same scaling factor to restore the original
scale for the output of the network. Moreover, we added the option to give the PSF as
an additional channel input.

Training

To train a deep neural network, it is important to use the correct learning rate. Setting
this too low will slow down the learning process to impracticable levels, while setting it

1https://github.com/gijzelaerr/vacuum-cleaner
2https://pypi.org/project/vacuum-cleaner/

https://github.com/gijzelaerr/vacuum-cleaner
https://pypi.org/project/vacuum-cleaner/

CHAPTER 6. VACUUM CLEANER 91

too high might overstep solutions. Unfortunately, the optimal learning rate might change
when the network architecture and/or loss function is modified. This implies that a small
hyper-parameter search is required for every experiment to find a good learning rate. We
found that most experiments in this chapter converged in scoring at a learning rate of
10−3, while adding the likelihood term to the loss function performed better at a learning
rate of 10−5. Setting the learning rate too low tends to make the learning slower, taking
days rather than hours to converge, or not even converge at all. Setting the rate too
high leads to erratic learning behaviour, where the scores keep increasing and decreasing
chaotically while training.

6.4 The simulation

We train the network in a supervised manner, which requires a training dataset with
labelled data. A large dataset of dirty images ID, PSF IPSF and the corresponding true
sky model IM are needed.

As mentioned earlier, imaging radio astronomy data results in the dirty image, which
(for a small FOV) is the convolution of the PSF and the observed sky emission. Therefore,
to get the sky emission one has to deconvolve the PSF from the dirty image. This
deconvolution process in radio interferometry is an under-determined problem, which
means that sky emission recovered from this process is going to be dependent on the
deconvolution algorithm used to obtain it. This makes it impossible to obtain an unbiased
(or algorithm-independent) training dataset from real observation data. For this reason,
we use a simulated training dataset for which we know the sky emission exactly.

Fortunately, since the mapping from sky to visibilities is known and given by Eq. (2.50),
it is possible to simulate as much input data as required. The simulation procedure con-
sists of generating an artificial sky model and computing the visibilities corresponding to
the model using Eq. (2.50). From the visibilities and the uv-coverage we are then able
to produce the corresponding dirty image and PSF, which serve as training data.

The simulation uses the telescope simulator tool simms3 and MeqTrees (Noordam
and Smirnov, 2010) to simulate a model of the sky emission as well as thermal noise
contribution; telescope gains can also be simulated but are not considered in this work.
The full simulation pipeline, called spiel, is open-source and available online4. spiel is
a system agnostic telescope simulator written in CWL (Amstutz et al., 2016) in order to
perform large-scale simulations for modern radio telescopes.

The pipeline output products are:

1. Simulated telescope data; visibility data in the CASA measurement set (MS) for-
mat (Kemball and Wieringa, 2000).

2. The dirty image of the simulated data

3. The PSF image of the simulated data

4. Deconvolution image products from WSClean, which can be used as a baseline.
These are:

model image: The WSClean reconstruction of the sky emission
3https://github.com/SpheMakh/simms
4https://github.com/gijzelaerr/spiel

https://github.com/SpheMakh/simms
https://github.com/gijzelaerr/spiel

CHAPTER 6. VACUUM CLEANER 92

residual image: This is an image of the data after subtracting the reconstructed
model.

restored image: The residual image added to the convolution of the model image
with a 2D Gaussian fit of the main lobe of the PSF (a.k.a clean/restoring
beam).

Figure 6.2: Bundle 1 of the ASTRODECONV2019 dataset

Using spiel, we generated 10 000 image products with unique sky emission models,
henceforth referred to as sky models. This dataset is released under the name ASTRODE-
CONV2019 and is available online5. We encourage future experiments and benchmarks
with this dataset. The dataset has a total size of 12 GB compressed and 23 GB un-
compressed. To save space and bandwidth, the raw measurement set data and residual
images are not distributed. The latter can be reconstructed if needed by convolving the
WSClean model with the PSF and subtracting the dirty image. Figure 6.2 visualises
image bundle number 1 from the dataset. The simulated data is based on the MeerKAT
telescope AR1 phase (16 antennas)6 with an effective bandwidth of 770 MHz, though in
this simulation we used bandwidths of 200 - 300 MHz only. Larger bandwidth would
require considerable spectral variation in the sources, which is outside the scope of this
work.

In this initial investigation, we restrict the sky models to consist of unresolved point
sources randomly scattered across the FOV. All simulations are based on the 16 dish
configuration of the MeerKAT telescope, but the pointing location and integration time
vary randomly. The varying position and integration time result in diversity in noise
levels in the images and PSF shapes. Also, the channel width varies between 200× 106

and 300× 106 and declination varies between −55° and −65°.
5https://archive.kernsuite.info/data/
6http://www.ska.ac.za/wp-content/uploads/2016/07/info_sheet_ar1_2016.pdf

https://archive.kernsuite.info/data/
http://www.ska.ac.za/wp-content/uploads/2016/07/info_sheet_ar1_2016.pdf

CHAPTER 6. VACUUM CLEANER 93

6.5 The results

Scoring

To evaluate the performance of the proposed method we compare the output to the
output of a widely used cleaning implementation named WSClean. However, to be able
to quantify and compare performance we first need a scoring method.

Consider that an interferometric array necessarily has a finite resolution, which is de-
termined, predominantly7, by the antenna pair with the largest separation. As a result,
it is not usually possible to distinguish between a single source or a group of sources
lying within the resolution element of the instrument. Therefore, a straightforward com-
parison based on the norm of the differences between input IM and output Î images is
not very informative. In order to score the output of the network we therefore rather
compute the norm of the difference between the input and output images once they have
both been convolved with a kernel, Iα say, which matches the resolution element of the
interferometer i.e.

E1 = ‖Î ∗ Iα − IM ∗ Iα‖1. (6.9)

In practice Iα is obtained by matching a 2D Gaussian to the full width half maximum
of the main lobe of the PSF. In addition, to test how closely the output matches the
data, we also compute the RMS of the residual image obtained as follows

E2 =

√∑
i

(IRi)2, where IR = R†Σ−1(V −RÎ), (6.10)

where the operator R is implemented with WSClean. We have precomputed the clean
beams, which are bundled with the ASTRODECONV2019 dataset. For fairness the
major cycle count of WSClean has been restricted to 1 by setting the -mgain flag to a
value of 0.95.

Evaluation

We evaluated three different approaches to train the neural network:

GAN loss function. The first approach is a GAN, as described in Section 6.3.

GAN loss function and PSF as input channel. The second approach is the same
GAN, but with the PSF as secondary input channel, next to the dirty image input.

GAN loss function with likelihood term and PSF as input channel. The final
evaluated approach is the same as the second approach, but with the additional likelihood
term in the loss function. The likelihood term has been manually weighted with a factor
0.001 to balance the two loss functions.

For the experiments we have split the dataset into 94 000 training images, 3 000
testing images, and 3 000 evaluation images. The training images are randomly flipped
horizontally and vertically to maximise their utilisation. Each approach is trained for 100
000 steps, and every 10 000 steps the performance is evaluated on the test set. Figure 6.3

7SNR and uv-sampling patterns aside

CHAPTER 6. VACUUM CLEANER 94

shows the performance on the test set for each method. The numbers are the average
values of 10 repeated randomly initialised runs.

Figure 6.3: Comparison of performance loss functions. Average of 10 runs for each
evaluated method. On the horizontal axis are the training steps, for every 10 000 training
steps the network performance was evaluated using the test set. On the vertical access
is the training score, which is computed with Eq.(6.9). Lower is better. The data shows
that initially the GAN average loss function learns faster, but beyond 40 000 training
steps the performance of all methods converge. The degradation in performance around
80 000 steps for the GAN average loss function is caused by a sudden drop in performance
in one of the runs, which might suggest that the training rate is slightly off for this specific
loss function.

In addition, the performance of one of the GAN loss functions is evaluated against
the WSClean output computed in the simulation step, which is plotted in Fig. 6.4

Computational performance

We did not do an extended study on the scalability properties of our method. All
development and evaluation of Vacuum Cleaner was done on a computer system equipped
with an AMD Ryzen 7 3700X CPU, 32GB of memory and a Nvidia Geforce 1080 TI GPU
with 11 GB of memory. Deconvolving 100 images takes about 21 seconds on the test
system with GPU acceleration enabled. This includes encoding and writing four FITS
(dirty, target, output, residuals) files per image. 9 out of the 21 seconds is used for

CHAPTER 6. VACUUM CLEANER 95

Figure 6.4: Vacuum cleaner performance compared to WSClean. Here, as a scoring
function we use Eq.(6.10), so lower is better. Each point represents an image; on the
vertical axis the position represents the Vacuum Cleaner error score, on the horizontal
scale the position represents the WSClean error score. Below the red line means WSClean
performed better, above the red line means Vacuum Cleaner performed better. The centre
point of the distribution is in favour of WSClean, but the results look very encouraging
and for a significant number of images Vacuum Cleaner outperforms WSClean.

CHAPTER 6. VACUUM CLEANER 96

‘warming up’, i.e. initialising the neural network on the GPU. The CPU-only version is
significantly slower, and deconvolves about one image per three seconds.

The expected computational scaling and memory footprint of the problem are quadratic
with the total number of pixels. A quick experiment showed that increasing the input
and output size to 512 by 512 pixels (by adding a halving layer to the input size of the
autoencoder, and a doubling layer to the output layer) is executable on the development
machine described, but as expected, slows the performance down quadratically. Larger
images might be problematic owing to memory constraints, but given the high rate of
improvements made to GPU architectures, we believe that that processing images of
doubled or quadrupled sizes is already possible, or soon will be within reach.

6.6 Conclusion and discussion

We have successfully demonstrated the training of a conditional generative adversarial
network to restore image brightness levels of simulated radio astronomy images to the
point where these get close to the performance of WSclean with a single cleaning itera-
tion. Although the performance is promising, it is not outperforming traditional cleaning
methods yet.

We evaluated two modifications to the network, the addition of the PSF as an input
channel, and an additional term to the loss function. Both experiments, unfortunately,
yielded no significant improvements. The lack of improvement was surprising, since
adding domain-specific gradient information would generally improve the performance
over a more general loss function.

There could be multiple explanations for why the performance is not better. Firstly,
it could be that autoencoders are not quite suitable for reconstructing the delta function
point sources in the training set. Most image-to-image applications in the literature
process images with complex structure. Secondly, it could be that we are approaching
the limits of the representative capabilities of the auto-encoder network. Similar to
solving for DDEs during calibration, knowing how to improve the results is sometimes
like black magic, which also illustrates an issue with deep learning. It is not trivial to
determine why specific methods work or not and why certain architectural modifications
do not improve the results.

In this case, adding a better loss function might decrease the training time, but if the
network is trained for long enough, the final performance would be equal. This is what
is seen in performance comparisons in Figure 6.3.

Thirdly, it is possible that we are just setting the strengths of the individual regu-
larisers incorrectly, since this is a subtle task that usually requires cross-validation.

Lastly, an explanation could be that a GAN in itself is quite powerful and it will learn
the loss function by itself. In this case, adding additional information is not beneficial,
since the GAN already captures this information by itself.

Although all experiments in this paper have been performed on a resolution of 256 by
256, a small experiment on doubling the auto-encoder input and output size (to 512x512)
by adding a convolution layer reveals similar learning performance. The scaling comes
at a computational cost; the training takes considerably longer. Given enough GPU
memory, we expect a network with higher input and output dimensions to produce similar
results. Although we did not manage to improve the cleaning performance of commonly
used existing tools, the computational time performance of the proposed approach looks

CHAPTER 6. VACUUM CLEANER 97

very promising. We believe that this network is suitable in situations where an accurate
image is less important, but a quick cleaned estimate of the sky model is of a high priority.
One example of its application is the localisation of bright sources (source finding). These
locations can be used in combination with other calibration algorithms.

To facilitate the training of the network, we have created a set of sky models and sim-
ulated dirty images named ASTRODECONV2019, which are freely available for down-
load. We hope this dataset will be used for future research in the field of restoring image
brightness of point source models observed by radio interferometers.

6.7 Future work

In retrospect, the goals of Vacuum Cleaner have been too ambitious, and a smaller
scope should have been the starting point. Optimising the training of a neural network
involves a lot of trial and error, and for Vacuum Cleaner, there are still many aspects to
be investigated. One example is evaluating and understanding the performance of using a
likelihood loss function with a fixed PSF compared to a variable PSF. Another interesting
issue to rule out would be to investigate if autoencoders are suitable for generating models
containing only point sources rather than complex images. Numerous architectures could
be combined and evaluated, for example, a recurrent neural network (Putzky andWelling,
2017).

Chapter 7

Conclusions

98

CHAPTER 7. CONCLUSIONS 99

We started this work with a historical overview of radio astronomical software. From
this, it became clear that radio astronomers are incredibly successful at solving problems
and implementing those solutions in individual software packages. At the same time,
it is somewhat conspicuous that this has not been matched by a record of putting to-
gether successful (user-facing) end-to-end pipelines, despite concerted efforts. Clearly,
the Pipeline Problem is more difficult than it seems at first.

There are, clearly, many subtle problems that contribute to this difficulty. In this
work, we have identified and attempted to address two of them: software distribution
and installation, and software composition and interoperability.

The proposed solution to the distribution and installation problem is the KERN suite
(Chapter 3). The KERN suite is available to the worldwide community, and we are carry-
ing on maintenance and releases as an ongoing process. KERN-6 was released shortly be-
fore this work was submitted. KERN is actively used at ASTRON and SARAO and other
institutes, and there is healthy growth in the usage numbers (see Section 3.9). An increas-
ing number of independent researchers are using KERN to support their work (Creaner
and Carozzi, 2019; Sabater et al., 2018; Sabater et al., 2019; van Hateren, 2019). We
optimistically believe KERN has now become a crucial building block for software devel-
opment in radio astronomy.

The emergence of container technologies such as Docker has opened up new possi-
bilities for both software distribution and composition. Much like the different strands
of self-cal emerging almost simultaneously at different institutions, the idea of a pipeline
as a chain of containers seemed to arise ‘because the time was right’. The author’s
contribution to this, Kliko, is described in Chapter 4. Unfortunately, this turned out
to be a duplication of effort. Simultaneously, a larger community with more significant
momentum was formed in a similar project named CommonWL. Although Kliko served
as a useful testbed for pipeline containerisation ideas, it was decided to cease it’s devel-
opment. Since the astronomy software ecosystem is an organically evolving landscape
without central coordination or planning, the end of Kliko did not stop other astronomers
from taking inspiration from Kliko. The Stimela framework was created based on con-
cepts and ideas borrowed from Kliko. Time will tell if the radio-astronomy community
will adopt Stimela, use CommonWL, or will find a different solution for constructing and
deploying portable pipelines.

In Chapter 5, we investigate the use of CommonWL for radio astronomy pipelines,
and develop a CommonWL web-based front end and scheduling framework called Buis.
As a proof-of-principle example, a Buis pipeline for performing 1GC calibration is shown.

In the final chapter, we show a specific use case for the ideas above, by develop-
ing a novel approach for deconvolving interferometry maps. The pipeline used to test
the approach (and to generate a range of synthetic datasets for it) is based on Com-
monWL. We managed to fine-tune the image quality output performance to match the
quality of a single-iteration clean step. Although the reconstruction performance does
not outperform traditional cleaning methods in image quality output, we believe this
approach is an exciting new addition to the radio astronomer’s technical repertoire, since
it opens up new ways to approach the deconvolution problem and, potentially, speed
up the computational performance. This research has by no means been completed,
and our experiments are just a preliminary investigation into applying deep learning
in the field of image reconstruction. The method is implemented in a freely available
open-source project named Vacuum Cleaner. In addition, the ASTRODECONV2019

CHAPTER 7. CONCLUSIONS 100

simulated dataset (generated with the CommonWL based pipeline) is made public. The
usage of this dataset is encouraged for experiments and comparisons to our results.

Some of this work has already directly contributed to, or influenced, the development
of new radio astronomy pipelines. In particular, the CARACal pipeline (Sect. 5.4) is
based on the Stimela framework, which (a) was influenced by Kliko in many ways, and
(b) ships a set of base software images entirely based on KERN. If this pipeline is a
success, the author will be happy to know that he has contributed some small part to
solving the Pipeline Problem.

Meanwhile, software developers and managers working on telescope software are be-
coming increasingly aware of the usefulness of decomposing pipelines into abstract build-
ing blocks using tools such as CommonWL. We hope that this trend will continue, and
the usage of CommonWL or similar frameworks for constructing pipelines will keep grow-
ing. We believe this technology has a big role to play in the SKA data conundrum. It
has been postulated that the data output rates of a telescope such as the SKA (even
already at Phase 1) will be on such an immense scale that it would not be practically
possible for the end-user astronomer to be involved with the imaging and calibration
process. Instead, users would have to settle for receiving the reduced data as-is, coming
from a predefined pipeline running at an SKA data centre somewhere, using some pre-
defined parameters and heuristics. This prospect has caused some anguish among radio
astronomers, many of whom are used to reducing their own data in their own (natu-
rally, perceived superior) way. Yet even a brief consideration of the SKA1 data rates
seems to preclude the possibility of any end-user involvement. Or does it? If the data
pipelines are open-source and structured in a recomposable way, the end-user astronomer
would, in principle, be able to supply a custom pipeline to the data centre, in the form
of something akin to a CommonWL script. Such custom pipelines could be based on the
predefined standard pipelines, but fine-tuned and optimised by users (presumably, using
smaller datasets in their own computing environments). Packaging, containerisation and
workflow tools would simplify this task.

‘Take pipelines from the user’ instead of ‘give data to the user’ would be a completely
new model for working with data, and much work would have to be done to make it a
reality. The skeptical reader may, quite justifiably, consider this impossible. Skeptical
readers are hereby encouraged to return to the start of Chapter 1 for a recalibration of
their sense of what is possible.

Appendix A

KERN packages

101

APPENDIX A. KERN PACKAGES 102

Table A.1: List of packages in KERN

Package name Description and website Version in KERN-5
21cmfast a seminumeric modelling tool to efficiently simulate

the cosmological 21-cm signal
https://github.com/andreimesinger/21cmFAST 2.0-1

aips variety of ancillary tasks on Astronomical Data
http://www.aips.nrao.edu/ 31dec18-1

aoflagger Find RFI in radio astronomical observations (shared
lib)
https://sourceforge.net/projects/aoflagger/ 2.13.0-1

apsynsim Aperture Synthesis Simulator for Radio Astronomy
https://launchpad.net/apsynsim 1.4v2-1

astro-amber A many-core transient searching pipeline
https://github.com/AA-ALERT/AMBER 2.1-1

astrodata Set of C++ classes to operate on radio astronomical
data.
https://github.com/AA-ALERT/AstroData 3.1.1-2

attrdict Dictionary that allows attribute-style access
(Python 3)
https://github.com/bcj/AttrDict 2.0.0-1kern6

bifrost stream processing framework for high-throughput
applications
https://github.com/ledatelescope/bifrost 0.8.0+git20180512.8e1c0e1-1

bitshuffle filter for improving typed data compression.
(Python 3)
https://pypi.python.org/pypi/bitshuffle/ 0.3.5-2

bl-dspsr UCBerkeleySETI specific fork of dspsr
https://github.com/UCBerkeleySETI/dspsr 0.0 git20180312.50ea209-1

bl-sigproc Breakthrough Listen fork of SigProc tools
https://github.com/UCBerkeleySETI/bl_sigproc 0.0 git20181130.efd2724-1

blimpy
https://github.com/UCBerkeleySETI/blimpy 1.3.5-1kern1

blitz C++ template class library providing array objects
https://github.com/blitzpp/blitz/ 1.0.1-1kern2

carta Cube Analysis and Rendering Tool for Astronomy
https://cartavis.github.io/ 1.0-1kern1

carta-remote Remote version of CARTA
https://cartavis.github.io/ 1.0-1kern1

casacore CASA table system
https://casacore.github.io/casacore 3.0.0-4kern2

casacore-data Casacore data files
http://casacore.github.io/casacore 20190909-000001-1

casalite Common Astronomy Software Application
https://casa.nrao.edu/casa_obtaining.shtml 5.4.1-1kern3

casarest standalone radio interferometric imager derived from
CASA

Continued on next page

https://github.com/andreimesinger/21cmFAST
http://www.aips.nrao.edu/
https://sourceforge.net/projects/aoflagger/
https://launchpad.net/apsynsim
https://github.com/AA-ALERT/AMBER
https://github.com/AA-ALERT/AstroData
https://github.com/bcj/AttrDict
https://github.com/ledatelescope/bifrost
https://pypi.python.org/pypi/bitshuffle/
https://github.com/UCBerkeleySETI/dspsr
https://github.com/UCBerkeleySETI/bl_sigproc
https://github.com/UCBerkeleySETI/blimpy
https://github.com/blitzpp/blitz/
https://cartavis.github.io/
https://cartavis.github.io/
https://casacore.github.io/casacore
http://casacore.github.io/casacore
https://casa.nrao.edu/casa_obtaining.shtml

APPENDIX A. KERN PACKAGES 103

Table A.1 – continued from previous page
Package name Description and website Version in KERN-5

https://github.com/casacore/casarest/ 1.5.0-1
chgcentre used to change the phase centre of a measurement

set.
https://sourceforge.net/p/wsclean/wiki/chgcentre/ 1.6-1

coast-guard A Python/PSRCHIVE-based timing pipeline for re-
ducing Effelsberg data.
https://github.com/plazar/coast_guard 0.0+git20151216.201031b-1

ctypesgen Pure Python wrapper generator for ctypes
https://github.com/davidjamesca/ctypesgen 0.0 git20150511.3d2d980-2

cub flexible library of cooperative threadblock primitives
and other
http://nvlabs.github.io/cub 1.8.0-1kern1

dadafilterbank Connect to a PSRdada ringbuffer and write out the
data in filterbank format.
https://github.com/AA-ALERT/dadafilterbank 0.0 git20180613.fa829f9-1

dadafits Connect to a PSRDADA ringbuffer and write FITS
files
https://github.com/AA-ALERT/dadafits 0.0 git20180822.8e0cd24-1

ddfacet A facet-based radio imaging package.
https://github.com/saopicc/DDFacet 0.3.4.1-1kern1

dedisp-ajameson CUDA Based De-dispersion library
https://github.com/ajameson/dedisp 0.0 git20180426.8a3d017-1

dedisp-ewanbarr CUDA Based De-dispersion library
https://github.com/ewanbarr/dedisp 0.0 git20171127.7aa2a81-2

dedisp-flexi CUDA Based De-dispersion library
https://github.com/ewanbarr/dedisp-flexi 0.0 git20171127.19826ae-1

dedispersion Many-core incoherent dedispersion algorithm in
OpenCL
https://github.com/AA-ALERT/Dedispersion 4.1-1

difmap Difference mapping interferometry tool.
ftp://ftp.astro.caltech.edu/pub/difmap/difmap.
html

2.5b-1

dp3 streaming processing pipeline for radio data (Python
2)
https://github.com/lofar-astron/DP3 3.1.7+git20181205.395619b-1kern1

drive-casa Python package for scripting the NRAO CASA
pipeline routines
https://github.com/timstaley/drive-casa 0.7.6-1kern1

dspsr library for DSPing of pulsar astronomical timeseries
(headers)
http://dspsr.sourceforge.net/ 1.0+git20181218.ddbbebb-1

dysco Compressing storage manager for Casacore meare-
ment sets
https://github.com/aroffringa/dysco 1.2-1kern2

eht-imaging Python modules for simulating and manipulating
VLBI data

Continued on next page

https://github.com/casacore/casarest/
https://sourceforge.net/p/wsclean/wiki/chgcentre/
https://github.com/plazar/coast_guard
https://github.com/davidjamesca/ctypesgen
http://nvlabs.github.io/cub
https://github.com/AA-ALERT/dadafilterbank
https://github.com/AA-ALERT/dadafits
https://github.com/saopicc/DDFacet
https://github.com/ajameson/dedisp
https://github.com/ewanbarr/dedisp
https://github.com/ewanbarr/dedisp-flexi
https://github.com/AA-ALERT/Dedispersion
ftp://ftp.astro.caltech.edu/pub/difmap/difmap.html
ftp://ftp.astro.caltech.edu/pub/difmap/difmap.html
https://github.com/lofar-astron/DP3
https://github.com/timstaley/drive-casa
http://dspsr.sourceforge.net/
https://github.com/aroffringa/dysco

APPENDIX A. KERN PACKAGES 104

Table A.1 – continued from previous page
Package name Description and website Version in KERN-5

https://github.com/achael/eht-imaging 0.1.2-1kern1
eigency Python3 interface between the numpy arrays and

Eigen C++ library
https://github.com/wouterboomsma/eigency 1.77-1

factor Facet calibration for LOFAR (Python 2)
https://github.com/lofar-astron/factor 1.3-1kern1

gbt-seti GUPPI and Breakthrough Listen instruments tools
https://github.com/UCBerkeleySETI/gbt_seti/ 0.0 git20180503.f42056b-1

gsm Native Python3 client API for monetDB
https://github.com/bartscheers/gsm 2.2.2-1

guppi-daq Data aquisition software for GUPPI
https://github.com/demorest/guppi_daq 0.0 git20120831.35afdbc-1

heimdall-astro GPU accelerated transient detection pipeline for ra-
dio astronomy
https://sourceforge.net/projects/heimdall-astro/ 0.0 git20180525.86030c5-1kern1

idg Image Domain Gridding core library
https://gitlab.com/astron-idg/idg 0.4+git20190106.4a78e2f-1

integration Many-core integration algorithm
https://github.com/AA-ALERT/Integration 3.1-1

kapteyn Python tools for astronomy
https://www.astro.rug.nl/software/kapteyn/ 2.3-1

karma toolkit for interprocess communications, authentica-
tion, encryption, graphics display, user interface and
manipulating the Karma network data structure
http://www.atnf.csiro.au/computing/software/
karma/

1.7.25-1kern3

katdal Data access library for the MeerKAT project
https://github.com/ska-sa/katdal 0.11-1

katpoint Karoo Array Telescope pointing coordinate library
https://github.com/ska-sa/katpoint 0.7-1kern2

katversion Provides proper versioning for Python packages
https://github.com/ska-sa/katversion 0.9-1kern1

kittens Collection of Python utility functions for purr, tig-
ger, meqtrees and others
https://github.com/ska-sa/kittens 1.4.2-1kern1

libisaopencl Simple C++ library containing OpenCL utilities.
https://github.com/isazi/opencl 1.1-1

libisautils Simple C++ library containing generic utilities.
https://github.com/isazi/utils 0.1.2-1

lofarbeam Stand-alone version of the LOFAR station response
library
https://github.com/lofar-astron/LOFARBeam 4.0-1kern2

losoto LOFAR solutions tool (Python 2)
https://github.com/revoltek/losoto 2.0-1kern1

lsmtool LOFAR Local Sky Model Tool (Python 2)
Continued on next page

https://github.com/achael/eht-imaging
https://github.com/wouterboomsma/eigency
https://github.com/lofar-astron/factor
https://github.com/UCBerkeleySETI/gbt_seti/
https://github.com/bartscheers/gsm
https://github.com/demorest/guppi_daq
https://sourceforge.net/projects/heimdall-astro/
https://gitlab.com/astron-idg/idg
https://github.com/AA-ALERT/Integration
https://www.astro.rug.nl/software/kapteyn/
http://www.atnf.csiro.au/computing/software/karma/
http://www.atnf.csiro.au/computing/software/karma/
https://github.com/ska-sa/katdal
https://github.com/ska-sa/katpoint
https://github.com/ska-sa/katversion
https://github.com/ska-sa/kittens
https://github.com/isazi/opencl
https://github.com/isazi/utils
https://github.com/lofar-astron/LOFARBeam
https://github.com/revoltek/losoto

APPENDIX A. KERN PACKAGES 105

Table A.1 – continued from previous page
Package name Description and website Version in KERN-5

https://github.com/darafferty/LSMTool/ 1.3.1-1kern1
makems tool to create empty Measurement Sets

https://github.com/ska-sa/makems 1.5.1-1
meqtrees-cattery Frameworks for simulation and calibration of radio

interferometers
https://github.com/ska-sa/meqtrees-cattery 1.5.3-1kern2

meqtrees-timba implementing and solving arbitrary Measurement
Equations
http://www.astron.nl/meqwiki/MeqTrees 1.6.0-1

miriad radio interferometry data reduction package
http://www.atnf.csiro.au/computing/software/
miriad/

20181011-1

msutils A set of CASA Measurement Set manipulation tools
https://github.com/SpheMakh/msutils 0.9.6-1kern1

multinest a Bayesian inference tool
https://github.com/JohannesBuchner/MultiNest 3.10-1kern1

nifty Numerical Information Field Theory (Python 3)
https://gitlab.mpcdf.mpg.de/ift/nifty 5.0.0-1kern1

obit Obit for ParselTongue
http://www.c6.nrao.edu/~bcotton/Obit.html 22JUN10l-1kern2

oskar Simulator for the Open Square Kilometre Array Ra-
dio Telescope
http://www.oerc.ox.ac.uk/~ska/oskar2/ 2.7.0-1kern2

owlcat miscellaneous utility scripts for manipulating inter-
ferometry data
https://github.com/ska-sa/owlcat 1.5.1-1

parseltongue Python scripting interface for classic AIPS
http://www.jive.nl/jivewiki/doku.php?id=
parseltongue:parseltongue

2.3-1ubuntu1ppa1 bionic1

peasoup C++/CUDA GPU pulsar searching library
https://github.com/ewanbarr/peasoup 0+git20171127-1kern1

polygon2 Polygon is a Python package that handles polygonal
shapes in 2D.
http://www.j-raedler.de/projects/polygon 2.0.8-1kern1

ppgplot Pythonic Interface to PGPLOT
https://github.com/npat-efault/ppgplot 1.4-1kern1bionic1

presto Large suite of pulsar search and analysis software
https://github.com/scottransom/presto/ 2.1-1kern2

psrcat ATNF Pulsar Catalogue
http://www.atnf.csiro.au/people/pulsar/psrcat/ 1.59-1

psrchive analysis of pulsar astronomical data (Python li-
brary)
http://psrchive.sourceforge.net/ 2012.12+git20190107.455515c-1

psrdada Distributed Acquisition and Data Analysis
http://psrdada.sourceforge.net/ 0.0 git20181218.2527e4c-1

Continued on next page

https://github.com/darafferty/LSMTool/
https://github.com/ska-sa/makems
https://github.com/ska-sa/meqtrees-cattery
http://www.astron.nl/meqwiki/MeqTrees
http://www.atnf.csiro.au/computing/software/miriad/
http://www.atnf.csiro.au/computing/software/miriad/
https://github.com/SpheMakh/msutils
https://github.com/JohannesBuchner/MultiNest
https://gitlab.mpcdf.mpg.de/ift/nifty
http://www.c6.nrao.edu/~bcotton/Obit.html
http://www.oerc.ox.ac.uk/~ska/oskar2/
https://github.com/ska-sa/owlcat
http://www.jive.nl/jivewiki/doku.php?id=parseltongue:parseltongue
http://www.jive.nl/jivewiki/doku.php?id=parseltongue:parseltongue
https://github.com/ewanbarr/peasoup
http://www.j-raedler.de/projects/polygon
https://github.com/npat-efault/ppgplot
https://github.com/scottransom/presto/
http://www.atnf.csiro.au/people/pulsar/psrcat/
http://psrchive.sourceforge.net/
http://psrdada.sourceforge.net/

APPENDIX A. KERN PACKAGES 106

Table A.1 – continued from previous page
Package name Description and website Version in KERN-5

psrfits-utils library for working with search- and fold-mode PSR-
FITS pulsar data
https://github.com/demorest/psrfits_utils 0.0+git20170120.1fbf51b-2

purr Data reduction logging tool, Useful for remembering
reductions
https://github.com/ska-sa/purr 1.4.3-1

pybdsf Python Blob Detection and Source Finder
http://www.astron.nl/citt/pybdsf/ 1.8.15-1

pyfftw Pythonic wrapper around FFTW - Python 3
https://github.com/pyFFTW/pyFFTW 0.11.1.1-1kern1

pygsm Global Sky Model (GSM) for the radio sky between
10 MHz - 5 THz
https://github.com/telegraphic/PyGSM 1.1.1-1

pymonetdb Native Python 3 client API for monetDB
https://github.com/gijzelaerr/pymonetdb 1.1.1-1kern2

pymoresane Python version of the MORESANE deconvolution
algorithm
https://github.com/ratt-ru/PyMORESANE 0.3.6.1-1kern1

pyslalib f2py and numpy based wrappers for SLALIB
https://pypi.python.org/pypi/pySLALIB/ 1.0.4+git20170925.fcb0650-1

python-casacore Python 3 bindings to the casacore library
https://github.com/casacore/python-casacore 3.0.0-1kern1

python-graphviz Simple Python 3 interface for Graphviz
https://github.com/xflr6/graphviz 0.10.1-1

python-typing Backport of the standard 3.5 library typing module
https://pypi.python.org/pypi/typing/ 3.6.6-1

pyxis meta package for Python Extensions for Interferom-
etry Scripting
https://github.com/ska-sa/pyxis 1.6.1-1

rfimasker Tool to apply RFI masks
https://github.com/bennahugo/RFIMasker 1.0.1-1kern2

ringbuffer-sc4 copy data from the network into a ringbuffer and do
checking
https://github.com/AA-ALERT/ringbuffer-sc4 0.0 git20180724.a7e6fcf-1

rmextract LOFAR solutions tool (Python 2)
https://github.com/lofar-astron/RMextract/ 0.2-1kern1

rpfits data-recording format
http://www.atnf.csiro.au/computing/software/
rpfits.html

2.25-1

sagecal GPU accelerated radio interferometric calibration
https://sourceforge.net/projects/sagecal/ 0.5.0+git20181010.56e7526-1

scatterbrane adding realistic scattering to astronomical images
https://github.com/krosenfeld/scatterbrane 0.0+git20160122-1kern3

sched VLBI scheduling tool
Continued on next page

https://github.com/demorest/psrfits_utils
https://github.com/ska-sa/purr
http://www.astron.nl/citt/pybdsf/
https://github.com/pyFFTW/pyFFTW
https://github.com/telegraphic/PyGSM
https://github.com/gijzelaerr/pymonetdb
https://github.com/ratt-ru/PyMORESANE
https://pypi.python.org/pypi/pySLALIB/
https://github.com/casacore/python-casacore
https://github.com/xflr6/graphviz
https://pypi.python.org/pypi/typing/
https://github.com/ska-sa/pyxis
https://github.com/bennahugo/RFIMasker
https://github.com/AA-ALERT/ringbuffer-sc4
https://github.com/lofar-astron/RMextract/
http://www.atnf.csiro.au/computing/software/rpfits.html
http://www.atnf.csiro.au/computing/software/rpfits.html
https://sourceforge.net/projects/sagecal/
https://github.com/krosenfeld/scatterbrane

APPENDIX A. KERN PACKAGES 107

Table A.1 – continued from previous page
Package name Description and website Version in KERN-5

http://www.aoc.nrao.edu/~cwalker/sched/sched.
html

11.5-1

sharedarray share numpy arrays with other processes on the same
computer
https://gitlab.com/tenzing/shared-array 3.1.0-1

shm System V shared memory and semaphores
http://nikitathespider.com/python/shm/ 1.2.2-1kern1

sigproc pulsar search and analysis software
https://github.com/SixByNine/sigproc 0.0+git20171113-1kern1

sigpyproc Python-based pulsar search data manipulation pack-
age
https://github.com/ewanbarr/sigpyproc 0.0+git20160115-1kern2

simfast21 generates a simulation of the cosmological 21cm sig-
nal
https://github.com/mariogrs/Simfast21 2.0.1 beta-1kern1

singularity-container container platform focused on supporting "Mobility
of Compute"
http://www.sylabs.io 2.6.0-1

snr Computing signal-to-noise ratio of dedispersed and
folded time series.
https://github.com/AA-ALERT/SNR 3.1-1

sourcery Tools for creating high fidelity source catalogues
from radio interferometric datasets
https://github.com/radio-astro/sourcery 1.2.6-1kern4

spead2 Streaming Protocol for Exchange of Astronomical
Data
https://github.com/ska-sa/spead2 1.10.0-1

stimela Dockerised Radio Interferometry Scripting Frame-
work
https://github.com/SpheMakh/Stimela 1.0.0-1kern1

tempo pulsar timing data analysis package
https://sourceforge.net/projects/tempo/ 0.0 git20181219.9e3092e-1

tempo2 pulsar timing package
https://bitbucket.org/psrsoft/tempo2/ 2018.09.01-1

tigger dependency package for FITS and MeqTrees LSM
viewer
https://github.com/ska-sa/tigger 1.4.0-1kern4

tigger-lsm dependency package for FITS and MeqTrees LSM
viewer
https://github.com/ska-sa/tigger-lsm 1.5.0-1

tirific simulate kinematical and morphological models
http://gigjozsa.github.io/tirific/ 2.3.9-1kern2

tkp A transients-discovery pipeline for astronomical
image-based surveys
https://github.com/transientskp/tkp 4.0.1-1kern2

tmv Fast, intuitive C++ linear algebra library (header
files)

Continued on next page

http://www.aoc.nrao.edu/~cwalker/sched/sched.html
http://www.aoc.nrao.edu/~cwalker/sched/sched.html
https://gitlab.com/tenzing/shared-array
http://nikitathespider.com/python/shm/
https://github.com/SixByNine/sigproc
https://github.com/ewanbarr/sigpyproc
https://github.com/mariogrs/Simfast21
http://www.sylabs.io
https://github.com/AA-ALERT/SNR
https://github.com/radio-astro/sourcery
https://github.com/ska-sa/spead2
https://github.com/SpheMakh/Stimela
https://sourceforge.net/projects/tempo/
https://bitbucket.org/psrsoft/tempo2/
https://github.com/ska-sa/tigger
https://github.com/ska-sa/tigger-lsm
http://gigjozsa.github.io/tirific/
https://github.com/transientskp/tkp

APPENDIX A. KERN PACKAGES 108

Table A.1 – continued from previous page
Package name Description and website Version in KERN-5

https://github.com/rmjarvis/tmv 0.75-1kern1
transitions lightweight, object-oriented finite state machine im-

plementation
https://github.com/pytransitions/transitions 0.6.9-1

turbo-seti analysis tool for the search of narrow band drifting
signals
https://github.com/UCBerkeleySETI/turbo_seti 0.7.2 git20181014.e702a35-1

unittest-xml-reporting PyUnit-based test runner with JUnit like XML re-
porting
https://github.com/danielfm/
unittest-xml-reporting

2.2.0-1kern2

wsclean Fast generic widefield interferometric imager (devel-
opment files)
https://sourceforge.net/projects/wsclean/ 2.6-1kern2

ymw16 model for the distribution of free electrons
http://www.xao.ac.cn/ymw16/ 1.3.2-1

https://github.com/rmjarvis/tmv
https://github.com/pytransitions/transitions
https://github.com/UCBerkeleySETI/turbo_seti
https://github.com/danielfm/unittest-xml-reporting
https://github.com/danielfm/unittest-xml-reporting
https://sourceforge.net/projects/wsclean/
http://www.xao.ac.cn/ymw16/

Appendix B

Kliko specification and example

109

APPENDIX B. KLIKO SPECIFICATION AND EXAMPLE 110

B.1 An example of a kliko.yml file

schema_version: 2
name: Kliko test image
description: for testing purposes only
container: kliko/klikotest
author: Gijs Molenaar
email: gijsmolenaar@gmail.com
url: http://github.com/gijzelaerr/kliko
io: split

sections:
-

name: section1
description: The first section
fields:

-
name: choice
label: choice field
type: choice
initial: second
required: True
choices:

first: option 1
second: option 2

-
name: char
label: char field
help_text: maximum of 10 chars
type: char
max_length: 10
initial: empty
required: True

-
name: float
label: float field
type: float
initial: 0.0
required: False

-
name: section2
description: The final section
fields:
-

name: file
label: file field
help_text: a helpful text
type: file
required: True

-
name: int
label: int field
type: int
required: True

Listing 10: Example /kliko.yml

APPENDIX B. KLIKO SPECIFICATION AND EXAMPLE 111

B.2 The Kliko validation specification

schema;fields:
type: map
mapping:

name:
type: str
required: True

type:
type: str
required: True
enum: >

['choice', 'char', 'float', 'file', 'bool', 'int']
initial:

type: any
required: False

max_length:
type: int
required: False

choices:
type: map
required: False
mapping:

regex;(.*):
type: str

label:
type: str
required: False

help_text:
type: str
required: False

required:
type: bool
required: False

Listing 11: The Kliko definition version 2 - part I

APPENDIX B. KLIKO SPECIFICATION AND EXAMPLE 112

type: map
mapping:
schema_version:

type: int
author:

type: str
name:

type: str
description:

type: str
container:

type: str
pattern: .+/.+

email:
type: str
pattern: .+@.+

url:
type: str
pattern: >

https?:\/\/(www\.)?[-a-zA-Z0-9@:
%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)

io:
type: str
required: True
enum: ['split', 'join']

sections:
type: seq
matching: "any"
sequence:

- type: map
mapping:

name:
type: str
required: True

description:
type: str
required: True

fields:
type: seq
required: True
sequence:

- include: fields

Listing 12: The Kliko definition version 2 - part II

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M. et al. (2016). Tensorflow: A system for large-scale machine
learning., In Osdi.

Adler, J., & Andöktem, O. (2017). Solving ill-posed inverse problems using iterative deep
neural networks. Inverse Problems, 33 (12), 124007.

Amstutz, P., Crusoe, M. R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov,
A., Leehr, D., Menager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., &
Stojanovic, L. (2016). Common workflow language, v1.0. UC Davis. https://doi.
org/10.6084/m9.figshare.3115156.v2

Aumann, R. J., & Maschler, M. (1972). Some thoughts on the minimax principle. Man-
agement Science, 18 (5-part-2), 54–63.

Baade, W., & Minkowski, R. (1954). Identification of the radio sources in cassiopeia,
cygnus a, and puppis a. In Classics in radio astronomy (pp. 251–272). Springer.

Bagchi, S., & Mitra, S. K. (2012). The nonuniform discrete fourier transform and its
applications in signal processing (Vol. 463). Springer Science; Business Media.

Barrett, D. G., Morcos, A. S., & Macke, J. H. (2019). Analyzing biological and artificial
neural networks: Challenges with opportunities for synergy? Current Opinion in
Neurobiology, 55, 55–64.

Berliner, H. J. (1978). A chronology of computer chess and its literature. Artificial Intel-
ligence, 10 (2), 201–214.

Boettiger, C. (2014). An introduction to docker for reproducible research, with examples
from the r environment. Operating Systems Review, abs/1410.0846.

Booth, R., De Blok, W., Jonas, J. L., & Fanaroff, B. (2009). Meerkat key project science,
specifications, and proposals. arXiv preprintarXiv 0910.2935.

Born, M., & Wolf, E. (1964). Principles of optics, second (revised) edition, 12, 124.
Bridger, A., Williams, S., McLay, S., Yatagai, H., Schilling, M., Biggs, A., Tobar, R.,

& Warmels, R. H. (2012). The alma ot in early science: Supporting multiple
customers, In Software and cyberinfrastructure for astronomy ii. International
Society for Optics and Photonics.

Briggs, D. S., Schwab, F. R., & Sramek, R. A. (1999). Imaging (G. B. Taylor, C. L.
Carilli, & R. A. Perley, Eds.). In G. B. Taylor, C. L. Carilli, & R. A. Perley
(Eds.), Synthesis imaging in radio astronomy ii.

Broderick, J. W., Fender, R., Breton, R., Stewart, A., Adam J. andRowlinson, Swinbank,
J. D., Hessels, J., Staley, T. D., van der Horst, A., Bell, M. E. et al. (2016). Low-
radio-frequency eclipses of the redback pulsar j2215+ 5135 observed in the image
plane with lofar. Monthly Notices of the Royal Astronomical Society, 459 (3),
2681–2689.

113

https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2

BIBLIOGRAPHY 114

Carbone, D., Garsden, H., Spreeuw, H., Swinbank, J. D., van der Horst, A., Rowlinson,
A., Broderick, J. W., Rol, E., Law, C., Molenaar, G. J. et al. (2018). Pyse:
Software for extracting sources from radio images. Astronomy and Computing,
23, 92–102.

Carrillo, R. E., McEwen, J. D., & Wiaux, Y. (2014). Purify: A new approach to radio-
interferometric imaging.Monthly Notices of the Royal Astronomical Society, 439 (4),
3591–3604. https://doi.org/10.1093/mnras/stu202

Connor, L., & van Leeuwen, J. (2018). Applying deep learning to fast radio burst classi-
fication. The Astronomical Journal, 156 (6), 256.

Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19 (90), 297–301.

Cornwell, T. J., Golap, K., & Bhatnagar, S. (2008). The noncoplanar baselines effect in
radio interferometry: the w-projection algorithm. IEEE Journal of Selected Topics
in Signal Processing, 2, 647–657. https://doi.org/10.1109/JSTSP.2008.2005290

Cornwell, T. J., & Wilkinson, P. N. (1981). A new method for making maps with unstable
radio interferometers. Monthly Notices of the Royal Astronomical Society, 196 (4),
1067–1086.

Cotton, W. D. (2008). Obit: A development environment for astronomical algorithms.
Publications of the Astronomical Society of the Pacific, 120 (866), 439.

Creaner, O., & Carozzi, T. D. (2019). Beammodeltester: Software framework for testing
radio telescope beams. Astronomy and Computing, 28, 100311.

Croes, G. A. (1993). On aips++, a new astronomical information processing system, In
Astronomical data analysis software and systems ii.

Dabbech, A., Ferrari, C., Mary, D., Slezak, E., & Smirnov, O. M. (2014). Moresane:
Model reconstruction by sythesis-analysis estimators - deconvolution algorithm
for radio interferometric imaging. Astronomy and Astrophysics.

Dabbech, A., Onose, A., Abdulaziz, A., Perley, R. A., Smirnov, O. M., & Wiaux, Y.
(2018). Cygnus A super-resolved via convex optimization from VLA data.Monthly
Notices of the Royal Astronomical Society, 476, 2853–2866. https://doi.org/10.
1093/mnras/sty372

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social coding in github: Trans-
parency and collaboration in an open software repository, In Proceedings of the
acm 2012 conference on computer supported cooperative work. ACM.

de Vos, M., Gunst, A. W., & Nijboer, R. (2009). The lofar telescope: System architecture
and signal processing. Proceedings of the IEEE, 97 (8), 1431–1437.

Dewdney, P., Hall, P., Schillizzi, R., & Lazio, J. (2009). The square kilometre array.
Proceedings of the Institute of Electrical and Electronics Engineers IEEE, 97 (8),
1482–1496.

Ewen, H. I., & Purcell, E. M. (1951). Observation of a line in the galactic radio spectrum:
Radiation from galactic hydrogen at 1,420 mc./sec. Nature, 168 (4270), 356.

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated performance
comparison of virtual machines and linux containers, In 2015 ieee international
symposium on performance analysis of systems and software (ispass), Philadel-
phia, PA, USA, IEEE. https://doi.org/10.1109/ispass.2015.7095802

Fu, X., Huang, J., Ding, X., Liao, Y., & Paisley, J. (2017). Clearing the skies: A deep
network architecture for single-image rain removal. IEEE Transactions on Image
Processing, 26 (6), 2944–2956.

https://doi.org/10.1093/mnras/stu202
https://doi.org/10.1109/JSTSP.2008.2005290
https://doi.org/10.1093/mnras/sty372
https://doi.org/10.1093/mnras/sty372
https://doi.org/10.1109/ispass.2015.7095802

BIBLIOGRAPHY 115

Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., & Wichmann, F. A.
(2017). Comparing deep neural networks against humans: Object recognition
when the signal gets weaker. arXiv preprintarXiv 1706.06969.

Gentleman, W. M., & Sande, G. (1966). Fast fourier transforms: For fun and profit, In
Proceedings of the november 7-10, 1966, fall joint computer conference.

Glaser, N., Wong, O. I., Schawinski, K., & Zhang, C. (2019). Radiogan–translations
between different radio surveys with generative adversarial networks. Monthly
Notices of the Royal Astronomical Society, 487 (3), 4190–4207.

Golub, G. H. (1968). Least squares, singular values and matrix approximations. Aplikace
Matematiky, 13 (1), 44–51.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., & Bengio, Y. (2014). Generative adversarial nets, In Advances in neural in-
formation processing systems.

Greisen, E. W. (2003). Aips, the vla, and the vlba. In Information handling in astronomy-
historical vistas (pp. 109–125). Springer.

Grobler, T. L., Nunhokee, C. D., Smirnov, O. M., van Zyl, A. J., & de Bruyn, A. G.
(2014). Calibration artefacts in radio interferometry–i. ghost sources in wester-
bork synthesis radio telescope data. Monthly Notices of the Royal Astronomical
Society, 439 (4), 4030–4047.

Hamaker, J. P. (1979). Kneading: The adjustment of instrumental phase and gain param-
eters to suppress error patterns in a synthesis map, In International astronomical
union colloquium. Cambridge University Press.

Hamaker, J. P. (2006). Understanding radio polarimetry. Astronomy and Astrophysics,
456 (1), 395–404. https://doi.org/10.1051/0004-6361:20065145

Hamaker, J. P., Bregman, J. D., & Sault, R. J. (1996a). Understanding radio polarime-
try. i. mathematical foundations. Astronomy and Astrophysics Supplement Series,
117 (1), 137–147.

Hamaker, J. P., Bregman, J. D., & Sault, R. J. (1996b). Understanding radio polarimetry.
I. Mathematical foundations. Astronomy and Astrophysics, 117, 137–147.

Hamaker, J. P., Harten, R. H., van Diepen, G. N. J., & Kombrink, K. (1985). Dwarf:
The dwingeloo-westerbork astronomical reduction facility. In Data analysis in
astronomy (pp. 449–455). Springer.

Harten, R. H., Grosbol, P., Greisen, E. W., & Wells, D. C. (1988). The fits tables exten-
sion. Astronomy and Astrophysics Supplement Series, 73, 365–372.

Heideman, M., Johnson, D., & Burrus, C. (1984). Gauss and the history of the fast fourier
transform. IEEE ASSP Magazine, 1 (4), 14–21.

Högbom, J. A. (1974). Aperture synthesis with a non-regular distribution of interferom-
eter baselines. Astronomy and Astrophysics Supplement Series, 15, 417.

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2016). Image-to-image translation with
conditional adversarial networks. arxiv preprintarXiv 1703.04887.

Jansky, K. G. (1933). Electrical disturbances apparently of extraterrestrial origin. Pro-
ceedings of the Institute of Radio Engineers, 21 (10), 1387–1398.

Jin, K. H., McCann, M. T., Froustey, E., & Unser, M. (2017). Deep convolutional neural
network for inverse problems in imaging. IEEE Transactions on Image Processing,
26 (9), 4509–4522.

https://doi.org/10.1051/0004-6361:20065145

BIBLIOGRAPHY 116

Johnston, S., Taylor, R., Bailes, M., Bartel, N., Baugh, C., Bietenholz, M., Blake, C.,
Braun, J., R .and Brown, Chatterjee, S. et al. (2008). Science with askap. Exper-
imental Astronomy, 22 (3), 151–273.

Jonas, J. L. (2009). Meerkat—the south african array with composite dishes and wide-
band single pixel feeds. Proceedings of the IEEE, 97 (8), 1522–1530.

Jonas, J. L. (2015). The meerkat telescope.
Jonas, J. L., de Jager, G., & Baart, E. E. (1985). A 2.3 ghz radio continuum map of the

southern sky. Astronomy and Astrophysics Supplement Series, 62, 105–128.
Jones, D. L., Wagstaff, K., Thompson, D. R., D’Addario, L., Navarro, R., Mattmann, C.,

Majid, W., Lazio, J., Preston, R., & Rebbapragada, U. (2012). Big data challenges
for large radio arrays, In 2012 ieee aerospace conference. IEEE.

Jones, R. C. (1941). A new calculus for the treatment of optical systems i. description
and discussion of the calculus. Journal of the Optical Society of America, 31 (7),
488–493.

Jones, R. C. (1947). A new calculus for the treatment of optical systems vi. experimental
determination of the matrix. Journal of the Optical Society of America, 37 (2),
110–112.

Józsa, G. I. G., White, S. V., Thorat, K., Smirnov, O. M., Serra, P., Ramatsoku, M.,
Ramaila, A. J. T., Perkins, S. J., Moln á r, D. á. n. C., Makhathini, S. et al.
(2020a). Caracal: Containerized automated radio astronomy calibration pipeline.
Astrophysics Source Code Library.

Józsa, G. I. G., White, S. V., Thorat, K., Smirnov, O. M., Serra, P., Ramatsoku, M.,
Ramaila, A. J. T., Perkins, S. J., Moln á r, D. á. n. C., Makhathini, S. et al.
(2020b). Meerkathi–an end-to-end data reduction pipeline for meerkat and other
radio telescopes. arXiv preprintarXiv 2006.02955.

Junklewitz, H., Bell, M. R., Selig, M., & Enßlin, T. A. (2016). RESOLVE: A new al-
gorithm for aperture synthesis imaging of extended emission in radio astron-
omy. Astronomy and Astrophysics, 586, A76. https://doi .org/10.1051/0004-
6361/201323094

Kemball, A., & Wieringa, M. (2000). Measurementset definition version 2.0. http://casa.
nrao.edu/Memos/229.html

Kettenis, M., van Langevelde, H. J., Reynolds, C., & Cotton, W. D. (2006). Parseltongue:
Aips talking python, In Astronomical data analysis software and systems xv.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprintarXiv 1412.6980.

Kraus, J. D. (1986). Radio astronomy. Cygnus-Quasar Books.
Kuiack, M., Huizinga, F., Molenaar, G. J., Prasad, P., Rowlinson, A., & Wijers, R. A.

(2018). Aartfaac flux density calibration and northern hemisphere catalogue at
60 mhz. Monthly Notices of the Royal Astronomical Society, 482 (2), 2502–2514.

Kurtzer, G. M. (2016). Singularity 2.1.2 - Linux application and environment containers
for science. https://doi.org/10.5281/zenodo.60736

Leipzig, J. (2017). A review of bioinformatic pipeline frameworks. Briefings in Bioinfor-
matics, 18 (3), 530–536.

Mao, X., Shen, C., & Yang, Y.-B. (2016). Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections, In Advances in neural
information processing systems.

https://doi.org/10.1051/0004-6361/201323094
https://doi.org/10.1051/0004-6361/201323094
http://casa.nrao.edu/Memos/229.html
http://casa.nrao.edu/Memos/229.html
https://doi.org/10.5281/zenodo.60736

BIBLIOGRAPHY 117

Mardani, M., Gong, E., Cheng, J. Y., Vasanawala, S. S., Zaharchuk, G., Xing, L., &
Pauly, J. M. (2018). Deep generative adversarial neural networks for compressive
sensing mri. IEEE Transactions on Medical Imaging, 38 (1), 167–179.

McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional neural networks for inverse
problems in imaging: A review. IEEE Signal Processing Magazine, 34 (6), 85–95.

McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. (2007a). Casa ar-
chitecture and applications, In Astronomical data analysis software and systems
xvi.

McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. (2007b). CASA archi-
tecture and applications (R. A. Shaw, F. Hill, & D. J. Bell, Eds.). In R. A. Shaw,
F. Hill, & D. J. Bell (Eds.), Astronomical data analysis software and systems xvi.

Mechev, A., Oonk, R., Shimwell, T., Plaat, A., Intema, H., & Rottgerin, H. (2018).
Fast and reproducible lofar workflows with aglow, In 2018 ieee 14th international
conference on e-science (e-science). IEEE.

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and
deployment. Linux Journal, 2014 (239).

Molenaar, G. J., Makhathini, S., Girard, J. N., & Smirnov, O. M. (2018). Kliko — the
scientific compute container format. Astronomy and Computing, 25, 1–9.

Molenaar, G. J., & Smirnov, O. M. (2018). Kern. Astronomy and Computing, 24, 45–51.
Momcheva, I., & Tollerud, E. (2015). Software use in astronomy: An informal survey.
Murnaghan, F. D. (1938). The analysis of the kronecker product of irreducible represen-

tations of the symmetric group. American Journal of Mathematics, 60 (3), 761–
784.

Noordam, J. E. (1997). A generic solver for aips++ using mns trees.
Noordam, J. E., & De Bruyn, A. G. (1982). High dynamic range mapping of strong radio

sources, with application to 3c84. Nature, 299 (5884), 597.
Noordam, J. E., & Smirnov, O. M. (2010). The meqtrees software system and its use

for third-generation calibration of radio interferometers. Astronomy and Astro-
physics, 524, A61.

Noutsos, A., Sobey, C., Kondratiev, V., Weltevrede, P., Verbiest, J., Karastergiou, A.,
Kramer, M., Kuniyoshi, M., Alexov, A., Breton, R. et al. (2015). Pulsar polari-
sation below 200 mhz: Average profiles and propagation effects. Astronomy and
Astrophysics, 576, A62.

Offringa, A. R. (2010). Aoflagger: Rfi software. Astrophysics Source Code Library.
Offringa, A. R., McKinley, B., Hurley-Walker, N., Briggs, F. H., Wayth, R., Kaplan, D.,

Bell, M. E., Feng, L., Neben, A., Hughes, J. et al. (2014). Wsclean: An implemen-
tation of a fast, generic wide-field imager for radio astronomy. Monthly Notices
of the Royal Astronomical Society, 444 (1), 606–619.

Offringa, A. R., & Smirnov, O. M. (2017). An optimized algorithm for multiscale wide-
band deconvolution of radio astronomical images. Monthly Notices of the Royal
Astronomical Society, 471, 301–316. https://doi.org/10.1093/mnras/stx1547

Offringa, A. R., van de Gronde, J. J., & Roerdink, J. B. T. M. (2012). A morphological
algorithm for improved radio-frequency interference detection. Astronomy and
Astrophysics, 539.

Onose, A., Carrillo, R. E., Repetti, A., McEwen, J. D., Thiran, J.-P., Pesquet, J.-C.,
& Wiaux, Y. (2016). Scalable splitting algorithms for big-data interferometric

https://doi.org/10.1093/mnras/stx1547

BIBLIOGRAPHY 118

imaging in the SKA era. Monthly Notices of the Royal Astronomical Society, 462,
4314–4335. https://doi.org/10.1093/mnras/stw1859

Pandey, V. N., van Zwieten, J. E., de Bruyn, A. G., & Nijboer, R. (2009). Calibrating
lofar using the black board selfcal system, In The low-frequency radio universe.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context
encoders: Feature learning by inpainting, In Proceedings of the ieee conference on
computer vision and pattern recognition.

Pearson, T. J., & Readhead, A. C. S. (1984). Image formation by self-calibration in radio
astronomy, 22 (1), 97–130.

Peng, B., Nan, R., Su, Y., Qiu, Y., Zhu, L., & Zhu, W. (2001). Five-hundred-meter aper-
ture spherical telescope project, In International astronomical union colloquium.
Cambridge University Press.

Prasad, J., & Chengalur, J. (2012). Flagcal: A flagging and calibration package for radio
interferometric data. Experimental Astronomy, 33 (1), 157–171. https://doi.org/
10.1007/s10686-011-9279-5

Price, D., & Tucker, A. (2004). Solaris zones: Operating system support for consolidating
commercial workloads, In Lisa ’04: Eighteenth systems administration conference.

Putzky, P., & Welling, M. (2017). Recurrent inference machines for solving inverse prob-
lems. arXiv preprintarXiv 1706.04008.

Rohlfs, K., & Wilson, T. L. (2013). Tools of radio astronomy. Springer Science; Business
Media.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation, In International conference on medical image
computing and computer-assisted intervention. Springer.

Rosen, R. (2013). Resource management: Linux kernel namespaces and cgroups. Haifux,
186.

Ryle, M., & Neville, A. C. (1962). A radio survey of the north polar region with a 4.5
minute of arc pencil-beam system. Monthly Notices of the Royal Astronomical
Society, 125 (1), 39–56.

Ryle, M., Smith, F. G., & Elsmore, B. (1950). A preliminary survey of the radio stars
in the northern hemisphere. Monthly Notices of the Royal Astronomical Society,
110 (6), 508–523.

Ryle, M., & Vonberg, D. D. (1946). Solar radiation on 175 mc./s. In Classics in radio
astronomy (pp. 184–187). Springer.

Sabater, J., Best, P. N., Hardcastle, M., Shimwell, T., Tasse, C., Williams, W., Brüggen,
M., Cochrane, R., Croston, J. H., de Gasperin, F. et al. (2018). The lotss view of
radio agn in the local universe.

Sabater, J., Best, P. N., Hardcastle, M., Shimwell, T., Tasse, C., Williams, W., Brüggen,
M., Cochrane, R., Croston, J. H., de Gasperin, F. et al. (2019). The lotss view of
radio agn in the local universe - the most massive galaxies are always switched
on. Astronomy and Astrophysics, 622, A17.

Sault, R. J., Teuben, P. J., & Wright, M. C. H. (1995). A retrospective view of miriad,
In Astronomical data analysis software and systems iv.

Schuler, C. J., Christopher Burger, H., Harmeling, S., & Scholkopf, B. (2013). A machine
learning approach for non-blind image deconvolution, In Proceedings of the ieee
conference on computer vision and pattern recognition.

https://doi.org/10.1093/mnras/stw1859
https://doi.org/10.1007/s10686-011-9279-5
https://doi.org/10.1007/s10686-011-9279-5

BIBLIOGRAPHY 119

Schwab, F. R. (1984). Relaxing the isoplanatism assumption in self-calibration; applica-
tions to low-frequency radio interferometry. The Astronomical Journal, 89, 1076–
1081. https://doi.org/10.1086/113605

Shepherd, M. C., Pearson, T. J., & Taylor, G. B. (1994). Difmap: An interactive program
for synthesis imaging., In Bulletin of the american astronomical society.

Shimwell, T., Röttgering, H., Best, P. N., Williams, W., Dijkema, T. J., De Gasperin,
F., Hardcastle, M., Heald, G. H., Hoang, D., Horneffer, A. et al. (2017). The
lofar two-metre sky survey - i. survey description and preliminary data release.
Astronomy and Astrophysics, 598, A104.

Siegman, A. E. (1966). The antenna properties of optical heterodyne receivers. Applied
Optics, 5 (10), 1588–1594. https://doi.org/10.1364/AO.5.001588

Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., & Tolias, A. S. (2019). Engineering a
less artificial intelligence. Neuron, 103 (6), 967–979.

Smirnov, O. M. (2011a). Revisiting the radio interferometer measurement equation -
i. a full-sky jones formalism. Astronomy and Astrophysics, 527, A106. https :
//doi.org/10.1051/0004-6361/201016082

Smirnov, O. M. (2011b). Revisiting the radio interferometer measurement equation. ii.
calibration and direction-dependent effects. Astronomy and Astrophysics, 527,
A107. https://doi.org/10.1051/0004-6361/201116434

Smirnov, O. M., & Tasse, C. (2015). Radio interferometric gain calibration as a complex
optimization problem.Monthly Notices of the Royal Astronomical Society, 449 (3),
2668–2684.

Smith, W. D. (1970). Maxi computers face mini conflict: Mini trend reaching computers.
New York Times. https : / /www .nytimes . com/1970/04/05/archives /maxi -
computers-face-mini-conflict-mini-trend-reaching-computers.html

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15 (1), 1929–1958.

Staley, T. D., & Anderson, G. E. (2015). Chimenea and other tools: Automated imaging
of multi-epoch radio-synthesis data with CASA. Astronomy and Computing, 13,
38–49. https://doi.org/10.1016/j.ascom.2015.08.003

Stewart, A. J., Fender, R., Broderick, J. W., Hassall, T. E., Muñoz-Darias, T., Rowlinson,
A., Swinbank, J. D., Staley, T. D., Molenaar, G. J., Scheers, B. et al. (2015). Lofar
msss: Detection of a low-frequency radio transient in 400 h of monitoring of the
north celestial pole. Monthly Notices of the Royal Astronomical Society, 456 (3),
2321–2342.

Sullivan, W. T. (2009). Cosmic noise: A history of early radio astronomy. Cambridge
University Press, Cambridge, UK.

Swinbank, J. D., Staley, T. D., Molenaar, G. J., Rol, E., Rowlinson, A., Scheers, B.,
Spreeuw, H., Bell, M. E., Broderick, J. W., Carbone, D. et al. (2015). The lofar
transients pipeline. Astronomy and Computing, 11, 25–48.

Tasse, C. (2014a). Applying wirtinger derivatives to the radio interferometry calibration
problem.

Tasse, C. (2014b). Nonlinear kalman filters for calibration in radio interferometry. Astron-
omy and Astrophysics, 566, A127. https://doi.org/10.1051/0004-6361/201423503

Tasse, C., Hugo, B., Mirmont, M., Smirnov, O. M., Atemkeng, M., Bester, L., Hardcastle,
M. J., Lakhoo, R., Perkins, S., & Shimwell, T. (2018). Faceting for direction-

https://doi.org/10.1086/113605
https://doi.org/10.1364/AO.5.001588
https://doi.org/10.1051/0004-6361/201016082
https://doi.org/10.1051/0004-6361/201016082
https://doi.org/10.1051/0004-6361/201116434
https://www.nytimes.com/1970/04/05/archives/maxi-computers-face-mini-conflict-mini-trend-reaching-computers.html
https://www.nytimes.com/1970/04/05/archives/maxi-computers-face-mini-conflict-mini-trend-reaching-computers.html
https://doi.org/10.1016/j.ascom.2015.08.003
https://doi.org/10.1051/0004-6361/201423503

BIBLIOGRAPHY 120

dependent spectral deconvolution. Astronomy and Astrophysics, 611, A87. https:
//doi.org/10.1051/0004-6361/201731474

Taylor, G. B., Carilli, C. L., & Perley, R. A. (1999). Synthesis imaging in radio astronomy
ii, In Synthesis imaging in radio astronomy ii.

Thompson, A. R., Moran, J. M., & Swenson Jr, G. W. (2017). Interferometry and syn-
thesis in radio astronomy. Springer Nature.

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4 (1), 25–30.

Bui, T. (2015). Analysis of docker security.
Van der Hulst, J. M., Terlouw, J. P., Begeman, K. G., Zwitser, W., & Roelfsema, P. R.

(1992). The groningen image processing system, gipsy, In Astronomical data anal-
ysis software and systems i.

Van Weeren, R., Williams, W., Hardcastle, M., Shimwell, T., Rafferty, D., Sabater, J.,
Heald, G. H., Sridhar, S., Dijkema, T. J., Brunetti, G. et al. (2016). Lofar facet
calibration. The Astrophysical Journal Supplement Series, 223 (1), 2.

van Diepen, G. N. J. (2015). Casacore table data system and its use in the measure-
mentset. Astronomy and Computing, 12, 174–180. https://doi.org//10.1016/j.
ascom.2015.06.002

van Diepen, G. N. J., & Dijkema, T. J. (2018). Dppp: Default pre-processing pipeline.
Astrophysics Source Code Library.

van Hateren, T. (2019). Paralellization of the ddf-pipeline and introduction to radio as-
tronomy (Doctoral dissertation). Universiteit van Amsterdam.

Veiga, V. S., Simon, M., Azab, A., Fernandez, C., Muscianisi, G., Fiameni, G., & Maroc-
chi, S. (2019). Evaluation and benchmarking of singularity mpi containers on eu
research e-infrastructure, In 2019 ieee/acm international workshop on containers
and new orchestration paradigms for isolated environments in hpc (canopie-hpc).
IEEE.

Wells, D. C. (1985). Nrao’s astronomical image processing system (aips). In Data analysis
in astronomy (pp. 195–209). Springer.

Wells, D. C., & Greisen, E. W. (1979). Fits - a flexible image transport system, In Image
processing in astronomy.

Wijnholds, S., Grobler, T. L., & Smirnov, O. M. (2016). Calibration artefacts in radio
interferometry–ii. ghost patterns for irregular arrays.Monthly Notices of the Royal
Astronomical Society, 457 (3), 2331–2354.

Xu, L., Ren, J. S., Liu, C., & Jia, J. (2014). Deep convolutional neural network for image
deconvolution, In Advances in neural information processing systems.

Zernike, F. (1938). The concept of degree of coherence and its application to optical
problems. Physica, 5 (8), 785–795.

Zhang, K., Zuo, W., Gu, S., & Zhang, L. (2017). Learning deep cnn denoiser prior for
image restoration, In Proceedings of the ieee conference on computer vision and
pattern recognition.

https://doi.org/10.1051/0004-6361/201731474
https://doi.org/10.1051/0004-6361/201731474
https://doi.org//10.1016/j.ascom.2015.06.002
https://doi.org//10.1016/j.ascom.2015.06.002

	Abstract
	Declaration of Authorship
	Acknowledgements
	Preface
	Publications
	Source Code
	History of data reduction pipelines
	Introduction
	1930s
	1940s
	1950s
	1960s
	1970s
	Zero-generation calibration to first-generation calibration
	Astronomical Image Processing System
	CANDID
	CLEAN

	1980s
	Self-calibration and the second generation of calibration algorithms
	GIPSY
	DWARF
	IRAF
	Miriad

	Meanwhile in South Africa
	1990s
	AIPS++
	NEWSTAR
	The Measurement Set version 1
	The Measurement equation
	DIFMAP

	2000s
	The Measurement Set version 2
	MeqTrees, third-generation calibration algorithms
	Obit
	CASA
	Casacore

	2010s
	Cuisine
	Docker
	The ALMA pipeline
	Common Workflow Language
	DDFacet and killMS
	Kliko
	Stimela
	CARACal (formerly known as MeerKATHI)
	Default pre-processing pipeline
	The LOFAR two-metre survey pipeline

	Overview of events
	Discussion

	Fundamentals
	Electromagnetic radiation
	Interferometry
	Aperture synthesis
	The (u, v, w) coordinate system
	The radio interferometer measurement equation

	Image reconstruction
	Calibration
	Reference calibration
	Self-calibration

	KERN
	Introduction
	The target platform
	Other packaging methods
	Anaconda
	Python and pip
	Collaboration with Debian

	Usage
	Notable packages
	Casacore
	Casacore data
	MeqTrees
	CASA
	AIPS
	LOFAR
	Pulsar software
	Unversioned packages

	Containerisation
	Docker
	Singularity

	Project structure
	The release cycle
	Technical structure

	Recommended usage
	Usage numbers
	Conclusions

	Kliko
	Introduction
	Software in science
	Software containerisation with Docker

	The Kliko specification
	The Kliko image
	Expected run-time behaviour
	Flavours of Kliko images
	The /kliko.yml schema
	The /parameters.json file

	Running Kliko containers
	Running a container manually
	Inside the Kliko container
	Kliko-run

	Chaining containers
	Example of usage of Kliko
	VerMeerKAT
	RODRIGUES

	Software availability
	Discussions and prospects
	Limitations
	Future work

	Conclusions

	CWL and Buis
	Introduction
	The CommonWL standard
	CommandLineTool class file
	Job file
	Workflow class file
	Runners

	Buis – the web-based frontend for CommonWL runners
	Functional design
	Technical design
	Usage

	Use case example: a 1GC pipeline
	Discussion

	Vacuum Cleaner
	Introduction
	Radio interferometric imaging
	Method
	Network architecture
	Objective function
	Implementation
	Training

	The simulation
	The results
	Scoring
	Evaluation
	Computational performance

	Conclusion and discussion
	Future work

	Conclusions
	KERN packages
	Kliko specification and example
	An example of a kliko.yml file
	The Kliko validation specification

