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Abstract

Acetylcholinesterase (AChE) inhibition is used to treat Alzheimer’s disease by increasing

the availability of acetylcholine to carry nerve signals in the brain. The response to this

treatment varies widely, which may be due to altered affinity to the current drugs caused

by genetic variation. Various negative side-effects limit their use. As this is one of the only

available therapeutic drug targets to treat Alzheimer’s disease, decreasing the negative

effects is of great importance. AChE is involved in biological processes that occur after

acute ischemic stroke. Stroke is the third leading cause of death worldwide, and 87% of

all stroke cases belong to ischemic stroke. AchEI (cholinesterase inhibitors) have been

suggested to have properties that lower the risk of stroke. AChE is one of 15 verified

drug targets under study for treatment of stroke. In addition to Alzheimer’s disease and

stroke, Lewy body disease (LBD) may be treated using cholinesterase inhibitors. The

goals of this study are to find inhibitors that can potentially be used to treat Alzheimer’s

disease and/or stroke and to investigate variants which may affect protein dynamics and

function. Two variants were analyzed, P247L and T229S. Molecular simulation of the

P247L variant resulted in a disruption in protein dynamics in comparison to the wild-

type. A total of 5728 molecules were screened and 10 nanosecond simulations were used to

narrow down the set of compounds. The four best performing molecules were simulated

for 10 nanoseconds. MM-PBSA was performed to identify molecules with high binding

free energies.
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I, Harnaud Ras, declare that this thesis submitted to Rhodes University is wholly

my own work and has not previously been submitted for a degree at this or any other

institution.

Signature .........................

Date .................................

ii



Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this re-

search is hereby acknowledged. The opinions expressed and derived conclusions are

those of the author and are not necessarily to be attributed to the NRF.

The Center for High Performance Computing (CHPC) in Cape Town, South Africa,

is acknowledged for providing computational time on high performance computing

clusters.

Phillip Kimuda, a fellow Rhodes Bioinformatics student is acknowledged for supplying

the structure files of a filtered set of compounds from the ZINC15 database which was

used for screening during this project.

iii



Contents

Abstract i

Declaration ii

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables viii

List of Web Servers and Applications ix

List of Abbreviations x

Chapter 1: Literature Review and Aim 1

1.1 The basic physiology behind stroke and Alzheimer’s . . . . . . . . . . . 1

1.1.1 Basic physiology behind stroke . . . . . . . . . . . . . . . . . . 1

1.1.2 Symptoms and causes of Alzheimer’s . . . . . . . . . . . . . . . 2

1.2 Protein targets with potential to treat stroke or Alzheimer’s . . . . . . 3

1.2.1 Plasminogen activator inhibitor-1 (PAI-1) . . . . . . . . . . . . 3

1.2.2 Acetylcholinesterase (AChE) . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Approved inhibitors that target Acetylcholinesterase and bu-

tyrylcholinesterase . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Genetic variation of cholinesterase family of enzymes . . . . . . . . . . 6

1.4 Therapeutic benefit of molecules that reversibly inhibit acetylcholinesterase 7

1.5 Identification of effective drug molecules . . . . . . . . . . . . . . . . . 7

1.5.1 Potential drugs that target AChE . . . . . . . . . . . . . . . . . 7

1.6 Effects of SNP’s on protein structure and function . . . . . . . . . . . . 9

1.7 predicting the effects of SNP’s on structure and function . . . . . . . . 10

1.8 Databases containing SNP information . . . . . . . . . . . . . . . . . . 11

iv



1.9 The role of synonymous SNPs in heterogeneity of drug response . . . . 12

1.10 Effects of structural variations on binding of inhibitors to proteins . . . 13

1.11 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.12 Project layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter2: Materials and Methods 17

2.1 Modelling/Fixing Structures and Multiple Sequence Alignment . . . . . 17

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Structure Preparation . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Model Improvement . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Multiple Sequence Alignment . . . . . . . . . . . . . . . . . . . 21

2.2 Single Nucleotide Variant (SNV) Impact Predictions and Analysis of

SNV Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Amino Acid Properties of SNV’s Under Investigation . . . . . . 22

2.3 High Throughput Screening . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 South African Natural Compound Database (SANCDB) . . . . 23

2.3.3 ZINC15 Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 South African Natural Compounds Database (SANCDB) . . . . 24

2.3.5 ZINC15 Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Molecular Dynamics System Overview . . . . . . . . . . . . . . 27

2.4.3 Force Field Selection . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Topology Generation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.5 Molecular Dynamics System Setup . . . . . . . . . . . . . . . . 29

v



2.4.6 System Equilibration . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.7 g mmPBSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.8 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . 32

2.4.9 Network Analysis: Betweeness Centrality (BC) and Average

Shortest Distance (L) . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3: Results and Discussion 34

3.1 Results Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Modelling and Sequence Alignment . . . . . . . . . . . . . . . . . . . . 34

3.3 Single Nucleotide Variant (SNV) Effect Predictions and Analysis of

SNV Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Molecular Dynamic Simulation of Models . . . . . . . . . . . . . . . . . 40

3.5 High Throughput Screening with Autodock VINA . . . . . . . . . . . . 46

3.5.1 Docking Validation . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 South African Natural Compounds Database . . . . . . . . . . . 47

3.5.3 ZINC15 Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Molecular Dynamics of Enzyme and Enzyme-ligand Complexes . . . . . 55

3.6.1 APO AChE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 TerritremB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.3 S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.4 South African Natural Compounds Database . . . . . . . . . . . 62

3.6.5 RMSD of Selected Compounds From ZINC15 Database . . . . . 63

3.6.6 MM-PBSA (Molecular Mechanics Poisson Boltzmann Surface

Area) Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 6: Critical Discussion and Concluding Remarks 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Variant Effect Predictions . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendices 72

vi



A PIR alignment file for use with MODELLER 72

B NVT parameter file for GROMACS temperature equilibration 74

C Python script to run MODELLER (settings for best models) 76

D Average Betweenness Centrality 77

5 Bibliography 79

List of Figures

3.1 Wild type rhAChE model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Models of variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Multiple sequence alignment of 18 acetylcholinesterase sequences . . . . 38

3.4 RMSF by chain for the P247L variant MD simulation . . . . . . . . . . 41

3.5 RMSF by chain for the T229S model MD simulation . . . . . . . . . . 41

3.6 Porcupine plot of P247L variant model . . . . . . . . . . . . . . . . . . 42

3.7 Porcupine plot of T229S variant simulation . . . . . . . . . . . . . . . . 43

3.8 P247L and T229S variant Principal Component Analysis (PCA) using

100ns trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 RMSD for variants of AChE . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Radius of gyration (Rg) for wild type and AChE variants . . . . . . . . 45

3.11 TerritremB docking validation results . . . . . . . . . . . . . . . . . . . 46

3.12 visualization of best performing molecule at 100ns of simulation . . . . 49

3.13 SANCDB ligand interaction diagrams . . . . . . . . . . . . . . . . . . . 50

3.14 Ligand interaction diagrams from ZINC subset . . . . . . . . . . . . . . 53

3.15 APO rhAChE porcupine plot . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Porcupine plot of wild type rhAChE dimer . . . . . . . . . . . . . . . . 56

3.17 rhAChE structure coloured for reference . . . . . . . . . . . . . . . . . 57

3.18 RMSF for residues in rhAChE apoprotein . . . . . . . . . . . . . . . . 57

3.19 PCA analysis of rhAChE apoprotein . . . . . . . . . . . . . . . . . . . 58

vii



3.20 RMSD of territremB in complex with rhAChE dimer . . . . . . . . . . 59

3.21 RMSD of protein and ligand complex for molecule S1 . . . . . . . . . . 60

3.22 RMSF of Apo AChE and AChE-S1 complex . . . . . . . . . . . . . . . 61

3.23 RMSD of ligands docked to chain A of homodimer . . . . . . . . . . . . 62

3.24 RMSD results of ligands docked to chain B of homodimer . . . . . . . . 63

3.25 RMSD over 10ns for selected compounds from ZINC15 . . . . . . . . . 63

3.26 RMSD over 10ns for selected compounds from ZINC15 . . . . . . . . . 64

3.27 Interaction diagram of rhAChE-S1 complex at 100ns . . . . . . . . . . 66

3.28 Per residue energy contribution histogram for S1 . . . . . . . . . . . . . 67

3.29 MM-PBSA residue contribution histogram for territremB . . . . . . . . 69

List of Tables

2.1 Sequences used for MSA . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Autodock VINA parameters . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Protein model evaluation scores . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Sequences used for MSA . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Variant effect predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 10 selected molecules from the SANCDB set for molecular dynamics . . 47

3.5 Identification information of the selected 8 SANCDB compounds . . . . 48

3.6 Identification information for the two SANCDB compounds that failed

Lipinski’s rule of 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 10 selected compounds from ZINC15 subset screening . . . . . . . . . . 51

3.8 Structure information of the selected 10 ZINC15 compounds . . . . . . 52

3.9 5ns MM-PBSA results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 10ns MM-PBSA results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



List of Web Servers and Applications

1. Automatic Topology Builder (ATB)

https://atb.up.edu.au

2. ensemble genome browser

https://www.ensembl.org

3. Jalview

www.jalview.org

4. Molinspiration Cheminformatics

www.molinspiration.com

5. PyMOL

https://pymol.org

6. RCSB

https://www.rcsb.org

7. Uniprot

https://www.uniprot.org

8. VMD

http://www.ks.uiuc.edu/Research/vmd/

ix



List of Abbreviations

Abbreviation Phrase

ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity
APO Apo protein - protein with no inhibitor or ligand bound to it
ATB Automated Topology Builder
BC Betwenness Centrality

PRiMA Proline-rich Membrane Anchor
ColQ Collagenic tail peptide
DNA Deoxyribonucleic acid

DOPE Discrete Optimized Protein Energy
FDA Food and Drug Administration

GROMACS GROningen MAchine for Chemical Simulations
GWAS Genome Wide Association Studies

MM-PBSA Molecular Mechanics Poisson Boltzmann Surface Area
MSA Multiple Sequence Alignment

ns nanoseconds
PCA Principle Component Analysis
PDB Protein Data Bank
RCSB Research Collaboratory for Structural Bioinformatics

Rg Radius of gyration
rhAChE recombinant human Acetylcholinesterase
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
SNP Single Nucleotide Polymorphism
SNV Single Nucleotide Variation
SVM Support Vector Machine
VMD Visual Molecular Dynamics

x



Chapter 1

Literature Review and Aim

1.1 The basic physiology behind stroke and Alzheimer’s

1.1.1 Basic physiology behind stroke

Stroke and Alzheimer’s are worth looking at together since stroke increases the risk of

Alzheimer’s. Two types of stroke are encountered. The most common form of stroke is

ischemic stroke, which is caused by the closing or blockage of a major cerebral artery.

The second type of stroke is hemorrhagic stroke, which is the result of bleeding either

in or on the brain. (Zhang et al., 2003). There is one drug that is currently FDA

approved to be used to treat acute ischemic stroke. The drug is a thrombolytic pep-

tide and is called rt-PA (recombinant tissue plasminogen activator). Large numbers

of neurons, synapses and myelinated fibers die during and immediately after the onset

of ischemic stroke, therefore it is necessary to treat the patient as soon as possible

to mitigate damage. For this reason, the rt-PA thrombolytic drug is only effective if

administered within 3 hours (Neumann-Haefelin et al., 2002). It has been estimated

that on average, for every hour that the stroke remains untreated, 3.6 years’ worth of

brain matter dies. A series of events is put into motion by an acute ischemic stroke

that ultimately leads to the destruction of neural cells. Various drugs have been devel-

oped that can act on mechanisms in this cascade that helps to protect neurons from

damage. A large problem with the drugs that have been tested to treat stroke so far

is that they increase the risk of hemorrhage significantly (Wardlaw et al., 1997). It

appears that many thrombolytic compounds have this problem. Other reasons that

ischemic stroke may not be treated by rt-PA, is that it is difficult to administer treat-

ment quick enough (within 3 hours) and the type of stroke has to be confirmed first

as thrombolytic agents would make an hemorrhagic stroke worse. (Green, 2009)

A stroke is followed by several biological responses. This includes the ischemic cas-

cade and restorative responses. Some regions in the brain are salvageable for a small
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amount of time after the stroke. Few patients receive treatment to recover these re-

gions because of the small window of time. Therapy that can be administered in the

weeks after a stroke will be accessible to a larger portion of patients. Drugs that are

already in use for other neurological diseases could be repurposed to aid in recovery

after stroke (Pardridge, 2007). Stroke sufferers may vary in terms of their mental and

physical health before the occurrence of the stroke. As a result of physical and genetic

differences between individuals, stroke is a highly variable occurrence and so one drug

is not sufficient for all cases of stroke. Various drugs may be used to aid in the recov-

ery process. Many genes are involved in the processes that occur after an individual

suffers a stroke and so certain drugs may perform better than others, according to the

specific case. The chances that a drug will benefit a patient may depend on genetic

variation. Variation such as a certain polymorphism may theoretically prevent a drug

from functioning correctly. The weeks and even months after stroke occurs are impor-

tant for neural recovery. This means that the treatment of stroke is time sensitive and

treatment is only viable for a limited amount of time after stroke. Time sensitivity

dictates that drugs must be used at the correct time as administering drug at the

wrong time may have negative effects or exacerbate the condition. (Cramer, 2015)

1.1.2 Symptoms and causes of Alzheimer’s

Alzheimer’s is a neurodegenerative disorder that involves important high-functioning

brain areas such as the hippocampus and neocortex. Formations in the brain such as

neurofibrillary tangles, Beta-amyloid plaque deposits and the loss of neural synapses,

contribute towards the development of the disease. Alzheimer’s is a major cause of

dementia which increases the risk of ischemic stroke as well. (Francis et al., 1999). By

2050, 131.5 million people are predicted to suffer from dementia. The costs on patient

care are high and families’ lives are disrupted, making the development of treatment

for this disease a high priority (Tan et al., 2018).

Most approved drugs that treat symptoms of Alzheimer’s disease are cholinesterase

inhibitors, with the exception of memantine which is a NMDA (N-methyl-D-aspartate)

2



receptor antagonist (Noetzli and Eap, 2013). Acetylcholinesterase inhibitors help

acetylcholinergic function. The fact that acetylcholine is critical for learning and

memory, indicates that this neurotransmitter is not being used properly in the case

of Alzheimer’s disease. This is called the ”cholinergic hypothesis of Alzheimer’s dis-

ease”. Along with the cholinergic hypothesis, other factors play a part in develop-

ing the disease such as the degeneration of neurons and synapses in brain regions

that are central to the development of memory and learning (Francis et al., 1999).

AChE (Acetylcholinesterase) inhibitors are used for treatment because they fix the

acetylcholine deficit by reducing it’s degradation by acetylcholinesterase (Grossberg,

2003). Pharmacogenetic studies have focused on the enzymes that metabolize AChE

inhibitors. These enzymes determine the amount of inhibitor available in the plasma

and so polymorphisms that alter the functionality of these metabolizers will affect the

effectiveness of the treatment (Noetzli and Eap, 2013).

1.2 Protein targets with potential to treat stroke or Alzheimer’s

1.2.1 Plasminogen activator inhibitor-1 (PAI-1)

Plasminogen activator inhibitor-1 is one potential target protein for the treatment

of ischemic stroke. PAI-1 inhibits fibrinolysis which is instrumental in recovery after

stroke. (J.-Q. Liu et al., 2017) Fibrinolysis is a biological process that breaks down

blood clots.

1.2.2 Acetylcholinesterase (AChE)

Acetylcholinesterase (AChE) is a potential drug target for anti-stroke therapy. Acetyl-

cholinesterase is responsible for terminating nerve impulses at synapses that use acetyl-

choline neurotransmitters. It does this by hydrolyzing the acetylcholine, breaking it up

into acetyl and choline. Thus the neurotransmitter is prevented from carrying on its

signal. AchEI (cholinesterase inhibitors) have been suggested to have properties that

lower the risk of stroke (Tan et al., 2018). Cholinesterase inhibitors will decrease the

breakdown of the neurotransmitter, keeping the nerve impulse going. Acetylcholine is
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important for the functioning of the declarative memory system. Acetylcholinesterase,

which functions to break down acetylcholine, is therefore an important neuropharma-

cological target (Gais and Born, 2004). AChE is one of 15 verified drug targets under

study for treatment of stroke (J.-Q. Liu et al., 2017). Various studies screen or dock

compounds to this protein with the goal of finding new inhibitors that can potentially

be used to treat symptoms of dementia and stroke. Compounds that can provide the

benefits of currently approved drugs without any of the negative effects, may prove use-

ful for the treatment of Alzheimer’s and stroke. Diseases for which acetylcholinesterase

inhibitors may be of therapeutic use include:

• Alzheimer’s

• Acute ischemic stroke

• Lewy body disease (LBD) (Lam et al., 2009)

• Vascular dementia

These diseases are characterized by memory impairment as well as hallucinations.

The human acetylcholinesterase gene appears on chromosome 7q22.1 and is 7.4 kb in

length. Exons 2 to 6 in this gene are translated and variants have been identified in

these regions (Lockridge et al., 2016). Acetylcholinesterase plays a critical biologi-

cal role and is therefore highly conserved in sequence and structure. It was believed

that this gene had few polymorphisms but later it was suggested that this gene had

and average amount of polymorphisms (Yue and Moult, 2006a). The human AChE

gene codes for a protein that has three isoforms. The isoforms have similar catalytic

attributes even though the quaternary structure of the final protein differs. Of the

isoforms, only one occurs in the brains of humans. This form is known as the AChE-T

variation of the protein. The various isoforms are generated by alternative splicing.

Acetylcholinesterase hydrolyses its substrate at a high rate even though its active

site opens and closes rapidly for every molecule that enters. The functional unit of

AChE-T occurs as 4 sub-units that are connected with either a collagenous protein

COlQ or a transmembrane protein, which anchors the functional Unit to a membrane.
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Alternative splicing creates alternate C-terminal structures for the protein depending

on what membrane it is bound and the location in the body the protein is function-

ing (Anglister and Silman, 1978). This alternative C-terminal tail produces the three

isoforms of AChE. For the AChE-T isoform occurring in brain and muscle tissue, up

to three tetramers can be connected to a collagenous protein that runs through the

middle of the tetramer and consists of three strands (Vigny et al., 1978). COlQ in-

cludes a proline-rich region near its N-terminal end which is involved in attachment to

AChE-T subunits and two cysteine residues that are next to this region form disulfide

interactions with cysteine residues from the C-terminal end of the acetylcholinesterase

subunits (Bon et al., 1997), (Dvir et al., 2010). Three isoforms of AChE are en-

countered. The differences occur at the C-terminus of the variants, where alternative

splicing leads to different ending sequences (Soreq et al., 1990). This ‘extra’ region

which is added to the main body of the protein, is 40 residues in length (Grisaru

et al., 1999). The core of the protein that can be found in all of its isoforms, is 543

residues in length. All three isoforms have the same catalytic properties. (Soreq et al.,

1990). The active site contains three important residues known as the catalytic triad.

These residues aid in hydrolysis of acetylcholine. There is a second site in the protein

structure that is important for the interaction with small molecules known as the pe-

ripheral anionic site (PAS). The variant of the protein that is mostly found in brain

and muscle tissues, is known as the AChE-T or AChE-S variant (Grisaru et al., 1999).

The motions of the tetramer functional unit cause the active sites of certain subunits

to be momentarily obstructed or occluded. On average the active sites are estimated

to be unobstructed 80% of the time. Residues 341 and 286 at the entrance of the

active site are commonly obstructed by a neighboring AChE subunit. The subunits

fluctuate relative to each other and the motion of two monomers has been described

as a shearing motion (Gorfe et al., 2008).
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1.2.3 Approved inhibitors that target Acetylcholinesterase and butyryl-

cholinesterase

There are three approved drugs that target either Acetylcholinesterase or Butyryl-

cholinesterase (BChE). These compounds are Rivastigmine, Donepezil and Galan-

tamine. These differ in their application depending on the severity of the Alzheimer’s

case. Rivastigmine is hydrolyzed by AChE like its native substrate ACh. This com-

pund has no selectivity difference between AChE or BuChE. Rivastigmine inacti-

vates both these enzymes for a few hours. Donepezil is a reversible inhibitor that

prefers to bind to AChE over BuChE by 300 times. It is not a competitive inhibitor.

Galantamine binds competitively to AChE and prefers it 50 fold over BuChE. It also

modulates nicotinic receptors which enhances the function of the cholinergic system

(Wilkinson et al., 2004).

The effectiveness of these drugs vary widely between patients and negative side ef-

fects like vomiting and diarrhea are experienced also at a variable rate. This is a

multifactorial problem and genetic variability likely plays a role in this variance al-

though no specific subgroups are known that respond more or less favorably to the

medication (Noetzli and Eap, 2013).

1.3 Genetic variation of cholinesterase family of enzymes

One non-synonymous variant stands out in terms of its frequency. This is the Histidine

to Asparagine substitution at position 353 (canonical sequence). This variant occurs

at a rate of over 40%. Although this mutation might not effect binding of a drug

compound it is responsible for the YT-2 blood group phenotype and is an important

factor when considering compatibility of donating blood or organs (Hasin et al., 2004).

This variant has no effect on the catalytic properties of AChE (Bartels and Zelinski,

1993).

Mutations in acetylcholinesterase that are deleterious are rare since this is a criti-
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cal protein in the functioning of any animal. Deleterious variants of this protein ex-

press a heterozygous pattern of inheritance (Valle et al., 2011). Butyrylcholinesterase

(BChE) is of the cholinesterase family of proteins along with AChE. This enzyme is

more prone to deleterious mutations and therefore may also show more variation in

binding to cholinesterase inhibitors than AChE. BChE is able to protect AChE from

organophosphate poisoning by acting as a scavenger to remove the nerve agents. This

means that variation in the BChE protein may lead to differences in susceptibility of

an individual to poisoning from nerve agents (Lockridge, 2015).

1.4 Therapeutic benefit of molecules that reversibly inhibit

acetylcholinesterase

A variety of diseases exist that involve the acetylcholine receptor, such as vascular

dementia, Alzheimer’s, and Lewy body disease. Understanding the interaction on in-

hibitors with this enzyme can enable the development of better therapeutic drugs to

treat these diseases. The acetylcholinesterase enzyme is also the target of nerve agents,

which are organophosphates that irreversibly inhibit this enzyme. Molecules that en-

able acetylcholine to be hydrolyzed while blocking nerve agents from reacting with the

enzyme may provide treatment options or preventative methods for organophosphate

poisoning (Cheung et al., 2013). Peripheral site inhibitors may block only the nerve

agent organophosphate while leaving enough space for the substrate, acetylcholine to

be hydrolyze. One such molecule is Dihydrotanshinone (DHI), which may be used to

find other molecules that selectively bind to the peripheral active site (PAS) of the

protein (Beri et al., 2013).

1.5 Identification of effective drug molecules

1.5.1 Potential drugs that target AChE

There are many different available compounds that inhibit the protein and the com-

pounds are assisted in reaching the active site by an electrostatic forces. TerritremB is

a potent inhibitor of this enzyme. TerritremB binds both to the peripheral anionic cite
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and the central anionic site, which contains the catalytic triad. This inhibitor initiates

shifts the backbone positions of residues that form the active site gorge. Inhibitors

may bind to the peripheral anionic site (PAS), the central anionic cite (CAS), or both

(Cheung et al., 2013). (Felder et al., 1997).

Searches for drugs that have the potential to treat vascular dementia and acute is-

chemic stroke are being done. Most drugs have many negative side effects which

makes finding a drug with low toxicity a priority. Having detailed knowledge of how

the drug functions to treat stroke, makes it less likely that unknown harmful side ef-

fects will be experienced. Many anti stroke drugs function by preventing or reducing

blood blockages, e.g. thrombolytics and anti-coagulants. Others protect neural cells

from degenerating or being damaged. These are called neuroprotective agents. (J.-Q.

Liu et al., 2017).

In a the Chinese medicinal plants study that isolated the top 1 % of anti-stroke com-

pounds, 35 compounds remained after ADMET testing which was done to verify that

the drug lacked overly harmful properties. Of these compounds, 9 were able to bind

to more than one anti-stroke target while the other 26 compounds each were found

to bind to a specific target each. These are known as single target compounds, and

these 26 have not been exhaustively used in research which tries to discover anti-stroke

compounds. Docking the compounds from anti-stroke plants were done using the lig-

and present in the crystal structure as a reference. The docking score of the novel

compound was compared to the score of the original ligand and the docking was taken

as significant if it had a similar or better score as ligand that was originally in the

crystal structure. The compounds were verified by comparing their structure to that

of known anti-stroke drugs. Further validation can be done by investigating the inter-

action between ligand and receptor in more detail by using molecular dynamics. Some

attributes to consider when looking for anti-stroke compounds are: penetration of

the blood brain barrier (BBB), human intestinal absorption (HIA), binding to plasma

protein, hepatoxicity, and solubility (J.-Q. Liu et al., 2017).
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Many drug lead searches depend on finding drugs that exhibit very high binding

affinity to a target. There are factors other than binding affinity which determine the

efficacy of a therapeutic drug.

Ligand efficacy may depend on residence time instead of merely binding affinity. Res-

idence time is the amount of time that the ligand stays bound to the enzyme that it

modulates or inhibits. It is the life time of the drug-target complex. The residence

time determines how long the drug and the resulting effects will be active. Drug dis-

covery attempts are often halted due to drug leads not performing well in an open

system compared to a closed system. An open system like the human body, intro-

duces factors that affect the concentration of the drug target. Measuring the half-life

of the ligand-drug complex is possible in an open system, but not a closed system.

A closed system limits the concentrations of the drug and enzyme target to a stat of

equilibrium. The amount of time that the ligand-receptor complex is active in an open

system is an indication of the efficacy of the drug (Lu and Tonge, 2010).

1.6 Effects of SNP’s on protein structure and function

The vast majority of variation in human genetics, and estimated 90%, are single nu-

cleotide polymorphisms (SNP’s). SNP’s refer to a single nucleotide change in the DNA

sequence which may or may not result in the production of an alternate amino acid.

Many of these SNP’s are involved in diseases (Collins et al., 1998). The effect of a

non-synonymous variant on the structure of the protein is difficult to analyze although

predictions of the functional change that it will produce, can been made. The impact

of an amino acid change on the 3D structure of the protein is critical when doing drug

discovery as a new model that incorporates the change is required for use in molec-

ular dynamic simulations. A model that incorporates the altered amino-acid can be

created by editing an existing protein structure that is available in the protein data

bank (D. Wang et al., 2015).

Non-synonymous SNP’s are less prevalent than SNP’s that code for an identical amino
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acid. This is thought to be as a result of selection against mutant proteins that likely

have deleterious properties introduced by the non-synonymous SNP’s. Much of the

variation in proteins may still be due to non-synonymous SNP’s.

Some amino-acid changes have been shown to effect the way that the protein responds

to a particular drug, including altering the toxicity of the drug and the binding affin-

ity. Examples where amino-acid changes may influence response to drugs include the

B2-adrenergic receptor and cytochrome P450. It was estimated that between 26% and

32% of all of the non-synonymous SNPs that occur throughout the human genome

will have functional consequences (Chasman and Adams, 2001).

The non-covalent interactions between the protein and the ligand play and impor-

tant role in the successful binding of the compound to the receptor. Van der Waals

forces are small but add up to a large portion of the binding free energy of the protein

ligand complex. This enables the molecule to bind to and inhibit the protein. These

non-covalent interactions such as electrostatic forces and van der Waals interactions

may be altered by a change of amino-acid which normally acts on the bound molecule

(Yue and Moult, 2006b). The energies of these bonds and forces should be calculated

when deciding whether the amino-acid substitution has an effect on the binding on

the ligand to the mutant protein. Autodock Vina can be used to calculate the amount

of hydrogen bonds that form between the two interacting molecules when doing a

molecular docking experiment. Hydrogen bonds are an important non-covalent force

to consider the effects of a mutation of the receptor protein (Nagasundaram et al.,

2015).

1.7 predicting the effects of SNP’s on structure and function

Proteins contain hotspot-surfaces which are the spots that interact with other pro-

teins. The variation introduced by amino-acid substitution may alter these surfaces

by changing the folding of the protein, the electrostatic properties of the spot and the

preference of ligands to bind to the surface (Nagasundaram et al., 2015). Analysis of
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such a mutation occurring in a cancer therapy target has been performed. This target

is used to reduce the growth of tumors (Carlson et al., 1996). The effect on the ability

of the CDK4 gene to bind with Cyclin-D1 proteins was considered and the impact

on drug binding was analyzed. Virtual screening was used to find compounds that

would be suitable to bind to the target and 5 of its variants, each containing a SNP.

Molecular dynamics was performed to gain detailed information on the interactions

effected by the structural changes. Investigations were done examining the effect of

nsSNP’s on the activity of flavopiridol which is an inhibitor of the CDK4 protein. The

flavopiridol drug binds to the ATP binding site of the protein. It was found that for the

variants, the drug did not bind to the same site as in the wild type protein. This is an

example where single amino-acid substitutions affected the binding affinity of a drug

to the protein. The wild type protein delivered the highest binding score compared

to the 5 of its variants. The wild type protein delivered a score of -8.8kcal/mol while

the energies after docking to the variants ranged from -7.1 to -7.7kcal/mol. This is a

significant change in the binding affinity between the reference and altered structures.

Although the amino-acid change did not seem to affect any of the residues in the ATP

binding groove, it hindered the drug from binding. (Nagasundaram et al., 2015)

1.8 Databases containing SNP information

Ensemble hosts information from many different databases that relate SNP informa-

tion to phenotype changes and links protein information to a SNP (Hubbard, 2002).

This information can be queried using the BioMart tool. Tools that focus on the

structural impact of a specific SNP include PinSnps and LS-SNP-PDB (Ryan et al.,

2009). These tools help to visualize the region of amino-acid substitution. GWAS

studies can be followed up with further investigation to determine the role that the

SNP plays in disease by looking at the changes in structure and sequence. Some tools

have been developed that do this analysis. Some take into account only sequence

information to predict whether it will have a negative impact and possibly cause the

disease. Conserved amino-acids tend to be important for biological function. This is

the centrality-lethality principle where conserved sequences are likely central to the
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function of the organism and thus disruptions in these sequences or genes will likely

affect many other systems in the organism that are required for the organism to func-

tion. Other tools focus on using structural information as the structure of a protein

determines its function.

With a growing number of SNP prediction tools it is useful to determine which tools

are most accurate. A consensus can be used which is given by programs such as Pre-

dictSNP and Meta-SNP. This can then help to decide on the most likely functional

change that the SNP will produce. A popular method in the structural analysis of

proteins is homology modeling. The SNPs can be incorporated into the structure

when modeling and their effects on the protein can be analyzed by further processes

such as docking and molecular dynamic simulations. High throughput screening of

compounds allows researchers to quickly narrow down possible drug compounds that

are worth studying. A SNP will effect docking results if the SNP is an amino-acid

which interacts with the ligand at the active site. (David K. Brown and Bishop, 2017)

1.9 The role of synonymous SNPs in heterogeneity of drug

response

The increased rate of sequencing methods, and developments in the fields of bioinfor-

matics and many others, combined with high throughput screening molecular docking,

has increased interest and viability of personalized medicine. (The International SNP

Map Working Group, 2001). There are a large number of polymorphisms in the human

genome. This prompts researchers to neglect synonymous polymorphisms in favor of

non-synonymous SNPs as it is less likely that silent polymorphisms have phenotypic

consequences (Sauna et al., 2007). Single nucleotide polymorphisms (SNPs) are de-

fined as having a minimum allele frequency of 1%. This means that the least frequent

allele needs to occur at least at 1% in a population. Because of the frequency of SNPs

in the human genome, they have been categorized according to significance. In this

classification, synonymous SNP’s are not classified as important as they are less likely

to result in phenotypic alterations (Risch, 2000). Synonymous SNPs may affect pro-

tein expression. Various mechanisms may bring about these variations in expression.
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Synonymous SNPs may affect the stability of mRNA, the use of rare codons which

effects translation, and alternate splicing. These mechanisms may lead to change in

the amounts of the protein being produced. These changes may mean that variation

in drug response is possible due to silent polymorphisms that alter stability of mRNA

(Sauna et al., 2007)

Investigation into the influence of SNP’s in genes related to acetylcholine produc-

tion and metabolism on the effectiveness of Acytelcholinesterase inhibitors, concluded

that the rs2571598 – AA genotype of AChE lead to better response to Rivastigmine

treatment. This SNP is an intron variant and does therefore not code for a different

amino acid. Other genes examined include butyrylcholinesterase (BChE) and Choline

acetyltransferase (ChAT), which produces acetylcholine. SNP’s examined in these

genes did not lead to a significant change in response to treatment (Scacchi et al.,

2009)

1.10 Effects of structural variations on binding of inhibitors

to proteins

Non-synonymous substitutions may alter drug response through a variety of mecha-

nisms. It may alter a gatekeeper residue. This residue allows the substrate or drug

to enter the active site but the variant gatekeeper no longer performs properly. The

substitution may change the binding pocket of the protein, by changing the shape of

the pocket. The stability of the protein may be altered by variations that occur in

the protein. A drug requires the protein to be in a specific conformation, the SNP

might prevent the protein from reaching this conformation or from remaining in this

conformation long enough. SNP’s may change the thermal stability of the protein.

Thermodynamic instability may prevent a protein from performing its desired func-

tion. Drugs may be used to try to alter the thermodynamic stability of the protein

(Lahti et al., 2012). Conserved protein regions tend to be functionally important.

This tells us that amino-acid changes in regions that are highly conserved will have

a greater probability of having deleterious effects. The sequence based approaches
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to predict functional effect of SNPs works off of this principle and thus alignment

of homologous sequences give us information of whether the SNP has occurred in a

conserved region. If the altered amino acid shares physicochemical properties with the

wild type amino acid, it is less likely to have deleterious effects. As the SNP’s under

study are not necessarily associated with disease, they may not be selected against by

natural selection but may still effect the efficacy drugs.

Sequence based methods useful for the majority of predictions (83%) as the amount of

sequences is immense and the number of solved structures is little in comparison (14%)

(Ng and Henikoff, 2006). Mutations may not always be neutral or deleterious, in some

cases the mutant form of a protein may be beneficial to the function of the protein.

An example of such a case is sickle cell anemia. Prediction should be done with bone

structural and sequence information. Crystal structures are not completely reliable

on its own as it is isolated from effects outside of the crystal. Sequence methods have

continually increasing sets of information to base predictions off of as the sequencing

capacity and rate is increasing rapidly (Z. Wang and Moult, 2001). The free binding

energy of ligand-receptor interactions is determined by the changes in entropy and

enthalpy when the molecule binds or tries to bind. The enthalpy refers to the ability

of two molecules to form stabilizing forces between them such as hydrogen bonds and

salt bridges. Entropy refers to how well the ligand fits in the active site and whether

it has freedom to move around until it finds an optimal position. The stabilizing

forces that are able to form are determined by the shape complementarity between

the molecules as well as the types of interactions that can occur between the specific

molecules. Are the molecules physicochemical complementary? (Lahti et al., 2012)

Bonds form between certain atoms when they are at certain optimal positions from

another. SNP’s that because amino-acid substitution may disrupt molecules that are

important for forming these stabilizing forces or for creating an optimal shape for bind-

ing. This is especially likely if the mutation occurs in one of the residues that is active

in the active site. Protein receptors may take on different conformations depending

on which ligand is bound to it. This is known as induced fit. These conformational
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changes occur open binding of the small molecule to the receptor. This means that

the crystal structure that is being used that includes an inhibitor may be in its specific

conformation because the ligand induced it to change into such a conformation. Pro-

teins occur naturally in varied equilibrium conformations. Ligands may bind to the

proteins that are already close to its desired conformation. (Lahti et al., 2012) Further

induced conformational change can then take place. This suggests that different drugs

will have different preferences in the conformations that they bind to. A SNP that

induces a large overall conformational change may therefore effect the binding of a

ligand even if it is not necessarily in the active site of the protein. Allosteric sites are

less conserved than orthosteric or active sites. Structural variation is more common

in allosteric sites. (Sadowsky et al., 2011) One would expect to find more missense

SNP’s in allosteric sites which modulate the activity of the protein. Drugs that bind to

the allosteric site of the protein may either modulate the functioning of the active site

by changing its affinity for the natural inhibitor. An allosteric drug may also change

the protein to be inactive or active by producing a conformational change. It can be

seen that allosteric sites are important in managing the reactivity and conformation

of a target protein. (Schwartz and Holst, 2007) Annotations from databases such as

Uniprot are useful when investigating structural significance of SNP’s as they include

information on areas of a protein that are involved in ligand binding and interactions

with proteins. The position of the amino-acids substitution gives information such as

the change in the free energy of the amino acid and the solvent accessibility among

others. These features are used by prediction programs that rely on the structural

information. These programs also use carbon-beta density and the crystallographic B

factor of a protein structure. These prediction programs are tested by using separate

datasets of amino-acid substitutions that either are known to be neutral or known to

be deleterious. The error rate can be estimated by observing the amount of incorrect

predictions. Information on the error rates of various tools should be considered before

using the tool or to deciding on the confidence of the results. (Ng and Henikoff, 2006)
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1.11 Aims and objectives

1.11.1 Aim

The aim is to identify potential inhibitors of the actylcholinesterase. A separate aim is

to determine the influence of two separate SNP’s on the dynamic properties of AChE.

1.11.2 Objectives

The objectives include running a standard high throughput screening of the normal

AChE protein to search for potential inhibitor leads. This will incorporate the South

African natural Compound Database. This is done because inhibitors may have var-

ious applications, such as the treatment of Alzheimer’s, enzyme reactivation after

organophosphate poisoning as well as treatment of vascular dementia and acute is-

chemic stroke. Assesment will be done on the influence on protein dynamics after

introduction of SNP’s. This will be done running molecular dynamics simulations

of the protein with incorporated SNP’s. Two SNP’s will be analysed. SNP’s may

influence the effectiveness of drug by changeing their affinity to the protein.

1.12 Project layout

The following chapters start with the methods and materials. The results are together

with their discussion in the chapter that follow the materials and methods. The

different sections of the project include modelling, high throughput screening and

molecular dynamic simulation. Modelling was required to complete the structure of

the protein to be able to run the other simulations or tests. This was thus the first

step. The molecular docking and molecular dynamic simulation parts also follow on

each other. Potential compounds from the docking section were used to run molecular

dynamic (MD) simulations, to further asses their affinity to bind to the protein. Lastly,

SNP impact prediction tools were used and the scores compared to the results from

MD simulations of SNP’s. The results from the impact prediction tools did not always

agree with results from the MD simulations.
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Chapter 2

Materials and Methods

2.1 Modelling/Fixing Structures and Multiple Sequence Align-

ment

2.1.1 Introduction

Modelling was required to complete the rhAChE crystal structure selected for the

project. This structure has the PDB ID: 4m0f and contains missing residues. rhAChE

refers to recombinant acetylcholinesterase which means that the enzyme was engi-

neered synthesised in a lab. The protein sequence was aligned to the canonical se-

quence which includes the residues not present in the downloaded structure. The

canonical sequence, downloaded from Uniprot, is equivalent to the SEQRES sequence

from the 4m0f pdb file. Modelling was done using MODELLER which functions on

the principle of satisfying spacial restraints (Šali and Blundell, 1993).

There are frequently errors in the residue numbering between the pdb structure and

the sequence of the gene given by databases such as Uniprot (Ryan et al., 2009). This

can be fixed by aligning the protein sequence from the PDB file and the sequence

of the entire protein. The residues can then be renumbered. The location of the

amino acid change would then be clear. The modelling software, MODELLER, allows

users to renumber residues by starting at a specific number (Šali and Blundell, 1993).

Residues are often missing from solved structures of protein as crystallization of the

enzyme may have been incomplete or flawed. The sequence of the protein is used to

identify the type of residues that are missing. The location of these residues reletive

to the others is then determined by the modeling software. This pdb structure was

chosen because it is the only structure with a completely accessible catalytic cite. This

is the best structure to perform docking experiments and to simulate ligands in the

active site during molecular dynamics.
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None of the solved structures of acetylcholinesterase observed in the pdf file archives

included the 40 residue long c-terminal region in the experimentally determined crystal

structure. This prevented the investigation of SNP’s that fall in this region as there is

no experimental data to accurately model a SNP in that region. Two of the suggested

SNP’s for this project fell in the c-terminal region and were also silent SNP’s. This

meant that they could not be investigated in this manner as they would not result in

a structural change in the protein. The protein was not simulated together with its

c-terminal tail in this experiment. The connection to the collagen anchor was also not

simulated. A nucleotide change on the end of the protein sequence would in any case

not significantly affect molecular dynamic simulations. This means that even if the

SNP’s which were suggested were not silent, they would still not significantly affect the

protein dynamics. SNP with rs number rs17886728 is an intron variant. His353Asn is

known as the yt-blood group variant and has been identified to not affect the catalytic

properties of the protein. Last of the suggested SNP’s to investigate is rs1799805 which

is also listed as a noncoding transcript variant in dbSNP. Two other SNP’s that result

in altered protein structure were thus investigated. It was thus decided to simulate

only the two SNP’s that fell near the center of the protein core. Time constraints of

half a year prompted the concentration on only two single nucleotide polymorphisms

to investigate them at reasonable depth.

Along with filling in missing amino-acids, modeling was utilized to introduce single

nucleotide variations into the structure. The ensemble variant table was used to select

SNP’s to test. The selected variants are rs143875983, P247L missense variant and

rs202183011, T229S, also a missense variant. These variants are found at frequencies

of less than 0.001 according to ensemble.com’s variant table. Variants were selected for

being the closest missense variants to the active site and being central in the enzyme.

If ligands bound to the enzyme, variants close to the active site would stand a higher

chance of disrupting the normal binding to the protein.
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The ATOM records of PDB files can be used to identify the location of missing

residues. The sequence derived from the ATOM section of the pdb was aligned to

the canonical sequence of the protein in Uniprot. This allowed the renumbering of the

PDB residues according to the numbering in the canonical sequence to determine the

position of the desired SNV in both sequences. These sequences were aligned using

MUSCLE (Edgar, 2004). The resulting alignment was then used to create a PIR file,

required input for MODELLER.

2.1.2 Structure Preparation

The enzyme structure used in this research contains a complex of human recombinant

acetylcholinesterase (rhAChE) with territremB, a potent and irreversible inhibitor.

Recombinant proteins are expressed through an expression system other than the

natural expression system in the human body. This enables expressing desired amounts

of the protein for x-ray crystallography. This crystal structure was used for docking

as the active site is accessible once the crystalized ligand is removed. This allowed

the docking of potential inhibitors to determine whether it would bind to the site

effectively. The crystal structure, PDB ID: 4m0f, contains missing residues at positions

259-264 and 495-497 in chain A. Chain B contains missing residues at positions 260-

261 and 493-494. In addition, residues 2 and 3, as well as 543, are missing from both

chains.

2.1.3 Modelling

A python script was prepared to run MODELLER with the appropriate settings. The

script to start MODELLER can be seen in C. The missing residue position numbers

were selected, which tells the program that these coordinates may be shifted. By

doing this, the missing residue positions were unrestrained for modeling. This allows

the backbone coordinates to be shifted to satisfy spacial restraints the best. All of

the residues of known position were restricted in the movement of their backbone co-

ordinates. This approach was used as it resulted in increased z-DOPE scores of the

created models. Loop refinement was not used. 100 models were created and the
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z-DOPE score for each model was calculated. The model with the best z-DOPE score

was selected for further use. The more negative the z-DOPE score, higher the quality

of the model and the more likely it is that the model is native-like. This score is suited

to globular proteins and not very suitable to validate transmembrane proteins. This

score is a statistical score and it is dependent on atomic distances. It was developed

using a set of native-like structures. Verify-3D is a model quality assessment tool

that compares the structure, either a model or experimentally determined, with its

amino-acid sequence. A 3D-1D score is calculated indicating the compatibility of the

3D location of amino acids to its sequence position. 3D-1D scores for the 20 possible

amino-acids are used to determine how well the amino-acid from the model is suited

to its 3D environment (Eisenberg et al., 1997).

2.1.4 Model Improvement

The results of a simulation that included the co-crystalized ligands indicated that

chain B of the enzyme was performing worse than chain A. This prompted investi-

gation of the model quality for chain B. It was found that symmetry restraints that

were used to model the homodimer tried to force symmetry between the two chains

which lead to a decrease in model accuracy. The restraints option was removed from

the MODELLER script and the resulting models showed an increase in z-DOPE score

and verify-3D showed an increased score of 97.40 % over 94.34%. Most of the im-

provement was due to adjustments to chain B of the dimer. 50 models were produced

and the best selected for further use. It should be noted that the first set of com-

pounds from SANCDB were simulated using the models that were using symmetry

constraints which were only later discovered to negatively impact model quality. The

ZINC15 subset of molecules were simulated using the improved rhAChE model.
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2.1.5 Multiple Sequence Alignment

In order to examine how well the altered residues from the SNV’s are conserved,

multiple sequence alignment was performed. 18 acetylcholinesterase protein sequences

from 18 organisms were downloaded from Uniprot. Tcoffee with defaults was used for

MSA.

Table 2.1: MSA: The organisms are listed in order from top to bottom, corresponding
to the order used in figure 3.3

no. UniProt ID Organism

1 P22303 Homo sapiens
2 P21836 Mus Musculus
3 P07140 Drosophila melanogaster
4 P37136 Rattus norvegicus
5 P07692 Torpedo marmorata
6 Q9DDE3 Danio rerio
7 P04058 Tetronarce californica
8 Q92035 Bungarus fasciatus
9 P38433 Caenorhabditis elegans
10 P23795 Bos taurus
11 O62763 Felis catus
12 P36196 Gallus gallus
13 Q869C3 Anopheles gambiae
14 Q27459 Caenorhabditis briggsae
15 Q86GC8 Culex pipiens
16 O42275 Electrophorus electricus
17 Q27677 Leptinotarsa decemlineata
18 P56161 Anopheles stephensi

2.2 Single Nucleotide Variant (SNV) Impact Predictions and

Analysis of SNV Simulations

2.2.1 Introduction

The degree of conservation of a residue gives an indication of its functional signifi-

cance and whether a mutation of the residue will is likely to destabilize the structure.

Although it is not always the case that a single nucleotide that is more conserved cor-

relates with higher functional importance, this is the general trend (Ng and Henikoff,
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2006). In silico predictions of the pathogenicity of a SNV is widely used. dbNSFP

is an exhaustive database containing SNV predictions for non-synonymous variations

of the human genome. This database contains prediction scores from a wide range

of prediction tools and algorithms and also conservation scores. It has been used in

conjunction with machine learning to develop gene specific prediction scores (X. Liu

et al., 2016). For the purposes of this study, dbNSFP was used to extract prediction

scores for the SNV’s that were analyzed through molecular dynamics.

The properties of the environment surrounding the protein should be taken into consid-

eration when deciding on the likely consequences of an amino-acid substitution. The

lipid and water content around the protein interacts with the residues on the surface

of the protein. Membrane and soluble proteins differ in the amino-acids they prefer

on their surface. Membrane proteins, surrounded by a lipid environment will prefer

hydrophobic residues on the surface and hydrophilic in the interior. Soluble proteins

prefer hydrophilic amino-acids on the surface and hydrophobic residues towards the

center of the protein (Betts and Russell, 2003).

2.2.2 Steps

• Introduce SNV’s through modelling using MODELLER v9.19 (described in chap-

ter 2)

• Simulate two protein variants using molecular dynamics (described in chapter 5:

Molecular Dynamics)

• Analyze the results delivered by the molecular dynamics trajectories to make

inferences about the consequences of the amino-acid substitution.

2.2.3 Amino Acid Properties of SNV’s Under Investigation

The first substitution discussed here is the Proline to Leucine substitution. Leucine is

hydrophobic and prefers the alpha helical secondary structure to beta sheet structure.

In this enzyme, Leucine 216 (247 in canonical protein sequence) is located in a beta

sheet in the model.
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Proline is restricted in the conformations it can take as its side chain is bound to its

backbone twice making it rigid. It is a small amino acid. It does not seem likely that

the Leucine will be a good substitute for Proline. While proline is hydrophobic like

Leucine, it is unable to take on many conformations that other amino acids are able

to.

The second variant examined is a substitution of threonine with serine. These are

both small amino acids and the only difference between the two is that serine has a

hydrogen group where threonine has a methyl group (Betts and Russell, 2003). From

this information it is predicted that the T229S variant (198 in model) will have a

significant influence on the stability or dynamics of the protein.

2.3 High Throughput Screening

2.3.1 Introduction

High throughput screening refers to the process of docking a library of potential in-

hibitors to a target protein. This is used often for the identification of drug leads.

Various software exists for docking and their performance varies depending on which

complex is being docked. The docking tool used in this study was Autodock VINA,

which uses a genetic algorithm approach to simulate natural genetic variation (Trott

and Olson, 2009). Autodock tools was used to identify rotatable bonds and to gener-

ate tautomeric states for each molecule in the library. Blind docking was performed to

chain A of the rhAChE structure where missing loops were introduced through mod-

eling. This type of docking does not force the molecule to bind to the active site, but

scans the entire space for areas that are conducive to good binding of the molecule.

This is more similar to natural conditions than targeting the active site only.

2.3.2 South African Natural Compound Database (SANCDB)

The South African Natural Compounds Database (SANCDB) contains 623 natural

compounds (Hatherley et al., 2015). This database was compiled and is maintained

by Rhodes University, Grahamstown, South Africa. Many compounds in this database
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are large which decreases the likelihood that they may pass through the blood brain

barrier (BBB) and increases the likelihood that they contain qualities that prevent

them from being utilized as drugs. However substructures that show high binding

affinity can be used as a template to search other databases for potential inhibitors.

2.3.3 ZINC15 Subset

A subset of 5105 compounds retrieved from the ZINC15 database was also screened

against the acetylcholinesterase enzyme. ZINC15 is a database of commercially avail-

able compounds for screening (Sterling and Irwin, 2015). This subset contains smaller

molecules that can pass through the blood brain barrier and do not contain any vi-

olations of Lipinski’s rule of 5. Each set of compounds was docked blindly to chain

A of the crystal structure. 10 compounds from the results were selected. Targeted

docking was performed of these compounds to chain B of the dimer to find coordinates

to simulate the dimer with a molecule in each chain. The docking was targeted to the

active site of the second chain.

Table 2.2: AUTODOCK VINA parameters

experiment box size exhaustiveness

blind docking 60 angstroms cubed 124
targeted docking 25 angstroms cubed 64

The center coordinates used when docking to chain A of the homodimer was: x: 5.356,

y: -55.309, z: -30.815

The center coordinates used when docking to chain B of the homodimer was: x: -2.922,

y: -40.018, z: 30.861

2.3.4 South African Natural Compounds Database (SANCDB)

623 compounds from the South African Natural Compounds Database (Hatherley et

al., 2015) were docked to the model of the AChE monomer.
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Ligand Preparation The SANCDB compounds were prepared for docking using

Autodock tools to generate torsional angles and charges for the molecules and to assign

Autodock atom types to each atom. Hydrogens were added to the molecules. The

receptor was prepared using Autodock Tools. The exhaustiveness was set to 124 and

the number of cpu’s to 4. The box size was set to 47.25 angstroms cubed. This was

later extended to 60 angstroms cubed in a second docking experiment to verify that

the box was big enough to provide accurate blind docking results. Energy range was

kept at 4.

2.3.5 ZINC15 Subset

The ZINC15 subset was the result of sorting through a larger compilation of com-

pounds from the ZINC15 database. The molecules were filtered according to their

ability to pass through the blood brain barrier, their molecular mass, and their viola-

tions of Lipinski’s rule of 5. This molecule subset is ideal for screening to an enzyme

that is located at cholinergic synapses in the brain.

Ligand Preparation The ZINC15 compounds were prepared in the same fashion

as the SANCDB compounds and the same receptor was used. The center coordinates

for the search space was identical to the SANCDB screening experiment. The box

size was 60 angstroms cubed and the exhaustiveness was set to 124. The rest of the

parameters were identical to the SANCDB docking experiment.
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2.4 Molecular Dynamics Simulations

2.4.1 Introduction

Molecular dynamics can be used to analyze the influence of an amino-acid change on

the dynamic motion of a protein. The amino-acid may propagate change throughout

the molecule during the simulation. This type of simulation can be used to determine

whether a protein structure will be stable after introduction of a SNV.

Molecular Dynamics is performed by calculating the instantaneous forces between the

atoms in a system. The displacement that these forces produce is taken into account

and the new instantaneous forces are calculated (Lahti et al., 2012). The system con-

sists of a solvent, usually water molecules, and the protein or protein-ligand complex.

Varying structures or chemicals can be added to the system where the goal is most

often to replicate natural conditions.

While the accuracy of virtual screening is restricted by a rigid receptor, molecu-

lar dynamics accounts for the flexibility of the protein and the protein side-chains.

Molecular dynamics was used to investigate the conformational changes of the pro-

tein, using the crystal structure as a starting structure, and how this conformational

change varies between variants of the protein. Different ligands, if able to bind to the

protein, may induce different conformational changes in the protein. In the case of

protein-ligand complexes, molecular dynamics explores the ability of a ligand to stay

bound to the protein. Various analysis can be done on the trajectories that molecular

dynamic simulations produce. This includes MM-PBSA, and free binding energy cal-

culation, as well as network analysis that includes betweenness centrality and average

shortest distance (L). MM-PBSA (molecular mechanics Poisson Boltzmann Surface

Area) is a popular method to calculate free energies of ligand-protein complexes. This

augments molecular dynamic simulations that aim to identify ligands with high affin-

ity. Residue specific contributions towards binding energy was calculated using the

g mmpbsa package which is compatible with GROMACS. (Kumari et al., 2014)
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2.4.2 Molecular Dynamics System Overview

While the biologically active form of AChE at cholinergic synapses is a tetramer teth-

ered to a membrane, the simulations were conducted using a homodimer that was not

membrane-bound. The enzyme’s connection with the PRIMA (proline rich membrane

anchor) is not taken into account. The C-terminal collagen tail of the enzyme is also

not present during the simulation. Two monomers were simulated, as the interaction

between the monomers can then be taken into account to some extent.

2.4.3 Force Field Selection

Investigation of the consistency and error of different force fields in determining the

binding affinity of molecules to AChE was done (Tam et al., 2018). The best com-

bination of force field and water was the GROMOS 43a1 force field in combination

with the SPC/E water model. This combination delivered a correlation of -0.88 with

experimental data as well as the smallest error. This is a united-atom force field.

The force field that was selected for our study was the GROMOS 96 54a7 force field

which is similarly a united-atom force field albeit not the exact force field tested in

that study. The force fields are fundamentally the same as they are both united-atom

force field. The latter is an updated version of the force field that performed the best.

Since force field updates are aimed to improve accuracy and increase performance it

was deduced that the updated force field was a good option to choose. The topology

generating tool was compatible with the GROMOS 96 54a7 force field. Since the tool

was specialized to create topology files for this force field it was used instead of the

GROMOS 43a1 force field. The ability of a united-atom force field to simulate the

interaction of AChE with small molecules was shown to be on par and better than

all-atom force field (Tam et al., 2018). It is a good choice as it uses less computational

time with no negative effects on accuracy. In addition, ATB (automated topology

builder) provides a good pipeline to generate topologies of ligands that are compatible

with the GROMOS 96 54a7 force field. This force field allows for longer simulations

due to less computation required as less interactions have to be calculated. This force

field is known as a course-grained force field and methyl groups, which consist of a
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carbon atom bound to three hydrogens, are merged and treated as one interaction site

by the force field.

2.4.4 Topology Generation

Topological information is required for the ligand in order to simulate the ligand

molecule along with its target enzyme. GROMOS, along with most other force fields,

do not include parameters for non-protein atoms. The topology is arguably the most

important factor determining the accuracy of the simulation as this determines how

the interaction between the ligand and protein is calculated. With the objective of

analyzing the ability of the ligand to stay within the active site, this interaction is

integral. This topology can be generated using various methods and tools. The topol-

ogy file includes information such as the charge of atoms in the molecule as well as

bonds and angles between the atoms. ATB (automated topology builder) was used to

generate topologies for the ligands (Malde et al., 2011).

ATB provides a web server where molecules may be uploaded for topology genera-

tion on the condition that the topology is available to other users. ATB is able to

generate topology files for molecules that are compatible with the GROMOS 96 54a7

force field and GROMACS. ATB is also able to provide topologies for other force fields

in the GROMOS family. To use the webserver, a molecule must be protonated and

uploaded to the server. Any inconsistencies regarding the charge or protonation of the

molecule results in discontinuation of the topology generation. The results produced

include a topology (.itp) file and the coordinates in pdb format. Both all-atom and

course-grained versions of these results are available. The course grained results were

downloaded as the GROMOS 96 force field requires this format. The pdb coordinate

file was then converted to .gro format using the ’editconf’ functionality of GROMACS.

The server selects which level of accuracy to use by examining the size of the molecule.

Molecules of over 50 atoms are taken only to an ’initial guess’ topology. Molecules of

below 50 atoms are taken to geometry optimized topology generation using quantum

mechanics. The SANCDB compounds were all above 50 atoms and the ZINC com-

pounds all below 50, thus the ZINC set was provided a more accurate topology for the
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simulation. Hydrogens were added using either Autodock tools, Babel or Discovery

studio. In many cases the hydrogens were not added correctly by Autodock tools.

Hydrogens were added instead of including double bonds where appropriate. Adding

hydrogens using babel fixed this issue except for one case where only Discovery studio

added hydrogens correctly.

2.4.5 Molecular Dynamics System Setup

The protein dimer coordinates were converted to .gro format using the pdb2gmx func-

tion of GROMACS. This generates a topology file where the information for the ligand

molecules can be added. This information includes directions to each ligand’s topology

file and position restraint file. The protein dimer consists of two chains, each made

up of 539 amino-acids. This amounts to a total of 1078 amino-acids. The coordinate

information for the ligands for each chain were added to the protein coordinates, ad-

justing the atom count by adding the number of atoms present in the two ligands, to

the number of atoms present in the protein dimer. Periodic boundary conditions were

prepared for the system. A triclinic shape was selected and the distance between the

protein dimer and the side of the box was set to 1.25nm. The system was solvated

using the SPC/E water model which is a 3 point water model. Ions were added to

neutralize the system. 16 Sodium atoms were added, replacing 16 solvent molecules.

This neutralized the -16 net charge in the system. Each system was then minimized

using an indefinite amount of steps. The minimization was set to terminate when

the free energy value converges. Energy minimization ensures that steric clashes are

cleared.

2.4.6 System Equilibration

In systems where ligands were present, the ligands were restrained for the NVT equi-

libration step. V-rescale temperature coupling was used and this was specified in the

nvt.mdp file. An example of this file has been included as Appendix B. NVT refers to

a constant number of particles, volume and temperature and this equilibration is also

called an isothermal-isochoric ensemble. The NVT equilibration for each simulation
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was performed for 50000 steps which is equivalent to 100ps. Steps are set to occur

every 2 femtoseconds (fs) which results in 100ps when 50000 steps are simulated (2 *

50000). Two temperature coupling groups were created. The protein dimer and two

ligand molecules were couples as a group. The solvent ion molecules were couples as

another group. Pressure coupling was not activated during NVT equilibration. The

temperature was equilibrated to 300 kelvin. Pressure equilibration was performed af-

ter temperature equilibration using the Berendsen isotropic ensemble. The pressure

equilibration was run for 50000 steps, the same length as the temperature equilibra-

tion. Ligands were not restrained for the NPT step where pressure is equilibrated.

The system was set up on a local machine using GROMACS v16.4 and uploaded to

chpc’s lengau cluster. The NVT and NPT steps as well as the production run was

performed using GROMACS v16.1 on the cluster. For 10 nanosecond simulations, the

SMP nodes was used, which allowed each simulation to use 24 cpu’s. 100ns simulations

or longer were performed using 10 nodes, each using 24 cpu’s. This means that 240

cpu’s were used to simulate the 100ns simulation.

2.4.7 g mmPBSA

MM-PBSA calculations are used to break down the ligand binding energy into differ-

ent components. MM-PBSA calculations may use a snapshot of a trajectory as input.

In the case of the territremB complex simulation, the time frame from 95ns to 100ns

at the end of the simulation was sampled for one set of calculations and the time

from 90ns to 100ns for another round of calculations. Both 5ns trajectory samples

and 10ns trajectory samples were used for separate MM-PBSA calculations. Each of

the 5 tested protein-ligand complexes were therefore calculated twice with different

trajectory lengths as input. The results are presented in tables 3.9 and 3.10.

The free binding energy is the average molecular mechanic potential energy, the en-

tropic contribution and the energy of solvation. The sum of these three terms will give

the binding free energy of the complex (Kollman et al., 2000). This can be summed
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up in the following formula:

Gx = 〈EMM〉 − TS + 〈Gsolvation〉 (1)

Formula 1 is used to calculate the free energy of individual items in the system ie.

complex, ligand and protein. Where x refers to the item of the system and TS is

the entropy. The molecular mechanics potential energy is given by EMM and this is

assumed to be in the absence of external forces. This equation can be used to calculate

the complex, protein and ligand free energies, each separately. This can then be used

to determine the free binding energy from interaction between the protein and ligand.

This is given by the formula:

∆Gbinding = Gcomplex − (Gprotein + Gligand) (2)

The solvation free energy can be split into polar and nonpolar contributions. The

nonpolar contribution to the solvation free energy consists of van der Waals forces and

forces generated by cavity formation. The nonpolar contribution can be calculated

using a range of methods. The method used here was the SASA (Solvent Accessible

Surface Area) model. This method calculates only the energy of cavity formation and

does not take into the van der Waals forces of attraction and repulsion. The SASA

model assumes that the solvent accessible surface area is dependent linearly on the

nonpolar solvation free energy (Kumari et al., 2014).

To determine whether the alternate subunit contributes towards interaction with the

ligand eg. chain B influencing ligand bound to active site of chain A, was calculated

taking both chains of the dimer into account. Once it was confirmed that only the

one subunit is involved in the interaction with the ligand the calculations could be

performed using only the chain to which the ligand has bound. This speeds up the

MM-PBSA calculation.

MM-PBSA calculations were performed for a total of 5 protein-ligand complexes. All of

the calculations were performed using the SASA model and were conducted separately

for each chain. The molecules were selected based on stable RMSD values. The last 5

31



ns of their 100ns simulations were used for the calculation except for ZINC945 where

the 5ns between 55 and 60ns were sampled.

2.4.8 Principal Component Analysis (PCA)

PCA analysis of protein motions plots the vectors of the most relevant motions. The

motion is condensed to one vector instead of three for the x, y and z components of the

motion. This is essentially a simplified representation of the most prominent protein

movements. This can be used to find out at what time during the molecular mechanic

(MM) simulation important changes occur in the major motions of the protein. This

would be useful if one wishes to determine the duration of a specific motion that

occurs within the protein. The internal motions are revealed by PCA, which is harder

to analyze since these motions are hidden by the surface residues.

Principle component analysis was done using Cartesian coordinate ensembles from

MD simulations as input. The PCA uses eigenvectors of the motions that explain

the highest amount of variance. Vectors have both direction and magnitude. MODE-

TASK was used to generate PCA plots of the 100ns trajectories from simulations of

wild type dimers as well as the variants T229S and P247L (Ross et al., 2018). The

five components that explain the most of the variance in the Cartesian coordinates is

generated. The top 2 components are plotted and time is represented by a color map.

PC1 is plotted on the x-axis and PC2 is plotted on the y-axis.

The xyz dimensions of the principle component are condensed into one dimension.

This changes the 3D vector to a one dimensional vector that best explains the motion.

This one dimensional vector (PC1) becomes the x-axis and the other (PC2) becomes

the y-axis. This elucidates the relationships between these important motions.

2.4.9 Network Analysis: Betweeness Centrality (BC) and Average Short-

est Distance (L)

Network analysis was conducted using scripts from the MD-TASK collection (David

K Brown et al., 2017). The trajectory of the GROMACS simulation was reduced

to the c-beta and c-alpha atoms. This was achieved using VMD - Visual Molecular
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Dynamics (Humphrey et al., 1996). Betweenness centrality is the importance of a

residue in terms of facilitating ’communication’ throughout the protein. A high value

indicates that the residue facilitates the transmission of force between distant residues.

Long distance effects like this appear when molecules bind to allosteric sites as these

sites modulate the conformation of residues at a distance from the binding molecule.

The BC of a node is calculated by calculating the number of shortest paths from all

nodes to all others that goes through the original node. Average BC was calculated

using the dimer structure. The molecular dynamics simulation trajectory of the dimer

simulation was used as input to MD-TASK. Residues residing at the interface between

the subunits of the dimer should have high values of centrality. If interactions within

a single subunit are of interest, calculating betweenness centrality using only the one

subunit is more informative.

Average betweenness centrality and average shortest distance are inversely correlated.

Average shortest distance of a residue is the sum of the shortest paths to that residue

devided by the total residues minus one (David K Brown et al., 2017).
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Chapter 3

Results and Discussion

3.1 Results Overview

The results are separated into four parts. Modelling and sequence alignment are

presented and discussed first followed by the SNV impact predictions. Thereafter the

high throughput screening is examined and then the molecular dynamics of protein-

ligand complexes. Modelling is discussed first as this is required for the other methods.

Molecular dynamics was used for different purposes which include assessing the impact

of introduced SNP’s of dynamics and calculating the binding affinity of potential

therapeutic inhibitors.

3.2 Modelling and Sequence Alignment

The modelling process resulted in a complete homodimer structure of rhAChE, suitable

for use in molecular dynamic simulations. Two measures were used to validate the

accuracy of the model. These were verify-3D and the z-DOPE score. As only a small

part of the structure was being modeled, there was not a large decrease in z-DOPE

score between the template and the model. The validation scores for each respective

model, indicated that the structure was of high accuracy. Investigating the effects of

SNV’s on protein dynamics is a sensitive problem and all other variance should be

eliminated, so that any change will be a result of the SNV and not another variable.

Table 3.1: Protein model evaluation scores

model version z-DOPE score verify-3D score

wild-type(wt) -2.037 97.44
T229S -2.028 97.44
P247L -2.030 97.44

The z-DOPE score indicates how native-like the model is. This score varied by a very

small margin between the final model for each variant. A disruptive variant which
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does not fit well in the protein, will be placed in positions that are less biologically

likely or viable. Each variant and wild-type model delivered identical Verify-3D scores

Figure 3.1: Figure 3.1 was created using PyMol. The loop regions that were inserted
using MODELLER are indicated in magenta. Chain A, coloured in green, had more
residues missing than chain B (cyan).

A total of 9 missing residues were inserted into chain A. These made a loop of 6 and 3

residues respectively. A total of 4 residues were missing from chain B. This consisted

of gaps of 2 residues each. Mostly the same residues are missing from both chains,

with chain B having residues present that were absent from chain A. The missing

loops are relatively short in length and given the z-Dope scores that were generated

after including the loops, the structure should perform accurately enough in molecu-

lar dynamic simulations. The missing residues have no effect on the Autodock Vina

experiment as the residues are not near the active site, which is the most important

region in the docking experiment.

Loops that are less than 10 residues in length can be modelled fairly accurately using

Modeller software. The larger the gap the less accurate it will be as there are less

nearby residues to base the position off of. Given that all of the gaps in this pdb

structure were less than 10 residues in length, the model is sufficient to use for molec-
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ular dynamics and docking simulations. The z-Dope scores in Table 3.1 above are all

under -2, indicating that they are all high quality.

(a)

(b)

Figure 3.2: Models of variants. Figure 3.2 was rendered using PyMol. The position of
the substituted amino-acid in each dimer is indicated in color. (a) The T229S variant
(threonine to serine) where the mutated residue is coloured in blue. This variant falls
within a beta-sheet secondary structure in the amino-acid sequence. (b) The P247L
variant (proline to leucine) where the mutated residue is coloured in red. This variant
falls within a helical secondary structure in the amino-acid sequence. Chain A of the
homodimer is coloured green and chain B in cyan.

The secondary structure that the substituted nucleotide forms part of is significant as

certain amino acids prefer to for part of specific secondary structures. If the variants

fell merely within a loop structure the substitution would likely not create a large

impact. The Leucine nucleotide in the case of the P247L variant, favors the alpha
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helix conformation.

The important function that acetylcholinesterase plays in the human brain has resulted

in it being very well conserved. There are not many SNP’s that could impact the

protein negatively that would not die out. The two variants were selected as prediction

scores indicated that they had a good probability of having a deleterious effect. This

in combination with being closest significant SNP’s to the active site, led to their

selection.

Models of the variants were required to analyze the influence of a variant on protein

dynamics. Separate models were created for each variant under investigation. The

model could then be used in molecular dynamics simulations to analyze the stability

of the protein. The location of the residue change can be observed to see whether it

is close to the active site or whether it will affect the active site and by extension the

binding affinity of ligands to that active site. Other factors to consider is whether the

stability of the structure is altered and whether the interaction of the protein with

other proteins is altered.

The inserted SNP’s both occur towards the center of the enzyme. They are however

not adjacent to the catalytic site of the protein or part of the catalytic triad. It is

thus not likely to interfere with the catalytic process of the enzyme but could create

a shift in the dynamics of the protein.
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Figure 3.3: Multiple sequence alignment of 18 acetylcholinesterase sequences. Two
amino acid locations are of interest and are surrounded by a dark box. This figure
was produced using Jalview. The sequence below the black histogram represents the
consensus sequence. The black histogram above the consensus sequence indicates the
confidence of the consensus call.

The two residues for which the variants were investigated are moderately to highly

conserved. The Threonine which is replaced by a Serine residue in the case of a T229S

variant is conserved across all 18 sequences that were used for the alignment. This

indicates a high degree of conservation. The Proline which is replaced by leucine

in the P247L variant appears in 12 of the 18 canonical protein sequences. In two

sequences this position is held by a leucine residue, as in the case of the P247L variant.

Assuming that a residue that is more conserved is more functionally significant it can

be predicted that the T229S variant will result in a larger conformational variance.

This was however not found when analyzing the molecular dynamic simulation, in

which the P247L variant resulted in a larger predicted change in the dynamics of the

protein relative to the wild-type protein.
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Table 3.2: MSA: The organisms are listed in order from top to bottom, corresponding
to the order used in figure 3.3

no. UniProt ID Organism

1 P22303 Homo sapiens
2 P21836 Mus Musculus
3 P07140 Drosophila melanogaster
4 P37136 Rattus norvegicus
5 P07692 Torpedo marmorata
6 Q9DDE3 Danio rerio
7 P04058 Tetronarce californica
8 Q92035 Bungarus fasciatus
9 P38433 Caenorhabditis elegans
10 P23795 Bos taurus
11 O62763 Felis catus
12 P36196 Gallus gallus
13 Q869C3 Anopheles gambiae
14 Q27459 Caenorhabditis briggsae
15 Q86GC8 Culex pipiens
16 O42275 Electrophorus electricus
17 Q27677 Leptinotarsa decemlineata
18 P56161 Anopheles stephensi

3.3 Single Nucleotide Variant (SNV) Effect Predictions and

Analysis of SNV Simulations

Predicting the effect of the two variants that were chosen revealed the following. The

scores evaluated are from tools that give a consensus of many other prediction tools.

Table 3.3: Variant effect predictions. Lower score indates a lower chance of being
deleterious

SNV rs number ref:aa alt:aa position in model MetaSVM MetaLR

P247L rs143875983 Proline (P) Leucine (L) 216 -0.3327 0.3535
T229S rs202183011 Threonine (T) Serine (S) 198 0.5973 0.6979

Table contains Amino acid positions and pathogenicity prediction scores from two

prediction tools. A lower score indicates a lower probability of being deleterious for
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both prediction models. MetaSVM was developed using support vector machines

(SVM) and incorporates scores from 9 independent prediction tools as well as the

maximum frequency observed in the 1000 genomes project. MetaLR is a Logistic

regression (LR) prediction score and was developed using the same data as MetaSVM

(Dong et al., 2015).

The scores predict that the T229S variant has a larger probability of being deleterious

than the P247L variant. In contradiction to this prediction score, the porcupine plots

that were generated for the motions of each variant suggests that the P247L variant

will lead to a larger change in protein dynamics than the T229S variant. The shearing

motion is disrupted to a greater extent by the P247L variant than the T229S variant.

If this motion is important for the functioning of the protein, it is predicted that the

variant that disrupts this motion the most will lead to a malfunctioning version of

the protein. Taking this into consideration, the observed change in motion is not in

agreement with the prediction scores. A variation that prevents the subunits from

obstructing each other periodically could lead to stronger drug effects since more of

the drug molecule will be able to enter the active site.

3.4 Molecular Dynamic Simulation of Models

The trajectories from molecular dynamics simulations can be used to extract various

information. The Information was used to create a porcupine plot as this gives an

overview of the magnitude and direction of the protein during the simulation. The

root mean square deviation (RMSD) was used to create graphs comparing this metric

between different versions of the model. RMSF was compared in the same way. The

following figures present these molecular dynamics results.
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Figure 3.4: RMSF by chain for the P247L variant MD simulation. Areas between
disulfide bonds are: blue (69:96), red (257:272), orange (409:529). The region in
purple is a region that displays large movements and is next to the active site region.

Figure 3.5: RMSF by chain for the T229S model MD simulation. Areas between
disulfide bonds are: blue (69:96), red (257:272), orange (409:529). The region in
purple is a region that displays large movements and is next to the active site region.

The RMSF graphs in Figures 3.4 and 3.5 were compiled using R. RMSF for each

residue is averaged over the course of a 100ns molecular dynamics trajectory. Variant

T229S is named according to the canonical acetylcholinesterase human sequence. The

location of this varied residue in the model is 198.
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(a)

(b)

Figure 3.6: Porcupine plot of P247L variant model. Both images are of the same
enzyme, from different angles to better analyze the vectors. (a) - topview. (b) -
sideview. The images were rendered using PyMol and the modevectors script. This
plot shows the magnitude and direction of the displacement of residues during the
simulation.

The motion of the protein is disrupted as seen by comparing to the porcupine plot of

the wild type protein dimer in Figure 3.15. The change in the residue motion is most

noticeable in the first image (a) Wild type apo protein. This view reveals distinct

movement of subunits in opposite directions. Here, motion has been disrupted and

the residues do not show uniform displacement as in the wild-type protein.
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(a)

(b)

Figure 3.7: Porcupine plot for the T229S variant simulation. The porcupine plots
were generated using data from a 100ns simulation and the modevectors script which
is compatible with PyMol. (a) - topview. (b) - sideview.

The plot of the simulation of the T229S variant appears similar to the wild-type version

(Figure 3.16), unlike the porcupine plot of the P247L variant. Threonine is similar

to Serine, they are both small amino acids. Similar amino acids such as these can

normally substitute for one another without as much harm as very dissimilar amino

acids.

43



(a) (b)

Figure 3.8: P247L and T229S variant PCA. (a) - P247L variant PCA. (b) - T229S
variant PCA. created using ensemble of atom coordinates in MODE-TASK (Ross et
al., 2018)

For the PCA plot for P247L 100ns trajectory, PC1 explains 34.34 % of variance and

PC2 explains 16.13 % of variance. For the PCA plot for (b) T229S PCA, PCA1

accounted for 50.00 % of variance and PC2 accounted for 15.00 % of variance. 100ns

trajectory information from MD simulations were used as input to create ensemble of

atom coordinates.

Figure 3.9: RMSD for variants of AChE

RMSD was calculated using the backbone of the protein for fitting. RMSD is close to

converging at 100ns which indicates stabilization. The porcupine plot of the T229S

SNV indicates similar direction of motion to the wild type but with greater magnitude.

This is supported by the RMSD graph which shows greater fluctuation for the T229S

variant than the wild type protein. Results from the porcupine plot thus agree with
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the molecular dynamics simulation results regarding the level of fluctuation of the

T229S variant compared to the wild type. The P247L variant (red line) delivered the

lowest RMSF values, this correlates with the porcupine plot. The porcupine plot in

figure 3.7 above has arrows pointing in scattered directions and at a lower density than

the wild type.

Figure 3.10: Radius of gyration (Rg) for wild type and AChE variants

Radius of gyration is an indication of the compactness of the protein. The two variants

seem to have opposite effects on the Rg of the protein. While the P247L variant results

in a more compact and static structure, the T229S variant results in a more dynamic

and expanded conformation. The compactness induced by the P247L variant may

prevent the substrate or ligands from binding to the active site as fluently as the

other versions of the protein. Acetylcholinesterase occurs as a tetramer, bound by a

collagen membrane anchor. In this configuration the four subunits move relative to

each other in a shearing motion. This motion could be hindered by a substitution that

compacts the enzyme. Based on this information the P247L variant is predicted to

be more deleterious than the T229S variant in contrast with variant effect predictions

in Table 3.2. This is merely a prediction and could guide further studies that wish to

investigate this enzyme.
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3.5 High Throughput Screening with Autodock VINA

3.5.1 Docking Validation

Docking validation is required to confirm that the docking analysis is functioning as

intended. The most common method is re-docking. This is the process of removing a

co-crystalized ligand from a structure and docking this molecule back to the structure.

The molecule is docked to the same region and in the same pose as was originally

observed in the crystal structure. The molecule used to re-dock was territremB and

this was docked successfully back into the same position as in the crystal structure.

Some minor variance is observed. The high throughput screening was continued using

the same method used for validation.

Figure 3.11: TerritremB docking validation results

Figure 3.11 indicates the overlap of the interaction plot for the original crystal struc-

ture PDB ID: 4m0f (greyed out image) with the interaction plot for the newly docked

coordinates used for validation (coloured plot). The plot was generated using ligplot+

v1.4.5. Docking is a static process and the enzyme will need to take on a particular

conformation to enable a compound to enter the active site. The structure is well

suited to the docking of territrem B as it was crystalized together with the compound.
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The docking validation confirms that the parameters are set correctly.

In the redocking experiment in figure 3.11 above, the newly redocked ligand does

not indicate a hydrogen bond between the ligand and the enzyme. The positions are

very similar and this discrepancy can be put down to a small distance shift which took

the bond out of the cutoff range.

3.5.2 South African Natural Compounds Database

The results for the 623 compounds were sorted by their free binding energy and the

distance of the compound from a central atom of the co-crystalized ligand. This was to

separate compounds that did not bind to the active site from those that did. Sorting

in this fashion allowed selecting compounds according to their binding energy and the

proximity to the peripheral anionic site. 10 compounds were selected for further anal-

ysis using molecular dynamics. These compounds were selected based on their VINA

binding scores, the number of hydrogen bonds predicted, the number of residues in-

teracting that also interacted with territremB, the proximity to the peripheral anionic

site.

Table 3.4: 10 selected molecules from the SANCDB set for molecular dynamics

compound
initial binding
energy
(kcal/mol)

no. hydrogen
bonds at pose

binding
energy at 10ns
(chain A)

binding
energy at 10ns
(chain B)

S1 -12.4 5 -11.02 -11.34
S2 -10.5 2 -11.79 -8.50
S3 -11.3 2 -9.71 -9.36
S4 -11.0 4 -8.79 -8.97
S5 -10.5 3 -8.92 -7.37
S6 -10.6 4 -8.15 -7.63
S7 -11.9 0 -10.12 -10.64
S8 -10.7 2 -8.92 -9.77
S9 -10.5 2 - -
S10 -10.9 4 - -
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Table 3.5: Identification information for the selected 8 SANCDB compounds

no. SANC ID compound SMILES

S1 SANC00347 CC2(C)C=Cc1cc5c(cc1O2)OC6Oc4cc3OC(C)(C)C=Cc3c
(O)c4C(=O)C56O

S2 SANC00374
[H][C@@]35Cc1ccc(OC)c(O)c1c4c2OCOc2cc(CCN3C)c45

S3 SANC00152 C=C1CC=CC(C)(OC(C)=O)CCC2C(C(=O)C/C=C(C)/C)=COC
(OC(C)=O)C12

S4 SANC00233 C[C@H](CCCC(C)C)[C@H]1CC[C@H]([C@]1(C)CCO)C2=CC
(=O)C3=C[C@@H](CC[C@@]3(C2=O)C)O

S5 SANC00237 CC(=O)O[C@H]1O[C@@H](OC(C)=O)[C@@H]2CC[C@@H](C(
=CC)/[C@H]12)C3(C)CCCC(C)(C)C3

S6 SANC00230 [H][C@@]12[C@H](OC(C)=O)[C@@H](OC(C)=O)C(C)=C(C
C/C(C)=C/CO)C1(C)C[C@@H](OC(C)=O)CC2(C)C

S7 SANC00703 [H][C@]3([C@H](C)/C=C/C(CC)C(C)C)CC[C@@]4([H])
[C@]2([H])CCC1=CC(=O)CC[C@]1(C)[C@@]2([H])CC[C@]34C

S8 SANC00706 C/C(=C[C@H](C(C)C)N([CH3])C(=O)[C@@H](NC(=O)[C@@H]
(N[CH3])C(C)(C)c1cn([CH3])c2ccccc12)C(C)(C)C)C(=O)O

Table 3.6: Identification information for the 2 SANCDB compounds that failed Lip-
inski’s rule of 5.

no. SANC ID compound SMILES

S9 SANC00512 [H][C@@]5(O[C@H]4C[C@@]3([H])[C@]2([H])CC=C1C
[C@@H](O)CC[C@]1(C)[C@@]2([H])[C@H](O)C
[C@]3(C)[C@@]4([H])[C@H](C)[C@@H](O)C/C=C(C)/C)O
[C@@H](C)[C@H](O)[C@@H](OC(C)=O)[C@H]5OC(C)=O

S10 SANC00548 [H][C@]2([C@H](C)CC[C@H](O)C(C)(C)O[C@@H]1O
[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)CC
[C@]5(C)[C@]2(C)CC[C@@]36C[C@@]34C(=O)C=CC(C)(C)
[C@]4([H])C[C@H](O)[C@@]56[H]

The molecules were given codenames from S1 to S10 for simplification. Molecules S9

and S10 failed two Lipinski’s rule of 5 tests and were not used for molecular dynamics

simulations. It is clear when looking at the SMILES format that the two molecules

who did not perform well in the Lipinski’s rule of 5, are significantly larger than the
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other molecules in the tables.

In Table 3.4 above, in all cases except one, the calculated binding energy decreased

during the molecular dynamic simulation. The exception is molecule S2 where the

docking posed yielded a binding energy value of 10.5 kcal/mol and by the end of the

simulation of the molecule in chain A, the energy had risen to -11.79 kcal/mol. The

results that were generated using the poses by the end of the simulation should reflect

the binding energy more accurately. The Autodock Vina procedure forces the docking

position whereas the molecular dynamics simulation takes into account the movement

of sidechains. Although molecular dynamic simulations are useful for lead searching,

it would take laboratory physical experiments to confirm and determine the accuracy

of these predictions.

Figure 3.12: visualization of best performing
molecule at 100ns of simulation

Figure 3.12, rendered using PyMol, depicts the active site of the enzyme. The residues

that line the tunnel of the active site each contribute either favorably or unfavorably

towards the overall binding energy. Proline 344 in blue contributed most negatively to

binding energy. Arginine 296 in red contributed most unfavorably towards the binding

energy
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(a)

(b)

Figure 3.13: SANCDB ligand interaction diagrams. (a) S1 compared to territremB
from the crystal structure using interaction plots. (b) S2 compared to territremB

Figure 3.13 includes ligand interaction diagrams of two molecules that were selected

for further analysis using 100ns molecular dynamic simulations and MM-PBSA. The

results of this further analysis are presented in the Molecular dynamics results sec-

tion. The plots represent hydrogen bonds using a stippled green line and van der

Waal interactions are displayed by indicating the residue involved surrounded by a
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read half-circle. Residues that interact with both molecules are fully circled in red.

Residue numbering may be inconsistent between the two molecule interaction plots

due to alternative numbering that was introduced through modeling. The interaction

diagrams were created using ligplot+ v1.4.5 Laskowski and Swindells, 2011.

Compounds 512 and 548 from the South African Natural Compounds database had

both scored positive for 2 violations of Lipinski’s rule of 5 and so these compounds were

not taken further for molecular dynamics as they would not be suitable drugs even if

they showed high affinity to the target. These compounds were the largest compounds

which makes them unlikely to be able to efficiently pass through the blood brain barrier

(BBB) where the target enzyme is located. Therefore the other 8 compounds were

selected for 10ns molecular dynamic simulations to further asses their affinity to bind

to the protein.

3.5.3 ZINC15 Subset

Table 3.7: 10 selected compounds from ZINC15 subset screening

compound
binding energy
(kcal/mol)

no. hydrogen
bonds at pose

initial binding
energy at 10ns
(chain A)

binding
energy at 10ns
(chain B)

Z1 -12.9 2 -11.18 -11.12
Z2 -12.4 2 -7.35 -7.74
Z3 -12.5 1 -8.90 -7.90
Z4 -12.5 4 -9.03 -7.76
Z5 -12.2 3 -9.04 -10.39
Z6 -12.1 2 -10.72 -10.65
Z7 -11.8 2 -9.89 -8.44
Z8 -12.1 4 -9.38 -9.60
Z9 -12.4 4 -9.56 -8.77
Z10 -11.4 1 -11.53 -10.22
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Table 3.8: Structure information for the selected 10 ZINC compounds

no. ZINC ID compound SMILES

Z1 ZINC628966 O=C(O)CCn1c2ccccc2[n+]2nc3c(cc12)-c1cccc2cccc-3c12
Z2 ZINC816436 [H][CC(=O)Nc1ccc(NS(=O)(=O)c2ccc3c4c(cccc24)C(=O)N3C)cc1
Z3 ZINC679638 Cn1c(=O)c2ncn(CC(=O)Nc3ccc4c5c(cccc35)CC4)c2n(C)c1=O
Z4 ZINC00361569 Cc1ccccc1NC(=O)Cn1c(-c2nonc2N)nc2ccccc21
Z5 ZINC00679618 CCOC(=O)c1ccc(NC(=O)Cn2c(-c3nonc3N)nc3ccccc32)cc1
Z6 ZINC00631389 O=C(CSc1nnc2ccccn12)N1CCC(c2noc3ccc(F)cc23)CC1
Z7 ZINC00310453 O=C1C[C@@H](C(=O)Nc2cccc3ccccc23)C2(CCCCC2)O1
Z8 ZINC02889230 NS(=O)(=O)c1ccc(NC(=O)CSc2nnc3ccc4ccccc4n23)cc1
Z9 ZINC00677623 Cc1ccc(NC(=O)Cn2c(-c3nonc3N)nc3ccccc32)cc1F
Z10 ZINC00359857 O=C1NN(c2ccc(Cl)cc2)C(=O)/C1=C/c1ccc2c(c1)OCO2

Binding energy values are given in kcal/mol. Binding energy scores at 10ns of the

simulation were calculated using the Autodock VINA scoring function. This was cal-

culated for the molecule in chain A and chain B separately. The 10 selected ZINC

compounds were given codes to simplify their naming.

The compounds downloaded from the ZINC database displayed the same trend as

the compounds from the SANC database. This trend is the decrease in calculated

binding energy between the position of the compound at the start and the end of the

simulation. As the simulation progresses the compound and enzyme would theoret-

ically shift into more energetically favorable positions. This indicates that autodock

VINA has a tendency to overestimate the true binding energy between the molecule

and the enzyme. It should be noted that the molecules are docking to and enzyme

with a completely open active site, which may be behind the high autodock VINA

scores.
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(a)

(b)

Figure 3.14: Ligand interaction diagrams from ZINC subset. (a) Z1 compared to
territremB from the crystal structure using interaction plots. (b) Z7 compared to
territremB.

Figure 3.14 contains ligand interaction diagrams of two molecules that were selected

for further analysis using 100ns molecular dynamic simulations and MM-PBSA. The

results of this further analysis are presented in the Molecular dynamics results sec-

tion. The plots represent hydrogen bonds using a stippled green line and wan der
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Waal interactions are displayed by indicating the residue involved surrounded by a

read half-circle. Residues that interact with both molecules are fully circled in red.

Residue numbering may be inconsistent between the two molecule interaction plots

due to alternative numbering that was introduced through modeling. The interaction

diagrams were created using ligplot+ (Laskowski and Swindells, 2011)

An observation can be made that the selected compounds from ZINC showed higher

binding energy scores than the selected SANC compounds. The SANCDB compounds

however, had higher number of residues in common with territremB when it binds.

This seems to be caused by the larger size of the SANCDB compounds.
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3.6 Molecular Dynamics of Enzyme and Enzyme-ligand Com-

plexes

The stability of ligand-protein complexes determine their suitability as a drug. Exam-

ining the dynamic trajectories of these complexes were used to calculate free binding

energy as well as the RMSD and RMSF of the complexes. The apoprotein simulation

is also evaluated as this is a reference. The MMPSA results are complimentary to

the Autodock Vina results as both these tools aim to calculate the binding free en-

ergy of the protein-ligand complex. Molecular dynamics has thus been used here as a

compliment and continuation of the molecular docking experiment.

3.6.1 APO AChE

Figure 3.15: APO rhAChE porcupine plot created using modevectors in PyMol

This plot can be compared to similar plots of other protein variant simulations to

reveal the discrepancy in motion between the two. This plot reveals a circular pattern

in the protein movement which may be linked to the functioning of the enzyme.

55



Figure 3.16: Porcupine plot of wild type rhAChE dimer created using modevectors in
PyMol

The images in Figures 3.15 and 3.16 are rotated approximately 90 degrees and are the

same porcupine plot. Porcupine plots were generated using modevecors PyMol script.

The coordinates at time 0ns was used as the starting positions and the ending po-

sitions are the coordinates from time 100ns. This information is required when using

the modevectors script which generates the porcupine plots. The motions shown in the

porcupine plots above resembles a shearing motion between the two subunits of the

protein dimer. This agrees with a previous investigation of motions in the tetramer

formation (Gorfe et al., 2008). This motion may lead to an active site that is more

accessible to the substrate. In the tetramer formation, this motion may be implicated

in the electrostatic anionic force that guides the substrate into the active site towards

the catalytic triad in the central anionic site. Arrow length indicates magnitude of

displacement in the direction show. Longer molecular dynamic simulations or tar-

geted simulations may provide more insight into the extent of these motions and their

frequency.
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Figure 3.17: rhAChE structure coloured for reference. Areas between disulfide bonds
are: blue (69:96), red (257:272), orange (409:529). The region in purple is a region
that displays large movements and is next to the active site region.

Areas between disulfide bonds are colored. Disulfide loops have no special attribute

themselves, it is the disulfide bond that forms between two cysteine residues that is

structurally significant. The area that is ’pinched’ off by the disulfide bond is known

as a disulfide loop. Three of these strong bonds occur within the acetylcholinesterase

enzyme. The porcupine plot for this protein can be seen in figure 3.16.

Figure 3.18: RMSF for residues in rhAChE apoprotein. Areas between disulfide bonds
are: blue (69:96), red (257:272), orange (409:529). The region in purple is a region
that displays large movements and is next to the active site region.

The regions of colour in Figure 3.18 have been mapped to an image of the apoprotein

rhAChE dimer in Figure 3.17. The coloured regions indicate the residues that form

a disulfide loop as they fall between a disulfide bond which occurs only between two

cysteine residues. Disulfide bonds are very strong and are responsible for holding
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the core formation of the protein intact. The residues that fall on the outside of a

disulfide bond form a kind of loop. This loop does not poses any special motif, it is

the bond that is of significance. Coloured regions: blue indicates residues 69 to 96,

green indicates residues 257 to 272 and orange marks residues 409 to 529. Notably

the region spanning residues 330 to 400 (purple) shows variance in its motion between

the subunits. Subunit A experiences more overall displacement, but less fluctuation

in this region. Subunit B experiences less overall displacement but more fluctuation

in this region. The same trend is observed for the disulfide loop between residues 69

and 96 shown in blue. For this region subunit A experiences higher fluctuation but

less overall displacement. Subunit B experiences lower fluctuation but higher overall

displacement during the simulation. Higher fluctuation in this case results in holding

the region in place. Displacement is revealed by the arrows in the porcupine plot in

figure 3.16.

Figure 3.19: PCA analysis of rhAChE apoprotein created using MODE-TASK (Ross
et al., 2018)
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The Cartesian coordinate ensemble used for PCA was generated by performing a 100ns

molecular dynamics simulation. PC1 explains 50% of the variance in motion and PC2

explains 10.6% of the variance.

The PCA plot indicates that the direction of the most prominent movements at the

end of the simulation significantly different from the start of the simulation. This

indicates that during the simulation the most important motion undergoes a distinct

change in direction around the 25ns mark of the simulation. A more verbose expla-

nation of what the PCA plot consists of, is provided in the PCA section of materials

and methods.

3.6.2 TerritremB

In order to validate the molecular dynamic simulation, the territremB molecule that

was co-crystalized with the enzyme was simulated. This inhibitor strongly, but cova-

lently binds to AChE. The molecule shows high binding affinity values according to

the VINA docking results(-13.69) and is expected to deviate little in the molecular

dynamic simulation.

Figure 3.20: RMSD of territremB in complex with rhAChE dimer. Graph generated
using R

TerritremB was used as a template molecule to compare to potential therapeutic in-
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hibitors which bind to the peripheral anionic site of the acetylcholinesterse enzyme.

The protein RMSD rises quickly as the simulation starts and then stabilizes. The

ligands that are simulated together start and end up in about the same position. This

is expected as this is the ligand that the protein is crystalized with and it should fit

very well.

3.6.3 S1

Molecule S1 illustrated high binding affinity to rhAChE according to docking and

molecular dynamic analysis. It resulted in the highest free binding energy value cal-

culated using MM-PBSA.

Figure 3.21: RMSD of protein and ligand complex for molecule S1. Graph generated
using R

The molecule S1 delivered the highest MM-PBSA binding energy calculation results.

Discrepancy between its performances in different chains of the protein can be seen. It

can be seen in Figure 3.21 that the molecule deviates less in chain A of the protein than

chain B. Less deviation may not always indicate a stronger binding energy however,

as the MMPBSA calculations resulted in higher calculated affinity in chain B. This

can be seen in Table 3.9 and Table 3.10. The net binding energy was approximately

22 kj/mol stronger in chain B of the protein. One should thus be weary of predicting
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a high binding affinity from only RMSD information.

Figure 3.22: RMSF of Apo AChE and AChE-S1 complex. Areas between disulfide
bonds are: blue (69:96), red (257:272), orange (409:529). The region in purple is a
region that displays large movements and is next to the active site region.

Figure 3.22 includes the RMSF for each chain of the rhAChE protein. This includes

the apoprotein and the protein that was simulated with the docked S1 molecule in the

active site. S1 was the best performing molecule according to MM-PBSA calculations.

Overall, the protein-ligand complex resulted in substantially higher RMSF values than

the Apo protein. The entire length of the protein appears to be compensating for the

interaction with the ligand.
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3.6.4 South African Natural Compounds Database

Figure 3.23: RMSD of ligands docked to chain A of homodimer created using R

Two ligands stand out in the 10 nanosecond molecular dynamics simulations. These

are ligands S1 and S2 in the figures. These molecules show a relatively stable RMSD

throughout the simulation. The RMSD remains close to 0.05nm. For chain B below,

which was found to be less accommodating to most ligands than chain A, the same

two compounds perform the best, regardless of the seemingly lower affinity of most

ligands to this chain in this particular conformation.
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Figure 3.24: RMSD results of ligands docked to chain B of homodimer

3.6.5 RMSD of Selected Compounds From ZINC15 Database

Figure 3.25: RMSD over 10ns for selected compounds from ZINC15
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Figure 3.26: RMSD over 10ns for selected compounds from ZINC15

The RMSD values presented in Figures 3.25 and 3.26 indicate that certain ligands

such as S5 are sporadic in chain B compared to chain A. Others such as Z1 and Z7

are consistent between the two chains of the dimer. The compounds labeled Z1 and

Z7 were selected for further simulation. These compounds exhibited among the most

consistent RMSD profiles of the 10 compounds that were examined. Some compounds

showed highly variable RMSD between chain A and chain B of the enzyme, but overall

descrimination between the low and high RMSD profiles were possible.

3.6.6 MM-PBSA (Molecular Mechanics Poisson Boltzmann Surface Area)

Calculations

MM-PBSA calculations were performed to provide binding energy values that aid in

determining whether the molecule is likely to bind and the strength of the bond. In

each case, the last 5 nanoseconds of the simulation was sampled for the calculation.
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Table 3.9: 5ns MM-PBSA results

Molecule Chain
Van der
Waals forces
(kj/mol)

Electrostatic
forces
(kj/mol)

Polar solvation
energy
(kj/mol)

SASA
energy
(kj/mol)

net binding
energy
(kj/mol)

territremB A -281.553 -24.398 91.523 -24.290 -238.717
territremB B -272.422 -30.246 -24.743 24.745 -352.206

S1 A -220.885 -9.782 80.371 -20.190 -170.478
S1 B -258.848 -39.389 126.119 -22.124 -194.220
S2 A -192.503 -31.190 104.528 -17.553 -136.699
S2 B -179.499 -0.741 52.745 -15.950 -143.459
Z7 A -172.460 -40.740 101.212 -18.119 -130.092
Z7 B -164.889 -43.364 106.443 -16.562 -118.368
Z1 A -193.659 -18.064 100.036 -20.045 -131.712
Z1 B -168.611 -52.024 120.470 -18.838 -119.029

Ligand MM-PBSA free binding energy is broken down into individual components by

g mmpbsa. Energy values for 5 molecules are given. Each chain was calculated sepa-

rately. Residues that contributed from the adjacent subunit to the subunit simulated

in, were not taken into account. Each column represents a component that contributes

towards the final binding energy. All energy values are given in kj/mol.

Table 3.10: 10ns MM-PBSA results

Molecule Chain
Van der
Waals forces
(kj/mol)

Electrostatic
forces
(kj/mol)

Polar solvation
energy
(kj/mol)

SASA
energy
(kj/mol)

net binding
energy
(kj/mol)

territremB A -278.159 -25.521 91.271 -24.106 -236.545
territremB B -269.722 -28.319 -24.643 -24.642 -347.312

S1 A -218.882 -10.951 78.749 -19.913 -170.995
S1 B -257.795 -38.498 126.157 -22.258 -192.412
S2 A -192.901 -32.659 105.385 -17.364 -137.546
S2 B -178.791 -2.149 54.333 -16.002 -142.626
Z7 A -172.177 -40.752 101.121 -18.032 -129.845
Z7 B -163.434 -44.213 108.221 -16.493 -115.922
Z1 A -194.979 -12.388 107.602 -20.063 -119.805
Z1 B -170.264 -53.089 120.424 -18.738 -121.677

The calculation to generate the values in Table 3.10 above was done using the last

10ns of the simulation trajectory as the sample. The last 5ns is the same trajectory

section that was used in Table 3.9. This table essentially added the 5ns to the cal-

culation done previously. This was done to provide more robust results as a larger

sample of time should provide a more accurate binding energy estimation. This can
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be compared with results generated by using half the time to investigate the impact

of lengthening the sampled time has on results.

There is little variation between the MM-PBSA free binding energy values calculated

from 5ns, and the values calculated using 10ns of the trajectory. MM-PBSA calcu-

lations indicate that the co-crystalized ligand is the most effective molecule that was

evaluated. This is expected as territremB binds non-covalently to acetylcholinesterase,

but the combination of many interaction along its length, create a strong force (Cheung

et al., 2013). The second most effective molecule is S1 with calculated free energies of

-170.478 kj/mol and -194.220 kj/mol for chain A and chain B respectively. The dock-

ing score of this molecule was among the highest scores and the docking pose predicted

that 5 hydrogen bonds could be formed with the enzyme. The binding free energies of

the remaining three molecules are average compared to the top two compounds. The

compounds from the SANCDB were allocated less refined topologies because of their

larger size. TerritremB also was allocated an unrefined topology.

Figure 3.27: Interaction diagram of
rhAChE-S1 complex at 100ns. Left:
territrem B, right: SANC00347. This
image was captured using ligplot+
(Laskowski and Swindells, 2011)

In the ligplot diagram in Figure 3.27 above, TerritremB on the left is included for

comparison. The S1 molecule at 100ns has shifted and no longer interacts with many

of the residues that it interacted with according to the Autodock VINA pose. S1 was

rescored at its 100ns coordinates using the VINA score only function, delivering -13.51

kcal/mol and -14.03 kcal/mol for chain A and B respectively.
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(a)

(b)

Figure 3.28: Per residue energy contribution histogram for S1 created using R. (a) -
chain A of homodimer. (b) - chain B of homodimer

Figure 3.28 is a per residue energy contribution histogram for the number one ranked

compound in terms of MM-PBSA binding energy results. The first plot gives an

overview of regions of residues that contribute favorable or not favorable to the binding

interaction. The second plot for each subfigure indicates the residues that contributed

the most towards the binding energy, either positively (red) or negatively (blue). The

first figure:(a) contains the binding energy values for chain A of the rhAChE dimer to

the ligand bound to chain A. The second figure:(b) contains binding energy values for

residues from chain B of the simulated homodimer enzyme.

67



Figure 3.29 below is a MM-PBSA histogram of contribution energies of individual

residues to identify valuable residues taking part binding of the ligand. Each chain

contained its own ligand during the molecular dynamic simulation. The energy value

of the chain that the molecule was not bound to, was disregarded. The chains were

treated separately for MM-PBSA calculations. The first figure:(a) contains residue

contribution energies for the interaction of territremB with chain A of the enzyme.

The second figure:(b) contains residue contribution energies for the interaction of a

separate territremB molecule with chain B of the enzyme.

Figure 3.29 below indicates that residues 341 and 297 contributes the most towards

strong binding of territremB. This residue may play a similar role in the binding to

other molecules, such as the acetylcholine substrate. Residue 341 is one of the residues

that are temporarily occluded by another subunit in the tetramer AChE assembly. The

occlusion will likely negatively affect the binding of some molecules to the occluded

active site (Gorfe et al., 2008).
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(a)

(b)

Figure 3.29: MM-PBSA residue contribution histogram for territremB created using
R. (a) - chain A of homodimer. (b) - chain B of homodimer
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Chapter 4

Critical Discussion and Concluding
Remarks

4.1 Introduction

There are a few limitations in this study and aspects which could be improved. This

is discussed in this chapter.

4.2 Docking

A substantial number of molecules that were docked showed high binding affinity

values. This made it difficult to choose which molecules to investigate in more detail.

The active site of this enzyme is open only for a small amount of time (less than 3%)

and alternates rapidly between open and closed states. This means that it is not certain

whether the molecules that were docked, would reach the active site where the docking

algorithm placed them. This is a limitation of this docking experiment as the binding

affinity value assumes that the ligand can enter the site. The crystal structure used for

docking was taken from a complex of the enzyme with territremB, which distorts the

active site gorge. This leads to the active site gorge being wider than it would normally

be. This may have biased the docking results as the active site may not naturally be

as accessible. TerritremB simulation should be accurate as it was originally in the

protein, meaning the binding conformation was experimentally determined. Docked

molecules may be less accurate as they were not identified biologically to be able to

enter the active site of the protein.

The drug and target concentrations were not determined. The residence time of the

identified potential inhibitors are unknown. Residence time, in addition to binding

affinity, is a significant factor determining the efficacy of a drug.
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4.3 Molecular Dynamics

It is suggested that running multiple shorter independent simulations is more effective

than long simulation. Long simulations can results in underestimating the uncertainty

of the result. The molecular dynamics GROMACS engine allows simulations to use

varying starting velocities with a random velocity generator. While the time here

was not sufficient to run multiple simulations at the same length as was performed,

it would have been possible to decrease the simulation time and running simulations

with varying starting velocities. This would increase the statistical significance of the

results and the conclusions that can be made (Genheden and Ryde, 2015).

The protein occurs in different structural assemblies such as tetramers, and monomers.

The type of structural assembly being used may be important in analyzing the effects

of SNP’s and the binding of ligands to this protein. The functional unit of synaptic

AChE forms a tetramer and is tethered to a membrane. The C-terminal tail of the

acetylcholinesterase subunits were not incorporated into the model. Being able to

include the membrane attachment as well as the tetramer would provide a simulation

which more accurately simulates biological conditions. Available models of the AChE

tetramer are not of a high resolution.

4.4 Variant Effect Predictions

The molecular dynamics results are consistent with expectations of amino-acid prop-

erties. The P247L variant resulted in disrupted protein motion while T229S did not.

The T229S variant resulted in motions also present in the wild type. This method for

analyzing the influence of single nucleotide variants may be used for other proteins and

variants. The method was able to successfully discriminate between a variant which

does not have a significant influence on protein dynamics and one that does.
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Appendices

A PIR alignment file for use with MODELLER

>P1;4m0f_ATOM

structureX:4m0f.pdb:4 :A :542 :B :::-1.00:-1.00

EDAELLVTVRGGRLRGIRLKTPGGPVSAFLGIPFAEPPMGPRRFLPPEPKQPWSGVVDATTFQSVCYQYVDTLYP

GFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWIYGGGFYSGASSLDVYDGRFLVQAERTVLVSMNYRV

GAFGFLALPGSREAPGNVGLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQ

SGAPNGPWATVGMGEARRRATQLAHLVGCP------NDTELVACLRTRPAQVLVNHEWHVLPQESVFRFSFVPVV

DGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVYGAPGFSKDNESLISRAEFLAGVRVGVPQVSDLAAEAV

VLHYTDWLHPEDPARLREALSDVVGDHNVVCPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEF

IFGIPLDPSRNYTAEEKIFAQRLMRYWANFARTGDPNEPRD---PQWPPYTAGAQQYVSLDLRPLEVRRGLRAQA

CAFWNRFLPKLLSA/

EDAELLVTVRGGRLRGIRLKTPGGPVSAFLGIPFAEPPMGPRRFLPPEPKQPWSGVVDATTFQSVCYQYVDTLYP

GFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWIYGGGFYSGASSLDVYDGRFLVQAERTVLVSMNYRV

GAFGFLALPGSREAPGNVGLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQ

SGAPNGPWATVGMGEARRRATQLAHLVGCPP--TGGNDTELVACLRTRPAQVLVNHEWHVLPQESVFRFSFVPVV

DGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVYGAPGFSKDNESLISRAEFLAGVRVGVPQVSDLAAEAV

VLHYTDWLHPEDPARLREALSDVVGDHNVVCPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEF

IFGIPLDPSRNYTAEEKIFAQRLMRYWANFARTGDPNEP--PKAPQWPPYTAGAQQYVSLDLRPLEVRRGLRAQA

CAFWNRFLPKLLSA*

>P1;4m0f_wt

sequence:: : : : :::-1.00:-1.00

EDAELLVTVRGGRLRGIRLKTPGGPVSAFLGIPFAEPPMGPRRFLPPEPKQPWSGVVDATTFQSVCYQYVDTLYP

GFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWIYGGGFYSGASSLDVYDGRFLVQAERTVLVSMNYRV

GAFGFLALPGSREAPGNVGLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQ

SGAPNGPWATVGMGEARRRATQLAHLVGCPPGGTGGNDTELVACLRTRPAQVLVNHEWHVLPQESVFRFSFVPVV

DGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVYGAPGFSKDNESLISRAEFLAGVRVGVPQVSDLAAEAV

VLHYTDWLHPEDPARLREALSDVVGDHNVVCPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEF

IFGIPLDPSRNYTAEEKIFAQRLMRYWANFARTGDPNEPRDPKAPQWPPYTAGAQQYVSLDLRPLEVRRGLRAQA

CAFWNRFLPKLLSA/

EDAELLVTVRGGRLRGIRLKTPGGPVSAFLGIPFAEPPMGPRRFLPPEPKQPWSGVVDATTFQSVCYQYVDTLYP

GFEGTEMWNPNRELSEDCLYLNVWTPYPRPTSPTPVLVWIYGGGFYSGASSLDVYDGRFLVQAERTVLVSMNYRV

GAFGFLALPGSREAPGNVGLLDQRLALQWVQENVAAFGGDPTSVTLFGESAGAASVGMHLLSPPSRGLFHRAVLQ

SGAPNGPWATVGMGEARRRATQLAHLVGCPPGGTGGNDTELVACLRTRPAQVLVNHEWHVLPQESVFRFSFVPVV

DGDFLSDTPEALINAGDFHGLQVLVGVVKDEGSYFLVYGAPGFSKDNESLISRAEFLAGVRVGVPQVSDLAAEAV

VLHYTDWLHPEDPARLREALSDVVGDHNVVCPVAQLAGRLAAQGARVYAYVFEHRASTLSWPLWMGVPHGYEIEF

IFGIPLDPSRNYTAEEKIFAQRLMRYWANFARTGDPNEPRDPKAPQWPPYTAGAQQYVSLDLRPLEVRRGLRAQA
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CAFWNRFLPKLLSA*
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B NVT parameter file for GROMACS tempera-

ture equilibration

title = Protein-ligand complex NVT equilibration

define = -DPOSRES ; position restrain the protein and ligand

; Run parameters

integrator = md ; leap-frog integrator

nsteps = 50000 ; 2 * 50000 = 100 ps

dt = 0.002 ; 2 fs

; Output control

nstenergy = 500 ; save energies every 1.0 ps

nstlog = 500 ; update log file every 1.0 ps

nstxout-compressed = 500 ; save coordinates every 1.0 ps

energygrps = Protein A237 B237

; Bond parameters

continuation = no ; first dynamics run

constraint_algorithm = lincs ; holonomic constraints

constraints = h-bonds ; bonds to H are constrained

lincs_iter = 1 ; accuracy of LINCS

lincs_order = 4 ; also related to accuracy

; Neighbor searching and vdW

cutoff-scheme = Verlet

ns_type = grid ; search neighboring grid cells

nstlist = 20 ; largely irrelevant with Verlet

rlist = 1.2

vdwtype = cutoff

vdw-modifier = force-switch

rvdw-switch = 1.0

rvdw = 1.2 ; short-range van der Waals cutoff (in nm)

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics

rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)

pme_order = 4 ; cubic interpolation

fourierspacing = 0.16 ; grid spacing for FFT

; Temperature coupling

tcoupl = V-rescale ; modified Berendsen thermostat

tc-grps = Protein_A237_B237 Water_and_ions ; two coupling groups - more accurate

tau_t = 0.1 0.1 ; time constant, in ps

ref_t = 300 300 ; reference temperature, one for each group, in K

; Pressure coupling

pcoupl = no ; no pressure coupling in NVT

; Periodic boundary conditions
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pbc = xyz ; 3-D PBC

; Dispersion correction is not used for proteins with the C36 additive FF

DispCorr = no

; Velocity generation

gen_vel = yes ; assign velocities from Maxwell distribution

gen_temp = 300 ; temperature for Maxwell distribution

gen_seed = -1 ; generate a random seed
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C Python script to run MODELLER (settings for

best models)

#!/usr/bin/python

from modeller import *

from modeller.automodel import * # Load the automodel class

log.verbose()

env = environ()

# directories for input atom files

env.io.atom_files_directory = [’.’, ’../atom_files’]

class MyModel(automodel):

def special_patches(self, aln):

# Rename both chains and renumber the residues in each

self.rename_segments(segment_ids=[’A’, ’B’],

renumber_residues=[4, 4])

def select_atoms(self):

return selection(self.residue_range(’259:A’, ’264:A’),

self.residue_range(’495:A’, ’497:A’), self.residue_range(’260:B’, ’261:B’), self.residue_range(’493:B’,’494:B’))

a = MyModel(env, alnfile = ’dimer.pir’,

knowns = ’4m0f_ATOM’, sequence = ’4m0f_wt’)

a.starting_model= 1

a.ending_model = 50

a.make()
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D Average Betweenness Centrality
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Bon, S., Coussen, F., & Massoulié, J. (1997). THE POLYPROLINE ATTACHMENT

DOMAIN OF THE COLLAGEN TAIL. The Journal of Biological Chemistry,

272 (5), 3016–3021.
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