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ABSTRACT 

Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in 
Chinese medical records, and later in other civilizations. It has claimed human lives to such an 
extent that there are a notable associated socio-economic consequences. Currently, according 
to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of 
deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as 
artemisinin combination therapy, has been and continues to be the work horse in the fight 
against the disease, together with seasonal malaria chemoprevention and the use of insecticides. 
Natural products such as quinine and artemisinin are particularly important in terms of their 
antimalarial activity. The emphasis in current chemotherapy research is the need for time and 
cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target 
candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries 
increasingly becoming certified malaria free, a stalling trend has been observed in the past five 
years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective 
vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant 
and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains 
a major health concern.  

Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial 
pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration 
of malarial targets through a proteome scale screening on 36 targets using multiple metrics to 
account for the multi-objective nature of drug discovery. The continuous growth of structural 
data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was 
combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, 
use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that 
integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass 
repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of 
antimalarials in the context of resistance. This pipeline further integrates a complex ranking for 
better drug-target selectivity, and normalization strategies to overcome docking scoring function 
bias. The different metrics, ranking, normalization strategies and their combinations were first 
assessed using their mean ranking error (MRE). A version combining all metrics was used to select 
36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 
in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed 
antiplasmodial activity with IC50  2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only 
fingolimod was found to be not safe with respect to human cell viability. These compounds were 
predicted active on different molecular targets, abiraterone was predicted to interact with a 
putative liver-stage essential target, hence promising as a transmission-blocking agent. The 
pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective 
approaches.    

Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate 
reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the 
current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, 
hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) 
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approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were 
used. Later ranking with an exponential consensus strategy was included. Selected hits were 
further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area 
(MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram 
Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. 
Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with 
ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with 
fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, 
fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These 
leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and 
pharmacodynamic properties and may also be promising for lead optimization. A combined 
analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered 
molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as 
exploitable for compound optimization. 

Finally, we updated the SANCDB library with new NPs and their commercially available analogs 
as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 
compounds and the database is integrated to Mcule and Molport APIs for analogs automatic 
update. The new set may contribute to virtual screening and to antimalarials as the most effective 
ones have NP origin. 
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Chapter 1:  Literature Review 

1.1 Malaria 

Malaria is a disease caused by the parasite Plasmodium, where infection of this parasite is 
through female Anopheles mosquitoes bites 1. Ten to fifteen days after infection, its symptoms: 
fever, vomiting, headache, diarrhea, nausea, and abdominal pain appear 2. The parasite is a 
protozoan with mainly four species (P. falciparum, P. vivax, P. ovale, and P. malariae), and rarely 
P. knowlesi causing the disease in humans with health consequences 3,4.  

Malaria carries a serious health burden. The disability-adjusted life years (DALYs), is a composite 
metric capturing both premature mortality and prevalence and severity of ill-health 5 allowing a 
disease burden assessment. According to the latest Global Burden of Disease 2017 statistics, the 
top five DALYs causes were communicable diseases (lower respiratory infections, malaria, 
diarrheal diseases, HIV/AIDS, and tuberculosis) and neonatal disorders. Neglected tropical 
diseases including malaria cause approximately 62,300 global disability-adjusted life years 
(DALYs). Malaria contributed up to 72% of that number 5. In the context of other infectious 
diseases, due to its DALY malaria was the third most funded disease with ($125 per DALY) behind 
HIV/AIDS  and tuberculosis with $772 and $156  per DALY respectively. The fourth most funded 
one was pneumonia with $33 per DALY 6.  

The 2020 World Malaria Report indicated 229 million cases worldwide and 409 000 deaths in 
2019, with a global mortality rate (deaths per 100 000 population at risk) of 10 in 2019.  The 
World Health Organization (WHO) African Region recorded around 94% (215 million) of all cases 
in 2019. Malaria has an associated burden with a particularly weak segment of the population 
(pregnant women and children under the age of five) representing 70% of deaths. 35% of 
pregnancies (12 million) were exposed to malaria infection-causing 822 000 children with low 
birth weight in the WHO African Region 7. This health burden has economic consequences locking 
some families in a vicious poverty circle and being a major obstacle to socio-economic 
development.  Models associated a 10% decrease in malaria incidence with a nearly 0.3% 
increase in income per capita and a 0.11 percentage point faster per capita growth per annum 8. 

Despite these statistics, malaria had been declining thanks to advancements, but a stalling trend 
has been observed in recent years (2015-2020). The global case incidence (cases per 1000 
population at risk) fell from 80 to 57 between 2000 and 2019. Deaths were reduced from 736 
000 to 409 000 and the mortality rate from 25 to 10 during the same period. More countries 
moved toward elimination. The number of malaria-endemic countries reporting fewer than 10 
000 cases increased from 26 to 46 and those with fewer than 100 indigenous cases from six to 
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27. All malaria-free certified countries remained transmission-free.  These advancements 
prevented 7.6 million deaths and 1.5 billion cases7.  

In vaccine research RTS,S (Mosquirix) remains the only approved vaccine since 2015 9. In 2019, 
RTS,S/AS01 was launched in a pilot study in three African countries. A broader use may be 
considered by WHO based on results. Other promising vaccine research projects are undergoing: 
Multi-Stage Malaria Vaccine Consortium, MIMVaC-Africa, and the PfTBV consortium 10. 
Successful results from these projects could open a new paradigm for disease control. These 
advancements allow a shift towards elimination with the Global technical strategy (GTS) for 
malaria. The GTS aim for during the period 2016–2030: at least 90% reduction in case incidence 
and mortality rate from a 2015 baseline, elimination in 35 countries, and preventing resurgence 
in malaria-free countries 7. 

Many challenges are to be addressed despite the above advancements. Malaria burden decrease 
has slowed since 2015, and most of the set GTS 2020 milestones were off-track (Figure 1-1). 
Mortality rates stagnated between 2015 and 2020 in seven countries (8%), augmented in 12 
(13%) with six of them having more than 40% increase. Case incidence only decreased from 58 
to 57 between 2015 and 2019. The global mortality rate was 12 in 2015 and 10 in 2019. Comoros, 
Costa Rica, Ecuador, and Suriname recorded more cases in 2019 than in 2018. Moreover, there 
has been a decrease in investment in malaria programmes and research. Expenses required and 
thus the invested gap increased to 1.3, 2.3, and 2.6 US$ billion for 2017, 2018, and 2019 
respectively 7. 

 

  

Figure 1-1 Case incidence in two scenarios: blue and light blue: current trajectory and its forecasting 
respectively, green: GTS achieved goals (Source: World Malaria Report: 20 years of global progress and 
challenges 7) 

1.2 Current biological threats 

The above trend combined with the potential threats portrays a preoccupying situation. The 
malaria threat map highlights four current challenges: invasive vectors and vector insecticide 
resistance, deletions in pfhrp2/3 genes, and parasite drug efficacy and resistance 11. 



3 
 

Chemotherapy has been key in the fight against malaria by treatment and prevention. 
Artemisinin-based combination therapies (ACTs) treatment, preventive chemoprophylaxis for 
travelers, 3 doses of intermittent with sulfadoxine-pyrimethamine for pregnant women, seasonal 
malaria chemoprevention (SMC), and routine vaccinations are currently recommended by the 
WHO 7.  3.1 billion ACTs were globally sold in 2010–2019 and  0.2 to 21.5 million children received 
at least one SMC dose in 2012-2019. 36% of malaria R&D funding between 2007 and 2018 went 
into drugs followed by lower shares in basic research, vaccines, vector control, and diagnostics 
products 7. In the elimination era, threats related to the parasite are mainly fought through 
adapting intervention strategies to its biology. The parasite showed remarkable ability to develop 
drug resistance and resisted all classes of drugs used in malaria treatment:  atovaquone, quinine, 
proguanil, chloroquine, mefloquine and sulfadoxine-pyrimethamine 12–14. The current WHO 
recommendation treatment regimen: ACTs is now threatened. Cases of plasmodium resistance 
to artemisinin were reported in Southeast Asia: Thailand, Laos, Myanmar, Wet Nam, and 
Cambodia. Its spread to other areas can hamper past progresses. More than resisting a single 
drug, the parasite can also resist drug combinations thus driving strategies involving more than 
two combinations of drugs such as artesunate-lumefantrine-amodiaquine and 
dihydroartemisinin-piperaquine-mefloquine 7,15–17.  

Resistance can also occur in the vector. Vector control is another key element for disease control 
and elimination. 2.2 billion insecticide-treated mosquito nets were globally supplied in 2004–
2019 and this was accompanied by indoor residual spraying. On 2010–2019 data from 82 
countries, 28 had observed resistance to all four of the most frequently utilized insecticide classes 
in at least one malaria vector and one collection site. 73 had recorded resistance to at least one 
class 7. More than their resistance, new invasive species settlement in new ecosystems is 
threatening. Anopheles stephensi is a southern Asia vector of Plasmodium falciparum and P. 
vivax was recorded in Djibouti in 2012 and linked with an unusual outbreak of urban P. 
falciparum malaria 18. Another threat is related to disease diagnosis. Malaria rapid diagnostic 
tests (RDTs) contribute to proper treatment. 2.7 billion tests were sold in 2010-2019. Parasite 
deletions in pfhrp2/3 genes make them undetectable by RDTs based on histidine-rich protein 2 
(HRP2). This is a major biological threat given limited alternatives. Its real prevalence remains 
unknown, ranging from 0% to 100% also undermined by variable methods in sample selection 
and laboratory analysis means 19.  

1.3 Biology of plasmodium and drug discovery opportunities 

Plasmodium spp. are eukaryotes unicellular and belong to the apicomplexan of the protozoan 
phylum. The Apicomplexa are identified by the apicoplast, an essential organelle producing 
important compounds for parasite growth such as isoprenoids and fatty acids. Plasmodium spp. 
are obligate intracellular parasites with multiple hosts throughout their life-cycle 20,21. The life-
cycle of these parasites has three phases between human and mosquito hosts: the liver, blood, 
and the mosquito phase (Figure 1-2) 3. Many groups active in antimalarial drug discovery, have 
organized their effort within a framework of molecule type (Target Candidate Profiles (TCP)), 
corresponding to chemotherapy strategies around the parasite life-cycle 22. 
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Malaria infection starts with parasite inoculation into the human bloodstream through a female 
anopheline bite (TCP6). These infecting parasite cells are sporozoites. During this liver stage, they 
migrate to the liver, invade the hepatocytes through the Kupffer cells, and start schizogony. This 
endogenous asexual multiplication lasts 5-15 days depending on the species 23. P. vivax and P. 
ovale sporozoites can differentiate into a latent form in the liver, the hypnozoites (TCP3). They 
can multiply days to years later leading to a new infection 24,25. The schizogony results in mature 
sporozoites, schizonts containing thousand of merozoites released into the bloodstream by 
hepatocytes rupture (TCP4). 

During the blood phase or erythrocytic cycle, the merozoites invade and multiply asexually in the 
erythrocytes for 48 to 72 hours. They evolve into diverse forms: rings, trophozoites, and schizonts 
with each schizont containing about 6 to 36 merozoites26. This multiplication results in 
erythrocytes rupture and release of merozoites, which can infect new erythrocytes (TCP1). The 
symptoms in humans occur at this stage 26,27. Some parasites further differentiate into 
gametocytes male and female 26.  

These gametes can then be absorbed by a female anopheline 27,28. During this mosquito phase, 
the parasites evolve into their sexual forms (male microgametes and female macrogametes) 
(TCP5) 28. Their fertilization results in the ookinete formation 3 which mature into oocysts, in 
which sporogonic replication takes place for about two weeks. New infective sporozoites are 
hence formed and migrate to the salivary glands. They will be released into the human dermis 
during the mosquito blood meal, hence closing the cycle 28. 
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Figure 1-2 Malaria parasite life cycle through the lenses of drug discovery. The TCPs highlight the different 
possible drug discovery intervention strategies. 

With current eradication targets and to anticipate future threats, key intervention strategies have 
been identified for antimalarial development and formulation in TCPs (Figure 1-2 and Table 1-1) 
22. Combining drugs with different mechanisms of action (MoA) decreases the chances of 
resistance occurring 29. New drugs, with novel scaffolds and MoAs, are ideal 22. New drug 
combinations (three molecules and more) and repurposing are also considered 30. 
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Table 1-1 Some drugs currently used and clinical candidates covering different TCPs. Adapted from 22. 

TCPs Targets Example of 
current drugs  

Clinical 
candidates 

TCP1 
Symptomatic treatment 

Asexual blood stages ACTs 
atovaquone-
proguanil 
mefloquine 31 

KAE609 
KAF156 32 
SJ73333 
DDD498, 
DSM265, 
MMV048  31 

TCP2 (retired and combined to 
TCP1 fast killers of blood 
schizonticides, and long-acting 
molecules) 34 

   

TCP3 Anti-relapse Hepatic stage 
hypnozoites 

 Primaquine and 
tafenoquine 34 

KAI407 22 

TCP4 Chemoprotection Hepatic stage schizonts Atovaquone-
proguanil 31 

DSM265, 
KAF156, P218 
34 
DDD498, 
KAF156, 
MMV048 31  

TCP5 Transmission blocking Gametocytes/Gametes Primaquine 31 KAF156 34 

TCP6 Transmission blocking Insect vector 
(endectocides) 

Ivermectin 34  

 

Recent research has focussed on the development of much stronger antimalarial portfolios. For 
example, new molecules have achieved interesting activity in transmission-blocking in vitro, at 
promising concentrations for future clinical application. These compounds include OZ439, 
KAE609, KAF156, SJ733, and DDD498 30,35. Drugs currently exist for the different identified TCPs 
(Table 1-1). DDD498, KAF156, DSM265, and MMV048 combine asexual and hepatic schizont 
stages activities 31. KAF156 showed good potential as a multi-stages active compound and active 
against resistant strains including where artemisinin resistance is evident 36. Still many are areas 
of improvement remain, especially given the biological threats. Anti-relapse compounds are 
lacking compared to other TCPs. Currently, only tafenoquine and primaquine are approved but 
induce hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient patients, a population 
of 350 million people. This may be particularly challenging to overcome 22,37.  

Beyond the traditional drug discovery methods and combinatorial therapies, other strategies 
that can contribute to antimalarial development have been identified 30. Drug repurposing is an 
interesting strategy that has been identified as a particular route in antimalarials development. 
This strategy uses known drugs to treat different diseases beyond their initial indications 38. 
Particularly in the context of rapid emergence of resistance, this approach may accordingly 
accelerate the development of antimalarials 39,40.  Methylene blue, rosiglitazone, fosmidomycin, 
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imatinib and sevuparin are examples of molecules being explored for their potential repurposing 
as antimalarial 30. Polypharmacology is another alternative strategy in drug discovery 41.  Drug 
development can be more expensive in the case of a combinatorial therapy than a single 
compound, which may still have the same effect through multitargeting. Drug-drug negative 
interaction risks are higher for drug combinations 41. Multi-target antimalarials can be developed 
through a single hybrid molecule design or compound multiple activity explorations 42. 
Chloroquine analogs with dual activity showed excellent activity against resistant strains from 
Thailand and Cambodia 43.  Chen et al. recently identified FP-2 and PfDHFR dual inhibitors 44. 
MMV007571 and MMV020439, from the Malaria Box library were identified as dual inhibitors of 
the dihydroorotate dehydrogenase (DHODH) and the parasites' new permeability pathways 
(NPPs)  45. Through virtual screening, eight compounds from the ChemBridge library were found 
to have dual activity on falcipain-2 and falcipain-3 42. Hence, multitargeting strategy also fits with 
antimalarial development, especially within the context of drug resistance 40. 

1.3.1 Overview of current targets 

In this section, we give an overview of P. falciparum targets to identify drug discovery 
opportunities. The process of drug design first identifies a suitable target 46 through methods 
such as genetic knockout and gene silencing47. A good pool of potential targets exists 48,49. Malaria 
elimination will certainly benefit from new MoAs for resistance but also multi-stage active 
compounds 22. However, parasite cell screens have demonstrated that even inhibitors with 
distinct scaffolds seem to converge toward the same ~12 targets 48, making it challenging to hunt 
for compounds achieving a new MoA. Searching the DrugBank website (January 9th,2021) for 
Food and Drug Administration (FDA) approved compounds targeting plasmodium returned 14 
compounds for 19 unique targets. Yet, many inhibitors at different stages of development, 
focused on different pathways and enzyme targets still exist in the antimalarials pipeline 22,35,50,51. 
The parasite genome sequencing 51 has opened the door for target space mining with the 
identification of chokepoint enzymes 52. Two notable studies deciphered its target space to 
uncover drug discovery opportunities. Gomes et al. developed a genetic screening approach to 
find Plasmodium berghei essential genes. P. berghei relative growth rates were estimated for 
more than 2,500 genes, confirming the druggability of several kinases 49. Similarly, P. falciparum 
essential genes were also uncovered, confirming  2680 essential genes, including ~1000 essential 
genes conserved in the parasite 53. This has enabled the prioritization of high-value targets, 
especially for small molecule inhibition. Keeping in mind the low correlation between essential 
gene and high-value target 48, even if only 10% of this set is suitable for small molecule inhibition, 
that is still a good pool of about ~268 protein targets. 

Yet, the current antimalarials discovery pipeline is marked by the so-called Harlow-Knapp effect, 
or “searching under the lamppost,”. Few targets are extensively studied while as highlighted in 
the above paragraph many opportunities exist (Figure 1-3) 54. PfDHODH 55, PfDXR 56, PfDHFR are 
well studied with numerous crystal structures in Protein Data Bank (PDB), deposited bioactivity 
data in ChEMBL. Yet for some of these, including for DXR, this research has not resulted in an 
approved drug. 
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Figure 1-3 Distribution of bioactivity data deposited per Plasmodium falciparum protein targets. The x and 
y-axis represent the number of assay data and their respective targets. The targets are sorted by assay 
count. A few targets have the highest amount of data with a long tail distribution illustrating the Harlow-
Knapp effect. The data was extracted from chembl_webresource_client version 0.10.2. 

Aneja et al. reviewed targets, pathways, organelles, and their related inhibitors optimizations 
from a structure-based (SB) design perspective 51. The apicoplast implied in the fatty acid type II 
(FAS-II), isoprenoids and heme synthesis is a key organelle for antimalarial discovery 57. Good 
selectivity is achievable for targets such as DXR and the apical membrane antigen 1 since these 
do not have human homologs. Fosmidomycin, one of the most advanced DXR inhibitor 
candidates failed in monotherapy and is now under investigation in terms of its combination with 
piperaquine 58,59. Hemoglobin digestion in the food vacuole is another key pathway with 
approved drugs (for example halofantrine) targeting aspartic proteases (plasmepsins) 60. The 
Medicines for Malaria Venture (MMV) P218 is in clinical trials and acts on DHFR in terms of 
inhibiting folate metabolism. Proguanil and pyrimethamine are FDA approved antimalarials 
targeting DHFR. The electron transport system in the mitochondria has key enzymes such as the 
cytochrome bc1 complexes and PfDHODH, and the NADH ubiquinone oxidoreductase (PfNDH2) 
51. KAF156 is a compound that inhibits PfDHODH, and it is currently in Phase 2b clinical trials 
61. Given the need for new MoA covering the different TCPs to combat resistance, disease control, 
and elimination 22,31, current antimalarial development focuses on new MoA 61.  Candidates with 
new MoA include Methylene Blue, MMV048, KAF156 which target glutathione reductase, 
phosphoinositol 4-kinase and PfCARL respectively 61.  

1.3.2 NPs as antimalarials 

Another strategy for antimalarial discovery is through natural compounds (NPs). NPs have been 
and continue to be a major source of drugs, including antimalarials. Avermectin and artemisinin 
have revolutionized onchocerciasis, lymphatic filariasis, and malaria and their discovery was 
awarded the 2015 Nobel Prize in Physiology or Medicine 62. The first antimalarial was the NP 
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quinine, isolated from Cinchona bark.  Its synthetic derivative, chloroquine, has played a key role 
in malaria chemotherapy63. NP databases offer antimalarial compounds 64,65 and specialized 
databases including antimalarial activity have been created (AfroMalariaDB 66).  Assessing 122 
drugs derived from plants, 80% were linked to their initial ethnopharmacological uses 67. Wells 
underlines the importance of firstly identifying the clinical activity of a herbal medicinal product 
used by the community before further pharmacological investigation. This approach was initially 
suggested by Chen Guofu in 1952 and named dao-xing-ni-shi or ‘acting in the reversed order’ 68. 
This is a good opportunity for malaria-endemic countries to use their ethnopharmacological 
heritage. The African Network for Drugs and Diagnostics Innovation has emphasized the role of 
African countries in valorizing their NPs 69. They will continue to be a key source of new structural 
leads 70 and are expected to provide innovative chemotypes to develop antimalarials 71. 

1.4 In silico drug discovery 

Bohacek et al. estimated at 1063 molecules the size of the drug-like chemical space 72. In the drug 
discovery landscape, from discovery to registration, in silico approaches mostly contribute to the 
discovery phase by filtering and selecting molecules with interesting activity from chemical 
libraries 73. They offer time and cost-efficient solutions for mining that space 74 compared to the 
time and experimental cost of current drug discovery pipelines further undermined by a high 
attrition rate 75. The Centre for Medicines Research data benchmark analysis indicated a new 
compound in preclinical evaluation only has an 8% chance to be part of a product 31. The “Holy 
Grail” in virtual screening is to estimate accurately and precisely the binding free energy for 
billion of molecules at a practical cost. The cost combines technicalities of the setups, runtime, 
and required resources. Virtual screening workflows are usually set up on the tradeoff between 
cost and accuracy. Besides the quest for a practical and accurate affinity estimation, a compound 
needs to be optimized with respect to absorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties in order for it to reach its target in enough concentration for activity 
without toxicity. Hence, drug discovery turns into a multi-objective optimization task with ADMET 
properties and affinity all embedded in the same structure 76,77. A structural change for a better 
property might negatively impact affinity and vice-versa hence requiring a gait on tiptoes in the 
pharmacokinetic and pharmacodynamics space.  In the following section, we describe some 
virtual screening approaches, especially the ones used in this work. The techniques are described 
in order of increased accuracy and cost with an overview of their theoretical background, 
differences, limits, and advantages. 

Ligand-Based Virtual Screening (LBVS) approaches make use of active molecules and/or inactive 
ones and rely on molecular similarity to predict a molecule activity 78,79.  They may use target 
information that enhances performance 80. Compounds are described in terms of 1D, 2D, or 3D 
descriptors, topology, pharmacophore, molecular field, shape and volume 79. They tend to be less 
accurate than SBVS ones in general 80–82 even though this may simply be related to their lower 
usage 81. On the other hand, they are faster and applicable to big data (billions of molecules) and 
do not require target structure knowledge 83,84. The recent NIH Virtual Workshop on Ultra-Large 
Chemistry Databases highlighted fast search methods for bioactivity (Rapid Isostere Discovery 
Engine (RIDE), SmallWorld and Arthor 84), cloud-based architecture, data compression strategies, 
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and synthesis of the virtual space 85 for practical multi-billion compound libraries mining for 
bioactivity 86. Elsewhere, LBVS is also used to build focused libraries and for hit identification 79. 

SBVS is the search for a ligand given a biological target structure. The method is based on the 
knowledge biological target three-dimensional structure. This structure can be obtained through 
x-ray crystallography, NMR spectroscopy or homology modelling. This knowledge enables the 
screening for or the de-novo design of compound with structure for optimum interaction with 
the target. The ultimate goal is to identify compound with a therapeutical effect. The approach 
uses computational approaches such as docking, MD and free energy calculations87 88.  

Molecular docking predicts a molecule's binding pose and affinity on a target. The first is done 
through sampling the protein-ligand conformational space. Notable search methods and 
programs relevant to small molecules are simple rigid docking (DOCK) 89, genetic algorithm 
(AutoDock) 90, particle swarm optimization (SODOCK) 91, (GOLD),  incremental construction 
(FlexX) 92, Iterated Local Search global optimizer with parallelism using multi-threading (Vina) 93, 
and hierarchical approaches (Glide) 94 95. More recently, global optimization (Monte Carlo) 
combined with essential Local and Location optimizations through BFGS method (QuickVina-W) 
96 have been used.  Given its acceptable accuracy (Kendall’s tau rank correlation with 
experimental value up to 0.46 81) and ability for good pose prediction (predicted pose root-mean-
square deviation (RMSD) <= 2 Å compared to crystal structure 97), speed (order of seconds per 
“~< 25 torsion molecules” with recent significant speed gain on GPU architectures 98), docking is 
widely used in virtual screening for hit identification. A recent large-scale application is OpenEye 
“GigaDocking” with the docking of REAL Enamine 1.43 Billion molecules on Purine Nucleoside 
Phosphorylase (PNP) and Heat Shock Protein 90 with a 24-hour runtime on the Orion cloud using 
~27,000 CPUs for PNP 99. A library of 170M compounds was also screened against AmpC β-
lactamase (AmpC) and the D4 dopamine 100. If posing is almost considered a solved problem, 
scoring has many pitfalls. This is related to docking atoms fixed partial charges, water in binding 
site treatment, proper H-bonds scoring, and receptor flexible 101. Strategies to overcome these 
challenges include polarizable force fields, identifying structurally conserved waters, rigid or 
semi-flexible docking (only a few residues) receptors 102, targeted instead of blind-docking 96, and 
also Molecular Dynamics (MD) 103.  

1.4.1 Molecular Dynamics (MD) 

Given the difficulty of solving the Schrödinger equation for biomolecular systems with thousands 
of atoms, classical molecular dynamics are most often used. Classical MD in computational 
simulations is atomic movements driven by Newton's 2nd law (1-1) 103–105. Beyond docking and its 
lock-and-key model, MD gives insight into protein dynamics, receptor flexibility and the 
movement of water molecules 102. MD and its extensions (such as replica exchange dynamics 
(REMD), Steered molecular dynamics (SMD) and Umbrella Sampling (US)) have diverse 
applications in drug discovery especially for protein-ligand binding 106: in silico validation of hits, 
identification of cryptic pockets, validation of binding poses 107, exploration of the energy 
landscape 103, and binding affinity estimation 108.   

 
 (1-1) 
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𝐹𝑖(𝑡) = 𝑚𝑖𝑎𝑖 = 𝑚𝑖

𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
 

𝐹𝑖(𝑡): 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑎𝑡𝑜𝑚 𝑖  

𝑚𝑖: 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑖 

𝑎𝑖 ∶ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑖 

𝑟𝑖: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟  

𝑡: 𝑡𝑖𝑚𝑒 

Potential energy functions are also known as force fields (FFs), and these have made MD 
applicable to biological systems with the first simulation of a small globular protein (bovine 
pancreatic trypsin inhibitor) over 8ps in  1977. FFs are made of energy terms describing atomic 
interactions: short-range bonded and non-bonded ones (electrostatics, repulsion, dispersion) 109.  
Bonded terms can be divided into torsional (between 4 atoms), bending (between three atoms), 
and stretching (between two atoms). The non-bonded forces include van der Waals and 
electrostatic terms. The system's total energy can be expressed using (1-2), (1-3), and (1-4) 110,111.  

 
𝐸 =  𝐸𝑏𝑜𝑛𝑑𝑒𝑑 +  𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 (1-2) 

 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 =   𝐸𝑏𝑜𝑛𝑑 +  𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 
(1-3) 

 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 =  𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 +  𝐸𝑣𝑎𝑛𝑑 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 
(1-4) 

Many software tools (GROMACS112, NAMD, LAMMPS, GROMOS, CHARMM and AMBER) and FFs 
(AMBER, CHARMM, and OPLS) have been developed for biomolecular simulation 103,113. Equation 
(1-5) represents the AMBER03 force field 114. Yet, classical FFs do not capture key quantum effects 
due to a point charge atomic model.  Some current limitations include the absence of 
polarization, charge transfer, charge penetration 109,115. Moreover,  in the case of transition 
metals, quantum mechanical ligand-field, spin-state, trans, and Jahn–Teller effects are more 
significant and not well captured in classical FFs 116,117. Simulation time remains the order of 
nanoseconds in most cases or microseconds with coarse-graining and/or greater resources 118. 
This may not be enough to explore many biological processes. Structures’ high-energy states 
(transition states and/or rare conformations) are rarely sampled in MD 119.  
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(1-5) 

In the AMBER03 force field (Equation 1-5), the bonded interactions are described by the first 
three terms. Harmonic potentials model covalent bonds and angles. 𝐾𝑏 and 𝑘𝜃  𝑎𝑟𝑒 bonds and 
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angles force constants and 𝜃𝑒𝑞 , 𝑏𝑒𝑞 are the equilibrium angles and bond length respectively. The 

variables  ∅, 𝑉𝑛, 𝛾  
  represent the dihedral angle, the force constant and the phase angle 

respectively for dihedrals angles. The last two terms model the non-bonded interactions. 𝑅𝑖𝑗 is 

the distance between two particles. (𝐴𝑖𝑗) and (𝐵𝑖𝑗) are Van der Waals interactions and the London 

dispersion terms respectively. 𝑞𝑖 𝑎𝑛𝑑 𝑞𝑗 are the partial charges to model the Coulombic 

interactions. Finally,  𝜖 is the dielectric constant 114. 

Recent advances in MD implementations on GPU architecture have reduced the overheard from 
polarizable force fields and enhanced sampling techniques 109. In the Drude force field, instead 
of a single point charges model,  electronic degrees of freedom are modelled with particles 
negative charges attached to their parents' atoms via harmonic springs with added 
computational cost but with some promises on GPU 120. An approximation strategy through 
increasing hydrogen mass while reducing that one of their connected heavy atom enables a 4 fs 
timestep for better sampling. Hydrogens’ high-frequency vibrations are reduced by increasing 
their masses 118. There have been improvements in the packing of hydrophobic residues 121. 
Machine Learning (ML) based force fields are promising with converged simulations and accuracy 
attaining quantum-chemical CCSD(T) for a few dozen atoms 122.  

1.4.2 Free energy calculation 

In the context of protein-ligand drug discovery, the binding free energy is the energy difference 
between the protein-ligand unbound and bound states. The unbound states is the ligand and 
protein free in solvent, while the bound one refers to the fully formed complex between the 
protein and the ligand. The binding energy can be calculated sampling many configurations 
between these two states. Free energy calculation methods can be divided into endpoint and 
alchemical methods. The first class only considers the bound and unbound states of the protein 
and the ligand. The latter samples the full reaction coordinate, ligand and protein-bound and 
unbound states, and the intermediate states 123.  

1.4.2.1 MM-PBSA  
MM-PBSA is an endpoint method with binding affinity and is calculated using Equation (1-6) 108. 
Beyond the MM bonded terms, van der Waals and electrostatic ones, MM-PBSA includes polar, 
non-polar, and entropic terms. The polar term is obtained through the Poisson-Boltzmann (PB) 
equation (PBE) or the generalized Born (GB) one in the MM-GBSA variant. The non-polar term is 
estimated from the solvent-accessible surface area (SASA). It is an implicit solvation method 
considering protein and ligand desolvation energies. The entropic term S is evaluated through 
normal-mode analysis of the vibrational frequencies 108,124. 

   

𝐺 = 𝐸bnd + 𝐸el + 𝐸vdW + 𝐺pol + 𝐺np − 𝑇𝑆 

 

(1-6) 

The method is imprecise with an inaccurate entropy evaluation and uses a uniform dielectric 
constant. It depends on the system and the solvent model. It has been noted that ligand polarity 
increases MM-PBSA uncertainty. This is further exacerbated when the ligand binds in charged 
binding pockets 124.  Current accuracy thus varies widely across systems 123,125. However, in 
general, it is more accurate than docking scoring functions but less than alchemical methods 
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123,124. It has poor ranking power especially for compounds with a difference in affinity less than 
12 kJ/mol 123. Hence, it is used for in silico hit validation but less so for hit optimization.  

Current strategies to overcome these limitations and other advances include the use of many 
independent simulations to achieve convergence, residue-specific dielectric constants 123,124, 
GPU acceleration for faster PBE solvers 126, and machine learning 127.  

Alternative to MM-PBSA such as linear Interaction Energy, free energy perturbation and quantum 
mechanics (QM) approaches exist. Yet, they have higher computational cost but often have 
higher accuracy. Umbrella sampling approach for example used in this work is alternative method 
to calculate binding free energy but with higher computational cost 108,124,128.  

1.4.2.2 Umbrella Sampling (US) 
Alchemical methods can be further divided into four types: perturbation theory, histogram 
approaches, non-equilibrium work simulation, and thermodynamic Integration from constrained 
and unconstrained dynamics 129. US is an enhanced sampling method combining non-equilibrium 
simulation and histogram approaches. 

Because of limited sampling, the protein-ligand binding process is rarely sampled in MD. 
Approaches such as umbrella sampling use a biased potential along a certain reaction coordinate 
(RC or ξ); here the unbinding process of a complex can overcome the limitations of poor sampling 
and the free energy of the binding process can be evaluated 119. Free energy calculation is 
commonly done through the Weighted Histogram Analysis Method (WHAM) 103. It constructs the 
potential of mean force (PMF) or free energy along ξ. From the biased simulations, system 
configurations (windows) are extracted and a histogram, h(ξ), describing the probabilities of 
finding the system at individual locations along ξ is constructed. Each window is weighted by a 
factor dependent on the applied bias potential, giving information on the free energy in that 
window. It estimates the uncertainty in an unbiased P(ξ) to calculate the PMF with a minimal 
statistical error. The resulting PMF constructed is the free energy along ξ 119,130.  

Windows for US can be generated using SMD in which a constant harmonic force pulls some 
chosen atoms along an RC 131. In a protein-ligand system, the ligands are often pulled to form the 
unbound states 119. SMD can also generate intermediate states useful for bond-forming and 
breaking reactions in QM/MM systems131. 

In the D3R Grand Challenge 2, in the binding free energy methods, a combined Jarzynski non-
equilibrium pulling and umbrella sampling achieved a centered root-mean-square error (RMSEc) 
of experimental and predicted binding free energy difference of 0.94 kcal/mol and Kendall tau of 
0.62. The method was the top performer in free energy set 2 of the challenge 81. Another 
advantage of US is the ability to decompose the free energy into its Van der Waals and 
electrostatic contributions 129. On the other hand, the main disadvantage of US is its more 
complex computational setup requiring configurations from a biased simulation. These 
configurations require adapted force and velocity in SMD for pulling in protein-ligand systems, 
the careful adjustment of windows size and force constraint, and there is an associated cost with 
sampling each window 103,119. Jagdish Suresh Patel et al. have combined US with coarse-grained 
MD in a model that may be useful in reducing this computational cost 132. 
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1.4.3 In silico antimalarial discovery  

Many studies have characterized the malarial parasite targets 49,52,53,55,133,134. Recently, combining 
stage specificity and metabolomic profiling Murithi et al. have also identified the good potential 
of unexplored druggable pathways 135. Computational approaches have contributed extensively 
to antimalarial discovery. In a systematic review on in silico approaches in antimalarial drug 
discovery between 2008 and May 2015, Anurak et al. identified 17 articles covering the topic. 
These studies used both ligand and structure-based approaches including molecular docking, 
homology modelling, 2D- or 3D-QSAR, and pharmacophore modeling. All of these make use of 
common virtual screening approaches. However, these studies focused on one target 136, where 
current antimalarial discovery strategies would benefit from a holistic approach in the 
elimination era 32. More recently, Kushwaha et al. used molecular docking against Plasmodium 
orotidine 5-decarboxylase, plasmepsin 2, HSP90, PfATPase to find hits with better docking scores 
than their respective standard inhibitors 137. From a library of thiazole-1,3,5-triazine derivatives 
docked on Pf-DHFR eight compounds with IC50 from 11.29 to 40.92 μg/ml against a chloroquine-
resistant strain were identified 138. Arshadi et al. built the DeepMalaria system using Graph 
Convolutional Neural Networks and evaluated compounds with respect to P. falciparum growth 
inhibition and mammalian HepG2 cell cytotoxicity. The authors made use of transfer learning, 
pretraining the model with weights transferred from a model trained on a large unrelated dataset 
to overcome the small sample size limitation. From this, DC-9237 was identified as a fast-acting 
compound inhibiting asexual stages 139. 

1.5 Research problem statement and justification 

Malaria is a major health concern with its parasite continuously developing drug resistance. 
Chemotherapy plays a key role in the fight against the disease, yet the current WHO 
recommended ACT is threatened. The recent COVID-19 crisis also has impacted some programs 
resulting in treatment and diagnosis being disrupted in 37 of the 64 endemic countries. Progress 
in the eradication of malaria has stalled in recent years and the 2020 GTS milestones were not 
met 7. Despite many potential antimalarials in development, a complaisant attitude may 
significantly hamper previous efforts. In general, the approval rate is low in drug discovery 75 
including antimalarials 31. Additionally, drug resistance is occurring faster than drug approval 40. 
Moreover, the quest for new MoA may be challenging due to the intrinsically greater attrition 
risk for new chemotypes 31. With no effective vaccine yet, the biological threats remain and there 
is a need for the continuous development of antimalarials. Plasmodium falciparum is particular 
among all malaria-causing species being the most prevalent and deadly. A significant reduction 
was observed in recent years with a 97% incidence reduction in the Mékong region. However, 
resistance to artemisinin has been observed, here artemisinin is the current best antimalarial 7. 
The further existence of a deletion in pfhrp2/3 genes has rendered this malarial diagnostic 
difficult 19. Moreover, it is the most prevalent species (about 100%) in the WHO African region 
which held 82% and 94% of malaria cases and deaths worldwide respectively in 2019 7. Hence, 
the current work focuses on P. falciparum.  
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1.6 Aims 

This project aims to contribute to antimalarial development using in silico approaches to find hit 
compounds for P. falciparum. These strategies have been adapted for the current trends of 
antimalarial development for elimination and control on the one hand. Besides, changes have 
been made to the virtual screening approach to overcome known pitfalls. The first chapter 
describes an integrated P. falciparum proteome-scale drugs repurposing pipeline to find hits. The 
second chapter focuses on a single target (PfDXR) screening but uses more extensive virtual 
screening methods through a consensus hierarchical LBVS-SBVS approach. Hits are further 
assessed using MD, steered MD, and free energy calculation through MM-PBSA and US to find 
potential PfDXR hits. Finally, the third chapter covers the SANCDB NPs library update, as a 
resource in the search for antimalarials and more generally in drug discovery. 

1.7 Research objectives 

To achieve the above aims, the following general objectives were defined: 

1 Explore holistic approach to in silico antimalarials discovery through screening on a 

set of Plasmodium falciparum targets.  

2 Explore drug repurposing strategies through screening FDA approved drugs on these 

targets. 

3 Application LBVS and SBVS screening for identification of hits for PfDXR 

4 Explore Advanced MD sampling and free energy calculations. 

 

More specifically the approach was to: 

 

1. Setup and assess a screening pipeline on Plasmodium falciparum targets (Chapter 2)  

2. Identify hits from FDA approved drugs for potential repurposing using the pipeline 

(Chapter 2)  

3. Conduct hit in-vitro plasmodial activity and human toxicity assessment (Chapter 2) 

4. Perform consensus LBVS on a ZINC lead-like subset and a consensus query of DXR 

inhibitors (Chapter 3) 

5. Perform docking and consensus scoring on LBVS hits (Chapter 3)  

6. Conduct MD, SMD and US on docking hits (Chapter 3)  

7. Update the SANCDB database with new compounds and their commercially available 

analogs (Chapter 4) 
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Chapter 2:  Potential Repurposing of Four FDA 

Approved Compounds with Antiplasmodial Activity 

Identified through Proteome Scale Computational 

Drug Discovery and in Vitro Assay 

2.1 Introduction 

The number of high-resolution structures of drug targets allows for proteome scale screening. 
Currently, the PDB has more than 155,000 DNA, RNA and protein structures. About 73% of these 
structures are co-crystalized with one or more ligands. This vast experimental data offers an 
excellent mining opportunity for novel drugs. Indeed, it has already contributed to ∼90% of the 
210 new drugs FDA-approved between 2010 and 2016 140. These structures can also contribute 
to antimalarial drug discovery.  

Despite the availability of many structures, only a few targets are really studied.  Despite the 
identification of 2680 P. falciparum essential genes53, many potential target structures remain 
unsolved. Indeed, the PDB data has only about 600 P. falciparum structures with high 
redundancy. For example, PfDXR and PfDHFR count up to 19 and 26 structures of these 600, 
respectively. This same pattern continues in the bioactivity data. Assessment of P. falciparum 
bioactivity data in ChEMBL showed that Hexose transporter 1, Dihydroorotate dehydrogenase 
and Plasmepsin 2 have significantly more bioactivity data than other targets.  This may contribute 
to understanding a ligand series structure-activity relationship (SAR) on the same target, but this 
also impairs target diversity. Hence, the number of approved drugs may be restrained to few 
targets while the target space is broader and remains unexplored. Exploring new targets is certain 
to be beneficial in the case of malaria. 

The malaria parasite has a complex life cycle. It has three different phases which have a long 
history of molecular co-evolution with its hosts (human and mosquitoes). This long co-evolution 
has made this parasite highly adapted to humans with several survival mechanisms 23,27. 
Moreover, the high plasticity of the parasite genome together with its permissive nature 
contributes to its ability to develop resistance. Further, the parasite has shown its ability for de 
novo resistance, occurring without meiotic recombination. Also, drug action may be impaired 
through transporters in the parasite. For instance, chloroquine resistance occurs through the 
drug active H+-dependent efflux out of the digestive vacuole 141. Given these mechanisms, P. 
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falciparum has shown resistance to all used drug treatments including Artemisinin-based 
Combination Therapies (ATCs) 40. Target Product Profiles (TPP) and Target Candidate Profiles 
(TCP) for malaria elimination have emphasized the need for compounds with new mechanisms 
of action and with multi-stage activity 22,37. 

Screening against an array of proteins helps in the discovery of novel drug-target interactions 142. 
The virtual screening pipeline usually focuses on single target screening. An exception may be for 
kinases, in which protein arrays have been developed since their inhibitors act through 
multitargeting 142,143. Given the complex biology of the malaria parasite and its ability to develop 
drug resistance, targeting more pathways and proteins may be beneficial. This approach toward 
system biology fits complex disease models 144. Further, a proteome-based approach can help 
identify multitarget compounds that will be less susceptible to resistance - drugs with pleiotropic 
modes of action may well be resistance-proof 141. This could be the “holy grail” for malaria 
elimination, indeed, multitarget drugs already showed to have the longest lifespan in terms of 
clinical efficacy in the case of malaria 40. There are desired characteristics for new antimalarial 
compounds, including transmission-blocking, and activity on blood and liver stages of the 
parasite lifecycle 50. Only tafenoquine and primaquine are currently approved as liver-stage 
active compounds 145. More liver-stage active drugs would require an exploration of the parasite 
targetome. Additionally, cross-docking helps to model drug cocktail activity to optimize their 
synergy. Combinatorial chemotherapy plays a key role in the fight against malaria, and specifically 
ACT has been one of the most effective drug regimens known 146. 

In the specific case of plasmodium, large-scale virtual screening has been done but on a limited 
set of targets 144,147. WISDOM-I and II are two notable projects aiming at exploring plasmodium 
targetome for virtual screening. WISDOM-I aimed at PfGST, PfDHFR, PvDHFR targets while 
WISDOM-II extended this set to the P.  vivax orthologs144,147. A later study used a larger target set 
but in a target fishing exercise 148. To our knowledge, the potential of structure-based drug 
discovery at proteome-scale has not yet been identified or explored in malaria especially in the 
case of P. falciparum. 

Drug repurposing is a cost and time-effective strategy to face the problems of resistance and 
attrition. This strategy has been successfully applied and is promising in the case of malaria 40. 
Doxycycline and clindamycin are antibiotics that have been successfully repurposed for malaria 
149, and even heparin is being investigated as a potential antimalarial 150. Through a comparative 
structural and sequence analysis, Ramakrishnan et al. identified a further potential 71 FDA-
approved drugs for P. falciparum 151. Many other drugs are being investigated for repurposing as 
antimalarial 39. In addition to repurposing, efficiency indices may help with respect to the attrition 
problem. Efficiency indices may be used for better hit selection but also to guide their 
optimization 76,152. They also fit the holistic approach philosophy by combining drug potency and 
pharmacokinetic properties. Efficiency metrics have been increasingly used in publications since 
their introduction 153. 

The motivation behind this study is to set some basis for repurposing current FDA approved drugs 
for malaria treatment. The current pipeline approach is in line with malaria elimination requisites 
by using proteome scale virtual screening, target diversity and cost-effective screening strategies 
such as drug repurposing.  
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2.2 Methods 

Our approach hence combines proteome scale screening, ligand efficiency metrics, and 
standardization and ranking strategies. The below-described approach is the final version of the 
screening pipeline; the iterative improvements that resulted in the described final approach are 
detailed in the discussion related to the methods section.  

2.2.1 Data retrieval and structures preparation: starting from known drugs and clean targets. 

Raw PDB data requires pre-processing for virtual screening applications, and this has driven the 
design of cleaner PDB subsets such as sc-PDB 154,155 (this database also provides additional 
information such as binding site similarity scores through the Shaper scores 156). In this study, 
protein (MOL2 format) and ligand (SMILES) structures were retrieved from the sc-PDB (Screening 
Protein Data Bank) (release v.2017 frozen PDB data on 2016-11) 156 and DrugBank (version 5.1.2, 
released 2018-12-20) 157. The protein structures with fewer missing residues were chosen as 
representative for protein structures having the same UniProt 158 IDs. Fewer missing residues is 
advantageous in modeling the full structure more accurately for MD. These structures were first 
modelled using Prime version 5.4 (r012) (Schrodinger2018-4) 159.  A final set of 36 proteins was 
used. DrugBank ligands were further filtered in the following way. Compounds not affecting and 
not targeting Plasmodium spp were selected using the DrugBank search menu. New molecules 
without known antimalarial activity were ideal for use in this prospective study. Next, only orally 
active, and rule of five compliant compounds were selected. These filters fit some of the criteria 
for new antimalarials such as the one of oral administration50. Finally, the compounds with the 
greater Quantitative estimate of druggability (QED) 160 were selected for pairs of highly similar 
compounds (Tc >= 0.8). This was to reduce the computational cost while maintaining good quality 
compounds and diversity, thus maintaining ideal conditions in the virtual screening process 
particularly with respect to searching for new scaffolds. Also, similar ligands are likely to have 
similar properties. Finally, 796 ligands were used. Structures’ pdbqt format were generated using 
AutoDock Tools 161. RDKit (version 2018.09.1) was used to calculate molecular properties 162 and 
Crippen’s method for cLogP 163. 

2.2.2 Optimized cross-docking, rescoring, standardization, and complex ranking pipeline 
assessed by the MRE. 

The docking was first assessed with a minimalistic setup using blind redocking of co-crystalized 
ligands to all proteins (all-vs-all). This all-vs-all approach evaluates the pipeline ability to retrieve 
the true co-crystalized for a specific protein. QuickVina-W 96 was used as adapted for blind 
docking. A good quality pose has RMSD <= 2.00 Å when compared to co-crystallized one. This 
threshold is commonly used in docking pose evaluation studies 164. RMSD values were calculated 
using GROMACS 2016 112. 

The above-mentioned setup runtime will scale approximately linearly with the number of docking 
experiments (number of protein times the number of ligands). Therefore, it is important to 
optimize running costs for a practical runtime, hence the use of Quick-Vina-W 96. This enhanced 
version of Autodock Vina 165 has a mean and maximum normalized overall time acceleration of 
3.60 and 34.33 fold respectively compared to Vina 96. We evaluated the runtime of QuickVina-W 



19 
 

96 vs Vina 165 and confirmed this improved speed on a test dataset (Figure 2-4d). Concerning pose 
and affinity predictions, the tool is reported to maintain similar or greater accuracy 96. The 
method applies an enhanced search algorithm by spatiotemporal integration suitable for blind 
docking while using AutoDock Vina scoring function (SF)165 96. In the current study, the 
exhaustiveness was adjusted with respect to the dimensions of every target box. The scaling 
factor used a reference value of 24 for a box dimension of 303 Å (3 X the default Autodock Vina 
165 exhaustiveness value). Ten poses were predicted for each docking. Three CPUs per docking 
computation and eight jobs per computer node (24 cores per node) were used for internal 
parallelization and external parallelization for optimum computational efficiency. These 
parameters yielded the maximum efficiency with Autodock Vina 166  on a computer cluster. 

GRIM (Grscore) and RF-Score SFs were used for rescoring. Their accuracy has been assessed using 
the MRE as illustrated in a comparable study167. In our all-vs-all 1296 (36X36) docking 
experiments, we obtain a matrix of scores S[i, j], where i and j are row and column indices, 
respectively. Proteins are in columns, while ligands are in the rows.  A ranking error (Errj) is 
computed for every row (set i of ligands on protein j) using equation (2-1). The diagonal of this 
matrix includes all the protein-co-crystallized ligand pairs. Sjj is the score for the co-crystallized 
ligand j on protein j. Sjbest and Sjworst are the scores for the best and the most ligands respectively 
on protein j. The range Sjbest − Sjworst is the one of all scores on protein j. Sjbest − Sjj is the score 
difference between the best ligand and the co-crystallized ligand. This must be or close to zero 
in an ideal scoring, as the co-crystallized should be or close to being the best ligand. The MRE is 
the mean of all Errj (across all proteins). 1.0 is the worst MRE, 0.5 is for a random ranking, and ~0 
for an ideal SF. Another alternative is to use the number of correctly identified co-crystalized 
ligands. Indeed, such an approach was also used in a similar study167. 

 
𝐸𝑟𝑟𝑗 =

𝑆𝑗𝑏𝑒𝑠𝑡 − 𝑆𝑗𝑗

(𝑆𝑗𝑏𝑒𝑠𝑡 − 𝑆𝑗𝑤𝑜𝑟𝑠𝑡)
 (2-1) 

From the resulting binding energy scores, Lipophilic efficiency (LipE) (equation (2-4)),  Surface 
efficiency index (SEI) (equation (2-3)), and  Binding efficiency index (BEI) (equation (2-2)) were 
calculated. These metrics have gained interest in identifying quality hits, since they rank better 
than sole potency 168. Selection of hits based on high-scoring ligand efficiency metrics can lead to 
good quality leads 169–172. Further, they can guide the compounds' optimization path through the 
efficiency plane 170. Here we combined SEI and BEI which can be derived from the 2D efficiency 
plane properties 170.  Given the orthogonal nature of the two dimensions, we simply used the 
radial coordinate which corresponds to the square root of the sum (SEI2 + BEI2), i.e. 

(√𝑆𝐸𝐼2 + 𝐵𝐸𝐼2)173,174. Efficiency metrics were also assessed with the MRE.  

 
𝐵𝐸𝐼 =

𝑝𝐼𝐶50

𝑀𝑊(𝑘𝐷𝑎)
  

(2-2) 

 
𝑆𝐸𝐼 =

𝑝𝐼𝐶50

(𝑃𝑆𝐴/100Å2)
  

(2-3) 

 𝐿𝑖𝑝𝐸 = 𝑝𝐼𝐶50 − 𝑙𝑜𝑔𝑃 (2-4) 
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MW: Molecular Weight.  

PSA: Polar surface area. 

LogP was used for simplicity, since logD requires a pKa (dissociation constant) calculation and 
was not available in RDKit162. For the distribution coefficients of charged compounds, LogD is 
more accurate than the calculated partition coefficients (log P) 175.  The potency metrics IC50, Kd, 
and Ki are interchangeable. The binding affinity was converted to Ki (dissociation constant of the 
enzyme-inhibitor complex) using equations (2-5) and (2-6) where 𝛥G is the binding affinity 
(kcal/mol), 𝑅 = 1.98, and 𝑇 = 298.15 K. pKi is obtained from equation (2-6). 

 

𝐾𝑖 (unit in Molar) =
𝑒

1,000×𝛥𝐺
𝑅𝑇

1,000
 

(2-5) 

 

 

Binding site characteristics (depth, size, hydrophobicity may cause significant variation in binding 
affinities. This makes it challenging to compare a ligand affinity on two targets. Indeed, this inter-
protein scoring noise has been shown in various works. Score standardization techniques were 
suggested to minimize it 167,176–178. Here, scores were transformed to their z-score by deducting 
the mean and then dividing by the standard deviation.  This was applied, per column (all ligands’ 
scores on every protein) and afterward to every row (a ligand’s scores on all proteins) to obtain 
the z-score (Figure 2-2). The z-score was computed using SciPy179 (equation (2-7)). The 
standardization strategy was applied on scores of every protein, centering them around a mean 
of zero with a standard deviation of one. This minimizes the inter-protein scoring noise. Hence 
ligand scores on two proteins may be compared. A comparable phenomenon was noted for 
ligands.  These tend to have a greater affinity associated with their increase in molecular weight, 
causing false positives in docking. This was noted with Vina. Normalizing this bias was shown to 
enhance ligand affinity ranking in VS 177,179,180. 

      𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇

𝜎
  (2-7) 

On the resulting standardized scores, the complex ranking was applied to reveal protein-ligand 
pairs having a high reciprocal affinity in the dataset142. Each score was transformed to its rank. 
Where scores were equal, the mean of the score ranks was used. Hence ranks may have non-
integer values. A complex rank is defined as the total of the protein rank plus ligand rank as in 
equation (2-8). The ligandrank respective to a protein is its rank compared to all other ligands.  
Similarly, the proteinrank relative to the ligand is the rank of the protein compared to all other 
proteins. Hence, a complexrank  is simply the total of the ligand and protein ranks. This enables 
uncovering protein-ligand systems having high mutual specificity, with a low rank (~2) being used 
to filter out false positives.  

 Complexrank = ligandrank + proteinrank (2-8) 
 

 pKi = log10(KiMolar) (2-6) 
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Efficiency indices have been used solely or in combination (SEI/BEI, LLE-LELP efficiency planes) in 
drug discovery pipelines. This rank transformation allowed us to integrate LipE, SEI, BEI as well as 
the Grscore.   This addition provides a more holistic approach. Hits selected using efficiency 
metrics only may not maintain key interactions as the ones of the co-crystalized. Integration of 
the Grscore helps to take into account these interactions as GRIM scores molecular interactions  
Grscore 181. 

2.2.3 MD simulation 

All MDs were done as described here to assess protein-ligand complex stability, and thus to 
remove false positives. Indeed, MD is often used in the last stage of virtual screening pipelines 
103. Due to force field limitations, metal ions (MG in 1D5C, MG 1P9B, MN in 2PML and MG in 3FI8) 
were removed in MD. Cofactors were retained in the structures in both MD and docking. 
Hydrogen Mass Repartitioning (HMR) was applied to the structures. Masses of hydrogens 
connected to heavy atoms were repartitioned enabling an increased 4-fs time step. HMR consists 
in raising hydrogens’ masses by a factor of four and deducting the added mass from the 
connected heavy atom as explained in GROMACS documentation 182. The system total mass is 
conserved. HMR has been shown to accurately speed up MD118,183–185. Ligands' charges were 
obtained from Discovery Studio Visualizer V1.7 and their topologies generated with ACPYPE186. A 
dodecahedron box with a 1.0 Å distance between the box and solute and the tip3p water model 
were used with a concentration of 0.15 M (Na+ (sodium) and Cl- (chloride) ions). Steepest descent 
was used for energy minimizing using a max force of < 1000.0 kJ/mol/nm and a maximum of 
50000 steps. Systems were equilibrated at 300 K and 1 atm with 50 ps MD in the isothermal-
isobaric ensemble and later in the canonical ensemble. The Lennard-Jones and the short-range 
electrostatic interaction cut-offs were set at 10 Å. The smooth particle mesh Ewald and a fourth-
order interpolation were used for long-range electrostatic interactions. Leap-frog algorithm was 
used for integration during the twenty nanoseconds MD. Simulations were performed on a 
remote computer at Center for High-Performance Computing (CHPC) using GROMACS 112 version 
2018.2, with the Amber ff99SB-ILDN 187 force field. After the simulations, the GROMACS112  
module trjconv was used to adjust for periodicity. Protein rotation as well as translation were 
removed by fitting it to the initial structure. Nglview 188 and Pytraj 189 were used for analysis and 
visualization in a Jupyter Notebook190. The analysis metrics were clustered into geometry related 
(radius of gyration) Rg, RMSD, protein-ligand center of mass (COM) distance), interactions 
(hydrogen bonds) and finally energy-related (protein-ligand interaction energy) ones. Analysis 
involved initial evaluating proteins' structural stability via their  RMSD and the Rg calculated using 
the corresponding GROMACS 112 modules. Rg is related to the overall compactness of the protein, 
which can thus assess structure instability, especially when unfolding191. It can also be linked to 
the different protein folds 191. An increasing Rg indicates a less compact structure. The ligand 
heavy atoms RMSD was fitted to the backbone of the protein. This metric has been shown to 
better capture ligand stability 192. Additionally, its interaction energy, COM distance to the 
protein COM (“COM” is used for simplicity), and hydrogen bonds were used. 

The current pipeline combines two concepts. First, we use a holistic approach through proteome-
scale docking, and through the use of multiple metrics (energy and molecular properties (ligand 
efficiency) and interaction scoring (GRIM)) in scoring the ligands. Secondly, we explored the drug 
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repurposing aspect. Further MD simulations including HMR schemes were done. Figure 2-1 
represents the overall screening workflow. 

 

 

Figure 2-1 Overall screening pipeline from left to right. The table in the experimental design carries on 
throughput the workflow. Square boxes represent tables of protein-ligand complexes as described in the 
experimental design. The metrics in the boxes represent the values in the corresponding table. The 
transformations in each table are shown in the color code. 

2.2.4 Antiplasmodial and human cytotoxicity assays  

Compound antiplasmodial activity evaluation was done against the Plasmodium falciparum 3D7 
strain. The method has been fully described previously193. As a pre-screen, the cultured parasites 
were incubated with each compound at 20 μM for 48 hours. A control of untreated parasites was 
also used.  The plasmodium lactate dehydrogenase (pLDH) assay194 determined the parasite 
viability percentage relative to the control. The assay and the 48-hour incubation were repeated 
in 3-fold serial dilutions. IC50 evaluation was performed for active compounds, the ones that 
decreased parasite viability below 50%. Their values were calculated through non-linear 
regression analysis of parasite viability % vs. log[compound].  

Active compounds’ human cytotoxicity was evaluated on HeLa cells (human cervix 
adenocarcinoma).  Compounds were incubated at 20 µM in three-fold serial dilutions (100 to 
0.0457 μM) in a 96-well plate. An untreated control well was also used. HeLa cells were cultured 
in Dulbecco’s Modified Eagle’s Medium (DMEM) with 5 mM L-glutamine (Lonza), supplemented 
with antibiotics (amphotericin B/streptomycin/penicillin) and 10% fetal bovine serum (FBS)  at 
37 ºC in a 5% CO2 incubator for 24 h. The surviving cells to drug exposure were counted using the 
resazurin based reagent and resorufin fluorescence quantified (Excitation560/Emission590) in a 
SpectraMax M3 plate reader (Molecular Devices) 195,196. The wells fluorescence readings were 
converted to cell viability percentage relative to the control average readings, after deducting 
background readings from wells without cells. Cell viability % vs. log[compound] plots were used 
to determine IC50 using GraphPad Prism (v. 5.02) through non-linear regression. 
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2.3 Result  

2.3.1 Pipeline accuracy assessment: 77% correct poses and an MRE of 0.08 

The pipeline accuracy was first assessed in the all-vs-all experiment. Redocked co-crystallized 
ligands’ poses RMSD, binding energies, their standardized values and ranks are presented in 
Figure 2-2. Diagonal cells on the heatmaps show protein and co-crystallized ligands pairs. 77% of 
ligands were docked accurately considering that poses with the lowest RMSD have RMSD <= 2 Å 
(Figure 2-2a). Comparable percentages of accurate pose were found in pose accuracy 
studies164,197. Quick-Vina-W showed similar accuracy in its original paper 96. 

 

Figure 2-2 Workflow assessment validation of docking poses and scores transformations. a. Docked vs co-
crystallized poses RMSD cumulative distribution. b. QuickVina-W96 binding affinities. c. Standardized 
values; d Complex ranks (for clarity, only complexes ranks ≤ 6 are shown. Rows (ligands) and columns 
(proteins) are alphabetically ordered on the heatmaps. The figure was produced using Seaborn version 
0.9198. 

Co-crystallized ligands in these proteins docked with RMSD above 2 Å: 1U5C (4.8 Å), 2b4r (21.3 
Å), 2pc4 (5.7 Å), 2rcy (2.1 Å), 3JQR (5.4 Å), 3QVI (19.7 Å), 3uow (17.7 Å) and 3vi2 (5.1 Å). Although 
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in some of these cases the ligand-bound in the active site area, the co-crystallized ligands in 3QVI, 
3uow, and 2b4r had RMSD deviations above 6 Å: 21 Å, 19 Å, and 17 Å, respectively after docking. 
In investigating the cause for these RMSD deviations, the probability of docking program error 
was first ruled out by trying other programs with different search algorithms: Vina93, Smina199, 
and VinaXB200. AES has a halogen atom, and for this case, VinaXB200 which takes into account 
halogen bonds could be helpful. However, all of these programs gave similar results to Quick-
vina-w96 with the RMSD attaining (0.01 Å) when comparing poses generated by the four 
programs. Following this, structural analysis was performed to examine alternative receptor 
conformations, water-mediated interactions, resolution, flips of asparagine, glycine or histidine, 
missing residues, particularly in the active site and protonation states at the protein working pH. 
As such, careful inspection of input files, their combinations, and other aspects influencing 
docking were conducted on these structures. In 2b4r, MolProbity 201 indicated a flip of ASN185, 
an active site residue (Figure 2-3). The co-crystallized ligand (AES) was redocked with an RMSD 
of 1.23 Å with ASN185 flipped. This could be the residue correct conformation. It is additionally 
notable that AES in 2b4r was assigned to an unexpected electron density202. On the other hand, 
the histo-aspartic protease (3QVI) works at low pH (5.5)203.  The correct pose was not reproduced 
using that protonation state pH using Schrodinger204. Inspection of the structure showed that the 
co-crystalized ligand is bound into an unusual δ-turn conformation. A tight domain-swapping 
makes the flap pocket (enzyme active site) inaccessible205. For 3uow, MolProbity 201 showed a 
flip of GLN476 (chain A). The residue in that conformation and the above-mentioned changes did 
not allow reproduction of the correct pose. An explanation might be the rigid nature of the 
receptor. A considerable conformational change happens upon binding of XMP206,207. This latter 
may be binding to its initial binding site before the induced conformational change leading to the 
co-crystallized one. Flexible residues or an induced-fit docking might be a better choice. These 
three cases might be a limitation. As 3uow, 2b4r, and 3QVI conformations did not reconstruct 
the respective co-crystallized ligand poses, only considering successfully redocked targets would 
have been a better strategy for the rest of the experiments.  

 

Figure 2-3 2b4r-ASN185 conformations in the crystal structure (left) and flipped from the Molprobity 
(right). AES redocked successfully with the flipped conformation with ASN185 AND AES forming an 
hydrogen bond. 

These docking failures were not expected, as sc-PDB is a dataset designed for molecular 
modelling. In the structure preparation for this dataset, hydrogens were added to structures 
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taking into account the ionization state of titratable groups208. For other residues, hydrogens 
were added according to ionized templates built from HET group dictionary which contains 
information on hydrogen atom connectivity and bonding type208. The intermolecular hydrogen 
bonds were optimized using the BioSolveIT Hydescorer program. No missing residue was noted 
in the active site areas. The worst resolution among the selected structures was 2.8 Å. Sc-PDB is 
specifically designed for docking methods156. Thus, we assumed that the set of proteins and co-
crystallized ligands suitable for this study. Yet, as indicated, we observed that some redockings 
were challenging due to residue flips, or due to receptor conformations. The quality of the sc-
PDB structures could be further improved with residue flip analysis. Validating structures through 
redocking might improve the quality of the dataset for virtual screening. 

In the initial stages of this project, all DrugBank compounds and all P. falciparum structures (~600) 
were retrieved from PDB to construct the target set for screening. This set was associated with 
many challenges including structure and binding site redundancy, target validity, binding site 
druggability, docking runtimes, target size for blind docking, and all the above-required structure 
preparations. This lack of preparation caused poor redocking accuracy. Only 61% of ligands had 
RMSD <=2 with Qvina-w while this percentage was 51% for Vina. On a test set of 560240 dockings, 
q-vina and vina had an average runtime per compound of 148.77s and 399.68s respectively 
(Figure 2-4d). Despite its faster speed of q-vina, the total runtime required to complete the 
docking for the entire set, using the available 240 CPUs, was 48 days and was impractical for the 
scope of the project. This required reduction of the ligand and/or target set sizes. Filtering 
redundant structures (90% sequence identity) gave a set of ~235 structures. These structures 
were then classified to estimate P. falciparum target space coverage (Figure 2-4b). Many of them 
were not suitable for small molecule drug discovery (especially antigens, transporters, 
immunoglobulins etc.). Fpocket 209 filtered for druggable pockets (Figure 2-4a). Considering only 
pockets having a druggability score equal to or above 0.4 (the Fpocket threshold for druggable 
pockets), a final set of 61 structures for a total number of 367 binding sites was selected. Cofactor 
sites and sites other than the active site were considered. Also, homodimers and homotetramers 
for example have multiple copies of the same binding site. This multiplicity in the binding site 
allowed for additional strategic analysis in the aggregation of results from multiple targets.  
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Figure 2-4 Challenges associated with the initial PDB set preparation for screening. a. Histogram of Fpocket 
druggability scores. b. P. falciparum Structures classification. c. Cumulative distribution of QuickVina-W96  
generated poses RMSDs on a test set. d. Runtimes (in seconds) density pots for Vina (blue) and QuickVina-
W96 (red). 

One of the initial objectives was to investigate for multitarget binders for which binding site 
similarity between structures is key. The availability of that information, co-crystalized ligands 
that allow use of the GRIM SF, and all the above-mentioned challenges associated with the initial 
PDB set motivated the choice of using the sc-PDB dataset. 

Binding energy standardization minimized protein and ligand-related biases. 1NHG and 4qt3 had 
the highest and lowest average binding energies (-9.11 kcal/mol and -6.50 kcal/mol respectively) 
(Figure 2-2b and c), which corresponds to a difference of 2.61 kcal/mol. This might be explained 
by the buried active site in 1NHG compared to the greater solvent-exposed active site of 4qt3. 
The standardization procedure lowered this inter-protein noise by centering the mean of binding 
energies on each protein at zero. Similarly, with ligands, 2-aminoethyl dihydrogen phosphate and 
(2R)-2- [( hydroxy-- amino)methyl] hexanoic acid co-crystallized ligands in 3FI8 and 1RL4, have 
low binding energies across all proteins (Figure 2-2b). Their low molecular weights 141 Da and 
189 Da respectively may explain their reduced scores. Vina SF has a ligand size-related bias180. By 
comparison, the co-crystallized ligand from 4J56, flavin-adenine dinucleotide, has a high 
molecular weight (785 Da) which might explain its high promiscuity. Moreover, it presents 
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multiple centers for H-bonding. 
Overall, the workflow assessment showed that 77% of the redocking was successful as evidenced 
from their RMSDs (<= 2 Å) (Figure 2-2). Score standardization removed ligand and protein-related 
biases. Finally, the complex ranking revealed mutually selective protein-ligand pairs. 

In, addition to QVina-W SF, GRIM and RF-Score were also evaluated for their ability to retrieve 
original pairs of protein-ligands. Figure 2-5 shows MRE values for the different scoring schemes. 

 

Figure 2-5 MRE values and Complexes ranks from Grscores. A. Bar chart of the MRE values for the different 
scoring schemes. B. Heatmap of the Grscores complex ranks described in this chapter Methods section 
(only complexes with a rank value ≤ 6 are shown for clarity. On the heatmaps, rows (ligands) and columns 
(proteins) are alphabetically ordered. Being similarity scores, Grscores were not standardized. SEI_BEI is 

the radial coordinate (√𝑆𝐸𝐼2 + 𝐵𝐸𝐼2) . LipE z-score,  LipE z-score complex rank is the standardized value 
and complex ranks derived from LipE. A similar naming pattern is used for QVina-W, RF-Score-v1 and v4, 
and SEI_BEI.  

The best MRE (0.08) was obtained with Grscore after complex ranking. LipE and SEI_BEI had MREs 
of 0.20 and 0.21 respectively in their complexes ranking. This MRE value is comparable to the 
QuickVina-W96 one (0.21). Remarkably, the machine learning SF, RF-Score, yielded the highest 
MRE values. Indeed, both RF-Score VS and also RF-Score-v4 were found to rank poorly the co-
crystallized ligands by having an MRE of 0.71 and 0.54 respectively. In both versions, RF-Score VS 
and v4 had an MRE greater than 0.5, worse than random, and for that reason, they were not used 
in subsequent experiments or in the final version of the pipeline.  

The best MRE with the Grscore may simply be explained by the accuracy of docked poses. These 
docked poses would give accurate molecular interactions which are used in GRIM scoring 
approach.  Also, the GRIM approach may be more advantageous as the co-crystalized ligand is 
used as a reference and the MRE evaluates the tools’ ability to retrieve the correct protein-co-
crystalized ligand. Simple logic would drive us to solely choose this metric for further screening. 
However, we considered the importance of the consensus approach 142,210,211. Further, the 
DrugBank ligands used in screening are not the co-crystallized ligands. Finally, analysis of drug 
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attrition has highlighted the importance of including molecular properties in the early stages of 
drug discovery 171,212, and so we decided to integrate the efficiency metrics.  

MRE enhancement through scores' standardization plus complexing ranking is well-observed as 
the various scoring strategies are implemented (Figure 2-5A). For instance, one can note a 
reduction in the MRE starting with SEI_BEI to SEI_BEI z-score and finally to SEI_BEI z-score rank. 
Likewise, a similar trend is noted in RF-Score VS and RF-Score-v4, and LipE. Complex ranking 
produced the lowest MREs whereas the highest values are observed for the scores before 
standardization and complex ranking (Figure 2-5A).  

Ligands in 3QVI, 3uow, 3vi2, 1U5C had a Grscore of 0.57, 0.56, 0.57 and 0.58 respectively. The 
value 0.594 is the threshold to distinguish similar from dissimilar co-crystallized ligand interaction 
patterns 181. This may be caused by the absence of good binding poses as shown above in their 
pose assessment. Indeed, Grscore scores the molecular interaction similarity which inevitably 
depends on pose quality.  

Despite having good ligand poses (RMSD < 2) 3FI8 had a complex rank of 16. The system had a 
protein rank and ligand rank of 11 and 5, respectively. Hence, the protein rank in this case is the 
main contributor to the poor complex rank. The co-crystallized ligand has a simple interaction 
consisting of hydrogen bonds with GLN290, ASP288, and a water molecule.  The simplicity of the 
interaction pattern may make its reproducibility easier. Hence, many other ligands may bind 
similarly, leading to the target having a high average Grscore. Indeed, comparing its Grscore to 
the other systems, 3FI8 target had the highest average Grscore. This observation highlights the 
dependence of the Grscore on the reference ligand molecular interaction complexity. 

Complexes OPE603 (ligand from original protein:3FI8)-2b4r and ANP (ligand from original 
protein:3LLT)-3nie had a complex rank of 2 while not being original complexes.  These two false 
positives may explain the limit in Grscore success. The ligand in 3FI8 (OPE603) binds around 
AES602 (in 2b4r chain P) and interacts with AES602 (Figure 2-6a). It is also noteworthy that a 
residue in AES602 binding site in 2b4r did not have the correct conformation. MolProbity 201 
showed flip of ASN185 AES602 binding site. OPE603 binds with a high Grscore (0.74) which may 
be explained by its interaction with the reference ligand.  

 

Figure 2-6 a. Interactions OPE603-AES602. b. Redocked ANP in 3LLT superimposed with co-crystallized 
ANP in 3FI8.  The image is rendered using Discovery Studio Visualizer 2017 R2. 

In the second case, phosphoaminophosphonic acid-adenylate ester (HET CODE: ANP) was co-
crystallized with two kinases (3LLT and 3nie). In the redocking, ANP in 3LLT was found binding in 
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3nie in a pose close to the native ANP in 3nie (Figure 2-6b). This may explain their low complex 
rank of 2.  

2.3.2 Top predicted complexes 

GRIM and ligand efficiency were added to the workflow (Figure 2-1).  796 drugs from DrugBank 
213 were docked on 36 Plasmodium falciparum targets. LipE, BEI, and SEI were computed for every 
ligand's best binding energy. All poses were rescored using the GRIM tool to get the Grscore and 
the one having the best Grscore was used for ranking. LipE, SEI, BEI scores were standardized via 
the z-score. A complex rank was computed from scores rank transformation as described in the 
method section. Complexes ranked list was obtained by summing all metrics relative ranks and 
ranked accordingly. One ligand was selected for each target and assessed in MD. 25 stable 
complexes were kept (Table 2-1). 

Table 2-1. Top predicted ligand (names) with their predicted targets PDB IDs, and compounds 
names, DrugBank IDs, binding energies, GRIM Grscores, and ligand efficiency (LipE, SEI, BEI) 
values. Ligands are sorted by their mean of PLIE. 

Protein name (PDB ID) 
Compound name 
(DrugBank ID) 

ΔG Q-vina  
(Kcal/mol) 

Grscore LipE BEI SEI 
 ΔG PLIE1 
(Kcal/mol) 

Plot 
Labels 

Thioredoxin reductase 2 (4J56) Prazosin (DB00457) -11.4 0.71 9.6 30 11 -331.42 22 
Phosphoethanolamine N-methyltransferase 
(3UJ8) 

Abacavir (DB01048) -9.2 0.75 8.7 34 10 -261.05 20 

Protein serine/threonine kinase-1 (3LLT) Sitaxentan (DB06268) -10.5 0.59 6.8 24 10 -231.08 17 
Spermidine synthase (2PT6) Sotalol (DB00489) -7.9 0.62 7.7 32 11 -224.17 12 
Dihydroorotate dehydrogenase (3O8A)  Nadolol (DB01203) -9.0 0.78 9.0 31 12 -214.64 18 

L-lactate dehydrogenase (1U5C) 
Gemifloxacin 
(DB01155) 

-8.2 0.67 8.1 23 7 -213.04 6 

D-aminoacyl-tRNA deacylase (4NBJ) 
Triamcinolone 
(DB00620) 

-9.4 0.63 9.3 25 9 -205.09 24 

Protein kinase 7 (2PMN) Lamotrigine (DB00555) -7.8 0.69 6.7 34 10 -201.50 11 
Protein kinase domain-containing protein (2PML) Terazosin (DB01162) -9.0 0.62 8.6 25 9 -190.83 10 
Bromodomain protein putative (4PY6) Pirbuterol (DB01291) -6.7 0.69 7.2 33 9 -190.13 25 
Glutathione S-transferase (1Q4J) Saxagliptin (DB06335) -9.4 0.63 8.8 31 11 -187.68 4 
Plasmepsin 2 (2IGX) Fingolimod (DB08868) -7.9 0.79 5.6 29 13 -177.18 9 

Purine nucleoside phosphorylase (2BSX) 
Temozolomide 
(DB00853) 

-7.5 0.74 10.6 44 8 -175.49 8 

Choline kinase (3FI8) Tenoxicam (DB00469) -8.8 0.74 7.8 28 10 -173.48 14 

GTPase (Rab6) (1D5C) 
Dianhydrosorbitol 2,5-
dinitrate (DB00883) 

-7.7 0.73 9.7 37 7 -171.46 2 

Calcium-dependent protein kinase 2 (4MVF) Abiraterone (DB05812) -11.0 0.69 5.7 32 33 -166.17 23 

Ferredoxin–NADP reductase apicoplast (3JQR) 
Grepafloxacin 
(DB00365) 

-9.5 0.71 7.7 28 13 -165.17 16 

Cell division control protein 2 homolog (1V0O) Anastrozole (DB01217) -10.1 0.70 7.5 36 13 -163.73 7 
Plasmepsin III (3FNU) Darifenacin (DB00496) -9.5 0.73 6.0 23 18 -152.76 15 
Adenylosuccinate synthetase (1P9B) Tafamidis (DB11644) -10.3 0.71 6.1 34 17 -151.97 3 
Thymidylate kinase (2YOH) Salbutamol (DB01001) -7.7 0.70 7.4 36 12 -151.25 13 
Peptide deformylase (1RL4) Ruxolitinib (DB08877) -9.0 0.69 6.2 31 12 -150.06 5 

Enoyl-acyl carrier reductase (1NHG) 
Moclobemide 
(DB01171) 

-9.0 0.73 8.2 36 23 -146.70 1 

Histo-aspartic protease (3QVI) Stavudin (DB00649)  -7.6 0.60 9.3 38 10 -142.12 19 
1-deoxy-D-xylulose 5-phosphate 
reductoisomerase (4GAE) 

Dihydromorfinon 
(DB00327) 

-9.6 0.67 8.4 35 20 -140.28 21 

1: PLIE: Mean of Protein-ligand interaction energy in MD.  
2: ΔG Protein Ligand Q-vina Binding energy 

3: Plot labels: Drugbank compound labels on the plot in Figure 2-7. 
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Figure 2-7  Scatter plot of the screening hits on the efficiency planes subplot a: (SEI/BEI), subplot 
b: (NSEI/nBEI). Points’ labels represent the DrugBank IDs of the hits. The colors bar represents 
the binding energies on their respective best predicted targets. Plots labels mapping are in Table 
2-1. Formula for 𝑛𝐵𝐸𝐼 = 𝑙𝑜𝑔10(𝐾iMolar/𝑁𝐻𝐴)  and 𝑁𝑆𝐸𝐼 = 𝑙𝑜𝑔10(𝐾iMolar/𝑁𝑃𝑂𝐿).  With 
NHA and NPOL being the number of heavy atoms and the number of polar atoms respectively.  
 

Efficiency metrics were found to be in an acceptable range for the different efficiency metrics 
thresholds. Minimum BEI and LipE values were 23 and 3, and their lower accepted thresholds are 
3 and 27171 respectively. Kumar et al.214 defined the value 15 as a lower threshold for SEI. In the 
set of identified ligands, the average SEI value (12) was less than this SEI lower limit. Indeed, the 
compounds dianhydrosorbitol 2,5-dinitrate (Total Polar Surface Area (TPSA) of 123.2 Å2), 
gemifloxacin (TPSA: 127 Å2), temozolomide (TPSA: 105.94 Å2), triamcinolone (TPSA: 115.06 Å2), 
pirbuterol (TPSA: 85.61 Å2), terazosin (103.04 Å2), tenoxicam (99.6 Å2), abacavir (101.88 Å2), and 
Sitaxentan (TPSA: 107.73 Å2) were found to have SEI values lower than 10. These molecules 
tended to have high polarity values. 7 (gemifloxacin) and 33 (for abiraterone) were the lowest 
and highest SEI values, respectively. For abiraterone, the compound’s high hydrophobicity 
explains its high SEI value. Indeed, it has a PSA of 33 Å2 and a cLogP of 5.3. 

Figure 2-7 represents the scatter plot on SEI/BEI and NSEI/nBEI for the 25 DrugBank hits 
compounds. Most hit compounds are in the favorable region around ideal values of nBEI (10.5) 
and NSEI (1.5)215. This was expected about these are marketed drugs and thus likely to already 
have good molecular properties. Only compound labeled 23 (DB05812), Abiraterone is in the fast 
east region of the graph. This may be linked to its hydrophobicity. Indeed, it is highly hydrophobic 
with a PSA of 33.12Å2 and a logP of 5.39. Indeed it was one of the four active compounds from 
the in vitro testing. 

Compounds with favorable every do not necessarily score high on the SEI/BEI plane. Indeed these 
metric counterbalance potency with molecular property.  

a b 
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Figure 2-8 Scatter plot of LEIs of Nalodol and available Dihydroorotate dehydrogenase inhibitors in 
PubChem. Left subplot: x-axis NSEI y-axis nBEI,  Left subplot: x-axis SEI y-axis BEI. Nalodol is in orange dot 
while other Dihydroorotate dehydrogenase inhibitors are in blue dots.  

The plots illustrates nalodol optimized LEIs by its localization in North-east region of the plot. 
Compared to known Dihydroorotate dehydrogenase, it has better LEIs values. Interestingly, the 
compounds was not found active in the assays. Yet Dihydroorotate dehydrogenase is a validated 
target.  

Despite having comparable molecular interactions, hits and co-crystallized ligands had different 
chemical scaffolds. Indeed, identified ligands had a Grscore above 0.58 indicating similar 
interactions to co-crystallized ligands. However, compared to their respective targets known 
inhibitors (found in ChEMBL216) none of the compounds showed a Tanimoto Coefficient (Tc) score 
greater than 0.6. Hence, they also present different scaffolds from known target inhibitors. This 
indicates GRIM ability for scaffold hopping despite searching for similar interaction patterns as 
previously indicated in the related publication181. Additionally, hits were compared to FDA-
approved antimalarials.  The maximum similarity (0.52) was between primaquine and terazosin. 
Even still, this low value does not imply structural similarity. This supports the likelihood of hits 
presenting a new mechanism of action from current antimalarials, an ideal scenario in the 
resistance context. 

Furthermore, identified hits have appropriate pharmacological properties for further 
optimization. Indeed, these compounds have acceptable molecular weight and logP for further 
growing or modification.  Hence, using efficiency metrics combined with GRIM, normalization, 
and complex ranking may have guided hit selection toward a more druglike chemical space and 
have avoided molecular weight-related bias. Additionally, some of the hits binding poses show 
the possibility for further extension within the binding site. 
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2.3.3 Twenty-five stable complexes in MD 

2.3.3.1 MD: Ligand binding did not induce a conformational change  
The 25 complexes were simulated for 20 ns to assess their stability and ligand binding affinities. 
MD is an effective approach to assess ligand binding mode conservation. For the protein 
structures, their stability in the apo and complex form was assessed using RMSD and Rg. The apo 
systems were compared to their respective complex forms. 

For the apo proteins, the mean of RMSD per system ranged from 0.11 nm to 0.47 nm while 
ranging from 0.20 nm to 0.50 nm for the complexes (Figure 2-9). For the standard deviations, the 
ranges were [0.10 nm - 0.15 nm] and [0.01 nm - 0.06 nm] for apo and complexes proteins, 
respectively. Both maximum RMSD for apo and complexes were observed in 2YOH with 0.38 nm 
and 0.5 nm, respectively. These values are greater than 3 Ǻ and are therefore above structural 
similarity thresholds. Nevertheless, they maintained low standard deviations 0.035 nm (apo) and 
0.066 (complex) during simulation. This indicated that despite an initial deviation from the initial 
conformation, the new conformation is maintained throughout the simulation.  

To assess ligand binding effects on protein structures, the complexes and their respective apo 
systems, the absolute difference of the protein RMSDs were analysed. The highest difference was 
1.1 Ǻ for 2YOH_DB01001. Considering protein structural similarity threshold of 3 Ǻ 217, this 
difference is not significant for conclusions on structural change. Hence ligand binding did not 
induce any significant conformational change in any system. 

 

Figure 2-9. Mean of RMSD of backbone atoms for apo proteins and complexes. Complexes are 
represented by their DrugBank IDs (last five digits) and PDB IDs. Error bars are the standard 
deviations of the means. The complexes and apo proteins are in orange and blue respectively. 

Ideally, this analysis may be done in a pair-wise comparison of all frames in the apo vs all frames 
in the complex system. This will allow comparing the entire ligand-bound conformational space 
throughout the simulation to the apo system. The abovementioned RMSDs are computed 
respective to the initial MD run frame. This may be different from the initial structure before the 
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minimization and equilibration steps of the system. Indeed, the output of these processes may 
result in different structures. Ideally, the reference system should be a set of structures, 
representing conformational space rather than an individual conformation. 

Protein stability was also assessed through the Rg. There is an overlap between the two metrics 
(Rg, and RMSD) as all changes in Rg are normally captured by the RMSD. 

 

Figure 2-10. Means of proteins backbone atoms Rg for apo and complexes. Complexes are 
represented by their DrugBank IDs (last five digits) and PDB IDs. Error bars are the standard 
deviation of the means. The complexes and apo proteins are in orange and blue respectively. 

The highest Rg standard deviations were 0.02 nm (4MVF) in apo proteins and 0.05 nm 
(2YOH_DB01001) for complexes. Hence, given these low values for both apo and complexes, 
these respective levels of compactness support their stability. Minimum and maximum Rg values 
were 1.45 nm (1D5C) and 3.04 nm (4J56) respectively for the apo proteins while they were 1.44 
nm (1D5C_DB00883) and 3.09 nm (4J56_DB00457) for complexes. The inter-system difference is 
linked to the respective protein sizes. Indeed, protein structures can be grouped into different 
classes depending on their radius of gyration values 191. 

Both proteins Rg and RMSD in their apo vs ligand-bound indicated that ligand binding does not 
induce significant conformational change. Ligand stability in the different systems was also 
assessed. Geometric metrics related to ligand stability were its RMSD and COM distance to the 
protein. Regarding COM distances, the standard deviation ranged from 1 Ǻ (1RL4_DB08877) to 
0.2 Ǻ (3O8A_DB01203). These low standard deviations indicate no ligand dissociation. The actual 
COM distance ranged from 0.61 nm (2PT6_DB00489) to 2.33 nm (4J56_DB00457). Intersystem 
COM distances variation is more likely linked to binding sites proximity to protein COM, hence its 
absolute value is less likely to be linked to ligand stability, but its variation may be so. It is also 
noteworthy that change in protein COM will affect COM distance while ligand stability is not 
necessarily affected. Hence, this metric is to be used cautiously. Changes in protein COM may be 
tracked with its RMSD. 

file:///C:/Users/Bakary/fig/best_pairs_apo_comp_RG_only2.png
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The RMSD for the ligand alone was low, below 2.5 Ǻ (the highest observed value) in all systems, 
indicating stability. However, the ligand RMSD fitted to the protein backbone was characterized 
by a much greater fluctuation, reaching up to 8 Ǻ with high standard deviations; as previously 
shown RMSD is more sensitive to ligand movements relative to the protein192. However, the 
consistency in hydrogen bonding and protein-ligand binding energy supports the stability of the 
ligands. 

Molecular interactions play an important role in ligand stability in proteins, and hydrogen bonds 
are the strongest 218. Figure 2-11 shows the hydrogen bond count time evolution in each complex.  
The maximum hydrogen bond count was observed with abacavir (DB01048). Its initial docked 
pose formed five hydrogen bonds, which may explain its high interaction energy, the 2nd most 
favourable (-261.05 kcal/mol) (Figure 2-12). Darifenacin (DB00496) and fingolimod (DB08868) 
had the lowest mean of hydrogen bond with 0.22 and 0.39 respectively. They mainly have 
hydrophobic contacts with their proteins. For instance, fingolimod formed only one hydrogen 
bond with ASP121 in its docked pose. Overall, ligands maintained the initial number of hydrogen 
bonds in the majority of the complexes (Figure 2-11).  

 

Figure 2-11. Time evolution of hydrogen bonds between the protein and the ligand. The y-axis 
represents the PDB ID and DrugBank IDs. The heatmap was produced with Seaborn version 0.9198. 

In terms of system interaction energies, prazosin had the best interaction energy with -331.42 
kcal/mol as a mean value. It is difficult to compare the different energy values between systems 
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due the difference in binding sites. Pocket hydrophobicities may cause significant differences in 
binding energies. Ideally, interaction energies may be compared to the co-crystallized ligand as a 
reference. The ratio of two affinities can give a good estimate of the sample ligand affinity.  
Overall, all complexes had a negative energy value ranging from -140.28 kcal/mol to -331.42 
kcal/mol indicating a favorable protein-ligand interaction (Table 2-1 and Figure 2-12).

 

Figure 2-12 Time evolution of protein-ligand interaction energies. The heatmap was generated using 
Seaborn version 0.9 198. 

Compared to other metrics, the interaction energy, beyond assessing ligand stability and 
dissociation through its variation, also gives a measure of its affinity for the protein. 

In summary, MD showed stable targets in both their apo and complex forms indicated by their 
Rg and RMSD. The different complexes were not different in stability from their apo forms. Ligand 
RMSD and COM distances to their respective proteins indicated their stability, while their 
hydrogen bonds and interaction energies indicated favorable protein-ligand interactions. 

2.3.4 In vitro assays: four active compounds   

Antiplasmodial and human cytotoxicity assays were performed for sixteen commercially 
available compounds. Four compounds were active against P. falciparum 3D7 (S37). Fingolimod 
and abiraterone had IC50 values of 2.21 μM and 3.37 μM respectively (Figure 2-13a), as the two 
most active compounds. Given that their activity values are in the single-digit μM range, these 
compounds are promising for further optimization. P. falciparum Plasmepsin 2, and P. falciparum 
Calcium-dependent protein were the two predicted targets for fingolimod and abiraterone, 
respectively. In the human cytotoxicity assays, fingolimod showed toxicity despite being an 
approved drug. It reduced HeLa cells viability to below 50% (1.98%) and later had an IC50 of 1.63 
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µM. Its immunosuppressant properties may explain its HeLa cells cytotoxicity. Indeed, the drug 
targets the sphingosine-1-phosphate receptor on T cell membranes219. Interestingly, it is 
currently studied as a treatment for COVID-19 220. In all active compounds, only fingolimod 
showed significant toxicity against human cells (Figure 2-13b). 

 

 

Figure 2-13 a. Antiplasmodial dose-response plots. P. falciparum viability percentage is plotted against 
the Log (compound concentration). Chloroquine, the positive control is the black curve. b. Dose-response 
plots for human cells. The viability percentage is plotted against the Log (compound concentration). In 
both plots, IC50 values were obtained by non-linear regression. The error bars are the standard deviation 
from the triplicate test. BD21906, T1050, T2539, T6216 correspond to terazosin (DB01162), prazosin 
(DB00457), fingolimod (DB08868) and abiraterone (DB05812) respectively.  

Prazosin and terazosin also had active IC50 values of 16.67 μM and 34.72 μM respectively. A 
similar activity difference in cell viability assay was also observed. Interestingly, despite a two-
fold difference in their activities, they are analogs (Tc of 0.7). Indeed, both compounds share a 
n-arylpiperazine scaffold with a piperazine ring having an aryl group substituent on the nitrogen 
ring atom. Their structures only differed by a tetrahydrofuran ring on terazosin, while prazosin 
has a furan one (Figure 2-14b and c). Moreover, the two compounds were predicted on two 
different targets: thioredoxin reductase 2 for prazosin and PfPK7 for terazosin. Hence, they may 
have a dual-action. Given their structural analogy, one would expect the two to bind the same 
targets. This difference may be linked to the hit selection procedure which enforced selecting a 
single compound for each target. Thioredoxin reductase 2 is putatively a good target for liver-
stage active compounds221. Prazosin also had the most favorable protein-ligand interaction 
energy. 

These active compounds could be tested in combination with chloroquine or artemisinin to 
identify potential synergistic activities. The combinatorial approach is currently the main one in 
malaria chemotherapy. The compounds could also be tested against parasite-resistant strains. 

In a cell viability assay used as pre-screen, three other compounds (lamotrigine, salbutamol, and 
moclobemide) decreased cell viability to 72.23%, 71.83%, 61.24% respectively. These activities 
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were not considered enough for IC50 evaluation. Previously, salbutamol222 and 
Moclobemide223,224 and were shown to have activity against P. falciparum  222–224. 

2.3.4.1 Binding modes of the active compounds 
Here we describe the binding modes of the active compounds in their predicted selected target. 
Some may bind to other targets, as discussed, but this will not be explored here. 

 

Figure 2-14 Active compounds binding modes in their predicted targets. a. fingolimod,  b. terazosin, c. 
prazosin, d. Abiraterone. Active compounds are in magenta and residues in a radius of 3.5 Å are in white. 
Residues are labeled with their one-letter code and residue numbers. Dashed yellow lines are polar 
contacts. The figure was prepared using Pymol 225 and the show_contacts script 226. 

2.3.4.1.1 Fingolimod (DB08868) and plasmepsin 2 (PDB ID: 2IGX): 
Plasmepsin 2 is an aspartic proteinase A1A associated with hemoglobin degradation. 
Halofantrine, a known antimalarial targets this proteinase 227. The plasmepsin 2 structure used 
2IGX has been co-crystallized with A1T. The drug fingolimod is used to treat relapsing-remitting 
multiple sclerosis by regulating the sphingosine 1-phosphate receptor. It binds 2IGX in a buried 
hydrophobic pocket, forming a hydrogen bond with ASP121 in the pocket depth (Figure 2-14a), 
a crucial binding pattern for potent inhibitors 228. Yet, the polar group in the hydrophobic pocket 
may come with an unfavorable energetic cost229. It forms Pi-Pi interactions with TYR77 and 
PHE111 and makes hydrophobic contacts with VAL82, PHE111, TYR77, and ILE123 via its aromatic 
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ring. Finally, the carbon chain has alkyl interactions with PHE111 and PHE120. The co-crystallized 
inhibitor A1T and fingolimod only have a Tc of 0.22. They share only a common long aliphatic 
chain as is often observed in plasmepsin 2 inhibitors. Additionally, fingolimod expands into the 
trench area outside the pocket. This region may provide an excellent opportunity to extend its 
scaffold for increased potency. Optimization studies have been carried out on fingolimod for 
better selectivity for sphingosine-1-phosphate receptor 1 (S1P1) and against S1P3, responsible of 
bradycardia. This optimization resulted in a compound with over 1250-fold selectivity for S1P1 
compared to S1P3 and no bradycardia 230. The same compound may be worth investigating as 
antimalarial, but also to overcome the observed fingolimod human cytotoxicity. 

2.3.4.1.2 Abiraterone (DB05812) and calcium-dependent protein kinase 2 (PfCDPK2, PDB ID: 
4MVF) 

PfCDPK2 has no human homolog 231. Abiraterone binds to a trench-like hydrophobic pocket 
making contacts with VAL86, VAL130, MET146, LYS101, ALA99, LEU199, ILE212, ASP213, CYS149, 
and VAL86 (Figure 2-14d). The compound had the highest SEI (33) which may be linked to its low 
PSA (33.12 Å2) and high logP (5.39). Its only polar contact is with THR82 in a more exposed area 
of the binding site. Its most similar compound among calcium-dependent protein kinase 2 
inhibitors was CHEMBL602580 with a similarity of 0.5. The 4MVF binding site has a Shaper score 
above 0.44 with respect to 3gie and 3LLT, indicating the compound is a potential binder to these 
targets too.  

2.3.4.1.3 Terazosin (DB01162) and protein kinase 7 (PfPK7) (PDB ID: 2PML)  
PfPK7 has features different from its mammalian homologs232 making selectivity possible 232,233. 
Terazosin interacts mainly through hydrophobic contacts (TYR117, SER189, LYS55, LEU34, 
LEU179, ASN35, LEU101, ASP123, ASP190, and ILE42) (Figure 2-14b) while forming a hydrogen 
bond with ARG32. This pattern resembles that of known inhibitors 232. A difference with terazosin 
is that it extends to a superficial area of the pocket, also having a moiety fitting more deeply in 
the binding site232, while the ATP analog in 2PML binds more superficially. The terazosin and the 
ATP analog structures are also quite different with a  Tc of only 0.23. Compared to 2PML’s (Target 
ID: CHEMBL6169) known inhibitors, terazosin had the highest similarity (Tc=0.5) with 
CHEMBL602580 sharing a common long chain connected to a benzene ring. 

2.3.4.1.4 Prazosin (DB00457) and thioredoxin reductase (PfTrxR, PDB ID: 4J56)  
PfTrxR is essential for Plasmodium falciparum 234 and is a putative liver-stage target221. Prazosin 
binds to a buried pocket, the FAD binding site. Here it interacts with CYS88 and CYS93 which form 
the protein redox centers 234 and forms hydrogen bonds with ASP357, and LYS96. Additionally, it 
makes contacts with VAL233, THR87, SER212, PRO51, GLY52 and ALA191, and some water 
molecules (Figure 2-14c). An aromatic quinazoline similar to the quinoxaline found in the PfTrxR 
(CHEMBL4547) inhibitor (CHEMBL380953) is also present on prazosin. The two rings present 
many hydrophobic interactions. Prazosin is selective for the parasite and inactive on mammalian 
thioredoxin reductase (PubChem 235 BioAssay IDs 588453, 488773, and 488772). Additionally, its 
selective profile is confirmed by the human cytotoxicity assay presented here. 4J56 is an isolated 
target: not having a similar binding site above 0.44 (Shaper score) to any of the current targets. 
Moreover, prazosin (CHEMBL2) is not predicted for PfTrxR in ChEMBL target predictions 236.  
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Hence the current predicted target requires further validation, and this should be treated with 
care. 

2.3.4.2 A 25% hit rate 
The comparison between the in silico predictions and the observed experimental values from the 
assays indicated the hit rate to be 25%. Four of the 16 tested hits were active. Virtual screening 
pipelines are reported to have hit rates in the range of between 1% and 40% 237 with a 5% hit 
rate often considered as successful 142.  A larger screening library may help improve the current 
hit rate as this strategy is shown to be effective 100. However, this may oppose the repurposing 
strategy as the set of approved drugs does not make a large library. The effectiveness of MD for 
screening may require improvement. Eight of the 16 tested compounds did not have any activity 
in the cell viability assay. These compounds were stable in MD on validated targets. Advanced 
binding free energy methods such as umbrella sampling 192 and using the co-crystalized ligand as 
a reference may be helpful in future studies. In addition to the all-vs-all assessment, the pipeline 
can be evaluated using a set of actives vs decoys molecule libraries. The final ligand ranking would 
then be assessed through the enrichment factor and/or the area under the curve in the receiver 
operating curve as commonly used for screening pipelines 211. 

2.3.4.3 Promiscuous active compounds  

 

Figure 2-15 Parasite cell Viability % vs the average of Qvina-W binding energies scatter plot. Compounds 
are labeled with their DrugBank ids. The blue line and light area are the regression line and confidence 
interval at 95 % respectively. 

Figure 2-15 shows the scatterplot of parasite cell viability % and their corresponding Qvina-W 
binding energies averaged across the different targets. The predictions are poorly correlated to 
the experimental values (Pearson correlation coefficient: 0.15, and Kendall tau of -0.03). Two 
outlier compounds and seem to be the reason DB08868 and DB00496. Discarding the outliers 
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from the dataset improved the correlation to 0.25 (Kendall) and 0.58 (Pearson). Fingolimod 
(DB08868) is active but predicted poorly, while darifenacin (DB00496) has good predictions but 
was not active. The darifenacin inactivity remains unclear. The fingolimod case might be 
explained in terms of its specificity to a crucial target in the parasite. However, it also had a highly 
toxic effect on human HeLa cell cytotoxicity assays. Based solely on binding affinity, fingolimod 
would not have been selected as a hit. Yet it is active. The efficiency metrics-based and complex 
ranking may have contributed to its selection. 

Interestingly, applying a -8 kcal/mol threshold filter on the average Qvina-W binding energies in 
the pipeline results in a ~50% hit rate. Only six of the tested compounds pass that threshold and 
three of them are active: Abiraterone (DB05812), terazosin (DB01162), and prazosin (DB00457). 
In this case, active compounds show a promiscuous nature, having good binding energies across 
multiple targets. This unexpected finding contradicts the selectivity-based approach 
implemented through the complex ranking used here. The paired ranking was used to select 
selective compounds and avoid promiscuous ones. Selecting compounds simply based on their 
average binding energy returns a high number of compounds. It is the combination of applying a 
-8 kcal/mol threshold on the average binding energy of hits selected using the paired ranking 
scheme which significantly improved the pipeline hit rate. Nevertheless, these compounds' 
promiscuity profile can reduce drug resistance probability, which is ideal in the context of malaria 
elimination 40. 

One distinction of the current method from most virtual screening pipelines is the integration of 
proteome-scale, consensus scoring (GRIM and QVina-W), repurposing and paired ranking 
strategies. Ligand and target choice strategies were to meet the different TCP/TPP profiles for 
malaria elimination 22,37. The hit selection strategy enforced a ligand for each target. This is in line 
with the aim to identify multiple targets for target diversity (Figure 2-4b) and new mechanisms 
of action. Moreover, this comprehensive approach still uses cost-effective strategies such as the 
HMR scheme in MD together with on-the-fly rescoring with GRIM. 

Drug target array screening together with the complex ranking model the behavior of drug-target 
interactions in vivo. In single target screening, not all library compounds will exclusively bind to 
the target of interest. However, interactions with other targets occur. Screening on target arrays 
model those interactions. In addition, the complex ranking 142 helps select a specific target for a 
drug. Yet, this process is limited as the drug now competes with other drugs in the library for that 
target. Hence a more selective drug may be chosen for that target. Moreover, this approach 
allows modelling drug combination activity. Drug combination has been a key strategy in the fight 
against malaria. Further, one could integrate a “target essentiality score”. Despite being 
validated, targets may have varied essentiality in similar parasites. The PlasmoGEM project 
evaluated the relative growth rates of the parasite Plasmodium berghei for more than 2,500 
genes 49. A similar experiment was later done on P. falciparum 53. Each target could be mapped 
to its essentiality score. Hence each multitarget compound could be scored by a multitarget 
index: summing the Grscore or binding affinity for each target weighted by its gene essentiality 
score. This approach could well help in prioritizing high-value drug targets. Similarly, Loza-Mejia 
et al. used a weighted multitarget index in which targets were weighted with a desirability 
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coefficient of binding 238. This desirability coefficient can also be extended to include human key 
proteins for improved selectivity 239. 

 

2.4 Conclusion 

This work identified antiplasmodial property in four orally available and known drugs (fingolimod, 
abiraterone, prazosin, and terazosin). To the best of our knowledge, none of the compounds had 
previously known antiplasmodial activity. Abiraterone and fingolimod had IC50 values in the 
single-digit range. Abiraterone is not only an orally approved drug, safe on human cells as shown 
in assay results but also predicted on a putative liver-stage essential target. It hence fulfills many 
of the requirements for a new antimalarial 50.  

The pipeline incorporates multiple metrics: molecular properties (ligand efficiency), energy 
(QVina-W), and molecular interactions (GRIM) scorings. It further uses normalization and ranking 
strategy for selectivity ideal in protein array screening and improving scoring bias 154. It shows a 
promising 25% hit rate given the proteome-scale screening and cost-effective approaches 
context. Further analysis shows that this hit rate can be significantly increased by combining 
compound complex ranking with their average binding energy across the targets. 

In the malaria drug resistance context, its elimination will benefit from cost and time-effective 
approaches for chemotherapy. This repurposing pipeline contributes to identifying 
antiplasmodial drugs from sets of known drugs for future accelerated development. Given the 
parasite complex biology, disease elimination will benefit from holistic approaches toward 
system biology. This workflow sets the stage for a multi-objective, proteome-scale virtual 
screening pipeline. 

In the future, the pipeline can be extended with the set of docking SFs used in Chapter 3: . Both 

target and ligand sets can be extended. Particularly, target human analogs, other human proteins 

sensitive to toxicity can serve to improve selectivity and avoid toxicity as shown with fingolimod. 

Ligands can be extended to the set of all experimental drugs in line with repurposing or a special 

P. falciparum custom-made library. Not only co-crystallized but active and inactive compounds 

in P. falciparum could be used as a baseline for a first thorough evaluation of the pipeline. The 

approach here may also be applied in other disease areas such as tuberculosis. 
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Chapter 3:  Consensus Ligand and Structure-Based 

Screening for Identification of PfDXR Inhibitors 

3.1 Introduction 

The methyl-d-erythritol 4-phosphate (MEP) pathway is present in all intra-erythrocytic stages of 
the parasite and is essential for hepatic stage optimal development 240. Its intermediates are 
present in gametocytes and its products are required for gametocytogenesis, showing thus 
potentiality for transmission-blocking compounds 241. Plasmodium falciparum 1-deoxy-d-
xylulose 5-phosphate reductoisomerase (PfDXR) catalyzes MEP second step, a rate-limiting one. 
It converts 1-Deoxy-D-xylulose 5-phosphate to 2-C-methyl- D-erythritol-4-phosphate (MEP) by 
isomerization and reduction 242. It has no human homologs and hence ideal as a target for drugs 
matching the new antimalarials criteria 243. The enzyme is a homodimer using NADPH as a 
cofactor and a metal ion (Mg2+, Co2+ or Mn2+) both required for the enzyme catalytic activity 244.  

Fosmidomycin attracted much attention as a PfDXR inhibitor 245. Yet, its pharmacokinetic 
properties need improvement for it to be effective as a drug 246. Hence, studies on finding potent 
and drug-like PfDXR inhibitors are still needed 243.  

Virtual screening approaches, both ligand-based and structure-based, can be used in the early 
stages of drug discovery. While the former is in general, faster, the latter uses target information 
giving insight into drugs’ binding modes. Their combination can allow for fast screening of large 
libraries using ligand-based virtual screening (LBVS) followed by SBVS for a more thorough 
screening. The D3R grand challenge results showed that current scoring functions do not perform 
significantly better than logP or Molecular Weight (MW) to rank compound affinities 164. 
Consensus approaches in virtual screening have proven to be more effective than a single 
approach 210,211,247,248. Advanced and more accurate methods require high computational 
resources and are difficult to set up for high-throughput experiments. Simple rescoring of 
protein-ligand complexes requires much less in terms of computational resources 164.  

Previous virtual screening studies contributed to identifying PfDXR hits using LBVS and SBVS 249–

253. In an earlier similar virtual screening study on DXR, Wadood et al. identified inhibitors from 
ChemBridge 254 using a pharmacophore model 250. Recently, natural product hits were identified 
using a joint pharmacophore and MD approach 255. Open Eye software FRED was used to finding 
hits from the ZINC dataset, which were later docked. Potential identified hits had better-
predicted potency than fosmidomycin 251. ZINC12 was screened in ArgusLab using a shape-based 
method to search for hits with comparable functional groups to fosmidomycin. 
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In this chapter, a hierarchical virtual screening pipeline combining LBVS and SBVS was used to 
find hits for PfDXR. Compounds are further assessed using MD, steered MD, and free energy 
calculation through MM-PBSA, and US LC5, a 280 nM 256 PfDXR inhibitor was used as a baseline 
for hit identification. 

In the following section, a brief overview of the different LBVS tools and docking scoring functions 
(SFs) is presented. 

3.1.1 Ligand-based virtual screening 

LBVS is based on the principle that in general similar ligands have similar properties 78,257. In some 
rare cases, they may also have very different properties (e.g. activity cliffs) 258. Methods related 
to ligand properties such as shape, topology, physicochemical properties, etc. have been used to 
measure ligand similarity. These encode chemical compounds into a set of numerical values, a 
critical step for accurate molecular representation in numeric form.  Methods such as distance 
and similarity coefficients then compare compounds 257,259 through their numerical encoding.  

That compound similarity is related to their relative biological activity is relevant in drug 
discovery. The compounds' absorption, distribution, metabolism, and excretion (ADME) 
properties also remain important. Molecular properties have been linked to their structures 260 
leading to SAR and quantitative structure-activity relationship (QSAR) studies. The latter assumes 
compounds' properties are encoded in their structures, resulting in similar structures having 
similar properties. It thus remains to find the structural encoding that best explains activity, given 
that any of them apart from the electron density result in loss of information 257. For example, a 
specific conformer SMILES encoding loses the structure conformation information and 
subsequently the electron density. Given a compound of interest’s structure and a library of 
molecules with known structures, LBVS aims to find compounds with similar properties using 
structural searches. There are 2D and 3D similarity methods depending on compounds’ structural 
representation. 3D approaches can also be divided into shape-based, pharmacophore modeling, 
molecular field, and 3D fingerprint approaches 261.  

In this study, six LBVS methods especially shape-based approaches are used to screen 3 M Zinc 
lead-like compounds on DXR.  

3.1.1.1 USR 
Ultrafast shape recognition (USR) is a method for molecular shape comparison based on the 
relative spatial positions of atoms 262. This cuts the need for alignment or translation of 
molecules. However, the full set of compound interatomic distances have redundant 
information, more than is required for its shape description. As result, only atomic distances from 
four molecular locations are considered: the molecular centroid (ctd), the closest atom to ctd 
(cst), the farthest atom to ctd (fct), and the farthest atom to fct (ftf). Given a compound 3D 
structure, the distribution of distances from every atom to each centroid is generated. Finally, 
the descriptor vector consists of the normalized first three moments of each distribution, giving 
a vector of twelve numbers encoding the shape information. The similarity of two compounds is 
the inverse of the translated and scaled Manhattan distance between their descriptor vectors. 
One and zero correspond to the maximum and minimum similarity respectively 262. This approach 
is independent of the atom number in each compound and is suitable for finding new scaffolds. 
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It is also fast, 2038 times faster than that of Shape Signatures 263 and at least 5 059 times faster 
than ROCS (rapid overlay of chemical structure, OpenEye Scientific Software) 262. The speed 
improvement is a result of the absence of molecular surface or volume calculations.  Using only 
one processor, USR can screen a multibillion database to find similar compounds to a single query 
in a matter of minutes 262.   

3.1.1.2 ElectroShape 
ElectroShape (ES) adds a fourth one to the three dimensions (x, y, z) used in USR. This dimension 
considers atoms’ charge thus together they unify both compound shape and electronic 
information. To find the exact position of a point in the n-dimensional space Rn, n+1 centroids 
are needed. Hence, five centroids are used to take into account ElectroShape four dimensions. 
ES maintains the speed of USR while almost doubling the average enrichment ratio at 1% in 
virtual screening. It also differentiates between enantiomers through the chiral shape recognition 
(CSR) method and shows good enrichment in terms of scaffold novelty.  To ensure unit 
consistency between the fourth dimension (charge) and the x, y, z coordinates (in angstroms), a 
scaling factor (µ) which counts for the number of angstroms per electron is used. This makes the 
approach flexible, balancing between a pure shape-based (using a small µ) and partial charge 
based using a large µ. Optimal µ values are determined by choosing the value that gave the best 
average enrichment using the directory of the useful decoy (DUD) dataset. Each molecule is 
encoded in a fifteen-number vector of the first three moments of the distances to centroids 
distributions. ElectroShape similarity score is the inverse Manhattan distance between two 
compounds’ vectors 264. In an exemplary case, the rank receiver operating characteristic (ROC) 
curve showed better early enrichment than the similarity ROC curve. This latter gave the best 
area under the curve for a similarity threshold set at 0.8 between active and inactive compounds 
264. 

3.1.1.3 USRCAT 
Ultrafast Shape Recognition with CREDO Atom Types (USRCAT) is a fast shape-based method, 
extending USR by adding pharmacophoric constraints with atom typing from the CREDO 
database 265. Moments for specific subsets of a molecule’s atoms (hydrophobic, aromatic, 
hydrogen bond donor or acceptor atoms) are added to USR moments. The three moments 
resulting from each distribution from the 4 centroids (see USR 3.1.1.1) for all atoms and the four 
subsets result in a USRCAT descriptor vector of 60 elements (5x12 (4 centroids * 3 moments for 
each)). The first 12 are identical to USR moments. For empty subsets, the corresponding elements 
in the vector are set to zero (if no hydrogen bond donor is found, for example). From two USRCAT 
vectors, the similarity score is as in USR the inverse of the translated and scaled Manhattan 
distance between their descriptors vectors 266.   

Descriptors and similarity scores for USRCAT, ES, and USR were calculated from ODDT toolkit 267. 

3.1.1.4 RDKit 3D pharmacophores 
The RDKit162 3D pharmacophore is calculated based on pharmacophore feature points identified 
on a compound followed by inter-feature topological distance calculations. The pair feature-
distance combinations are assigned bit ids which are stored as bits or counts. Features are 
customizable and RDKit162 uses features defined by Gobbi et al. 268. The 3D pharmacophore 
fingerprint was computed using RDKit162 by feeding a 3D distance matrix to the 2D-
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pharmacophore machinery as described in the documentation 269. The similarity score is then 
calculated from the pharmacophore fingerprint using the Tanimoto similarity. 

3.1.1.5 Obspectrophore 
From compounds’ 3D structures, obspectrophore computes the following atomic properties: 
partial charges, lipophilicity indices, shape deviations and softness properties which encode the 
molecular field generated by a structure’s topology. Each molecule, or more specifically each 
conformation, is inserted into an artificial cage of points (an artificial receptor) followed by 
calculating the interaction energy between each of the atom and the surrounding points using 
equation (3-1). 

 
𝑉(𝑐, 𝑝) = −100 ∑ ∑

𝐴(𝑗, 𝑝)𝑃(𝑐, 𝑖)

𝑟𝑖𝑗
𝑗𝑖

 (3-1) 

 

Given a structure with j atoms and p atomic properties (in the current implementation p = 4), and 
a cage c with i cage points and the cage values P(c, i), the total interaction value V(c, p) of property 
p and is calculated according to a standard interaction energy equation (3-1). 𝑟𝑖𝑗 is the Euclidean 

distance between atom j and cage point i. The structure is rotated along all its axes within the 
cage and the most favorable interaction values are kept as the final result. The approach is hence 
independent of the compound orientation. Default values are 12 different cages (c) and 4 
different atomic properties (p) generating a final spectrophore of 48 values per molecule. The 
similarity score between two compounds is obtained with the Euclidian distance between their 
spectrophores with a threshold <= 50 used to infer two compounds’ similarity 270.  
Some parameters control the approach application: accuracy controls the angular step sizes for 
the compound rotation in the cage which gives faster but less accurate computation with larger 
step sizes. Resolution controls the distance between the molecule and the cage (default value = 
3 angstroms). The 12 cages described above have a symmetrical distribution of points, making 
the approach insensitive to molecules’ enantiomeric configuration. The stereospecificity 
parameter makes possible an asymmetric distribution of points with 18 asymmetric cages. 
Finally, a normalization parameter which is done on a per-property basis allows focusing on the 
relative differences in the spectrophore values rather than on the absolute numbers. Among the 
default parameters, only the normalization was changed from none to normalization with zero 
mean as recommended for virtual screening. A Euclidian distance of 50 or below can be used to 
identify similar compounds 270. The accuracy value was 20°, the resolution 3 Å, and the 
stereospecificity sets to ‘none’.  

3.1.1.6 MHFP6 
MHFP6 encodes structures using the extended-connectivity principle as in extended-connectivity 
fingerprint (ECFP) up to a diameter of six bonds and combines it with molecular shingling and 
MinHash encoding methods. From a starting structure, the shingling writes circular substructures 
around each atom as SMILES. These are then assigned to bit values using a local sensitive hashing 
(LSH) scheme, the MinHash hashing. The generated hash values sets can be indexed by an LSH 
algorithm for approximate nearest neighbor search (ANN). This approach solves the problem of 
dimensionality and allows for structures indexing in extremely sparse Tanimoto space. From two 
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structures shingling (A and B), the Jaccard similarity coefficient of the molecules is calculated 
according to equation (3-2). 

  
  𝐽(𝐴, 𝐵) =

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (3-2) 

 

MHFP6 uses the same fingerprint as the ECFP6 but a different algorithm for hashing (minhash). 
This accelerates the approach and suits it to large databases. The python implementation of the 
method was used from https://github.com/reymond-group/mhfp.  Molecules are sanitized to 
ensure that they are “reasonable” and kekulized (converting aromatic rings to their Kekulé form) 
using RDKit 271. The default radius of three encodes SMILES to MHFP6. Structures’ rings in the 
molecules are included in the fingerprint 83. 

Except for the MHFP methods, all the approaches used here use require the 3D structures of 
molecules of interest. 

3.1.2 Docking SFs 

In SBVS, SFs predict protein-ligand binding affinity using mathematical functions. They are 
generally divided into 4 classes: force field-based, knowledge-based, empirical, and machine 
learning ones 272,273.  

3.1.2.1 Rf-score 
RF-Score is a machine learning SF using the random forest algorithm to predict affinity. In its 
fourth version, it uses 47 features, of which 36 are RF-Score features and 11 are AutoDock Vina 
features. RF-Score versions 1 to 4 were used 267. RF-Score had a higher hit rate when compared 
to Vina with its top 1% providing a 55.6% hit rate, while that of Vina was of 16.2%. Recently, ML 
SFs showed to perform better than classical SF. Primary versions of RF-Score-VS v1-3 
outperformed state-of-the-art classical SFs 274. However, ML SFs are often qualified as black 
boxes without interpretability 275. 

3.1.2.2 Cyscore 
Cyscore is an empirical SF focusing on improving the prediction of hydrophobic free energy. 
Contrary to many SFs which treat the term as surface tension, proportional to the interfacial 
surface area, Cyscore uses a curvature-dependent surface-area model. This approach can 
distinguish convex, planar, and concave surface in hydrophobic free energy calculation while the 
former approach ignores the role of molecular shape. The curvature-dependent surface-area 
model was shown to be superior to the conventional surface area model 276. This is particularly 
important for ligands binding in narrow pockets where the curvature factor has a higher 
contribution to the hydrophobic free energy. The hydrophobic effect was estimated to contribute 
to perhaps 75% of the free energy of most binding. Charge–charge interaction, water-mediated 
protein-ligand interaction, and the π–system interactions are not considered by Cyscore. Entropy 
is estimated by the number of rotatable bonds on the ligand 276. Cyscore predicts affinity in a 
negative range of value, the lower the value, the better the affinity. 

https://github.com/reymond-group/mhfp
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3.1.2.3 DSX (DrugScore eXtended) 
DSX is an improved version of DrugScore, extended with a more specialized set of atom types. It 
is a knowledge-based SF that includes different statistical potentials: distance-dependent pair, 
torsion angle, and solvent accessible surface-dependent one. In an assessment of its scoring 
power, DSX ranked second after Xscore. It is recommended to adjust the weight for the different 
terms in DSX functional to produce a target-tailored SF even though the authors did not do so in 
the related paper 277. 

3.1.2.4 Xscore  
Xscore average binding affinities predictions from three empirical SFs: HPScore, HMScore, and 
HSScore. All three SFs were calibrated through a multivariate regression analysis of a set of 200 
protein-ligand complexes. They reproduced the binding free energies of the entire training set 
with a standard deviation of 2.2 kcal/mol (HPScore), 2.1 kcal/mol (HMScore), and 2.0 kcal/mol 
(HSScore). They differ in their modeling of the hydrophobic effect. This latter is estimated by the 
buried solvent-accessible molecular surface, or by the hydrophobic matching of the ligand with 
the binding site, or by the number of hydrophobic contacts between the protein and the ligand. 
Xscore accounts for metal interactions of interaction in the hydrogen bonding term, given that it 
has a Lewis acid-base pairing nature. The functional form of the free energy in Xscore is given by 
equation (3-3). 

 𝛥𝐺bind = 𝛥𝐺vdw + 𝛥𝐺H−bond + 𝛥𝐺 deformation + 𝛥𝐺 hydrophobic + 𝛥𝐺0 
(3-3) 

𝛥𝐺vdw: protein-ligand van der Waals interactions. 
𝛥𝐺H− bond : hydrogen bonding term. 
𝛥𝐺𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: deformation effect (only accounting for the ligand, the protein one being 

neglected). 
𝛥𝐺ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐: hydrophobic effect. 

𝛥𝐺0: regression constant. 

Metals can contribute to binding affinity by forming a bond with lone pairs in the ligand. Xscore 
accounts for such type of interaction in the hydrogen bonding term, given that it has a Lewis 
acid-base pairing nature. This is of importance since in this study the Mn atom in the binding 
site and the surrounding water molecules were kept in the protein. 

3.1.2.5 NNScore 
NNScore 2.0 is a machine learning SF 278 trained on a set of receptor-ligand complexes with 
features derived from BINANA descriptors 279. Structures were extracted from MOAD 280 and 
PDBbind-CN 281 databases. The SF was compared to its first version, AutoDock and AutoDock Vina 
ones. Interestingly, the first version NNScore 1.0 outperformed all of them and while NNScore 
2.0 ranked second. 

3.1.2.6 AutoDock 
AutoDock is a popular semi-empirical free energy force field trained using a set of 30 structurally 

known protein-ligand complexes. The docking approach uses the Lamarckian Genetic Algorithm 
combined with semiempirical force field SF for free energy estimation. Calibrating the method 
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on a diverse set of 188 protein-ligand complexes, the SF produced a standard error of about 2-3 
kcal/mol 161. In this study, the AD4 SF implemented in Smina which uses the same terms as 
AutoDock4 is referred to as AutoDock. 

3.1.2.7 AutoDock Vina 
AutoDock Vina speeds up AutoDock 4 by two orders of magnitude using multithreading on multi-
core machines in terms of molecular docking. It is more accurate in binding mode prediction with 
a standard error of 2.85 kcal/mol in energy prediction. Vina was inspired by Xscore functional 
form and is trained on the PDBbind dataset 282. Beyond the intermolecular contributions to the 
free energy, Vina also accounts for intra-molecular contributions. It, however, does not account 
for hydrogen atoms explicitly. There is no directionality in the hydrogen bonding term 165. Vina 
continuously was found among the top-scoring in different SF assessment studies 81,197,283. Smina 
and Vinardo SFs were inspired by Vina 199,284.  

3.1.2.8 Vinardo 
Vinardo (Vina RaDii Optimized) is derived from Vina with fewer parameters and with a more 
physics-based character than the ML approach used in Vina. The terms in the SF can be related 
to some terms used in current SFs. In Vinardo’s development, a set of 72 functions were derived 
from Vina by changing parameters weights, terms, and atom radii and trained with a reduced set 
of PDBBIND 2013. Vinardo presents two differences compared to Vina: the absence of the second 
Gaussian term in Vinardo which produces a second minimum in the steric interactions and the 
change in atomic radii. Pre-minimized complexes were used for the fitting of the SF. The authors 
indicate that the real Scoring power of a function is better measured by predicting binding energy 
on energy minimized structures. Testing its ranking power and virtual screening capabilities, 
Vinardo was found to be more successful compared to Vina 284. 

3.1.2.9 Smina 
Smina is an empirical SF derived from AutoDock Vina. It extends the Vina default functional terms 
with simple property counts, an electrostatic , an AutoDock 4 desolvation term, (45) a non-
hydrophobic contact term, and a Lennard–Jones 4–8 van der Waals term. Hence, it aims to 
identify the most useful linear combination of these terms. The function was fitted using the 
Community Structure-Activity Resource (CSAR) 2010 data set 199. 

3.1.2.10 Protein-ligand extended connectivity (PLEC) 
PLEC presents the particularity to be developed from fingerprint. Protein-ligand interactions are 
encoded using the ECFP and used as features to train different machine learning models. A simple 
linear model could achieve a predictive power of 0.817 on the Protein Databank (PDB) bind v2016 
‘core set’. The affinity value is predicted in pKi∕d unit 285. 

Overall, different SFs from four main classes: force field, machine learning, knowledge-based and 
empirical ones were used in this study.   
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3.2 Methods 

3.2.1 Data Retrieval  

3.2.1.1 ZINC lead-like set 
About 3.8 M compounds from the “lead-like” subset of ZINC15 were used. The subset was filtered 
for compounds with MW in the range <400 Da, fitting in the PfDXR active site. Only anodyne (no 
pan assay interference compounds (PAINS), no michael acceptor) compounds and commercially 
available were selected. A final subset of ~3 M compounds was used. Their structures were 
retrieved from ZINC in MOL2 and pdbqt formats. 

3.2.1.2 DXR inhibitors 
DXR possesses a good wealth of inhibitors crystallized in their bound conformations. Ligands tend 
to bind to proteins in their lowest energy conformation 286. A shape-based approach may present 
the advantage of finding hits with shape already matching the bound conformation of PfDXR 
inhibitors. Seventeen protonated PfDXR inhibitors in their bound conformation were retrieved 
from the PDB 287. They have a MW between 250 and 400 and logP between 0.5 and 3. Their 
structures (Figure 3-1) present a phosphonate and hydroxamate (for metal chelation) groups, 
and a backbone spacer ideally of 3 carbons in length. Although essential for activity, these groups 
present poor pharmacokinetic properties 246. Extensive research has been done to develop 
fosmidomycin/FR900098 analogs 49,51,288. They show some key features on PfDXR inhibition 
structure-activity relationships 56. For example, introducing an aromatic ring on the backbone 
chain resulted in more potent PfDXR inhibitors289. 

.  
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Figure 3-1 PfDXR inhibitors structures. IDs represents ligand IDs in the PDB structures. Structures were 
drawn using RDKit 162. 

3.2.1.3 Target structure  
The crystal structure PDB ID: 5JAZ from PDB 290,  PfDXR its closed conformation co-crystallized 
with LC5 ([(2R)-2—5-(naphthalen-1-yl)pentyl]phosphonic acid) was used for docking and MD. 
Only a monomer (Chain B) was used. To mimic the same assay conditions as LC5, the structure 
was used without NADPH. The manganese atom parameters for AMBER03 114 force field were 
retrieved from previous study 291. LC5, the target co-crystalized binds similarly to fosmidomycin 
with its hydroxamate coordinating Mn2+, the phosphonate interacts ASN311, SER306, SER269, 
Ser270) in a polar region (Appendix  H). In addition, the compound aromatic ring extends toward 
the loop covering the binding site 292.  

3.2.2 LBVS and SBVS 

A total 3,078,845 ZINC compounds and 17 PfDXR inhibitors descriptors of the different similarity 
search approaches were generated using the respective tools (Table 3-1) and GNU Parallel 
(version 20160422) 293. Any compound having a run-time error with any method was removed. 
Each ZINC compound was compared to each known inhibitor using every listed method here. For 
each method, a consensus query approach was used 247. The similarity scores across the 17 
inhibitors were averaged and rank transformed. The ranks across the different methods were 
summed, and this latter was rank transformed and sorted, giving the final list of ranked ZINC 
compounds, thus ranking using the rank by rank approach of consensus scoring 211. For 
convenience, the negative of the Euclidian distance was used in the case of obspectrophore in 
ranking the compound. 
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Table 3-1 LBVS methods and the used parameters 1 

LBVS Tool Parameters Similarity metric Methods References 

Obspectr
hphore 

Open Babel / 
obspectrophore 

ZeroMean, accuracy: 20°, resolution: 3 Å, 
stereospecificity: ‘none’ 

Euclidian distance Molecule environment properties 
(partial charges, lipophilicities, shape 

deviations and electrophilicities. ) 

294,295 

USR 
 

ODDT / shape.usr usr_similarity Distance atoms - centroids distributions 267,296 

ES 
 

ODDT / shape.electroshape usr_similarity Usr + atoms charges 267,297 

USRCAT 
 

ODDT / shape.usr_cat usr_similarity Usr + CREDO atom types. 266,297 

MHFP mhfp_encoder.enco
de 

mhfp_encoder.encode(mol.smiles, radius 
= 3, rings = True, kekulize = True, sanitize 

= True) 

1. - 
MHFPEncoder.distance 

ECFP + molecular shingling + MinHash 
encoding 

83 

RDkit_3d
_pharm 

rdkit.Chem.Pharm2
D import 

Gobbi_Pharm2D, 
Generate 

Generate.Gen2DFingerprint(mol.Mol, 
factory, dMat = 

Chem.Get3DDistanceMatrix(mol.Mol)) 

Tanimoto similarity Pharmacophore features points + inter-
feature topological distances 

298 269 

 2 

 3 
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The top 50000 compounds were selected for molecular docking. The set of PfDXR inhibitors and 
the receptor (chain B of 5JAZ) were prepared using AutoDockTools (ADT) 161. Docking was 
performed using Q-vina-w 96, which uses the same SF as Vina 96. Water molecules in the active 
site (at a distance <=4 Å to the co-crystallized ligand) were included after charge calculation using 
ADT graphical user interface. PfDXR active site was targetted by first validating the docking 
parameters (spacing of 20 Å and exhaustiveness of 64) with the co-crystallized ligand LC5. This 
latter was redocked to the receptor obtaining an RMSD value between the docked and co-
crystallized pose of 0.58 Å, less than 1 Å, indicating good reproduction of the pose. Indeed, a 
threshold of 2 Å in RMSD is often used to qualify a docked pose as good 81. The RMSD was 
computed using Obrms in Open Babel 299. 

After docking, the top pose for each compound was rescored with the different SFs. Scores were 
transformed to their absolute values and integrated using the exponential consensus ranking 
scheme of a set of scoring function 211. These were done using Dask 300. The top 20 (Table 3-3) 
compounds were selected for MD simulations. The different tools and used parameters are 
summarized in Table 3-2. 

Table 3-2 Scoring functions 

Program/SF Version Classification Affinity 
Unit 

Reference 

ODDT /Vina 1.1.2 (May 11, 2011) Hybrid (Empirical+ 
knowledge-based) 

kcal/mol 301 

Cyscore V 2.0.3 Empirical kcal/mol 302 

Xscore V 1.2 Empirical kcal/mol 303 

Smina / Vinardo Smina Feb 12 2019.  Based on 
 AutoDock Vina 1.1.2 

Empirical kcal/mol 199,284 

Smina  / Smina Smina Feb 12 2019.  Based on  
AutoDock Vina 1.1.2 

Empirical kcal/mol 199 

Smina /  ad4 Smina Feb 12 2019.  Based on  
AutoDock Vina 1.1.2 

Empirical kcal/mol 199 

Smina  / dk_scoring Smina Feb 12 2019.  Based on  
AutoDock Vina 1.1.2 

Empirical kcalmol 199 

DSX (DrugScore eXtended) V 0.9   (17.04.2015) knowledge-based kcal/mol 277 

ODDT /RF-Score V 4 Machine Learning  
(Random Forest) 

pKd 274,301 

ODDT / RF-Score V 1 Machine Learning 
 (Random Forest) 

(pKi/d) 274,301 

ODDT / nnscore V 2 Machine Learning  
(Neural Network) 

(pKi/d) 274,301 

ODDT / RF-Score V 2 Machine Learning  
(Random Forest) 

(pKi/d) 274,301 

ODDT /RF-Score V 3 Machine Learning  
(Random Forest) 

(pKi/d) 274,301 

ODDT / pleclinear PLEClinear_p5_l1_s65536 Machine Learning 
 (Linear regression) 

(pKi/d) 285,301 
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3.2.2.1 Dask a python parallel computing library for large scale drug discovery 
Unlike pandas 304 data frame commonly used in python data analysis pipelines, Dask data frame 
scales to computer clusters.  Cells in Dask 300 can contain python objects like an RDKit 269 mol 
object. For instance, in our use case, a Dask data frame was used to rescore docked poses. Every 
row was a ligand (in the form of an RDKit mol object). The different SFs were wrapped into python 
functions to only return affinity values. Hence, columns were generated by applying the functions 
to the pdbqt files using a parallel scheme. From the RDKit162 mol objects, input files are generated 
for scoring functions with paths saved in the same Dask dataframe or as RDKit mol object 
attribute, thus creating links for better organization. The dataframe can be saved in pickle format 
or in a more compressed formats: feather or parquet. This eases experimental setups, generation 
of inputs, parsing of output files, collection of data. More importantly, Dask Application 
Programming Interface (API) is similar and built upon Pandas API 305. This offers extensive 
analytical functions on data frames, rows, and columns. These were used for LBVS and SBVS 
scores distributions analysis. Customized python methods can be applied to RDKit mol objects. 
For instance, this can be used to generate molecular properties for large data. Indeed, Dask is 
used for big data (billions of rows) analytics. This fits well the purpose of mining the large 
chemical space for molecular properties. Here, Dask was used with a small dataset of about 
50000 ligands. The rationale behind this was to anticipate any time-consuming rescoring but also 
to make use of the associated pandas API for analysis. Moreover, Dask was found to be easily 
scalable, flexible as it adapts to different cluster configurations (SLURM, PBS, etc.), is user-friendly 
and can be used from a remote Jupyter notebook 190 running on the computer cluster. 

3.2.3 Molecular dynamics 

Eighteen of the top 20 compounds selected from docking were assessed in a 20 nanosecond MD 
run using GROMACS (version 2018.6) 182 and the AMBER03 114 force field to assess their stability. 
Acpype 186 was used to generate ligands’ topologies. MDs were run in a cubic box with a distance 
between the solute and the box of 1.0 nm and using the Simple Point Charge (spc216) solvent 
model with a concentration of 0.15 M (Na+ and Cl- ions). Systems’ energies were minimized using 
the steepest descent method with a maximum force set at <1000.0 kJ/mol/nm and a maximum 
number of steps of 50000. The temperature was set to 300K and the pressure at 1 atmosphere 
for a 50 ps equilibration in the isothermal-isobaric ensemble and later in the canonical one. The 
particle-mesh Ewald algorithm was used for long-range electrostatic interactions and the short-
range non-bonded interaction cut-off distance was 1.2 nm. The equation of motion was 
integrated using a time step of 2 fs. After MDs, GROMACS112  modules and PYTRAJ 189 were used 
for analysis. Protein-ligand interaction energy (PLIE) 106 was used to assess stability in the protein: 
fluctuations in the PLIE can be informative for ligand stability. Also, the metric can be useful for 
ranking ligand by affinity. Simulations were carried out on a remote machine at the CHPC and 
visualized using NGLview 188 in a Jupyter Notebook 190. From the MD simulations, the top nine 
ligands were selected for MM-PBSA, and US. 

3.2.4 MM-PBSA Binding Free Energy  

MM-PBSA is a popular approach in computational drug discovery, often used as an in-silico 
validation approach of hits and to reproduce experimental findings 108. Binding free energy (BFE 
or ∆GUS) calculations were performed for the last five ns of 20ns dynamics where frames are 
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saved every 100 ps (50 frames) using the g_mmpbsa package (version 1.6) 306,307. G_MM-PBSA 
calculates relative binding free energy using the MM-PBSA method, using Molecular mechanics 
(MM), Poisson Boltzmann (PB), and Solvent Accessible (SA) energy values. The BFE of the protein-
ligand complexes was calculated using equations (3-4) to (3-7). 

 𝛥𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 −  (𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐺𝑙𝑖𝑔𝑎𝑛𝑑) (3-4) 

𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ,  𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛  and 𝛥𝐺𝑙𝑖𝑔𝑎𝑛𝑑 : isolated free energies of the complex (protein-ligand), the protein 

and the ligand, respectively. 

𝛥𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 : binding free energy of the protein-ligand complex in the solvent. 

 𝐺𝑥 =  〈𝐸𝑀𝑀 〉 –  𝑇𝑆 + 〈𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 〉      (3-5) 

𝐺𝑋 : free energy for each entity: ligand, protein, or protein-ligand complex. 

 〈𝐸𝑀𝑀 〉: average mechanical potential in a vacuum.  

𝑇𝑆 : entropic contribution (T is temperature and S is entropy). 

〈𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛〉: free energy of solvation. 

 𝐸𝑀𝑀  = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑  = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑  + (𝐸𝑣𝑑𝑊 + 𝐸𝑒𝑙𝑒𝑐 )   
(3-6) 

𝐸𝑀𝑀 : vacuum molecular mechanics potential energy. 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑: bonded interactions such as bonds, dihedrals, angles, and improper interactions. 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 : non-bonded interactions: electrostatic and van der Waals interactions modelled using 
Coulomb and Lennard-Jones (LJ) potential functions. 

 𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 =  𝐺𝑝𝑜𝑙𝑎𝑟 +  𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟    (3-7) 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 : energy required to transfer the protein-ligand solute from a vacuum into a solvent.  

𝐺𝑝𝑜𝑙𝑎𝑟  : electrostatic energy contributions. 

𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 : non-electrostatic energy contributions. 

3.2.5 Steered molecular dynamics (SMD) and umbrella sampling (US) 

The top eighteen compounds together with LC5 were also simulated in SMD and later nine were 
selected for US. SMD mimics the Atomic Force Microscopy (AFM) experiment and has been 
successfully used to study protein-ligand binding affinity 103,308–310. A constant velocity, constant 
force (cv-cf) SMD was applied to the selected protein-ligand systems. A monomer (PDB ID:5JAZ 
chain B,) was used for the docking, MD, SMD, and US simulations. The Caver 3.0.1 Pymol 225 plugin 
was used to find an optimal unbinding path for the co-crystallized ligand (LC5). The tool finds 
possible unbinding pathways (Appendix  I) from the binding pocket and ranks them based on 
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their characteristics which include the tunnel bottleneck radius, length, curvature, cost, and 
throughput to find an ideal unbinding path and was used in earlier SMD studies  308,311–313. The C-
alpha atoms of four residues (residues number: 329, 264, 330, 265, Figure 3-2) located at the 
opposite extreme of the unbinding path were restrained to avoid dragging the protein during 
pulling. The last conformations of the MD simulations were used as starting structures for the 
pulling simulations after transformation to fit the Caver unbinding path/pulling direction to the 
z-axis. Pull groups were the ligand and the protein, the reaction coordinate (ξ) was defined as the 
COM of the ligand and pulling direction was given by Caver (see red arrow in Figure 3-2). A single 
dimension free energy evolution along ξ was constructed. A harmonic biasing potential defined 
by a force constant of 1,000 kJ mol-1 nm-2 (~ 1,700 pN/nm, the upper limit of k in AFM 
experiments) with a pull rate of 0.005 nm/ps was applied on the ligand COM. The geometry of 
the reaction coordinate was direction-periodic. The SPC water model was used as a solvent, and 
100 mM NaCl was present in the simulation cell, which was a dodecahedron box. The systems’ 
energies were minimized using the steepest descent method with a maximum force set at <1,000 
kJ/mol/nm and a maximum number of steps of 50000. A 100 ps equilibration was done under an 
Isothermal–isobaric ensemble (NPT) ensemble. For each system, ten replicate simulations of one 
ns each (including minimization and equilibration phases) each using a random seed were 
performed. The results (pulling work (Wpull), and the rupture force (Fmax)) from the 10 different 
simulations were aggregated for each metric by averaging them. In umbrella sampling, the 
different configurations (umbrellas) were extracted from the ξ of the first SMD simulation using 
a window spacing of 0.05 nm. Configurations were equilibrated under an NPT ensemble for 100 
ps and finally put into a ten ns simulation with a pull rate of zero. Coordinates were saved every 
picosecond in the corresponding SMD simulation. 

All simulations were conducted with GROMACS, version 2018.6 using the AMBER03  114 force 
field. The analysis was done on the pulling work (Wpull) (equation (3-8)), the rupture force 
(Fmax), and the ΔGTIE. This latter refers to the total interaction energy difference between the 
unbound and bound state of the ligand. The protein-ligand interaction energy is the total non-
bonded interaction energy (short-range Coulombic and Lennard-Jones) giving an estimation of 
the strength of the interaction 106. 

 The PMF was obtained from the histogram analysis using the WHAM algorithm via the g_wham 
package in GROMACS112, with 200 bootstraps to estimate statistical uncertainty 314. The binding 
free energy ΔG is the difference between the maximum and the minimum values of energy on 
the PMF curve 315. 

 
𝑊𝑝𝑢𝑙𝑙 = 𝑣 ∫ 𝐹(𝑡)𝑑

𝑡

0

𝑡 (3-8) 

𝑊𝑝𝑢𝑙𝑙: work of the external force. 

𝑣 : pulling speed. 

𝐹: external force. 

𝑡 : time. 
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The screening workflow is summarized in Figure 3-2 below. 

 

Figure 3-2 Screening workflow summary. PfDXR’s structure is represented in blue ribbon. The red arrow 
represents the pulling direction with restraint residues at the back (extreme left) and LC5 in the middle in 
ball and stick representation. 

3.3 Results - Discussions 

3.3.1 Ligand-Based Virtual Screening 

3.3.1.1 LBVS hits 
About 3 M ZINC compounds were compared to 17 DXR inhibitors using six LBVS methods. 

Figure 3-3 shows the structures of the top 16 compounds identified after using a consensus 
ranking. 



57 
 

 

Figure 3-3 Top 16 LBVS hits structures. IDs represent ZINC 316 database IDs of the structures. Structures 
were drawn using RDKit162 

The selected hits structures from LBVS lacked the hydroxamate group, a key feature, known for  
metal chelation in the known inhibitors 317. Indeed, no hydroxamate group was found in these 
top compounds, a moiety conserved among PfDXR inhibitors’ structures in their bound 
conformations and used as queries. However, both normal and reverse orientations of the group 
can be effective for inhibitory activity 318. Amide groups were present in ZINC000281644205 and 
ZINC000451006186.  ZINC000003152060, ZINC000096486995, and ZINC000000403216 present 
donor groups which may coordinate, making the compound bidentate ligands serving for metal 
chelation. Of these hits, only ZINC000020761505 presented a terminal group matching known 
inhibitors, which bind in a region of the active site forming a network of hydrogen bond with the 
residues SER269, SER270, SER306, ASN311, LYS312 and HIS293 319. New ring structures: propyl, 
hexane and heptane were present while all rings in the known inhibitors were benzene rings. 
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Also, some compounds present have many rings (e.g., ZINC000067563262, ZINC000002643784, 
ZINC000058267464) while the inhibitors, except LC5, only present a single benzene ring. 
ZINC0000020462230 and ZINC0000020461133 are isomers. 

3.3.1.2 Similarity scores distribution  

 

Figure 3-4 LBVS scores distributions and correlations. The sizes of the dots in the upper triangle of the grid 
represent are proportional to the Kendall τ correlation coefficients. The red color indicates positive 
correlation while the blue one indicates the negative one. The vertical bars in the distribution plots on the 
diagonal indicate the means. SD values are also annotated on the diagonal. The grid plot was generated 
using Seaborn  198.  

Figure 3-4 presents histograms of the similarity scores distributions for the ZINC compounds 
compared to PfDXR inhibitors. Similarity scores had different ranges (from the lowest to the best 
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scores): ES ([0.02 – 0.71]), MHFP [0 – 0.25], OBSPEC [49231-573], RDKit_3dpharm [0 – 0.13], USR 
[0.03 – 0.38] and USRCAT [0.03 – 0.54]. The standard deviations were 0.09, 0.06, 0.1, 0.02, 0.01 
and 2238 for ES, USR, USRCAT, MHFP, RDKit_3dpharm and OBSPEC respectively. OBSPEC was the 
most dispersed distribution, followed by USRCAT and ES. Thus, these may have the highest 
screening/differentiation power for compounds. However, the large SD in OBSPEC could be 
related to the large left-skewness of the distribution which may result in many outliers 
influencing the SD. On the other hand, MHFP and RDKit_3dpharm have the most compact 
distributions with an SD of 0.02 and 0.01 respectively. They have maximum similarity scores as 
low as 0.25 and 0.13 respectively.  

Except for ES, all methods have a low percentage of compounds passing the similarity threshold. 
Euclidean distance values from spectrophores showed a significant deviation from the low 
values. Indeed, the observed values here [49231-573] are much higher than those observed in 
the original paper ([0-700] and [0-1000]) 270. Also, the threshold to infer compound similarity is 
50 270. OBSPEC best score was 573 where a Euclidian distance of 50 a good threshold for similarity 
in virtual screening, which implies the absence of similar PfDXR inhibitors in the screened set. 
Comparing inhibitors to each other, high values were found with the lowest one being 588 for 
48S. These high values may be caused by the absence of normalization which can result in a shift 
in the spectrophore values 295. Indeed, the default normalization “none” was used while zero 
mean is recommended for virtual screening 270. This may not impact ligand rank ordering. 

About scores distribution, only RDKit_3dpharm and USR have bell-shaped curves or a normal 
distribution.  OBSPEC scores distribution presents a long tail to the left. The bimodal nature of ES 
and USRCAT distributions may reflect their combination of the shape and the electronic nature 
of the compounds: each mode corresponding to one of the two characteristics. This bimodal 
nature may be related to the different weights given to the shape or electronic nature when 
merging. For ES, a scaling factor (µ) counts for the number of electron(s) per angstroms and 
makes the approach flexible between a purely shape-based and purely partial charge. 
RDKit_3dpharm also accounts for compound conformation (with the relative distance of atoms) 
and the pharmacophoric points but does not show a bimodal distribution. MHFP had an 
interesting symmetric distribution with four inflection points which may imply a mixture 
distribution. These may be linked to MHFP fingerprint design, as Tanimoto similarity scores are 
usually normally distributed 320. While USR, ES, USRCAT, RDKit_3dpharm, and OBSPEC are shape-
dependent MHFP is conformation independent. 

3.3.1.3 Similarity scores correlation 
The agreement between the different methods was analyzed using the Kendall tau correlation, a 
non-parametric statistical test ranging from 1 to -1. When compounds have a similar rank across 
different methods, the Kendall correlation is high (toward 1) and vice versa 321. The different 
correlations values are present in the upper triangle of the grid (Figure 3-4). The different 
methods are correlated (Kendall tau correlation > 0.5) (Figure 3-4) except RDKit_3pharm and 
MHFP, which are the two fingerprint-based methods. The latter is particularly conformer 
independent. USR, ES and USRCAT use a similar method to compare compound shapes which 
may explain their strong correlation. Interestingly, USR does not encode atom typing, nor 
electronic properties, yet it shows a high rank correlation with ES and USRCAT. USR, even though 
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it only accounts for the shape of compounds, has a significant correlation with OBSPEC, ES, 
USRCAT. On the other hand, MHFP and RDKit_3pharm do not show a correlation to any of these 
methods, nor between themselves (Kendall tau correlation 0.14). RDKit_3pharm had the lowest 
Kendall tau correlation with USR (0.01). This may be linked to the absence of pharmacophore 
information in USR which is solely shape-based while RDKit_3pharm is specifically designed for 
pharmacophores. 

Four shape-based methods (OBSPEC, ES, USRCAT and USR) showed high correlations between 
themselves. There were only two different methods. The final ranks may be biased toward the 
first four methods. A ranking scheme with associated weight to each method or using a set of 
decorrelated methods could have provided a better consensus ranking in this scenario. For 
example, principal component analysis of the different scores will provide the component with 
the highest variance which can later be combined using the exponential consensus ranking 
scheme 211. Optionally, an approach with a weighting scheme and higher weights for these two 
fingerprint methods (RDKit and MHFP) could have been used when combining the different 
rankings. 

3.3.2 Structure-Base Virtual Screening 

This section presents the scoring function correlations.  

3.3.2.1 Docking score distribution and correlations 
The top 50000 ligands identified in LBVS were docked and rescored. A total of 48972 were 
successfully scored by all used SFs. The top 20 ligands were selected using exponential consensus 
ranking 211 for MD simulations. In the section below, an analysis of the docking scores is 
presented. As SFs estimate ligands’ affinities for DXR, a correlation between the different scoring 
functions is expected.  
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Figure 3-5 Clustermap of Kendall τ correlation coefficients between the different scoring functions. The 
color key is scaled from -1  to 1. The clustering is done based on the Euclidian distance between the 
different Kendall τ. NNScore, Rf-score SFs, PLEC predict affinity in positive pKd values and thus are 
negatively correlated with the other SFs predicting it in negative kcal/mol. Descriptive statistics for each 
SF distribution are in Appendix  B. The figure was produced with Seaborn 198. 

Figure 3-5 presents correlation coefficients (Kendall τ) between the distributions of the scores 
from the different SFs. Three main clusters are formed: (Vina, Idock, and Smina), (AutoDock, DSX, 
Cyscore, Xscore) and the Rf-score group (Rf-score_V1 to V4). PLEC and NNScore form a cluster 
but have negligible correlation (0.07) and showed the lowest level of correlation with the other 
SFs. Indeed, the highest correlation for NNScore was 0.25 with Rf_score_v3 and for PLEC the 
highest correlation was 0.23 with Cyscore. Among all SFs, the lowest correlation was observed 
between AutoDock and NNScore (-0.06) while Smina and Idock had the highest one (0.88). 
Interestingly, this latter was developed from Vina but here shows a better correlation with Smina. 

An observed trend was the poor correlation between ML SFs (NNScore, Rf-score SFs group, PLEC) 
with the empirical and knowledge-based ones. The first three versions of Rf-score also showed a 



62 
 

high level of correlation (>0.7). Interestingly, its fourth version was the least correlated with the 
others but was closer to AutoDock, DSX, Cyscore and Xscore. Indeed, the SF had a high Kendall τ 
of -0.36 with Xscore for instance. Hence, its later versions tended to agree with classical SFs. 

Clustering of the SFs reflected the distinct classes. Rf-score group uses the random forest 
algorithm. NNScore uses neural network while and PLEC uses a simple linear regression model. 
Idock and Smina were developed from Vina and hence clustered together. Cyscore, DSX, 
AutoDock, and Xscore formed a heterogeneous ensemble considering their different classes: 
empirical, knowledge-based force-field, and empirical, respectively. The lower correlation 
coefficient was lower inside that cluster than in the other ones. The highest was 0.48 between 
AutoDock and DSX. 

Elsewhere, the features and datasets used to train these models also may affect this clustering. 
However, as shown above, the underlying class of SFs supports the clustering pattern observed.  

These findings are difficult to generalize to other drug targets as PfDXR presents two peculiarities: 
substrate binding happens through an induced-fit mechanism and the protein presents a metal 
ion in its active site 56. The rigid nature of these docking experiments may not fully model the 
induced-fit mechanism of binding and thus limit an accurate scoring. Also, many SFs may not 
accurately score metalloproteins. A previous study showed a variation between SFs accuracy in 
ranking compounds for zinc-dependent endopeptidases, where, in terms of the Spearman 
correlation the order of accuracy was DSX, X-Score, Vina followed by AutoDock 322.  

Descriptive statistics for each SF are provided in Appendix  B. Except for NNScore, Rf-score_v1, 
Rf-score_v2 and Rf-score_v3 which all had a bimodal distribution, all the SF distributions had a 
bell-shaped curve characteristic of a normal distribution with different ranges. The bimodal 
distribution may indicate the mixture of two normal distributions 323 indicating an SF with two 
key parameters contributing to the affinity estimation. 

The above analysis showed a lack of correlation between all SFs, justifying the need for a 
consensus approach. However, some SFs may simply be predicting the affinity inaccurately, while 
it is unlikely that all methods are inaccurate. An approach to mediate this could be to use known 
PfDXR active compounds to assess each SF accuracy in rank ordering. 

The following SFs were selected for compound ranking to avoid bias toward a specific SF. For 
instance, given the high correlation between Rf-score SFs they might bias the final ranking if they 
were all used. The scores were combined using the exponential consensus ranking scheme 211. 
Consensus scoring is similar to multiple sampling in which the mean value has a higher probability 
to be close to the truth than any of the single SFs given their current limitation. It rectifies or 
minimizes the errors in the result when compared to individual scoring, thus reducing false-
positive and improved ranking and hit rate. Hence, it is advantageous over using a single scoring 
324. A task was to define a combination rule. Recently, the exponential consensus ranking scheme 
has been shown to outperform previous combination schemes 211. The top 20 hits (Table 3-3) 
selected were further assessed in MD simulations.
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 1 

Table 3-3 Top 20 ligands selected from the exponential consensus ranking. Ligands are ranked from top (1st) to bottom (20th). RFS denotes RF 2 
score. 3 

ZINC IDS RFS_V1 VINA NNSCORE RFS_V2 RFS_V3 PLEC RFS_V4 IDOCK CYSCORE DSX SMINA AD4 XSCORE 

ZINC000002969522 7.83 -8.52 7.61 7.52 7.40 6.74 7.59 -8.00 -4.58 -111.47 -8.17 -38.48 -8.70 

ZINC000000202238 8.05 -8.32 5.68 7.52 7.40 6.05 7.28 -8.77 -4.82 -114.24 -9.03 -38.44 -9.04 

ZINC000173601880 7.75 -9.27 6.73 7.38 7.39 5.56 7.22 -9.73 -4.34 -116.11 -9.70 -39.32 -9.18 

ZINC000008735333 7.83 -8.46 6.49 7.44 7.56 6.96 7.35 -8.91 -4.61 -101.52 -9.02 -37.57 -8.87 

ZINC000225472873 8.14 -8.16 6.42 7.54 7.28 5.43 7.28 -8.28 -4.51 -124.19 -8.51 -35.51 -8.75 

ZINC000230215778 8.11 -8.49 7.09 7.24 7.43 6.68 7.04 -8.15 -4.16 -120.67 -8.48 -37.42 -8.92 

ZINC000072302893 7.85 -8.64 6.51 7.35 7.16 5.37 7.04 -8.90 -3.65 -115.66 -9.24 -36.64 -8.88 

ZINC000010271232 7.78 -8.42 6.87 7.19 7.30 5.83 6.96 -8.72 -4.27 -107.14 -8.69 -31.91 -8.76 

ZINC000057348471 8.15 -8.12 6.77 7.48 7.62 5.14 7.29 -8.73 -3.98 -116.10 -8.91 -32.96 -8.76 

ZINC000193973285 7.93 -8.32 6.89 7.59 7.47 5.96 6.92 -8.67 -3.95 -106.07 -8.70 -31.02 -8.56 

ZINC000409241945 8.31 -8.16 5.72 7.54 7.37 6.03 7.74 -8.92 -4.18 -125.93 -9.13 -33.10 -8.90 

ZINC000028943558 7.78 -8.47 6.71 7.37 7.30 5.18 7.00 -8.49 -4.36 -109.26 -8.74 -32.93 -8.73 

ZINC000000182272 8.14 -8.87 6.20 7.25 7.08 5.73 7.16 -8.85 -4.24 -105.58 -9.04 -32.02 -8.82 

ZINC000013940913 8.18 -8.33 6.01 7.22 7.15 5.29 7.31 -9.22 -3.91 -107.26 -9.19 -35.12 -9.04 

ZINC000091845778 7.73 -8.39 6.15 7.21 7.21 5.90 7.30 -8.75 -4.12 -102.52 -8.82 -32.38 -8.84 

ZINC000058430530 8.23 -8.37 6.21 7.53 7.14 4.75 7.35 -8.84 -4.13 -109.67 -8.79 -34.89 -8.87 

ZINC000023128752 7.49 -8.18 6.62 7.46 7.35 6.47 7.44 -8.05 -4.85 -126.51 -8.17 -43.32 -9.02 

ZINC000065625934 7.72 -7.73 6.92 7.42 7.13 5.31 7.18 -8.29 -4.27 -111.29 -8.31 -36.72 -9.08 

ZINC000050633276 8.25 -8.44 6.27 7.22 7.12 4.93 7.29 -9.06 -3.75 -119.66 -9.12 -32.15 -8.73 

ZINC000065625931 7.62 -8.01 6.28 7.26 7.10 6.23 7.31 -9.76 -3.35 -115.01 -9.86 -35.67 -8.95 

4 
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3.3.3 Molecular dynamics  

In the following MD sections, results from conventional MD, SMD, MM-PBSA, and US are 
presented. SMD (Wpull and Fmax) was used to select compounds for MM-PBSA and US. Final hits 
were selected from the US simulations. The diagram below (Figure 3-6) gives a flowchart of the 
simulations and the ID and rank compound ranking ordering in each simulation type. The top 20 
compounds were selected from rescoring. Eighteen ligands and LC5 were simulated in MD and 
SMD. Further eight ligands and LC5 were selected for US and MM-PBSA. SMD Wpull and Fmax 
are aggregated from ten independent replicates. 

 

 

Figure 3-6 Simulations workflow and hits selection.  

A range of metrics can be derived from MD simulations, RMSD, radius of gyration, protein-ligand 
COM distance to assess protein-ligand complexes stability. They are derived from relative atomic 
coordinates. As structural variations are driven by the energy gradient, we decided to focus on 
the analysis of energy-related metrics to reduce data dimensions for simplicity. More energy-
based metrics also give an estimation of not only stability but affinity between the protein and 
the ligand. The protein-ligand interactions are also analyzed through the residues’ contributions 
to binding energy in MM-PBSA and the broken interactions in SMD. 

PLIE (Appendix  C) was derived and analyzed from conventional MD. It gives a relative measure 
of affinity which can be used to rank compounds. Ligands outperforming LC5 in PLIE may have 
good experimental PfDXR affinity. Only two compounds ZINC000050633276 (-273.36 kcal/mol) 
and ZINC000230215778 (-272.91 kcal/mol) outperformed LC5 according to the average PLIE 
(Appendix  C). Indeed, LC5 showed an average PLIE of -272.91 kcal/mol. All systems showed 
negative PLIE showing favorable binding with an average ranging from -273.36 kcal/mol 
(ZINC000230215778) to -166.09 kcal/mol (ZINC000013940913). Contrary to MM-PBSA, LC5 was 
ranked well according to PLIE.  

3.3.4 Steered molecular dynamics. 

SMD generates protein-ligand unbinding process configurations for sampling in US. Three metrics 
(the rupture force, the pull work, and the protein-ligand interaction energy) can also be derived 
from SMD and rank protein-ligand systems in terms of affinity. We analyzed the ranking of the 
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18 ligands selected from MD according to these three metrics. Simulations were not successfully 
run for two protein-ligand systems (ZINC000225472873, ZINC000008735333) due to challenge 
with water molecules settling during systems solvation causing failure in their energy 
minimization step. 

3.3.4.1 Rupture forces 

 

Figure 3-7 Pull forces on the harmonic spring. The y-axis represents the forces in kJ/mol/nm and the x one 
is time in picoseconds. The co-crystallized ligand is used as a reference for comparison. Ligands’ names in 
the legend are sorted according to their rupture force. The graph was produced with pandas 304 and 
matplotlib 325. 

 

Figure 3-7 shows the time-dependent evolution of the pull forces and the pull works (averaged 
from the ten independent replicated SMD). The curves followed the forms of observed pull force 
evolution in earlier pulling simulations 103,308,326,327. There was a steady increase of the force to 
reach the rupture force (Fmax) followed by a decrease and finally and stable phase with a force 
of around zero continuing until the simulation end. ZINC000050633276, ZINC000023128752 and 
ZINC000173601880 were the top three compounds based rupture forces with 685.38 kJ/mol/nm, 
644.47 kJ/mol/nm and 570.21 kJ/mol/nm, respectively. The co-crystallized ligand LC5 had a 
rupture force of 453.71 kJ/mol/nm. The top ZINC compounds thus showed better affinities for 
the protein than the co-crystallized ligand. This latter is a potent inhibitor in the nanomolar range 
(280 nM). Hence, the ZINC compounds could potentially be good inhibitors. A set of ten other 
ZINC compounds had a better Fmax than LC5. All compounds attained their Fmax at around 100 
to 200 ps. The corresponding time-point to the rupture force is called Tmax and tends to be 
proportional to Fmax 308. This is similar to ligand resilience time in the binding site. This metric 
could also be used to rank the compounds. For example, ZINC000002969522 which has the 
lowest Fmax also showed has the lowest Tmax. On the other hand, ZINC000050633276 had the 
highest Fmax, had a lower Tmax than ZINC000023128752, the second compound with the highest 
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Fmax (Figure 3-7). Fmax was strongly correlated to Tmax with a Pearson correlation coefficient 
of 0.91 (Appendix  D). 

All compounds were fully solvated after the first 600 ps of simulation, with rupture forces 
attained before 250 ps. This supports SMD computationally cost-effectiveness compared to 
advanced free energy approaches which are more expensive without a significant gain in 
accuracy 312. 

Rupture forces presented different peaks. Higher ones are associated with sharper peaks than 
lower ones. For example, ZINC000050633276 presented a sharp peak at Fmax while 
ZINC000002969522 shows a flatter profile. This flatter profile could correspond to successively 
broken interactions. While the sharper peak results from the simultaneous breakage of multiple 
interactions. The different orientations of the bound ligands and a unique pulling direction may 
contribute to this difference in the peak profiles. Ligands can bind in an orientation in which all 
or majority of protein-ligand interactions' directions are parallel to the pulling direction. 
Interactions are thus likely to have a simultaneous contributing effect against the rupture force. 
While when the ligands bound orientation presents interactions orthogonal to the pulling 
direction, we may rather observe a detachment effect during unbinding. In that process, 
interactions are successively broken, resulting in a lower force peak. This cooperativity of 
molecular interactions, increasing the rupture force, was also observed in a previous study 328. 

3.3.4.2 Pulling work 

 

Figure 3-8 Pulling work-time profiles. The y-axis represents the work in kJ/mol unit and the x one is time 
in picoseconds. The co-crystallized ligand is used as a reference for comparison. Ligands’ names in the 
legend are ranked according to the pulling works. The figure was prepared with matplotlib 325 and pandas 
304. 

Figure 3-8 shows the time evolution of the pulling works for the different systems. This latter has 
been shown to have better agreement with experiment than Fmax 308. The top compounds were 
ZINC000173601880 (127.56 kJ/mol) ZINC000000202238 (114.25 kJ/mol) and ZINC000050633276 
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(142.25 kJ/mol) according to the pulling work (Wpull). LC5 showed a Wpull of 109.11 kJ/mol.  
Hence, with the pulling work, these compounds show better affinity than the co-crystallized 
ligand. Ten compounds showed better Fmax and Wpull than the co-crystallized ligand in total.  
The pulling work plateaus at around 500 ps with no significant variation afterward.   

SMD results are dependent on the ligand pathway during unbinding from the protein 308. Ideally, 
the ligand should be free to move in all dimensions during unbinding as in a realistic biological 
system. However, such a setup requires a larger simulation box in all dimensions, increasing 
computational cost 106,312. This could be practical in SMD, as it is in the order of picoseconds. 
However, it can be expensive in US as independent simulations are carried out on different 
windows from the reaction coordinate. A current limitation of the current approach was the 
unidirectional pulling determined using Caver. Even though this direction may represent the 
lowest energetically cost for unbinding of the co-crystallized ligand, it may not be the optimum 
for other ligands especially if these are binding in different orientations in the active site. To 
overcome such limitations, SMD approaches with adaptative direction during simulation have 
been proposed 326.  A minimal steric hindrance showed better agreement with experiment than 
direction obtained from Caver 326,329. However, these approaches are not available in the 
GROMACS simulation package 112. Yang et al. and Gu et al. proposed an SMD method with 
adaptive direction adjustments where the optimum path of ligand is navigated by minimizing the 
pulling force automatically during the simulation 326,329. 

As described in the methods sections, ten independent SMD were run and the metrics (Fmax, 
Wpull) were averaged across the different simulations. Another approach could have been to 
simply choose the system having the lowest energy during the unbinding. 

Ligand binding to PfDXR happens through an induced-fit into a rather confined binding site with 
a loop over it acting as a lid 330. These observations may make the unidirectional pulling not 
suitable for such a system. A slow velocity is important in such a scenario to allow enough time 
for the complex to relax and adopt more energetically favorable conformation, thus avoiding 
abrupt unbinding distorting binding site residues. Indeed, during experimental setup, different 
values of pulling force and velocities were tested. Further, the protein was not fully restrained 
during the SMD simulation. To avoid dragging protein along the reaction coordinate, restraints 
can be applied to the full receptor or part of it. For example, restrains can be applied to the 
protein C-alpha while keeping the side chain flexible 312,331. In this study, only C-alpha atoms of 
four residues (residue numbers: 329, 264, 330, 265) located at the opposite extreme of the 
unbinding path were restrained. Hence the protein residues were flexible and able to adopt 
energetically favorable conformation during the unbinding process. This was to help prevent the 
entire protein structure from following the ligand during pulling and also prevent protein 
rotations which may affect the pulling direction. The protein remained flexible with possible 
conformational change for the active site residues.  

It is important to note that the unbinding path for all ligands used was the same as for the co-
crystallized ligand. Given that all ligands bind in the active site, the same direction should be 
closed to the optimum for each case. However, the unbinding path may be different for a ligand 
in a different pose. 
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3.3.4.3 Total protein-ligand interaction 

 

Figure 3-9 Total protein-ligand interaction energy-time profiles. The y-axis represents the PLIE in kcal/mol 
unit and the x one is time in picoseconds. The co-crystallized ligand is used as a reference for comparison. 
The figure was produced with matplotlib 325 and pandas 304. 

Figure 3-9 shows the time evolution of the total PLIE between the protein and ligand during the 
SMD simulation. The total interaction energy (sum of short-range Coulombic and Lennard-Jones 
interaction energy) is a simple decomposition of the system potential energy, to only take into 
account the non-bonded terms between the selected atom groups (here the protein and the 
ligand). It does not correspond to a binding free energy 106. All systems' GTIE were negative, 
indicating favorable interactions between the ligands and the protein. Energy values increase 
toward zero where ligands are fully solvated. The profile was similar to the Fmax and Wpull 
profiles. The  ΔGTIE (total interaction energy difference between the unbound and bound state of 
the ligand) ranged from -154.47 Kcal/mol (ZINC000002969522) to -477.74 Kcal/mol (LC5). Hence, 
the co-crystallized ligand showed the best affinity. ZlNC000230215778, ZINC000050633276 and 
ZINC000057348471 were the top three ZINC compounds.  

When considering GTIE individual contributions, the vdW interaction energy shows higher 
contributions than the electrostatic one (Appendix  E and Appendix  F). However, in the top 
ligands, the electrostatic contribution tends to be higher. Indeed, LC5 and the top ZINC 
compounds (ZlNC000230215778, ZINC000050633276 and ZINC000057348471) showed more 
favorable electrostatic contributions relative to the vdW contribution. Hence, potentializing 
electrostatic contribute may be a good strategy for potent PfDXR inhibitors. 
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3.3.4.4 Events on the unbinding path 1 
Force peaks are often associated with strong interactions in SMD 309,328. We assume residues implied in these interactions to be strong 2 
anchoring points in the binding site for potent inhibitor design. Fmax is the value for the highest peak on the force profile and Tmax is 3 
the corresponding time-point. Figure 3-10 shows broken interactions at Tmax. A broken interaction has a relative frequency >= 0.5 4 
before and <= 0.1 after Tmax. We assume those interactions to contribute to Fmax.  5 

 6 

Figure 3-10 Broken interactions at Tmax. Ligands are on the y-axis and residues on the x one in their three letter code and residue number. 7 
Interactions and their types are represented by a colored box if present at Tmax. White areas represent the absence of interaction.  Duplicate 8 
residues on the x-axis have different types of interactions. The heatmap was produced using Seaborn 198.  The broken interactions were analyzed 9 
on the first SMD simulation of the 10 replicates. Interactions were determined using Arpeggio 332. 10 
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Globally weak hydrogen bonds were the most common broken interaction, representing 35.4% 
in the type of interaction proportions. Hydrophobic and hydrogen bonds were also found in high 
numbers with respectively 27% and 23%. Rare carbonyl, aromatic, ionic, and metallic interactions 
were also found. 

Regarding the residues, ASP359, HIS335, TRP296, HIS341, and GLU233 were the most frequently 
involved. MET360, MET298, PRO358, and CYS338, TRP296 were the most contributing residues 
to hydrophobic interactions. SER270, SER312, SER232, LYS312, GLU233, ASP359 were the most 
common residues where hydrogen bonds were broken at Tmax. 

Some particular residues showed notable patterns. TRP296 is located on the loop covering the 
active site and had a hydrophobic contact identified as a broken interaction with all compounds 
except ZINC000058430530. By contrast, GLU233 was the only residue found to interact with the 
ligands among the metal coordinating residues. This residue could be interesting in optimizing 
inhibitor potency in that region. It is the most exposed among the residues implied in metal 
coordination, making it more accessible.  LYS312, a buried residue in the phosphonate binding 
region made charged ionic interaction with LC5 only. This may explain its high protein-ligand 
interaction energy, especially in the electrostatic contribution (Appendix  F). Hence, the 
possibility of forming strong charged, ionic interaction with this residue could be an exploitable 
anchoring point for optimizing inhibitors. MET298, while mainly implied in hydrophobic contacts, 
forms a hydrogen bond only with ZINC000173601880. 

Comparing the frequency of interaction to Fmax intensity, ZINC000002969522 which has the 
lowest number of interactions broken (only three) also has the lowest Fmax (247.93 kcal/mol). 
On the other hand, ZINC000023128752 showed the highest number of broken interactions at 
Tmax with a rupture force of (610.96 kcal/mol). Interaction frequency is not necessarily linked to 
Fmax, as individual contributions may significantly vary. Hydrogen bonds, for example, may have 
a stronger contribution to Fmax than other interaction types. The heatmap indicated a higher 
frequency of hydrophobic contacts at Tmax than hydrogen bonds. However, hydrogen bonds 
most likely have a higher contribution to Fmax due to their stronger nature 218. 

Broken interactions were only analyzed for the first SMD simulations. This set of simulations had 
a higher resolution (time steps between saving frames), where coordinates were written on disk 
every 500 steps contrary to the rest of SMD simulations in which they were written every 50000 
steps. This was done to save disk space. Hence, frames corresponding to Tmax could be found 
with higher precision for the first replicate than the remaining ones. Yet, broken interactions 
could be computed on the other replicates considering the immediate frames before and after 
Tmax. The different broken interactions could then be aggregated using a probabilistic approach. 

Broken interactions at Tmax are likely to be binding pocket gatekeepers. For instance, MET298 
and TRP296 interacted with most ligands probably due to their location on the binding site loop. 
These may not necessarily be the only hotspots. Indeed, strongly binding residues, even buried 
in the active site may contribute to Fmax due to the slow SMD process allowing ligands to 
rearrange and maintain interactions.  Another analytics approach could map all peaks on the 
force profile to interactions. Hence residues contributing to any peak could be identified. 
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To investigate residues association with Fmax intensity, Tmax was mapped to the corresponding 
broken interactions. This gives a QSAR-like model using Fmax as a continuous variable and the 
presence or absence of a specific interaction as a dichotomous variable (0 or 1). This results into 
a point-biserial correlation identical to the Pearson one 333. 

 

 

Figure 3-11 Point biserial coefficient plot. Coefficients of the point-biserial correlation between each 
specific residue interaction (residues and interaction type) and the intensity of Fmax.  

Sixty-five residue interactions were identified with correlations ranging from -0.4 to 0.51. Most 
residue interactions did not show significant association with Fmax intensity, with a correlation 
coefficient in the range -0.2 to 0.2. CYS-268, SER-270, HIS-341 and LYS-297 showed the highest 
correlation (> 0.5) with high Fmax intensity. HIS-341 and CYS-268 were not previously noted as 
key residues in PfDXR binding site or to contribute to known inhibitor potencies. For instance, 
fosmidomycin beta-arylpropyl analogs preferably pointed toward TRP296 indole ring instead of 
HIS341 289. LYS-297 loop position may explain its correlation Fmax high values as shown in Figure. 
Other notable residues with a Pearson correlation above 0.3 were the well-known PfDXR residues 
GLU233, ASP-359, ILE302, SER269, SER306, TRP296. GLU233, TRP296, SER269 (Appendix  A). 

Some residue interactions showed a negative association with Fmax intensity. MET360 
hydrophobic interaction had the lowest correlation (-0.4). It is located at the pocket periphery, 
toward the NADPH binding site. This peripheral location may explain its association with lower 
values of Fmax. This contrasts with its favorable contribution to MM-PBSA binding energy. A 
similar observation can be made for LYS312.  

Residues correlated to high Fmax and contributing favorably to MM-PBSA binding energy are 
GLU233, CYS268, SER270, TRP296 and HIS341. Therefore, not only are they binding residues but 
they maintain this binding up to Tmax, hence their contribution to Fmax. Therefore, they may be 
stronger anchoring points. Broken interactions not present in MM-PBSA are likely implied as only 
guiding the unbinding process.  

A limitation here is the unidirectional pulling SMD as previously noted 119. This direction was 
determined using LC5 and applied to all ligands. This has already been discussed in section 
3.3.4.2. In a future study, aggregating all data from the 10 SMD simulations and correlating Fmax 
to broken interactions in each replicate may provide a better sampling for better predictions. 
However, the current data comes from a set of 19 ligands, having different scaffolds and binding 



72 
 

differently from DXR. Hence, we can estimate a good sampling of the different possibilities in the 
binding pocket. As yet another alternative approach, PLIE could have been used instead of Fmax. 
Indeed, MD PLIE time series vs interactions information may also be used to build a QSAR-like 
model from the MD trajectories. 

In the future, the identified interactions here may be developed into a pharmacophore 
hypothesis. De-novo compound generation biased toward these interactions may provide potent 
compounds. Combined with the knowledge of the binding pocket metal-binding regions and 
phosphonate binding region, these strategies may result in ligands with greater potency.  

In some systems, the coulombic component of the interaction energy showed some peaks while 
the Lennard Jones component had already decreased to zero. When visualized, the ligands had 
electrostatic interactions with some residues on the active site loop (TRP296, LYS297, and 
LYS295) previously associated with high Fmax. For instance, ZINC000173601880 formed a weak 
hydrogen bond with LYS295 (Figure 3-12). This ligand is almost fully solvated, hence the total 
absence of LJ energy. Lysine residues may play a role in ligand binding/unbinding as charged side 
chains are expected to attract polar ligands334. Further, mutations K295N and K297S are reported 
to have a 24-fold decrease on PfDXR catalytic efficiency 335. Hence, LYS297 and LYS295 residues 
may be key in substrate recognition. 

 

 

Figure 3-12 ZINC000173601880 last interaction in SMD. PfDXR in blue ribbon on the left. The active site 
area in zoomed in on the right. ZINC000173601880 and interacting residues are in licorice representation 
and atom types coloring. ZINC000173601880 formed a weak hydrogen bond showed in green dashed line 
with LYS295. The illustration was generated using NGLview 188.  

SMD gives QSAR insights and is cost-effective considering the simulation length (about 1-2 ps). In 
addition, Wpull showed a good correlation with experimental affinity 331. Hence, the approach is 
not only useful for a more accurate affinity prediction but also may be used in rational inhibitor 
design. It might be a more valuable approach compared to the classical conventional MD scheme 
combined with MM-PBSA. Beyond the analysis of residues associated with Fmax, SMD also 
provides a diversity of protein conformations especially in the binding site area. This diversity of 
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conformation may be valuable in the investigation into the potential energy landscape of binding, 
given that the DXR native ligand binds through an induced-fit mechanism 242. 

3.3.5 Molecular Mechanics Poisson Boltzmann: MM-PBSA 

3.3.5.1 Protein-ligand binding free energy. 
MM-PBSA predicts protein-ligand complexes binding free energy (ΔG). The different energy 
components’ contributions and the residue contributions provide further insights for rational 
inhibitor design. Positive contributions are unfavorable to the binding process while negative 
ones are favorable. Figure 3-13 shows the binding free energies for the ten systems simulated 
(LC5 and nine ZINC compounds). 

 

 

Figure 3-13 Binding free energies and their components for LC5 and the hits. Van der Waal, electrostatic, 
polar solvation, SASA contributions are presented. Standard deviations are indicated by error bars. The 
co-crystallized ligand is used as a reference for comparison. The bar plot was generated with matplotlib 
325 and pandas 304. 

All systems showed negative binding energy, thus showing their favorable binding. All ligand hits 
showed better binding energy than LC5. Indeed, LC5 had a ΔG of -64 kJ/mol while the most 
unfavorable of the hits was correspondingly -77.1 kJ/mol. Contrary to the results of SMD metrics 
(Wpull, Fmax, and PLIE) and US, LC5 was poorly ranked in MM-PBSA. The top three compounds 
identified in MM-PBSA were ZINC000023128752, ZINC000000202238 and ZINC000173601880 
with binding energies of -140 kJ/mol, -137.14 kJ/mol and -132.63 kJ/mol. These compounds 
showed a twofold better affinity than LC5, an inhibitor potent in the nanomolar range. Hence 
these predictions indicate promising hits.  
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Interestingly, these top three ligands are ranked 5th, 6th, 7th according to the PLIE in SMD while 
LC5 was the top ligand. Hence compound rankings differed across the methods. 

Regarding the different components of the free binding energy. Similar contribution patterns can 
be noted across the ligands. There was unfavorable polar solvation energy and negative vdW and 
electrostatic energies consistent across all systems. The vdW contributions were the most 
favorable while the polar solvation energy was the most unfavorable. vdW energy was also a 
significant contributor to the PLIE. Interestingly, LC5, ZINC000050633276 and ZlNC000057348471 
have the strongest electrostatic contributions in both MM-PBSA and PLIE. SASA contributions 
showed the least variance across the ligands. Hence, the binding pocket size and its accessibility 
to water molecules remained independent of the bound ligand.  As a result, given the small, 
confined pocket, optimization strategies may benefit from prioritizing substitution on a lead or 
hit scaffold rather than further their expansion in the pocket. 

The polar solvation energy was the most correlated with binding energy (Pearson correlation of 
0.89). Hence, its optimization might an excellent strategy for potent PfDXR inhibitors. On the 
other hand, the electrostatic energy was poorly correlated (0.09).  

MM-PBSA is known for its poor precision 336. Here the standard error of the mean ranged 4.24 to 
1.62 kJ/mol for ZINC000244774073 and ZINC000091845778, respectively. It is the ratio of the 
standard deviation to the square root of the number of frames 336. Hence, this seems to give 
better precision in estimating the binding free energy compared to 11 and 14 kJ/mol reported by 
Weis et al.336,337. This may be linked to the default 10 ps time step extended to 100 for better 
sampling and to save computational cost. However, replicating simulations (20 -50 replicates of 
100-200 ps simulations) is known to provide better precision 108.  

3.3.5.2 Residues contributions to the binding energy 
G_mmpbsa also estimates the residue’s energetic contribution which is obtained through the 
decomposition of the total binding energy. This helps to gain insight into the residue’s 
interactions. Figure 3-14 shows residues energetic contributions to binding free energy for the 
nine ZINC compounds and LC5. 
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Figure 3-14 Residues energetic contributions (kilojoules per mole) to the total binding free energy. 
Residues are on the x-axis while the ligands are on the y-axis. From left to right residues are ordered from 
the highest variations to the least in their contributions. The figure was prepared using Seaborn 198. 

SER232, GLU233, CYS268, SER270, TRP296, LYS312, CYS338, HIS341, MET360, and the MN metal 
were the greatest contributors to binding energy either favorably or unfavorably (Figure 3-14). 
Except for CYS268 and MET360, these residues were known to be implied in inhibitor interactions 
with PfDXR 338.  SER232, SER270, and LYS312 are implied in hydrogen bonding while SER270 and 
LYS312 are known to bind to the fosmidomycin phosphonate moiety 56,244. 

GLU233 is a coordinating residue of MN and is involved in hydroxamate binding 242,339. It is the 
only residue involved in metal chelating that was present among the most contributing residues. 
The absence of ASP231 and GLU315 might be explained by their buried nature. Further, to the 
best of our knowledge, no known PfDXR ligand-bound crystal structures interact with these 
residues. 

TRP296 consistently showed the most favorable contribution to the binding energy. As shown in 
the interactions heatmap, it was also implied in many aromatic and hydrophobic interactions. 
Interactions with it are known to potentialize PfDXR inhibitors as it is known to form an aromatic 
hotspot in the loop region covering the active site 289.  

In general, the MN had an unfavorable, positive contribution to the binding energy; only in three 
cases, it was favorable to it. ZINC000091845778 was the only ligand hit showing interaction with 
the metal. The MN contributed favorably to the binding energy in this specific case. In a similar 
MM-PBSA calculation, Anu et al. prioritized ligands showing interaction with the metal when 
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selecting hits 255. Given the MN favorable contribution to binding energy in ZINC000091845778, 
this might be a valuable option for optimizing the ligand. Furthermore, it is interesting that LC5 
is known to chelate MN, yet it has the poorest contribution from MN in this set with a value of 
+54 kJ/mol. Visualization of the simulation showed the hydroxamate moiety keeping only one 
oxygen coordinating to the MN coordination center. This may explain its poor ranking here. 

Previous characterization of the PfDXR binding site showed three main regions: a polar one 
(SER269, SER270, SER306, ASN311), a hydrophobic one (HIS293, TRP296, MET298, CYS338, and 
PRO358) and the metal coordination region (ASP231, GLU233, and GLU315)  250.  The intersection 
of these residues with the above-mentioned ones (SER270, TRP296, and CYS338) might be a set 
of strategic residues with which to optimize interactions with for potent inhibitors. Despite the 
polarity of two core regions (metal binding and phosphonate binding), our results showed vdW 
interactions were the most contributing to the binding energy. Interestingly, CYS338, even 
though lodged in a hydrophobic region of the pocket, showed the ability to participate in 
hydrophilic interaction. This has also been noted in a previous study with interaction with CYS338 
significantly potentialized pyridine containing inhibitors 338. Additionally, SER232, CYS268, 
LYS312, HIS341, and MET360 may be residues to optimize interactions with as well. 

Anu et al. performed MM-PBSA on PfDXR using the same crystal structure (PDBID: 5jaz) in 
complex with some natural products. A consistent, positively polar solvation energy was found. 
Raw binding energy values observed on the natural products show weaker binding than in this 
study.  However, their simulation was done using a different force field (Amber99SB force-field) 
255. So, these comparisons should be taken with caution due to the different force field and 
GROMACS112 versions. Further, in their study a ligand-dependent solute dielectric constant (pdie) 
was used 255. 

Overall, as key findings, all hits showed more favorable binding than LC5. The residues energetic 
contributions combined with types of interactions provide insight into PfDXR rational-based drug 
design: a potent chelating agent is required to bind the metal ion, hydrogen acceptor binding 
must be possible in the phosphonate binding region, and finally it is necessary to optimize 
hydrophobic interaction in the loop. More specifically, optimizing interactions with residues such 
as SER270, TRP296 and CYS338 seem to be indicated for the design of potent PfDXR inhibitors. 

In the set of experiments, the residues contribution to ∆GMM-PBSA and the Fmax mapping to 
interactions gave information on the potential residues’ contribution to the binding energy. 
Considering their overlap, we can note the following key points. GLU233 and the manganese 
atom positive (unfavorable) contribution should be minimized. TRP292 was the most frequent 
and the most contributing to ∆GMM-PBSA favorably. LYS312, SER270, and SER232 contribute 
favorably through hydrogen bonds. HIS341 showed a strong contribution to aromatic and 
hydrophobic interactions. Finally, CYS338 and CYS268 MET360 contribute favorably through 
hydrophobic contacts. 

3.3.6 Umbrella sampling 

Top ligands for the US simulation were selected based on their Fmax and Wpull. Figure 3-15 
presents their PMF profiles.  
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Figure 3-15 PMF curves obtained from WHAM analysis for the different systems. The related histograms 
for the different systems are presented in Appendix  G. The x-axis is the reaction coordinate (protein-
ligand COM displacement) while the Y one represents the potential energy.  The figure was generated 
with matplotlib 325 and pandas 304. 

The calculated binding free energy from the US simulation (ΔGUS) can be determined as the 
difference between the largest and smallest values of PMF. The free energy (y-axis) varied across 
the reaction coordinate (x-axis) which characterizes the protein-ligand dissociation. Calculated 
Binding free energy values obtained using the US method showed to be in good correlation with 
the experimental data  313,340. 
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The PMF curves had similar trends: an early decrease to a minimum value after starting at zero 
for the free energy. This is an unexcepted event as all systems were first minimized and 
equilibrated. It finally increases to reach a stable value at around 2nm along ξ, where the ligand 
was fully solvated. This early decrease in the energy value has also been observed in a similar 
study applying US to protein-ligand systems 313. In general, systems showed a smooth increase in 
energy which can be linked to the choice of a slow pulling velocity. However, ZINC000173601880 
and ZINC000023128752 presented a steady increase. 

LC5 ΔGUS was -10.7 kcal/mol. The compound has an inhibitory constant of 280 nM 256 which 
corresponds after conversion using (1-5) to a binding free energy of -9 Kcal/mol. Hence the 
predicted value here showed an overestimation of 1.7 kcal/mol. In MM-PBSA, the binding free 
energy was - 63.99 kJ/mol (-15.29 kcal/mol) likewise much lower than the experimental value. 
The exact binding free energy was overestimated in both approaches. However, since interest is 
in the relative activities of compounds, it is noted that the overestimation may be systematic 
across the different systems.  

  

Δ𝐺 = 𝑅𝑇 ln(𝐾𝑖)   (3-9) 

Ki (Inhibitory constant)  

R (Gaz constant) = 1.98 and 

T (temperature) = 298.15 Kelvin   

Four other compounds: ZINC000050633276 (-20.43 kcal/mol), ZINC000072302893 (-12.07 
kcal/mol), ZINC000023128752 (-11.77 kcal/mol), ZINC000065625931 (-11.27 kcal/mol) (Figure 
3-16) showed better binding free energy than LC5. As this latter has an inhibitory constant in the 
nanomolar range (280nM), these compounds may have similar potency against DXR.  
ZINC000050633276 showed a notable ΔGUS of -20 kcal/mol corresponding to Ki of 1.934 fM. 
Hence the compound may bind strongly. Indeed, its binding pose showed numerous polar 
contacts (Figure 3-17). However, the compound was not the top performer in MM-PBSA. Further, 
in this case of ZINC000050633276, MN had an unfavorable contribution of 14 kJ/mol. Optimizing 
its interaction with the metal or merging it with PfDXR based inhibitors scaffolds may yield potent 
inhibitors. These four hits present scaffolds very different from fosmidomycin. None of the 
compounds, for instance, contain the hydroxamate or the phosphonate groups. 
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Figure 3-16 2D depictions of the four hits. Structures were depicted using Open Babel 299 

ZINC000091845778 shows an unusual trend of PMF for protein-ligand systems. Indeed, the curve 
shows a sharp decrease of free energy in the early part of the simulation. This was not expected, 
as the first conformation was supposed to be the most energetically favorable one. The potential 
energy decreased sharply to -12 kcal/mol. The next phase follows a classic PMF profile of protein-
ligand unbinding. ZINC000091845778 umbrella histogram analysis showed a lack of sampling in 
that region of the reaction coordinate (Appendix  G). Hence, the compound binding energy was 
not included in the hit selection. 

With ZINC000065625931, the potential energy does not seem to have plateaued. The end of the 
reaction coordinate was determined based on ligand complete solvation. This latter was 
determined based on visualization and using the SMD curves. This was done to save 
computational cost. A significant increase in the potential energy is not expected and the ligand 
current binding energy is better than the co-crystallized one. 

Ligand binding to PfDXR has an induced-fit mechanism to accommodate the ligand 56. As ligand 
unbinding may require conformational rearrangement, a slow pulling rate was, therefore, ideal 
to allow active residues time to adopt favorable conformations. 

The free energy of binding can also be obtained using Jarzynski’s Equality from multiple 
independent SMD simulations. The method showed comparable efficiency to US 341. 

As conclusion, a set of uncorrelated features may be a better approach to consensus scoring. One 
can drop one of two SFs showing a correlation of 0.5 or greater. Each SF was expected to 
contribute to a more accurate ligand rank ordering. However, ideally, one would test against a 
background truth the accuracy of different combinations of SFs. Using an experimental reference 
would have been ideal for evaluating the different methods but the most suited approach for 
integration. In this study, for example, each LBVS method could have been evaluated based on 
its ability to rank accurately known inhibitors according to their potency and later integration of 
the different methods could have been evaluated the same way. At the SBVS level, the inhibitors 
receptor conformation can be used as well, although this will significantly increase the 
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dimensionality of the data and the computational cost. Alternative approaches are flexible 
residues docking or induced-fit docking with higher computation cost though. An induced-fit 
docking approach may have provided a better approach to modelling.  

About the cost-accuracy trade-off, the SMD approach is attractive. It has the lowest runtime (2 
ns) compared to MD, MM-PBSA and US. It provides Fmax and Wpull as estimation of affinity. 
Moreover, it provides analytical insight into residues behavior along binding/unbinding path. 
About 20 windows were produced for the different ligands for US. The ten nanoseconds of 
sampling in each window result in a 100 times higher computational cost than the 2 ns in SMD. 
The potential accuracy gain may not be worth this cost. A limitation in the current chapter is the 
lack of experimental data for predicted affinities. Besides LC5, known inhibitors used in LBVS 
could have guided on the accuracy of the current methods. 

Some umbrella histograms showed a lack of sampling in some regions (Appendix  G). For 
example, this was the case with the two first windows in ZINC000000202238. In those cases, an 
attempt to concentrate more windows in that region did improve the profile as windows were 
shifting away from those regions. These regions may present a high-kinetic barrier or high-energy 
state. LC5 umbrella histograms had a good overlap of the reaction coordinate. This may be 
explained by the choice of the pulling direction based on its bound conformation. That direction 
determined according to CAVER 331 provides the most favorable unbinding path, thus avoiding 
high-kinetic or energetic barriers.  

Overall, four compounds (ZINC000050633276, ZINC000072302893, ZINC000065625931, 
ZINC000023128752) had a higher affinity than LC5 in US. 
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Figure 3-17 ZINC000050633276 (magenta) docked pose in PfDXR active site. ZINC000050633276 
interacting residues are indicated in light grey. Protein residues in a radius of 3.5 Ångströms of the ligand 
are labelled with their one-letter code and their residue numbers, displayed in stick and colored atom 
types (other elements) and white (carbon). Polar contacts with the ligand are displayed in dashed lines in 
yellow. The figure was generated using Pymol 225 and the show_contacts script 226. 

3.3.7 Additional discussions 

3.3.7.1 On finding SFs, documentation, running parameters 
In this work, we searched for freely available SF. A key remark for some SF was their lack of proper 
documentation. Some SFs related publications had broken links to the respective tool. Hence, 
efforts in developing these tools may be lost and the tools may disappear. USRCAT 266 and 
NNscore 342 original publications had broken links (http://hg.adrianschreyer.eu/usrcat and 
http://www.nbcr.net/software/nnscore/) to the tools. Moreover, we found a lack of 
documentation on parameters in some tools. In future work, a fully documented repository of 
SFs with examples can be constructed. ODDT toolkit was helpful as it already collected a set of 
SFs and offer rescoring functionality. We unsuccessfully attempted to integrate more SFs to the 
pipeline due to the lack of documentation or compatibility. SFs used in the current study can be 
integrated in ODDT 301. DockBox 343 is a similar initiative focusing on molecular docking tools. 
Each SF may have a particular contribution to an accurate binding affinity estimation. Hence, as 
emphasized here with the consensus approach or the wisdom of the crowd, affinity estimation 
will benefit from every SF. Moreover, as discussed earlier a strategic combination of SFs can 
contribute to building a customized SFs depending on the target. Hence a future approach could 
automatically build a customized SF depending on available experimental data, ligand molecular 
properties and the strategic integration of docked scores generated from ligand having 
experimental values. Tailor-made SF can be helpful as SFs accuracy also tends to be inconsistent 
across different targets 81. 

3.4 Conclusion 

In this chapter, the ZINC lead-like subset was screened for potential PfDXR inhibitors using a 
consensus LVBS and SBVS approach including MD, MM-PBSA, SMD, and US. Four hits𝑘𝑖𝑚𝑜𝑙𝑎𝑟 =
𝑘𝑖𝑛𝑀/1000000000 outperformed LC5 in US, a 280 nM potent PfDXR inhibitor. US is the most 
advanced free energy prediction method 103 used here. ZINC000050633276 showed a promising 
-20.43 kcal/mol as binding free energy corresponding to Ki of 1.934 fM. The top identified hits 
were associated with higher electrostatic interaction contributions than vdW interaction ones in 
the PLIE. 

GLU233, CYS268, SER270, TRP296, and HIS341 had a significant contribution to binding free 
energy in MM-PBSA and their breaking in SMD was also associated with higher values of Fmax. 

Comparing the methods ranking correlation, some remained uncorrelated in both LVBS and 
SBVS, while others agreed. In LBVS, two main clusters (ES, USR, USRCAT, OBSPEC) and (MHFP, 
RDKit_3dpharm) are noted while in SBVS (Vina, Idock, and Smina), (AutoDock, DSX, Cyscore, 
Xscore) and the Rf-score group (Rf-score_V1 to V4) formed distinct clusters. 

http://hg.adrianschreyer.eu/usrcat
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Comparing the current approaches to US, Wpull had the highest correlation. This is supported by 
a previous finding and can be explained by its link to the binding free energy through the isobaric-
isothermal Jarzynski’s equality 308. We thus recommend SMD to validate docking hits especially 
in computational resources limited settings. Indeed, the approach was less expensive than 
conventional MD and MM-PBSA. 

As future work, the activity of these hits identified by in silico experiments may be confirmed in 
vitro. Elsewhere, combining  HMR 118, and SMD can result in a considerable gain in speed while 
still maintaining accuracy. A 1-2 ns SMD joint with HMR (using a timestep 4 fs) on a structure of 
about 500 residues on a 24 cores (Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz) machine for about 
2 hours. Moreover, the methods used here can be combined with the P. falciparum targets 
screening in Chapter 2: . The table of protein ligands can be rescored using the different scoring 
functions used here. This can be associated with a preselection of a suited screening library using 
the LBVS methods. A custom library can be made of the union of targets’ known inhibitors 
analogs. 

Facing the limits of the current state of art approach SF 164 and the high computational cost 
associated with more advanced approaches 278, the wisdom of the crowd can be a better 
alternative in high throughput virtual screening 344. These current SFs can be integrated into tools 
such as ODDT 301 and/or VirtualFlow 345. Finally, different SFs can be used to generate features 
for ML models. 
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Chapter 4:  SANCDB: An Update On South African 

Natural Compounds And Their Readily Available 

Analogs  

4.1 Introduction  

Throughout history, mankind used nature as a source of food, cosmetics, pesticides, and 
medicines 70. Plant usage as medicines may date back up to Neanderthals 346. Even now humans 
still harness many benefits from natural sources 70. A substance produced by a living organism: 
animals, plants, or microorganisms (bacteria, algae, fungi) are defined as natural products (NPs) 
347. Currently, these NPs represent up to 35% of medicines 348. In the decade 2010-2019, Newman 
et al. estimate that 25% to 33% of approved small molecules are from NPs 349.  

This importance of NPs in drug discovery is rooted in their chemical structure. NP scaffolds have 
been optimally shaped for living systems, and selectivity for biological targets has been driven by 
natural selection over millions of years of evolution 350. In this survival of fittest, organisms have 
developed defense mechanisms, including chemical compounds as antibiotics. For instance, 
penicillin is one of the most successful antibiotics used by humans, but it comes from fungi, where 
its purpose is for its defense 350. Moreover, NPs cover a larger area of chemical space and are 
more structurally diverse than synthetic compounds 351. 

Given NPs’ contribution to drug discovery and the justification of this in their chemistry, many 
NPs’ data repositories have emerged 347. These repositories often cover different geographic 
areas. The South African National Compound Database (SANCDB) contains chemical structures 
of NPs isolated in South Africa. Other information such as their sources, bioactivities, structures’ 
properties classification, literature references are also available 65. Beyond storing and archiving 
information, it has been used in diverse works, counting up to 50 citations in Google scholar. 
Figure 4-1 shows SANCDB yearly citations counts and other similar NP databases.  These studies 
are related to cheminformatics, machine learning 352–355, and virtual screening 356–362. 
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Figure 4-1 Yearly citation distributions for SANCDB and some regional NP databases articles similar to 
SANCDB. Databases may have been introduced at different times. 

Hits identified in virtual screening are often confirmed in vitro. The physical unavailability of 
SANCDB compounds poses a challenge. In a past study 363, SANCDB hits were not commercially 
available for further in vitro tests. Five authors corresponding to five compounds, were contacted 
for its availability. Out of five, two authors replied that the compounds are not readily available. 
Similarly, 20(29)-Lupene-3β-isoferulate (SANC00518) a potential allosteric modulator human 
Hsp90α 362, Gordonoside A (SANC00456), for Plasmodium falciparum Prolyl tRNA synthetase 
modulation 360,  and discorhabdin N (SANC00132), for Hsp72 and Hsc70 364 have also been 
identified from SANCDB. Yet none of these compounds are currently commercially available. 
Hence, it remains challenging to confirm these predicted activities in vitro. NPs’ unavailability is 
not specific to SANCDB. For example, only 10% of the ZINC NP subset are readily purchasable 
compounds 351. Besides the unavailability problem for compounds, they have costly isolation 
methods 348,365 and or have complex synthetic routes because of their scaffold complexity  366. 
Hence, NPs’ scaffold complexity is an attractive chemistry on one side but is difficult of access on 
the other. This reverse of the medal 366 may hamper their full exploitation. 

The initial 600 NPs in SANCDB can be augmented. By comparison, Brazil counts species around 
170,000 to 210,000 species 367 and the NuBBEDB database counts 2147 compounds 368. South 
Africa is the third most biodiverse nation with over 100,000 known organisms 369–371. This 
biodiversity contributes to compound diversity 372 and one aim in virtual screening is to identify 
new scaffolds 373. More recent years have been prolific in NP research in the region. For example, 
oligosaccharides, flavonoids, proanthocyanidins, quinic acid derivatives, and ellagitannins were 
isolated from Myrothamnus flabellifolia Welw in 2016 374.  A further eleven compounds were 
isolated from Aspalathus linearis by Fantoukh et al. 375. In 2019, Awolola et al. reported four 
compounds from the genus Ficus 376. These isolations happened after SANCDB establishment in 
2015 65. Hence, the database update should follow the same trend as compound isolations. 
SANCDB website has an automatic deposition pipeline that has been underutilized by natural 
product chemists. So far, only a few compounds have been deposited by such researchers. Given 
that the initial set of 600 compounds likely under-represents the country’s potential in NPs, a 
database update is required. 

Further, large libraries are ideal for virtual screening.  The larger the library, the more likely it is 
that virtual screening will find more potent and diverse scaffolds 100. 
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A common problem in NPs’ resources is the lack of update maintenance. Although some 
databases are regularly maintained and or are recently updated 368,377, a broad problem across 
many other NP databases is the lack of updates, maintenance and accessibility. For example, 
some published NP repositories have broken website links, which may be due to loss of data, and 
will certainly cause a loss of accessibility of data 347. 

As an alternative solution to the compound availability problem, we propose exploring 
compound analogs, since similar compounds will have similar properties 78,257. Analogs, more 
than being an alternative to the availability of NPs, may in themselves be more potent in the 
context of drug targets. Hence, more than simply maintaining the NP compound activity, analogs 
can further optimize this. For instance, quinine and artemisinin have been used as starting points 
for more potent antimalarials 378,379. 

Motivated by the above-mentioned problems, the current research aims to further add more 
compounds to the database, aiming to reach a thousand compounds in SANCDB and to further 
include commercially available analogs for all compounds. The current work can therefore be 
separated into two parts; the first is the database update with new NPs, the second is to make 
available readily available commercial analogs associated with each of the NPs. The term “new 
NPs” is used relative to the already present NPs in the database. An additional cheminformatic 
analysis related to the compound scaffolds and different drug discovery relevant subsets is 
performed in the context of the whole updated SANCDB. 

4.2 Methods 

4.2.1 Compounds update  

In this section, the methods used in this work are explained in more detail. 

Most regional compound databases were established through a literature search, for example 
for NuBBE 380, Database@Taiwan 381 and BIOFACQUIM 377. Isolated compounds are often 
published in the literature, and in this context similar methods were used. The process is 
described in the original SANCDB paper 65 searched literature using keywords (“isolate”, ”South 
Africa”, ”natural product”). The classic search through keywords in search engines has limits. A 
general remark was that about half of the search results through these keywords did not return 
the expected relevant results or produced results that were redundant. To overcome this, we 
additionally focused on the current authors’ list of references in the database. Most compounds 
isolations are done by the same research groups and investigators. For example, Davies-Coleman 
is an authority in South African NPs research and is the author of 115 NPs in the current set of 
compounds. Hence besides the keyword search, all publications associated with all authors and 
co-authors using the reference Digital Object Identifier (DOI) were retrieved through the Scopus 
API 382. This allowed for programmatic access to all scholarly databases indexed by Scopus 382 for 
collections, parsing, and extraction of organized literature references. Redundant publications 
and articles in which any author affiliation was not from South Africa were removed. Further, the 
current references in the database were excluded. Through this strategy, we found a set of 
references with a high probability for NPs isolation in South African. 
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One major drawback of the current and also with the previously used method was the required 
but time-consuming step of reading and accurately identifying compound isolation in the text. 
The manual and the most intense stage was then to examine and validate compounds’ South 
African origin. More structure retrieval from publication figures and ensuring structure accuracy 
were also time-consuming and error-prone.  Yet, this is a critical step as the structure is the key 
information in the database and its accuracy is of utmost importance. For instance, identified hit 
structures in a virtual screening experiment must agree with the one in the database. 

From the above search, each compound’s Chemical Abstracts Service (CAS) 383 number was 
obtained using SciFinder 383. Every compound was identified using this unique CAS number. All 
the above was done through a semi-automated process using Selenium 384. Selenium automates 
some browser actions such as filling forms with given information from a table. Selenium can 
map a spreadsheet column to specific fields in web form for content transfer 384. This saves the 
time-consuming and error-prone steps of copy-pasting or the manual forms filling. Another 
alternative would be to link the MySQL table to the Excel sheets or to the CSV, which once filled 
may then directly update the database. 

From the compound’s CAS IDs and source species information, the remaining information for the 
database could be automatically obtained.  From the CAS identifier, PubChemPy 385, PubChem 
API 235, Chemical Identifier Resolver (CIR) 386 solved the IDs for different databases (ChEMBL 387, 
DrugBank 213, ZINC 388, PubChem 235) and compounds molecular properties.  

New compounds’ structures were prepared with OpenBabel 299 and minimized using GAMESS at 
RM1 level of theory 389. ClassyFire 390 classified compounds and Pygbif 391, a python client for the 
Global Biodiversity Information Center (GBIF) 392 API linked sources organisms to their kingdoms, 
families, and genera. AutoDock pdbqt formats were prepared with the Autodock Tools 
prepare_ligand4.py script,  and Schrödinger Maestro formats 393 were added to the database 
besides the already available MOL2, PDB, SMILES, and SDF formats. A single SMILES was made 
available for each compound. The entire set in SDF file containing 3D structures and related 
compounds information, IDs, source, PubChem ID... was made available for download. 
Additionally, structures’ depictions were updated: adding stereochemistry to those lacking and 
all aromatic rings were depicted in their "Kekulé" forms. 

4.2.2 Commercially available analogs 

MolPort (October 2019) 394, Mcule (October 2019) 395 and SciFinder 383 were searched for SANCDB 
compounds analogs. Different methods exist to quantify the similarity between two chemical 
structures. Some related methods have been explained Chapter 3: . Here we used the Open Babel 
FP2 fingerprint together with the Tanimoto similarity. Open Babel is a popular cheminformatic 
tool with over 4000 citations in Google Scholar 299.  This eases reproducibility and is a more 
sustainable solution, as no dependencies are required. This is also an ideal solution with respect 
to the context of API integration.  Hence, future updates of the database will be able to make use 
of these tools to reproduce the approach. FP2 is a path-based fingerprint that indexes linear 
fragments in molecules up to 7 atoms. With the set of indexed fragments, a hash number from 0 
to 1020 is used to set a bit in a 1024-bit vector. From the set of fingerprint bits for two compounds 
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A and B, the similarity score was computed using equation (4-1) 259. A similarity threshold of > 
0.6 classified compounds as analogs. 

  Tanimoto coefficient𝐴,𝐵 =
𝐴𝐵

𝐴 + 𝐵 − 𝐴𝐵
 

(4-1) 

Analogs are thus now available for download on the SANCDB website 396 and a link to each analog 
in Mcule and Molport is provided. The web interface displays the analogs and their similarity 
scores to their respective SANCDB molecules. An automated periodic update of analogs through 
Mcule and MolPort APIs was setup. This automation and inclusion within the web interface were 
facilitated by Michael Glenister 397. Analogs’ structures were prepared with OpenBabel  299 and 
resulting geometries minimized in RDKit162 under the Merck Molecular Force Field (MMFF94) 398. 
This particular aspect of work was done by Thommas Musyoka 399. 

 
 

4.2.3 Cheminformatic analysis 

This analysis assesses the database potential for drug discovery. Compound drug-likeness and 
scaffolds were calculated. In addition, an analysis of the updated SANCDB compound chemical 
space coverage by commercially available analogs was conducted.  

SANCDB chemical space coverage may help identify patterns particularly with regard to 
structures without analogs. These structures may exist in a hard to synthesize region of SANCDB 
chemical space. To evaluate the SANCDB chemical space coverage by analogs, Principal 
Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) were 
conducted. While PCA has been commonly used for dimension reduction and chemical space 
analysis,  t-SNE has been recently proposed as a more efficient approach for clustering chemical 
compounds 400–402. The implementation of this in scikit-learn was used 403,404. T-SNE measures the 
similarity of two data points in the low-dimensional space through a variant of Stochastic 
Neighbor Embedding using a Student-t distribution 405. In t-SNE, a perplexity of 50 and a learning 
rate of 100 were used while keeping the rest of the parameters to default. For this, the 
compounds’ non-normalized Molecular Quantum Numbers (MQN) descriptors 406 were 
computed using RDKit 407. 

Virtual screening aims to find new scaffolds 373, making scaffold diversity an ideal characteristic 
for screening databases. The Bemis-Murcko scaffold decomposition is commonly used to assess 
database scaffold diversity 351,377,408–412. This approach is used here using the Scopy package 413. 
Molecule clouds have been recently proposed for visualization of compound database scaffolds 
413,414, and these are used here. 

Compound subsets are defined by thresholds on molecular properties. Screening libraries such 
as ZINC 415 are often subdivided into subsets, which may fit different drug discovery project 
scenarios. For instance, screening for protein-protein interaction inhibitors may benefit from a 
library rich in PPI-like inhibitors. Fragments may fit early-stage drug discovery in the identification 
of potent chemotypes for later optimization. They may also be useful for merging strategies to 
more potent leads 416. Frequent hitters and toxicophores may be avoided by using a PAINS-free 
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library 417. Hence subsets can be helpful to set up good quality libraries. Here, we use the 
following definitions of subsets (Table 4-1): Drug-like, Extended drug-like,  Lead-like, Fragment-
like and PPI-like 418. The used molecular properties are the MW, logP, Number of hydrogen bond 
acceptor (nHA), nHD (Number of hydrogen bond donor), TPSA and the number of rings (nRing).  

Table 4-1 Molecular properties conditions for subsets 

Subsets  Conditions  

Lead-like MW ≥ 250 & MW ≤ 350 & nRot ≤ 7 & logP ≤ 3.5 

Extended drug-like Druglike & nRot ≤7 & TPSA < 150 

Drug-like MW ≤ 500 & MW ≥ 150 & logP ≤ 5 & nHD ≤ 5 & nHA ≤10 

PPI-like nRing ≥ 4 & MW > 400 & nHA > 4 & logP > 4 

Fragment-like nHA ≥ 3 & MW ≤ 300 & nHD ≤ 3 & logP ≤ 3 

 

All data analysis and plots were done in a Jupyter notebook environment 419 using python 
packages Pandas 420, Pandas-profiling 421, Matplotlib 325 and Seaborn 198. 

4.3 Results – Discussions 

This section outlines the results of the current set of 1012 compounds and their related attributes 
(sources, classes, biological activities). A second part analyses analogs and explores drug 
discovery related metrics such as compound scaffold subsets. During this work, 288 new 
compounds were added, for this total 1012. All the current analyses are done on the full set of 
1012 compounds. SANCDB had been continuously updated since the initial set of 600 compounds 
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65 and contained 716 before this work. Here we present an analysis of the database content 
(sources, compound classes, and activities).  

 

 

Figure 4-2 Compound sources distribution. Sources’ species were mapped to their kingdom, families and 
genera using pygbif 391 

The database content was derived from 321 distinct sources. As a compound can be derived from 
multiple sources, there was a higher number of sources than the number of compounds. The 
distribution of compound sources with respect to biological kingdoms and families is presented 
in Figure 4-2. Plants were the main source in that 78.3% (854 of compounds) were isolated from 
plants. They are the major sources of compounds in many NPs databases 368 and some databases 
only focus on plants 373,422,423 probably linked to their predominance as NPs sources. Animals, 
fungi, chromista, and bacteria followed with 219 (20.1%), 9 (0.8%), 6 (0.5%), and 3 compounds 
(0.3%) respectively. Bacteria had the lowest proportion. All three compounds isolated from 
bacteria were isolated from Streptomyces sp. However, generally, bacteria are major sources of 
potent antimicrobials and NPs 351. Similarly, in SANCDB only four fungi sources were recorded: 
Clathrina aff reticulum, Eurotium rubrum, Termitomyces microcarpus and Fusarium proliferatum. 
The low proportion of microbial sources may show an under-exploration of their potential in NPs 
in South Africa. The NuBBE database also showed a comparable source distribution to that 
presented in this study 368. This may also be explained by plants’ larger and more documented 
uses in traditional medicines and easier accessibility. Concerning compound source families, 
Asparagaceae (158 – 14.48%), Asteraceae (112 – 10.27%), Lamiaceae (68 – 6.23%), Fabaceae (67 
– 6.14%) and Amaryllidaceae (53 – 4.86%) were the most frequent families. Top genera were 
Ornithogalum Senecio, Eucomis, Salvia, and Plocamium with the following number of compounds 
and proportions (62 – 5.7%), (58 – 5.3%), (39 – 3.6%), (39 – 3.6%) and (38 – 3.5%) respectively. 
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Figure 4-3 Top 10 species, producing the highest numbers of NPs in SANCDB. 

The frequency of the source species was also analyzed to identify most prolific species. Figure 
4-3 shows the top ten most frequent source species found in SANCDB. The Asteraceae, Senecio 
pterophorus was the most productive with 34 compounds (3.1%). It produces macrocyclic diester 
pyrrolizidine alkaloids which showed teratogenic, genotoxic, hepatotoxic, and carcinogenic 
activity 424. Next, 26 (2.4%) and 23 (2.1%) compounds were isolated from two Asparagaceae: 
Ornithogalum thyrsoides and Ornithogalum saundersiae, respectively. The thyrsoides are 
cytotoxic against HL-60 human promyelocytic leukemia cells. Ornithogalum thyrsoides is 
abundant in the Western Cape region of South Africa 425,426. Ornithogalum saundersiae is an 
ornamental flower, toxic for cattle, found in Swaziland, Mpumalanga, and KwaZulu-Natal regions 
427,428 . Twenty compounds (1.8%) were isolated from Plocamium corallorhiza, a red algae of the 
Plocamiaceae family yielding halogenated monoterpenes 429,430 . The fifth most prolific source 
was the tubeworm 431, Cephalodiscus gilchristi with 19 compounds (1.7%).  It produced 
cephalostatin 1, a potent cell growth inhibitor, and alkaloids active against lymphocytic leukemia 
432.  

A common characteristic among these sources was that they are naturally widespread in South 
Africa. This eases their accessibility for research and explains the high numbers of the compounds 
that have been identified from these sources. Source productivity information might guide 
conservation strategies toward prioritizing these main producers and their underlying 
dependencies. Currently, these prolific sources are not on the list of endangered species of the 
South African National Biodiversity Institute (SANBI) 433.  

4.3.1 Compounds classification 

Eleven superclasses, 79 classes, and 124 subclasses of compound were found using ClassyFire. 
SANCDB covered about 50% of all superclasses (26) available in the tool. Hence, we noted 
compounds’ diversity across the different levels of classification. One can thus expect a range of 
diversified biological activities. However, SANCDB compounds only covered 77 (10%) of the 764 
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classes available in ClassyFire. This may be linked to the vastness of the chemical space and/or 
the crowdedness of the SANCDB one. One should note though that the tool also covers inorganic 
compounds. 

 

Figure 4-4 Stacked bar charts of the compound classifications. A) SANCDB compounds superclasses. B) 
SANCDB compounds classes. C) SANCDB molecular frameworks. Classifications were obtained from 
ClassyFire. 

The most frequent compound classes were the phenol lipids, the steroids and steroid derivatives, 
the flavonoids, the organooxygen compounds, and the homoisoflavonoids counting for 24.8%, 
13.9%, 7%, 4.9%, and 4.1% of the content respectively (Figure 4-4b). Regarding the compounds’ 
molecular framework, polycyclic compounds were the most frequent (Figure 4-4c). SANCDB is 
rich in cyclic compounds. The aromatic heteropolycyclic count 41.11% of the database (416 
compounds). The molecular framework distribution showed that only 59 (5.8%) of the 
compounds were acyclic. Nine distinct molecular frameworks were found (Figure 4-4c). The most 
common frameworks were the aromatic heteropolycyclic, the aliphatic heteropolycyclic, and the 
aliphatic homopolycyclic, counting for 41.1%, 22.9%, and 11.4% respectively. The molecular 
cloud showed many large compounds, including macrocycles (Figure 4-12).  

NPs classes distribution in SANCDB was similar to other databases in the literature 368,423,434.  For 
instance, SANCDB and the Integrated Ethiopian Traditional Herbal Medicine and Phytochemicals 
Database (ETM-DB) databases have the same top three superclasses (the lipids and lipid-like, the 
phenylpropanoids and polyketides, and the organoheterocyclic). However, ETM-DB showed 
greater diversity with 22 superclasses and 200 classes for 3,930 compounds. Its compound 
classification was also done using ClassyFire 390. Bioassays, Ecophysiology, and Biosynthesis of 
Natural Products Database (NuBBE) and the 500 Pan-African Natural Products Library (p-ANAPL) 
have 14 and 30 classes of compounds respectively 368,435. It is noteworthy that these 
classifications were done using a different scheme. 
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Compound classification helps cluster compounds to illustrate their diversity. This may guide 
molecular optimization by deriving libraries from a specific class with known biological activity. 
Compound classification is a domain expert task requiring human intervention. Different 
classification systems exist and help assess diversity 368,436.  For instance, Dewick’s biosynthesis 
theory classifies according to the compound’s synthetical origin. There are also structure-based 
classifications and those based on biological activities 368,390. Djoumbou Feunang et al. introduced 
ClasssyFire, an automated classification tool 390. This allows a faster and standardized 
classification without human intervention. The approach is also reproducible for future updates. 
The tool classifies into subclasses superclasses, classes, and kingdoms using structural patterns 
390. Other classification levels are available: compounds molecular frameworks, parents, and 
substituents. A compound’s ring count, aliphatic or aromatic nature, and atom types characterize 
its molecular framework 390. The concept resembles the scaffold one 411 and evaluates compound 
databases diversity for screening 437. 

More NPs may be available, especially beyond published literature.  A limit in the current study 
and the earlier one is the lack of search in theses. For example, MSc and Ph.D. theses were used 
for building the CamMedNP database 373. These resources may in the future extensively extend 
SANCDB content. Another important consideration is that SANCDB is a single group research 
effort. This may not be sufficient, especially when considering the volume and the potential 
additional curation required for non-published literature. Collaboration with an institution 
focusing on NPs research such as SANBI 369 may be fruitful. For instance, NuBBe is a collaborative 
effort with other institutions such as the National Council for Scientific and Technological 
Development, which significantly contributed to the literature search 368. 

4.3.1.1 A more efficient text mining strategy 
Several strategies can speed up database construction and improve their maintenance. Most 
current NP databases are built through literature parsing. Automated text mining tools can ease 
human effort in collecting chemical data from the literature. Examples of such tools are 
Molminer, ChemEx, ChemicalTagger, ChemDataExtractor 438. SureChEMBL is a successful 
example of using an automated parsing pipeline without human curation to collect bioactivity 
data from patents 439. Advances in natural language processing can be used to link compounds 
to their sources. More e-alerts systems with NP research-related journals can help in terms of a 
continuous update. Authors isolating NPs should also be aware of the already available 
deposition system. Indeed, we noticed a lack of data deposition from the authors themselves. 
Authors referenced in the database and others involved in NP research can be invited to deposit 
unpublished data. This unpublished nature can be indicated on the related records. 

4.3.2 Compounds classes and sources relationships 

The relationships between sources and type of produced molecules were analysed. This can be 
done at different levels using classes or superclass of the produced molecules and the source 
families. The heatmap in Figure 4-5 shows the relationship between source family and 
compounds superclass. The relations between source family and chemical classes were also 
analysed. 

  



93 
 

 1 

Figure 4-5 Heatmap of the occurrence of  Classyfire superclasses (y-axis) and the source family (x-axis). For visualization, only superclasses are 2 
displayed. There were over 70 classes. A Fisher's exact test was performed to test compounds classes distribution uniformity in the sources. P-3 
values were computed by Monte Carlo simulation as the table was larger than 2×2 440. 4 

SANCDB compound classes were distributed unequally among the sources (p-value 0.0004, confidence level = 0.95). The different 5 
superclasses had a variety of sources. For instance, the phenol lipids were produced by most sources (Figure 4-5). By contrast, 6 
organohalogen (mainly vinyl halides and organochlorides) were only produced by Plocamiaceae - all 25 halogenated compounds were 7 
isolated from the Plocamiaceae. Four species of Plocamiaceae were found in the database: P. corallorhiza, P. cornutum, P. maxillosum, 8 
and P. suhrii Kützing. These algae produce halogenated monoterpenes, both acyclic and cyclic, and these compounds do exhibit levels 9 
of cytotoxicity, as well as having known anticancer properties, particularly for anti-esophageal cancer 429,441,  and antiplasmodial 442 10 
activities. Some natural cyclic polyhalogenated monoterpenes from Chilean red alga Plocamium cartilagineum had insecticidal activity 11 
against Macrosteles fascifrons and the Aster leafhopper 443.  Similarly, alkaloids were mainly produced by Asteraceae and 12 
Amaryllidaceae. There is an overlap in some of the Classyfire superclasses. For instance, “alkaloids and derivatives” are a more specific 13 
case of "organic nitrogen compounds". Similarly, a compound could be an organoheterocyclic and also an "organic nitrogen” 14 
compound. Yet an organoheterocyclic compound might not be an organic nitrogen one. Compounds are hence classified in the most 15 
specific category. 16 

 17 

 18 
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Concerning the relationship between compound superclass level and source family, the 
associations with the highest number were lipids and lipid-like molecules with the Asparagaceae, 
Asteraceae, Lamiaceae and Euphorbiaceae. The phenylpropanoids and polyketides were 
associated with the Asparagaceae, Asteraceae, and Fabaceae. Asteraceae and Latrunculiidae 
were the main producers of organoheterocyclic compounds. Plocamiaceae were the main source 
of organohalogens. All these associations included at least 25 compounds (Figure 4-5). With 
respect to chemical class and source family, Asparagaceae produced the highest number of 
steroids (68) and homoisoflavonoids  (58). Lamiaceae were the source of the highest number of 
phenol lipids (43). Other top associations were between phenol lipids and Euphorbiaceae (35),  
and phenol lipids and Asteraceae (29). Asteraceae, Lamiaceae, Fabaceae, and Amaryllidaceae as 
shown in Figure 4-2 produced many compounds of diverse classes including phenol lipids, 
steroids, flavonoids, homoisoflavonoids and quinolines.  

These relationships are most likely rooted in the sources' inherent biosynthetic pathways 444 and 
may follow established chemotaxonomy. They may help refine taxonomy or identifying 
biochemical markers for some sources. For instance, quinoline alkaloids are known markers for 
the Rutaceae 368,444. Similarly, Asparagaceae are major producers of homoisoflavonoids 445,446. 
Quinolines and derivatives were mainly produced by Latrunculiidae and Amaryllidaceae. 
Latrunculiidae are known sources of pyrroloiminoquinone alkaloid and discorhabdins 447. Also, 
some sources may be of particular interest as they are the only producer of a specific class of 
compounds. For instance, Plocamiaceae was the only producer of halogenated molecules. The 
associations can also guide compound discoveries by focusing on sources producing compounds 
of interest. 

4.3.3 Compound activities 
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Figure 4-6 Biological activities of SANCDB compounds represented as a donut chart. 318 compounds 
activities were recorded in  SANCDB. The 10 most reported activity classes are represented. All other 
activities are grouped in the “Others” category. 

Fifty-nine distinct types of activities were found to be reported for these compounds in the 
literature. Anticancer was the most common biological activity. Indeed, 158 (31.6%) compounds 
had anticancer activity. Figure 4-6 shows the compounds’ activities distribution. Antibacterials, 
acetylcholinesterase inhibitors, antimalarials and antiproliferative agents followed with these 
counts and percentages: (61 - 12.2%), (38 - 7.6%), (34 - 6.8%) and (20 - 4.0%) respectively. An 
interesting observation is the lack of anti-tubercular and anti-HIV compounds given that they are 
key health priorities in South Africa 448. However, some compounds with anti-tubercular 
properties may fall into the antibacterial group. It is also important to note that the record of 
biological activities for the database was restricted to only compounds having a significant level 
of activity. Moreover, these records may still need to be standardized. Assays for biological 
activity can be done at different biological levels: disease, cellular, or molecular.  
Some compounds were found to be associated with multiple biological activities. Quercetin, 
Isoorientin, Ouabain, Combretastatin A-1 and Acovenoside A were associated with at least 6 
different bioactivities. More interestingly, between them they had at least 15 predicted targets 
with 90% confidence in ChEMBL 216. Hence, these are particularly good starting points for multi-
target drugs. 

These proportions of compound families and types of biological activities did not significantly 
differ from the previous content of the database.  
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4.3.4 Commercially available analogs  

The non-availability of the previously identified hits in SANCDB mentioned in the introduction 
could simply have been that these were rare cases. Hence, the availability of the entire dataset 
was first assessed before searching for their analogs. Seventy percent of SANCDB was not 
available commercially. Only 316 and 327 of the compounds were found in MolPort 394 and Mcule 
395 respectively. This may be explained by  NPs’ poor coverage in commercial libraries, as 
previously found 351. For example, as previously mentioned, only ten percent of the ZINC NPs 
subset is commercially available 351. Further, NP synthesis is often difficult 366,  adding a greater 
challenge to their lack of availability. The probability densities distribution of SANCDB compounds 
synthetic accessibility score is shown in Figure 4-7. A synthetic accessibility 366 score greater than 
6 was found for 118 of SANCDB compounds. Hence, most of the database may be accessible 
synthetically as the majority of compounds had a score below 6. However, for the ready 
availability of compounds, available analogs may be a good alternative. 

 

Figure 4-7 SANCDB compounds SAscore (synthetic accessibility score) distribution. Probability densities 
and SA_scores are on y and x-axis, respectively. 

The number of compounds in Molport and Mcule was 7,597,214 and 9,884,200, respectively, at 
the date of download (October 2019). 1,487 analogs were found on average for each SANCDB 
compound. The circular bar plots in Figure 4-8 show the distribution of the number of analogs per 
compound in the updated SANCDB database.  
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Figure 4-8 Circular bar plot of analogs count per compound. A) All content (1,012 compounds) B) 
Compounds having fewer than 6000 analogs. The analogs count is depicted in the color key. 

Frequencies ranged from 42,224 to zero analogs. All analogs have linked from the SANCDB web 
interface to their respective page on either Mcule or Molport. The Tanimoto similarity scores and 
the SMILES were made available on a specific page for each SANCDB compound. Hence, users 
interested in hit optimizations through analogs can easily download structures associated with a 
hit. The total number of unique analogs added to the database was 374,067. With the latter 
automated update through the API, this number may increase. 141,320 were found in Molport, 
while 232,747 compounds were from Mcule. Analogs count per compound varied from 42,224 to 
zero. The highest number of analogs were found with SANC00428 (42,224) SANC00815 (29,045), 
SANC00656 (27,823), SANC00967 (26,638) and SANC00425 (24,993). Seventy compounds had 
zero analogs. These compounds had a low MW (<300 Da). All compounds with over 10,000 
analogs had an MW bellow 300 Da. However, comparing the analogs per compound and MW only 
had a negligible Pearson correlation of -0.09 (Figure 4-9). 
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Figure 4-9 Scatter plot of compounds MW versus analogs count. X-axis and y-axis correspond to MW 
(Dalton) and the number of analogs respectively 

Analogs were searched in SciFinder 383 for the 70 compounds without analogs in Mcule and 
Molport. One to 29 analogs were identified for these compounds. SciFinder seems to be a more 
comprehensive database than Mcule and Molport. Yet, it does not offer a batch search 
functionality or API access. Hence, the search was manual for a similarity interval at a time. For 
example, a user can only search an interval (e.g. [0.75-0.79[). Hence this requires six independent 
searches to cover the [0.6-1] interval (0.6/0.05 similarity). To save time, only the first interval 
having analogs from all searched ones are shown here. 

No more than 1,000 analogs were found for up to 570 SANCDB compounds. Given the large size 
of these two databases (7,597,214 and 9,884,200 molecules for Molport and Mcule respectively) 
and the low similarity threshold (0.6) used, this shows the lack of SANCDB chemical space 
coverage in these datasets.  

This work expands SANCDB chemical space and provides the commercially available analogs to 
help further in vitro testing following modelling. These analogs can also be used for screening hits 
optimization. This may also be applied to the previously identified hits. 
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4.3.5 SANCDB and chemical space 

 

Figure 4-10: visualization of SANCDB and analogs chemical space. Compounds (n = 375061) are 
represented in dots. SANCDB (violet, n = 1012). Analogs are in bins of similarity values [0.6,0.7) (blue, n = 
266147), [0.7,0.8) (orange, n = 69336), [0.8,0.9) (green, n =24679), [0.9-1] (red, n = 13887). As an analog 
may have different similarity scores with different SANCDB compounds, the maximum similarity score was 
chosen for each analog. 

In terms of t-SNE visualization, compounds clustered into a single ball-like (Figure 4-10). This may 
indicate that all analogs and SANCDB compounds fitting in the same region despite the possibility 
of high diversity in that region. Isolated SANCDB compounds (isolated violet points) may 
correspond to compounds without analogs. The ball-like shape may also indicate a too high 
learning rate according to t-SNE documentation 404. However, gradually decreasing the learning 
rate from 200 to 50 did not change the shape. The plot above was obtained using perplexity 50 
and a learning rate of 100. Different values of learning rate and perplexity and combination of 
both were tried, all showing a similar pattern. These values are in the ranges of recommended 
values for t-SNE 405. Despite the general ball-like shape, some internal clusters can be 
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distinguished. Indeed, some compound clusters can be noticed around the following coordinates 
(x= 20, y = 10), (x =20, y = -5), and (x =-15, y = 10). These compounds may share common 
properties. Compounds without analogs did not form a distinct cluster, but rather scattered inside 
the ball. This may be linked to their inner diversity. Indeed, structural analysis of the compounds 
without analogs showed many had different chemical scaffolds to other compounds without 
analogs. Although the discorhabdin scaffold was common in 17 of them. 

 

Figure 4-11 PCA visualization of SANCDB and analogs chemical space. Compounds (n = 375061) are 
represented in dots. SANCDB (violet, n = 1,012). Analogs are in bins of similarity values: [0.6,0.7) blue, n = 
266147, [0.7,0.8) orange, n = 69336, [0.8,0.9) green, n =24679, [0.9-1] red, n = 13887. As an analog may 
have different similarity scores with different SANCDB compounds, the maximum similarity score was 
chosen for each analog. The first two components explain 81% of the variance (PC1 (66%), PC2 (15%)).  

The PCA analysis showed SANCDB chemical space regions coverage with analogs (Figure 4-11). 
Indeed, there was an overlap with most SANCDB compounds and their analogs. The spread and 
diversity from SANCDB compounds is due to decreasing similarity scores. As a result, those in the 
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interval [0.6,0.7) of similarity scores were the most isolated. Some SANCDB compounds without 
analogs occupied a small, isolated cluster (zoomed region of the plot). They were some of the 
compounds without analogs and share the discorhabdin scaffold. The t-SNE visualization showed 
a less dense cloud, having an inner clustering of the compounds compared to PCA. Yet this 
discorhabdin cluster was not captured in it. The two visualizations seem complementary. 

To further contribute to solving the availability problem, analogs can be searched in the 
synthetically accessible space. Indeed, the current work was limited to readily available 
compounds. The Enamine database currently contains 1.36 billion synthesizable molecules. By 
comparison, Mcule and Molport have less than ten million available compounds with the 
potentiality of some overlap between the two datasets. Hence, an analog search in the Enamine 
dataset could improve accessibility, especially for compounds without analogs and which are 
difficult to synthesize. 

In the future, analogs can be evaluated as a replacement for hits previously identified. For 
instance, analogs can be used for in vitro testing of hits and allosteric modulators identified 
previously. These potential future studies may be preceded by in silico modeling to compare hits 
and their analogs predicted activities. Moreover, this work might inspire other NPs’ data sources 
to make their commercial analogs available. For that purpose, the API integration used here offers 
a regularly updated and sustainable solution.  

4.3.6 Scaffolds and compounds subsets 

The analysis of compound scaffolds and druggability subsets was carried out to assess database 
potentiality for drug discovery. sp3-configured centers found in NPs make them attractive in 
virtual screening 435,449 but also as a starting point for further optimization 423. Also, diverse 
scaffolds in libraries is ideal for virtual screening 373. 
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Figure 4-12 Molecule cloud of SANCDB scaffolds. Structure sizes indicate scaffold frequencies. The benzene 
ring is a special case, being the most frequent scaffold in all large data sets 414. Therefore, it is not displayed. 

The molecule cloud visualization gives an overview of the database diversity, the most frequent 
scaffolds, and their structural features 414. However, less common scaffolds with interesting 
properties might not be highlighted. 

501 unique scaffolds were identified. Hence, about half of the database presents a unique scaffold 
showing the diversity of the SANCDB database. Figure 4-12 shows all scaffolds. Further, the 
scaffold counts had a “long tail” distribution common to chemical libraries 414 (Figure 4-13) and 
indicating the high number of singletons. Each of these singletons has a unique scaffold in the 
database supporting its diversity. 59 compounds were noncyclic. 
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Figure 4-13 Histogram and kernel density distribution of the scaffolds count. 

Flavonoids are frequently encountered scaffolds, common in NP libraries 411. Figure 4-14 presents 
the top ten scaffolds. Interestingly, the flavonoid class was only the third in class distribution as 
shown in Figure 4-4. This may be linked to a greater structural diversity encompassed by the first 
two categories (phenol lipids and steroids and derivatives) compared to the flavonoid class. The 
chromane 3-Benzylchroman-4-one had the scaffold the highest number of compounds (30). 
Chromane scaffolds are also frequent in NPs 450. Its structure consists of a bicyclic 3,4-dihydro-1-
benzopyran. Chromanes are known to inhibit human monoamine oxidase B 451 and also for 
anticancer activity 452. This may explain the database abundance in terms of compounds with 
anticancer activity (Figure 4-6). Flavone was the second most frequent scaffold with 21 
compounds. The prodrug aminoflavone reached phase 2 clinical trials to treat breast cancer 451. 
Flavanone with 14 compounds was the third most common scaffold. All these top scaffolds 
present a ketone group, a structural alert, which may cause toxicity due to its high reactivity 453. 
The fourth scaffold was a delta-5-steroid. Estrona, a compound based on this scaffold, reached 
phase 3 clinical trials for homeopathic treatment of premenstrual syndrome 454. The fifth was the 
chromenone scaffold, these are coumarins, whose derived drug warfarin is known for its 
anticoagulant properties 455 and these also present a keto group at 2-position. All top five scaffolds 
were linked to biological activities. Hence, related compounds may be used as a good starting 
point for further exploration. 



104 
 

 

Figure 4-14 Structures of the ten most common SANCDB scaffolds and their counts. Structures were drawn 
using RDKit 162 

Compounds were further categorized into subsets relevant to drug discovery. Screening datasets 
such as ZINC 415 are often subdivided into subsets. PAINS patterns are used to filter out frequent 
hitters in screening 417. Figure 4-15 shows their repartitioning into drug-like, extended drug-like, 
PPI-like, fragment-like, and lead-like subsets. 

 

Figure 4-15 SANCDB compounds repartitioning in drug-like, extended drug-like, fragment-like, lead-like, 
PPI-like subsets on the y-axis.  The x-axis represents the number of compounds in each subset with their 
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related percentages. The green area indicates compounds complying with rules specific to that subset. For 
PAINS, it corresponds to the absence of PAINS pattern. 

About 90% of the database was free of PAINS pattern and more than half of it was extended drug-
like or drug-like. These subsets are the most important for drug discovery and hence this indicates 
the good potential of the database for this purpose. Extended drug-like and drug-like only differed 
by 41 compounds.  The former adds two more conditions to the drug-like (nRot <=7) & (TPSA < 
150). Fragment-like and PPI-like had the lowest compound counts with 140 and 78, respectively. 
The low count in fragments-like compounds can be linked to many SANCDB compounds being 
polycyclic nature. As shown in the compound classification (Figure 4-4C), polycyclic compounds 
were common in SANCDB (~75%). PPI-like compounds had the lowest count with 78 compounds. 
This contrasts with the database containing 75% polycyclic compounds. In general, SANCDB is not 
biased toward fragments nor very large compounds (PPI-like) but mostly represented by drug-like 
ones. 

Other NPs databases had similar distributions. Extended drug-like and drug-like represent more 
than 50% while fragment-like and PPI-like, have low proportions 412. The subsets may fit different 
drug discovery scenarios, hence guiding virtual screening. For instance, PPI-like and fragment-like 
compounds can be useful for protein-protein inhibition or fragment-based drug discovery. Also, 
initial potent chemotypes can be identified from fragments for future optimization. 

4.4 Conclusion 

This work aimed mainly at updating SANCDB to at least a thousand compounds with new isolated 
NPs to harness more of the South African biodiversity with the continuously growing isolated NPs 
in the region 374–376. Through a literature search, 412 new NPs were added to the database for a 
total of 1012 compounds. The interest in NPs especially for drug discovery and chemoinformatics 
347,351 contrasts with their insufficient commercial availability 351. Hence, a secondary aim was to 
provide readily available analogs for all SANCDB NPs. A total of 374,067 analogs were added to 
the database. SANCDB compounds were also made available in formats relevant in drug discovery 
AutoDock 456 pdbqt and Schrodinger Maestro 393. Analogs were linked to their sources on Mcule 
395 and Molport 394 and their update was automated through API integration 395 and Molport 394. 

This update can benefit chemoinformatics and drug discovery by providing a larger chemical 
library, especially for virtual screening. More automated API updates of analogs in the database 
will contribute to database maintenance. Compound subset analysis showed that SANCDB may 
be promising as a source for drug-like compounds. The entire dataset available in ready-to-dock 
formats can accelerate virtual screening pipelines setup and foster more prospective screening 
studies. The classification and scaffold analysis showed content diversity with 501 unique NP 
scaffolds. The availability of analogs is a unique feature of an NP repository. Analogs can 
contribute to screening hit optimization, as an alternative, for their in vitro testing and may inspire 
other NPs’ resources to integrate NPs analogs given their low commercial availability. 

In the future, the database may be extended to cover the southern African region or to serve as 
a good starting point to cover the entire African continent. Many NPs repositories cover the 
African continent 64,65,422,434,457. They usually cover specific countries or regions. There is no 
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database currently covering the west African region or covering the entire African region. This 
could be done through the unification of the different country-specific databases. A similar 
approach is currently being envisaged for the Latin America compound database 458. Considering 
the limit of human effort and the growing literature, future updates should consider using 
automated text mining tools. Elsewhere, a web-based virtual screening pipeline could be 
integrated into the database for drug discovery. The analogs’ space could also be extended to the 
synthetically feasible compounds. 
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Chapter 5:  Side project, Thymol as a potential 

antagonist of serotonin 5-HT3A receptor for IBS 

treatment 

5.1 Introduction 

Irritable bowel syndrome (IBS) is a complex disease involving multiple symptoms such as visceral 
discomfort, diarrhea, constipation and disturbance of the gastrointestinal (GI) transit 459. Its global 
prevalence ranges from 15 to 45%, causing 20 billion dollars healthcare cost per year in the USA, 
and is the second most frequent reason for work absenteeism and the most common one for 
gastroenterologist visits. Its etiology is not fully understood. Some family history, 
genetic predisposition, female sex, unbalanced or gastrointestinal tract-aggressive diet and stress 
have been identified as a predisposing risk for IBS 460,461. 

Modulating serotonin receptors can alleviate IBS symptoms. This signal transducer is implied in 

anxiety, mood, sleep, and gastrointestinal motility 462. Earlier work confirmed serotonin's role in 
IBS pathogenesis 463. The serotonin (5-HT, 5-hydroxy-tryptamine), type 3 receptors (5-HT3R) can 
regulate autonomic functions, such as motility and peristalsis, secretion and visceral 
perception, and can thus contribute to functional GI disorders, such as IBS 464. Setrons (5-HT3R 
antagonists) are clinically used for IBS treatment 465. 

Thymol, a monoterpenoid used in digestion and bowel-related problems 466 reduces the severity 
of IBS syndrome 467. Terpenes are known 5-HT3A modulators 465. In a stress-induced IBS rat model, 
thymol enhanced the GI transit, decreased the fecal count and lowered visceral pain. Further 
immunohistochemical analysis of colon and intestine tissues showed an increase in serotonin 

receptor after thymol treatment, supporting possible thymol antagonizing effect on 5-HT3AR. 

Indeed, 5-HT3A antagonist compounds are capable of managing stress-driven IBS defecation 467. 

Previous studies showed that thymol is an activator of human 5-HT3A  
468 through an allosteric 

transmembrane site 469. Investigating several terpenes as human 5-HT3A modulators, 
carvacrol activated it 465. However, carvacrol and thymol were found to have an interesting 
species selectivity on 5-HT3Rs, where they were observed to be agonists in human but not in 
mouse 469. In the same line, colchicine acted as a human 5-HT3Rs positive allosteric modulator but 
inhibited the mouse one 470. More interestingly,  site-directed mutagenesis identified 
transmembrane amino acids either abolishing carvacrol and thymol agonist activity on human 5-

HT3ARs or activating them on mouse 5-HT3ARs 469. Additionally, thymol activates human 5-HT3AR 
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but has a different level of potentialization on the receptors on other subunits, greater at 5-HT3A 
receptors than 5-HT3AB, 5-HT3AC, 5-HT3AD, or 5-HT3AE receptors. There was no activity data in 
ChEMBL between thymol (CHEMBL29411) on the mouse 5-HT3A (CHEMBL2111333) nor on the 
one of the rat (CHEMBL2411). 

Table 5-1 Activities of some investigated molecules here on different organisms 5-HT3ARs 

Molecules Human Rat Mouse 

    
Thymol Allosteric agonist 469,471 

weak partial agonists and 
positive modulators 468 

 

 No agonist or potentiating 
effect 469 

Serotonin Orthosteric agonist Orthosteric 
agonist 

Orthosteric agonist  

Tropisetron Serotonin binding site 
competitive  antagonist  462 

  

Carvacrol weak partial agonists and 
positive modulators 468 

 No agonist or potentiating 
activity  469 

 

Understanding the underlying molecular mechanism in IBS is important given its health-
associated burden.  Also, provided the above in vivo and in vitro observations on thymol effect, 

and the previous finding associating thymol and the 5-HT3AR receptor modulation, we intended 
to further determine whether thymol can competitively antagonize the serotonin receptor. For 
that purpose, a comparative analysis of serotonin, thymol and tropisetron (a serotonin 
antagonist) in terms of binding modes, interactions and energies was performed using molecular 
docking. Further, MD was used to investigate their stability and analyze their agonist-antagonist 
behaviors. 

5.2 Methods 

5-HT3AR is a Cys-loop receptor, and a ligand-gated ion channel with a pentameric structure. Its 
extracellular domain (ECD) has an orthosteric site at the interface of two adjacent subunits 

(Appendix  P). Currently, there is no crystal structure of the rat 5-HT3AR. Recently, Lucie Polovinkin 
et al. solved four cryo-electron microscopy structures of the mouse shedding much light on the 
protein functional cycle 462. These mouse structures were used, and are: 

• 6HIQ: 5-HT3R + serotonin (agonist) + TMPPAA (positive allosteric modulator): 6HIQ I2 
conformation  

• 6HIO: 5-HT3R + serotonin (agonist): 6HIO I1 conformation  

• 6HIN: 5-HT3R + serotonin (agonist): 6HIN F (Full conformation) open state, activated ECD. 

• 6HIS: 5-HT3R + tropisetron (antagonist): 6HIS T conformation, inhibited state.  
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The receptor structures were first selected based on their quality. 6HIQ has the best resolution 

(3.2 Å) among mouse 5-HT3A receptors (Uniprot ID: P23979). We included the 3 other receptors 
as they presented different conformations. This helped to assess thymol binding to these other 
conformations. Also, 6HIS is bound to the antagonist tropisetron was used as a positive control to 
compare its effect to that of thymol in molecular dynamics.  

These structures were prepared for docking using AutoDock tools 472. They were protonated at 
physiological pH (7) as has been previously done with this receptor 473,474. Serotonin was redocked 
through blind docking to 6HIQ using QuickVina-W 96 to validate the docking protocol. The used 
parameters are provided in Appendix  L.  Docked vs crystal pose RMSD value was computed 
without least-squares fitting using GROMACS (Version 5.1.2) 182. Thymol (PubChem CID: 6989) 
and serotonin (from the crystal structure) were then docked to all four conformations. 
Tropisetron was only docked to 6HIS.  In each structure exhaustiveness for docking was scaled to 
the protein size using a reference value of 24 for a 30 Å3 (24 is 3 times the Autodock Vina (Version 
1.1.2) default value (8) 165 ).  Each docking generated ten poses and the lowest energy poses were 
selected for MD. Nine 50 ns MD with GROMACS112 using the Amber ff99SB-ILDN 187 force field 
were done to assess ligands’ stability. The nine simulated systems were: serotonin in the four 
conformations, thymol in the four conformations and tropisetron in 6HIS. Ligand topologies were 
generated using ACPYPE 186. TMPPAA (a positive allosteric modulator in 6HIQ) was not included 
in the simulations. The co-crystalized serotonin and tropisetron, binding on the docked thymol 
binding site were used. Given large structures’ sizes, only the ECD (residue 1 to 219) was 
simulated. Missing residues in 6HIS ECD were first modelled using Prime version 5.4 (r012) 
(schrodinger2018-4) 159. Simulations were done in a dodecahedron 10 Å between the solute and 
the box set to and using the tip3p water model with 0.15 M [Na+Cl-]. Systems were minimized 
using steepest descent with a maximum force and the number of steps set at < 1000.0 kJ/mol/nm 
and 50000, respectively. They were equilibrated at 1 atm and 300 Kelvin during 50 ps in the 
isothermal-isobaric ensemble and canonical one.  The leap-frog algorithm was used for 
integration. Short-range electrostatic and Lennard-Jones thresholds were set at 10 Å. For the long-
range electrostatic interactions, a fourth-order interpolation and the smooth particle mesh Ewald 
were used. Simulations were conducted at CHPC. The trajectories were visualized in a Jupyter 
Notebook190 using Nglview 188 and the Pytraj package475. GROMACS112 modules root-mean-square 
deviation (RMSD), radius of gyration (Rg) and root-mean-square fluctuations (RMSF), protein-
ligand interaction energy and the number of hydrogen bond were used to assess systems stability. 

5.3 Results and Discussions 

5.3.1 Thymol binds serotonin binding site with comparable energies to serotonin in all four 
conformations 

In docking validation, the serotonin best pose had an RMSD of 2.2 Å (Appendix  O).  Docked on all 
four conformations (6HIQ, 6HIN, 6HIO, 6HIS) in blind docking, thymol binds in the serotonin 
binding site and the binding affinities are similar to that of serotonin. Indeed, the 10 docked 
serotonin poses binding affinities range from -7.6 kcal/mol to -8 kcal/mol while those of thymol 
range from -7.3 kcal/mol to -7.9 kcal/mol (Appendix  J). Given the similar range of binding energy, 
a partial antagonist mechanism may be envisaged for thymol. On the other hand, tropisetron 
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consistently had binding affinities lower than - 8 kcal/mol. Thus, the evidence supports that it can 
competitively antagonize serotonin on the orthosteric site, with a full antagonist mechanism for 
this site. 

Elsewhere, simply rescoring the co-crystalized ligands resulted in lower affinities than the 
redocked one, even though the co-crystalized and redocked ligand had RMSD <= 2.5 Å (Appendix  
J). 

 

Thymol binds in a fully buried binding site, mainly stabilized with Pi-Pi interactions with aromatic 
residues rings (TYR207, PHE199, TRP156, TYR126 and TRP63) (Figure 5-1, Appendix  N, Appendix  
M). The compound does not make any hydrogen bond in its docked conformation.  

 

Figure 5-1 Thymol docked in 6HIQ. Interacting residues in stick and their three letter codes and 
residues numbers are shown. Dashed pink lines represented hydrophobic contact. The plot was 
obtained from Discovery Studio Visualizer V1.7.2. 

In this study, docking predicted thymol binding on the orthosteric site in four ECD conformations 
as well on the full protein including the transmembrane region (Figure 5-2, A, B). This site is also 
the binding site for tropisetron, a competitive antagonist for 5-HT3 receptor. All lowest energy 
conformations (LECs) bound the same orthosteric site in the ECD in all four conformations and 
interacted with all obligatory binding residues PHE199 and TYR207 TYR126 and TRP63, except for 
PHE199 in 6HIS 462. Further, with the exception of 6HIS, all other poses bound the site.  In 6HIS, 
the 8th and 7th poses bound the membrane domains, in a region near the extracellular domain. 
Still, the region was distinct from the proposed one by Lansdell et al. in which was predicted to 

bind human 5-HT3AR transmembrane 469. Hence, according to the current docking results, a 
possible allosteric mechanism through the transmembrane region may be excluded. 
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The mouse structure (4PIR) was also used (Appendix  P). The structure was used by Lansdell et al. 
469 for homology modelling of the human one. Thymol, serotonin, and NAG (N-acetyl-D-
Glucosamine, the co-crystal ligand in 4PIR) were blindly docked in the 5 five structures. An 
exhaustiveness of 6000 was used to efficiently explore the large search space. The redocked 
serotonin in 6HIQ showed an acceptable RMSD with the co-crystallized serotonin. Concerning 
thymol, all the best poses (the most energetically favourable) are bound to the extracellular 
domains of the structures. Moreover, all the other poses also bind the same domain in all 
structures except in 6HIS. In that last case, the 7th and 8th poses bind in the intracellular domains 
in an extreme region close to the extracellular domain. However, this region is still different from 
the one proposed by Lansdell et al. This was expected given 4PIR structural similarity to the other 
structures. Comparing 4PIR to other structures, 6HIN, 6HIQ, 6HIO all had RMSD below 2.7 Å using 
both only c-alpha and all backbone atoms. On 6HIN, on the other its RMSD was 5.1 Å for both the 
c-alpha and all backbone atoms. 

 

 

Figure 5-2 Tropisetron (magenta), thymol (cyan) and serotonin (green) docked in 6HIS. (A) ECD in cartoon 
representation. Docked ligands and crystalized tropisetron superimposed in the active site. (B) Active site 
zoomed-in view. Interacting residues (light grey). (C) 2D depiction for thymol, serotonin and tropisetron 
structures.  

Thymol and serotonin have similar binding energies (Appendix  J, Appendix  K). Further, it also 
showed similar interacting residues to serotonin in the three protein conformations (6HIQ, 6HIO, 
6HIN). Some variations are noticeable in 6HIS. Thymol and tropisetron bound the same site in 
6HIS (Figure 5-2) and interacted with identical residues in TYR207, TRP156 in chain A, and TRP63, 
ARG65, ILE44 in chain E (Appendix  N, Appendix  M). Thymol interacts with all residues that 
tropisetron binds to in the crystal structure. The sole common residue to all three compounds is 
TRP156 polar contact in chain A. Hence serotonin does not share common residues with thymol 
and tropisetron in 6HIS.  This may be explained by 6HIS being the inhibited state of the protein 
and that thymol is acting as an antagonist like tropisetron. However, thymol and serotonin had 
similar binding energies in that particular protein conformation: -6.5 kcal/mol and -6.7 kcal/mol 
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respectively. On the other hand, tropisetron had a significantly better binding energy of -9.3 
kcal/mol to this conformation. The energy difference may be explained by an interaction between 
the tropisetron indole ring and 6HIS ARG65 (Appendix  N). The difference in interaction residues 
might explain thymol's in vitro effect. However, the binding energies do not seem to support this. 

In all conformations, thymol interactions are mainly driven by hydrophobic contact especially 
between its phenol ring and TRP and TYR residues while serotonin consistently formed 1-2 
hydrogen bonds (Appendix  N). 

Comparing ligands’ structures, thymol and serotonin share a phenol ring but serotonin and 

tropisetron present an indole absent in thymol. This indole ring is a familiar moiety in 5-HT3A 
bioactive compounds (CHEMBL4972). Moreover, most 5-HT3R antagonists follow the 
pharmacophore constraint of an aromatic ring, hydrogen bond acceptor and a ring-embedded 
nitrogen 476 as in tropisetron structure (Figure 5-2). Even though thymol possesses an aromatic 
ring and HBA it lacks a ring-embedded nitrogen, and the constraint between the aromatic ring 
and the HBA is not fulfilled. Hence its potential antagonism may take place through a different 

molecular mechanism, hence it is a new class of 5-HT3A modulator, worthy of further structure–
activity relation investigation. 
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5.3.2 Molecular dynamics simulations 

 

Figure 5-3 Molecular Dynamic simulations. (A) Protein RMSD, (B) Protein radius of gyration (Rg), (C) Ligand 
RMSD, (D) Hydrogen bond frequency between protein and ligand. Color code for subplots (A), (B), (C) is 
given in subplot (A). RMSD and Rg values are presented in nanometer (nm) and time in nanosecond (ns).  

Dynamics simulation results showed stable complexes with proteins’ RMSDs lower or equal to 3.5 
Å (Figure 5-3A). Structures are in acceptable range of RMSD to assume no significant global 
change 477. Additionally, the different radius of gyration showed no variation maintaining a value 
of ~3.05 nm (Figure 5-3B). There was no ligand dissociation, and the highest ligand RMSD 
considering all ligands was ~ 1.25 Å. Only tropisetron in 6HIS had an unexpected increase of RMSD 
to ~ 2 Å given it was crystalized with the structure.  In terms of interactions, serotonin consistently 
had more hydrogen bonds than thymol and tropisetron (Figure 5-3D). As shown in the interactions 
in its binding pose, thymol in 6HIS mostly interacted with hydrophobic contacts, hence the 
absence of hydrogen bonds in MD. Thymol makes more hydrogen bonds in the 6HIN 
conformation than in all other conformations, even though we observed a decrease toward the 
end of the simulation. Interestingly, in both 6HIO and 6HIQ, thymol seems to rearrange and adopt 
a more stable pose, having a more consistent hydrogen bonding toward the end of the simulation 
(Figure 5-3). This is in accord with the docked pose which mainly includes hydrophobic 
interactions (Pi-Pi stacking on thymol benzene ring). Thymol in 6HIS does not make any hydrogen 
bonds, but it is mainly stabilized by hydrophobic contacts, in contrast to tropisetron which showed 
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~1-2 hydrogen bonds. Hence the underlying molecular mechanism resulting in their similarly 
induced residues fluctuation might be different. Yet the two compounds interacted with similar 
residues in their docked poses (Appendix  M, Appendix  N).  

5.3.3 Thymol inducing a different protein behavior, rigidifying the structure. 

 

Figure 5-4 5-HT3A ECD RMSF in ligand-bound in the four conformations. Only RMSF values of residues in 

chains forming the bound-compound binding site are plotted. 5-HT3A is a pentamer with five equivalent 
binding sites formed at the subunits interfaces in its ECD.  

Residues RMSF in MDs revealed different structure behavior depending on bound serotonin or 
thymol (Figure 5-4). Residues are more flexible with serotonin bound to the structures than 
thymol and tropisetron. This pattern is especially more accented in 6HIO and 6HIN. Also, in the 
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inhibited state (6HIS) tropisetron and thymol bound structure have more similar residues 
fluctuation pattern compared to serotonin. Only in the terminal region around Y207 (CHAIN E) 
tropisetron and serotonin bound structures have similar behavior that is different from thymol. 
The main binding residues PHE199, TYR207, TYR126 and TRP63 462 do not differ in their 
fluctuations. This higher fluctuation with serotonin may indicate protein reactivating from the 
inhibited state by serotonin, while this is not the case for thymol and tropisetron. 

This work suffers from a number of limitations – notably, only one ligand was used on the entire 
structure. Yet there are four binding sites on the ECD. Future studies might consider simulating 
with a ligand-bound on each site on the ECD. This analysis only focused on RMSF of chains forming 
the binding site. Considering all the chains, with ligand-bound in all four binding sites may provide 
more insight. More simulation of the protein with the membrane domain may help investigate 
ion channel activation or inhibition mechanism depending on compound binding. Moreover, in 
the absence of a rat structure, the mouse one which has was used. However, the mouse sequence 
(Uniprot ID P23979) had 93.0% sequence identity to the one of the rat one (Uniprot ID P35563). 
Nevertheless, given 5-HT3AR modulators species specificity 469 it is worth investing a model of the 
rat sequence. 
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5.3.4 Thymol had a lower affinity than serotonin and tropisetron. 

To further investigate thymol antagonist behavior, its affinity through the PLIE was compared to that one 
serotonin and tropisetron. Figure 5-5 shows the PLIE for thymol and serotonin in different conformations 
during the 50 ns. 

 

Figure 5-5 PLIE for the following complexes 6HlS_tropi, 6HlS_thymol, 6HIQ_thymol, 6HlQ_sero   
6HlO_thymol, 6HlO_sero, 6HIN_thymol, 6HIN_sero during the 50 ns simulation. 

The total protein-ligand interaction energy is different from a binding free energy. It quantifies 
the nonbonded (sum of Coulombic and Lennard-Jones) interaction energies 192. The total protein-
ligand interaction energy is also an indicator of ligand dissociation from the protein which will 
result in the absence of any energy value. All systems had negative total protein-ligand interaction 
energy with the averages per system in a range of -97.10 kcal/mol (6HIS_thymol) to -151.39 
kcal/mol (6HIN_thymol). The highest energy difference is observed between thymol and 
serotonin in 6HIQ (-106.43 kcal/mol and -147.44 kcal/mol respectively). This could be related to 
thymol's movement in that conformation as seen before. The energy difference in other 
conformations remains lower than 15 kcal/mol. Comparing the ligands' average interaction 
energies in their respective proteins, serotonin and tropisetron have better energies than thymol 
in all proteins except in 6HIN in which thymol has a more favorable averaged PLIE. Also, thymol 
had more favorable PLIE in the last 25 ns in the 6HIO structure.  

This thymol lower affinity may be explained by the higher number of hydrogen bonds made by 
serotonin in docked posed and also in the hydrogen bonding analysis during MD while thymol 
binding was mostly driven by hydrophobic contacts (Figure 5-3, Appendix  N). Actually, in the 6HIN 
conformation in which thymol makes significant hydrogen bonding, a more favorable affinity is 
observed (Figure 5-5).  
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From this energy analysis, thymol may be partially competing with serotonin as this latter had in 
general a more favorable PLIE. Given it lower PLIE compared to serotonin but similar induced 
structural behavior to tropisetron, thymol may be acting as a partial antagonist to serotonin. In 
6HIS, tropisetron had more favorable PLIE than thymol. This may be expected as tropisetron is co-
crystallized ligand, a known antagonist and 6HIS is the inhibited state. A limitation in the current 
analysis is the absence of PLIE for serotonin in 6HIS. This could provide more insight in the 
serotonin and thymol comparative behavior in the inhibited state. 

5.4 Conclusion 

The current data in vitro and modelling can support that thymol antagonizes serotonin through 
5-HT3 orthosteric site. Docking results indicate that thymol binds the orthosteric, serotonin 

binding site, with similar energies to serotonin in all four mouse 5-HT3AR conformations,  and with 
further conservation of that binding mode in MD.  These findings make its transmembrane region 
binding and allosteric mechanism unlikely. MD showed that the two compounds induce different 
residue fluctuations with thymol inducing a structure behavior similar to tropisetron, a known 
antagonist. The higher RMSF observed with serotonin in contrast to thymol and tropisetron might 
result from its agonist mechanism, different from tropisetron and potentially thymol antagonist 
ones. However, given that thymol has similar binding energies to serotonin but lower compared 
to tropisetron it may act through a partial antagonist mechanism supported by their significant 
structural difference.  

Yet more evidence is needed in light of the previous literature findings especially compounds 
species selectivity in 5-HT3. Further investigation especially on a rat model including the 
membrane region could help understand the different behavior. Also, a 5-HT3 enzymatic assay 
with thymol could be done to fully confirm thymol antagonizing effect.  
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Chapter 6:  Conclusion and future perspectives  

In the era of malaria eradication, its chemotherapy remains hampered by drug resistance and 
hypnozoite reservoirs. Additionally, drug approval rate hampered by the general attrition rate 75 
is slower than resistance development from the parasite. P. falciparum counts up to 90% of the 
current disease burden 7. Its genome high plasticity, diverse resistance mechanisms, potential 
difficult diagnostic with pfhrp2/3 genes deletion 19 and adaptation to the human host rooted in 
thousands of years of co-evolution 23,27 turn its eradication into a complex problem. It already 
showed resistance to all antimalarials classes including the current WHO-recommended ACTs 
treatment 40. Given this current situation, stakeholders in antimalarials discovery have 
emphasized the need for new MoAs defined in the TCPs and also cost-effective strategies to stay 
ahead of resistance 22. Despite the highlight of TCPs for antimalarial discovery, the current drug 
development is marked by the Harlow-Knapp effect, with emphasis on few targets despite other 
available opportunities 54. Pipelines are also marked by a high attrition rate despite higher 
investments, one of the reasons being the lack of proper physicochemical properties in the hunt 
for potency 76. This extends to In silico approaches which lack a cost-efficient and accurate method 
to mine the vast chemical space especially illustrated in docking SFs limitation 81. LEIs may guide 
the choice of lead compounds and their optimization strategies478.  

Given this context, this work aimed to contribute to computational antimalarial discovery by 
identifying potential P. falciparum inhibitors. Strategies are adapted to the current threats to 
malaria elimination. Hence, a cost and time effective through drug repurposing combined with a 
proteome scale screening to find new MoAs. Besides, the work also explores computational 
screening approaches through the use of efficiency metrics for an accurate pipeline given the 
limitations of current computational approaches. Hence, an extensive screening pipeline 
emphasizing consensus scoring is used against PfDXR. This target inhibition can offer a new MoA. 
Additionally, we present a contribution to the SANCDB library and propose analogs as an 
alternative to NPs availability.  

Using the cost-effective repurposing strategy, four orally available FDA approved drugs 
(fingolimod, abiraterone, prazosin, and terazosin) with antiplasmodial properties and predicted 
activities on four different targets are identified. Abiraterone is predicted on a putative liver-stage 
essential target contributing to covering the different antimalarials TCPs. This part also proposes 
a proteome scale screening pipeline using a consensus of multiple metrics. A set of 36 P. 
falciparum targets was used. The screening metrics include ligand efficiency and on-the-fly 
rescoring of docked poses through GRIM. The first metric integrates logP, PSA and MW to avoid 
drug attrition and the second one contributes to using a consensus of docking scoring SFs. The 
pipeline also includes normalization and ranking strategy to face scoring biases and reveal as 
shown in the pipeline evaluation mutually selective protein-ligand complexes. These 
transformations are beneficial in the context of screening an array of proteins. Yet the predicted 
targets should be experimentally confirmed.  
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Given their approved nature, their further exploration (including that of derivatives) may be open 
to fast-track approval as antimalarials. The integrated pipeline introduced can further be 
extended with the scoring tools used in Chapter 3: . Additionally, a thorough assessment of the 
pipeline is possible using a larger set of active/inactive molecules different from the co-crystalized 
ligand solely. Both ligands and targets sets may be significantly increased for a higher probability 
of finding more potent hits and alternative MoAs. More target-resistant variants may be included. 
The identified hits may be further optimized. The pipeline is applicable in other disease areas and 
may fit complex diseases. It can be a foundation for modelling an in silico cell for virtual 
phenotypic screening. 

In the second chapter, a hierarchical virtual screening pipeline combining LBVS and SBVS was used 
to find hits for PfDXR. This enzyme inhibition will offer an antimalarial with a new MoA. The ZINC 
lead-like of 3M is used to identify hits with better physicochemical properties for PfDXR inhibition. 
A more extensive collection of SFs with the philosophy of the “wisdom of the crowd” are used to 
identify with better-predicted potency than LC5 a nanomolar inhibitor, our baseline. Compounds 
are further assessed using MD, steered MD, and BFE calculation through MM-PBSA and US. In the 
end we have identified four lead-like compounds with better-predicted affinity than LC5 a potent 
nanomolar inhibitor. These hits' scaffolds are different from that of fosmidomycin. To date, most 
active compounds deposited in ChEMBL are based on that latter which already proved poor 
physicochemical properties which hampered its usage. 

A detailed analysis of interacting residues and the types of interactions revealed GLU233, CYS268, 
SER270, TRP296, and HIS341 high contributions to Fmax intensity in PfDXR irrespective of the 
ligand. The same residues were also associated with high contributions to BFE in MM-PBSA.  

Analysis of the different LBVS and SFs used revealed that these methods give correlated or distinct 
rank-ordering of compounds. About the SFs, three groups: the Rf-score group (Rf-score_V1 to V4), 
(Vina, Idock, and Smina) and (AutoDock, DSX, Cyscore, Xscore) formed different groups. Two main 
groups: (ES, USR, USRCAT, OBSPEC) showed agreement in LBVS, while RDKit_3pharm and USR had 
a Kendall tau correlation as low as 0.01. The same trend extends to MD approaches in which 
affinity evaluation through SMD, MM-PBSA and US did not provide a consistent rank-ordering. 
We recommend the SMD method given its lower runtime. 

As future work, the identified ZINC hits can be validated in vitro and their commercially available 
analogs and/or a derived library may be pursued for better potency. Their lead-like character may 
predispose them for good optimization. Identified high contributing residue to BFE in MM-PBSA 
and SMD Fmax may guide these optimizations. SMD and/or US combination with HMR may 
reduce their cost by two-fold. Further, including PfDXR known inhibitors in SMD, MM-PBSA and 
US will guide on selecting an accurate BFE method, especially in the context of induced-fit binding 
and metalloprotein. 

Finally, an emphasis was put on NPs given their importance as antimalarials. Literature data were 
searched to identify NPs isolated in South Africa. The SANCDB library was extended to 1012 NPs, 
and these were linked to 374,067 commercially readily available analogs in Mcule 395 and Molport 
394. The APIs integration will ensure the links and the constant update with more compounds 
available. The addition of file formats (AutoDock 456 pdbqt and Schrodinger Maestro 393) for drug 
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discovery combined with the availability of the full library for download in these formats can 
foster drug discovery can ease and speed up pipelines setups. This extended library can contribute 
to antimalarials given NP already known importance in antimalarials 63. The analogs may optimize 
screening hits and may be used for in vitro hit validation. The compound classification was 
automated and standardized. The scaffolds analysis showed database diversity with 501 scaffolds 
for 1012 compounds and the good potential for drug discovery with a good portion of the 
database being drug-like or lead-like.   

The identification of relevant literature data from scholarly APIs combined with a more exhaustive 
and thorough text mining for chemical information can help in a larger context such the African 
one. This can contribute to highlight the continent's ethnobotany heritage and contribute to 
antimalarials, given that the continent holds about 90% of the disease burden. A docking server 
can be integrated to the SANCDB website. This server can also integrate SFs used in Chapter 3:  
for more efficient drug discovery. 

Finally, Chapter 5 which departs from the general theme of in silico antimalarial discovery was 
done as a side project in collaboration with the Department of Pharmaceutical Science and 
Chinese Traditional Medicine at Southwest University. The chapter investigates the potential 

mechanism of thymol on serotonin receptor 5-HT3AR after observations of its alleviating effects 

on IBS symptoms. Thymol binding in 5-HT3AR orthosteric site and similar behavior to tropisetron 
in RMSF from MD but lower affinity in the protein-ligand interaction energy supports a potential 
partial antagonist. However, more evidence is needed to support this mechanism, especially in 
the context of previous literature findings. 



121 
 

REFERENCES 

1. Winzeler, E. A. Malaria research in the post-genomic era. Nature 455, 751–756 (2008). 

2. Crutcher, J. M. & Hoffman, S. L. Malaria, chapter 83, p 997. Med. Microbiol. 4th ed. Univ. 
Texas Med. Branch Galveston, Galveston, TX (1996). 

3. Control, I. of M. (US) C. for the S. on M. P. and, Stanley C. Oaks, J., Mitchell, V. S., Pearson, 
G. W. & Carpenter, C. C. J. Parasite Biology. (National Academies Press (US), 1991). 

4. Barber, B. E., Rajahram, G. S., Grigg, M. J., William, T. & Anstey, N. M. World Malaria Report: 
time to acknowledge Plasmodium knowlesi malaria. Malar. J. 16, (2017). 

5. Kyu, H. H. et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 
diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 
1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 
1859–1922 (2018). 

6. Head, M. G. et al. The allocation of US$105 billion in global funding from G20 countries for 
infectious disease research between 2000 and 2017: a content analysis of investments. 
www.thelancet.com/lancetgh (2020) doi:10.1016/S2214-109X(20)30357-0. 

7. World Health Organization. World Malaria Report: 20 years of global progress and 
challenges. World Health WHO/HTM/GM, 238 (2020). 

8. Sarma, N., Patouillard, † Edith, Cibulskis, R. E. & Arcand, J.-L. The Economic Burden of 
Malaria: Revisiting the Evidence. Am. J. Trop. Med. Hyg 101, 1405–1415 (2019). 

9. Weekly epidemiological record Relevé épidémiologique hebdomadaire. 

10. World Malaria Day 2020 - EDCTP. http://www.edctp.org/news/world-malaria-day-2020/. 

11. World Health Organisation. Malaria Threat Map. 
https://apps.who.int/malaria/maps/threats (2020). 

12. Cui, L., Mharakurwa, S., Ndiaye, D., Rathod, P. K. & Rosenthal, P. J. Antimalarial Drug 
Resistance: Literature Review and Activities and Findings of the ICEMR Network. Am. J. 
Trop. Med. Hyg. 93, 57–68 (2015). 

13. Menard, D. & Dondorp, A. Antimalarial drug resistance: a threat to malaria elimination. 
Cold Spring Harb. Perspect. Med. 7, 1–24 (2017). 

14. Cowell, A. N. & Winzeler, E. A. The genomic architecture of antimalarial drug resistance. 
Brief. Funct. Genomics 18, 314–328 (2019). 

15. Hemingway, J. et al. Tools and Strategies for Malaria Control and Elimination: What Do We 
Need to Achieve a Grand Convergence in Malaria? PLoS Biol. 14, (2016). 



122 
 

16. Report on antimalarial drug efficacy, resistance and response. (2019). 

17. Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M. & Nosten, F. H. Combating multidrug-
resistant Plasmodium falciparum malaria. FEBS J. 284, 2569–2578 (2017). 

18. Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five years following 
first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: 
populations established—malaria emerging. Parasitol. Res. 118, 725–732 (2019). 

19. Thomson, R. et al. Prevalence of plasmodium falciparum lacking histidine-rich proteins 2 
and 3: A systematic review. Bulletin of the World Health Organization vol. 98 558–568F 
(2020). 

20. Wirth, D. F. The parasite genome: Biological revelations. Nature 419, 495–496 (2002). 

21. Morrissette, N. S. & Sibley, L. D. Cytoskeleton of Apicomplexan Parasites. Microbiol. Mol. 
Biol. Rev. 66, 21–38 (2002). 

22. Yahiya, S., Rueda-Zubiaurre, A., Delves, M. J., Fuchter, M. J. & Baum, J. The antimalarial 
screening landscape—looking beyond the asexual blood stage. Curr. Opin. Chem. Biol. 50, 
1–9 (2019). 

23. Cowman, A. F., Healer, J., Marapana, D. & Marsh, K. Malaria: Biology and Disease. Cell 167, 
610–624 (2016). 

24. Soulard, V. et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in 
humanized mice. Nat. Commun. 6, 7690 (2015). 

25. Campo, B., Vandal, O., Wesche, D. L. & Burrows, J. N. Killing the hypnozoite – drug discovery 
approaches to prevent relapse in Plasmodium vivax. Pathog. Glob. Health 109, 107–122 
(2015). 

26. Biamonte, M. A., Wanner, J. & Le Roch, K. G. Recent advances in malaria drug discovery. 
Bioorg. Med. Chem. Lett. 23, 2829–2843 (2013). 

27. Antinori, S., Galimberti, L., Milazzo, L. & Corbellino, M. Biology of Human Malaria Plasmodia 
Including Plasmodium Knowlesi. Mediterr. J. Hematol. Infect. Dis. 4, (2012). 

28. Bennink, S., Kiesow, M. J. & Pradel, G. The development of malaria parasites in the 
mosquito midgut. Cell. Microbiol. 18, 905–918 (2016). 

29. White, N. Antimalarial drug resistance and combination chemotherapy. Philos. Trans. R. 
Soc. B Biol. Sci. 354, 739–749 (1999). 

30. Tse, E. G., Korsik, M. & Todd, M. H. The past, present and future of anti-malarial medicines. 
Malaria Journal vol. 18 1–21 (2019). 

31. Burrows, J. N. et al. New developments in anti-malarial target candidate and product 
profiles. Malar J 16, 26 (2017). 

32. Carolino, K. & Winzeler, E. A. The antimalarial resistome – finding new drug targets and 



123 
 

their modes of action. Curr. Opin. Microbiol. 57, 49–55 (2020). 

33. Gaur, A. H. et al. Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel 
Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage 
malaria phase 1a/b trial. Lancet Infect. Dis. (2020) doi:10.1016/S1473-3099(19)30611-5. 

34. Hooft van Huijsduijnen, R. & Wells, T. N. The antimalarial pipeline. Current Opinion in 
Pharmacology vol. 42 1–6 (2018). 

35. Ashley, E. A. & Phyo, A. P. Drugs in Development for Malaria. Drugs 78, 861–879 (2018). 

36. Kublin, J. G. et al. Safety, Pharmacokinetics, and Causal Prophylactic Efficacy of KAF156 in 
a Plasmodium falciparum Human Infection Study. Clin. Infect. Dis. (2020) 
doi:10.1093/cid/ciaa952. 

37. Technologies, T. malERA R. C. P. on B. S. and E. malERA: An updated research agenda for 
basic science and enabling technologies in malaria elimination and eradication. PLOS Med. 
14, e1002451 (2017). 

38. Vora, P., Somani, R. & Jain, M. Drug Repositioning: An Approach for Drug Discovery. Mini. 
Rev. Org. Chem. 13, 363–376 (2016). 

39. Fontinha, D., Moules, I. & Prudêncio, M. Repurposing drugs to fight hepatic malaria 
parasites. Molecules 25, 3409 (2020). 

40. Verlinden, B. K., Louw, A. & Birkholtz, L.-M. Resisting resistance: is there a solution for 
malaria? Expert Opin. Drug Discov. 11, 395–406 (2016). 

41. Hopkins, A. L., Mason, J. S. & Overington, J. P. Can we rationally design promiscuous drugs? 
Curr. Opin. Struct. Biol. 16, 127–136 (2006). 

42. Tibon, N. S., Ng, C. H. & Cheong, S. L. Current progress in antimalarial pharmacotherapy 
and multi-target drug discovery. European Journal of Medicinal Chemistry vol. 188 111983 
(2020). 

43. Mushtaque, M. & Shahjahan. Reemergence of chloroquine (CQ) analogs as multi-targeting 
antimalarial agents: A review. European Journal of Medicinal Chemistry vol. 90 280–295 
(2015). 

44. Chen, W. et al. Novel dual inhibitors against FP-2 and PfDHFR as potential antimalarial 
agents: Design, synthesis and biological evaluation. Chinese Chem. Lett. 30, 250–254 
(2019). 

45. Dickerman, B. K. et al. Identification of inhibitors that dually target the new permeability 
pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. 
Sci. Rep. 6, 37502–37502 (2016). 

46. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in 
pharmaceutical R&D efficiency. www.nature.com/reviews/drugdisc (2012) 
doi:10.1038/nrd3681. 



124 
 

47. Schenone, M., Dančík, V., Wagner, B. K. & Clemons, P. A. Target identification and 
mechanism of action in chemical biology and drug discovery. Nature Chemical Biology vol. 
9 232–240 (2013). 

48. White, J. & Rathod, P. K. Indispensable malaria genes. Science (80-. ). 360, 490–491 (2018). 

49. Gomes, A. R. et al. A genome-scale vector resource enables high-throughput reverse 
genetic screening in a malaria parasite. Cell Host Microbe 17, 404–413 (2015). 

50. Burrows, J. N. et al. Antimalarial drug discovery - the path towards eradication. Parasitology 
141, 128–39 (2014). 

51. Aneja, B., Kumar, B., Jairajpuri, M. A. & Abid, M. A structure guided drug-discovery 
approach towards identification of Plasmodium inhibitors. RSC Adv. 6, 18364–18406 
(2016). 

52. Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. Computational analysis of 
Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug 
discovery. Genome Res. 14, 917–924 (2004). 

53. Zhang, M. et al. Uncovering the essential genes of the human malaria parasite Plasmodium 
falciparum by saturation mutagenesis. Science (80-. ). 360, (2018). 

54. Lunev, S., Batista, F. A., Bosch, S. S., Wrenger, C. & Groves, M. R. Identification and 
Validation of Novel Drug Targets for the Treatment of Plasmodium falciparum Malaria: 
New Insights. Current Topics in Malaria (InTech, 2016). doi:10.5772/65659. 

55. Lunev, S., Batista, F. A., Bosch, S. S., Wrenger, C. & Groves, M. R. Identification and 
Validation of Novel Drug Targets for the Treatment of Plasmodium falciparum Malaria: 
New Insights. Curr. Top. Malar. (2016) doi:10.5772/65659. 

56. Murkin, A. S., Manning, K. A. & Kholodar, S. A. Mechanism and inhibition of 1-deoxy-D-
xylulose-5-phosphate reductoisomerase. Bioorg. Chem. 57, 171–185 (2014). 

57. Uddin, T. Drug targets in the apicoplast of malaria parasites. (2017). 

58. Armstrong, C. M., Meyers, D. J., Imlay, L. S., Meyers, C. F. & Odom, A. R. Resistance to the 
antimicrobial agent fosmidomycin and an FR900098 prodrug through mutations in the 
deoxyxylulose phosphate reductoisomerase gene (dxr). Antimicrob. Agents Chemother. 59, 
5511–5519 (2015). 

59. Mombo-Ngoma, G. et al. Efficacy and Safety of Fosmidomycin-Piperaquine as 
Nonartemisinin-Based Combination Therapy for Uncomplicated Falciparum Malaria: A 
Single-Arm, Age De-escalation Proof-of-Concept Study in Gabon. Clin. Infect. Dis. 
Fosmidomycin-Piperaquine as Malar. NACT • CID 2018, 1823. 

60. Friedman, R. & Caflisch, A. Discovery of Plasmepsin Inhibitors by Fragment-Based Docking 
and Consensus Scoring. ChemMedChem 4, 1317–1326 (2009). 

61. Belete, T. M. Recent progress in the development of new antimalarial drugs with novel 



125 
 

targets. Drug Des. Devel. Ther. (2020) doi:10.2147/DDDT.S265602. 

62. Tambo, E., Khater, E. I. M., Chen, J. H., Bergquist, R. & Zhou, X. N. Nobel prize for the 
artemisinin and ivermectin discoveries: A great boost towards elimination of the global 
infectious diseases of poverty. Infectious Diseases of Poverty vol. 4 58 (2015). 

63. Tajuddeen, N. & Van Heerden, F. R. Antiplasmodial natural products: An update. Malar. J. 
18, (2019). 

64. Ntie-Kang, F. et al. CamMedNP: Building the Cameroonian 3D structural natural products 
database for virtual screening. BMC Complement. Altern. Med. 13, 88 (2013). 

65. Hatherley, R. et al. SANCDB: A South African natural compound database. J. Cheminform. 
7, (2015). 

66. Amoa Onguéné, P. et al. The potential of anti-malarial compounds derived from African 
medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar. 
J. 12, 449 (2013). 

67. Fabricant, D. S. & Farnsworth, N. R. The value of plants used in traditional medicine for drug 
discovery. Environ. Health Perspect. 109 Suppl, 69–75 (2001). 

68. Wells, T. N. C. Natural products as starting points for future anti-malarial therapies: going 
back to our roots? Malar. J. 10 Suppl 1, S3 (2011). 

69. Mboya-Okeyo, T., Ridley, R. G., Nwaka, S. & ANDI Task Force. The African Network for Drugs 
and Diagnostics Innovation. Lancet 373, 1507–1508 (2009). 

70. Newman, D. J. & Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. 
J. Nat. Prod. 79, 629–661 (2016). 

71. Wells, T. N. C., Van Huijsduijnen, R. H. & Van Voorhis, W. C. Malaria medicines: A glass half 
full? Nat. Rev. Drug Discov. 14, 424–442 (2015). 

72. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure based drug 
design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996). 

73. Prieto-Martínez, F. D., López-López, E., Eurídice Juárez-Mercado, K. & Medina-Franco, J. L. 
Computational Drug Design Methods—Current and Future Perspectives. Silico Drug Des. 
19–44 (2019) doi:10.1016/b978-0-12-816125-8.00002-x. 

74. Salim, N. O., Azian, N., Yusuf, M., Adyani, F. & Fuad, A. Plasmodial enzymes in metabolic 
pathways as therapeutic targets and contemporary strategies to discover new antimalarial 
drugs: a review. AsPac J. Mol. Biol. Biotechnol vol. 27 (2019). 

75. Waring, M. J. et al. An analysis of the attrition of drug candidates from four major 
pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475–486 (2015). 

76. Hann, M. M. Molecular obesity, potency and other addictions in drug discovery. 
doi:10.1039/c1md00017a. 



126 
 

77. Nicolaou, C. A., Brown, N. & Pattichis, C. S. Molecular optimization using computational 
multi-objective methods. Curr. Opin. Drug Discov. Devel. 10, 316–324 (2007). 

78. Johnson, M. A., Maggiora, G. M. & American Chemical Society. Meeting (196th : 1988 : Los 
Angeles, C. . Concepts and applications of molecular similarity. (Wiley, 1990). 

79. Vázquez, J. et al. molecules Merging Ligand-Based and Structure-Based Methods in Drug 
Discovery: An Overview of Combined Virtual Screening Approaches. 
doi:10.3390/molecules25204723. 

80. Cleves, A. E. & Jain, A. N. Structure- And ligand-based virtual screening on DUD-E+: 
Performance dependence on approximations to the binding pocket. J. Chem. Inf. Model. 
60, 4296–4310 (2020). 

81. Gaieb, Z. et al. D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity 
rankings, and relative binding free energies. J. Comput. Aided. Mol. Des. 32, 1–20 (2018). 

82. Baumgartner, M. P. & Evans, D. A. Lessons learned in induced fit docking and metadynamics 
in the Drug Design Data Resource Grand Challenge 2. J. Comput. Aided. Mol. Des. 32, 45–
58 (2018). 

83. Probst, D. & Reymond, J.-L. A probabilistic molecular fingerprint for big data settings. J. 
Cheminform. 10, 66 (2018). 

84. Irwin, J. J. et al. ZINC20 A Free Ultralarge-Scale Chemical Database for Ligand Discovery. 
doi:10.1021/acs.jcim.0c00675. 

85. Grygorenko, O. O. et al. Generating Multibillion Chemical Space of Readily Accessible 
Screening Compounds. iScience 23, 101681 (2020). 

86. NIH Virtual Workshop on Ultra-Large Chemistry Databases, Dec 1-3, 2020. 
https://cactus.nci.nih.gov/presentations/NIHBigDB_2020-12/NIHBigDB.html. 

87. Lionta, E., Spyrou, G., Vassilatis, D. K. & Cournia, Z. Structure-based virtual screening for 
drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14, 
1923–38 (2014). 

88. Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M. & Taranto, A. G. Structure-Based 
Virtual Screening: From Classical to Artificial Intelligence. Frontiers in Chemistry vol. 8 
(2020). 

89. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R. & Ferrin, T. E. A geometric approach to 
macromolecule-ligand interactions. J. Mol. Biol. 161, 269–288 (1982). 

90. Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an 
empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998). 

91. Chen, H.-M., Liu, B.-F., Huang, H.-L., Hwang, S.-F. & Ho, S.-Y. SODOCK: Swarm optimization 
for highly flexible protein–ligand docking. J. Comput. Chem. 28, 612–623 (2007). 

92. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an 



127 
 

incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996). 

93. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a 
new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 
455–61 (2010). 

94. Friesner, R. A. et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. 
Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749 (2004). 

95. Sethi, A., Joshi, K., Sasikala, K. & Alvala, M. Molecular Docking in Modern Drug Discovery: 
Principles and Recent Applications. in Drug Discovery and Development - New Advances 
(IntechOpen, 2020). doi:10.5772/intechopen.85991. 

96. Hassan, N. M., Alhossary, A. A., Mu, Y. & Kwoh, C. K. Protein-Ligand Blind Docking Using 
QuickVina-W with Inter-Process Spatio-Temporal Integration. Sci. Rep. 7, 15451 (2017). 

97. Gaieb, Z. et al. D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity 
rankings. J. Comput. Aided. Mol. Des. (2019) doi:10.1007/s10822-018-0180-4. 

98. LeGrand, S. et al. GPU-Accelerated Drug Discovery with Docking on the Summit 
Supercomputer: Porting, Opti-mization, and Application to COVID-19 Research. 10 (2020) 
doi:10.1145/3388440.3412472. 

99. GigaDockingTM - Structure Based Virtual Screening of Over 1 Billion Molecules Webinar. 
https://www.eyesopen.com/webinars/giga-docking-structure-based-virtual-screening. 

100. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–
229 (2019). 

101. Pantsar, T. & Poso, A. Binding affinity via docking: Fact and fiction. Molecules vol. 23 
1DUMMY (2018). 

102. Śledź, P. & Caflisch, A. Protein structure-based drug design: from docking to molecular 
dynamics. Curr. Opin. Struct. Biol. 48, 93–102 (2018). 

103. De Vivo, M., Masetti, M., Bottegoni, G. & Cavalli, A. Role of Molecular Dynamics and 
Related Methods in Drug Discovery. J. Med. Chem. 59, 4035–4061 (2016). 

104. Petrenko, R. & Meller, J. Molecular Dynamics. in eLS (John Wiley & Sons, Ltd, 2001). 

105. Allen, M. P. & others. Introduction to molecular dynamics simulation. Comput. soft matter 
from Synth. Polym. to proteins 23, 1–28 (2004). 

106. Lemkul, J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-
2018 Molecular Simulation Package [Article v1.0]. Living J. Comput. Mol. Sci. 1, 0–53 (2019). 

107. Fusani, L., Palmer, D. S., Somers, D. O. & Wall, I. D. Exploring Ligand Stability in Protein 
Crystal Structures Using Binding Pose Metadynamics. J. Chem. Inf. Model. 60, 1528–1539 
(2020). 

108. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding 



128 
 

affinities. Expert Opin. Drug Discov. 10, 449–461 (2015). 

109. Jing, Z. et al. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and 
Applications. (2019) doi:10.1146/annurev-biophys-070317. 

110. Vanommeslaeghe, K., Guvench, O. & MacKerell, A. D. Molecular Mechanics. Curr. Pharm. 
Des. 20, 3281–3292 (2014). 

111. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics 
studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998). 

112. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-
level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). 

113. González, M. A. Force fields and molecular dynamics simulations. École thématique la 
Société Française la Neutron. 12, 169–200 (2011). 

114. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins 
based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–
2012 (2003). 

115. Ganesan, A., Coote, M. L. & Barakat, K. Molecular dynamics-driven drug discovery: leaping 
forward with confidence. Drug Discov. Today 22, 249–269 (2017). 

116. Neves, R. P. P., Sousa, S. F., Fernandes, P. A. & Ramos, M. J. Parameters for Molecular 
Dynamics Simulations of Manganese-Containing Metalloproteins. J. Chem. Theory Comput. 
9, 2718–2732 (2013). 

117. Hu, L. & Ryde, U. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites. 
7, 2452–2463. 

118. Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-Time-Step Molecular 
Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 11, 1864–1874 
(2015). 

119. Lemkul, J. A. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the 
GROMACS-2018 Molecular Simulation Package, v1.0. 1–52 (2018). 

120. Huang, J., Lemkul, J. A., Eastman, P. K. & MacKerell, A. D. Molecular dynamics simulations 
using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, 
and benchmarks. J. Comput. Chem. 39, 1682–1689 (2018). 

121. Mei, Z. et al. Current MD forcefields fail to capture key features of protein structure and 
fluctuations: A case study of cyclophilin A and T4 lysozyme. 

122. Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko, A. Towards exact molecular 
dynamics simulations with machine-learned force fields. doi:10.1038/s41467-018-06169-
2. 

123. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding 
affinities. Expert Opin. Drug Discov. 10, 449–61 (2015). 



129 
 

124. Wang, E. et al. End-Point Binding Free Energy Calculation with MM/PBSA and MM/ GBSA: 
Strategies and Applications in Drug Design. (2019) doi:10.1021/acs.chemrev.9b00055. 

125. Poli, G., Granchi, C., Rizzolio, F. & Tuccinardi, T. Application of MM-PBSA Methods in Virtual 
Screening. Molecules 25, 1971 (2020). 

126. Qi, R., Botello-Smith, W. M. & Luo, R. Acceleration of Linear Finite-Difference Poisson-
Boltzmann Methods on Graphics Processing Units. J. Chem. Theory Comput. 13, 3378–3387 
(2017). 

127. Terayama, K., Iwata, H., Araki, M., Okuno, Y. & Tsuda, K. Machine learning accelerates MD-
based binding pose prediction between ligands and proteins. Bioinformatics 34, 770–778 
(2018). 

128. Cournia, Z., Allen, B. & Sherman, W. Relative Binding Free Energy Calculations in Drug 
Discovery: Recent Advances and Practical Considerations. J. Chem. Inf. Model. (2017) 
doi:10.1021/acs.jcim.7b00564. 

129. Chipot, C., Shell, M. S. & Pohorille, A. Springer Series in Chemical Physics: Introduction. 
Springer Series in Chemical Physics vol. 86 1–31 (2007). 

130. Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. THE weighted 
histogram analysis method for free-energy calculations on biomolecules. I. The method. J. 
Comput. Chem. 13, 1011–1021 (1992). 

131. Yang, Y., Pan, L., Lightstone, F. C. & Merz, K. M. The Role of Molecular Dynamics Potential 
of Mean Force Calculations in the Investigation of Enzyme Catalysis. in Methods in 
Enzymology vol. 577 1–29 (Academic Press Inc., 2016). 

132. Patel, J. S. & Ytreberg, F. M. Fast Calculation of Protein-Protein Binding Free Energies Using 
Umbrella Sampling with a Coarse-Grained Model. J. Chem. Theory Comput. 14, 991–997 
(2018). 

133. Yahiya, S., Rueda-Zubiaurre, A., Delves, M. J., Fuchter, M. J. & Baum, J. The antimalarial 
screening landscape—looking beyond the asexual blood stage. Curr. Opin. Chem. Biol. 50, 
1–9 (2019). 

134. Mathews, E. S. & Odom John, A. R. Tackling resistance: emerging antimalarials and new 
parasite targets in the era of elimination. F1000Research 7, 1170 (2018). 

135. Murithi, J. M. et al. Combining Stage Specificity and Metabolomic Profiling to Advance 
Antimalarial Drug Discovery. Cell Chem. Biol. 27, 158–171.e3 (2020). 

136. Anurak, C. & Kesara, N.-B. A systematic review: Application of in silico models for 
antimalarial drug discovery. African J. Pharm. Pharmacol. 12, 159–167 (2018). 

137. Kushwaha, P. P., Vardhan, P. S., Kumari, P., Mtewa, A. G. & Kumar, S. Bioactive lead 
compounds and targets for the development of antimalarial drugs. in Phytochemicals as 
Lead Compounds for New Drug Discovery 305–316 (Elsevier, 2019). doi:10.1016/B978-0-
12-817890-4.00020-2. 



130 
 

138. Sahu, S. et al. In silico ADMET study, docking, synthesis and antimalarial evaluation of 
thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol. Reports 71, 762–767 
(2019). 

139. Arshadi, A. K., Salem, M., Collins, J., Yuan, J. S. & Chakrabarti, D. Deepmalaria: Artificial 
intelligence driven discovery of potent antiplasmodials. Front. Pharmacol. 10, (2020). 

140. Goodsell, D. S. et al. RCSB Protein Data Bank: Enabling biomedical research and drug 
discovery. Protein Sci. 29, 52–65 (2020). 

141. Blasco, B., Leroy, Di. & Fidock, D. A. Antimalarial drug resistance: Linking Plasmodium 
falciparum parasite biology to the clinic. Nature Medicine vol. 23 917–928 (2017). 

142. Li, Y. Y., An, J. & Jones, S. J. M. A computational approach to finding novel targets for 
existing drugs. PLoS Comput. Biol. 7, e1002139 (2011). 

143. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 
26, 127–132 (2008). 

144. Kasam, V. et al. WISDOM-II: Screening against multiple targets implicated in malaria using 
computational grid infrastructures. Malar. J. 8, 88 (2009). 

145. Frampton, J. E. Tafenoquine: first global approval. Drugs 78, 1517–1523 (2018). 

146. World Health Organization. WHO Malaria report 2019. Malaria report 2019 
https://www.who.int/publications-detail/world-malaria-report-2019 (2019). 

147. Jacq, N. et al. Grid-enabled virtual screening against malaria. J. Grid Comput. 6, 29–43 
(2008). 

148. Negi, A., Bhandari, N., Shyamlal, B. R. K. & Chaudhary, S. Inverse docking based screening 
and identification of protein targets for Cassiarin alkaloids against Plasmodium falciparum. 
Saudi Pharm. J. 26, 546–567 (2018). 

149. Andrews, K. T., Fisher, G. & Skinner-Adams, T. S. Drug repurposing and human parasitic 
protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 4, 95–111 (2014). 

150. Lantero, E., Aláez-Versón, C. R., Romero, P., Sierra, T. & Fernàndez-Busquets, X. 
Repurposing Heparin as Antimalarial: Evaluation of Multiple Modifications Toward In Vivo 
Application. Pharmaceutics 12, 825 (2020). 

151. Ramakrishnan, G., Chandra, N. & Srinivasan, N. Exploring anti-malarial potential of FDA 
approved drugs: An in silico approach. Malar. J. 16, 290 (2017). 

152. Álvarez-Carretero, S., Pavlopoulou, N., Adams, J., Gilsenan, J. & Tabernero, L. VSpipe, an 
Integrated Resource for Virtual Screening and Hit Selection: Applications to Protein 
Tyrosine Phospahatase Inhibition. Molecules 23, 353 (2018). 

153. Meirson, T., Samson, A. O. & Gil-Henn, H. An in silico high-throughput screen identifies 
potential selective inhibitors for the non-receptor tyrosine kinase Pyk2. Drug Des. Devel. 
Ther. 11, 1535–1557 (2017). 



131 
 

154. Rognan, D. Proteome-scale docking: myth and reality. Drug Discov. Today Technol. 10, 
e403–e409 (2013). 

155. Kellenberger, E. et al. sc-PDB: An annotated database of druggable binding sites from the 
Protein Data Bank. J. Chem. Inf. Model. 46, 717–727 (2006). 

156. Desaphy, J., Bret, G., Rognan, D. & Kellenberger, E. Sc-PDB: A 3D-database of ligandable 
binding sites-10 years on. Nucleic Acids Res. 43, D399–D404 (2015). 

157. Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and 
exploration. Nucleic Acids Res. 34, D668–D672 (2006). 

158. Bateman, A. et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, 
D158–D169 (2017). 

159. Jacobson, M. P. et al. A Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins 
Struct. Funct. Genet. 55, 351–367 (2004). 

160. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the 
chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012). 

161. Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective 
Receptor Flexibility. J. Comput. Chem. 30, 2785–2791 (2009). 

162. Landrum, G. RDKit: open-source cheminformatics software. (2016). 

163. Wildman, S. A. & Crippen, G. M. Prediction of Physicochemical Parameters by Atomic 
Contributions. J. Chem. Inf. Comput. Sci. 39, 868–873 (1999). 

164. Gathiaka, S. et al. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity 
predictions. J. Comput. Aided. Mol. Des. 30, 651–668 (2016). 

165. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a 
new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, NA-
NA (2009). 

166. Jaghoori, M. M., Bleijlevens, B. & Olabarriaga, S. D. 1001 Ways to run AutoDock Vina for 
virtual screening. J. Comput. Aided. Mol. Des. 30, 237–249 (2016). 

167. Vigers, G. P. A. & Rizzi, J. P. Multiple Active Site Corrections for Docking and Virtual 
Screening. J. Med. Chem. 47, 80–89 (2004). 

168. García-Sosa, A. T., Hetényi, C. & Maran, U. K. O. Drug efficiency indices for improvement of 
molecular docking scoring functions. J. Comput. Chem. 31, 174–184 (2010). 

169. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in 
medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007). 

170. Abad-Zapatero, C. Ligand efficiency indices for effective drug discovery. Expert Opin. Drug 
Discov. 2, 469–488 (2007). 

171. Mignani, S. et al. Present drug-likeness filters in medicinal chemistry during the hit and lead 



132 
 

optimization process: how far can they be simplified? Drug Discov. Today 23, 605–615 
(2018). 

172. Freeman-Cook, K. D., Hoffman, R. L. & Johnson, T. W. Lipophilic efficiency: the most 
important efficiency metric in medicinal chemistry. Future Med. Chem. 5, 113–115 (2013). 

173. Cortes-Cabrera, A., Morreale, A., Gago, F. & Abad-Zapatero, C. AtlasCBS: A web server to 
map and explore chemico-biological space. J. Comput. Aided. Mol. Des. 26, 995–1003 
(2012). 

174. Abad-Zapatero, C., Champness, E. J. & Segall, M. D. Alternative variables in drug discovery: 
promises and challenges. Future Med. Chem. 6, 577–593 (2014). 

175. Arnott, J. A., Kumar, R. & Planey, S. L. Lipophilicity Indices for Drug Development. Journal of 
Applied Biopharmaceutics and Pharmacokinetics (2013). 

176. Luo, Q. et al. The scoring bias in reverse docking and the score normalization strategy to 
improve success rate of target fishing. PLoS One 12, e0171433 (2017). 

177. Jacobsson, M. & Karlén, A. Ligand bias of scoring functions in structure-based virtual 
screening. J. Chem. Inf. Model. 46, 1334–1343 (2006). 

178. Fukunishi, Y., Kubota, S. & Nakamura, H. Noise reduction method for molecular interaction 
energy: Application to in silico drug screening and in silico target protein screening. J. Chem. 
Inf. Model. 46, 2071–2084 (2006). 

179. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. 
Methods 17, 261–272 (2020). 

180. Shityakov, S. & Förster, C. In silico predictive model to determine vector-mediated 
transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinforma. 
Chem. 7, 23–36 (2014). 

181. Desaphy, J., Raimbaud, E., Ducrot, P. & Rognan, D. Encoding protein-ligand interaction 
patterns in fingerprints and graphs. J. Chem. Inf. Model. 53, 623–637 (2013). 

182. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular 
simulation toolkit. Bioinformatics 29, 845–854 (2013). 

183. Pines, G. et al. Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations 
Conferring Resistance to the Antimalarial Drug Fosmidomycin in E. coli. ACS Synth. Biol. 7, 
2824–2832 (2018). 

184. Maláč, K. & Barvík, I. Complex between Human RNase HI and the phosphonate-DNA/RNA 
duplex: Molecular dynamics study. J. Mol. Graph. Model. 44, 81–90 (2013). 

185. Gu, S. et al. Phosphoantigen-induced conformational change of butyrophilin 3A1 (BTN3A1) 
and its implication on Vγ9Vδ2 T cell activation. Proc. Natl. Acad. Sci. U. S. A. 114, E7311–
E7320 (2017). 

186. Sousa da Silva, A. W. & Vranken, W. F. ACPYPE - AnteChamber PYthon Parser interfacE. 



133 
 

BMC Res. Notes 5, 367 (2012). 

187. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB 
protein force field. Proteins 78, 1950–8 (2010). 

188. Nguyen, H., Case, D. A. & Rose, A. S. NGLview–interactive molecular graphics for Jupyter 
notebooks. Bioinformatics 34, 1241–1242 (2018). 

189. Nguyen, H., Roe, D. R., Swails, J. & Case, D. A. PYTRAJ: Interactive data analysis for 
molecular dynamics simulations. New Brunswick, NJ Rutgers Univ. (2016). 

190. Kluyver, T. et al. Jupyter Notebooks-a publishing format for reproducible computational 
workflows. in ELPUB 87–90 (2016). 

191. Lobanov, M. Y., Bogatyreva, N. S. & Galzitskaya, O. V. Radius of gyration as an indicator of 
protein structure compactness. Mol. Biol. 42, 623–628 (2008). 

192. Lemkul, J. A. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the 
GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living J. Comput. Mol. Sci. 1, 
0–53 (2019). 

193. Lunga, M. J. et al. Expanding the SAR of Nontoxic Antiplasmodial Indolyl-3-ethanone Ethers 
and Thioethers. ChemMedChem 13, 1353–1362 (2018). 

194. Makler, M. T. & Hinrichs, D. J. Measurement of the lactate dehydrogenase activity of 
Plasmodium falciparum as an assessment of parasitemia. Am. J. Trop. Med. Hyg. 48, 205–
210 (1993). 

195. Borra, R. C., Lotufo, M. A., Gagioti, S. M., Barros, F. de M. & Andrade, P. M. A simple method 
to measure cell viability in proliferation and cytotoxicity assays. Braz. Oral Res. 23, 255–262 
(2009). 

196. Riss, T. L. et al. Cell viability assays. in Assay Guidance Manual [Internet] (Eli Lilly & Company 
and the National Center for Advancing Translational Sciences, 2016). 

197. Li, Y., Han, L., Liu, Z. & Wang, R. Comparative assessment of scoring functions on an updated 
benchmark: 2. evaluation methods and general results. J. Chem. Inf. Model. 54, 1717–1736 
(2014). 

198. seaborn: statistical data visualization — seaborn 0.11.0 documentation. 
https://seaborn.pydata.org/. 

199. Koes, D. R., Baumgartner, M. P. & Camacho, C. J. Lessons Learned in Empirical Scoring with 
smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 53, 1893–1904 
(2013). 

200. Koebel, M. R., Schmadeke, G., Posner, R. G. & Sirimulla, S. AutoDock VinaXB: 
Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. 
J. Cheminform. 8, 27 (2016). 

201. Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom 



134 
 

structure validation. Protein Sci. 27, 293–315 (2018). 

202. Robien, M. A. et al. Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from 
Plasmodium falciparum at 2.25 Å resolution reveals intriguing extra electron density in the 
active site. Proteins Struct. Funct. Bioinforma. 62, 570–577 (2005). 

203. Nasamu, A. S., Polino, A. J., Istvan, E. S. & Goldberg, D. E. Malaria parasite plasmepsins: 
More than just plain old degradative pepsins. J. Biol. Chem. 295, 8425–8441 (2020). 

204. Ash, J. & Fourches, D. Characterizing the Chemical Space of ERK2 Kinase Inhibitors Using 
Descriptors Computed from Molecular Dynamics Trajectories. J. Chem. Inf. Model. 57, 
1286–1299 (2017). 

205. Bhaumik, P. et al. Structural insights into the activation and inhibition of histo-aspartic 
protease from Plasmodium falciparum. Biochemistry 50, 8862–79 (2011). 

206. Oliver, J. C., Linger, R. S., Chittur, S. V. & Davisson, V. J. Substrate activation and 
conformational dynamics of guanosine 5′-monophosphate synthetase. Biochemistry 52, 
5225–5235 (2013). 

207. Ballut, L. et al. Active site coupling in Plasmodium falciparum GMP synthetase is triggered 
by domain rotation. Nat. Commun. 6, 1–13 (2015). 

208. Bhat, T. N. et al. The PDB data uniformity project. Nucleic Acids Res. 29, 214–218 (2001). 

209. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for ligand 
pocket detection. BMC Bioinformatics 10, 168 (2009). 

210. Perez-Castillo, Y. et al. CompScore: boosting structure-based virtual screening performance 
by incorporating docking scoring functions components into consensus scoring. 
doi:10.1101/550590. 

211. Palacio-Rodríguez, K., Lans, I., Cavasotto, C. N. & Cossio, P. Exponential consensus ranking 
improves the outcome in docking and receptor ensemble docking. Sci. Rep. 9, 5142 (2019). 

212. Abad-Zapatero, C. & Blasi, D. Ligand efficiency indices (LEIs): More than a simple efficiency 
yardstick. Mol. Inform. 30, 122–132 (2011). 

213. Wishart, D. S. DrugBank: a comprehensive resource for in silico drug discovery and 
exploration. Nucleic Acids Research vol. 34 D668–D672 (2005). 

214. Kumar, M., Kaur, T. & Sharma, A. Role of computational efficiency indices and pose 
clustering in effective decision making: An example of annulated furanones in Pf-DHFR 
space. Comput. Biol. Chem. 67, 48–61 (2017). 

215. Abad-Zapatero, C., Champness, E. J. & Segall, M. D. Alternative variables in drug discovery: 
promises and challenges. Future Med. Chem. 6, 577–593 (2014). 

216. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 
47, D930–D940 (2019). 



135 
 

217. Maiorov, V. N. & Crippen, G. M. Size‐independent comparison of protein three‐dimensional 
structures. Proteins: Structure, Function, and Bioinformatics vol. 22 
http://doi.wiley.com/10.1002/prot.340220308 (1995). 

218. Fabrizio Mancin. The strength of the interaction. 1–32 (2017) doi:10.2495/SDP1100. 

219. Brody, T. Clinical Trials 2nd edition. https://www.elsevier.com/books/clinical-
trials/brody/978-0-12-804217-5 (2016). 

220. Fingolimod in COVID-19 - Full Text View - ClinicalTrials.gov. 
https://clinicaltrials.gov/ct2/show/NCT04280588. 

221. Derbyshire, E. R., Prudêncio, M., Mota, M. M. & Clardy, J. Liver-stage malaria parasites 
vulnerable to diverse chemical scaffolds. Proc. Natl. Acad. Sci. U. S. A. 109, 8511–8516 
(2012). 

222. Prado-Prado, F. J., García-Mera, X. & González-Díaz, H. Multi-target spectral moment QSAR 
versus ANN for antiparasitic drugs against different parasite species. Bioorg. Med. Chem. 
18, 2225–2231 (2010). 

223. Trager, W. et al. Human malaria parasites in continuous culture. Science (80-. ). 193, 673–
675 (1976). 

224. Plouffe, D. et al. In silico activity profiling reveals the mechanism of action of antimalarials 
discovered in a high-throughput screen. Proc. Natl. Acad. Sci. U. S. A. 105, 9059–9064 
(2008). 

225. Delano, W. L. The PyMOL Molecular Graphics System. (2002). 

226. Show contacts - PyMOLWiki. https://pymolwiki.org/index.php/Show_contacts. 

227. Friedman, R. & Caflisch, A. Discovery of Plasmepsin Inhibitors by Fragment-Based Docking 
and Consensus Scoring. ChemMedChem 4, 1317–1326 (2009). 

228. Boss, C. et al. Achiral, cheap, and potent inhibitors of plasmepsins I, II, and IV. 
ChemMedChem 1, 1341–1345 (2006). 

229. Barratt, E. et al. Thermodynamic Penalty Arising from Burial of a Ligand Polar Group Within 
a Hydrophobic Pocket of a Protein Receptor. J. Mol. Biol. 362, 994–1003 (2006). 

230. Series, M. C. Methods and Principles in Medicinal Chemistry. 1, 438–438 (2007). 

231. Färber, P. M., Graeser, R., Franklin, R. M. & Kappes, B. Molecular cloning and 
characterization of a second calcium-dependent protein kinase of Plasmodium falciparum. 
Mol. Biochem. Parasitol. 87, 211–216 (1997). 

232. Merckx, A. et al. Structures of P. falciparum Protein Kinase 7 Identify an Activation Motif 
and Leads for Inhibitor Design. Structure 16, 228–238 (2008). 

233. Cabrera, D. G. et al. Plasmodial Kinase Inhibitors: License to Cure? J. Med. Chem. 61, 8061–
8077 (2018). 



136 
 

234. Fritz-Wolf, K. et al. Crystal Structure of the Plasmodium falciparum Thioredoxin Reductase–
Thioredoxin Complex. J. Mol. Biol. 425, 3446–3460 (2013). 

235. Kim, S. et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 
47, D1102–D1109 (2019). 

236. Bosc, N. et al. Large scale comparison of QSAR and conformal prediction methods and their 
applications in drug discovery. J. Cheminform. 11, 4 (2019). 

237. Zhu, T. et al. Hit Identification and Optimization in Virtual Screening: Practical 
Recommendations Based Upon a Critical Literature Analysis. J. Med. Chem. 56, 6560–6572 
(2013). 

238. Loza-Mejía, M. A. et al. In Silico Studies on Compounds Derived from Calceolaria: 
Phenylethanoid Glycosides as Potential Multitarget Inhibitors for the Development of 
Pesticides. Biomolecules 8, 121 (2018). 

239. Protein Arrays for Assessment of Target Selectivity - Drug Discovery World (DDW). 
https://www.ddw-online.com/protein-arrays-for-assessment-of-target-selectivity-1358-
200212/. 

240. Guggisberg, A. M., Amthor, R. E. & Odom, A. R. Isoprenoid biosynthesis in Plasmodium 
falciparum. Eukaryot. Cell 13, 1348–1359 (2014). 

241. Wiley, J. D. et al. Isoprenoid precursor biosynthesis is the essential metabolic role of the 
apicoplast during gametocytogenesis in Plasmodium falciparum. Eukaryot. Cell 14, 128–
139 (2015). 

242. Murkin, A. S., Manning, K. A. & Kholodar, S. A. Mechanism and inhibition of 1-deoxy-d-
xylulose-5-phosphate reductoisomerase. Bioorg. Chem. 57, 171–185 (2014). 

243. Odom, A. R. Five Questions about Non-Mevalonate Isoprenoid Biosynthesis. PLOS Pathog. 
7, e1002323 (2011). 

244. Umeda, T. et al. Molecular basis of fosmidomycin’s action on the human malaria parasite 
Plasmodium falciparum. Sci. Rep. 1, 9 (2011). 

245. Hale, I., M. O’Neill, P., G. Berry, N., Odom, A. & Sharma, R. The MEP pathway and the 
development of inhibitors as potential anti-infective agents. Medchemcomm 3, 418–433 
(2012). 

246. Wiesner, J., Borrmann, S. & Jomaa, H. Fosmidomycin for the treatment of malaria. 
Parasitol. Res. 90, S71–S76 (2003). 

247. Berenger, F., Vu, O. & Meiler, J. Consensus queries in ligand-based virtual screening 
experiments. J. Cheminform. 9, 60 (2017). 

248. Temml, V., Voss, C. V., Dirsch, V. M. & Schuster, D. Discovery of new liver X receptor 
agonists by pharmacophore modeling and shape-based virtual screening. J. Chem. Inf. 
Model. 54, 367–371 (2014). 



137 
 

249. Tangyuenyongwatana, P. & Gritsanapan, W. Virtual screening for novel 1-deoxy-d-xylulose-
5-phosphate reductoisomerase inhibitors: A shape-based search approach. Thai J. Pharm. 
Sci. 41, (2017). 

250. Wadood, A. et al. In silico identification of promiscuous scaffolds as potential inhibitors of 
1-deoxy-d-xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. 
Pharm. Biol. 55, 19–32 (2017). 

251. Chaudhary, K. K. & Prasad, C. V. S. S. Virtual Screening of compounds to 1-deoxy-Dxylulose 
5-phosphate reductoisomerase (DXR) from Plasmodium falciparum. Bioinformation 10, 
358–364 (2014). 

252. Cobb, R. E. et al. Structure-guided design and biosynthesis of a novel FR-900098 analogue 
as a potent Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase 
(Dxr) inhibitor. Chem. Commun. (Camb). 51, 2526–2528 (2015). 

253. de Ruyck, J., Brysbaert, G., Blossey, R. & Lensink, M. F. Molecular docking as a popular tool 
in drug design, an in silico travel. Adv. Appl. Bioinform. Chem. 9, 1–11 (2016). 

254. ChemBridge | Home. https://www.chembridge.com/. 

255. Manhas, A., Patel, D., Lone, M. Y. & Jha, P. C. Identification of natural compound inhibitors 
against PfDXR: A hybrid structure-based molecular modeling approach and molecular 
dynamics simulation studies. J. Cell. Biochem. 120, 14531–14543 (2019). 

256. Sooriyaarachchi, S. et al. Targeting an Aromatic Hotspot in Plasmodium falciparum 1-
Deoxy-d-xylulose-5-phosphate Reductoisomerase with beta-Arylpropyl Analogues of 
Fosmidomycin. ChemMedChem 11, 2024–2036 (2016). 

257. Nikolova, N. & Jaworska, J. Approaches to Measure Chemical Similarity– a Review. QSAR 
Comb. Sci. 22, 1006–1026 (2003). 

258. Kubinyi, H. Similarity and Dissimilarity: A Medicinal Chemist’s View. Perspect. Drug Discov. 
Des. 9/11, 225–252 (1998). 

259. Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for 
fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015). 

260. Brown, A. C. & Fraser, T. R. On the Connection between Chemical Constitution and 
Physiological Action; with special reference to the Physiological Action of the Salts of the 
Ammonium Bases derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia. 
J. Anat. Physiol. 2, 224–42 (1868). 

261. Kumar, A. & Zhang, K. Y. J. Advances in the development of shape similarity methods and 
their application in drug discovery. Front. Chem. 6, 315 (2018). 

262. Ballester, P. J. & Richards, W. G. Ultrafast shape recognition to search compound databases 
for similar molecular shapes. J. Comput. Chem. 28, 1711–1723 (2007). 

263. Zauhar, R. J., Moyna, G., Tian, L. F., Li, Z. J. & Welsh, W. J. Shape Signatures: A New Approach 



138 
 

to Computer-Aided Ligand- and Receptor-Based Drug Design. J. Med. Chem. 46, 5674–5690 
(2003). 

264. Armstrong, M. S. et al. ElectroShape: Fast molecular similarity calculations incorporating 
shape, chirality and electrostatics. J. Comput. Aided. Mol. Des. 24, 789–801 (2010). 

265. Schreyer, A. & Blundell, T. CREDO: A Protein-Ligand Interaction Database for Drug 
Discovery. Chem. Biol. Drug Des. 73, 157–167 (2009). 

266. Schreyer, A. M. & Blundell, T. USRCAT: real-time ultrafast shape recognition with 
pharmacophoric constraints. J. Cheminform. 4, 27 (2012). 

267. Wójcikowski, M., Zielenkiewicz, P. & Siedlecki, P. Open Drug Discovery Toolkit (ODDT): A 
new open-source player in the drug discovery field. J. Cheminform. 7, 1–6 (2015). 

268. Gobbi, A. & Poppinger, D. Genetic optimization of combinatorial libraries. Biotechnol. 
Bioeng. 61, 47–54 (1998). 

269. RDKit Cookbook — The RDKit 2019.09.1 documentation. 
https://rdkit.readthedocs.io/en/latest/Cookbook.html. 

270. Gladysz, R. et al. Spectrophores as one-dimensional descriptors calculated from three-
dimensional atomic properties: applications ranging from scaffold hopping to multi-target 
virtual screening. J. Cheminform. 10, 9 (2018). 

271. Landrum, G. et al. rdkit: 2016_03_4 (Q1 2016) Release. Release 2017.09.1 (2017) 
doi:10.5281/zenodo.60510. 

272. Bentham Science Publisher, B. S. P. Scoring Functions for Protein-Ligand Docking. Curr. 
Protein Pept. Sci. 7, 407–420 (2006). 

273. Liu, J. & Wang, R. Classification of current scoring functions. J. Chem. Inf. Model. 55, 475–
482 (2015). 

274. Wójcikowski, M., Ballester, P. J. & Siedlecki, P. Performance of machine-learning scoring 
functions in structure-based virtual screening. Sci. Rep. 7, 46710 (2017). 

275. Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J. & Koes, D. R. Protein–Ligand Scoring with 
Convolutional Neural Networks. J. Chem. Inf. Model. 57, 942–957 (2017). 

276. Cao, Y. & Li, L. Improved protein–ligand binding affinity prediction by using a curvature-
dependent surface-area model. Bioinformatics 30, 1674–1680 (2014). 

277. Neudert, G. & Klebe, G. DSX: A knowledge-based scoring function for the assessment of 
protein-ligand complexes. J. Chem. Inf. Model. 51, 2731–2745 (2011). 

278. Durrant, J. D. & McCammon, J. A. NNScore 2.0: A Neural-Network Receptor–Ligand Scoring 
Function. J. Chem. Inf. Model. 51, 2897–2903 (2011). 

279. Durrant, J. D. & McCammon, J. A. BINANA: A novel algorithm for ligand-binding 
characterization. J. Mol. Graph. Model. 29, 888–893 (2011). 



139 
 

280. Hu, L., Benson, M. L., Smith, R. D., Lerner, M. G. & Carlson, H. A. Binding MOAD (Mother Of 
All Databases). Proteins Struct. Funct. Bioinforma. 60, 333–340 (2005). 

281. Wang, R., Fang, X., Lu, Y., Yang, C. Y. & Wang, S. The PDBbind database: Methodologies and 
updates. J. Med. Chem. 48, 4111–4119 (2005). 

282. Renxiao  Wang, Xueliang  Fang, Yipin  Lu,  and & Wang*, S. The PDBbind Database:  
Collection of Binding Affinities for Protein−Ligand Complexes with Known Three-
Dimensional Structures. (2004) doi:10.1021/JM030580L. 

283. Guedes, I. A., Pereira, F. S. S. & Dardenne, L. E. Empirical Scoring Functions for Structure-
Based Virtual Screening: Applications, Critical Aspects, and Challenges. Front. Pharmacol. 
9, 1089 (2018). 

284. Quiroga, R. & Villarreal, M. A. Vinardo: A scoring function based on autodock vina improves 
scoring, docking, and virtual screening. PLoS One 11, e0155183 (2016). 

285. Wójcikowski, M., Kukiełka, M., Stepniewska-Dziubinska, M. M. & Siedlecki, P. Development 
of a protein-ligand extended connectivity (PLEC) fingerprint and its application for binding 
affinity predictions. Bioinformatics 35, 1334–1341 (2019). 

286. Searcey, M. The Handbook of Medicinal Chemistry-Principles and Practice. Edited by 
Andrew Davis and Simon E. Ward. ChemMedChem 10, 2111–2112 (2015). 

287. Burley, S. K. et al. RCSB Protein Data Bank: biological macromolecular structures enabling 
research and education in fundamental biology, biomedicine, biotechnology and energy. 
Nucleic Acids Res. 47, D464–D474 (2019). 

288. Chofor, R. et al. Synthesis and Bioactivity of β-Substituted Fosmidomycin Analogues 
Targeting 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase. 58, 2988–3001. 

289. Sooriyaarachchi, S. et al. Targeting an Aromatic Hotspot in Plasmodium falciparum 1-
Deoxy-d-xylulose-5-phosphate Reductoisomerase with β-Arylpropyl Analogues of 
Fosmidomycin. ChemMedChem 11, 2024–2036 (2016). 

290. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). 

291. Diallo, B. N., Tastan Bishop, Ö. & Lobb, K. In silico study of Plasmodium 1-deoxy-d- xylulose 
5-phosphate reductoisomerase ( DXR ) for identification of novel inhibitors from SANCDB 
Bakary N ’ tji Diallo. (2018). 

292. Sooriyaarachchi, S. et al. Targeting an Aromatic Hotspot in Plasmodium falciparum 1-
Deoxy-d-xylulose-5-phosphate Reductoisomerase with β-Arylpropyl Analogues of 
Fosmidomycin. ChemMedChem 11, 2024–2036 (2016). 

293. Tange, O. GNU Parallel 2018. (2018) doi:10.5281/ZENODO.1146014. 

294. SpectrophoresTM — Open Babel v2.3.1 documentation. 
http://openbabel.org/docs/current/Fingerprints/spectrophore.html. 

295. Gladysz, R. et al. Spectrophores as one-dimensional descriptors calculated from three-



140 
 

dimensional atomic properties: applications ranging from scaffold hopping to multi-target 
virtual screening. J. Cheminform. 10, 9 (2018). 

296. Ballester, P. J., Finn, P. W. & Richards, W. G. Ultrafast shape recognition: Evaluating a new 
ligand-based virtual screening technology. J. Mol. Graph. Model. 27, 836–845 (2009). 

297. Armstrong, M. S. et al. ElectroShape: Fast molecular similarity calculations incorporating 
shape, chirality and electrostatics. J. Comput. Aided. Mol. Des. 24, 789–801 (2010). 

298. Landrum, G. Fingerprints in the RDKit. 
https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf. 

299. O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3, 33 (2011). 

300. Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. PROC. 
OF THE 14th PYTHON IN SCIENCE CONF https://www.youtube.com/watch?v=1kkFZ4P-XHg 
(2015). 

301. Wójcikowski, M., Zielenkiewicz, P. & Siedlecki, P. Open Drug Discovery Toolkit (ODDT): A 
new open-source player in the drug discovery field. J. Cheminform. 7, 1–6 (2015). 

302. Cao, Y. & Li, L. Improved protein–ligand binding affinity prediction by using a curvature-
dependent surface-area model. Bioinformatics 30, 1674–1680 (2014). 

303. Wang, R., Lai, L. & Wang, S. Further development and validation of empirical scoring 
functions for structure-based binding affinity prediction. Journal of Computer-Aided 
Molecular Design vol. 16 
https://www.ics.uci.edu/~dock/manuals/xscore1.1_manual/xscore.pdf (2002). 

304. McKinney, W. pandas: a Foundational Python Library for Data Analysis and Statistics. 
Python High Perform. Sci. Comput. 1–9 (2011). 

305. API reference — pandas 1.1.3 documentation. 
https://pandas.pydata.org/docs/reference/index.html. 

306. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of 
nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A. 
98, 10037–41 (2001). 

307. Kumari, R., Kumar, R. & Lynn, A. G-mmpbsa -A GROMACS tool for high-throughput MM-
PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962 (2014). 

308. Ngo, S. T., Hung, H. M. & Nguyen, M. T. Fast and accurate determination of the relative 
binding affinities of small compounds to HIV-1 protease using non-equilibrium work. J. 
Comput. Chem. 37, 2734–2742 (2016). 

309. Zhang, J. L., Zheng, Q. C., Li, Z. Q. & Zhang, H. X. Molecular dynamics simulations suggest 
Ligand’s binding to Nicotinamidase/Pyrazinamidase. PLoS One 7, (2012). 

310. Patel, J. S., Berteotti, A., Ronsisvalle, S., Rocchia, W. & Cavalli, A. Steered molecular 
dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. 



141 
 

J. Chem. Inf. Model. 54, 470–480 (2014). 

311. Li, M. S. Ligand migration and steered molecular dynamics in drug discovery: Comment on 
“Ligand diffusion in proteins via enhanced sampling in molecular dynamics” by Jakub 
Rydzewski and Wieslaw Nowak. Phys. Life Rev. 22–23, 79–81 (2017). 

312. Thai, N. Q., Nguyen, H. L., Linh, H. Q. & Li, M. S. Protocol for fast screening of multi-target 
drug candidates: Application to Alzheimer’s disease. J. Mol. Graph. Model. 77, 121–129 
(2017). 

313. Ngo, S. T., Vu, K. B., Bui, L. M. & Vu, V. V. Effective estimation of ligand-binding affinity using 
biased sampling method. ACS Omega 4, 3887–3893 (2019). 

314. Hub, J. S., De Groot, B. L. & Van Der Spoel, D. G-whams-a free Weighted Histogram Analysis 
implementation including robust error and autocorrelation estimates. J. Chem. Theory 
Comput. 6, 3713–3720 (2010). 

315. Lemkul, J. A. & Bevan, D. R. Assessing the stability of Alzheimer’s amyloid protofibrils using 
molecular dynamics. J. Phys. Chem. B 114, 1652–1660 (2010). 

316. Irwin, J. J. & Shoichet, B. K. ZINC – A Free Database of Commercially Available Compounds 
for Virtual Screening. J. Chem. Inf. Model. 45, 177 (2005). 

317. Kholodar, S. A. & Murkin, A. S. DXP Reductoisomerase: Reaction of the Substrate in Pieces 
Reveals a Catalytic Role for the Nonreacting Phosphodianion Group. Biochemistry 52, 
2302–2308 (2013). 

318. R. Jackson, E. & S. Dowd, C. Inhibition of 1-Deoxy-D-Xylulose-5-Phosphate 
Reductoisomerase (Dxr): A Review of the Synthesis and Biological Evaluation of Recent 
Inhibitors. Current Topics in Medicinal Chemistry vol. 12 706–728 
http://www.eurekaselect.com/96365/article (2012). 

319. Kunfermann, A. et al. IspC as target for antiinfective drug discovery: Synthesis, 
enantiomeric separation, and structural biology of fosmidomycin thia isosters. J. Med. 
Chem. 56, 8151–8162 (2013). 

320. Baldi, P. & Nasr, R. When is chemical similarity significant? the statistical distribution of 
chemical similarity scores and its extreme values. J. Chem. Inf. Model. 50, 1205–1222 
(2010). 

321. Kendall, M. G. A NEW MEASURE OF RANK CORRELATION. Biometrika 30, 81–93 (1938). 

322. Shamsara, J. Evaluation of 11 Scoring Functions Performance on Matrix 
Metalloproteinases. Int. J. Med. Chem. 2014, 1–9 (2014). 

323. Ray, S. & Lindsay, B. G. The topography of multivariate normal mixtures. Ann. Stat. 33, 
2042–2065 (2005). 

324. Madhavilatha, K. N., Rama, G. & Babu, M. Systematic approach for enrichment of docking 
outcome using consensus scoring functions. doi:10.1088/1742-6596/1228/1/012019. 



142 
 

325. Hunter, J. D. Matplotlib: A 2D Graphics Environment https://doi. org/10.1109/MCSE. 
2007.55 Comput. Sci. (2007). 

326. Gu, J., Li, H. & Wang, X. A self-adaptive steered molecular dynamics method based on 
minimization of stretching force reveals the binding affinity of protein-ligand complexes. 
Molecules 20, 19236–19251 (2015). 

327. Do, P. C., Lee, E. H. & Le, L. Steered Molecular Dynamics Simulation in Rational Drug Design. 
J. Chem. Inf. Model. 58, 1473–1482 (2018). 

328. Li, D., Ji, B., Hwang, K.-C. & Huang, Y. Strength of Hydrogen Bond Network Takes Crucial 
Roles in the Dissociation Process of Inhibitors from the HIV-1 Protease Binding Pocket. PLoS 
One 6, e19268 (2011). 

329. Yang, K., Liu, X., Wang, X. & Jiang, H. A steered molecular dynamics method with adaptive 
direction adjustments. Biochem. Biophys. Res. Commun. 379, 494–498 (2009). 

330. Kholodar, S. A. & Murkin, A. S. DXP reductoisomerase: Reaction of the substrate in pieces 
reveals a catalytic role for the nonreacting phosphodianion group. Biochemistry 52, 2302–
2308 (2013). 

331. Vuong, Q. Van et al. A New Method for Navigating Optimal Direction for Pulling Ligand from 
Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics. J. 
Chem. Inf. Model. 55, 2731–2738 (2015). 

332. Jubb, H. C. et al. Arpeggio: A Web Server for Calculating and Visualising Interatomic 
Interactions in Protein Structures. J. Mol. Biol. 429, 365–371 (2017). 

333. scipy.stats.pointbiserialr — SciPy v0.14.0 Reference Guide. 
https://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.stats.pointbiserialr.html. 

334. Khazanov, N. A. & Carlson, H. A. Exploring the Composition of Protein-Ligand Binding Sites 
on a Large Scale. PLoS Comput. Biol. 9, 1003321 (2013). 

335. Jessica L. Goble, H. J. & Jessica, L. G.; Hailey, J.; Jaco, D. R.; Linda, L. S.; Abraham, L.; Gregory, 
L. B. and Aileen, B. The Druggable Antimalarial Target PfDXR: Overproduction Strategies 
and Kinetic Characterization. Protein Pept. Lett. 20, 0–0 (2013). 

336. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding 
affinities. Expert Opin. Drug Discov. 10, 449–461 (2015). 

337. Weis, A., Katebzadeh, K., Söderhjelm, P., Nilsson, I. & Ryde, U. Ligand affinities predicted 
with the MM/PBSA method: Dependence on the simulation method and the force field. J. 
Med. Chem. 49, 6596–6606 (2006). 

338. Xue, J. et al. Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-
Deoxyxylulose-5-phosphate Reductoisomerase. ACS Med. Chem. Lett. 4, 278–282 (2012). 

339. Umeda, T. et al. Molecular basis of fosmidomycin’s action on the human malaria parasite 



143 
 

Plasmodium falciparum. Sci. Rep. 1, 9 (2011). 

340. Lan, N. T. et al. Prediction of AChE-ligand affinity using the umbrella sampling simulation. 
J. Mol. Graph. Model. 93, 107441 (2019). 

341. Park, S., Khalili-Araghi, F., Tajkhorshid, E. & Schulten, K. Free energy calculation from 
steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys. 119, 
3559–3566 (2003). 

342. Durrant, J. D. & McCammon, J. A. NNScore: A neural-network-based scoring function for 
the characterization of protein-ligand complexes. J. Chem. Inf. Model. 50, 1865–1871 
(2010). 

343. Preto, J. & Gentile, F. Assessing and improving the performance of consensus docking 
strategies using the DockBox package. J. Comput. Aided. Mol. Des. 33, 817–829 (2019). 

344. Chaput, L. & Mouawad, L. Efficient conformational sampling and weak scoring in docking 
programs? Strategy of the wisdom of crowds. J. Cheminform. 9, 37 (2017). 

345. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual 
screens. Nature 580, 663–668 (2020). 

346. Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants 
entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012). 

347. Sorokina, M. & Steinbeck, C. Review on natural products databases: Where to find data in 
2020. J. Cheminform. 12, 1–51 (2020). 

348. Calixto, J. B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 
91, (2019). 

349. Newman, D. J. & Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly 
Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020). 

350. Wright, G. D. Opportunities for natural products in 21st century antibiotic discovery. 
Natural Product Reports vol. 34 694–701 (2017). 

351. Chen, Y., De Bruyn Kops, C. & Kirchmair, J. Data Resources for the Computer-Guided 
Discovery of Bioactive Natural Products. J. Chem. Inf. Model. 57, 2099–2111 (2017). 

352. Sorokina, M. & Steinbeck, C. Naples: A natural products likeness scorer—web application 
and database. J. Cheminform. 11, 1–7 (2019). 

353. Cockroft, N. T., Cheng, X. & Fuchs, J. R. STarFish: A Stacked Ensemble Target Fishing 
Approach and its Application to Natural Products. J. Chem. Inf. Model. 59, 4906–4920 
(2019). 

354. Chen, Y., Stork, C., Hirte, S. & Kirchmair, J. NP-Scout: Machine Learning Approach for the 
Quantification and Visualization of the Natural Product-Likeness of Small Molecules. 
Biomolecules 9, 43 (2019). 



144 
 

355. Zeng, X. et al. NPASS: Natural product activity and species source database for natural 
product research, discovery and tool development. Nucleic Acids Res. 46, (2018). 

356. Najjar, A., Olǧaç, A., Ntie-Kang, F. & Sippl, W. Fragment-based drug design of nature-
inspired compounds. Phys. Sci. Rev. 4, (2019). 

357. L, E., H, C., R, S. & A, B. Computational Approach Revealed Potential Affinity of 
Antiasthmatics Against Receptor Binding Domain of 2019n-Cov Spike Glycoprotein. (2020) 
doi:10.26434/CHEMRXIV.12115638.V1. 

358. Musyoka, T. M., Kanzi, A. M., Lobb, K. A. & Tastan Bishop, Ö. Structure Based Docking and 
Molecular Dynamic Studies of Plasmodial Cysteine Proteases against a South African 
Natural Compound and its Analogs. Sci. Rep. 6, 23690 (2016). 

359. Kimuda, M. P., Laming, D., Hoppe, H. C., Ozlem, T. B. & Tastan Bishop, Ö. Identification of 
Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via 
Computational Structure-Based Approaches and in Vitro Inhibition Assays. Molecules 24, 
(2019). 

360. Nyamai, D. W. & Tastan Bishop, Ö. Identification of selective novel hits against plasmodium 
falciparum prolyl tRNA synthetase active site and a predicted allosteric site using in silico 
approaches. Int. J. Mol. Sci. 21, 3803 (2020). 

361. Musyoka, T. M., Kanzi, A. M., Lobb, K. A. & Tastan Bishop, Ö. Structure Based Docking and 
Molecular Dynamic Studies of Plasmodial Cysteine Proteases against a South African 
Natural Compound and its Analogs. Sci. Rep. 6, (2016). 

362. Penkler, D. L., Atilgan, C. & Tastan Bishop, Ö. Allosteric Modulation of Human Hsp90α 
Conformational Dynamics. J. Chem. Inf. Model. 58, 383–404 (2018). 

363. Diallo, B. N. In silico study of Plasmodium 1-deoxy-dxylulose 5-phosphate 
reductoisomerase (DXR) for identification of novel inhibitots from SANCDB. (2018). 

364. Amusengeri, A. & Tastan Bishop, Ö. Discorhabdin N, a South African natural compound, for 
Hsp72 and Hsc70 allosteric modulation: Combined study of molecular modeling and 
dynamic residue network analysis. Molecules 24, (2019). 

365. Bernardini, S., Tiezzi, A., Laghezza Masci, V. & Ovidi, E. Natural products for human health: 
an historical overview of the drug discovery approaches. Nat. Prod. Res. 32, 1926–1950 
(2018). 

366. Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like 
molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 
(2009). 

367. Lewinsohn, T. M. & Prado, P. I. How many species are there in Brazil? Conserv. Biol. 19, 
619–624 (2005). 

368. Pilon, A. C. et al. NuBBEDB: An updated database to uncover chemical and biological 
information from Brazilian biodiversity. Sci. Rep. 7, (2017). 



145 
 

369. Home - SANBI. https://www.sanbi.org/. 

370. Griffiths, C. L., Robinson, T. B., Lange, L. & Mead, A. Marine Biodiversity in South Africa: An 
Evaluation of Current States of Knowledge. PLoS One 5, e12008 (2010). 

371. SANBI. National Biodiversity Assessment 2018 - Synthesis Report. South African National 
Biodiversity Institute 
http://bgis.sanbi.org/NBA/NBA2011_metadata_formalprotectedareas.pdf%5Cnpapers2:/
/publication/uuid/786A77C5-B11A-4F8D-B139-F3F626EBC802 (2018). 

372. Cordell, G. A. Biodiversity and drug discovery - A symbiotic relationship. Phytochemistry 
vol. 55 463–480 (2000). 

373. Ntie-Kang, F. et al. CamMedNP: Building the Cameroonian 3D structural natural products 
database for virtual screening. BMC Complement. Altern. Med. (2013) doi:10.1186/1472-
6882-13-88. 

374. Engelhardt, C., Petereit, F., Lechtenberg, M., Liefländer-Wulf, U. & Hensel, A. Qualitative 
and quantitative phytochemical characterization of Myrothamnus flabellifolia Welw. 
Fitoterapia 114, 69–80 (2016). 

375. Fantoukh, O. I. et al. Safety Assessment of Phytochemicals Derived from the Globalized 
South African Rooibos Tea (Aspalathus linearis) through Interaction with CYP, PXR, and P-
gp. J. Agric. Food Chem. 67, 4967–4975 (2019). 

376. Awolola, G. V., Sofidiya, M. O., Baijnath, H., Noren, S. S. & Koorbanally, N. A. The 
phytochemistry and gastroprotective activities of the leaves of Ficus glumosa. South 
African J. Bot. 126, 190–195 (2019). 

377. Pilón-Jiménez, B. A., Saldívar-González, F. I., Díaz-Eufracio, B. I. & Medina-Franco, J. L. 
BIOFACQUIM: A Mexican compound database of natural products. Biomolecules 9, (2019). 

378. Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. 
Biochim. Biophys. Acta 1830, 3670–95 (2013). 

379. Oliveira, A. B. et al. Plant-derived antimalarial agents: New leads and efficient 
phythomedicines. Part I. alkaloids. An. Acad. Bras. Cienc. 81, 715–740 (2009). 

380. Valli, M. et al. Development of a natural products database from the biodiversity of Brazil. 
J. Nat. Prod. 76, 439–444 (2013). 

381. Chen, C. Y. C. TCM Database@Taiwan: The world’s largest traditional Chinese medicine 
database for drug screening In Silico. PLoS One 6, (2011). 

382. Elsevier. Elsevier Developer Portal. Elsevier.com 
https://dev.elsevier.com/tecdoc_text_mining.html (2010). 

383. CAS. SciFinder - A CAS Solution. Accessed: 24.10.2015. Publication wefw 
http://www.cas.org/products/scifinder (2015). 

384. Selenium with Python — Selenium Python Bindings 2 documentation. https://selenium-



146 
 

python.readthedocs.io/. 

385. Swain, M. PubChemPy: A way to interact with PubChem in Python. (2014). 

386. Swain, M. CIRpy-A Python interface for the Chemical Identifier Resolver (CIR). Matt Swain’s 
Blog (2012). 

387. Gaulton, A. et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic 
Acids Res. 40, D1100-7 (2012). 

388. Sterling, T. & Irwin, J. J. ZINC 15 – Ligand Discovery for Everyone. J. Chem. Inf. Model. 55, 
2324–2337 (2015). 

389. Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. 
Chem. 14, 1347–1363 (1993). 

390. Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a 
comprehensive, computable taxonomy. J. Cheminform. 8, 1–20 (2016). 

391. Chamberlain, S. pygbif 0.4.0 documentation — pygbif 0.4.0 documentation. 
https://pygbif.readthedocs.io/en/latest/index.html. 

392. GBIF. https://www.gbif.org/. 

393. Release, S. 1: Maestro. Schrödinger, LLC, New York, NY 2017, (2017). 

394. Easy compound ordering service - MolPort. https://www.molport.com/shop/index. 

395. Kiss, R., Sandor, M. & Szalai, F. A. http://Mcule.com: a public web service for drug discovery. 
J. Cheminform. 4, (2012). 

396. SANCDB. https://sancdb.rubi.ru.ac.za/. 

397. Michael Glenister. Unpublished pipeline. 

398. Tosco, P., Stiefl, N. & Landrum, G. Bringing the MMFF force field to the RDKit: 
Implementation and validation. J. Cheminform. 6, 37 (2014). 

399. Musyoka, T. M. Unpublished pipeline. (2020). 

400. A Janssen, A. P. et al. Drug Discovery Maps, a Machine Learning Model That Visualizes and 
Predicts Kinome−Inhibitor Interaction Landscapes. (2018) doi:10.1021/acs.jcim.8b00640. 

401. Naveja, J. J. & Medina-Franco, J. L. Finding Constellations in Chemical Space Through Core 
Analysis. Front. Chem. 7, 510 (2019). 

402. Yosipof, A., Guedes, R. C. & García-Sosa, A. T. Data Mining and Machine Learning Models 
for Predicting Drug Likeness and Their Disease or Organ Category. Front. Chem. 6, 162 
(2018). 

403. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–
2830 (2011). 



147 
 

404. sklearn.manifold.TSNE — scikit-learn 0.23.1 documentation. https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.TSNE.html. 

405. Van Der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–
2625 (2008). 

406. Nguyen, K. T., Blum, L. C., Van Deursen, R. & Reymond, J. L. Classification of organic 
molecules by molecular quantum numbers. ChemMedChem 4, 1803–1805 (2009). 

407. Landrum, G. RDKit Documentation. Read. Writ. (2011) doi:10.5281/zenodo.60510. 

408. Kearney, S. E. et al. Canvass: A Crowd-Sourced, Natural Product Screening Library for 
Exploring Biological Space. (2018) doi:10.26434/CHEMRXIV.7172369.V2. 

409. Sánchez-Cruz, N., Pilón-Jiménez, B. A. & Medina-Franco, J. L. Functional group and diversity 
analysis of BIOFACQUIM: A Mexican natural product database. F1000Research 8, 2071 
(2020). 

410. Garcia-Castro, M., Zimmermann, S., Sankar, M. G. & Kumar, K. Scaffold Diversity Synthesis 
and Its Application in Probe and Drug Discovery. Angewandte Chemie - International 
Edition vol. 55 7586–7605 (2016). 

411. Singh, N. et al. Chemoinformatic Analysis of Combinatorial Libraries, Drugs, Natural 
Products, and Molecular Libraries Small Molecule Repository. J. Chem. Inf. Model. 49, 
1010–1024 (2009). 

412. Saldívar-Gonzaíez, F. I. et al. Chemical Space and Diversity of the NuBBE Database: A 
Chemoinformatic Characterization. J. Chem. Inf. Model 59, (2019). 

413. The Scopy’s documentation — Scopy 1.2.3 documentation. 
https://scopy.iamkotori.com/index.html. 

414. Ertl, P. & Rohde, B. The Molecule Cloud - Compact visualization of large collections of 
molecules. J. Cheminform. 4, 1 (2012). 

415. Sterling, T. & Irwin, J. J. {ZINC} 15 – Ligand Discovery for Everyone. 55, 2324–2337. 

416. Scott, D. E., Coyne, A. G., Hudson, S. A. & Abell, C. Fragment-based approaches in drug 
discovery and chemical biology. Biochemistry 51, 4990–5003 (2012). 

417. Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference 
compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. 
Chem. 53, 2719–2740 (2010). 

418. Saldívar-González, F. I., Valli, M., Andricopulo, A. D., Da Silva Bolzani, V. & Medina-Franco, 
J. L. Chemical Space and Diversity of the NuBBE Database: A Chemoinformatic 
Characterization. J. Chem. Inf. Model. 59, 74–85 (2019). 

419. Kluyver, T. et al. Jupyter Notebooks—a publishing format for reproducible computational 
workflows. in Positioning and Power in Academic Publishing: Players, Agents and Agendas 
- Proceedings of the 20th International Conference on Electronic Publishing, ELPUB 2016 



148 
 

87–90 (2016). doi:10.3233/978-1-61499-649-1-87. 

420. McKinney, W. Data Structures for Statistical Computing in Python. Proc. 9th Python Sci. 
Conf. 56–61 (2010) doi:10.25080/majora-92bf1922-00a. 

421. Brugman, S. pandas-profiling: Exploratory Data Analysis for Python. (2019). 

422. Ntie-Kang, F. et al. AfroDb: a select highly potent and diverse natural product library from 
African medicinal plants. PLoS One (2013) doi:10.1371/journal.pone.0078085. 

423. Ntie-Kang, F. et al. ConMedNP: A natural product library from Central African medicinal 
plants for drug discovery. RSC Adv. 4, 409–419 (2014). 

424. Castells, E., Mulder, P. P. J. & Pérez-Trujillo, M. Diversity of pyrrolizidine alkaloids in native 
and invasive Senecio pterophorus (Asteraceae): Implications for toxicity. Phytochemistry 
108, 137–146 (2014). 

425. Kuroda, M., Ori, K. & Mimaki, Y. Ornithosaponins A-D, four new polyoxygenated steroidal 
glycosides from the bulbs of Ornithogalum thyrsoides. Steroids 71, 199–205 (2006). 

426. Ornithogalum thyrsoides | PlantZAfrica. http://pza.sanbi.org/ornithogalum-thyrsoides. 

427. Ornithogalum saundersiae | PlantZAfrica. http://pza.sanbi.org/ornithogalum-saundersiae. 

428. Iguchi, T. et al. Cholestane glycosides from Ornithogalum saundersiae bulbs and the 
induction of apoptosis in HL-60 cells by OSW-1 through a mitochondrial-independent 
signaling pathway. J. Nat. Med. 73, 131–145 (2019). 

429. Mann, M. G. A. et al. Halogenated monoterpene aldehydes from the South African marine 
alga Plocamium corallorhiza. J. Nat. Prod. 70, 596–599 (2007). 

430. Knott, M. G. et al. Plocoralides A-C, polyhalogenated monoterpenes from the marine alga 
Plocamium corallorhiza. Phytochemistry 66, 1108–1112 (2005). 

431. Davies-Coleman, M. & Veale, C. Recent Advances in Drug Discovery from South African 
Marine Invertebrates. Mar. Drugs 13, 6366–6383 (2015). 

432. Pettit, G. R. et al. Isolation and structure of the unusual Indian Ocean Cephalodiscus 
gilchristi components, cephalostatins 5 and 6. Can. J. Chem. 67, 1509–1513 (1989). 

433. SANBI. Threatened Species Programme | SANBI Red List of South African Plants. South 
African National Biodiversity Institute http://redlist.sanbi.org/stats.php (2019). 

434. Bultum, L. E., Woyessa, A. M. & Lee, D. ETM-DB: Integrated Ethiopian traditional herbal 
medicine and phytochemicals database. BMC Complement. Altern. Med. 19, (2019). 

435. Ntie-Kang, F. et al. Virtualizing the p-ANAPL Library: A Step towards Drug Discovery from 
African Medicinal Plants. PLoS One 9, e90655 (2014). 

436. Banerjee, P. et al. Super Natural II-a database of natural products. Nucleic Acids Res. (2015) 
doi:10.1093/nar/gku886. 



149 
 

437. Garcia-Castro, M., Zimmermann, S., Sankar, M. G. & Kumar, K. Scaffold Diversity Synthesis 
and Its Application in Probe and Drug Discovery. Angew. Chemie - Int. Ed. 55, 7586–7605 
(2016). 

438. Swain, M. C. & Cole, J. M. ChemDataExtractor: A Toolkit for Automated Extraction of 
Chemical Information from the Scientific Literature. J. Chem. Inf. Model. 56, 1894–1904 
(2016). 

439. Papadatos, G. et al. SureChEMBL: a large-scale, chemically annotated patent document 
database. Nucleic Acids Res. 44, (2016). 

440. fisher_test function | R Documentation. 
https://www.rdocumentation.org/packages/rstatix/versions/0.6.0/topics/fisher_test. 

441. Antunes, E. M. et al. Identification and in vitro anti-esophageal cancer activity of a series of 
halogenated monoterpenes isolated from the South African seaweeds Plocamium suhrii 
and Plocamium cornutum. Phytochemistry 72, 769–772 (2011). 

442. Afolayan, A. F. et al. Antiplasmodial halogenated monoterpenes from the marine red alga 
Plocamium cornutum. Phytochemistry 70, 597–600 (2009). 

443. Dias, D. A., Urban, S. & Roessner, U. A Historical overview of natural products in drug 
discovery. Metabolites 2, 303–336 (2012). 

444. Wink, M. Annual plant reviews, biochemistry of plant secondary metabolism. vol. 40 (John 
Wiley & Sons, 2011). 

445. Castelli, M. V & López, S. N. Homoisoflavonoids: Occurrence, biosynthesis, and biological 
activity. in Studies in Natural Products Chemistry vol. 54 315–354 (Elsevier, 2017). 

446. Mottaghipisheh, J. & Iriti, M. Sephadex® LH-20, Isolation, and Purification of Flavonoids 
from Plant Species: A Comprehensive Review. Molecules 25, 4146 (2020). 

447. Li, F., Janussen, D., Peifer, C., Pérez-Victoria, I. & Tasdemir, D. Targeted isolation of 
tsitsikammamines from the antarctic deep-sea sponge latrunculia biformis by molecular 
networking and anticancer activity. Mar. Drugs 16, 268 (2018). 

448. Health | South African Government. https://www.gov.za/about-sa/health. 

449. Meyers, J., Carter, M., Mok, N. Y. & Brown, N. On the origins of three-dimensionality in 
drug-like molecules. Future Med. Chem. 8, 1753–1767 (2016). 

450. Ertl, P. & Schuhmann, T. Cheminformatics Analysis of Natural Product Scaffolds: 
Comparison of Scaffolds Produced by Animals, Plants, Fungi and Bacteria. Mol. Inform. 
(2020) doi:10.1002/minf.202000017. 

451. CHEMBL1766622 Compound Report Card. 
https://www.ebi.ac.uk/chembldb/index.php/compound/inspect/CHEMBL2079699. 

452. Simon, L. et al. Synthesis, anticancer, structural, and computational docking studies of 3-
benzylchroman-4-one derivatives. Bioorganic Med. Chem. Lett. 27, 5284–5290 (2017). 



150 
 

453. Limban, C. et al. The use of structural alerts to avoid the toxicity of pharmaceuticals. 
Toxicology Reports vol. 5 943–953 (2018). 

454. Homeopathic Treatment of Premenstrual Syndrome - Full Text View - ClinicalTrials.gov. 
https://clinicaltrials.gov/ct2/show/NCT02402049. 

455. Weigt, S., Huebler, N., Strecker, R., Braunbeck, T. & Broschard, T. H. Developmental effects 
of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) 
embryos. Reprod. Toxicol. 33, 133–141 (2012). 

456. Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an 
empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998). 

457. Ntie-Kang, F. et al. NANPDB: A Resource for Natural Products from Northern African 
Sources. J. Nat. Prod. 80, 2067–2076 (2017). 

458. Medina-Franco, J. L. Towards a unified Latin American Natural Products Database: LANaPD. 
Futur. Sci. OA 6, FSO597 (2020). 

459. Holschneider, D. P., Bradesi, S. & Mayer, E. A. The role of experimental models in 
developing new treatments for irritable bowel syndrome. Expert Rev. Gastroenterol. 
Hepatol. 5, 43–57 (2011). 

460. Moloney, R. D., O’Mahony, S. M., Dinan, T. G. & Cryan, J. F. Stress-induced visceral pain: 
Toward animal models of irritable-bowel syndrome and associated comorbidities. Front. 
Psychiatry 6, 15 (2015). 

461. Balmus, I. M. et al. Irritable bowel syndrome between molecular approach and clinical 
expertise—searching for gap fillers in the oxidative stress way of thinking. Med. 56, 38 
(2020). 

462. Polovinkin, L. et al. Conformational transitions of the serotonin 5-HT3 receptor. Nature 563, 
275–279 (2018). 

463. Moskwa, A. & Boznańska, P. Role of serotonin in the pathophysiology of the irritable bowel 
syndrome. Wiad. Lek. 60, 371–376 (2007). 

464. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019). 

465. Juza, R. et al. Recent advances with 5 HT3 modulators for neuropsychiatric and 
gastrointestinal disorders. Med. Res. Rev. (2020). 

466. Bhalerao, Y. P. & Wagh, S. J. A review on Thymol encapsulation and its controlled release 
through biodegradable polymer shells. Int. J. Pharm. Sci. Res. 9, 4522–4532 (2018). 

467. Subramaniyam, S. et al. Oral Phyto-thymol ameliorates the stress induced IBS symptoms. 
Sci. Rep. 10, 13900 (2020). 

468. Ziemba, P. M. et al. Activation and modulation of recombinantly expressed serotonin 
receptor type 3A by terpenes and pungent substances. Biochem. Biophys. Res. Commun. 
467, 1090–1096 (2015). 



151 
 

469. Lansdell, S. J., Sathyaprakash, C., Doward, A. & Millar, N. S. Activation of human 5-
hydroxytryptamine type 3 receptors via an allosteric transmembrane sites. Mol. 
Pharmacol. 87, 87–95 (2015). 

470. de Oliveira-Pierce, A. N., Zhang, R. & Machu, T. K. Colchicine: a novel positive allosteric 
modulator of the human 5-hydroxytryptamine3A receptor. J. Pharmacol. Exp. Ther. 329, 
838–847 (2009). 

471. Price, K. L., Hirayama, Y. & Lummis, S. C. R. Subtle Differences among 5-HT 3 AC, 5-HT 3 AD, 
and 5-HT 3 AE Receptors Are Revealed by Partial Agonists. ACS Chem. Neurosci 8, (2017). 

472. Huey, R. & Morris, G. M. Using AutoDock with AutoDockTools: A Tutorial. 
http://mgltools.scripps.edu/downloads/previous-
releases/downloads/tars/releases/DocTars/DOCPACKS/AutoDockTools/doc/UsingAutoDo
ckWithADT.pdf. 

473. Reeves, D. C., Sayed, M. F. R., Chau, P.-L., Price, K. L. & Lummis, S. C. R. Prediction of 5-HT3 
receptor agonist-binding residues using homology modeling. Biophys. J. 84, 2338–2344 
(2003). 

474. Verheij, M. H. P. et al. Design, synthesis, and structure-activity relationships of highly 
potent 5-HT3 receptor ligands. J. Med. Chem. 55, 8603–8614 (2012). 

475. Hai Nguyen, Daniel R. Roe, Jason Swails, D. A. C. Interactive data analysis for molecular 
dynamics simulations. Hai Nguyen, Daniel R. Roe, Jason Swails, David A. Case. (2016)[1] 
PYTRAJ: Interactive data analysis for molecular dynamics simulations. (2016). 

476. Thompson, A. J. Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol. 
Sci. 34, 100–109 (2013). 

477. Maiorov, V. N. & Crippen, G. M. Size-independent comparison of protein three-dimensional 
structures. Proteins Struct. Funct. Genet. 22, 273–283 (1995). 

478. Abad-Zapatero, C. Ligand efficiency indices for effective drug discovery: a unifying vector 
formulation. Expert Opinion on Drug Discovery vol. 16 763–775 (2021). 

479. Xue, J. et al. Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-
Deoxyxylulose-5-phosphate Reductoisomerase. ACS Med. Chem. Lett. 4, 278–282 (2012). 

480. Konzuch, S. et al. Binding modes of reverse fosmidomycin analogs toward the antimalarial 
target IspC. J. Med. Chem. 57, 8827–8838 (2014). 

481. Deng, L. et al. Structures of 1-deoxy-D-xylulose-5-phosphate reductoisomerase/lipophilic 
phosphonate complexes. ACS Med. Chem. Lett. 2, 165–170 (2011). 

482. Saggu, G. S., Pala, Z. R., Garg, S. & Saxena, V. New Insight into Isoprenoids Biosynthesis 
Process and Future Prospects for Drug Designing in Plasmodium. Front. Microbiol. 7, 1421 
(2016). 

483. Truong, D. T., Nguyen, M. T., Vu, V. V. & Ngo, S. T. Fast pulling of ligand approach for the 



152 
 

design of Β-secretase 1 inhibitors. Chem. Phys. Lett. 671, 142–146 (2017). 

484. Masini, T., Kroezen, B. S. & Hirsch, A. K. H. Druggability of the enzymes of the non-
mevalonate-pathway. Drug Discov. Today 18, 1256–1262 (2013). 

 



153 
 

APPENDIX 

Appendix  A Some PfDXR residues and their identified/suggested roles from literature 

 

Appendix  B SFs rescoring summary statistics.  1 

Descriptive statistics for all scores for the successfully rescored 48972 ligands. 2 

SFs mean std min 25% 50% 75% max 

Rf-score_V1 6.74 0.68 5.02 6.24 6.82 7.24 8.69 

Vina -7.11 0.64 -10.25 -7.53 -7.08 -6.68 -4.51 

NNScore 5.47 0.81 3.02 4.89 5.38 6 7.88 

Rf-score_V2 6.52 0.46 4.97 6.1 6.61 6.88 7.75 

Rf-score_V3 6.37 0.53 4.68 5.96 6.44 6.8 8.13 

PLEC 3.95 1 0.53 3.25 3.91 4.61 8.29 

PfDXR Residues  Role References 

SER269, ASN311,SER270, 
SER306,  LYS312, HIS293 

Bind phosphonate moiety   319,339,479  

GLY87, THR86, SER88, 
LYS116, ILE89, ASN115, , 
SER117, GLY299, GLU206 

Co-factor NADPH binding  339 

GLU315, ASP231, GLU233,  
Metal coordination and fosmidomycin 
hydroxamate group binding 

250,319,339,479,480 

HIS293 
May to pre-orientat THE ligand in the binding 
site and for loop closure. 

 242 

PRO294 
Important for maintaining the structure of the 
flexible loop. 

339 

GLY299 
Suggested to contribute to the flexible loop 
flexibility  

339 

MET298 

Hydrophobic interactions with NADPH 
nicotinamide moiety and inhibitors  backbone. 
M298A or M298V mutations may impair 
substrate (DXP) binding and its turnover. 

56 

TRP296 

DXR inhibitors discrimination,  
Cover binding site and interact with inhibitor 
Better interaction with electron-deficient and  
hydrophobic group. 

  
292,339,481 

Linker region Support the catalytic domain  482 
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Rf-score_V4 6.32 0.45 4.42 6.06 6.38 6.64 7.74 

Idock -7.39 0.58 -10.09 -7.76 -7.35 -6.98 -5.08 

Cyscore -2.71 0.64 -4.94 -3.15 -2.72 -2.28 0.02 

DSX -83.96 12.83 -135.4 -92.49 -83.79 -75.26 -34.96 

Smina -7.53 0.59 -10.33 -7.91 -7.49 -7.11 -4.91 

AutoDock -24.34 4.92 -43.32 -27.72 -24.66 -21.24 4.15 

Xscore -7.92 0.39 -9.61 -8.18 -6.5 -7.92 -7.66 

Appendix  C Protein-ligand interaction energy during 20 ns MD 3 

Heatmap of the PLIE for the 18 ligands during the 20 ns simulations. Ligand are ranked according 4 
to the average PLIE. The colors is scaled to the minimum and maximum of the data. PLIE is given 5 
in kcal/mol unit. The figure was generated using Seaborn 198. 6 

 7 

 8 

 9 

 10 

Appendix  D Correlation between Fmax and Tmax 11 
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Tmax vs Fmax scatter plot. Every point represents a compound. Every point is a compound. The figure was 12 
prepared using Seaborn 198. 13 

 14 

 15 

A scatter plot showing the correlation between the rupture force (Fmax) and the corresponding 16 
time points (Tmax). Each point represents a compound with its Tmax plotted on the x-axis and 17 
Fmax on the y-axis. The blue line represents the regression line.  18 

Fmax was strongly correlated to Tmax with a Pearson correlation coefficient of 0.91. This high 19 
correlation was only observed on the average of the force-time profiles from the 10 SMD 20 
simulations, not on the individual trajectories. The Pearson correlation for the individual 21 
trajectories was much lower. Sampling provided convergence of the results, but also this is related 22 
to the constant velocity (cv), constant force (cf) nature of the SMD simulation. Fmax-Tmax 23 
correlation can hence be used to assess the sampling when combining multiple trajectories in cv-24 
cf SMD. Indeed multiple trajectories have been already often used in SMD in previous studies 25 
310,331,483.  26 

Appendix  E Protein-ligand interactions energies (short-range and Lennar Jones) during SMD 27 
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 28 

 29 

Appendix  E shows the changes in the interaction energy between PfDXR and the different ligands 30 
over the time course of the first SMD simulation. The interaction energy results from the potential 31 
energy decomposition to only include nonbonded terms between the protein and the ligand 106. 32 
It is the sum of the electrostatic (short-range) and van der Waals (vdW) interaction energy 33 
components extracted from an energy file using the gmx energy module. It is important to note 34 
here that these terms decomposition, does not hold physical meaning regardless of the force field 35 
used. And only the total interaction energy is useful when the force field has been parametrized 36 
in such a way106.    37 

The two time-series are correlated showing similar increasing trend to zero. Both curves are only 38 
stable in the early stage of the simulation (about first 100 ps) before starting to increase during 39 
the unbinding where interactions are broken. Lowest and maximum values are recorded at 0 ps 40 
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and about 500 ps for the different systems. The electrostatic curve spikes after vdW one attained 41 
zero in some systems. These two time points correspond to the most stable, with full interaction 42 
between the protein and the ligand and the completely solvated state of the ligand respectively. 43 

Truong et al. showed that the total interaction energy difference (ΔGTIE) from SMD was the best 44 
metric to evaluate the relative binding affinity of the BACE1 inhibitors that comparing it to the 45 
rupture force Fmax and to the pulling work (Wpull) 483 46 

The electrostatic contribution curve was less smooth than the vdW one. Indeed, it shows sharper 47 
variations. This can be linked to the stronger nature of the electrostatic interactions than the vdW 48 
ones resulting in higher energy variation when formed or broken. In general, vdW interaction 49 
energy shows higher contributions than the electrostatic one across the different ligands. 50 

Appendix  F Total interaction energy with vdW and electrostatic contributions 51 

 52 

 53 

Appendix  F shows the total interaction energy difference (ΔGTIE) from SMD. ΔGTIE was extracted 54 
from the first SMD trajectory only. The ΔGTIE across the different systems range between -180.21 55 
KJ/mol and -510.86 KJ/mol. LC5 showed the best ΔGTIE value with -510.86 KJ/mol, resulting from 56 
a significantly higher electrostatic contribution -328.79 KJ/mol which was greater than the double 57 
of the average electrostatic contribution of all the ligands. Assuming the concept that the stronger 58 
binding inhibitor has stronger non- bonded contact 483, hence the co-crystallized ligand shows the 59 
highest affinity here.  Interestingly, LC5 showed the best energy value only with the ΔGTIE but not 60 
in MMPBSA, US, Fmax or Wpull.  61 
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All ΔGTIE are negative, showing favorable interactions between PfDXR and the different ligands. vdW has a 62 
higher contribution to ΔGTIE  thank the electrostatic interactions an average of -325.40 KJ/mol. 63 
Interestingly, ligands with higher electrostatic contribution than vdW seems to perform better. LC5, 64 
ZINC000050633276, ZINC000057348471, ZINC000230215778 are the top ligands ranking by the  ΔGTIE  with 65 
respectively -510.86 KJ/mol, -441.97 KJ/mol, -440.98 KJ/mol and -433.98 KJ/mol. The same ligands also 66 
have the highest electrostatic contributions to their binding but also have better electrostatic than their 67 
vdW energy. This can be related to the rather hydrophilic nature of the binding site. Indeed the binding 68 
site has a low ratio of apolar amino acids (0.36) 484 with the phosphate moiety binding in a charged region 69 
and the hydroxamate moiety in a hydrophilic area. Electrostatic interactions thus provide room for 70 
improvement in order to potentiate ligand binding affinity to DXR. 71 

Appendix  G Umbrella histograms 72 
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 73 

 74 

Appendix  G  shows the umbrella histograms for the different ligands. X-axis is the reaction coordinate 75 
(Protein-ligand COM distance) the Y one represents the count. Colors do not have meaning.  76 

The length of the reaction coordinate was about 3 nm. The histograms provide sufficient overlap 77 
for effective sampling of the entire reaction coordinate. We although note some poorly sampled 78 
regions for some ligands: ZINC000091845778 (around 0.6nm), ZINC000072302893 (0.6nm), 79 
ZINC000173601880 (0.9nm), ZINC000023128752 (1.1nm), ZINC000000202238 (0.6nm and 1nm). 80 
However, these lacks sampling in a few points in the reaction coordinate are not likely to influence 81 
the final free energy difference. 82 

Appendix  H LC5 binding pose in PfDXR active site 83 
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 84 

 85 

LC5 (magenta) crystal structure in PfDXR (5JAZ) active site. Residues in a radius of 3.5 Ångströms 86 
light grey of LC5 are labelled with their residue numbers and one-letter code. White indicate 87 
carbon atoms and other element are in atom types color. They are drawn in stick. Polar contacts 88 
with the ligand are displayed in dashed lines in yellow. LC5 hydroximate group coordinates Mn2+ 89 
(violet) in addition GLU233, ASP231, GLU315 and two waters (red balls). Its phosphonate moiety 90 
bind in a polar region (ASN311, SER306, SER269, SER270). Its aromatic ring extend toward HIS293, 91 
TRP296, PRO358 , MET298, CYS338 289. The representation was produced using Pymol 225. 92 
Interaction were generated using the show_contacts script 226. 93 

Appendix  I LC5 pulling pathways from PfDXR binding site. 94 
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 95 

The figure in Appendix  I shows the pulling pathways determined using Caver 3.0.1 Pymol plugin. PfDXR is 96 
in green ribbon with LC5 in red stick.. A. All possible unbinding paths (in the different colors) identified by 97 
Caver. B. The best unbinding path (blue). The path is shorter and is less curved than the other pathways, 98 
hence potentially more energetically favourable. The figure was generated using Pymol 225. 99 

Appendix  J Best poses binding energies in docking on full structures (Extracellular and 100 
Membrane domains) 101 

 102 

Proteins 
Best pose binding energies 
(kcal/mol) 

 

Serotonin  Tropisetron Thymol NAG 
6HIQ -8.0 -8.9 -7.9 -6.7 
6HIS  -6.7 -9.3 -6.5 -5.6 
6HIN -7.8 -8.0 -7.9 -6.4 
6HIO -.7.8 -8.6 -8.2 -6.5 
4PIR -6.6 -.8.8 -6.9 -5.6 

Appendix  K Serotonin and thymol docked extracellular domain binding energies. 103 

 104 

Proteins 

Best pose binding energies (kcal/mol) 

Serotonin (Crystal) 
Serotonin 
(redocked) 

Thymol 

6HIQ - 6.4 -8.0 -7.9 
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6HIS Tropisetron  
(Crystal) 

- 4.6 Tropisetron 
(Crystal) 

-9.2 -6.5 

6HIN - 5.9 -7.9 -8.0 

6HIO -5.8 -7.8 -8.2 

 105 

Appendix  L Blind docking parameters 106 

Blind docking parameters for full structures (FS) (Extracellular + Membrane domains) and ECD. The docking 107 
was first performed on the ECD and later on the FS to investigate potential membrane domain binding.  108 

Receptor 4PIR FS 
6HIN 
FS 

6HIO 
FS 

6HIQ 
FS 

6HIS FS 
6HIN 
ECD 

6HIO 
ECD 

6HIQ 
ECD 

6HIS 
ECD 

center_x 154.29 124.68 124.68 128.05 124.69 124.68 124.68 128.07 124.69 

center_y 203.38 124.68 124.67 128.06 124.69 124.68 124.68 128.05 124.69 

center_z 265.85 137.73 129.25 131.77 125.23 156.34 156.67 159.61 153.22 

size_x 147.95 87.68 85.02 85.71 85.17 82.68 80.02 80.71 80.17 

size_y 136.67 87.48 84.98 85.59 84.97 82.48 79.98 80.59 79.97 

size_z 167.21 117.05 155.93 157.93 161.94 67.42 66.99 68.35 69.71 

exhaustiveness 6000 6000 6000 6000 6000 529 512 516 513 

CPU 24 24 24 24 24 4 4 4 4 

 109 

Appendix  M Serotonin, tropisetron and thymol interacting residues.  110 

Common interacting residues are in color. 111 

Proteins 
Interacting residues 

Serotonin (Crystal) Thymol 

6HIQ 
A-ILE201 
E-ARG65 
E-TYR64 

A-TRP156 
A-TYR207 
A-PHE199 
A-ASN101 
A-THR154 
A-ILE201 
E-TYR126 
E-TYR64 
E-TRP63 
E-ARG65 
E-ILE44 

6HIS 
Serotonin (Docked) 
A-TRP156 

A-TRP156 
A-TRP207 



163 
 

 112 

Appendix  N 2D interaction plot of receptor-ligand complexes.  113 

Only ligand poses taken to MD simulation are shown. The 2D plots are obtained from Discovery 114 
Studio Visualizer V1.7.2.0.16349.  115 

A-ASN101 
E-TRP63 
Tropisetron (Crystal) 
A-TRP156 
A-TYR207 
E-ARG65 
E-ILE44 
E-TRP63 
 

E-ARG65 
E-ILE44 
E-TRP63 
E-TRP126 
 

 
6HIN 

A-ILE44 
A-ARG65 
A-TRP63 
A-TYR126 
A-TYR64 
A-LYS127 
B-THR154 
B-PHE199 
B-TYR207 
B-ILE201 
B-TRP156 
B-SER155 

A-TRP63 
A-TYR126 
A-ILE44 
B-TRP156 
B-TYR207 
B-PHE199 

6HIO 

A-ARG65 
A-LYS127 
A-TYR64 
B-TYR207 

A-ARG65 
A-TRP63 
A-TYR126 
A-ILE44 
B-TRP156 
B-TYR207 
B-PHE199 
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 116 

 117 

 118 

Appendix  O Serotonin docking validation.  119 
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Crystalized serotonin was redocked to the structure (green) and compared to the blind docking result 120 
(yellow). The RMSD value between crystalized and docked serotonin was RMSD 2.2 Å. 121 

 122 

Appendix  P Thymol, serotonin, and tropisetron docked in 4PIR.  123 

(A) Cartoon representation of serotonin receptor (PDB ID: 4PIR) with docked serotonin (in green), thymol 124 
(in cyan), and tropisetron in magenta. B. Thymol, serotonin, and tropisetron docked in 6HIQ. (A) Cartoon 125 
representation of serotonin receptor (PDB ID: 6HIQ) with docked serotonin (in green), thymol (in cyan), 126 
and tropisetron in magenta. C. Docked thymol (face view) at two subunits interface forming the binding 127 
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site. Serotonin in green and thymol in yellow D. Docked Thymol (top view) Serotonin in green and thymol 128 
in yellow. 129 

 130 


