
Peer-to-Peer Energy Trading System using IoT and a
Low-Computation Blockchain Network

Submitted in fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

of Rhodes University

Tyron Ncube

Grahamstown, South Africa
June 2021

Abstract

The use of renewable energy is increasing every year as it is seen as a viable and sustain-

able long-term alternative to fossil-based sources of power. Emerging technologies are

being merged with existing renewable energy systems to address some of the challenges

associated with renewable energy, such as reliability and limited storage facilities for the

generated energy. The Internet of Things (IoT) has made it possible for consumers to

make money by selling off excess energy back to the utility company through smart grids

that allow bi-directional communication between the consumer and the utility company.

The major drawback of this is that the utility company still plays a central role in this

setup as they are the only buyer of this excess energy generated from renewable energy

sources.

This research intends to use blockchain technology by leveraging its decentralized ar-

chitecture to enable other individuals to be able to purchase this excess energy. Blockchain

technology is first explained in detail, and its main features, such as consensus mecha-

nisms, are examined. This evaluation of blockchain technology gives rise to some de-

sign questions that are taken into consideration to create a low-energy, low-computation

Ethereum-based blockchain network that is the foundation for a peer-to-peer energy trad-

ing system. The peer-to-peer energy trading system makes use of smart meters to collect

data about energy usage and gives users a web-based interface where they can transact

with each other. A smart contract is also designed to facilitate payments for transactions.

Lastly, the system is tested by carrying out transactions and transferring energy from

one node in the system to another.

Keywords : Blockchain, Internet of Things (IoT), Renewable energy, energy trad-

ing systems

Acknowledgements

This project would not have been possible without the help and cooperation of many.

Firstly, gratitude goes out to my supervisor Prof Nomusa Dlodlo for the guidance she

provided throughout the duration of this research. This would not have been possi-

ble without her knowledge of the research area. Prof Alfredo Terzoli also deserves an

honourable mention for the help he provided and the tough questions he always asked.

Thanks also goes out to the colleagues I shared a lab with, especially Mulalo for listening

to my brainstorming and offering ideas when I was stuck. I would also like to thank Mr

John Gillam for assisting with funding opportunities. Most of all I would like to thank

God for making this possible during these unprecedented times.

This work was undertaken in the Distributed Multimedia Centre of Excellence at

Rhodes University, with financial support from the Henderson Scholarship fund and the

Rhodes University Postgraduate Funding office. The author acknowledges that the opin-

ions, findings and conclusions or recommendations expressed here are those of the author

and that none of the above mentioned sponsors accept liability whatsoever in this regard.

TABLE OF CONTENTS

List of Figures iv

List of Tables viii

1 Introduction 1

1.1 Background of the Research . 1

1.2 Problem Statement . 1

1.3 Aim of the Research . 2

1.4 Research Objectives . 2

1.5 Justification . 2

1.6 Thesis Outline . 3

1.7 Scope of the Study . 4

2 Background 5

2.1 Blockchain Overview . 5

2.2 Internet of Things Overview . 23

2.3 Related Work . 27

3 System Architecture 34

3.1 Design Approach . 34

3.2 High-level System Design . 35

3.3 Peer-to-peer Energy Trading System Use-Case 36

3.4 Peer to Peer Architecture . 38

3.5 Software Architecture . 39

3.6 Hardware Architecture . 47

i

3.7 Data Transfer Protocols . 49

3.8 Conclusion . 51

4 Private Blockchain Network 52

4.1 Ethereum Virtual Machine . 52

4.2 Ethereum Node . 53

4.3 Ethereum Client . 54

4.4 Setting up an Ethereum Node . 56

4.5 Setting up a Private Ethereum Network 58

4.6 Genesis File . 62

4.7 Starting the Blockchain Network . 64

4.8 Geth Console . 67

4.9 Sealer Nodes . 71

4.10 Block Validation on a Clique-based Ethereum Network 72

4.11 Conclusion . 74

5 Smart Contract Implementation 76

5.1 Ethereum Smart Contract Execution . 76

5.2 Smart Contract for the Proposed System 77

5.3 Alternative Approach to the Smart Contract Design 81

5.4 Smart Contract Functionality Testing . 82

5.5 Deploying the Smart Contract . 87

5.6 Client-side Application . 88

5.7 Client-side Application Access Control 93

5.8 Conclusion . 93

6 Hardware Implementation 94

6.1 Hardware Components Considerations 94

6.2 Sonoff POW R2 Smart Meter . 97

6.3 Sonoff POW R2 Firmware . 99

6.4 Tasmota Firmware . 100

TABLE OF CONTENTS ii

6.5 Storing Smart Meter Data to a Database 104

6.6 Energy Transfer . 107

6.7 Measuring Energy Transferred . 109

6.8 Checking Transaction Status . 111

6.9 Conclusion . 111

7 System Testing 112

7.1 Test Set-up . 112

7.2 Adding New Listing . 115

7.3 Making a Purchase . 117

7.4 PoA-based Blockchain Resource Usage 122

7.5 Conclusion . 125

8 Conclusion 126

8.1 Achieved Objectives . 126

8.2 Future Work . 128

8.3 Summary . 128

TABLE OF CONTENTS iii

List of Figures

2.1 Structure of a block in a blockchain[7] . 6

2.2 Example of a proof of work puzzle . 9

2.3 Seven layer blockchain architecture [23] 17

2.4 Three layer blockchain architecture [26] 18

2.5 Smart contract use-case diagram . 22

2.6 IoT Architecture [42] . 24

3.1 High-level system design of the peer-to-peer energy trading system 35

3.2 Use-case diagram of peer-to-peer energy trading system 37

3.3 Illustration of peer to peer architecture 38

3.4 Software architecture of the peer-to-peer energy trading system 40

3.5 Hardware Architecture of the proposed system 48

3.6 MQTT Architecture . 50

4.1 Features of an Ethereum client[102] . 54

4.2 Creating working directories . 56

4.3 Creating a new Ethereum account . 57

4.4 Starting up Puppeth and creating a new genesis file 59

4.5 Selecting the consensus engine using Puppeth 60

4.6 The generated genesis file . 62

4.7 Initializing the genesis file . 64

4.8 Starting the Geth console . 65

4.9 eth.log file after the Geth console is started 67

4.10 Unlocking account and checking account balance 68

iv

4.11 Checking for other nodes on the network 68

4.12 enode of the first node . 69

4.13 The second node joining the network using the enode of the first node . . 69

4.14 First node checking for other nodes on the network 70

4.15 Account balance of the second node . 70

4.16 Transaction to send Ether from the first node to the second node 70

4.17 New account balance of the second node 71

4.18 Command to propose a new sealer node 72

4.19 Command to vote out a sealer node . 72

4.20 Command to cancel a proposal that has already been made 72

4.21 Group of sealer nodes at time t1 where N=8 73

4.22 Group of sealer nodes at time t2 . 74

5.1 Smart contract code for the listElectricity function 77

5.2 ListingAdded event code of the smart contract 78

5.3 purchaseElectricity function of the smart contract 79

5.4 Smart contract code for the paySeller function 79

5.5 The purchaseFailed function code in the smart contract 80

5.6 Smart contract test questions . 82

5.7 Test code to check smart contract deployment 83

5.8 Results after running test program . 83

5.9 Test code to retrieve electricity listings 84

5.10 Results after running test program to retrieve listings 84

5.11 Test code to check the accuracy of the data retrieved 85

5.12 Test code to check if the seller is paid after a transaction 86

5.13 Snippet of the Truffle configuration file showing network settings 87

5.14 Results after successfully deploying the smart contract to the blockchain 88

5.15 Code for the listElectricity function of the client-side application 89

5.16 Screenshot showing the parameters required to add a network to Metamask 90

5.17 Code for checking if the browser supports Ethereum distributed applications 91

LIST OF FIGURES v

5.18 Screenshot of user interface of the web application 92

6.1 Power bank used in the peer-to-peer energy trading system 96

6.2 Components of Sonoff POW R2 smart meter 97

6.3 Top view of Sonoff POW R2 smart meter 98

6.4 Tasmota web interface home page . 102

6.5 Tasmota MQTT configuration . 103

6.6 Tasmota time period configuration . 104

6.7 Data log on the Tasmota console . 104

6.8 Screenshot of data sent by the smart meter 105

6.9 Node-Red flow for subscribing to smart meter MQTT topic 105

6.10 Console of Node-Red client subscribed to smart meter MQTT topic . . . 106

6.11 Node-Red flow for saving data to a database 107

6.12 Multiple Node-Red flows for saving data from multiple smart meters to a

database . 108

6.13 Connection of components on a single node 109

6.14 Connection of multiple relays to the same ground and 5V terminals . . . 110

7.1 Hardware set-up of three nodes . 114

7.2 Adding new listing through the web-based application 115

7.3 Transaction fee for adding a new listing 116

7.4 Browser notification from Metamask after the transaction is added to the

blockchain . 116

7.5 Web-based application after the listing is added 117

7.6 Database table showing the energy balances of all three nodes 118

7.7 Web application after successful transaction 118

7.8 Metamask screenshot showing transaction details 119

7.9 Database table showing energy balances of all the nodes before the start

of a transaction . 120

7.10 Database table showing energy balances 6 minutes after transaction started121

LIST OF FIGURES vi

7.11 Metamask screenshot showing the amount paid to the seller and transac-

tion cost . 121

7.12 Web-based application after conclusion of the transaction 122

7.13 Resource usage on Node 3 . 123

7.14 Resource usage on a sealer node . 124

7.15 Resource usage on node 1 during transfer of energy 124

LIST OF FIGURES vii

List of Tables

6.1 Sonoff POW R2 technical specifications [117] 99

6.2 Sonoff POW R2 wireless specifications [117] 99

7.1 Raspberry Pi 3 Model B+ Specifications [123] 112

viii

Chapter 1

Introduction

1.1 Background of the Research

Power generation is the backbone of development in any modern society and most ini-

tiatives meant to assist developing communities require a reliable and affordable source

of electrical power. Currently fossil-based fuels account for a large proportion of all the

energy used by consumers [1] [2] but the use of renewable energy is increasing every year

as it is seen as a viable and sustainable long term alternative to the fossil-based sources

of power.

Various emerging technologies are continuously being merged with existing renewable

energy systems to address some of the challenges associated with renewable energy such

as reliability and limited storage. Smart grids have made it possible to have two-way

communication between energy producers and consumers. When integrated with renew-

able energy systems, smart grids have made it possible for consumers to sell back excess

energy from their renewable energy systems to the utility companies. Hybrid energy

systems that use multiple renewable energy sources have also become popular due to

technologies like the internet of things (IoT) making them more reliable.

1.2 Problem Statement

In most of the above-mentioned smart grid systems, the utility company still plays a

significant role such as being the main supplier of energy as well as being the sole buyer

of the excess energy produced by its consumers. This results in a centralized monopoly

where the utility company is free to set terms and conditions that benefit it more than

1

the consumers.

1.3 Aim of the Research

The aim of the research is to eliminate the monopoly that the utility company has over

the purchasing of excess energy produced by consumers by coming up with a system

that allows other participants to be able to purchase it as well. The proposed system

leverages the decentralized architecture of blockchain and uses IoT to collect data from

the renewable energy systems to make the system more efficient.

1.4 Research Objectives

The objectives of this research can be classified into a primary objective as well as sec-

ondary objective. The primary objective of this study is detailed below:

• To create a prototype for a blockchain-based peer-to-peer energy trading system

where users who produce renewable energy can buy and sell the excess energy

amongst each other without the need for a central authority.

The secondary objectives of this study are listed below:

• Using IoT to collect information from the existing renewable energy systems and

using this information to make the peer-to-peer energy trading system more effi-

cient by presenting this information to the user to help them make better informed

decisions.

• To come up with a blockchain configuration that does not require intensive computer

resources but still maintains the blockchain properties that make it suitable for the

peer-to-peer energy trading system.

1.5 Justification

According to various reports, at least half of the people in sub-Saharan Africa have no

access to electricity due to low power generation but more and more settlements are been

electrified every year [3] [4]. This increase in the number of settlements that are being

CHAPTER 1. INTRODUCTION 2

electrified does not, however, coincide with an increase in the power generation capacities

of the different countries. This means that as more households are added to the main

power grid, it puts a strain on the grid as they all have to share an already inadequate

power supply.

The proposed system offers a set up where settlements can be equipped with renewable

energy systems such as solar or wind turbines and households within a settlement can

be connected to each other to create a small smart grid where the households can trade

excess energy with each other. This approach reduces the need for the settlement to rely

on electricity from the main grid, which can instead be used as a backup source. It also

increases the number of households that use renewable energy as their main source of

electricity instead of fossil-based sources.

The use of blockchain technology is ideal to address the problems identified for a

number of reasons. It shares a similar architecture with the proposed system in that they

are both peer-to-peer. This helps avoid a situation where the hardware is configured

in a peer-to-peer architecture but the software is centralized. Blockchain also offers a

payment medium for the transactions in the proposed system which eliminates the need

for a separate payment platform. The transparency offered by blockchain is also ideal

for a system where the role of the trusted third-party in the form of the regulator is

significantly reduced.

1.6 Thesis Outline

This document is organized into nine chapters and some appendices that contain sup-

porting material. The rest of the chapters are organized as follows:

• Chapter 2 contains an overview of the two main technologies that are used in this

research, namely blockchain and the internet of things. The chapter also evaluates

similar studies that have been carried out.

• Chapter 3 proposes the architectures for both the hardware and software compo-

nents of the system to be developed as well as the design approach to take in the

implementation of the proposed solution.

CHAPTER 1. INTRODUCTION 3

• Chapter 4 gives a more technical background on how Ethereum handles trans-

actions. It also details the steps to take to create an Ethereum-based private

blockchain network.

• Chapter 5 involves the design, coding and implementation of the smart contract for

the peer-to-peer energy trading system.

• Chapter 6 gives a detailed account of the hardware configuration of the proposed

system and how it interacts with the software.

• Chapter 7 carries out various tests on the peer-to-peer energy trading system to

ascertain how it performs under different conditions.

• Chapter 8 concludes the research by highlighting how the results obtained compare

with the initial objectives of the research and suggests future work.

1.7 Scope of the Study

This research focuses on the development of a peer-to-peer energy trading system in order

to address the issues identified in the problem statement. The research, however, focuses

on a narrow scope. Firstly, the study is limited to peers within close physical proximity

to each other. This is to minimize the energy loss during transfer from a seller to a buyer.

The other assumption is that all the peers in the system already have renewable energy

systems as the study builds on already existing renewable energy systems.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Background

This chapter gives a detailed overview of blockchain and IoT technologies by defining

what they are and how they function. The evaluation of some similar studies that have

been carried out by other scholars is also carried out in this chapter and differentiates

this research from those studies.

2.1 Blockchain Overview

This subsection defines a blockchain and details how the technology works. The technical

specifications of blockchain technology are also assessed.

2.1.1 Introduction

A blockchain is a distributed digital ledger that contains blocks of transactions [5]. A

block is a file within a blockchain that stores transactions that have not yet been recorded

on any prior blocks. Thus, a block is like a page of a ledger or record book. A blockchain

can also be defined as a back-linked ledger containing blocks of transactions whose se-

quence is agreed on by an evolving set of nodes [6]. The main goal of blockchain technol-

ogy is to enable transactions between two mutually distrusting parties without a trusted

third-party, and it does this by distributing trust among different parties who get an eco-

nomic incentive for acting honestly. If the blockchain’s distributed parties cannot agree

on the blockchain’s correct state or if there are conflicting versions of the blockchain, the

version with the longest chain, i.e., the one with the most subsequent blocks after the

conflict, is the one taken to be valid.

5

2.1.2 Blockchain Structure

Figure 2.1: Structure of a block in a blockchain[7]

A block in a blockchain contains a block header as well as a list of all the transactions

in that block. The block header contains the block number, the previous block’s hash

value, the block’s timestamp, the nonce value, and the block’s size as illustrated in Figure

2.1. The blocks in a blockchain are uniquely identified using a hash algorithm found on

the header of each block. Each block contains the hash of the block immediately preceding

it, and that hash is used to compute its own hash value. Therefore, these hash values

link all the blocks in a blockchain back to the first block. When the block preceding a

particular block changes, this then changes the hash of that block and every other block

that came after it, which means the hashes of all those blocks will have to be recalculated.

The calculation of these hashes is a computationally-intensive process whose cost would

outweigh any benefits that can be derived from the changes to the blockchain. This

acts as a barrier against maliciously adding a block in the chain and also ensures the

immutability of transactions in a blockchain by guarding against changes to existing

blocks [8].

2.1.3 Genesis Block

The genesis block, which is also known as the genesis file, is the first block in any

blockchain-based protocol [9]. It is the foundation upon which subsequent blocks are

added to the blockchain as it contains rules that govern how the blocks are added to the

CHAPTER 2. BACKGROUND 6

blockchain. Rules that govern the addition of new blocks include the method that is used

to validate new blocks as well as the method for selecting the node that does this vali-

dation. The genesis block comes pre-configured with the system as it is the blockchain’s

initial state, and every node that joins the network has to agree to this initial state.

The state of a blockchain is the information about the blockahin such as the number of

blocks it contains at that given point in time as well as the sequence of the blocks. Any

successful transaction that is added to the blockchain changes the blockchain state.

2.1.4 Transactions in a Blockchain

A transaction in a blockchain is any action that changes the state of the blockchain.

Different blockchains have different actions that can change the state of the blockchain.

With Bitcoin, for example, the only transactions involve the sending and receiving of

cryptocurrency as well mining but with other blockchains such as Ethereum, a transaction

may also involve running a smart contract on the blockchain. When a transaction is

initiated in a blockchain by a user, it must be first signed using the user’s private key

in order to authenticate its origin. The private key is what gives a user the ownership

of an address in a blockchain and a user cannot access the cryptocurrency in an address

without the private key. After signing, the transaction is then broadcast to all the other

nodes in the network before it is collected with other transactions and grouped into a

candidate block.

Before a candidate block is added to the blockchain, it must be validated first through

a process known as mining. The nature of the mining process depends on the method

used to reach consensus on the network [10]. In some networks such as Bitcoin, it involves

finding a number that produces a hash value with a specified number of leading zeroes.

After the mining process is complete, other nodes can check that the block is valid and

that it contains the correct hash value of the previous block. If all the details are correct,

then the block is added to the blockchain, but if there are any errors, then the block is

discarded [11].

CHAPTER 2. BACKGROUND 7

2.1.5 Consensus Mechanisms

A consensus mechanism can be defined as the method used to agree on the network’s

correct state i.e. the correct sequence of blocks in a blockchain system [12]. Consensus

mechanisms are used to determine how new blocks are published, which node gets to

publish the new block and how to solve any conflicts that may arise from the process

of publishing a block, such as what happens when two or more nodes publish a block

at approximately the same time [7]. An example of a conflict resolution rule when two

nodes publish blocks at the same time, is to temporarily create two separate chains for

the two different blocks and continue with both chains until one becomes longer than the

other. The longer chain is then taken to be the correct blockchain and the other one is

discarded.

Consensus mechanisms work as a means of ensuring trust between mutually distrust-

ing parties, so the rules of conflict resolution within a consensus mechanism have to be

transparent [13]. When a node joins the network, they agree to these rules in the con-

sensus mechanism and can independently verify that every block that is added has fol-

lowed those rules. Each consensus mechanism has different levels of security, transaction

throughput, and computational requirements, which makes them suited for different ap-

plication areas [14]. Some consensus mechanisms place more emphasis on decentralization

over transaction rates and others focus more on security which comes at a computational

cost so the right consensus mechanism should be used for a particular application area.

1. Proof of Work Consensus Mechanism

In the proof of work (PoW) consensus mechanism, all the nodes have an equal

chance of publishing the next block. It is based on trying to solve a computationally-

intensive mathematical puzzle, and the first node to solve this puzzle publishes the

next block and receives a reward for doing this [15]. This puzzle can only be

solved using trial and error, which means that there is no special algorithm that

can solve a proof of work puzzle [7]. A solution to the puzzle is however, easy to

verify if it is indeed the correct solution, and this allows other nodes to check if the

solution is correct without having to do the intensive work themselves. When a user

CHAPTER 2. BACKGROUND 8

completes a transaction in a blockchain that uses the PoW consensus mechanism,

that transaction is grouped with other recent transactions from other users into a

block. Other nodes on the network that want to publish that block are known as

miners, and these miners receive a computational puzzle once there is a block that

is ready to be published. The miners then compete to try and be the first ones

to solve the puzzle. When a miner finds a solution to the puzzle, it broadcasts its

solution to the other nodes in the network, who then verify if the solution is correct

before the successful miner is allowed to publish the block and get a reward which

is usually in the form of cryptocurrency.

Figure 2.2: Example of a proof of work puzzle

Figure 2.2 above shows an example of a common PoW puzzle. The puzzle requires

miners to find a nonce value that, when appended with a particular given input

and run through the SHA-256 encryption algorithm, produces a hash value starting

with the specified number of zeroes. The puzzle has multiple correct answers, but

the only way to arrive at any of these solutions is to try all possible combinations

until the correct one is found. In the example in Figure 2.2, after running the

computation, a nonce value of 10730895 produces the correct solution. If the miner

starts at 0 and increments by one after each attempt, then this puzzle requires

10,730,896 attempts to arrive at the first correct answer. The difficulty of the puzzle

can be adjusted by changing the input string and by increasing or decreasing the

number of leading zeros required and Bitcoin, for example, changes the difficulty

after every 2016 blocks to keep the rate of new blocks constant at one block every

ten minutes. It is easy to check if a possible solution is correct by just running it

through the SHA-256 algorithm and checking the number of leading zeros in the

hash output [15]. This means that in order to verify a solution, other nodes only

have to do a single computation.

CHAPTER 2. BACKGROUND 9

The strength of the PoW consensus mechanism is in its decentralization and the

security that comes with it. If there are conflicting versions of the blockchain, the

longest chain is taken to be the correct one as it has had the most computational

work put into it. Suppose a blockchain network using this consensus mechanism

has at least 51% of the computational power being controlled by honest nodes, in

that case, the correct version of the blockchain will add more blocks to it faster than

other versions of the blockchain, which will lead to those versions being discarded.

For a malicious user to be able to change a particular block, they would have to

redo the computation of that block as well as all the blocks after it to catch up

with the correct version of the blockchain and then produce new blocks faster than

the honest nodes in order for their version to be taken as the correct one. This is

highly unlikely as the estimated total hash rate for Bitcoin is over 150 million Tera

hashes per second, and a user would need to have computing power that is greater

than half this value to have a chance of manipulating blocks. For context, an Intel

Core i5-9600 CPU with a speed of 3.7GHz only has a hash rate of 2380 hashes per

second.

The major drawback of the PoW consensus mechanism is that it is resource-

intensive. For each potential block that needs to be mined, thousands of processors

are all competing to solve the puzzle and get the reward. Since only one node can

publish a block, this means that all the other nodes would have used their resources

in vain. This means that for PoW-based blockchains with a lot of nodes such as

Bitcoin and Ethereum, a lot of electrical energy is consumed for each block that

needs to be mined as miners resort to more powerful processors. The annual energy

consumption of Bitcoin is estimated to be anywhere between 60 and 125 TWh,

and as a comparison, countries like Austria and Norway consume 75 TWh and 125

TWh, respectively, over the same period [16].

2. Proof of Stake Consensus Mechanism

The proof of stake (PoS) consensus mechanism aims to reduce the energy consump-

tion of blockchains by removing the need to have multiple processors all working

CHAPTER 2. BACKGROUND 10

at the same time trying to solve a puzzle. It is based on the principle that the

more stake a user has in a blockchain, the more they will want it to succeed and

the less likely they will act maliciously [7]. PoS then rewards users for having a

higher stake in the blockchain by giving them a higher probability of publishing new

blocks than users with a lower stake. The definition of stake varies from blockchain

to blockchain, but the common methods involve a user investing a certain amount

of their cryptocurrency into the system where it is locked, and the user will not be

able to use it. They can withdraw it anytime, but then they lose their stake rating

in the blockchain.

PoS-based blockchains use different methods to determine the node that will publish

the next block, but they all follow the same principle that a user with a higher stake

is more likely to publish a block than nodes with a lower stake. The methods include

a random selection from the staked nodes and coin aging. In random selection, the

node to publish the next block is chosen at random, but the percentage stake that

a node has out of the total staked cryptocurrency is the likelihood that they will

be selected. So if a node holds a 15% share of the total staked amount, then they

have a 15% chance of being selected. With coin aging, the staked amount has an

age property attached to it and a rule specifying that the staked amount has to be

locked for a specified period before it can be considered to be part of the stake [17].

An example is a 30-day rule which requires an amount to be locked for 30 days

before it can be a part of the stake, and this age is reset after a specified period

which means the age goes back to zero and the amount has to be locked for another

30 days before it can be part of the stake again.

Since there is no need for powerful processors and the associated electricity con-

sumption, some blockchains that use the PoS consensus mechanism reward the

nodes that publish blocks through transaction fees instead of mining rewards [10].

In such blockchains, all the cryptocurrency is already distributed to the nodes as

opposed to creating new cryptocurrency through mining which is the case with the

PoW. If a node acts maliciously in a PoS blockchain, they lose their staked amount,

CHAPTER 2. BACKGROUND 11

and this acts as an incentive for nodes to act in an honest manner. The major flaw

of the PoS is that those with a higher stake will most likely get selected more of-

ten than those with a lower stake, making them increase their stake and make it

difficult for other nodes to catch up.

3. Proof of Authority Consensus Mechanism

In the proof of authority (PoA) consensus mechanism, users’ real-world identities

are leveraged as a means of ensuring honest behaviour in the network. This means

that nodes intending to publish blocks on the blockchain must have their identities

verified first. Once a node’s identity has been verified, then the other publishing

nodes that are known as authority nodes or sealer nodes will vote on whether or

not the node should become a sealer node. If more than 50% of the sealer nodes

approve, then the node will become a sealer node and be able to publish new blocks.

A node can also be removed from being a sealer node if more than 50% of the nodes

on the network vote for its removal. The right to become a sealer node should not

be easily obtainable, so that sealer nodes value the privilege to publish blocks.

To select one sealer node from the pool of sealer nodes that will publish the next

block, a round-robin method is used to ensure fairness, and if a sealer node is

not online, then the next sealer node in line is selected to publish the block. If

a blockchain has more than one sealer node, then no sealer node may publish

consecutive blocks. The time interval between successive blocks is fixed in PoA

blockchains, and sealer nodes do not require users to be present to do the validation

of each block. The process is automated, and the users just have to monitor that

the nodes remain connected to the network so that they can continue publishing

blocks. One of the major benefits of PoA-based blockchain systems is that they have

a high transaction throughput as there is no mining required. This also makes it

very energy-efficient and not computationally intensive, as the process of validating

blocks requires very little energy. PoA-based blockchains can even be run on low-

specification computers, making them cost-effective as well.

Blockchains that use the PoA consensus mechanism are not as decentralized as

CHAPTER 2. BACKGROUND 12

those that use PoW as the power to publish new blocks is bestowed upon a few

select nodes. This makes it unsuitable for use in systems that require complete

user anonymity, such as permissionless cryptocurrencies, but this feature makes it

a good consensus mechanism to use in enterprise applications where there is a high

degree of trust. Decentralization within the network can be increased by having a

large number of sealer nodes. For a node to be able to act maliciously, they have to

control at least 51% of the sealer nodes in the network. This is unlikely since all the

sealer nodes in the network are known, and a user can be immediately identified if

they try to influence other sealer nodes to act maliciously. Linking a node to a real

world individual means that legal remedies can be sought if a user is found to have

acted maliciously, which adds an extra security layer.

2.1.6 Types of Blockchain Networks

Blockchains are usually classified into two categories, namely public and private networks,

based on who is able to publish new blocks in the network [18] [19]. If a few select nodes

can publish new blocks, then it is a private blockchain, but if any node in the network

can publish blocks, then the blockchain is public.

1. Public Blockchains

Public blockchains are also known as permissionless blockchains because they do

not place any restrictions on the nodes on the network. This means that anyone

can join the blockchain without needing any authorization from other nodes, and

once they join, they have the same privileges as the other nodes on the network

[20]. Every node on the network has both read and write access to the blockchain

which enables them to initiate transactions as well as to see other transactions that

other nodes have done. Read access is not just restricted to nodes in the blockchain.

Anyone can download a copy of the blockchain and view all the transactions that

have ever been done on the blockchain, even if they are not a participant on the

network. The nodes in a public blockchain can all publish new blocks and validate

the blocks that have been published by other nodes [21]. User anonymity is a

CHAPTER 2. BACKGROUND 13

big feature of public blockchains as there is no user identification necessary for

one to join the blockchain. Users on public blockchains are only identified by their

addresses, and these addresses cannot be directly traced back to a real-world entity.

This user anonymity is balanced out by complete transaction transparency and the

use of open-source software in order to gain the trust of users. Public blockchains

use consensus mechanisms that can facilitate transactions between distrusting and

anonymous parties, such as the proof of work and, to a lesser extent, the proof of

stake. This makes most public blockchains such as Bitcoin and Ethereum resource-

intensive and suffer from scalability issues.

2. Private Blockchains

Private blockchains which are also known as permissioned blockchains, are blockchains

that restrict who can publish new blocks. Only nodes that have been authorized to

publish new blocks can do so, and this authorization may come from a centralized

authority or from a group of decentralized group of authority nodes. This autho-

rization can be revoked if a node breaks the rules of the blockchain. In private

blockchains, it is possible to have different access levels. A user has to be identified

first before joining the network or being approved to publish new blocks, which

eliminates the anonymity found in public blockchains. Having a group of known in-

dividuals to publish new blocks enables permissioned blockchains to use faster and

less computationally intensive consensus mechanisms like the proof of authority.

This makes private blockchains an ideal solution for application areas that require

a high rate of transactions. Since control of the network lies with a few select nodes,

it is possible for them to restrict read or write permissions from other nodes that

are not authority nodes.

An approach that classifies private networks into two types based on who can read or

write data to the blockchain has been proposed [22]. This approach contends that in

private networks, users that are not authorized to publish new blocks may have fur-

ther restrictions placed on them, such as the ability to initiate transactions or view

past transactions that are on the blockchain. The two types of private blockchains

CHAPTER 2. BACKGROUND 14

are private and open blockchains as well as private and closed blockchains.

Private and Open Blockchains

In this type of permissioned blockchain, write restrictions are placed on the data

in the blockchain. Only nodes that have been authorized to write data to the

blockchain can do so, but any node can read the data. A private and open blockchain

is still permissioned because nodes need to be identified first before they can join

the blockchain, although even after joining the blockchain, they have read-only

privileges. They can only view the data in the blockchain but cannot add any data

to it. Nodes that have been granted permission to write data to the blockchain may

or may not be the same as authority nodes that are responsible for publishing blocks,

but every node that can publish blocks also has both read and write privileges.

Private and open blockchains can be used in a number of application areas where

only a few nodes can write data to the blockchain, but every node can read the

data, such as a system for public companies to release their financial statements.

Only the nodes belonging to the companies are allowed to post data to the system,

but anyone can view the data once it has been written to the blockchain. This type

of blockchain can also be used in supply chain management as it places restrictions

on who can update the information in the blockchain.

Private and Closed Blockchains

Closed blockchains are the most common type of private blockchains. In these

blockchains, only a few authorised nodes can write data to the blockchain, and only

authorised nodes can view data written to the blockchain. This type of blockchain

is ideal for applications where users want to keep their transactions private from

everyone, including other nodes on the blockchain. This can be achieved by creating

a private channel between two nodes in a private network where they can transact

without exposing details of the transactions to other nodes. There are various ways

that the blockchain can be updated after these transactions have been completed.

Some blockchain protocols only write a transaction marker to the blockchain that

only states that a transaction has taken place without including the details of the

CHAPTER 2. BACKGROUND 15

transaction, and other blockchain protocols use a timer for the channels and update

the blockchain at the end of the timer with the state of the channel. Some blockchain

protocols make it possible to have more than two nodes in a channel, and every

node in the channel can transact with other nodes and view all the transactions

in the channel. A potential application area for this type of blockchain is for a

system of multiple suppliers and buyers where the details of transactions between

two parties have to remain confidential.

2.1.7 Blockchain Architecture

This section looks at the various architectures of blockchain that have been proposed by

different scholars. The architectures detail the layers that make up a blockchain system.

1. Seven-Layer Blockchain Architecture

The first architecture proposed has seven layers with different functions in the

overall blockchain system [23]. The first layer, as shown in Figure 2.3, is the data

layer, which acts as the data structure of the blockchain and the data storage area.

It is where the blocks of data and encryption algorithms are physically stored.

The network layer contains rules about how the nodes broadcast transactions to

each other and how the system can make full use of the underlying bandwidth.

The physical layer consists of computers, servers, and IoT devices that make up

the nodes of the blockchain and are connected in a peer-to-peer architecture. The

next layer is the virtualization layer and it is responsible for allocating hardware

and other resources to virtual machines. The consensus layer contains the network’s

consensus mechanism, which are the rules that the nodes use to reach an agreement

about transactions in the network. The incentive layer contains rules about how

transaction fees or mining rewards are calculated and distributed. The next layer

is the services layer which contains optional modules that can be included in the

blockchain, such as smart contracts and digital wallets. The API layer acts as an

interface between third-party applications and the blockchain, and smart contracts.

It provides tools that enable third-party applications to interact with the data in

CHAPTER 2. BACKGROUND 16

Figure 2.3: Seven layer blockchain architecture [23]

CHAPTER 2. BACKGROUND 17

the blockchain. The final layer is the application layer consisting of applications

that read data in the blockchain and write data to the blockchain.

A similar 6-layer architecture has also been proposed and used by various scholars

[24] [25]. This architecture features the same layers as the 7-layer approach except

for the virtualization layer, whose functions are put in the physical layer. They

argue that this architecture strikes the right balance between ensuring that every

component of the system is accurately represented and its functions are clearly

spelled out and making sure that no layer has too many components in it.

2. Three-Layer Blockchain Architecture

Figure 2.4: Three layer blockchain architecture [26]

A simpler architecture comprising of three layers has been proposed [26]. This

architecture consists of a hardware layer, the ledger layer, and an application layer

as shown in Figure 2.4. The hardware layer consists of all the nodes in the network.

They are responsible for enforcing consensus in the blockchain and to store the

digital ledger that records all the transactions. The ledger layer consists of the entire

blockchain protocol. This includes records of transactions, consensus mechanism

rules as well as all the other rules that govern the blockchain. The application layer

CHAPTER 2. BACKGROUND 18

consists of third-party applications that make use of the data in the blockchain.

2.1.8 Blockchain Ethical Concerns

A number of ethical concerns have been raised with regard to the use of blockchain

technology. Its decentralized architecture makes it difficult for authorities to monitor

the activities on the network. This has led to blockchain being used in the trade of

illegal drugs, money laundering, and many other ethically questionable applications [27].

An Ethereum-based application called Augur allows users to place bets on the death of

individuals and are paid when this occurs [28], and a website called Silk Road allowed

users to buy and sell illegal drugs anonymously, and these transactions were done using

Bitcoin [29]. Blockchain-based cryptocurrencies are also the preferred payment method

for ransomware attacks. In 2017, more than 200,000 computers worldwide were infected

with the WannaCry ransomware, and the attackers only unlocked the computers after

they received payment in Bitcoin. Blockchain-based cryptocurrencies such as Bitcoin are

chosen for such situations because of the difficulty in tracking the individuals carrying

out the transactions as well as the fact that blockchain transactions are irreversible once

they have been validated [30]. Another concern from the use of blockchain is its impact

on the environment. Blockchains that use the PoW consensus mechanism account for the

largest proportion of individuals who use blockchain technology, and these blockchains

use large amounts of electricity, which can be detrimental to the environment.

2.1.9 Smart Contracts

A smart contract is a blockchain-based self-executing program that represents an agree-

ment between two or more parties [31]. A smart contract is also defined as a software

that is used for authenticating and implementing the terms of an agreement between two

parties [32]. It is an if-then system in that the smart contract is executed if and only

if the pre-programmed condition is met. Smart contracts allow parties to enter into an

agreement without the need to establish trust first or having to rely on a trusted third

party [33].

Smart contracts run on a blockchain, and because of that, they inherit some features of

CHAPTER 2. BACKGROUND 19

blockchain, such as immutability. Like other transactions on a blockchain, smart contract

code cannot be changed once it has been deployed to the blockchain. Suppose a smart

contract that has been deployed to a blockchain has an error in its code. In that case,

this error cannot be rectified directly on that smart contract because of the immutability

characteristic of all the data stored in a blockchain. The only way to rectify such an

error is to deploy a separate smart contract with the corrected code and redirect users

to it instead [34]. The old smart contract will still be there on the blockchain. Smart

contracts are also decentralized because they are stored on the digital ledger, which every

node in the blockchain has a copy of as opposed to being stored on a single server like

traditional applications. Smart contracts can be autonomous in that there is no need

for any interaction between them and the user who deploys them. They can also be

programmed to offer services to generate funds as well as spending them when the need

arises, which makes them self-sufficient [24].

The use of smart contracts has numerous advantages for users. Smart contracts have

a lower risk factor when compared to centralized applications because of the combination

of immutability and traceability. The terms of the agreement between the parties in a

smart contract cannot be altered, and every transaction is auditable and traceable, which

reduces the risk of financial fraud [35]. By removing the need for a trusted middleman

and being able to execute automatically, smart contracts have lower administration costs.

This can also improve business processes’ efficiency as there is no need to keep running

everything through specific individuals for them to approve first when the conditions that

warrant a particular action have been met [36].

Since smart contracts are dependent on blockchain, they suffer from similar limitations

with blockchain. They suffer from limited scalability and performance because smart

contract deployments and executions are treated like any other transaction, which means

that they have to go through the same validation processes that other transactions are

subjected to. Smart contracts also have an issue of irreversible bugs due to the permanent

nature of blockchain transactions. Once a smart contract is deployed with bugs, then it

is going to stay like that forever. A new corrected version may be deployed and used,

CHAPTER 2. BACKGROUND 20

but the other version will always be there on the blockchain as well. Another issue

highlighted by Wang et al. [37] is the lack of standards when it comes to smart contract

development. A smart contract designed and deployed on one blockchain protocol cannot

directly interact with smart contracts that are on a different blockchain protocol. This

reduces the potential impact of smart contracts for everyday use as it would require the

majority of users to be using the same blockchain protocol.

1. Smart Contract Use-Case

This section describes the steps and the parties involved in the development, de-

ployment as well as execution of smart contracts.

The Participants are as follows:

• Developer – This is the individual who writes the smart contract code and

deploys the smart contract to the blockchain.

• User – The user is a participant in the blockchain who calls the smart contract

once it has been deployed to the blockchain.

• Nodes – The nodes represent the other users in the blockchain. The nodes

are responsible for the validation of transactions in the blockchain.

Figure 2.5 illustrates how a transaction that involves interacting with a smart con-

tract is handled. When a user wants to call a method contained in a smart contract,

it is treated like any other transaction meaning the user needs to know the address

of the smart contract just like they would need to know the address of any other

account that they intend to transact with. The user broadcasts the transaction

details to all the other nodes in the blockchain and this transaction is then included

in a candidate block that needs to be mined. Depending on the consensus mech-

anism used by the blockchain, other nodes will compete to mine the block. When

one of the miners has successfully mined the block, the smart contract is executed,

and the user receives confirmation that their transaction has been completed and

a record of that transaction will now be on the blockchain.

CHAPTER 2. BACKGROUND 21

Figure 2.5: Smart contract use-case diagram

CHAPTER 2. BACKGROUND 22

2.1.10 Blockchain Summary

Blockchain technology has been described in great detail and the different technical

aspects have been compared. The decentralized architecture of blockchain makes it

an ideal technology to use for a peer-to-peer system such as the one proposed by this

research. Different consensus mechanisms were compared and the effect they have

on the overall performance of the system in which they are used was also discussed.

This understanding of their different power and processing requirements as well as

the security levels and transaction throughput aids in making more informed design

choices that are more suitable for a particular application area.

2.2 Internet of Things Overview

The internet of things (IoT) can be defined as the ability of any device with networking

capabilities to sense and collect data from different areas in the world, and then upload

that data to the internet where it can be processed and stored [38]. The internet of things

can also be defined as a concept of connecting any electronic device to the internet. This

ranges from devices that have traditionally been able to connect to the internet like GPS

devices and digital cameras to devices that did not previously have that feature like

washing machines, coffee makers and refrigerators among others [39]. The internet of

things is not just limited to devices but also includes components of large systems and

machinery like the engine of an aeroplane or the cooling chamber of a nuclear power plant

[40].

2.2.1 Internet of Things Architecture

The general IoT architecture consists of three basic layers, namely the perception layer,

the network layer and the application layer [41] [42] [43]. The architecture has a bidirec-

tional flow of instructions and data as the data moves from the perception layer up to the

application layer and the instructions move in the opposite direction from the application

layer to the perception layer as illustrated in Figure 2.6.

1. Perception Layer

CHAPTER 2. BACKGROUND 23

Figure 2.6: IoT Architecture [42]

The perception layer contains the physical devices that are responsible for gathering

data about their environment. These devices include sensors such as humidity

sensors, RFID sensors and temperature sensors. Devices in this layer usually have

limited storage and processing capabilities, and so they have to send the data that

they have gathered to other devices like data warehouses or cloud service providers

for processing and storage. Another component found at this stage is an actuator

that can be defined as a device that changes a particular physical condition like

shutting off the power supply or adjusting the temperature in a room [44]. Actuators

allow IoT systems not only to gather data about an environment but also to act on

that data. An example is a temperature sensor in a room that sends temperature

CHAPTER 2. BACKGROUND 24

data to a cloud server for processing, and the server detects that the temperature

is too high. The server then sends an instruction to the actuator to adjust the

temperature to a certain level.

2. Network Layer

The next layer is the network layer which is also known as the transmission layer.

The network layer acts as a gateway for receiving and transmitting the data that has

been gathered in the perception layer. It consists of physical devices such as routers

and switches that handle the transmission of the data to the correct destination as

well as different communication technologies like ZigBee, Bluetooth and Wi-Fi. The

various communication technologies found at this layer are meant to cater to the

different types of communication technologies that are used by the devices in the

perception layer as well as those in the application layer. This makes the network

layer the most important layer in the IoT architecture [43].

3. Application Layer

The application layer receives the data that has been collected by the sensors in

the perception layer and processes, analyses, and stores the data in databases and

data warehouses. The application layer is also responsible for maintaining the

confidentiality, availability and integrity of the data [41]. This layer has applications

that make use of the data after it has been processed. Examples of such applications

include smart homes, smart grids, and smart cities. The success of an IoT system

requires these applications to make full use of the data from the sensors.

2.2.2 Benefits of IoT

The use of IoT has brought about an increase in the amount of data that has been

collected. Devices that did not previously have connectivity capabilities are now able to

capture data and transmit it for processing. This has enabled decision-makers to make

better-informed decisions. Another advantage brought about by the use of IoT has been

the ability to monitor certain environments remotely. Dangerous tasks such as monitoring

the radiation levels in a nuclear power plant can now be done without exposing anyone

CHAPTER 2. BACKGROUND 25

to the risk as sensors can be placed and monitored remotely. IoT has also enabled the

automation of a lot of processes in a wide range of application areas. IoT systems can

be connected to cloud-based applications that will process data received from the sensors

and send feedback to some actuators based on the results of the data after it has been

processed, and the actuators will act on the feedback without any human intervention.

An example of a fully automated system is an irrigation system that has sensors in the

soil to check for the amount of moisture. This data is sent to a server for processing, and

the server will check the weather forecast, and if there is no rain expected, it will send

a command to the actuators to open the sprinklers. All this is done without any human

involvement.

2.2.3 Drawbacks of IoT

The major drawback of IoT is the lack of standards of compatibility for the devices.

Different devices use different connection technologies such as Bluetooth, ZigBee, Wi-Fi,

and 4G as well as different connection ports like the type of USB used. IoT sensors and

devices also have different power requirements, such as 3.3V for some devices and 5V for

others. IoT systems also collect a lot of potentially sensitive data, and so privacy is a

concern in such systems. If an unscrupulous individual gains access to this data, it can

lead to more serious issues like identity theft. IoT systems are complex to design as the

design process involves trying to integrate many different components, which poses a risk

of a faulty system design. Since IoT systems are used in critical application areas such

as water treatment plants, this leaves very little room for errors.

2.2.4 IoT Summary

The architecture of IoT was discussed as it forms one of the base architectures of the

proposed system. The proposed system has different components and each of these com-

ponents can be directly attributed a layer on the IoT architecture. This is to demonstrate

that the proposed system builds on previous researches that have investigated IoT tech-

nology to come up with the three-layer architecture.

CHAPTER 2. BACKGROUND 26

2.3 Related Work

This section looks at how blockchain and IoT technologies have been integrated into

different application areas, including the energy sector. It also evaluates other similar

studies that have been carried out, critically assess them and justify why this study is

necessary.

2.3.1 Blockchain Use in IoT-Based Systems

Traditional IoT implementations are centralized in that they require servers for processing

and data storage. The drawback of this is that the servers become a bottleneck that can

cripple the whole network if they go offline [45]. Decentralizing IoT networks through

the use of a blockchain peer-to-peer model helps mitigate the issue of a single point of

failure [46]. The strong cryptographic features of blockchain have also made it an ideal

means of providing security and maintaining data integrity in IoT systems [47]. There

are, however, a number of challenges that may inhibit the successful use of blockchain

technology in IoT systems.

A study to identify some of these challenges and how they can be mitigated against

was carried out by Zorzo et al. [48]. The first issue they identified was the hardware

limitations of IoT devices. To store a copy of a Blockchain requires a large amount of

storage as most of them are very large, with Bitcoin being more than 200 gigabytes [49]

[50]. A blockchain becomes larger over time as it stores a record of every transaction

that was ever conducted on the network. Another limitation of IoT devices that was

identified is their limited computational power [51]. Blockchain networks that use the

Proof-of-Work consensus mechanism require a lot of processing power as the consensus

mechanism involves brute force calculation which would take years to solve using current

IoT devices. To find a way around these issues, various authors proposed a number of

solutions. The first possible solution is to create a hierarchical peer-to-peer network where

there are two different classes of nodes [48]. The first class has nodes with full computing

power, and these are responsible for controlling the IoT devices as well as communicating

with other full nodes for the maintenance of the blockchain network. Another proposed

CHAPTER 2. BACKGROUND 27

solution involves using a blockchain that is completely separated from the IoT devices.

This means that the blockchain is not hosted on the IoT network, but each of the IoT

devices has access to it and is able to make transactions. The final proposed solution

called for the use of smart contracts on the nodes that have full computational power.

The IoT devices only send raw data to these nodes that will then execute the smart

contracts based on the data. This reduces the processing requirements of IoT devices

while ensuring that it is integrated with a Blockchain network.

A few studies have been carried out that have managed to mitigate against these

challenges and successfully integrated blockchain into IoT systems. Sun et al. have

come up with a model to successfully integrate blockchain onto a wireless IoT system.

The model breaks down nodes into two types of nodes [52]. It has transaction nodes

consisting of low-power IoT devices and fully functional nodes with high storage and

processing power. Transaction nodes can initiate a blockchain transaction which will

then be processed by the full nodes before the transactions are added to the blockchain.

To keep the system decentralized, a transaction has to be broadcast to all the full nodes,

which should all have a copy of the blockchain ledger. The model was tested against

common network attacks such as an eclipse attack and random link attacks, and it was

found that the structure of the network allowed it to withstand the attacks against it.

A system that uses blockchain and IoT technology to check for data integrity was de-

signed and implemented by [53]. The objective of this system was to provide device owners

with an immutable solution to check if their data has been accessed or amended. The

system uses Raspberry Pi devices as the servers for the IoT devices and smart contracts

built onto the Hyperledger Fabric network running on desktop computers. Hyperledger

Fabric is a permissioned decentralized blockchain framework that allows developers to

develop smart contract-based systems [54]. This study argued that IoT required a high

throughput blockchain network and so proof of work-based blockchains would not be

ideal for IoT applications. They advocated for the use of voting-based consensus mecha-

nisms like the practical byzantine fault tolerance (PBFT) mechanism or the crash fault

tolerance (CFT) mechanism. The study highlighted the possibility of using blockchain

CHAPTER 2. BACKGROUND 28

for applications with a high rate of transactions and how the choice of the consensus

mechanism influences this. The main disadvantage of this study, as with many systems

that attempt to integrate IoT with blockchain, is that not all the devices in the system

are on the blockchain network. The Raspberry Pi devices are limited to just processing

IoT data and then sending the data to other nodes that are in the blockchain that will

then add the data to the blockchain.

Blockchain has been put forward as a solution for the security issues that come with

the use of IoT [55]. The study argues that the decentralized architecture of blockchain

would make it highly unlikely to attack an IoT system built on a blockchain using a denial

of service (DOS) attack. The paper also suggests that this characteristic of blockchain

would eliminate any system downtime. The various consensus mechanisms such as the

PoW and the PoS make it almost impossible to create fake nodes and initiate a Sybil

attack. This paper highlights that not only is it possible to use blockchain technology

with IoT but that it is highly beneficial to do so from a security standpoint.

Dai et al. carried out a comprehensive survey to see if there are any benefits to using

blockchain in pre-existing IoT systems [56]. They identified some advantages to using

the two technologies together, such as enhancing the interoperability of IoT. This is en-

abled by the fact that blockchain networks are built on peer-to-peer overlay networks

that support widespread access to the internet. Another benefit of using IoT in conjunc-

tion with blockchain is the traceability and reliability of data from IoT devices. Data in

a blockchain is immutable and traceable in that once data is stored in the blockchain,

it cannot be changed or deleted without invalidating the entire chain of data, and the

transactions on the blockchain are transparent. Blockchain can also enable autonomous

transactions in IoT systems through the use of smart contracts. For example, two com-

panies can trade with each other and have payments executed automatically using smart

contracts without human intervention, which can save the companies a lot of money.

CHAPTER 2. BACKGROUND 29

2.3.2 Blockchain Use in the Energy Sector

Blockchain networks are known to use huge amounts of energy [57] [58] [59], and so

their application in the energy sector has been limited because of this. A single Bitcoin

transaction uses enough energy to power eight households for a full day [60]. This presents

a challenge in trying to incorporate such technology into systems designed to conserve

energy. A number of solutions to this challenge have been presented.

The first method is to use a consensus mechanism that is not as energy-intensive as

the proof of work mechanism [61]. The PoW algorithm rewards users for being the first

to solve a complex mathematical puzzle [62]. This creates a scenario where hundreds or

thousands of processors are working at the same time, all trying to solve the puzzle. This

puts a huge strain on the electricity grid as these powerful processors have big energy

demands [63]. The PoA consensus mechanism is proposed as a viable alternative to

the PoW mechanism [64]. In the PoA, a low number of nodes are selected to validate

the transactions in the blockchain. This ensures that users do not have to compete for

anything, thereby significantly lowering the network’s overall energy consumption.

The energy consumption of blockchain can also be lowered by the consolidation of

transactions between parties which will then be recorded as a single block. This is done

through the use of state channels which can be defined as processes that allow users to

transact directly with each other outside the Blockchain [65]. A state channel can be

used, for example, in a Blockchain-based voting system to store the individual votes cast

and only recording them on the blockchain once all the votes have been cast. This reduces

the number of transactions on the actual blockchain, which in turn reduces the energy

consumption of the system as a whole.

2.3.3 Evaluation of Related Energy Studies and Projects

This section evaluates studies and projects that have used IoT and blockchain in the en-

ergy sector and identifies the successes and shortfalls of each study and how this research

can build on those studies.

Jain and Dogra came up with a system to distribute energy harnessed from solar

CHAPTER 2. BACKGROUND 30

systems in a decentralized manner [66]. The system uses IoT-enabled devices to get in-

formation from batteries about how much power is stored in them, and this information

is uploaded to cloud databases for storage. Blockchain is used to keep the system de-

centralized as users can transact with each other without the need for an intermediary.

To enable the users to be able to trade energy with each other, the authors created their

own cryptocurrency known as Zoncoin. Households that produce energy are paid using

this cryptocurrency which is also used to reward nodes that process transactions. The

system uses the PoW consensus mechanism in order to increase the time it takes to cre-

ate new blocks and reduce the chances of malicious blocks being added. An Arduino

microcontroller is used to process the data from the IoT devices and update the data

in the cloud database. Users who need to buy energy use an application to check for

other users that have excess power, and they can purchase the energy on this application.

After the transaction is complete, it is added onto the blockchain, and the IoT device

receives a command to transfer the energy between the two parties. This study has a

few drawbacks. The first issue is the use of the PoW consensus mechanism and placing

restrictions on the frequency of block creation. The PoW consensus mechanism consumes

a lot of electricity, and the mining processes might end up consuming the majority of the

energy that is produced by the entire system. The second issue is the use of the system’s

own currency in the form of the Zoncoin cryptocurrency. The cryptocurrency will have

to have a similar value with the energy produced and be easily tradeable for a currency

that is usable elsewhere, otherwise the participants might feel like they are getting a

valueless token for their energy. This system, however demonstrates the potential there

is in the development energy trading systems. The system proposed by this research will

use smart contracts to facilitate payments in the trading of energy in a similar way that

was demonstrated in this study.

Wang et al. designed a model for a distributed energy system that uses a peer-to-peer

network to exchange information and energy [67]. The system is used to manage the

demand for energy by residential and industrial users by making use of smart contracts.

The system is designed to automatically transfer excess energy from one consumer to

CHAPTER 2. BACKGROUND 31

another consumer that has a higher demand at that particular time. This system is dif-

ferent from other energy trading systems in that here, the energy is not sold to the utility

company but is transferred directly to other consumers without the seller and the buyer

having to approve the transaction first. Instead, the system automatically facilitates the

transactions based on the supply and demand of energy using smart contracts. One of

the challenges of the large-scale implementation of this system that was highlighted is

the inability of the Blockchain network to support high-frequency energy trading trans-

actions. This system does not give any options to the buyer to set their own price or

when to sell, and the buyer cannot choose the seller they want to buy from.

A system that allows users to sell off excess energy was developed by Hwang et al.

[68]. The system analyses the energy usage patterns of consumers in order to improve

efficiency. IoT devices were used to collect data on how much energy a consumer is using

at a particular time, and this data was sent to cloud storage facilities where it can be

analysed to come up with usage patterns. The model used Blockchain technology for

transactions to enable consumers that generate surplus energy from renewable energy

sources to be able to sell it to the utility company. This study provides great insight

into measuring and analysing the amount of energy that consumers use and using this to

determine how much excess energy they have. The disadvantage of this system is it has

a single entity that purchases all the excess energy in the form of the utility company.

This gives the utility company a monopoly over pricing for the energy, and everyone will

have to buy from the utility company.

Another study that used IoT and blockchain to measure energy consumption accu-

rately was carried out by Gao et al. [69]. They leveraged blockchain’s ability to provide

a medium of accountability between two entities that do not trust each other and used it

to provide more transparency between electricity providers and consumers. The system

they developed allows users to monitor their electricity usage accurately without any fear

of the data being manipulated by anyone, including the electricity provider. A smart

meter is used to record the data about the power usage, and this data is encrypted and

then sent to the electricity provider, where a smart contract decrypts it before it executes

CHAPTER 2. BACKGROUND 32

a procedure based on the data. If a consumer runs out of electricity credit, the smart

contract executes a procedure to shut down the electricity and then sends a message to

the electricity company, and this transaction is stored on the blockchain.

Li et al. and Ahl et al. carried out studies that broke down the main power grid into

smaller grids known as micro-grids that have the ability to trade power with each other

[70] [71]. Both these models eliminate the middleman and use smart contracts to reward

micro-grids that manage the network by checking that all the other grids are up and

that there are no unauthorized users. The rewards are in the form of electric power, and

micro-grids also get rewarded for maintaining the efficiency of the entire network. Each

micro-grid has to be kept sufficiently small to address some of the scalability issues that

are often associated with blockchain systems. Both studies provide good frameworks for

blockchain-based peer-to-peer energy trading, and this research will build on the results

from both studies that demonstrate a fully decentralized system with minimal interference

from a central authority. This principle will be used in the proposed system, albeit among

peers in a single micro-grid.

2.3.4 Conclusion

This chapter has evaluated the architectures of both IoT and blockchain and showed how

they are being used, both separately and together in various sectors. The chapter also

assessed some related works and identified ideas from those studies that this research can

build on.

CHAPTER 2. BACKGROUND 33

Chapter 3

System Architecture

This chapter looks at the approach that was taken in the designing of the proposed peer-

to-peer energy trading platform. The architectures of the different parts of the system

are also be evaluated, and some design choices are made on the appropriate technology

to use for the various parts of the system.

3.1 Design Approach

Traditionally, there have been two broad approaches to system design, namely top-down

and bottom-up design [72]. Each of these has its own advantages and suitable application

areas, and they are evaluated below to select an appropriate approach for the design of

the peer-to-peer energy trading system.

3.1.1 Top-Down Design Approach

In the top-down design model, the overview of the system is articulated, and the sub-

systems are specified without being too detailed. All the sub-systems are then broken

down, and their sub-systems are identified and specified. This process is repeated until

the system has been broken down into its base elements [73]. Once the system is broken

down into its base elements, then the modules can be built starting with these elements.

The base elements are then put together, and the rest of the system is built from these

modules. This approach requires a complete understanding of the whole system, and

planning is emphasized [74]. Under a top-down approach, system development cannot

start before the system or some part of the system has been broken down to its base

34

elements.

3.1.2 Bottom-Up Design Approach

The bottom-up design model uses a modular approach by designing the lowest sub-

systems first and combining these sub-systems to develop more complex systems. These

systems are then integrated, and they become sub-systems of the next level system.

This process is repeated until all the components are combined into a single system [75].

In this approach, it is possible to reduce redundancy and hide low-level details of the

implementation. Another advantage of the bottom-up approach is that the low-level

modules that are developed first are reusable in other parts of the system. The bottom-

up approach is the ideal model for the peer-to-peer energy trading system as the system

has clearly distinct modules that can be designed separately and then combined to make

the complete system.

3.2 High-level System Design

Figure 3.1: High-level system design of the peer-to-peer energy trading system

CHAPTER 3. SYSTEM ARCHITECTURE 35

The proposed system, as illustrated in Figure 3.1, is a blockchain-based peer-to-peer

energy trading platform that allows users to buy and sell excess energy to other consumers

without a third party. A smart contract is used as the system’s main logic, and it

handles all the transactions between the parties. The smart contract is also used to store

the list of all the energy listings from sellers, and the smart contract is deployed on a

permissioned blockchain in order to limit access to only authorized users. The blockchain

also facilitates payment between parties through the use of cryptocurrency. The system

uses a cloud-based storage facility to store data from a smart meter that records a user’s

energy consumption as well as how much energy the user has left. Both buyers and sellers

interact with the system through a client-side application that is also hosted on the cloud.

The client-side application gets data from both the smart contract as well as the cloud

storage and displays it to the user. The entire system’s architecture is decentralized, and

there is no single entity that has control of the system. All the members of the system are

active participants that can both buy and sell energy. The management of the system is

the participants’ responsibility, but the system is designed to reduce the need for regular

maintenance.

3.3 Peer-to-peer Energy Trading System Use-Case

The purpose of the use-case diagram is to identify all the active participants in the

system as well as their roles in the system. The use-case diagram also identifies some of

the processes in the peer-to-peer energy trading system. Figure 3.2 shows the use-case

diagram for the proposed peer-to-peer energy trading system.

The participants are as follows:

• Seller – The seller is the one who lists their excess energy for sale on the web

application.

• Buyer – The buyer is the entity that intends to purchase energy from other sellers.

• Authority node – The authority node is the node on the blockchain that is re-

sponsible for validating transactions before they are added to the blockchain.

CHAPTER 3. SYSTEM ARCHITECTURE 36

Figure 3.2: Use-case diagram of peer-to-peer energy trading system

The seller accesses the web application and adds a listing. This listing includes the

amount of energy they want to sell and the price they want for it. Since this has to

be recorded on the blockchain, it is considered a transaction, which means it must be

validated before it can be added to the blockchain. The authority node is responsible for

validating transactions in a PoA-based blockchain. Once this validation is complete, the

seller’s listing will now be visible on the web-based application along with other listings.

When a potential buyer accesses the application, they can see these listings that contain

the seller’s address, the amount of energy being sold, and the price. When the buyer

chooses a particular listing, the system will query the seller’s smart meter and notify

the buyer if the seller has the amount of energy that they intend to sell. The system

will also check if the buyer has enough money in their account to make the purchase. If

both checks are affirmative, then the purchase will go ahead. Once the transfer of energy

CHAPTER 3. SYSTEM ARCHITECTURE 37

is complete, the smart contract will transfer the money from the buyer’s account to the

seller’s account. The authority node will again validate this transaction before it is added

to the blockchain.

3.4 Peer to Peer Architecture

Figure 3.3: Illustration of peer to peer architecture

The nodes in the proposed system are connected to each other in a peer-to-peer

architecture. Figure 3.3 shows an illustration of four nodes connected to each other using

a peer-to-peer architecture. A peer-to-peer architecture is a decentralized network where

the nodes are connected to every other node on the network, and they share the resources

and workload amongst each other [76]. This contrasts with the client-server architecture,

where the server handles requests and distributes resources to the client nodes [77]. In

a peer-to-peer architecture, all the nodes are both clients and servers, meaning they can

CHAPTER 3. SYSTEM ARCHITECTURE 38

request as well as provide resources to other nodes. This architecture is more resilient to

complete failure as nodes can join and exit without altering the efficiency of the network

as opposed to the single point of failure in the client-server architecture. Nodes in a peer-

to-peer architecture are not necessarily equal as some nodes may have extra functions

such as the maintenance of the network, and some nodes may contribute more resources

to the network, but this does not give them overall control of the network in the same way

that a server has control of the network in a client-server architecture. This architecture

is ideal for the proposed system as it complements the decentralized nature of blockchain.

3.5 Software Architecture

In this section, the various software layers of the peer-to-peer energy trading system are

looked at, as well as how they interact with each other. The software tools that are found

at each level are also be evaluated and design choices are made on the appropriate tools

to use. Figure 3.4 shows the layers that are found in the software architecture of the

proposed system.

3.5.1 Blockchain Protocol

The first layer of the system architecture is the blockchain protocol layer. The blockchain

protocol layer of the proposed system is found on the data layer of the 7-layer blockchain

architecture that was described in section 2.1.7. This layer contains the rules that make

up the blockchain data structure and other tools that are used to set up a node and

create addresses to store cryptocurrency. The primary function of the blockchain protocol

layer in the proposed system is to provide tools for creating a node as well as providing

tools that allow a node to set up as well as join other blockchain networks. Another

functionality found at this layer is the ability to check the account balance of the addresses

in that particular node. There are various blockchain protocols that can meet these

requirements, and they are evaluated below before a choice on the most appropriate

protocol for the proposed system is made.

1. Hyperledger Fabric

CHAPTER 3. SYSTEM ARCHITECTURE 39

Figure 3.4: Software architecture of the peer-to-peer energy trading system

Hyperledger Fabric is an open-source platform developed by the Linux Foundation

for creating and deploying permissioned blockchain networks [78]. Hyperledger

Fabric uses the Practical Byzantine Fault Tolerance (PBFT) consensus mechanism,

which allows for a high transaction throughput of up to 3000 transactions per sec-

ond [79]. Since the blockchain networks in Hyperledger Fabric are permissioned,

the participating members need to be identified first before they are allowed to

transact in the network. This makes it an ideal solution for enterprises that handle

sensitive data, such as banks and health institutions. Hyperledger Fabric also has

another layer of privacy by having access control within a network through the

use of channels. These are communication links between multiple nodes within the

CHAPTER 3. SYSTEM ARCHITECTURE 40

network through which they can transact with each other without other nodes in

the network being able to see these transactions [80]. Nodes have to be authorized

first before they can join a channel. Hyperledger Fabric provides a platform for the

execution of distributed applications on the blockchain network, and these appli-

cations can be written in multiple supported programming languages such as Go,

JavaScript, and Java, which offers more flexibility than other platforms that usually

use a native programming language. It also does not have a native cryptocurrency

as there is no mining involved on its networks, making the networks highly scalable.

2. Ethereum

Ethereum is an open-source, Blockchain-based peer-to-peer software platform that

allows users to develop and deploy decentralized applications [81]. The Ethereum

network is a global network of interconnected nodes. Nodes enforce all the rules

of the system through their participation in the validation of transactions, and

Ethereum networks support different consensus mechanisms. In Ethereum net-

works that use certain consensus mechanisms such as the PoW, nodes are rewarded

for this validation by receiving the Ether cryptocurrency. In addition to the native

Ether cryptocurrency, Ethereum also allows the creation of additional digital to-

kens through smart contracts [82]. Transactions that can be done by nodes on an

Ethereum network include sending and receiving Ether as well as validating other

transactions, which is known as mining. Nodes are also able to deploy distributed

applications known as smart contracts to the Ethereum network and call smart

contracts that have already been deployed to the network [83]. Ethereum has a

public network known as the Mainnet, and it also supports the development of

smaller private networks as well as public test networks [84]. The different types of

networks supported by Ethereum make it a very flexible platform that is suited to

a wide variety of application areas.

3. Quorum

Quorum is a permissioned blockchain platform built on Ethereum by JP Morgan.

It is a fork of Ethereum which means it is based on the Ethereum codebase but

CHAPTER 3. SYSTEM ARCHITECTURE 41

with certain changes to make it better suited for certain application areas [85]. It

shares similar features to Ethereum, such as the use of Ether cryptocurrency and

smart contracts. Quorum, however, has some key differences to Ethereum [86]. It

limits who can participate in a blockchain network to only those that have been

authorized. It further limits privacy by dividing the ledger within a network into

public and private ledgers. All the nodes in the network can view the public ledger,

but the private ledger is only visible to the parties in a transaction, with only

the hash of the transaction appearing on the public ledger. Quorum also uses a

voting-based consensus mechanism known as QuorumChain. Consensus is achieved

through a smart contract that assigns voting rights to nodes that will then decide

on which block gets accepted to the blockchain. The node that created the block

does not participate in the voting process, and the smart contract is responsible

for tracking the votes. Another difference it has with Ethereum is that in Quorum

networks, there are no transaction costs.

4. R3 Corda

R3 Corda, which is popularly known as Corda, is a permissioned and open-source

blockchain platform that is primarily intended for use in the financial services sector

[87]. It supports the use of smart contracts that link business logic and data with

legal principles to make sure that the agreements between the nodes are legally

enforceable. Corda gives each network the choice to choose its own consensus

mechanism. This is reflected in the ledger by tagging each smart contract with the

consensus mechanisms that it uses as it gets added to the network. This makes

Corda highly flexible and suited to a wide range of business needs.

Selecting the Ideal Blockchain Protocol

The most important factor when choosing the ideal blockchain protocol for the peer-

to-peer energy trading system is that the protocol must support the development and

deployment of smart contracts, as this will contain all the logic for the system. All the

above-mentioned blockchain protocols support the development of smart contracts. The

next factor is the ability to support a high transaction throughput system. The most

CHAPTER 3. SYSTEM ARCHITECTURE 42

important determinant for this is the consensus mechanism used, and the ideal protocols

are the ones that support more than one consensus mechanism. R3 Corda and Ethereum

both have support for multiple consensus mechanisms. Another factor to consider is the

amount of technical support from the developers as well as from the community of users.

Ethereum has the most significant support community because it was the first blockchain

protocol that had support for the development of smart contracts. The last factor to

consider is the ease of use of the protocol in a peer-to-peer system. Most of the protocols

listed above are tailored for business-to-business (B2B) and business-to-consumer (B2C)

applications, but Ethereum is ideal for transactions between individuals. Due to the

above factors, Ethereum is the perfect choice for the peer-to-peer energy trading system

as it gives users and developers more flexibility in the type of consensus mechanism that

it supports. It also has a broader range of third-party applications and libraries that add

to the functionality and ease of use of Ethereum-based smart contracts.

3.5.2 Blockchain Network

The blockchain network layer consists of all the nodes in the network. The blockchain

network layer contains components found in the network, physical, virtualization, con-

sensus and incentive layers of the 7-layer blockchain architecture. The main component

in this layer is the genesis file which uniquely identifies the network and contains all the

rules that govern the network, and this file is created using tools found in the Blockchain

protocol layer. All the nodes in the network have a copy of this genesis file. The consen-

sus mechanism to be used by the network is also found at this layer since it is defined

on the genesis file. This layer also provides functionality for the nodes in the network to

transact amongst each other by sending digital tokens, and a record of all these transac-

tions is stored on this layer. The blockchain network also provides a platform for nodes

in the network to deploy as well as call smart contracts. With Ethereum being the chosen

blockchain protocol for the peer-to-peer energy trading system, the next step is to select

the type of Ethereum network to use. Ethereum has three types of networks, and each

one has its own ideal application areas.

CHAPTER 3. SYSTEM ARCHITECTURE 43

1. Ethereum Main Network

The Ethereum main network, which is also known as MainNet, is the biggest public

network that uses the Ethereum protocol [88]. It is a permissionless Ethereum net-

work where nodes do not need authorization before they can join the network. The

main Ethereum network uses the PoW consensus mechanism, and nodes can par-

ticipate in mining new blocks, and they get rewarded in Ether which has real-world

value in this network [89]. It also costs real money to deploy smart contracts to this

network, but it never has any downtime because of its decentralized architecture,

which means that the smart contract is always available and cannot be deleted or

altered once it has been deployed to the network. This can be a disadvantage in

that if it is discovered that a smart contract that has been deployed to this network

has an error, that error cannot be changed, and so a new smart contract has to be

deployed instead which costs money.

2. Ethereum Test Networks

Ethereum test networks simulate the operations that can be carried out on the

main Ethereum network. They allow users to users to carry out transactions that

can be done on the main Ethereum network without using any real Ether. This

provides a platform for developers to test smart contracts on an environment that

is similar to the final deployment environment without using any real-world money

[84]. Instead of making the transactions and contract deployment free, the test

networks use a valueless form of Ether to simulate the kind of transaction costs

found on the main network. There are many different Ethereum test networks,

each with a different network ID, but the most common ones are Ropsten, Kovan,

and Rinkeby. Ropsten uses the PoW consensus mechanism, and nodes get valueless

Ether by mining blocks on this network. This makes it the test network that best

simulates the main Ethereum network. Rinkeby and Kovan use the PoA consensus

mechanism, and users request the fake Ether from the test networks’ respective

web-based applications. This fake Ether is then used to pay transaction costs on

the test networks.

CHAPTER 3. SYSTEM ARCHITECTURE 44

3. Ethereum Private Network

The last type of Ethereum blockchain network is a private network. This is a

permissioned blockchain based on the Ethereum protocol that allows more flexibility

in its rules compared to the other Ethereum networks [90]. Any node can create

their own private network and set parameters like which consensus mechanism to

use, the name of the network, and the time it takes to create new blocks according

to their own needs [91]. Other nodes wishing to join the network will need to be

authorized first before they can be a part of the network. This makes it ideal for

businesses that want the benefits of blockchain technology without compromising

their data privacy by putting it on a network that other people have access to. Since

it is based on the Ethereum protocol, it shares similar features with the other types

of Ethereum networks in that nodes in the same network can transact with each

other, and smart contracts can be deployed to the network. The value of Ether in

this type of network is determined by the participants of the network, which gives

the participants in the network even more control over the network.

Since some of the transactions in the proposed system might involve low amounts, the

best approach is to use a type of network that keeps transaction costs to a minimum.

Another factor to take into consideration is the time it takes to for transactions to be

validated. The proposed system is time-sensitive and so there should not be a big time

delay between successive blocks. The only type of Ethereum network that offers flexibility

in the configuration of all these parameters is the private network and so it is the network

type that will be used for the peer-to-peer energy trading system.

3.5.3 Smart Contract

The smart contract holds the application logic for the entire system. A smart contract

is deployed to an address on the blockchain network, and it is called using this address.

The smart contract contains methods for the different operations to be carried out in the

system, such as listing electricity for sale, purchasing electricity, and being the payment

medium for Ether after the transfer of electricity between the buyer and the seller.

CHAPTER 3. SYSTEM ARCHITECTURE 45

3.5.4 Smart Contract Tools

The smart contract tools layer contains components found in the API layer of the

blockchain architecture. Ethereum smart contracts are not natively designed to interact

with certain external applications, but there are software tools that make this interaction

possible. Some of the tools that were used for this purpose are explained below.

1. Truffle

Truffle is an application that provides a development and testing environment for

Ethereum smart contracts [92]. Its primary function in the proposed system is to

compile and deploy smart contracts to the blockchain network.

2. Web3

Web3 is a set of libraries that enable users to interact with an Ethereum node

using various protocols such as IPC, WebSocket, and HTTP. It allows users to

initiate transactions between various Ethereum nodes as well as interacting with

smart contracts from external applications such as web applications and console

applications [83]. It acts as an intermediary between the smart contract and the

client-side application.

3. Metamask

Metamask is a browser extension that allows users to use an Ethereum node on a

browser. It allows users to add an existing Ethereum account to the extension and

carry out transactions from it or from other web-based applications.

3.5.5 Client-side application

The client-side application is in the form of a web application. Users are able to sell as

well as buy excess energy. The frontend of the application is populated using data that is

stored on the blockchain. In order to view the application, the user’s node has to be on

the same blockchain network as the smart contract. When a user adds a new listing on

the web application, the details of the listing are stored on the smart contract. Whenever

CHAPTER 3. SYSTEM ARCHITECTURE 46

a user intends to purchase energy on the web application, a query is sent to the seller’s

smart meter to determine if the seller has the amount of energy they are selling.

3.6 Hardware Architecture

This section describes the hardware configuration of the peer-to-peer energy trading sys-

tem as well as the role of each of the hardware components. All the nodes in the system

have a similar structure to make it easier to compare all the nodes’ performances. Each

node consists of a smart meter, a relay, a battery, and a load that also acts as the system’s

microcontroller, as illustrated in figure 3.5.

3.6.1 Renewable Energy Storage

This is in the form of a battery, and it is used to represent a fully functional renewable

energy system. The battery has a known storage capacity so as to be able to calculate

how much energy is remaining at any given point based on how much energy has been

used. It has input ports that are used to charge the battery, either from a renewable

energy source such as solar or from the batteries of other nodes when energy is purchased

from them. It also has multiple output ports that are connected to the input ports of

other batteries for when excess energy is sold to other nodes.

3.6.2 Smart Meter

The purpose of the smart meter is to measure the amount of energy that is going into

the battery as well as the amount of energy being drawn from the battery by the load. In

conjunction with the known capacity of the battery, this is used to determine the amount

of energy in the battery at any given time. A smart meter is ideal for this purpose as

it can be queried in real-time from an external application. A potential buyer of energy

uses this feature to check if the seller has the energy that they have listed on the web

application.

CHAPTER 3. SYSTEM ARCHITECTURE 47

Figure 3.5: Hardware Architecture of the proposed system

3.6.3 Relay

A relay is defined as a switch that is controlled electrically [93]. The primary role of the

relay is to allow and prevent the flow of energy in a circuit. It has two states, namely

open and closed. If the relay is in the open position, then it means that the circuit is

not complete and no current flows through it, but if it is in the closed position, then the

circuit allows electric current to flow through it [94]. A relay can be controlled through a

signal from a low-power device such as a microcontroller, making it ideal for the proposed

system. Each node has a relay for each of the other nodes that it is connected to. This

means that a node’s battery has multiple output ports that are each connected to another

node’s battery’s input port. A relay is connected between these two points, and by default,

it is in the open position, which means that no energy flows through it. If another node

purchases energy from this node, a command is sent from the microcontroller for it to

CHAPTER 3. SYSTEM ARCHITECTURE 48

close, and this completes the circuit and allows the energy to flow through it.

3.6.4 Microcontroller

The microcontroller is powered by that node’s battery, which means it also acts as a load.

The microcontroller is used to control relays by allowing and restricting the flow of energy

through them from the battery to the battery of another node. When a buyer purchases

energy from a seller, a command is sent to the seller’s microcontroller with details about

the transaction, such as the seller’s identity and the amount of energy that they have

purchased. The microcontroller then opens the relay that is connected to the buyer’s

battery and allows energy to flow from the seller’s battery to the buyer’s battery. Both

the buyer and seller’s smart meters will measure the amount of energy that is flowing

between the two points, and once the correct amount of energy has been transferred, the

microcontroller closes the relay and sends back a command to the web application that

the energy has been transferred.

3.7 Data Transfer Protocols

This section details the different protocols that are used to transfer data between different

points in the system.

3.7.1 MQTT

Message Queuing Telemetry Transport (MQTT) is a lightweight messaging protocol that

uses a publish-subscribe model to transfer messages between devices [95]. It is intended for

machine to machine connections and is ideal for remote use where the network bandwidth

is limited [96]. It runs on TCP/IP. MQTT uses a central broker as shown in Figure 3.6

below. An MQTT broker is an application that receives messages from the publisher and

broadcasts them to the clients.

A publisher publishes messages on a particular topic to a broker. The purpose of

the broker is to categorize the messages according to the topic and then distribute the

messages to the subscribers. For a client to receive these messages, they have to subscribe

to that particular topic on the same broker. The broker discards the message after

CHAPTER 3. SYSTEM ARCHITECTURE 49

Figure 3.6: MQTT Architecture

distributing it to the subscribers unless the publisher specifies that it should be stored

[97]. The publisher and the client are not directly connected and only communicate

through the broker. MQTT is used in the peer-to-peer energy trading system to transmit

data from the smart meter to a database. It is more lightweight than other protocols

that could have been used for this purpose such as HTTP which makes it more ideal.

MQTT has a smaller header and message and this enables the smart meter to send data

to the database more frequently without using a lot of bandwidth.

3.7.2 RLPx

The RLPx protocol is a TCP-based transport protocol that is used by the Ethereum

protocol to govern how peers communicate with each other [98]. When two peers on an

Ethereum network attempt to communicate for the first time, they implement a two-phase

handshake. In the first phase, the peers exchange cryptographic information which they

use to encrypt and authenticate subsequent messages. In the second phase of the hand-

shake, the peers exchange their capabilities such as the sub-protocol that they support

so that they use that protocol for application-level communication [99].

CHAPTER 3. SYSTEM ARCHITECTURE 50

3.8 Conclusion

In this chapter, two design approaches were assessed and a choice was made on the most

appropriate one for the design of the proposed system. The proposed system was divided

into hardware components and software components and the architectures of both parts

were proposed. The blockchain protocol to be used for the implementation of the solution

was selected and the hardware components that will be required by the system were also

identified.

CHAPTER 3. SYSTEM ARCHITECTURE 51

Chapter 4

Private Blockchain Network

This chapter provides the design of a private blockchain network for the peer-to-peer

energy trading system with multiple nodes that can transact with each other. The private

blockchain network is created using Ethereum as it is the blockchain protocol that was

chosen for this research. This chapter also defines some key technologies behind Ethereum

that explain how transactions will be handled in the proposed system.

4.1 Ethereum Virtual Machine

Ethereum is not only considered a distributed ledger but also a distributed state machine

due to its ability to support smart contracts in addition to its functionality of distributed

transactions [100]. A state in a blockchain is a data structure containing a list of all the

accounts on the blockchain and their balances. Ethereum’s state also holds a machine

state which can change from one block to another, and it follows a set of pre-defined rules

and can execute machine code [101].

The rules of changing the state from one block to the next are defined by the Ethereum

Virtual Machine (EVM). The EVM is a single canonical computer whose state is agreed

upon by every node on the Ethereum network. Every participant on the network keeps a

copy of this computer state and can broadcast a request to the other network participants

for the EVM to carry out a computation. The other participants then verify, validate and

execute the requested computation, and these requests are known as transaction requests.

Once the computation has been carried out, this results in a change of state in the EVM,

and this change is reflected throughout the network.

52

The EVM is leveraged in the proposed system to deploy a smart contract to the

blockchain. Every transaction that is carried out in the energy trading system changes

the state of the EVM and every participant will be required to have an updated EVM

state in order to continue participating in the system. This is to prevent participants

from spending the same funds more than once due to having an outdated EVM state.

The Ethereum protocol automatically checks if a participant has an updated EVM state

before they can transact.

4.2 Ethereum Node

An Ethereum node is defined as a computer that is running a piece of software known

as an Ethereum client [102]. An Ethereum client is an implementation of the Ethereum

protocol in a particular programming language that verifies all the transactions in a block

and is responsible for the security of the network as well as maintaining data accuracy in

the blockchain. There are three types of Ethereum nodes: a full node, a light node, and

an archive node.

A full node stores the full blockchain data, and it participates in block validation. A

full node also verifies all the blocks as they are added to the blockchain, and it provides

data to the network on request [103]. A light node only stores the block headers and

requests everything else from full nodes when needed. A light node can verify if the data

in a block is valid by checking the block headers’ state roots. Light nodes are useful for

devices with low storage capacities, such as mobile phones, as the full Ethereum data

consumes a lot of space [104]. An archive node stores everything stored on the full node,

but it also builds an archive of the Ethereum EVM’s historical states. This is useful

for querying historical data, such as querying a particular address’s account balance at

a specific point in time. Archive nodes require a lot of storage space as the current

Ethereum mainnet archive is more than 5 Terabytes in size and is constantly growing

[102].

The peer-to-peer energy trading system uses full nodes throughout the blockchain be-

cause full nodes meet the system requirements such as the ability to validate blocks which

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 53

means any of the nodes on the blockchain can be selected to validate blocks. Full nodes

also keep a full copy of the blockchain which makes tempering with the blockchain very

difficult and improbable. Full nodes also do not have the excessive storage requirements

of archive nodes as they only keep the updated copy of the blockchain and discard the

previous versions. This reduces the hardware requirements for the peer-to-peer energy

trading system without limiting its functionality.

4.3 Ethereum Client

An Ethereum client is an implementation of the Ethereum protocol, and it allows nodes

to participate on the Ethereum network. A client comes preconfigured with all the tools

necessary for the node to transact as well as validate other transactions. Figure 4.1 shows

the features of an Ethereum client. It consists of the consensus mechanism such as the

PoW as well as the EVM. The Ethereum client also contains the current state of the

EVM as well as the protocols for broadcasting transactions to the other nodes on the

network. The last feature of an Ethereum client is known as a TX Mempool. This is a

dynamic memory area that contains pending transactions before they are included in a

block.

Figure 4.1: Features of an Ethereum client[102]

There are currently many clients that implement the Ethereum protocol as Ethereum

is an open-source platform [102]. Each of these clients has its own advantages, and they

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 54

support different operating systems. According to Ethereum, the goal is to make the

network diverse by having many different clients to reduce any single points of failure.

The three most popular clients are Geth, OpenEthereum, and Nethermind. The three are

evaluated below before a choice on the appropriate client for the energy trading system

is made.

1. Geth

Geth, which is short for Go Ethereum, is one of the oldest implementations of

the Ethereum protocol [105]. It is written in the Go programming language and

supports Linux, Windows, and macOS. Geth is open-source and is the most widely

used Ethereum client, and developers have developed a lot of tools to automate

some tasks that can be carried out in Geth.

2. OpenEthereum

OpenEthereum is an Ethereum client written using the Rust programming lan-

guage. It aims to be the lightest, fastest, and most secure Ethereum implementa-

tion [106]. OpenEthereum has features for easy customization, and it has the most

lightweight storage and memory footprint.

3. Nethermind

Nethermind is a C# .NET-based Ethereum client. It runs on all the major plat-

forms, including ARM, and performs well on virtual machines [107]. Nethermind

also has an active online community and provides constant support for its premium

customers.

Geth has the largest online community out of the three options and also has the most

applications to make some processes easier and so it is the client chosen to set up the

nodes for all the participants in the proposed system. Geth is also lightweight enough to

run on low-specification computers.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 55

4.4 Setting up an Ethereum Node

This section outlines the steps that were taken to create an Ethereum node as well as

an account on that node. The one prerequisite is an Ethereum client, and Geth was the

chosen client for this purpose. Once Geth had been installed, the first step required the

creation of a working directory where the Ethereum accounts and the blockchain data

were to be stored.

Figure 4.2: Creating working directories

Figure 4.2 shows the creation of the working directory called p2ptrading. This direc-

tory stores all the data from the blockchain for this node such as the genesis file. The

other directory created is called node1, and it holds the encrypted private keys for all the

accounts that will be created on this node as well as the blockchain ledger itself. After

this, the next step was to create the accounts for the node. An Ethereum account is

an entity for storing Ether, and it has a balance. It is identified by an address known

as an ETH address or an ERC20 address. An ETH address is prefixed by 0x, which is

followed by forty alphanumeric characters. A single node can have multiple accounts.

To create an account, Geth was used, as shown in Figure 4.3. These accounts are where

the participants of the energy trading system keep their cryptocurrency that they use to

transact within the system.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 56

Figure 4.3: Creating a new Ethereum account

The datadir flag is required when creating an account with Geth, and it specifies the

directory where the private key of the account must be stored, and in this case, it is the

node1 directory created earlier. When creating an account, a user must set a password as

Geth does not store the Ethereum private key in plain text but stores it in an encrypted

JSON file. The private key is encrypted using a 128-bit AES encryption algorithm. A

user needs to enter this password whenever they want to use their account, such as when

transacting with other nodes. After entering their preferred password, Geth generates two

things. The first thing that is generated is the public key which is the ETH address. A

user can share their public address with other users as this is the address they use if they

want to transact with them. The second key that is generated is the encrypted private

key, and a user should never share it with anyone. The encryption adds an extra security

layer as someone would need both the private key JSON file as well as the password for

them to gain access to another user’s account, but it also means that a user can lose

access to their account forever if they lose their password as there is no way to recover it.

Once a node has an account, then it can join Ethereum networks such as the Mainnet

and transact with other nodes on that network. A single account can be used on multiple

networks, and it will have different account balances on each network. To join a network,

a node just needs to have the genesis file of the network they wish to join. Geth comes

preconfigured with the genesis file of the Mainnet as well as other popular test networks,

and a user can join these. Geth also allows users to create their own Ethereum networks

and set their own rules for the network.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 57

4.5 Setting up a Private Ethereum Network

A private Ethereum network was selected as the most ideal type of network for the peer-to-

peer energy trading system as it gives full control of the blockchain to its participants while

maintaining the confidentiality of the data from outsiders. This allows the participants

to attach their own value of the cryptocurrency within the network. Ethereum allows

users to create their own private blockchain networks and set their own rules about how

the network should operate. An Ethereum network is governed and identified through

a genesis file, and so to create a network for the energy trading system, a genesis file

needed to be created. An Ethereum genesis file follows certain formatting rules, which,

if not followed correctly, can prevent the network from functioning properly.

To make it easier to create a new network, Geth provides a tool called Puppeth

that takes user input and generates the genesis file. Puppeth is a command-line-based

Ethereum private network manager. It provides tools for analysing an Ethereum network

by tracking details about each block added to the blockchain and all the nodes on the

network. It also helps users generate and manage a genesis file without worrying about the

formatting rules. Puppeth presents a series of prompts to the user about their preferences

for the configuration of the network, and the responses to these prompts are used to create

the network and generate the genesis file. Puppeth comes pre-installed in Geth, and so

to start it, the keyword puppeth was entered into the console window as shown in figure

4.4. This starts up the Puppeth console application.

After starting up Puppeth, the first thing thing that was required was to enter the

network name for the blockchain network that was to be created. The network name is

not as important as the network ID, but Puppeth uses it for the purposes of identifying

the network for analysis. The next prompt was to decide what was to be done to the

network entered in the previous step. The options range from configuring a new genesis

file to viewing the statistics of the network. After selecting the option to configure a new

genesis file, two more options were presented: creating a new genesis file from scratch or

importing a genesis file that was created elsewhere. Once this step was completed, the

configuration of the genesis file could begin. The first and most important design question

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 58

Figure 4.4: Starting up Puppeth and creating a new genesis file

was the appropriate consensus engine to use. Geth comes with two different consensus

engines that both use different consensus mechanisms, namely Ethash, which is based on

the proof of work consensus mechanism, and Clique, which uses proof of authority. This

was one of the most important design considerations for the project as it affects a lot of

system functions and requirements.

A PoA-based consensus engine such as Clique is better suited for the peer-to-peer

energy trading platform’s requirements compared to a PoW-based engine like Ethash for

a number of reasons. The first factor to consider is the computing power required by

both consensus mechanisms. In Ethash, significant computing power is required as the

validation of blocks involves mining. The minimum recommended standard is a desktop

with a graphics card with at least 4GB of RAM. This is a significant amount of RAM,

and it will increase the cost of the system as every participating node will need to meet

that requirement if they are to validate blocks on the network. On the other hand, Clique

does not require any mining as only a few pre-authorised nodes can validate blocks. The

Clique consensus engine is so efficient that it can be run on nodes with only 256MB of

GPU memory. This means that devices such as mobile phones and Raspberry Pis can

validate blocks on blockchain networks based on the Clique consensus engine.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 59

The next factor to consider is the security of both consensus engines against malicious

users. Ethash relies on the need for high computing capabilities to guard against malicious

users potentially gaining control of the network. This works very well on large public

networks where it is highly unlikely that any one entity can have more than half of the

entire network’s computing power. It, however, does not work as well on smaller networks

where each node is using a regular desktop computer because it is possible for one of the

participant’s computers to be more powerful than the sum total computing power of all

the other participants. This will allow that node to gain control of the network and

manipulate blocks in their favour. With Clique, the validators are known by all the

participants in the network. The requirements for one to become a validator reduce the

incentive for a validator to act maliciously. If the network has a significant number of

validators, then a node would need to collude with more than half of them to have a

chance of manipulating blocks [18].

Due to these factors, a consensus engine that uses the PoA consensus mechanism is

ideal for this system and so Clique was selected as the consensus engine to be used.

Figure 4.5: Selecting the consensus engine using Puppeth

After choosing Clique as the preferred consensus mechanism, the next prompt was to

select the time it takes for new blocks to be created. In PoA-based blockchains, a new

block is added to the blockchain at fixed intervals regardless of whether or not there have

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 60

been any transactions within that period. The most important factor when choosing the

time it takes to create new blocks is the sensitivity of the intended application area to

any time delay. If the blockchain is being used for time-critical applications, then this

time should be kept low. The peer-to-peer energy trading system is sensitive to a big

time delay as a user might have very little energy left in their battery when making the

purchase, and so the default time of 15 seconds is maintained. This means that a new

block will be added to the blockchain every 15 seconds, and a transaction can take up to

a maximum of 15 seconds before it is validated. The transfer of energy from a seller to a

buyer can only commence once the block containing that transaction has been validated.

The next step was to select the accounts that would be the initial sealer nodes for

the network. The sealer nodes are responsible for validating new blocks in the network,

and at least one sealer node has to be defined when creating the network. Since there

was only one node on the network, that node was chosen as the initial sealer node. The

rest of the prompts were about pre-funding the account. In PoW-based networks, this is

not necessary as the accounts can mine for Ether, but in a PoA-based network, the total

amount of Ether that can circulate on the network is set when creating it. The account

that was to be pre-funded with this Ether was specified on the prompt, and this account

appears on the genesis file.

The last prompt required the setting of a network ID. This is what is used by other

nodes to identify the network, and it is required before a node joins the network. If the

blockchain network is to be broadcast over the internet, then a unique network ID must

be set. Every public Ethereum network has a unique network ID, and the network ID

for the Mainnet is 1. Our blockchain network is not public, and so any network ID is

suitable, and in this case, the chosen ID was 2020. This was the last step to generate

a genesis file for the blockchain, and after this, the genesis file was saved to the current

directory.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 61

Figure 4.6: The generated genesis file

4.6 Genesis File

Figure 4.6 shows the generated genesis file. The file is in JSON format and has the same

name as the blockchain network. The genesis file contains some important information

that governs how the network will function. The blocks found on the genesis file are

explained below.

1. Config

The config block contains the core blockchain settings and parameters that control

the operations of the network. It also contains properties relating to the version

of Ethereum to use. There are many different versions of Ethereum, each with a

small difference from another version, and these versions are referred to as forks.

HomesteadBlock, eip158Block, eip155Block, byzantiumBlock, constantinopleBlock,

and istanbulBlock all refer to different forks of Ethereum, and they are all set to

zero as each of their features are used in the proposed blockchain network.

2. ChainId

The chain ID refers to the network ID that was specified when creating the network.

It is used to identify the blockchain network. Nodes wishing to join the blockchain

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 62

network for the peer-to-peer energy trading system will need to use 2020 as the

chain ID as it is what was specified when the newtork was created. The chain

ID also acts as a security mechanism against replay attacks. A replay attack is

when a malicious user intercepts network traffic and then sends it to its original

destination but acting as the original sender. The chain ID is included in the

transaction signature, which prevents replay attacks by making it impossible for

anyone to decipher the network traffic without the correct chain ID.

3. Clique

The Clique block specifies the consensus mechanism that the blockchain network

will use. This block contains two parameters. The period refers to the time between

two successive blocks, and this was set when the network was being created. This

value cannot be changed once the network is started. The other parameter is called

the epoch, and this is the number of blocks it will take for the network to create a

checkpoint and reset any pending block.

4. Nonce and MixHash

These values are primarily used in PoW-based blockchains to verify that a block

has been mined. The nonce is a 64-bit value, and it is combined with the 256-bit

mixHash to check that a sufficient amount of cryptographic computation has been

done on the block. Since no computation is carried out to validate a block in a

PoA-based blockchain, both values were set to zero.

5. ExtraData

This field is used to specify the initial sealer nodes on the network. PoW-based

blockchain networks do not have this field in their genesis files as there are no

sealer nodes but PoA-based blockchain networks do and so this is reflected in the

genesis file.

6. GasLimit

Gas in Ethereum refers to the cost associated with performing a transaction in

an Ethereum network. The price is determined by the supply and demand of

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 63

computational power as well as the amount of computation that a transaction

requires. The gasLimit is the maximum amount of gas that can be used for each

block. This was set to a high value as the blockchain network will be used for smart

contracts that might require a lot of computations. It is also possible to set that the

gasLimit should increase every time a new block is added to the blockchain which

would mean that the older a blockchain network is, the more complex computations

it will be able to carry out.

7. Difficulty

This refers to the processing power required to mine blocks in the network. This

is only applicable to PoW-based blockchains, and the higher this value, the more

computational power is required to mine. In a PoA-based blockchain, this value is

always set to 1 by default, which means there is very little computational power

required to validate blocks.

8. Alloc

The alloc block specifies the accounts that should be pre-funded when the network

is created as well as the amount of Ether that the account should have.

4.7 Starting the Blockchain Network

This section outlines the steps that were taken to start the blockchain network that was

created previously as well as the test that was carried out to check if the network was

functioning properly.

Figure 4.7: Initializing the genesis file

The first step was to initialize the genesis file, as shown in figure 4.7. The purpose

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 64

of initializing the genesis file was to create databases that store some of the data related

to the blockchain, such as the list of nodes on the blockchain as well as the databases to

store the ledger of transactions. Every node wishing to join the blockchain has to initialize

the same genesis file. Only the folder in which the blockchain data will be stored has

to be specified by the user as one of the parameters for the initialization process. The

next step was to start the Geth console application that allows users to interact with the

blockchain, transact and carry out other operations on the network. Figure 4.8 shows

the command that was used to start the Geth console application.

Figure 4.8: Starting the Geth console

To start the Geth console application, a number of parameters had to be set to allow

more things to be done on the console application. These parameters were set using flags

when starting the console application, and these flags are explained below.

1. Port

The port flag specifies the network port that the node must use to listen to broad-

casts from other nodes. These broadcasts include any communication between

nodes, such as transaction broadcasts and requests to add or remove a sealer node.

2. Network ID

The network ID is the identifier of the network, and every node that wishes to join

the network will need to start the Geth console using the correct network ID.

3. Datadir

This is the data directory where the blockchain data including the ledger of trans-

actions is stored. This folder must be the same as the one that was used to initialize

the genesis file.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 65

4. RPC

This flag is for starting the HTTP JSON-RPC. The HTTP JSON-RPC is a remote

procedure call protocol that allows a program to request a service from a program

located in another computer in the same network without having to understand the

network configuration first [108].

5. RPC CORS Domain

This flag lists the domains from which the console application can accept cross-

origin requests. By default, JavaScript does not accept cross-origin requests due

to the same-origin policy [109]. This is to prevent scripts from accessing malicious

content. In the proposed blockchain network, this flag is set to accept requests

from all other domains as it is possible that some requests may appear to originate

from the same source, which may hinder some operations on the blockchain if the

same-origin policy is not removed.

6. RPC API

This flag allows users to list Application Programming Interfaces (API) that they

want to have access to on the console application to make some functions easier to

carry out. The APIs listed include net, which is an Ethereum package that allows

users to view the node’s network properties as well as the web3 API, which allows

users to initiate transactions on the console application. These APIs are useful in

the peer-to-peer energy trading system as they make some tasks such as checking

account balances or paying for electricity much easier.

7. Console

Geth comes with a JavaScript Read, Evaluate, and Print Loop (REPL) console

application that enables the user to carry out transactions on the network. The

logs of all the actions that are carried out on the blockchain network are stored

in the eth.log file. The log file records everything that happens on the blockchain,

such as transactions and smart contract calls. Figure 4.9 shows the eth.log file after

the blockchain network is started.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 66

Figure 4.9: eth.log file after the Geth console is started

4.8 Geth Console

Once the Geth console had been started, the first thing that had to be done was to check

if the network was up and functioning correctly. A simple way to do this is to check

the account balance of the node that created the network. The initial account balance

was known as it was defined in the genesis file, and so if the result of the test was to be

different from the one in the genesis file, then that means there would have been an error

in the configuration of the network. In this instance, the account balance should return

5000.

Before carrying out any operation using an account in Ethereum, the account had to

be unlocked using the password that was set when the account was created, as illustrated

in figure 4.10. This is because the private key that is required to sign any transaction is

stored in an encrypted format and so has to be decrypted first. To unlock an account, the

unlockAccount function of the personal API is used. The function takes two arguments

in the form of the address of the account to be unlocked and the password. The function

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 67

returns a Boolean value of true if the operation was successful or false if it was not. After

the account was successfully unlocked, the account balance was checked using the eth

API’s getBalance function. The operation returned a value of 5000 Ether which matched

the value in the genesis file. This showed that the network was operating correctly, and

other nodes could now be added to the network.

Figure 4.10: Unlocking account and checking account balance

4.8.1 Adding Other Nodes

When the network was up and running, the next step was to add other nodes. This is

because the peer-to-peer energy trading system requires each participant to be represented

by a node on the blockchain. The first node can check for other nodes on the network

using the command shown in figure 4.11. The request returned an empty array as there

were no other nodes on the network at that point.

Figure 4.11: Checking for other nodes on the network

The main prerequisite for a node to join the private network is a copy of the genesis

file. The node that created the network had to distribute the genesis file to all the nodes

that intended to join the network. The other nodes had to initialize the genesis file in the

same way as the first node. The other requirement for a node to join a private Ethereum

network is the enode of at least one sealer node on the network. The enode is a unique

identifier allocated to every Ethereum node, which consists of a hexadecimal node ID,

the node’s IP address, and its listening port that was defined when starting up the Geth

console. The enode of the first node is shown in figure 4.12.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 68

Figure 4.12: enode of the first node

Once a node has these two requirements, they have the necessary permission to join

the network. To join a network after starting up the Geth console with the appropriate

genesis file, a node has to add the sealer node as a peer, as shown in figure 4.13.

Figure 4.13: The second node joining the network using the enode of the first node

The function returns a Boolean value of true or false depending on whether or not

the operation was successful. When the same query that was run before to check for

other nodes was run again, it returned an array with the details of the other node on the

network. This query can be run on both nodes, as shown in Figure 4.13 for the second

node as well as in Figure 4.14 for the first node, and it should return the information of

the other nodes on the network. If this query returns the details of the other nodes on

the network, that means the new node has successfully joined the network and can now

transact with other nodes on the network.

4.8.2 Transacting on the Network

Nodes on the same network can transact with each other by sending and receiving Ether

provided that the sender knows the intended recipient’s public address. The second node

that joined the network started off with a balance of zero, as shown in Figure 4.15. This

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 69

Figure 4.14: First node checking for other nodes on the network

is because the first node is the only account that was specified to be pre-funded on the

genesis file, but the first node can send Ether to the second node.

Figure 4.15: Account balance of the second node

To transact on the Geth console, the web3 API is used. It contains many Ethereum

libraries that can be used on external applications such as the Geth console application.

The sender needs to unlock their account first before they can carry out any transactions

on the blockchain, and they need both their public address and the recipient’s public

address. Figure 4.16 shows a transaction to send Ether from the account in the first node

to the account in the second node.

Figure 4.16: Transaction to send Ether from the first node to the second node

The transaction returned a transaction hash which is a hexadecimal value that uniquely

identifies the transaction. The transaction hash is not proof that the transaction has been

committed to the blockchain. It is proof that the transaction has been put in a block,

but it is not added to the blockchain until the block that it is in has been validated and

added to the blockchain.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 70

To start the validation of blocks on the network, the miner API has to be started by

a sealer node. Starting the mining process in a PoA-based blockchain does not start any

intensive computations. Instead, it starts a program within the consensus engine that is

responsible for selecting the sealer node that will validate the block. Once the miner API

is started, new blocks are added to the blockchain at a fixed time interval that was set

on the genesis file. If the block with the pending transaction is mined, the transaction is

now added to the blockchain and cannot be reversed. The recipient received the Ether

after the block was mined and their account balance changed, as shown in Figure 4.17.

Figure 4.17: New account balance of the second node

4.9 Sealer Nodes

In a blockchain that uses the PoA consensus mechanism, blocks of transactions are val-

idated by nodes known as sealer nodes. PoA consensus mechanisms are referred to as

voting-based consensus mechanisms because of how sealer nodes are chosen and removed.

Sealer nodes vote for both the addition and removal of nodes as sealer nodes in the net-

work. To elevate a node to become a sealer node using the Clique consensus engine,

existing sealer nodes that approve of that have to propose that elevation as shown in

Figure 4.18. The proposing node will then have to wait for other sealer nodes to make

the same proposal, and that proposal is stored on the blockchain when it is still pending,

as shown in Figure 4.18. When more than half of the existing sealer nodes make that

proposal, the node immediately becomes a sealer node and can start validating blocks.

The node will also have voting rights for the addition or removal of sealer nodes.

If a sealer node acts in a malicious manner, it can be removed in a similar way to how

it was made a sealer node. Existing sealer nodes can vote to have a sealer node removed

from that role, as shown in Figure 4.19, and if more than half of the sealer nodes vote for

its removal, then it ceases to become a sealer node. Once a node is removed from being

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 71

Figure 4.18: Command to propose a new sealer node

a sealer node, all the blocks that it validates from that point onwards are rejected and

given to other sealer nodes to validate, and it immediately loses its voting rights.

Figure 4.19: Command to vote out a sealer node

A sealer node can also reverse its proposition to add or remove a sealer node if it has

not taken effect yet by being proposed by more than half of the sealer nodes. Figure 4.20

shows how a sealer node can reverse a pending proposal, and running the same command

to list the pending proposals returns an empty list as the proposal has been discarded.

It is advisable for sealer nodes to discard their proposals if a vote has not been successful

after a certain amount of time so that there no hanging proposals on the blockchain.

Figure 4.20: Command to cancel a proposal that has already been made

4.10 Block Validation on a Clique-based Ethereum

Network

When transactions in a blockchain that uses the Clique consensus engine are grouped

into a block, the consensus engine will choose the sealer node that should validate the

block. To avoid a sealer node from validating a large number of blocks in a row, Clique

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 72

uses the formula N/2+1, where N is the number of sealer nodes on the blockchain, to

determine the number of rounds that a sealer node should wait after validating a block.

This formula is meant to prevent sealer nodes from validating successive blocks by making

them ineligible to validate a certain number of blocks after successfully validating one.

Figure 4.21: Group of sealer nodes at time t1 where N=8

In Clique, a group of multiple nodes can be selected from the pool of sealer nodes to

validate a block, but there is one sealer node that is chosen to be the leader of that group

of sealer nodes. For any proposed block, there are N–(N/2+1) nodes that are chosen to

validate it. The leader of the group of sealers chosen to validate the block has no time

delay while the other nodes in the group delay their validation by a random time which

gives the leader an advantage to publish the block to the other nodes before the other

sealer nodes. Figure 4.21 shows an example of a blockchain with eight sealer nodes at

time t1. This means that for any block that needs to be validated, there will be a group

of three sealer nodes allowed to do the validation according to the formula. In that group

of sealer nodes, only one of them will be the leader of the group, which in this example

is s1. The other two nodes in the group, s2, and s3, will have a random time delay to

make sure that s1 is the one that will do the validation. If the leader of the group fails

to validate the block by the time the first of the two time delays expires, the node with

the shorter time delay between s2 and s3 will validate the block and publish it to the

other nodes in the blockchain. If a sealer node validates a block, they have to wait for

five rounds before they can be included in a group of nodes to validate a block.

Figure 4.22 shows the same group of sealer nodes at time t2. The assumption is that

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 73

Figure 4.22: Group of sealer nodes at time t2

node s1 validated the previous block at time t1, which makes it ineligible for the next

N/2+1 blocks, which in this case is five blocks because N=8. When a new block needs to

be published, a new group of nodes is chosen by the consensus engine to do the validation.

The group will also have three nodes since the value of N is still the same, and this time

node s2 is the leader of the group. Nodes s3 and s4 will each have a random time delay

before they can publish the block, and so if s2 is available, it will publish the block before

them. The random time delay for the other two nodes is to prevent a situation whereby

two or more sealer nodes validate a block at approximately the same time which can

create a conflict as some nodes on the blockchain will receive a block published by one

sealer node while the other nodes receive a block published by another sealer node.

4.11 Conclusion

In this chapter, some background concepts on Ethereum such as Ethereum clients and

the EVM were defined. The primary aim of this chapter of creating a private blockchain

network using Ethereum was met. The decision of the appropriate consensus mechanism

to use was also made and PoA was chosen due to reasons outlined in the chapter. The

blockchain network was tested by initiating a transaction and the theory behind the

validation of the transaction was also explained. This blockchain network forms the

basis for the peer-to-peer energy trading system as it is where the smart contract will be

deployed and it also acts as a medium of payment within the system. The next step is

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 74

to design the smart contract and deploy it on the private blockchain network.

CHAPTER 4. PRIVATE BLOCKCHAIN NETWORK 75

Chapter 5

Smart Contract Implementation

This chapter looks at how smart contracts are executed by the Ethereum protocol and

then looks at the development of the smart contract for the peer-to-peer energy trading

system. The functions of the smart contract will also be tested before the smart contract

is deployed to the blockchain network.

5.1 Ethereum Smart Contract Execution

Ethereum smart contracts are executed on the EVM, which is a Turing-complete machine

whose state changes when a smart contract is executed [100]. When a smart contract

is deployed to a blockchain network, the code of the smart contract is visible to every

participant on the network. This code, however, cannot be changed by anyone, including

the creator, due to the immutability property of blockchain. When a smart contract is

deployed to the blockchain, it is converted to bytecode, which is a set of instructions to

the EVM [110]. When the smart contract is called, the bytecode is executed by the EVM,

and this changes the state of the EVM. Turing-complete machines allow programs to run

infinitely, and this has the potential to cripple the network. To counter this, Ethereum

attaches a cost to every transaction that uses the EVM. The cost of the transaction

is directly proportional to the amount of computation required by the transaction [111].

This means that executing a smart contract to add two numbers costs less than executing

a smart contract to do more complex calculations.

76

5.2 Smart Contract for the Proposed System

The smart contract is the main program logic for the peer-to-peer energy trading system.

The smart contract is designed using the Solidity programming language, which is the

native programming language supported by Ethereum [112]. Its purpose in the system

can be broken down into several categories which represent different functions on the

smart contract code.

5.2.1 Data Storage

The smart contract acts as one of the data storage locations for the system. It stores the

list of sellers that are currently selling energy as well as all the details about these listings,

such as the price. The function to add a new listing is called listElectricity, and it takes

two arguments, as shown in Figure 5.1. The first argument is the quantity of electricity

that the seller intends to sell, and the second argument is the price that they want to set

for that quantity of electricity. The function also assigns an incremental unique identifier

call listCount. This field uniquely identifies a listing on the smart contract.

Figure 5.1: Smart contract code for the listElectricity function

The listElectricity function first validates the user input by checking that the quantity

of electricity is a positive integer and that the price is greater than zero. The next step

is to create the array of the listing with all its parameters, like the address of the seller

and its unique identifier. It is this array that is added to the smart contract by using the

emit keyword to trigger the ListingAdded event that is shown in Figure 5.2.

When the ListingAdded event is triggered, this is treated as a transaction as it changes

the state of the smart contract. The state of the smart contract reflects the data that

the smart contract holds at any point in time. The state of the smart contract is part of

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 77

Figure 5.2: ListingAdded event code of the smart contract

the state of the EVM, and so any time the state of the smart contract is changed, this

changes the state of the EVM, and so there is a cost attached to it. The state of the

EVM is visible to members of the blockchain, and so by extension, the state of a smart

contract can be viewed by members of the blockchain. This means that the data about

the list of sellers is stored in the state of the smart contract, and so it can be changed

even after it is added to the smart contract, unlike the smart contract code itself that

cannot be changed after it has been deployed to the blockchain.

5.2.2 Transaction Medium

The smart contract is also responsible for handling the payments between the buyer and

the seller. It transfers Ether from the buyer’s account to the seller’s account. When a user

intends to purchase electricity from a particular seller, the smart contract first retrieves

the details of that listing. This is done by calling the purchaseElectricity function as

shown in Figure 5.3. A listing is identified using its unique id, and all its details, such as

the seller’s address, are retrieved by using the listing’s ID as an argument for the function.

The function also carries out some checks to see if the listing contains valid information

such as a valid ID and that the electricity on that listing has not already been purchased

by someone else.

Another purpose of this function is to mark the digital asset, which in this case is the

electricity, as sold so that no other buyer attempts to purchase it. It also changes the

owner property from the seller to the buyer to indicate the transfer. Just like other func-

tions in solidity, the purchaseElectricity function triggers an event that changes the state

of the EVM, and so it has a cost attached to it. The purchaseElectricity function does

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 78

Figure 5.3: purchaseElectricity function of the smart contract

not handle the payment of the seller after a transaction. There are two functions for this

purpose. The first one deals with a successful transaction, and the other function handles

unsuccessful transactions. The second function is necessary as the physical transfer of

electricity from the seller to the buyer can take some time, and there is a possibility of

the transfer being interrupted. The smart contract takes this possibility into account by

having a function to handle such scenarios.

1. Successful Transaction

The function to handle the payment of the seller by the buyer after a successful

transaction is triggered after the total amount of energy listed by the seller has

been transferred to the buyer. The smart contract code for this function is shown

in Figure 5.4.

Figure 5.4: Smart contract code for the paySeller function

The paySeller function accepts a single argument in the form of the ID of the listing.

The first thing that the function does is to retrieve the details of the listing and gets

the address of the seller, as this is the address that the Ether should be transferred

to. The function also gets the amount that is due to the seller, which in this case

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 79

is the amount that was set by the seller when they were listing the electricity for

sale. The entire amount is then transferred to the seller’s address as the transfer of

electricity has been completed.

2. Unsuccessful or Incomplete Transaction

During the transfer of electricity from a seller’s battery to the buyer’s battery, it is

possible for the connection between their batteries to be lost. This can be due to

either deliberate action by one of the parties or due to other reasons. The smart

contract has to take this into account to ensure that neither of the parties suffers

a loss due to this. This is done through the purchaseFailed function of the smart

contract, whose code is shown in figure 5.5.

Figure 5.5: The purchaseFailed function code in the smart contract

This function is similar to the paySeller function except for one key difference. It

accepts a second argument which is the amount. The paySeller function takes the

amount stated by the seller when they are entering the details of their listing and

pays the seller this amount as they have transferred all the electricity that they were

supposed to transfer. However, the purchaseFailed function cannot take this amount

as it is only called when the transfer of electricity was not completed. This means

that only a fraction of the electricity that should have been transferred from the

seller to the buyer has been transferred, and so the seller is only entitled to a fraction

of the amount they were supposed to receive if all the electricity was transferred.

The smart contract is not responsible for calculating how much electricity had been

transferred when the process was interrupted or for calculating how much the buyer

owes to the seller for the electricity that had already been transferred before the

interruption. These calculations are left to the web application and the smart

meter, which is the device responsible for measuring how much electricity has been

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 80

transferred from the seller to the buyer. This is done to keep the computations

on the smart contract as low as possible to minimize transaction costs. When the

calculations have been made, the purchaseFailed function is invoked with the unique

ID of the listing as well as the calculated amount that is owed to the seller. The

smart contract will then transfer the stated amount from the buyer’s account into

the seller’s.

5.3 Alternative Approach to the Smart Contract De-

sign

An alternative approach to designing the smart contract would have been to use the smart

contract as an intermediary storage location during the physical transfer of electricity

from the seller to the buyer. When a buyer purchases electricity from the seller, the total

amount of Ether would be transferred from the buyer’s account and held in the smart

contract while the physical transfer of electricity is taking place. Once this transfer is

complete, the smart contract would then transfer the Ether that it is holding to the

seller’s account. If the transfer of electricity is interrupted, the smart contract would

transfer the amount that is owed to the seller for the electricity that had been transferred

prior to the interruption and then refund the buyer the rest of their Ether.

The major flaw with this approach is that it is costly due to the number of transactions

that need to be done for a single purchase. Whenever a buyer attempts to buy electricity,

the Ether will be transferred to the smart contract, and this transaction has a transaction

cost attached to it, and there will be another cost when the smart contract has to then

transfer the Ether to the seller upon the successful completion of the transfer of electricity.

For an interrupted transaction, there are three transactions that each cost Ether. There

is the transaction of transferring Ether from the buyer’s account to the smart contract,

and then the smart contract has to initiate two transactions. The first transaction is

to pay the seller for the electricity supplied, and the other transaction is to refund the

buyer the rest of the Ether they would have transferred to the smart contract. This is

in comparison to the single transaction for both successful and unsuccessful transactions

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 81

required by the proposed approach. The Ether is not transferred from the buyer’s account

until the conclusion of the transfer of electricity.

5.4 Smart Contract Functionality Testing

Figure 5.6: Smart contract test questions

The purpose of these tests is to check that each function in the smart contract performs

as expected. The test questions that need to be answered by the tests are shown in Figure

5.6. The tests are done by writing a test program that gives the smart contract known

data, with a known expected outcome. If the smart contract produces the expected

results, then the test is successful, but if the results deviate from the expected results,

then that means there is an error in the smart contract code. To carry out the test,

the smart contract is deployed to a Ganache test network. Ganache is a software that

simulates an Ethereum network, but it is not a blockchain network itself [113]. Truffle is

used to run the test scripts as it has the necessary tools for this purpose.

The first test was to check if the smart contract deploys correctly to the blockchain

and that it has a name. The test also checked that the listElectricity function worked as

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 82

expected. The test program simulated the creation of a new listing to see if the function

successfully created a new listing. The JavaScript code for the test to check for the

successful deployment of the smart contract is shown in Figure 5.7.

Figure 5.7: Test code to check smart contract deployment

The test method first checked if the smart contract was deployed properly to the

blockchain. This was done by checking if the smart contract has a valid address on the

blockchain to which it was deployed. The program retrieved the address of the smart

contract and checked if it was not null. The next step was to check that the smart

contract was deployed with the correct name. This test was done by retrieving the name

of the smart contract from the blockchain and comparing it to a string of the correct

name. If these values match, then the smart contract has the correct name. Figure 5.8

shows the results after running the test program. The test was successful as the smart

contract was deployed correctly to the blockchain, and the name matched as well.

Figure 5.8: Results after running test program

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 83

The next test was to check if the listElectricity function works correctly. The test

function for this operation is shown in Figure 5.9.

Figure 5.9: Test code to retrieve electricity listings

The test function tested if the smart contract could add a new listing, and it did this

by calling the listElectricity function of the smart contract. This function accepts two

arguments, the quantity, and the price. These two arguments were passed as strings by

the test program. The last part of the test function is to print the results of the operation,

and so if the listing is successfully added, it should be printed on the console. The results

of running the test program are shown in Figure 5.10.

Figure 5.10: Results after running test program to retrieve listings

The test function returned an array with the details of the listing. The array contained

data such as the block number of the block that contains this contract call transaction.

The array also had the transaction hash and the hash of the block. The “Result” sub-

block contained the details of the listing that was added. It had the quantity of 200 that

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 84

was specified in the test function and the address of the node that made the contract call.

The same test was done, but the quantity argument was left empty. The test returned

an error message, and the listing was not added to the smart contract. This is because

the listElectricity function first checks that the function call has the required number of

arguments and that these arguments are not equal to or less than zero. This shows that

this test was successful.

The next test was to check if the listing that had been added to the smart contract

could be retrieved and that it contained the information that was added in the previous

test. Figure 5.11 shows the code to perform this test.

Figure 5.11: Test code to check the accuracy of the data retrieved

The listing was first retrieved from the smart contract, and then each of its parameters

was compared to the known data that was entered in the previous test. The ID, quantity,

price, owner’s address, and whether or not the listing has been purchased were all checked.

The test only passes if all the comparisons return true. In this case, all the details of

the listing were correct, which means that the data was entered correctly on the smart

contract and could be successfully retrieved.

The last functionality test for the smart contract was to see if the seller was successfully

paid after a transaction. The test function for this purpose is shown in figure 5.12.

The first step was to get the account balance of the seller’s address before the transac-

tion. The web3 library was used for this purpose. After getting the balance, the paySeller

function of the smart contract was called. This function only takes one argument, which

is the ID of the listing that is to be sold, but a second argument can be passed to it.

The second argument contains the details of a transaction to transfer Ether from one

account to another. In this case, 1 Ether was to be transferred from the buyer’s account.

The address of the buyer was defined outside this test function as it is used in multiple

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 85

Figure 5.12: Test code to check if the seller is paid after a transaction

functions within the test program. The next step was to check the output of the trans-

action and compare it with known values to see if the transaction was successful. The

“purchased” parameter of the listing had changed from false to true to indicate that the

listing had been purchased. The next section of the test function retrieved the account

balance of the seller’s account after the transaction. This new account balance was then

compared to an expected balance which is the sum of the old balance and the price of

the electricity that the seller just sold. If these two balances match, this means that the

seller has received the Ether that was due to them, and the paySeller function of the

smart contract works as it should.

The test function for the purchaseFailed function of the smart contract was similar to

the test function for the paySeller function. The only difference was in the value that was

passed in the argument when calling the function. In the test function for an incomplete

transaction, the application called the purchaseFailed function with the ID of the listing

as the first argument and the details of a transaction to send Ether from the buyer’s

account. The value of the transaction was not 1 Ether as the transfer of electricity was

not completed. The value to be passed is instead received from the web application, and

to test the function, a value of 0.5 Ether was used. The result of the test after running it

through the Truffle test application, was the same as for the previous test as both tests

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 86

were for the transfer of Ether from one account to another.

5.5 Deploying the Smart Contract

After the smart contract had been successfully tested, the next step was to deploy it to

the private blockchain network. To deploy the smart contract, the Truffle application was

used. A configuration file that contains details about the deployment had to be created

first. This file is used by Truffle to identify the blockchain network to deploy the smart

contract to. Figure 5.13 shows part of this configuration file. The code snippet contains

network information about the deployment. The network id parameter is set to accept all

networks, but it can also be set to the specific network ID of the network where the smart

contract is to be deployed. This is not a problem, however, as the port parameter is used

to identify the network. Only a single blockchain network can use a port at any given

time, so Truffle will use the port to identify the network. The port that the blockchain

network should use was set when starting up the Geth console.

Figure 5.13: Snippet of the Truffle configuration file showing network settings

After setting these parameters, the smart contract could now be deployed to the net-

work using Truffle. Figure 5.14 shows the results after deploying the Marketplace smart

contract to the blockchain. The results contain some information about the deployment,

such as the account that deployed the smart contract to the blockchain, the smart con-

tract’s address on the blockchain, and the time it took for the smart contract to be

deployed. There is also some information relating to the cost of the deployment, such as

the gas price and the total cost of the transaction. After the smart contract was deployed

to the blockchain, the next step was to design the client-side application.

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 87

Figure 5.14: Results after successfully deploying the smart contract to the blockchain

5.6 Client-side Application

This section looks at the design and implementation of the client-side application for the

peer-to-peer energy trading system as well as other tools that enable users to use the

application. The client-side application serves two purposes in the application. The main

purpose is to call the functions in the smart contract according to the user’s commands as

well as interpret the data from the smart meter and give the user accurate feedback. The

secondary purpose of the client-side application is to provide the user with a user-friendly

interface that makes it easy to navigate the system.

5.6.1 Client-side Application and Smart Contract Interaction

This section looks at how the client-side application calls functions in the smart contract

and the technologies that are used to achieve this interaction. Both the backend and

the frontend for the client-side application were developed using React JS programming

language. React JS is a JavaScript library for building user interfaces, and it is used to

fetch data from both the smart contract and the smart meter and display it to the user.

The first step in building the backend of the application is to create the functions to call

the smart contract functions. The functions contained in the backend of the application

have the same names as those in the smart contract as each of these functions calls one

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 88

function in the smart contract. These functions also have the same number of arguments

as the ones in the smart contract, and they pass these arguments to the smart contract.

Figure 5.15 shows the code for one of the functions contained in the client-side application.

This function calls the listElectricity function in the smart contract, and it passes two

Figure 5.15: Code for the listElectricity function of the client-side application

arguments which are the quantity and the price. The function also passes an account

responsible for the transaction costs. This is because the process of adding a new listing

requires a smart contract call, and this has a transaction cost attached to it. The function

gets a receipt after calling the smart contract. This receipt from the smart contract is

either a notification of the success of the contract call or an error message if the process

was not successfully completed. The setState function is an inbuilt React JS function

that tells the browser to re-render the page because of a change that has been made. This

is necessary so that the web page automatically refreshes after a new listing is added.

5.6.2 Client-side Application Frontend

The purpose of the frontend of the web application is to provide the user with a user-

friendly interface that allows them to interact with the system. This means that the

frontend of the application should support all the major functions of the system, such as

allowing a seller to list electricity for sale and for a potential buyer to view all the listings

and be able to purchase electricity. The application should also be able to facilitate the

payment for the transaction between the buyer and the seller. To do this, Metamask is

used.

Metamask

Metamask is one of the smart contract tools that were specified in the software ar-

chitecture. It is a browser extension that allows interaction between users and Ethereum

blockchain networks through a web browser. Metamask comes preconfigured with the

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 89

Ethereum Mainnet as well as the other popular test networks, but it also allows users

to add other networks. Figure 5.16 illustrates how users can add the private blockchain

network on Metamask. The user just needs to know the RPC port that the blockchain

network is running on and the network ID of the blockchain network. The other thing

that the user needs to add to their Metamask is their Ethereum account. Metamask al-

lows users to upload their encrypted private key, which is unlocked when the user enters

their password that was set when the account was created.

Figure 5.16: Screenshot showing the parameters required to add a network to Metamask

Every user in the system needs to have Metamask set up on their browser if they

intend to use the peer-to-peer energy trading system. This is because some of the data

that is displayed on the web application has to be retrieved from the blockchain, and

access to it is only restricted to members of the blockchain. A function to check that the

browser has support for Ethereum distributed applications is included in the client-side

application. Some browsers have native support for Ethereum applications, but some

like Chrome require a third-party application such as Metamask in order to be able to

interact with Ethereum networks. The code for the function is shown in Figure 5.17.

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 90

This function is called when a user tries to access the web application. Metamask then

checks if the account that was added to it is a part of the blockchain network that the

smart contract was deployed to.

Figure 5.17: Code for checking if the browser supports Ethereum distributed applications

The function first checks if the browser has support for the versions of Ethereum that

are still supported, and if it does, then the application loads as it should. If the browser

does not have the newest versions of Ethereum, the function then checks if the browser

has support for the legacy versions of Ethereum. If it does, then the function calls the

appropriate function from the legacy version of Ethereum to allow the application to load

correctly. If both these checks fail, the function returns an alert window informing the

user that their browser is not supported and, therefore, the application will not be able

to run on that browser

User Interface

The user interface of the client-side application consists of a single page where sellers

list electricity for sale, and potential buyers are able to view these listings as well as

purchase electricity. Figure 5.18 shows the user interface of the system with one listing

already added. The address of the Ethereum account that the user logged into Metamask

with is retrieved and displayed on the navigation bar.

The application is divided into three sections. The first section is where a user intend-

ing to sell electricity adds a new listing. This section has two text boxes where the user

enters the amount of electricity that they intend to sell and the price of the electricity.

The button calls the listElectricity function of the client-side application, which in turn

calls the smart contract function of the same name. The values entered in the text boxes

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 91

Figure 5.18: Screenshot of user interface of the web application

are passed as the arguments along with the Ethereum address that appears at the top of

the web page.

The next section of the web page contains a list with the details of each listing. Each

listing has an ID, the quantity, the price, and the address of the seller. Each listing

also has two buttons. The first button is the Buy button, and this is where a potential

buyer clicks if they want to purchase electricity. When clicked, this button calls the

purchaseElectricity function of the client-side application. This function will then do two

actions. It will communicate with the seller’s microcontroller to transfer electricity to

the buyer, and it will also call the purchaseElectricity function of the smart contract.

The Remove button removes the listing from the client-side application. This is done by

changing the purchased status of the listing to true. The client-side application will first

verify that the address of the seller that is retrieved from the blockchain matches with the

address that is retrieved from Metamask. If the addresses match, then this will confirm

that the user is the owner of the listing; otherwise, they will receive an error message.

The last section of the web page is used to display the electricity balances of all the

sellers that have a listing in the system. This is to aid all potential buyers to verify

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 92

that the seller they are buying from has enough electricity that they intend to sell. This

section is populated with data from the smart meter.

5.7 Client-side Application Access Control

Access to the client-side application is restricted, and only participants in the private

blockchain network should be able to access the application. To enforce access control,

Metamask is used. Metamask first verifies that a user has the private key to the account

that they add and that they have the correct password to decrypt this private key.

Metamask will then check that the account is a node in the network that is running on

Metamask, and it also retrieves the account balance of the node in the network. The

client-side application leverages these features of Metamask to eliminate the need for

extra access control mechanisms on the application. The web application first retrieves

the details of the account from Metamask and checks if it is connected to the network

running on Metamask. The application will only proceed if the account is connected to

the account running on Metamask. The application will then check that the network

that is running on Metamask is the same network as the one where the smart contract

was deployed. This also has to be true for the application to load the data from the

blockchain. This means that if a user tries to cheat the system by connecting to the

Mainnet, for example, the second condition will not be met as the smart contract is not

deployed to that network, and so the application will not load. This security feature will

be tested fully during the testing phase.

5.8 Conclusion

The smart contract has been designed and tested and then deployed to the private

blockchain network after passing all the test scenarios. The client-side application has

also been developed and integrated with the smart contract. The next step is to config-

ure the hardware components and integrate it with the smart contract and the client-side

application.

CHAPTER 5. SMART CONTRACT IMPLEMENTATION 93

Chapter 6

Hardware Implementation

In this chapter, the final module of the peer-to-peer energy trading system which consists

of the hardware components is introduced. In this chapter, the hardware components

will be identified, configured and integrated into the proposed system.

6.1 Hardware Components Considerations

In this section, the technical requirements for each hardware component will be specified,

and a choice will be made for the exact hardware components that will be used in the

peer-to-peer energy trading system.

6.1.1 Smart Meter

The purpose of the smart meter in the system has already been outlined, and there are

multiple smart meters that can serve this purpose. There are, however, a few technical

specifications that the smart meter should meet. The first aspect to take into consider-

ation is the parameters that the smart meter measures. Most smart meters measure the

basic electrical parameters such as voltage, current, and power, but some smart meters

go above and beyond this and use the figures for these parameters to calculate other

useful values like the amount of electricity used over a period of time. Another important

consideration is the power requirements of the smart meter. The system to be developed

is a small-scale prototype of the real-world system, and so the smart meter needs to be

energy-efficient so that it does not consume a huge portion of the energy that is produced

in the system.

94

The smart meter also needs to be able to handle a wide range of voltages so that

the system can be scalable without making too many design changes. The last technical

requirement is that the smart meter should be customizable to suit different requirements.

That means that it should be possible to change the firmware that comes pre-installed

on the smart meter in order to increase the number of possible application areas for the

smart meter. Some smart meters come installed with firmware that does not support

HTTP, for example, but a simple change in the firmware can add this functionality. The

Sonoff POW R2 smart meter meets the criteria for the ideal smart meter, and so it is

used in the system.

6.1.2 Microcontroller

The microcontroller contains the program logic for the hardware components of the sys-

tem. The microcontroller receives instructions from the client-side application to open a

particular relay which will transfer electricity to the node that that relay is connected to.

Therefore the microcontroller has to have internet capabilities in order to receive these

instructions. It also needs to have general-purpose input/output (GPIO) pins, as these

are used to control the relays. The microcontroller only needs to have digital GPIO pins

as they are only used to send on/off signals to the relay as opposed to other operations

that require analogue signals.

There are various microcontrollers that are suitable for this purpose, but the Rasp-

berry Pi is the most appropriate choice as it also serves another purpose in the system.

The Raspberry Pi is used in the system as the nodes in the blockchain network, and so

to reduce the number of hardware components in the system, the Raspberry Pi is also

used as the microcontroller for the hardware part of the system.

6.1.3 Battery

The main requirement for the battery is a known or easily measurable capacity. This

eliminates the need for a different meter to measure how much power is left in the battery

at any given point. Another requirement for the battery is for it to have different input

and output ports. This is because, typically, batteries with one set of input and output

CHAPTER 6. HARDWARE IMPLEMENTATION 95

terminals cannot transfer energy to one another unless one of them has a higher voltage

than the other. This is because current only flows from high potential to low potential,

and this means that if two batteries both have 12 Volts, they cannot charge each other

unless one of the two voltages is stepped up using a DC-DC voltage converter [114]. The

same also applies when trying to charge a battery with a higher capacity from a battery

with a lower capacity.

Figure 6.1: Power bank used in the peer-to-peer energy trading system

To avoid having to use a DC-DC voltage converter on every battery in the system,

a power bank is more ideal. A power bank is a portable battery with an electric circuit

for controlling the power going in or out of it. It is more suitable for this purpose than a

standard battery because it has separate input and output ports. This allows it to charge

other batteries regardless of their capacities. This means a power bank can charge a

battery with a much larger capacity than its own as well as one with the same or smaller

capacity. The output port of a power bank allows it to discharge until it is empty. This

means it can power a load like a normal battery until it is empty, and the output ports

can also be used to charge other batteries. Figure 6.1 shows an image of one of the power

banks used in the system.

CHAPTER 6. HARDWARE IMPLEMENTATION 96

6.2 Sonoff POW R2 Smart Meter

The Sonoff POW R2 is a smart meter that monitors home energy usage. It can also

be used as a smart switch as it can also stop current from flowing through it. The

Sonoff smart meter measures the current, power, and voltage that flows through it. It

connects to a Wi-Fi network which allows a user to control it remotely and view the

information that the smart meter captures from another device. The Sonoff smart meter

only measures the current that flows in a single direction, and so two smart meters are

used for each node. The first smart meter records the amount of energy that is being

used by the node, and the second smart meter is used to measure the energy that is going

into the node’s battery from other nodes.

6.2.1 Sonoff Smart Meter Schematic

This section takes an in-depth look the components that make up the Sonoff POW R2

smart meter. Figure 6.2 below shows some of the components that make up the smart

meter.

Figure 6.2: Components of Sonoff POW R2 smart meter

CHAPTER 6. HARDWARE IMPLEMENTATION 97

1. ESP8266 Microcontroller

The Sonoff POW R2 uses an ESP8266 microcontroller. The ESP8266 contains an

80MHz processor, 32 KB of RAM, and 16 GPIO pins [115]. It also has an inbuilt

Wi-Fi microchip which allows it to connect to networks using the IEEE 802.11

b/g/n protocols, and it also comes with a full TCP/IP stack.

2. Flash Memory

The Sonoff smart meter comes with 32M-bit flash memory that holds the firmware

for the smart meter. Flash memory is a low-cost non-volatile type of memory that

can be erased and reprogrammed electrically [116]. It is an example of electronically-

erasable programmable read-only memory (EEPROM). The smart meter also has

serial ports, as shown in the figure below. These serial ports allow the smart meter

to be connected to a computer where this flash memory can be reprogrammed with

custom software.

Figure 6.3: Top view of Sonoff POW R2 smart meter

Figure 6.3 above shows the top section of the Sonoff POW R2 smart meter. It contains

the serial ports, a switch, and some LED lights that show the state of the smart meter.

CHAPTER 6. HARDWARE IMPLEMENTATION 98

The smart meter also has a relay that allows it to operate as a remote switch, and it also

contains a step-down transformer. A transformer is an electrical device that transforms

electrical power from one voltage and current setting to another. A step-down transformer

decreases an incoming current’s voltage, and in the Sonoff smart meter, it is used to reduce

the voltage to a level that is suitable for the components of the smart meter as a higher

voltage may damage them.

6.2.2 Sonoff POW R2 Technical Specifications

The Sonoff POW R2 has an ideal operating range for different parameters as shown in

Table 6.1. The smart meter should not be used outside of these parameters as it might

damage the smart meter and put the user at risk of exposure to electrical current.

Parameter Description
Voltage Range 100V – 240V AC
Maximum Current 15A
Maximum Power 3500W
Operating Temperature 0°C to 40°C
Operating Humidity 5% to 90% Non-condensing

Table 6.1: Sonoff POW R2 technical specifications [117]

6.2.3 Sonoff POW R2 Wireless Specifications

Table 6.2 below describes the network standards that the Sonoff smart meter uses.

Parameter Description
Wireless Frequency 802.11 b/g/n
Security Mechanism WPA-PSK/WPA2-PSK
Frequency Range 2.4GHz – 2.5GHz
Network Protocols IPv4, TCP/UDP/HTTP/FTP

Table 6.2: Sonoff POW R2 wireless specifications [117]

6.3 Sonoff POW R2 Firmware

The Sonoff smart meter comes pre-installed with the official Sonoff firmware. The pre-

installed firmware has a number of disadvantages, and the main one is that it can only

CHAPTER 6. HARDWARE IMPLEMENTATION 99

connect to one application called eWeLink. This application is very restrictive in what it

allows the user to do with the smart meter. It shows the user the readings of the meter,

but it cannot be integrated with other systems. The application is essentially a remote

LED screen that just shows the readings of the smart meter but does not give a user

an option to do anything with that information. The firmware also prevents the smart

meter from sending out its readings to any other application, and so some of the data

transmission protocols that the smart meter contains are used for one-way communication

from the smart meter to the application.

For this reason, the smart meter has to be configured with firmware that offers more

options, such as querying the smart meter in real-time or storing the readings at a fixed

interval to a remote database. The Sonoff smart meter has electronically-erasable flash

memory and has serial ports that enable it to be connected to a computer to change the

firmware. The Tasmota firmware is the ideal firmware for this device.

6.4 Tasmota Firmware

Tasmota is an open-source firmware made specifically for ESP8266-based devices by Theo

Arends [118]. It offers HTTP and MQTT network protocols that enable the devices to

be controlled remotely. Tasmota has a web-based interface where the user can view

information about energy usage and configure the device. Figure 6.4 below shows the

home screen for the Tasmota web application after flashing the firmware onto the Sonoff

smart meter.

The first section contains information about power usage. The Sonoff smart meter

measures the voltage, current, and power flowing through it. The Tasmota firmware then

uses these values to calculate the following parameters.

1. Reactive Power

Reactive power (Q) is the power that continuously bounces back and forth between

the source and the load [119]. Reactive power is an important part of voltage control

as it can be increased and decreased to keep the voltage going to the load constant

and within the accepted voltage range of the load. Equation 6.1 below shows the

CHAPTER 6. HARDWARE IMPLEMENTATION 100

formula for calculating reactive power where V is the voltage and I is the current.

Q = V Isinθ (6.1)

2. Apparent Power

Apparent power (S) is a product of the current and the voltage if and only if the

phase angle differences between the voltage and the current are ignored [120]. It is

also known as the demand, and it is the measure of the amount of power that is

used by a load during a particular time. The formula for apparent power is shown

in Equation 6.2 where V is the voltage and I is the current.

S = V I (6.2)

3. Power Factor

Power factor (Pf) is the ratio of working power to apparent power [121]. The

formula for the power factor is shown below.

Pf = P/S (6.3)

The Tasmota firmware also utilizes the memory of the Sonoff smart meter to store

information about the total energy used on that particular day and on the previous day.

The smart meter also stores the total energy that has been used since the smart meter

was powered on. However, all this data is stored in an erasable storage location within the

smart meter, and so it is lost when the smart meter is reset. To preserve this data, a more

permanent storage solution such as cloud storage has to be used. The data collected by

the smart meter is used to determine how much energy is remaining in a node’s battery.

The battery’s maximum storage capacity is stored in the database, and the smart meter

updates this figure as the load uses up energy or as energy goes into the battery. The

value in this field is calculated by first converting the value in the “Energy Total” field to

Ampere-hours (Ah) and then subtracting it from the known capacity of the battery. The

values stored in the smart meter can be queried using two protocols, namely MQTT and

HTTP, but MQTT is the chosen protocol for this purpose for reasons stated in section

3.7.1.

CHAPTER 6. HARDWARE IMPLEMENTATION 101

Figure 6.4: Tasmota web interface home page

6.4.1 Tasmota MQTT Configuration

The first thing is to configure the IP address and the port of the MQTT broker. The

configuration page on the Tasmota web interface is shown in Figure 6.5. The Sonoff smart

meter operates as both an MQTT publisher and a client, which means it can transmit

messages to the broker and also receive messages from other publishers. The topic that

the smart meter broadcasts to is also set in the MQTT configuration, and in this case,

the topic is called sonoff-pow1. Any client that subscribes to this topic will be able to

receive the messages that are broadcast by the smart meter. To uniquely identify each

smart meter in the system, they will all have a different topic to enable a client to know

which smart meter broadcast the message.

The smart meter can also subscribe to a topic which allows it to receive commands

from elsewhere. This enables the smart meter to be switched on and off remotely through

CHAPTER 6. HARDWARE IMPLEMENTATION 102

Figure 6.5: Tasmota MQTT configuration

MQTT. The rate at which the smart meter broadcasts data to the MQTT broker is also

configured on the Tasmota web interface, as shown in Figure 6.6. The telemetry period

can be set to a high-frequency rate due to the low bandwidth usage of the MQTT protocol,

and in this case, it has been set to send data every 30 seconds.

Tasmota provides a console log that shows the data that is being transmitted from

the smart meter. Figure 6.7 below shows the log of the smart meter on the Tasmota web

interface.

The MQTT topic is shown on the log, and in this case, it queries the state of the

smart meter and returns a result in JSON format. The same JSON data is transmitted

to the MQTT broker, where it is broadcast to the clients. The data that is sent by the

smart meter is shown more clearly in array form in Figure 6.8 below.

The MQTT broker that is used is the Mosquitto MQTT broker. It is an open-source

message broker that receives messages from publishers and distributes them to the clients

CHAPTER 6. HARDWARE IMPLEMENTATION 103

Figure 6.6: Tasmota time period configuration

that have subscribed to that topic.

Figure 6.7: Data log on the Tasmota console

6.5 Storing Smart Meter Data to a Database

Once the smart meter is transmitting data to the MQTT broker at fixed intervals, the

next step is to save the data to the database. MySQL database is used to store the data

that is received from the smart meters, but the Mosquitto MQTT broker does not have

CHAPTER 6. HARDWARE IMPLEMENTATION 104

Figure 6.8: Screenshot of data sent by the smart meter

the functionality to add data that is received from publishers to a database. This has

to be done on the client-side of the MQTT architecture. The client has to be able to

subscribe to a particular topic on the broker and receive messages from a publisher. The

client must also be able to save this data to a database when it receives it.

A suitable client for this purpose is the Node-Red application. Node-Red is a web-

based development tool for visual programming, and it uses flows to develop programs

for linking APIs, online services, and hardware devices [122]. The first thing to do on

the client is to add the same MQTT broker as the one on the smart meter. If the

client connects to the broker that means it can now publish messages to that broker and

subscribe to topics sent to the broker from other publishers. Figure 6.9 below shows the

Node-Red flow for listening for messages from the smart meter.

Figure 6.9: Node-Red flow for subscribing to smart meter MQTT topic

The MQTT topic that the Node-Red client has subscribed to is the same topic that

was specified on the smart meter, which means the client can now receive messages that

CHAPTER 6. HARDWARE IMPLEMENTATION 105

are sent by the smart meter through the sonoff-pow1 topic. The next part of the flow

is to check if the data that has been received is in JSON format. If it is not, then it is

first converted to JSON format before it is printed to the Node-Red console. Figure 6.10

below shows the console of the Node-Red client when the smart meter is configured to

transmit data every 60 seconds.

Figure 6.10: Console of Node-Red client subscribed to smart meter MQTT topic

The data is being successfully received by the Node-Red client, and the next step is

to save it to the database. The database, in this instance, serves the simple purpose of

storing how much energy a user has used, how much energy they have left, and the time

this information was last updated. This is to enable a potential buyer to have enough

information about whether or not a seller has enough energy to complete the transaction.

The Node-Red flow for saving data to a MySQL database is shown in Figure 6.11.

The flow to add the smart meter data to the database first receives the data in a

message from the MQTT broker using the sonoff-pow1 topic. The data is then converted

to JSON format before it is passed through a function that contains the SQL statement

to update the database with the given values. This flow is executed every time the smart

meter sends data to the MQTT broker. Each smart meter in the system has its own

CHAPTER 6. HARDWARE IMPLEMENTATION 106

Figure 6.11: Node-Red flow for saving data to a database

flow in the Node-Red client, as shown in Figure 6.12 below. The different flows represent

the different topics that the client is subscribed to. Each smart meter has a different

topic name which acts as a unique identifier for the smart meter in the system and is

used by the Node-Red client to know which record to update in the database. When a

particular smart meter sends an update to the MQTT broker, the Node-red client receives

it through the flow that is subscribed to that topic and updates the record in the database

corresponding to that smart meter.

6.6 Energy Transfer

This section details the physical transfer of energy from the seller’s battery to the buyer’s

battery when the buyer initiates a purchase on the web-based application. Each node

consists of a battery, a Raspberry Pi microcontroller, and a relay for every other node

that is in the system. Figure 6.13 below shows how the components are connected to

each other within a single node as part of a system with two other nodes.

The battery powers the microcontroller. The first smart meter is connected to the

battery’s output terminals to measure the current that is leaving the battery to the load

or to other nodes during a transaction. The second smart meter is connected to the

battery’s input terminal so that it measures the energy that goes into the battery when

energy is purchased from another node. The relays each have a power, ground, and signal

terminal. These terminals are connected to the GPIO pins on the Raspberry Pi. The

relay’s power terminal is connected to one of the two 5V pins on the Raspberry Pi, and

CHAPTER 6. HARDWARE IMPLEMENTATION 107

Figure 6.12: Multiple Node-Red flows for saving data from multiple smart meters to a
database

the ground terminal of the relay is connected to a ground pin on the Raspberry Pi. The

signal terminal is connected to one of the digital pins on the Arduino. Different relays

can share the same 5V and ground pins on the Raspberry pi, as illustrated in Figure 6.14.

This is because the relays are activated at different times, and so only one relay draws

power from the 5V pin at a time.

Each node’s microcontroller has a script that opens the appropriate relay and transfers

energy to the battery that is connected to that relay. Each node has a specific GPIO

pin, and every other node uses that pin to identify that node. An example is a node

using GPIO pin 23. This means that the signal terminal on relays connected to that

node will be connected to that pin on every other node. In the MySQL database, there

is a field that contains a node’s GPIO pin so that the web application can identify that

node and transfer energy to it. When a buyer purchases energy from a seller, a command

is sent to the seller’s microcontroller to open the relay that is connected to the buyer’s

CHAPTER 6. HARDWARE IMPLEMENTATION 108

Figure 6.13: Connection of components on a single node

battery and allow energy to flow from the seller’s battery to the buyer’s battery. This

command passes two values to the script. It passes the GPIO pin number that the relay

is connected to as well as the amount of energy to transfer.

6.7 Measuring Energy Transferred

To reduce the complexity of the prototype system, a simple method is used to measure the

amount of energy that is transferred from the seller’s battery to the buyer’s battery. The

known output amperage of the battery is used together with measuring the connection

time to calculate the amount of energy that has been transferred. This calculation is

done using the formula for charge which is shown below, where q is the charge in Ah, I

is the current in Amps, and T is the time in hours.

q = IT (6.4)

A battery with an output of 1.2A transfers 1200mAh of energy in an hour, and so if a

CHAPTER 6. HARDWARE IMPLEMENTATION 109

Figure 6.14: Connection of multiple relays to the same ground and 5V terminals

buyer purchases 200mAh of energy, then the relay connecting the seller’s battery output

and input of the buyer’s battery will have to be open for 10 minutes using the calculation

below.

q = IT

T =
q

I

T =
0.2

1.2

T =
1

6
hours

t =
1

6
(60)

t = 10minutes

The value of t is converted to seconds first and is then passed by the web application

to the script on the seller’s microcontroller. The script is then executed on the microcon-

troller, and the transfer of energy begins. The transfer of energy goes on for the amount

of time that is specified when the script is executed. Once the time has elapsed, the

microcontroller closes the relay, and the transfer of energy stops.

CHAPTER 6. HARDWARE IMPLEMENTATION 110

6.8 Checking Transaction Status

On the buyer’s side, the smart meter records the energy that is coming in and sends

that data to the database every 30 seconds during the transaction. After the specified

time has elapsed, the system checks how much energy passed through the buyer’s smart

meter and compares that figure to the expected amount of energy that was supposed to

be transferred. During the transfer of energy, some of it is lost as it is converted to heat

in the conductors connecting the two points, and so this is taken into account when the

system checks if the transaction was completed successfully. Due to the short distance

between the seller and the buyer’s battery in the prototype, the acceptable level of energy

losses is 5% which means that if the buyer’s battery receives less than 95% of the energy

that they purchased, then that transaction is considered to be incomplete and the buyer

receives a refund for the energy that they did not receive. In the previous example, where

a buyer purchases 200mAh from a seller, it means that the buyer has to receive at least

95% of the energy they purchased for the transaction to be considered successful. That

equates to 190mAh, and if the buyer receives less than that in the specified 10 minutes,

then the system assumes that something went wrong during the transfer, and the buyer

will only pay for the energy that they received.

6.9 Conclusion

The hardware components of the peer-to-peer energy trading system have been identified

and set up. They have been individually configured and tested and the smart meter has

been successfully tested. The next step is to test the system as a whole with multiple

nodes to see if it performs as it should.

CHAPTER 6. HARDWARE IMPLEMENTATION 111

Chapter 7

System Testing

The main aim of this chapter is to conduct a series of tests on the peer-to-peer energy

trading platform under various conditions to see if it functions as intended and that the

various components of the system have been integrated in a correct manner.

7.1 Test Set-up

This section details the blockchain and hardware set-ups for the tests to be conducted.

The test set-up consists of three nodes that have different roles in the system. The

web-based application and database are deployed to a separate computer that simulates

the function of a cloud-based service provider. This computer does not have any other

functions in the system except to host the database and the application.

7.1.1 Blockchain Network Set-up

Model Raspberry Pi 3 Model B+
Processor Broadcom Cortex-A53 64-bit @ 1.4GHz
Memory 1GB LPDDR2 SRAM
Connectivity 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN
SD Card 64 GB Micro SD class 10 @ 95MB/s read speed
Input Power 5V/2.5A DC

Table 7.1: Raspberry Pi 3 Model B+ Specifications [123]

The blockchain network that was created previously was used, and it had three nodes

that were part of the network. The network uses the proof of authority consensus mech-

anism with a block creation period of 15 seconds. Two out of the three nodes were sealer

112

nodes meaning they were able to validate blocks of transactions. All the three nodes were

running on Raspberry Pi computers, whose technical specifications are shown in Table

7.1 above.

Each node had one account on it, and the public addresses of these nodes are shown

below, together with the role of the node in the network and its listening port.

Node 1

• Ethereum Address: 0xE91d849375e8bA9c0b83b2c8006dd4EC3cA71A29

• Port: 3011

• Role: Sealer node

Node 2

• Ethereum Address: 0xED5d358F2BE4Ae971ECa8e2Da7DC5677d177aa69

• Port: 3012

• Role: Sealer node

Node 3

• Ethereum Address: 0x86CE3b9540eD1727D55336baeaB70Aa8d5d02A01

• Port: 30303

• Role: None

7.1.2 Hardware Set-up

The hardware configuration consists of three nodes, namely Node 1, Node 2, and Node

3, as shown in Figure 7.1. Each node has a Raspberry Pi microcontroller, a battery, two

relays, and two smart meters. The relays are connected to each of the other nodes in the

system. One smart meter is connected between a node’s battery, and its microcontroller,

which acts as the load, and the other smart meter is connected between the node’s battery

and relays from other nodes. The second smart meter is used to verify that a node receives

the correct amount of energy during a transaction. Each node has a dedicated GPIO pin

CHAPTER 7. SYSTEM TESTING 113

Figure 7.1: Hardware set-up of three nodes

in the system which means that the signal terminal of all the relays that lead to a node’s

battery are connected to the same GPIO pin. An example is Node 1 that uses pin 12,

and so the relays that lead to Node 1’s battery on both Node 2 and Node 3 are connected

to GPIO pin 12 on their microcontrollers. Each node’s GPIO pin and the capacity and

output current of their batteries is shown below.

Node 1

• GPIO pin: 12

• Battery Capacity: 5000mAh

• Current Output: 2.1A

Node 2

• GPIO pin: 16

• Battery Capacity: 1200mAh

• Current Output: 1A

Node 3

CHAPTER 7. SYSTEM TESTING 114

• GPIO pin: 18

• Battery Capacity: 1200mAh

• Current Output: 1A

7.2 Adding New Listing

The first test is for adding a new listing to the system. There is already one listing that

was added by Node 1, as shown in Figure 7.2. Node 2 intends to sell 150mAh of energy

for 3 Eth, and so they use the web application to list the energy.

Figure 7.2: Adding new listing through the web-based application

Since there is already a listing on the application, the current electricity balance of

the seller is retrieved from the database and displayed on the application. Once the user

on Node 2 clicks on the “Add Listing” button, a Metamask window pops up, as shown in

Figure 7.3. The Metamask window shows the type of transaction that the user is trying

to initiate, which in this case is a contract interaction meaning it is a smart contract call.

The window also shows the transaction cost that the user must pay to add the listing to

the smart contract.

CHAPTER 7. SYSTEM TESTING 115

Figure 7.3: Transaction fee for adding a new listing

Once the user clicks on confirm, the transaction is initiated on the blockchain. That

means that the transaction is added to a candidate block and waits to be validated. The

waiting time in this instance can be up to 15 seconds since that is the block creation

interval that was specified in the genesis file. When the block containing the transaction

has been validated, Metamask sends a notification to the user through the browser, as

shown in Figure 7.4.

Figure 7.4: Browser notification from Metamask after the transaction is added to the
blockchain

When the transaction was confirmed, the new listing appeared on the web-based

application as shown in Figure 7.5. Like the first listing, the new listing also has details

such as the address of the seller, a listing ID, the quantity and price of the energy,

CHAPTER 7. SYSTEM TESTING 116

and options to buy and delete the listing. Since it was Node 2‘s first listing, the system

retrieved its electricity balance from the database and displayed it on the web application

so that potential buyers could see whether or not the seller had enough energy in its

battery to complete the transaction.

Figure 7.5: Web-based application after the listing is added

7.3 Making a Purchase

This section involves testing the client-side application by making a series of purchases

of energy from the web-based application. The first transaction was not interrupted so

as to see how the system handles such a transaction, and the second one was interrupted

to see how the system works under those conditions.

7.3.1 Complete Transaction

The first transaction involves Node 1 purchasing the energy listed by Node 2. To verify

the amount of energy that is transferred during the transaction, the starting values need

CHAPTER 7. SYSTEM TESTING 117

to be known. Figure 7.6 below shows a screenshot of the database table that shows the

amount of energy that is each node’s battery before the start of the transaction.

Figure 7.6: Database table showing the energy balances of all three nodes

Node 1, which is identified by the name of its MQTT topic sonoff-pow1, has 4845mAh

of energy in its battery before the transaction, and the seller, which is Node 2, has 852mAh

of energy. Node 1 initiates the transaction by clicking on the “Buy” button for the energy

that was listed by Node 2. This action prompts the system to start the transfer of energy

from the seller’s battery to the buyer’s battery. The application retrieves the buyer’s

GPIO pin number from the database as well as the seller’s IP address and the current

output of their battery. The application then calculates the amount of time that the

transfer of energy will take using the formula q = IT , and in this case, the time is 9

minutes. The application then sends a command to the seller’s microcontroller to open

the relay on the specified GPIO pin, which in this case is pin 12. The amount of time

that the relay should be open for is also passed as one of the parameters.

Figure 7.7: Web application after successful transaction

After the specified time has passed, the system then retrieves the updated energy

balances for both the buyer and the seller and compares them with how much energy they

CHAPTER 7. SYSTEM TESTING 118

should have after a successful transaction. Both figures are in the acceptable range, as

shown in Figure 7.7 above, and so the transaction is considered successful by the system,

which then transfers the 3 Ether plus transaction charges from the buyer’s account into

the seller’s account. A screenshot of Metamask showing the details of the transaction is

shown in Figure 7.8 below. The smart contract also changes the value of the owner of

the listing from the seller to the buyer, and so the address of the buyer is the one that

now appears on the listing’s details in the application. This is to enable the buyer to be

able to delete the listing as only the owner of the listing can delete it. The “Buy” button

also disappears as the energy has been purchased.

Figure 7.8: Metamask screenshot showing transaction details

7.3.2 Incomplete Transaction

The test for an incomplete transaction involves Node 3 purchasing the energy listed by

Node 1, but unlike the previous transaction, the cable connecting Node 1’s battery to

Node 3’s battery will be disconnected during the transfer of energy. This is to see how

the system handles such a situation. Node 3 will purchase the 200mAh of energy listed

by Node 1, and the amount of energy in both batteries before the transaction is shown

in Figure 7.9.

CHAPTER 7. SYSTEM TESTING 119

Figure 7.9: Database table showing energy balances of all the nodes before the start of a
transaction

Node 1’s battery has a current output of 2.1A which means it will take 5 minutes and

42 seconds to transfer 200mAh of energy to Node 3’s battery. For the transaction to be

considered successful, that means that at least 95% of the 200mAh has to be received by

the buyer from the seller. If this does not happen, then the transaction is considered to

have failed, and the seller does not receive the full amount for the energy. Instead, the

system should calculate how much is due to the seller based on how much energy was

successfully transferred.

In this test, Node 3 will make the purchase as before, but the transfer of energy will

be interrupted exactly 2 minutes after it begins. The time that the energy is transferred

is known in this instance so as to have a known outcome that the system should produce.

If the relay is open for exactly 2 minutes, then the amount of energy that is transferred

in that period from a battery with an output current of 2.1A is calculated below.

q = IT

q = (2.1)
2

60

q =
2.1

30

q = 0.07

q = 70mAh

This means that 70mAh is transferred in that period out of the total figure of 200mAh.

Instead of transferring the full 2 Eth to the seller, the system will calculate the amount

due to the seller from the amount of energy that was transferred. This calculation is

shown below.

CHAPTER 7. SYSTEM TESTING 120

Amount due =
energy transferred

total energy due
(original price)

=
70

200
(2)

= 0.70 Eth

This means that the smart contract has to transfer 0.70 Eth to the seller after the

transaction interval has passed. Now that the desired outcomes are known, the next step

is to carry out the actual test and observe the results.

Figure 7.10: Database table showing energy balances 6 minutes after transaction started

Figure 7.10 above shows a screenshot of the database table that contains the energy

balances approximately 6 minutes after the transaction was initiated. From the balances

of the two nodes involved in the transaction, it is clear to see that not the full 200mAh

was transferred from Node 1 to Node 3. Therefore not the full amount was due to the

seller since the transaction was not completed.

Figure 7.11: Metamask screenshot showing the amount paid to the seller and transaction
cost

The system calculates the amount due to Node 1, and in this case, it is 0.7 Eth. This

amount is passed to the smart contract call, which then initiates the transfer of funds

CHAPTER 7. SYSTEM TESTING 121

from Node 3’s account to Node 1. The Metamask transaction receipt is shown in Figure

7.11. The smart contract transfers the amount owed to the seller and also deducts the

transaction cost from the buyer’s account.

Figure 7.12 shows the web application after the incomplete transaction has been

concluded. The smart contract function that handles incomplete transactions receives

the amount that is due to the seller and updates the price on the listing. The status of

the listing is also changed to show that it has been purchased, and so the buy button

disappears from the listing. The address of the owner of the listing changes to reflect

the address of the buyer. The electricity balance of Node 1 also disappears from the web

application since they do not have any listings on the application.

Figure 7.12: Web-based application after conclusion of the transaction

7.4 PoA-based Blockchain Resource Usage

This section looks at the amount of computer resources that the blockchain network

uses to demonstrate that the system can be run on low-specification computers like a

Raspberry Pi. To show this, the amount of RAM and the portion of the processor being

used by the peer-to-peer energy trading system were observed.

CHAPTER 7. SYSTEM TESTING 122

7.4.1 Resource Usage by non-Sealer Node

The first test was conducted on a non-sealer node to see how much computer resources

the node uses when the system is running. In the test set-up there is only one non-sealer

node which is Node 3 and so that node was used to conduct this test.

Figure 7.13: Resource usage on Node 3

Figure 7.13 shows the processes that were running on Node 3 during the test. The

blockchain network used the most resources out of all the processes but the actual amount

of computer resources that it was using were still very low. It used almost 19% of

RAM which amounts to approximately 190 MB of RAM. This is a low figure by modern

standards and the proportion of CPU usage seems high but that is because the test

computer only had a 1.4GHz processor which is lower than what modern smart phones

have. A Chromium browser was also running on the computer and it had a single tab

open that was running the web-based application.

7.4.2 Resource Usage by Sealer Node

The next step was to check how much computer resources are used by a sealer node. The

most important thing to check for here was how much extra resources it takes to validate

blocks.

Figure 7.14 shows the resource usage on Node 1 which was used to conduct the test.

The major observation was that the blockchain network uses more memory on sealer

nodes than on non-sealer nodes. The memory usage on sealer nodes was approximately

double that of non-sealer nodes with a range of between 350 MB and 450 MB. This is very

low for a full node that validates blocks because the minimum requirements for the PoW-

CHAPTER 7. SYSTEM TESTING 123

Figure 7.14: Resource usage on a sealer node

based Ethereum Mainnet are at least 4 GB of RAM [124]. This means that a PoA-based

blockchain network uses significantly less resources than a network that uses the PoW

consensus mechanism. The CPU usage for a sealer node did not change from that of a

non-sealer node. The variance between Node 1 and Node 3 during the test was within an

acceptable range to conclude that there was no difference. This is because even though

Node 1 validates blocks, this validation does not involve any complex computations and

so there is very little extra CPU usage during that process.

7.4.3 Resource Usage during Energy Transfer

The last test was to see how much extra computer resources are required during the

transfer of energy from one battery to another. The only additional process that was

running during this time was a script on the seller’s computer that opened the relay to

allow energy to flow to the buyer’s battery.

Figure 7.15: Resource usage on node 1 during transfer of energy

To initiate the transfer of energy, the Raspberry Pi sends a digital signal through the

appropriate GPIO pin to the relay to turn it on and then sends another signal to turn

CHAPTER 7. SYSTEM TESTING 124

it off. This process uses very little computer resources and does not even appear on the

console when the list of currently running processes is retrieved as illustrated in Figure

7.15. This test showed that all the components of the peer-to-peer energy trading system

can be run simultaneously on a low-end computer such as a Raspberry Pi.

7.5 Conclusion

The blockchain-based peer-to-peer energy trading system has been successfully integrated

and tested. Various tests using different scenarios that were supposed to produce different

outcomes were tested and the results were as expected. The amount of computer resources

used by the system were also observed.

CHAPTER 7. SYSTEM TESTING 125

Chapter 8

Conclusion

This research aimed to come up with a way to decentralize the market for excess energy

generated from renewable energy sources by consumers. This was done through the

use of blockchain technology and the internet of things to come up with a system that

significantly reduces the utility company’s role and allows the participants to transact

with each other directly. The research gave a detailed overview of what blockchain is, how

transactions are handled in a blockchain and how to create a private blockchain network

using Ethereum. In this chapter, the initial objectives of the research are revisited and

an evaluation is done on if and how those objectives were met. The chapter also looks at

how the research can be expanded under future work and concludes the whole thesis by

summarizing the work carried out.

8.1 Achieved Objectives

This section evaluates how the initial objectives were met during the course of the re-

search. The objectives as set out in section 1.4 of the study are as follows:

1. Investigate the possibility of the use of a low-resource blockchain configuration

to create a blockchain network that maintains the other properties of blockchain

technology.

2. Use IoT to gather information on how much energy has been used by an entity over

a period of time.

3. Create a prototype for a blockchain-based peer-to-peer energy trading system.

126

8.1.1 Low-resource Blockchain Configuration

The amount of computer resources and energy that is used by a blockchain network is

determined by the consensus mechanism used by the network. A number of consensus

mechanisms were evaluated, and they were compared under various criteria, such as their

level of decentralization, privacy, and the resources they require. The PoA consensus

mechanism was chosen as the preferred consensus mechanism for the blockchain network

for the proposed system as it does not require a lot of processing power to validate

transactions. The blockchain network was deployed on Raspberry Pi computers with

only a 1.4GHz processor and 1GB of RAM, which are very low specifications for a full

node on a blockchain. The blockchain network was tested and shown to not use a lot of

computer resources.

8.1.2 Data Collection using IoT

The next objective was to collect data from nodes about how much energy they use over

time and how much energy they have left in their batteries. A smart meter was used

for this purpose, and it was first configured with a firmware that best makes use of its

features and collects information relevant to the proposed system. A question that arose

during the process of trying to meet this objective was the appropriate data transfer

protocol to use to send data from the smart meter to the cloud-based database. The

ideal data transfer protocol needed to have a low bandwidth footprint as the data would

need to be transferred at regular intervals. MQTT was chosen for this purpose due to its

speed and the small packets of data that it transmits.

8.1.3 Peer-to-peer Energy Trading System Prototype

The primary objective built on the previous objectives by coming up with a prototype

for a system that allows participants to buy and sell excess energy amongst each other.

The system consisted of an Ethereum-based private blockchain network, in which all

participants in the system were represented by nodes on the network. The blockchain

network was used to facilitate payments using the native Ether cryptocurrency, and a

CHAPTER 8. CONCLUSION 127

smart contract was also deployed to it. The smart contract holds the logic for when

and how a node should be paid. Smart meters sent the collected data to a cloud-based

storage facility from where a web-based application retrieved the data. The web-based

application provided an interface for the transactions to be made by the buyers and

sellers, and it used the data from the smart meter to let buyers know if they had the

energy that they intended to sell.

The last part of the prototype was the physical components that were connected to

each other to demonstrate the transfer of energy from a seller to a buyer. Relays were

used to start and stop the transfer of energy. The Raspberry Pi computers that were

used as nodes in the blockchain network were also used as microcontrollers for the relays.

This reduced the number of physical components in the system. The prototype was

successfully tested, and the system managed to handle the different test scenarios.

8.2 Future Work

The research leaves room for more work to be carried out to either expand the scope

or add more features to the prototype. Some work that can be done to expand on this

research is explained below.

• The scalability of the prototype can be investigated to see how it would perform in

a real-world application with higher voltages and currents.

• The data collected by the smart meter can be used for more applications, such as

creating a usage pattern for each user to predict how much energy they require per

day. This can then be used to advise users on the amount of energy they should

buy or sell.

8.3 Summary

This research has given a detailed background into blockchain technology and used a low-

energy, low-computation implementation of blockchain to create a private network. A

smart contract was designed and deployed to the blockchain, and all this was integrated

CHAPTER 8. CONCLUSION 128

with IoT to create a peer-to-peer energy trading system. The system was tested, and it

has been shown that the objectives that this research set out to achieve have been met.

CHAPTER 8. CONCLUSION 129

Bibliography

[1] Arun Ramamurthy and Pramod Jain. “The Internet of Things in the Power Sector:
Opportunities in Asia and the Pacific”. In: ADB Sustainable Development Working
Paper Series 48 (2017), pp. 1–36.

[2] Anton Eberhard et al. Underpowered: The State of the Power Sector in Sub-
Saharan Africa. Tech. rep. 2008.

[3] Jeremy E. J. Streatfeild. “Low Electricity Supply in Sub-Saharan Africa: Causes,
Implications, and Remedies”. In: Journal of International Comerce and Economics
June (2018), pp. 1–16.

[4] The Economist. More than half of sub-Saharan Africans lack access to electricity.
Nov. 2019. url: https://www.economist.com/graphic-detail/2019/11/13/
more-than-half-of-sub-saharan-africans-lack-access-to-electricity.

[5] Ali Dorri et al. LSB: A Lightweight Scalable BlockChain for IoT Security and
Privacy. Tech. rep. New York, 2017.

[6] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-Stake Sidechains.
Tech. rep. 2018.

[7] Dylan Yaga et al. Blockchain Technology Overview. Tech. rep. Gaithersburg, 2018.

[8] Kumar Bhosale et al. “Blockchain based Secure Data Storage”. In: International
Research Journal of Engineering and Technology 6 (3 2019), pp. 5058–5061.

[9] Swaathi Kakarla. An Introduction to the Genesis Block in Ethereum. 2018. url:
https://www.skcript.com/svr/genesis-block-ethereum/.

[10] L. M. Bach, B. Mihaljevic, and M. Zagar. “Comparative analysis of blockchain
consensus algorithms”. In: Opatija: IEEE, 2018.

[11] Konstantinos Christidis and Michael Devetsikiotis. “Blockchain and Smart Con-
tracts for the Internet of Things”. In: IEEE Access 4 (1 2016), pp. 2292–2303.

[12] Sarwar Sayeed and Hector Marco-Gisbert. “Assessing Blockchain Consensus and
Security Mechanisms against the 51% Attack”. In: Applied Sciences 9 (1788 2019),
pp. 1–17.

[13] Junqin Huang et al. “Towards Secure Industrial IoT: Blockchain System With
Credit-Based Consensus Mechanism”. In: IEEE Transactions on Industrial Infor-
matics 15 (6 2019), pp. 3680–3689.

[14] Yuhao Wang et al. “Study of Blockchain’s Consensus Mechanism Based on Credit”.
In: IEEE Access 7 (2019), pp. 10224–10231.

[15] Satoshi Nakamoto. Bitcoin: A Peer-toPeer Electronic Cash System. Tech. rep.
2008.

130

[16] Johannes Sedlmeir et al. “The Energy Consumption of Blockchain Technology:
Beyond Myth”. In: Business and Information Systems Engineering 62 (2020),
pp. 599–608.

[17] Sunny King and Scott Nadal. PPCoin: Peer-toPeer Crypto-Currency with Proof-
of-Stake. Tech. rep. 2012.

[18] Stefano De Angelis et al. PBFT vs Proof-of-Authority: Applying the CAP Theorem
to Permissioned Blockchain. Tech. rep. Rome, 2018.

[19] Hasib Anwar. Public Vs Private Blockchain: How Do They Differ? Mar. 2020.
url: https://101blockchains.com/public-vs-private-blockchain/.

[20] Toqeer Ali Syed et al. “A Comparative Analysis of Blockchain Architecture and
Its Applications: Problems and Recommendations”. In: IEEE Access 7 (2019),
pp. 176838–176869.

[21] Dominique Guegan. Public Blockchain versus Private blockchain. Tech. rep. Paris,
2017.

[22] Demiro Massessi. Public Vs Private Blockchain In A Nutshell. Dec. 2018. url:
https://medium.com/coinmonks/public-vs-private-blockchain-in-a-

nutshell-c9fe284fa39f#:~:text=Public%20blockchains%20are%20decentralised%

2C%20no,Blockchain%20is%20a%20permissioned%20blockchain..

[23] Prashun Javeri. Blockchain Architecture. 2019. url: https : / / medium . com /

@prashunjaveri/blockchain-architecture-3f9f1c6dac5e.

[24] Shuai Wang et al. “An Overview of Smart Contract: Architecture, Applications,
and Future Trends”. In: Changshu: IEEE, 2018.

[25] Chun Hui Suen. Blockchain as a network stack. June 2019. url: https://medium.
com/kommercetf/blockchain-osi-stack-2f1482595953.

[26] Leonardo Maria De Rossi, Gianluca Salviotti, and Nico Abbatemarco. “Towards
a Comprehensive Blockchain Architecture Continuum”. In: Hawaii: IEEE, 2019.

[27] Claus Dieksmeier and Peter Seele. “Blockchain and business ethics”. In: Lugano:
Wiley, 2019.

[28] Neeraj Agrawal. Why ransomware criminals use Bitcoin and why that could be
their undoing. 2017. url: https://coincenter.org/link/why-ransomware-
criminals-use-bitcoin-and-why-that-could-be-their-undoing.

[29] Nicolas Christin. “Traveling the Silk Road: A Measurement Analysis of a Large
Anonymous Online Marketplace”. In: Rio de Janeiro: ACM, 2013.

[30] Jack Morse. Augur protocol leads to Ethereum-based assasination market. 2018.
url: https://mashable.com/article/augur-ethereum-blockchain-assassination-
market/.

[31] Ray King. What is a Smart Contract and How Does it Work? 2019. url: https:
//www.bitdegree.org/tutorials/what-is-a-smart-contract/.

[32] Stefano Bistarelli et al. “Ethereum smart contracts: Analysis and statistics of their
source code and opcodes”. In: Internet of Things 11 (2020).

[33] Petar Tsankov et al. “Securify: Practical Security Analysis of Smart Contracts”.
In: Toronto: ACM, 2018.

BIBLIOGRAPHY 131

[34] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. “Digital Supply Chain Trans-
formation toward Blockchain Integration”. In: Hawaii: IEEE, 2017.

[35] Zibin Zheng et al. “An overview on smart contracts: Challenges, advances and
platforms”. In: Future Generation Computer Systems 105 (2020), pp. 475–491.

[36] Merit Kolvart, Margus Poola, and Addi Rull. Smart Contracts. Ed. by T. Kerikmae
and A. Rull. Switzerland: Springer, 2016, pp. 133–147.

[37] Shuai Wang et al. “Blockchain-Enabled Smart Contracts: Architecture, Applica-
tions, and Future Trends”. In: IEEE 49 (11 2019), pp. 2266–2277.

[38] Vandana Sharma and Ravi Tiwari. “A review paper on IOT and It’s Smart Ap-
plications”. In: International Journal of Science, Engineering and Technology Re-
search 5 (2 2016), pp. 472–476.

[39] C. Wang and Daneshmand. “Special Issue on Internet of Things (IoT): Archi-
tectire, Protocols and Services”. In: IEEE Sensors Journal 13 (2013), pp. 3505–
3510.

[40] Jacob Morgan. A Simple Explanation of ”The Internet Of Things’. 2014. url:
https : / / www . forbes . com / sites / jacobmorgan / 2014 / 05 / 13 / simple -

explanation-internet-things-that-anyone-can-understand/#3b6b13841d09.

[41] R. Mahmoud et al. “Internet of Things (IoT) security: Current status, challenges
and prospective measures”. In: London: ICITST, 2015.

[42] Mayuri A. Bhabad and Sudhir Bagade. “Internet of Things: Architecture, Security
Issues and Countermeasures”. In: International Journal of Computer Applications
125 (14 2015), pp. 1–4.

[43] Jie Lin et al. “A Survey on Internet of Things: Architecture, Enabling Technolo-
gies, Security and Privacy, and Applications”. In: IEEE Internet of Things 4 (5
2017), pp. 1125–1142.

[44] Paul Stokes. 4 Stages of IoT architecture explained in simple words. 2018. url:
https://medium.com/datadriveninvestor/4-stages-of-iot-architecture-

explained-in-simple-words-b2ea8b4f777f.

[45] Jozef Mocnej et al. “Decentralized IoT Architecture for Efficient Resources Utili-
sation”. In: IFAC PapersOnLine 51 (6 2018), pp. 168–173.

[46] Ben Dickson. Decentralizing IoT networks through blockchain. 2016. url: https:
//techcrunch.com/2016/06/28/decentralizing-iot-networks-through-

blockchain/.

[47] Daniel Minoli and Benedict Occhiogrosso. “Blockchain mechanisms for IoT secu-
rity”. In: Internet of Things 1 (2 2018), pp. 1–13.

[48] Avelino Zorzo et al. “Dependable IoT Using Blockchain-Based Technology”. In:
Foz do Iguacu: LADC, 2018.

[49] Roshan Raj. What is Bitcoin Blockchain. 2019. url: https://intellipaat.com/
blog/tutorial/blockchain-tutorial/what-is-bitcoins-blockchains/.

[50] Ana Reyna et al. “On Blockchain and its integration with IoT. Challenges and
opportunities”. In: Future Generation Computer Systems 88 (1 2018), pp. 173–
190.

BIBLIOGRAPHY 132

[51] Minhaj A. Khan and Khaled Salah. “IoT Security: Review, blockchain solutions,
and open challenges”. In: Future Generation Computer Systems 82 (1 2018),
pp. 395–411.

[52] Yao Sun et al. “Blockchain-Enable Wireless Internet of Things: Performance Anal-
ysis and Optimal Communication Node Deployment”. In: IEEE Internet of Things
Journal 6 (3 2019), pp. 5791–5802.

[53] Lei Hang and Do-Hyeun Kim. “Design and Implementation of an Integrated IoT
Blockchain Platform for Sensing Data Integrity”. In: Sensors 19 (2228 2019),
pp. 1–26.

[54] Matt Zand. An Introduction to Hyperledger Fabric. 2019. url: https://opensource.
com/article/19/9/introduction-hyperledger-fabric.

[55] Farzad Kiani. Blockchain Solution for IoT Security. Tech. rep. Istanbul, 2018.

[56] Hong-Ning Dai, Zibin Zheng, and Yan Zhang. Blockchain for Internet of Things:
A Survey. Tech. rep. Macau, 2019.

[57] Christophe Jospe. When it comes to blockchains and energy usage. 2019. url:
https://medium.com/nori-carbon-removal/when-it-comes-to-blockchains-

and-energy-usage-dca8a76b88e.

[58] Jesse Morris and Sam Hartnet. The arguement for public blockchains in the energy
sector. 2019. url: https://www.greenbiz.com/article/argument-public-
blockchains-energy-sector.

[59] Jon Truby. “Decarbonizing Bitcoin: Law and policy choices for reducing the en-
ergy consumption of Blockchain technologies and digital currencies”. In: Energy
Research and Social Science 44 (1 2018), pp. 339–410.

[60] Alex De Vries. “Bitcoin’s Growing Energy Problem”. In: Joule 2 (5 2018), pp. 801–
805.

[61] Kayla Matthews. Ways to counter blockchain’s energy consumption pitfall. 2019.
url: https://www.greenbiz.com/article/4-ways-counter-blockchains-
energy-consumption-pitfall.

[62] Akash Takyar. Proof of Work vs. Proof of Stake: An In-Depth Discussion. 2019.
url: https://dzone.com/articles/the- proof- of- work- vs- proof- of-

stake-an-in-depth-di.

[63] Karl J. O’Dwyer and David Malone. “Bitcoin Mining and its Energy Footprint”.
In: Limerick: ISSC, 2014.

[64] Alicia Naumoff. Why Blockchain Needs Proof of Authority Instead of Proof of
Stake. 2017. url: https://cointelegraph.com/news/why-blockchain-needs-
proof-of-authority-instead-of-proof-of-stake.

[65] Alejandro R. Pedrosa and Giovanni Pau. “ChargeItUp: On Blockchain-based tech-
nologies for Autonomous Vehicles”. In: Munich: CryBlock, 2018.

[66] Risbah Jain and Aniket Dogra. Solar Energy Distribution Using Blockchain and
IoT Integration. Tech. rep. Noida, 2018.

[67] Xiaonan Wang et al. “Blockchain-based smart contract for energy demand man-
agement”. In: Energy Procedia 158 (2019), pp. 2719–2724.

BIBLIOGRAPHY 133

[68] Junyeon Hwang et al. “Energy Prosumer Business Model Using Blockchain System
to Ensure Transparency and Safety”. In: Energy Procedia 141 (2017), pp. 194–198.

[69] Jianbin Gao et al. “Grid Monitoring: Secured Sovereign Blockchain Based Moni-
toring on Smart Grid”. In: IEEE Access 6 (1 2018), pp. 9917–9925.

[70] Zhiyi Li et al. “Blockchain for decentralized transactive energy management sys-
tem in networked microgrids”. In: The Electricity Journal 32 (2019), pp. 58–72.

[71] Amanda Ahl et al. “Review of blockchain-based distributed energy: Implications
for institutional development”. In: Renewable and Sustainable Energy Reviews 107
(107 2019), pp. 200–211.

[72] Valentino Crespi, Aram Galstyan, and Kristina Lerman. “Comparative Analysis
of Top-Down and Bottom-up Methodologies for Multi-Agent System Design”. In:
Utrecht: ACM, 2005.

[73] Willemien Visser and Jean-Michel Hoc. Expert Software Design Strategies. Ed. by
Jean-Michel Hoc, T. Green, and R. Samurcay. Academic Press, 1990, pp. 235–249.

[74] Sabine Sonnentag, Cornelia Niessen, and Judith Volmer. Expertise in Software
Design. Ed. by Anders K. Ericsson. Cambridge: University Press, 2006, pp. 373–
387.

[75] Gregory McFarland. “The Benefits of Bottom-up Design”. In: ACM Sigsoft Soft-
ware Engineering Notes 11 (5 1986), pp. 43–51.

[76] Matei Ripeanu. “Peer-to-Peer Architecture Case Study: Gnutella Network”. In:
Linkoping: IEEE, 2001.

[77] Rudiger Schollmeier. “A Definition of Peer-to-Peer Networking for the Classifica-
tion of Peer-to-Peer Architectures and Applications”. In: Linkoping: IEEE, 2001.

[78] Elli Androuki et al. “Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains”. In: EuroSys 2018. Porto, 2018.

[79] Qassim Nasir et al. “Performance Analysis of Hyperledger Fabric Platforms”. In:
Security and Communication Networks 2018 (2018).

[80] Hyperledger. Channels. 2020. url: https://hyperledger-fabric.readthedocs.
io/en/release-2.2/channels.html.

[81] Vitalik Buterin. Ethereum Whitepaper. Tech. rep. 2013.

[82] Xi Tong Lee et al. “Measurements, Analyses, and Insights on the Entire Ethereum
Blockchain Network”. In: ACM. Taipei, 2020.

[83] Matevz Pustisek and Andrej Kos. “Approaches to Front-End IoT Application
Development for the Ethereum Blockchain”. In: Procedia Computer Science 129
(2018), pp. 410–419.

[84] Ethereum. Networks. 2020. url: https://ethereum.org/en/developers/docs/
networks/.

[85] GoQuorum. GoQuorum Enterprise Ethereum Client. 2020. url: https://docs.
goquorum.consensys.net/en/stable/.

[86] Arati Baliga et al. Performance Evaluation of the Quorum Blockchain Platform.
Tech. rep. Pune, 2018.

[87] Richard Gendal Brown et al. Corda: An Introduction. Tech. rep. 2016.

BIBLIOGRAPHY 134

[88] Peter Robinson. The merits of using Ethereum MainNet as a Coordination Blockchain
for Ethereum Private Sidechains. Tech. rep. 2019.

[89] Peter Robinson. “The merits of using Ethereum MainNet as a Coordination Blockchain
for Ethereum Private Sidechains”. In: The Knowledge Engineering Review 35
(2020).

[90] Fatima Leal, Adriana E. Chis, and Horacio Gonzalez-Velez. “Performance Evalu-
ation of Private Ethereum Networks”. In: SN Computer Science 285 (1 2020).

[91] Markus Schaffer, Monika di Angelo, and Gernot Salzer. Performance and Scala-
bility of Ethereum Blockchains. Cham: Springer, 2019, pp. 103–118.

[92] Pieter Hartel and Mark van Staalduinen. Truffle tests for free - Replaying Ethereum
smart contracts for transparency. Tech. rep. Singapore, 2019.

[93] M. Vinod et al. “Theoretical and industrial studies on the electromechanical re-
lay”. In: International Journal Services and Operations Management 29 (3 2018),
pp. 312–331.

[94] Russell C. Mason. The Art Science of Protective Relaying. 2011. url: https:
//www.gegridsolutions.com/multilin/notes/artsci/artsci.pdf.

[95] Konglong Tang et al. “Design and Inplementation of Push Notification System
Based on MQTT Protocol”. In: International Conference on Information Science
and Computer Applications. 2013.

[96] R. A. Atmoko, R. Riantini, and M. K. Hasin. “IoT real time data acquisition using
MQTT protocol”. In: Journal of Physics: Conference Series 853 (2017).

[97] Dipa Soni and Ashwin Makwana. “A Survey on MQTT: A Protocol of Internet of
Things (IoT)”. In: International Conference On Telecommunication, Power Anal-
ysis and Computing Techniques. 2017.

[98] Dave Bryson, Kelley Burgin, and Gloria Serrao. Blockchain Protocol Security Anal-
ysis. Tech. rep. Annapolis Junction, 2018.

[99] Lucianna Kiffer et al. “Under the Hood of the Ethereum Gossip Protocol”. In:
Proceedings of the Financial Cryptography and Data Security. St. George’s, 2021.

[100] Ryan Cordell. Ethereum Virtual Machine (EVM). 2020. url: https://ethereum.
org/en/developers/docs/evm/.

[101] Ethereum. Intro To Ethereum. 2021. url: https://ethereum.org/en/developers/
docs/intro-to-ethereum/.

[102] Katie Okay. Nodes and Clients. 2021. url: https://ethereum.org/en/developers/
docs/nodes-and-clients/.

[103] Andrey Petrov. An economic incentive for running Ethereum full nodes. May 2018.
url: https://medium.com/vipnode/an-economic-incentive-for-running-
ethereum-full-nodes-ecc0c9ebe22.

[104] Thibaut Sardan. What is a light client and why you should care? July 2018. url:
https://www.parity.io/what-is-a-light-client/.

[105] Praveen M. Dhulavvagol, Vijayakumar H. Bhajantri, and S. G. Totad. “Blockchain
Ethereum Clients Performance Analysis Considering E-Voting Application”. In:
Procedia Computer Science 167 (2020), pp. 2506–2515.

BIBLIOGRAPHY 135

[106] OpenEthereum. OpenEthereum Documentation. 2021. url: https://openethereum.
github.io/index.

[107] Mateusz Jedrzejewski. Welcome to Nethermind. 2020. url: https : / / docs .

nethermind.io/nethermind/.

[108] Edgars Nemse. JSON-RPC vs REST for distributed platform APIs. Apr. 2018.
url: https://www.radixdlt.com/post/json-rpc-vs-rest/.

[109] Don Kiely. The JavaScript Same-Origin Policy. Dec. 2012. url: https://www.
itprotoday.com/web-application-management/javascript-same-origin-

policy.

[110] Yoichi Hirai. Defining the Ethereum Virtual Machin for Interactive Theorem Provers.
Cham: Springer, 2017, pp. 520–535.

[111] Felix Adler, Dennis Kitzmann, and Marc Jansen. Analysis of Costs for Smart
Contract Execution. Ed. by Javier Prieto et al. Springer, 2020, pp. 153–156.

[112] Dannen. Chris. Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners. 1st. New York: Apress, 2017.

[113] Ganache. Ganache Overview. 2020. url: https://www.trufflesuite.com/docs/
ganache/overview.

[114] James M. Fiore. Conventional Current Flow and Electron Flow. Mar. 2021. url:
https : / / eng . libretexts . org / Bookshelves / Electrical _ Engineering /

Electronics/Book%3A_DC_Electrical_Circuit_Analysis_-_A_Practical_

Approach_(Fiore)/03%3A_Series_Resistive_Circuits/3.02%3A_Conventional_

Current_Flow_and_Electron_Flow.

[115] Espressif. ESP8266EX Datasheet. Oct. 2020. url: https://www.espressif.com/
en/support/documents/technical-documents?keys=&field_type_tid%5B%

5D=14.

[116] Saburo Muroga. Ultra Large-Scale Integration Design. Academic Press, 2001, pp. 245–
267.

[117] Sonoff. POWR2 Smart Switch. url: https : / / sonoff . tech / product / diy -

smart-switch/powr2/.

[118] Theo Arends. Tasmota. 2020. url: https://tasmota.github.io/docs/About/.

[119] Jignesh Parmar. How reactive power is helpful to maintain a system healthy. 2011.
url: https://electrical-engineering-portal.com/how-reactive-power-
is-helpful-to-maintain-a-system-healthy.

[120] Michel Malengret. Definition of Apparent Power in 3-Pase 4-Wire Non-Sinusodial
Power Systems. Tech. rep. Cape Town, 2008.

[121] Steve Winder. Power Supplies for LED Driving. 2nd. Newnes, 2017.

[122] Nick Heath. How IBM’s Node-RED is hacking together the internet of things. Mar.
2014. url: https://www.techrepublic.com/article/node-red/.

[123] Lucy Hattersley. Raspberry Pi 3B+ Specs and Benchmarks. url: https://magpi.
raspberrypi.org/articles/raspberry-pi-3bplus-specs-benchmarks.

[124] Sam Richards. Nodes and Clients. Apr. 2021. url: https://ethereum.org/en/
developers/docs/nodes-and-clients/.

BIBLIOGRAPHY 136

BIBLIOGRAPHY 137

