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Abstract

Abstract

Virtual Reality offers the possibility for humans to interact in a more natural way with the computer

and its applications. Currently, Virtual Reality is used mainly in the field of visualisation where 3D-

graphics allow users to more easily view complex sets of data or structures. The field of interaction in

Virtual Reality has been largely neglected due mainly to problems with input devices and equipment

costs. Recent research has aimed to overcome these interaction problems, thereby creating a usable

interaction platform for Virtual Reality.

This thesis presents a background into the field of interaction in Virtual Reality. It goes on to propose a

generic framework for the implementation of common interaction techniques into a homogeneous

application development environment. This framework adds a new layer to the standard Virtual Reality

toolkit – the interaction abstraction layer, or interactor layer. This separation is in line with current HCI

practices. The interactor layer is further divided into specific sections – input component, interaction

component, system component, intermediaries, entities and widgets. Each of these performs a specific

function, with clearly defined interfaces between the different components to promote easy object-

oriented implementation of the framework. The validity of the framework is shown in comparison with

accepted taxonomies in the area of Virtual Reality interaction. Thus demonstrating that the framework

covers all the relevant factors involved in the field.

Furthermore, the thesis describes an implementation of this framework. The implementation was

completed using the Rhodes University CoRgi Virtual Reality toolkit. Several postgraduate students in

the Rhodes University Computer Science Department utilised the framework implementation to

develop a set of case studies. These case studies demonstrate the practical use of the framework to

create useful Virtual Reality applications, as well as demonstrating the generic nature of the framework

and its extensibility to be able to handle new interaction techniques.

Finally, the generic nature of the framework is further demonstrated by moving it from the standard

CoRgi Virtual Reality toolkit, to a distributed version of this toolkit. The distributed implementation of

the framework utilises the Common Object Request Broker Architecture (CORBA) to implement the

distribution of the objects in the system. Using this distributed implementation, we are able to ascertain

that CORBA is useful in the field of distributed real-time Virtual Reality, even taking into account the

extra overhead introduced by the additional abstraction layer.

We conclude from this thesis that it is important to abstract the interaction layer from the other layers

of a Virtual Reality toolkit in order to provide a consistent interface to developers. We have shown that

our framework is implementable and useful in the field, making it easier for developers to include

interaction in their Virtual Reality applications. Our framework is able to handle all the current aspects

of interaction in Virtual Reality, as well as being general enough to implement future interaction

techniques. The framework is also applicable to different Virtual Reality toolkits and development

platforms, making it ideal for developing general, cross-platform interactive Virtual Reality

applications.
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With the current growth in the power of the desktop computer and the growing availability of dedicated

graphics rendering hardware, virtual reality is becoming more and more mainstream in its application.

PC Magazine [Ozer, 98] predicts that standard desktop machines will soon be equipped with 3D

accelerator cards, with performance levels on these machines reaching four times the level of

performance on current, high-end workstations. In fact, the current generation of personal computer

processors (e.g. the IntelTM PIII and AMD K6) have had their instruction sets increased to incorporate

dedicated 3D graphics rendering instructions. The specialised input devices necessary to implement

virtual reality are also becoming more commonplace. For example, many companies now sell head-

mounted displays (HMDs). While the hardware now exists to support virtual reality applications, the

software tools available in this field are still lacking in usability.

1.1. Towards a Better Interaction Framework

Interaction in immersive virtual reality is an important step towards making virtual reality a useful

computing tool and for the evolution of the next generation of computer interfaces. There are various

problems associated with interaction in virtual reality. Most of these pertain to our inability to identify

all the features, movements, etc. of the human being that are used for interaction in the real world, in

order to reproduce this interaction style inside a virtual environment. Compromises are made and

values that are measurable (with current technology) are combined with various interaction techniques

(the result of many years of research) to approximate natural interaction inside a virtual environment.

These interaction techniques have mostly been developed independently of one another and do not

conform to any common framework. The goal of this project is the design and implementation of a

generic interaction framework, which will allow developers to quickly integrate existing interaction

techniques with their applications. The framework also provides a generic method for the

implementation of new techniques in such a way that they may easily integrate with new and existing

applications.

1.2. Background

1.2.1. What Exactly is Virtual Reality?

The term Virtual Reality (VR) has been around for many years, and has been used to describe different

systems, ranging from the original mechanical flight simulators, through 3-D games through to motion

capture applications. A very broad definition of the term would be:

“ The use of advanced technology to visualise large and complicated sets of data more easily”

VR usually involves a computer generating multi-sensory output i.e. vision, sound, etc. and specialised

input and output devices (e.g. HMDs and magnetic trackers). Isdale [Isdale, 98] divides the field of VR

up by considering the different interfaces presented to a user. Using this idea, there are five main

branches of VR:
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•  Window on World (WoW) systems: These systems use standard desktop monitors to display a 2D

image of a 3D system. Most desktop 3D applications are examples of this.

•  Video Mapping: Video mapping involves mapping video onto a 3D object and changing the users’

views of the video depending on their relative positions and orientations to the object.

•  Immersive systems: Immersive systems attempt to use non-standard input and output devices to

make users feel that they are part of the system, not observing the system from outside (e.g.

through a window.)

•  Telepresence: Telepresence involves users performing some action at a given location, and having

their actions electronically reproduced at some remote location. An example of this may be a

doctor in one country, remotely performing surgery on a patient in another country.

•  Mixed (or Augmented) Reality systems: Augmented reality systems combine the real world with a

computer-generated environment (e.g. using a head mounted display that allows the user to see

through the screens to the outside world).

This project deals mainly with immersive systems and how they are designed and implemented to

make it easier for a user to interact with the system.

1.2.2. What are Immersive Systems?

Immersive VR places a user inside the application environment. This usually involves a head mounted

display (HMD) and some form of tracking which enables the application to pin-point the position and

orientation of various important reference points on the user’s body (e.g. the hands and head). The

information from the trackers is used to generate a Virtual Environment (VE) where users are able to

interact in an intuitive way with the application they are trying to use. For example, when the user

moves their head, the picture displayed on the HMD updates to give the impression that they are

looking around inside a room.

1.2.3. Why Focus on Interaction?

Currently successful virtual reality systems make good use of immersion techniques to enable users

simply to explore virtual worlds, with little or no interaction. Applications like building walkthroughs,

psychotherapy applications and some games fall into this category. On the other hand, applications that

rely on interactions between users and their environments have not been as successful. The reasons for

this lack of success when attempting to allow a user to interact with a virtual environment are covered

in the following chapter. These factors tend to lower the sense of realism that a user feels when using

interactive VR systems, as well as making the systems difficult and frustrating to use. Study in the field

of immersive, interactive VR has been carried out since the early 1980’s and various ideas for

overcoming specific problems associated with this field have been proposed [Bowman, 97; Mine, 95;

Mine, 97]. This research has produced various interaction techniques which, coupled with current

advances in hardware, have paved the way for a usable VR interaction system.
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1.2.4. Why Not Stick With 2D Interfaces?

The current desktop interface which is prevalent on most machines (known as the Windows, Icons,

Mouse and Pointer (WIMP) interface) is the third generation of interface to be used on computers [van

Dam, 97]. The first generation of user interface (1950s and 60s) was characterised by the batch mode

use of computers where programs were written (usually on punched cards) and run with no possibility

of interactive use by the user. The second generation (1960s to early 1980s) was characterised by the

timesharing use of mainframe computers by many users, all operating through small ‘dumb’ text

terminals. This command line based interface was the first interface for the desktop machine. The

WIMP interface was developed at Xerox PARC labs in the early 1980s and first appeared on the Apple

Macintosh in 1984. Since then, the interface has spread to all forms of desktop machine, making such

machines readily accessible to users from a wide range of backgrounds.

There are various problems with the WIMP interface [van Dam, 97]. Firstly, the more complex the

interface, the nonlinearly harder the interface becomes to learn due to the profusion of widgets and

features. Secondly, users spend too much time manipulating the interface as opposed to the application

itself. Thirdly, WIMP interfaces are designed for 2D applications and do not scale well to the 3D

realm. Fourthly, the mouse and keyboard interfaces are not natural to users. WIMP interfaces take no

advantage of speech, hearing and touch.

“ WIMP GUIs based on the keyboard and the mouse are the perfect interface only for creatures with a

single eye, one or more single jointed fingers, and no other sensory organs” – Bill Buxton (of

Alias/Wavefront)

[van Dam, 97]

The fourth generation of user interface (called the Post-WIMP) interface is currently being developed.

Post-WIMP interfaces attempt to involve all the senses in parallel, utilise natural language interaction

and involve multiple users. The immersive virtual reality interface is the eventual goal of Post-WIMP

research.

1.3. Document Overview

This thesis is arranged as follows:

•  Chapter 2 deals with related work in the field of VR. We detail the specific problems with

immersive VR interaction, as well as their solutions. We examine the various interaction

techniques and show how they can be combined into a generic interaction system. We then

examine the different proposed methods for implementing such a system, and examine various

systems which have done this.
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•  Chapter 3 details our implementation of an immersive VR interaction system. The abstract

framework is discussed first. This framework is then justified by considering how it would

implement the various interaction techniques. Details of the implementation are then discussed.

•  Chapter 4 lists various case studies on the use of the system. The system was used to implement

various projects in the Rhodes University Computer Science Postgraduate school. These projects

are discussed, as well as various other small applications designed to shown the usability of the

system.

•  Chapter 5 details how the system was moved from a single user system to a multi-user distributed

system, using the Common Object Request Broker Architecture (CORBA). The chapter begins by

giving details about CORBA and its usage. We then proceed with details about how CORBA was

used to distribute the system.

•  Chapter 6 details the conclusions we gained from the project as well as detailing what future work

can be performed on the system.
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2.1. The Problems with Interaction in VR

Virtual reality aims to allow users to interact with the systems they are using on a more intuitive level

(e.g. via gestures and movement as opposed to typing commands on a keyboard). These added

interaction possibilities are what make virtual reality so exciting in its application. Unfortunately, they

also make it difficult to learn and use efficiently. The most notably successful applications of virtual

reality all fall into the realm of spatial visualisation [Mine, 97; Mine, 97-2], with little or no attempt

made to allow direct object manipulation. The main reasons for this lack of interactive usability can be

summarised as follows:

2.1.1. Object Manipulation

The precise manipulation of objects in the virtual environment is difficult. While one is able to

accurately track the positions of objects and represent this visually, the lack of haptic feedback makes it

difficult for the user to precisely manipulate objects. Haptic feedback is the term given to 'feel' of an

object. This 'feel' is a result of the weight of the object pulling the hand downwards, and pressure

exerted by the fingers on the object, all of which the brain registers and uses to help accurately position

or manipulate the object. At present, virtual reality is able to reproduce only the visual information

about the object. Thus, users may see their 'hands' holding an object, but at no point do they actually

believe that they are holding something real.

There is no easy way to simulate the weight of an object. It is possible to simulate, to a certain degree,

the 'pressure' felt by the hand as a result of holding the object. The methods for simulating the feel of an

object range from electrical stimulation of the nerves of the fingers, to the usage of air sacks to put

pressure on the fingers. None of these methods satisfactorily reproduces the sense of touch that a user

has when holding a real object. An alternative solution to this problem is to provide real world

equivalents of the objects in the virtual world, which the user is physically able to pick up, thus

utilising the full range of haptic feedback. The Virtual Tricorder [Wloka, 95] is an example of this idea,

whereby a 3D mouse is used as the principal input device, and given a representation in the virtual

world, corresponding to its physical size, shape, etc. Another example of this type of input device is the

Virtual Remote Control [Rorke, 99] developed as part of the CoRgi interaction system, and described

in detail in the Case Studies section.

Allowing for the constrained movement of objects [Bowman, 95] is another method that helps solve the

problem of accurately placing objects inside a virtual environment. Constrained movement means

allowing the object only to move in a certain direction at any given time. For example, the user may

choose to constrain the object to move only along the x-axis, in which case the y- and z-axis changes

that come from the input device are simply disregarded. This idea can be further extended to the case
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where numerical input of data (from the keyboard or some virtual representation thereof [Mine, 1997;

Mine 97-2]) is allowed for the precise placing of objects.

2.1.2. Equipment Cost

The equipment used to capture data about the user for the virtual environment (e.g. magnetic trackers,

which provide a 3D value for their position and orientation) is often prohibitively expensive. Thus one

is forced to use a limited number of them (usually 2 or 3). This, in turn, restricts the amount of input

one is able to receive from the user, and thus, restricts the usability of the system. The problems

associated with having only a limited number of trackers present can often be alleviated using

mathematical methods like inverse kinematics. In inverse kinematics the positions of limbs, joints, etc.

of the user that are not directly tracked can be estimated, based on the known positions of their other

limbs, joints, etc. Another possible solution to this problem comes from the fact that, as the technology

behind these devices becomes more established, their price will drop.

2.1.3. Measurement Precision Limitations

Another problem associated with many, if not all, virtual reality input devices is that of limited

precision. There is a limit to the accuracy of the readings that these devices produce, and they are also

prone to an effect known as ‘drifting’ whereby the value from the device changes when it should

remain steady (e.g. if the tracker has not moved). This lack of precision means that applications are

only able to utilise gross movement on the part of the user (e.g. the overall position of the hand) with

the fine movements (e.g. the position of the individual fingers) not being measured. Initially, it was

believed that such gross movements were sufficient to create a believable experience. Unfortunately,

this lack of measurable fine movements does impact on the usability of the system. The use of gross

movement often results in users having to exaggerate their movements in order to use the system,

resulting in user fatigue.

The problems associated with the limited precision of the input devices are often a matter of the

technology behind the device. As with the problem of cost, as the devices are used, more and more

research goes into their manufacture, so they will become more accurate. Other problems, like drifting,

can also only be solved with better hardware. New devices are always being developed (e.g. inertial

trackers) which solve many of the problems associated with the current hardware.

2.1.4. Physical Work Surfaces

The lack of physical work surfaces in the virtual environment is also a major interaction problem.

People depend on naturally occurring physical constraints to give them some idea of the behaviour of

objects (e.g. a book pushed over the edge of a desk will fall to the ground [Mine, 97; Mine, 97-2]).

These physical workspaces also often provide some form of support for the user, alleviating fatigue and

allowing more precise manipulation of limbs. The addition of 'workbenches' and touch-sensitive tablets



9

Designing and Implementing a Virtual Reality Interaction Framework

Chapter 2 – Related Work

[Mine, 97; Mine, 97-2; Rorke 99] in both the virtual and real worlds of the user, look to go a long way

towards alleviating this interaction problem. But such devices/objects often restrict the movements of

the user in one way or another, and thus their introduction into a general interaction system may have

detrimental effects.  They have proved very useful in solving specific interaction problems, but as yet,

no single device exists which solves general interaction problems.

2.1.5. Interface Standards

Virtual environments also lack a common interface standard. The standard Windows, Icons, Mouse and

Pointer (WIMP) interface is now common on all desktop computer platforms, and the user is easily

able to identify common interface elements and begin productive work with little or no learning curve.

Unfortunately, no such common interface exists in virtual reality, so the user is forced to start from a

very basic level whenever a new piece of software is encountered.

The reason for this lack of unity in the field of virtual reality interaction stems mostly from the fact that

there is no standard set of input devices. Even with assumptions made as to what input devices are to be

used, the range of interaction possibilities makes it difficult to settle on a 'common group' of actions

which will be able to service the whole of the virtual reality field. A further problem arises from the

fact that the WIMP metaphor is no longer sufficient. Yet, the 'real-world' metaphor where how to use

an object may be gleamed from its physical constraints (for example) is also not completely applicable.

The lack of information an application is able to convey to the user about the objects in the virtual

environment makes it impossible to simulate all the different nuances of the real world accurately.

There are also other very fundamental differences between the desktop and virtual reality interaction

metaphors. For example, in virtual reality, the user can be considered to be inside the interface [Mine,

97; Mine, 97-2]. As users move around the world, the interface elements that they use to interact with it

must move around as well, in order to be easy to locate and reach. These elements also take up valuable

space on the display, so they must also be kept out of the 'field of vision' of the user when not needed.

Proprioception [Mine, 97; Mine, 97-2] is the term used to describe one’s sense of the position and

orientation of one’s body. This idea has been used, with some success, to solve the problem of where to

place interface elements so that they are always at hand when the user needs them, yet not constantly

obscuring the display. The interface elements are attached to different parts of the user's bodies e.g.

behind their heads, out of the field of view, yet they can always be easily reached when needed.

While immersive interfaces are definitely more complex than their desktop counterparts and most

desktop specific HCI research is not directly applicable, certain high level concepts do apply.

Specifically, the guidelines given by Norman [Norman, 90] apply even more to the immersive interface

than they do to the desktop interface. Norman introduces a set of guidelines, which are summarised as

follows: Interface elements should have affordances. These affordances are elements of the objects that

explain their operation to the user. Mappings must exist between user actions and their effects on the

system i.e. any input action by the user should produce a proportional output action in the system.
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Feedback is also a major factor contributing to a usable interface. The user should never be in doubt as

to whether or not an action has been accomplished or not. Bowman [Bowman, 95] adds that good

feedback should naturally follow from good mappings.

2.1.5.1. 3D Widgets

The success of the WIMP interface can be attributed mainly to the fact that it provides users with a

familiar set of tools, no matter what particular application they may be using. Virtual reality can offer

this same familiarity, but not just widgets that look and act like widgets that the user is familiar with

from other computer programs. Rather, virtual reality can take the idea a step further, presenting the

user with widgets which look and act like objects or tools with which the user is familiar from the real

world.

The interface elements in the virtual world should all be modelled, as closely as possible, after real

world equivalents.  Thus, users should be able to immediately identify the operation of the various

elements from their knowledge of the real world [Norman, 90]. For instance, the CoRgi system (and

most other interactive VR systems) uses a model of a human hand as the basic interaction element, with

gestures being the basic operations. This method has proved very intuitive, with even novice users

being immediately able to identify the interface element and use it to manipulate objects in the world,

based on their intuitive knowledge of the working of the human hand.

The creation of widgets that conform to a user’s intuitive knowledge of the real world is a subject based

largely in the field of psychology. Norman [Norman, 90] describes some of the basic requirements of

an interactive widget, based on an understanding of human psychology. These guidelines are covered

in more detail later in this chapter.

2.2. Requirements of a VR Interaction Toolkit

2.2.1. 2D vs. 3D Interaction

Research into human computer interfaces (HCI) has been ongoing ever since the first computers were

built. Many complex and usable 2D interfaces have been developed for the standard WIMP interaction

metaphor that is prevalent on today’s desktop computer systems. Unfortunately, much of the 2D-

interface research is not directly applicable to interaction in an immersive system.

Bowman [Bowman, 99] explains that the main difference between the 2D and 3D interaction system is

that the desktop (2D) interface is inherently more constrained than its immersive (3D) counterpart. He

goes on to point out that most desktop applications use only two dimensions of input (or 2 degrees of

freedom (DOF)), which map directly onto the standard 2D controller, the mouse. In an immersive

system, on the other hand, the user often has to deal with input that has 6 DOF (3 positional and 3

rotational) input, which immediately places higher cognitive load on the user.
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Several researchers are currently working on incorporating these types of constraints into immersive

interaction systems [Lindeman, 99; Rorke, 99; Wloka, 95]. Most of this research involves giving users

some form of flat surface (e.g. a touch-pad) on which they can select/manipulate objects, as they would

use a mouse or a touch-sensitive screen. These types of interaction technique have advantages in that

they offer a sense of touch to the user (supplied by the tablet) which would be impossible to generate

otherwise and which adds a feeling or reality to the system. Unfortunately, they are rather restrictive in

that they are forcing a 3D immersive medium to act in the same way as a 2D desktop medium. Our

experience with this type of interface is that it is popular with users, but limited in what it is able to add

to the system.

The desktop interaction system has also had many years in which to mature, resulting in a standard set

of interaction metaphors and widgets with which users have become familiar. Interactive, immersive

systems have only been around for about 10 years. They do not have a standard set of input devices or

interaction metaphors (like the 2D widget). Most immersive VR systems do utilise certain common

devices, like the head-mounted display (HMD) and magnetic trackers, but how these are used is not

standardised. For example, one developer may decide to track the position of the user’s hand, while

another decides to track the position of one of the user’s fingers. Both methods attempt to utilise the

user’s intuitive abilities to select objects using their hand, but the resultant effect in each case is quite

different. These devices are also very costly, so users lack exposure to the technology.

Jacob, Deligiannidis and Morrison [Jacob, 99] explain the difference between the traditional desktop

interface and immersive interfaces, by considering the different flows of data that each operate with.

The standard desktop interface operates in a serial manner with tokens or commands being placed into

a single command stream and processed by the system. Immersive interfaces are typically characterised

by the use of multiple, parallel command streams. They summarise the particular differences as

follows. Considering the differences of desktop versus immersive interfaces:

•  Single-threaded input/output versus parallel, asynchronous, but interrelated dialogues.

•  Discrete tokens versus continuous and discrete inputs and responses.

•  Precise tokens versus probabilistic input, which may be difficult to tokenise.

•  Sequence, not time, is meaningful versus real-time requirements and dead-line based

computations.

•  Explicit user commands versus passive (“non command-based”) monitoring of the user.

2.2.2. Design Philosophies

The eventual design of a VR interaction system depends largely on the particular application being

developed. The designer is always required to make trade-offs between various different aspects of the

system and their choice of what aspects to focus on should be driven by some eventual goal

application. In the field of interactive VR, there are also several basic philosophies that a designer

needs to be aware of when designing systems. These philosophies include ideas like the naturalist

versus the magical interaction approach, as well as more fundamental ideas like direct versus indirect
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interaction with objects. Researchers are still divided as to which philosophy is better and the end result

usually depends on the final application and, to some degree, on the developer’s preference.

2.2.2.1. Naturalist vs. Magical

Many interactive VR applications attempt mimic the way that we interact in the real world (the

naturalistic approach) using the assumption that we will be able to use our intuitive knowledge of real

world interaction to better utilise an interactive VR system. Unfortunately, due to various factors these

systems are often not able to recreate real world interaction accurately [Rorke, 98]. Bowman, Mine and

many other researchers [Bowman, 99; Mine, 97] argue against the totally naturalistic approach to

interactive VR, opting rather for a mixture of natural and magic (not based on real world interaction)

interaction metaphors. VR enables the user to move beyond what is possible in the real world, so that

utilising a purely natural interaction metaphor may preclude many useful VR applications which would

not be possible in the real world.

2.2.2.2. Direct vs. Indirect

Another major design choice for interactive VR systems is the direct versus the indirect approach. In

the direct approach, the user selects and manipulates objects in the VE using simple mappings to some

movement (e.g. hand movement). This is analogous to the way in which these actions are accomplished

in the real world and again, the assumption is that intuitive knowledge of the real world will allow the

user to interact with greater efficiency. The indirect approach forces the user to interact with the system

using some intermediary (e.g. widgets or tools). This technique is analogous to the desktop interaction

metaphor, where all user input is mediated through the use of simple widgets. Mine [Mine, 95] believes

that interacting with an environment indirectly is a natural interaction metaphor based on the fact that

many actions in the real world are carried out through tools and not directly. Norman, [Norman, 90] on

the other hand, states that interaction should be as direct as possible and the addition of intermediate

tools often serves to complicate the system. Whereas direct interaction does have a very strong intuitive

basis, the lack of accuracy when tracking the user’s hand, for example, leads to problems with purely

direct interaction techniques. Often, indirect techniques offer the user finer control at the expense of

intuitive use.

2.2.2.3. Formal Interface Design and Evaluation Methods

Many of the interaction methods currently used in interactive VR were designed solely by intuition on

the part of the developer. Most researchers agree that intuition is not sufficient to produce usable

systems and that some form of formal evaluation is necessary [Bowman, 97; Bowman, 99; Hix, 99;

Poupyrev, 97]. There is a growing trend in the field to apply various system design ideas (taken from

standard HCI research) to the creating of immersive interfaces [Bowman, 99; Hix, 99; Poupyrev, 97]

that will hopefully produce some standardisation in the field in the near future. There are many
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different formal evaluation techniques available, most involving the creation of progressively refined

versions of the system, with user testing of each design to identify weaknesses.

2.2.3. The Basics of Interaction

Bowman [Bowman, 99] suggests that there are several universal tasks that are common to all

interactive VR applications and that implementing these tasks correctly can lead to a usable

application. These universal tasks are travel, selection, release and manipulation. Each of the separate

universal tasks will now be examined in more detail.

2.2.3.1. Travel

Travel or viewpoint control involves changing the user’s view of the VE. The most common techniques

for choosing where to move in VR environments are the gaze-oriented, pointing or discrete target

specification.

2.2.3.1.1. Continuous Specification

Both gaze-oriented and pointing travel are termed to be continuous specification travel techniques,

because the user is able to change the direction and speed of travel continuously throughout the

movement. These techniques require constant cognitive thought on the part of the users (i.e. they must

constantly choose where they wish to go next). While this has the advantage that it offers great

flexibility of movement, the amount of thought that goes into the movement is considerably larger than

when using the discrete target specification technique. The term cognitive thought is used to describe

the measure of thought that the user has to apply in order to achieve a given task. The more cognitive

thought required by the user to effect travel, the less they have available to perform useful actions in

the system.

In gaze-oriented travel, users are moved in the direction in which they are looking. In pointing travel,

the orientation of a user’s hand is used to select in what direction the user wishes to travel (i.e. userS

point in the direction in which they want to travel.)

Bowman shows that the pointing technique only becomes useful when relative motion travel (i.e.

moving relative to some object in the VE) is required by the application [Bowman, 97-2; Bowman, 99].

Users of the pointing technique often approximate a gaze technique by placing a ‘hand’ in front of

them and simply travelling where they are looking.

2.2.3.1.2. Discrete Target Specification

The discrete target specification technique requires a number of set viewpoints in the VR environment,

which the user is able to move between at will. The lower flexibility of this technique is



14

Designing and Implementing a Virtual Reality Interaction Framework

Chapter 2 – Related Work

counterbalanced by the fact that very little cognitive thought is required on the part of users - they

simply select their destination and the application takes them there.

Discrete target specification allows the user to travel only between a set of pre-defined destinations.

These destinations are usually pre-programmed into the application, but methods for defining them

dynamically while the application is running have been demonstrated.

When using the discrete target specification technique, it is still advisable to move the user between the

two points in a smooth manner and to avoid simply changing the viewpoint to that position/orientation

of the required destination – a method known as teleporting. Instantaneously moving the viewpoint to a

new destination causes a dramatic drop in spatial awareness and can cause user discomfort. The speed

with which users are moved between the pre-set points has been shown to have little effect on their

spatial awareness, contrary to intuition [Bowman, 99; Bowman, 97-2].

2.2.3.1.3. Controlling Speed, Acceleration, etc.

As well as deciding where to go, travel techniques require methods for allowing the user to start and

stop travel, as well as select velocity and acceleration for the movement. Starting and stopping travel is

usually linked to some sort of command from the user e.g. using some hand gesture. The orientation of

the viewpoint is usually linked to a tracker on the HMD, allowing users to look around in the

environment as they would in real life. The speed at which users travels is also an important factor, but

in most cases, it is sufficient to simply have a set speed, as opposed to giving the user specific speed

control. Mine [Mine, 95] details various speed control techniques.

The addition of constraints to movement has been shown to relieve much of the cognitive load placed

on the user. The most common form of constraint is one, which appears in the real world i.e. the

constraint to travel at a fixed height from the ‘ground’. Bowman [Bowman, 99; Mine, 95] demonstrated

a marked improvement in spatial awareness, speed and other metrics when constraining users to move

at a set height from the ground (i.e. constraining their movement to 2 dimensions).

2.2.3.2. Selection and Release

The two universal tasks of selection and release are often considered together, as they tend to

complement each other. Selection involves the user communicating with the application about which

object in the VE they wish to manipulate. Release is the message from the user to the application that

they do not wish to perform any further operations on the currently selected object. Selection is often

the precursor operation to manipulation.

The selection and manipulation operations are often at the heart of the naturalist interaction

implementation. Developers often implement selection to mimic the way we pick up objects in the real

world. In many cases, this purely naturalistic approach to selection is not appropriate.
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Bowman states:

“When careful consideration is taken, it should be obvious that a real-world technique would be

inadequate for selection and manipulation tasks in VEs, since the tasks we wish to perform go beyond

real-world capabilities. In the same way, a travel technique based on physical walking will be

completely inadequate if the application requires travel on a global scale. The power of VEs is not to

duplicate the physical world, but to extend the abilities of the user to allow him to perform tasks not

possible in the physical world.”

[Bowman, 99]

The majority of applications employ a simple naturalist selection technique whereby the user selects an

object by moving their ‘hand’ to within the boundaries of the object. This interaction technique is very

intuitive and works well for small VEs where all the interesting objects are within the reach of the user.

In the case of larger systems, more complicated techniques have to be employed. Most of the more

complicated selection techniques can be categorised as being based on one of the following ideas, arm-

extension, ray-casting or image plane.

2.2.3.2.1. Arm-Extension Techniques

Arm-extension techniques allow users to extend their reach in the VE. This addresses the problem of

not being able to reach object outside of the physical reach of a user’s arm. There are many different

methods for deciding how a user’s reach might be extended. The most common of these is scaling

[Bowman, 97; Bowman, 99; Mine, 97] and a technique called Go-Go [Bowman, 97; Bowman, 99;

Poupyrev, 96].

The scaling technique involves scaling the size of users so that their arm reach is extended to a length

sufficient to reach a particular object [Mine, 97]. Technically, the scaling technique uses occlusion (an

image plane technique) or ray-casting to choose what object the user wishes to select, then scales the

user appropriately, so that their reach now extends to the object.  Scaling techniques can cause user

disorientation and discomfort, especially if not implemented correctly.

The Go-go [Poupyrev, 96] technique maps the length of the user’s reach in the VE onto the function

Figure 2 – 6 – The Go-Go Mapping Function [Poupyrev, 96]
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shown in Figure 2 – 6. Up to a certain distance (D) from the user, the distance reached is a linear

function of the distance from the user’s viewpoint. After point D, the mapping function becomes non-

linear. The reach of users with this method is still finite, but it extends far beyond their physical reach.

There are several variations to this method [Bowman, 97; Bowman, 99] involving mainly changes to

the mapping function and additions like extending the reach over time.

There is an additional subset of arm extension techniques that use some indirect means to extend and

retract the users’ reach. Examples of this are the reeling techniques used by Bowman [Bowman, 99].

With the reeling techniques, a user is able to manually control the reach of their virtual hand using

buttons to extend or reduce the reach. Bowman found that, while these techniques had no basis in real

world interaction, they proved popular with users.

2.2.3.2.2. Ray-Casting Techniques

Ray-casting techniques also allow users to extend their reach in the VE. Ray casting in a VE is similar

to using a laser-pointer in the real world. The system defines a ‘ray’, emanating from the user’s hand

and extending into infinity. Users control the direction of this ray by altering the position and

orientation of their hands. When an object intersects the ray, it may be selected. Ray-casting techniques

extend the real world idea of pointing at objects. Bowman [Bowman, 99] showed that ray-casting was

the most efficient way of selecting objects that were out of the user’s reach, provided that they were not

too far away to be easily seen and that there were no other objects obscuring the user’s view of them.

Where ray-casting fails is in the manipulation that is possible on the selected object.

2.2.3.2.3. Image Plane Techniques

Image plane techniques are a combination of both 2D and 3D interaction. Selection is carried out in the

view-plane by disregarding the depth dimension of the scene. An example of an image plane technique

is occlusion, where users select objects by occluding the object in their view of the VE. Most image

plane techniques may be considered to be ray-casting techniques, with the ray emanating from the

user’s eye.

2.2.3.2.4. Other Selection Techniques

There is also a further group of selection techniques, which do not fall into any of the above three

categories. Many of these types of techniques are based on a naturalist approach with the additions of

extensions that make the technique more suitable to an immersive environment. An example of this

type of method is the World In Miniature (WIM) technique [Stoakley]. In the WIM technique users are

presented with a miniature (or dolls-house) version of the VE which they can use to select an object in

the VE and manipulate it. Any changes made to the WIM are also made to the full size VE.
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2.2.3.2.5. Controlling Selection

One other aspect of selection that needs to be considered is that there needs to be some specific

command from the user to the application to select a particular object. The reason for this is that there

will often be a number of objects that can possibly be selected at any given time. Users need to be

provided with some sort of feedback as to which objects they are currently able to select, and some

method to inform the application that the currently selected object is, indeed, the one required for

selection. This command is usually in the form of some sort of gesture. The release of a selected object

is often accomplished by the same method that was used to perform the final selection. Again, a

command needs to be given to the application that the currently selected object needs to be released.

2.2.3.3. Manipulation

The manipulation of objects in a VE is the eventual goal of a large number of interactive VR

applications. The most common method for manipulating the position and orientation of objects in the

VE is simply to match their position and orientation to that of the user’s hand. This is a very naturalist

form of interaction technique that works well when fine manipulations of objects are not required. The

other common manipulation technique is the use of tools. The user is given tools in the VE, each of

which causes some manipulation effect on the selected object. This form of interaction is less intuitive

than the previous method (being an indirect interaction method), but is possibly more powerful in that

there is a wider range of possible manipulations available to the user.

The addition of constraints to the system has been shown to greatly improve the accuracy with which

users are able to manipulate objects [Bowman, 95]. Even simple constraints like allowing the user to

change only the position of the object have been shown to greatly improve accuracy. Limiting the

number of states that an object can be in has also been shown to improve accuracy. Snapping of

position and orientation limits the flexibility that the user has when manipulating objects, but increases

the accuracy of the final placement [Bowman, 95; Mine, 95].

The naturalist interaction technique is often closely tied in to the selection technique employed initially.

Ray-casting is a very intuitive method of object selection, but does not combine well with naturalistic

manipulation, since the user’s ‘hand’ is located at a different position and orientation from the object

being manipulated. Changing the position of the object is still possible, but accurately orienting the

object becomes impossible. Variations of the ray-casting selection technique have been developed to

overcome this problem. The HOMER technique [Bowman, 97] does this by relocating the user’s ‘hand’

to the position of the selected object for the duration of the manipulation.

2.2.3.4. System Commands

System commands may be considered to be a specific selection/manipulation exercise but, as far as the

user is concerned, the actions are sufficiently different to warrant a new universal task. Systems
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commands are often issued through a menu/button type interface, similar to that in the desktop

interaction systems i.e. the user is required to activate some form of control in the VE in order to issue

a particular command. This is an indirect interaction metaphor and presents several problems in the

VE. Firstly, there is no obvious region in which to place these menus. Often, they are implemented as

free floating objects in the VE and must be interacted with through the standard selection/manipulation

metaphors provided by the system. This creates several problems. For example, it is now possible for

users to ‘lose’ their control system (menu) somewhere in the VE. Many researchers have proposed

various methods for attaching these menus to the user’s viewpoint. Thus, as users move around the VE,

so their interfaces move to follow them. In order to reduce screen clutter, these menus are often placed

out of sight of the user and are accessed only when necessary. Mine [Mine, 95] proposes using the

users’ own sense of their bodies to place menus where they are always easily within reach, yet do not

obscure a user’s view of the system when not needed.

 The preferred method for issuing system commands is definitely some form of direct method.  Speech

recognition is the most intuitive way to do this, mirroring the natural way in which commands are

issued in the real world. Recent advances in speech recognition software have brought this interaction

metaphor within reach of most computer systems. The other direct interaction metaphor for issuing

system commands is that of gestures. Most VR systems track the orientation, position and finger bends

of a user’s hands. Since gestures are the primary method for implementing many of the subtasks in the

other universal tasks, there are not many easy/intuitive gestures left for system control. System control

functions can also be many and varied, making gesture control less appealing than speech input.

2.2.4. Bowman’s Taxonomies

Bowman [Bowman, 99] organises these universal interaction tasks into various taxonomies, breaking

them up into subtasks and detailing the different methods used to accomplish these subtasks. These

taxonomies are presented in Figures 3 – 1, 3 – 2, 3 – 3 and 3 – 4. Any generic interactive VR system

needs to be able to handle all the tasks listed in these taxonomies. Additionally, the subtasks should all

be implemented in some form of generic framework, allowing particular subtasks to be easily

interchanged to suit the needs of different applications. In addition to Bowman’s list of universal tasks,

we propose a further universal task, System Command. The system command taxonomy is detailed in

Figure 2 – 5. Bowman’s taxonomies and universal tasks were based on what a user needs to do in an

immersive VR environment.
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2.3. Interaction Frameworks in VR Toolkits

The idea of a set of application libraries and abstractions that ease the creation of VR applications is not

a new one. Several companies and research institutions produce VR toolkits for use in the fields of

visualisation, simulation, etc. Bowman’s taxonomies give a good overview of what the user wishes to

accomplish in an immersive, interactive VR system, but they do not give any idea of how this should

be accomplished in a generic way.
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Taking standard desktop interface toolkits as a starting point, most interface toolkits are comprised of

three layers [Kessler, 99]: the user input and graphical output management layer, the interactor

framework layer and the interactor set layer. The most important layer, from the point of view of

interaction, is the interactor layer and the support it provides to implement the interactor set. The

following is an overview of some currently available VR application toolkits concentrating on how

they implement user interaction in immersive systems.

2.3.1. The ‘Leave it Up to the Developer’ Approach

The majority of currently available VR application toolkits concentrate mostly on the user input and

graphical output layer of the interface toolkit taxonomy. Products like the Sense8 WorldToolKitTM

[Rahn, 98] (WTK), the Swedish Institute of Computer Science (SICS) DIVE (Distributed, Interactive

Virtual Environment) [Stahl, 97] and the University of Alberta’s MR Toolkit [White, 99; Shaw, 93] all

fall into this category. The toolkits abstract the input and output device specifics away from the

developer, allowing the developer to focus on the semantics of the application itself, rather than the

hardware specifics of a particular platform. All these toolkits provide the basic functions necessary to

implement an interaction system (e.g. collision detection, access to objects in the system, reading input

devices, etc.). Unfortunately, they do not provide any framework to ease the implementation of the

interaction system or to support the reuse of interaction code in the system. Kessler explains this

problem as follows:

“… many VE application development systems treat interaction as a process of translating user input

into a change in the environment model. Many interaction techniques, however, involve complex

relationships between user input, the state of the environment, and changes to the model, both

geometric and abstract. In order for a complex interaction technique to be easily incorporated into a

VE application, it must be encapsulated into an interactor that can be easily instantiated”

[Kessler, 99]

Some of these toolkits (e.g. DIVE) do go a step further and implement actual interaction techniques i.e.

interactor sets. Yet the range of implemented techniques is limited and there is no unifying framework

i.e. interactor layer, upon which all these sets are built. This is not to say that these toolkits cannot

implement interaction in a generic way, only that this level of abstraction has not yet been implemented

in these particular cases.

2.3.2. The Interactor Layer

Various models have been proposed for the problem of splitting up a generic VR application into

separate parts that can execute independently of one another. Shaw [Shaw, 92; Shaw, 93] separates the

system up into 4 parts, Interaction, Presentation, Computation and Geometric Model. Robertson

[Robertson, 89] separates the system into 3 parts, User, User Discourse Machine and Task Machine.

Both of these systems propose the complete separation of the interaction system from the other parts of
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the application, an idea mirroring that found in the desktop interface toolkits approach. This separation

of interaction layer from the underlying layers for user input and display means we may safely assume

that a generic form of interface abstraction can be adapted to suit any form of VR toolkit. The

interaction layer behaves (to the underlying toolkit) as a simple application, while providing high level

routines to the developer. Thus, we may develop our interaction layer independently of the VR toolkit

with which it will interface. The implementation of particular instances of this layer will have a certain

amount of dependence on the underlying VR toolkit.

The differentiating factor between current immersive VR toolkits is the way in which they handle

communication between the user, objects in the system and interface elements. The two main methods

for doing this are the standard desktop methodology, using an event queue and the idea of data flow.

2.3.2.1. Event-Based Systems

Event-based systems operate by placing tokens or events into a central event queue, to signal operations

in the system. The event system is used in current desktop interfaces and is characterised by the

inherently serial nature of the interactions i.e. each interface item takes turns in communicating with

the rest of the system by issuing simple commands. Even when there are several hundred interface

elements, the input stream is treated as a single, multiplexed stream operating in half-duplex between

the system and the interface. Event-based systems are characterised by the use of callbacks, which are

executed in response to the various events.

The event-based system has many years of study and optimisation behind it, but the inherent

assumptions made about the use of a 2D interface do cause several bottlenecks in the system.

Additionally, the system is not ideally suited to the immersive environment, as mentioned in Section 2

[Jacob, 99]. These problems aside, it is possible to implement immersive versions of the interactor

layer using an event-based system.

2.3.2.1.1. SVE (Simple Virtual Environment) & SVIFT (Simple Virtual Interactor
Framework and Toolkit)

The SVE toolkit is a research toolkit developed by the Virtual Environments Group of the Graphics,

Visualisation and Usability Centre at the Georgia Institute of Technology in the USA. The toolkit

provides the developer with an abstraction level to handle the basic functions of VR applications e.g.

rendering to various output devices, interfacing the input devices, simple geometric transformations,

etc. [Kessler, 97].

As with the toolkits mentioned earlier, the SVE itself provides no abstraction to support interaction.

However, Kessler [Kessler, 99] developed an extension to SVE, the Simple Virtual Interactor

Framework and Toolkit. SVIFT was designed primarily to assist in the creation of immersive interfaces

for architectural applications. The system aims to reproduce the design of interaction toolkits used for

standard desktop interfaces, with provision made for the special requirements of immersive interfaces.
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SVIFT is based on the idea of interactors. These interactors are defined to be software encapsulations

of the interactive behaviour between immersed users and the environment on which they wish to act

[Kessler, 99]. The interactors usually comprise some geometric form, with details of their reactions to

certain events (e.g. selection, activation). Interactors may respond to events generated by the user, or

through changes in the environment. SVIFT events are handled by the standard event queue that forms

part of the SVE toolkit.

Using the SVIFT it is possible to implement all the major interaction techniques as well as interactive

elements such as 3D widgets, etc. The toolkit provides a set of classes that the developer can use to

create these elements with a minimum of difficulty. Unfortunately, as SVIFT and SVE are based on C

(and not C++), code reuse (e.g. through polymorphism) is reduced. In addition, as discussed earlier

[Jacob, 99] the event-based system of handling interface events is not well suited to generic immersive

VR applications. Relating the system back to the hierarchy introduced earlier, SVE provides the user

input and graphical output layer, while SVIFT provides the interactor framework and interactor set

layers.

2.3.2.2. Data Flow Systems

Steed describes a data flow system as follows:

“A data flow model describes a system in terms of the data being passed between functions that

transform its state. The tracing out of all such data flows through the system forms a directed graph,

with nodes corresponding to functions and arcs indicating the possible routes for data to take.”

[Steed, 97]

Data flow starts at trigger nodes, which form the external interfaces to the input devices for the system.

Once a trigger is activated, data flows from it, to any other nodes that connect to it. These nodes, in

turn, propagate the data into other nodes, and so on, until the data is finally used to affect the system.

Each of the nodes in the system is able to receive multiple streams of data. The nodes perform some

processing on the streams, producing a single resultant output stream that is passed on to the rest of the

system. The resultant output data may be passed to multiple recipients, but all recipients receive the

same output. A data flow system can be directly represented by a directed graph.

According to Jacob [Jacob, 99], data flow systems describe immersive interfaces more accurately than

event-based systems. This can be attributed to the inherently parallel nature of the input into an

immersive system (see Section 2). With a standard desktop system, only one input device is in use at a

given time (e.g. a user will usually not use both keyboard and mouse simultaneously). On the other

hand, in an immersive system, many of the input devices (e.g. the trackers) provide continuously

updating streams of data about the user, all of which must be processed and used in the system. The

operations of immersive systems (e.g. moving the user’s viewpoint) are often not easily tokenised (i.e.

it is difficult to represent the actions required using only a single event token). More often a continuous

stream of data is required to implement a single operation. Immersive systems often have real-time
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requirements for their inputs. For example, when users move their hands, the visual representation of a

hand in the VE must move immediately or the immersive effect of the system is lost. Event-based

systems do not have explicit real-time constraints and rely more on the sequence of events as opposed

to their exact time. Probably the most important difference is in the type of commands received from

the user. In the desktop event-based system, there is a finite list of explicit commands that can be used

to operate the application. Immersive systems, on the other hand, rely on passive, continuous

monitoring of the user in order to ascertain what changes need to be made to the system.

The ideal case is a hybrid system that uses both event based and data flow ideas, such as that designed

by Jacob [Jacob, 99]. Currently though, most immersive interactor layers implement a data flow idea.

The following are examples of interactor layers implemented using data flow systems.

2.3.2.2.1. VEDA (Virtual Environment Dialogue Architecture)

VEDA (Virtual Environment Dialogue Architecture) is an immersive VR system developed at

University College, London in England. The system defines the user interface and interaction system in

terms of a dialogue structure [Steed, 94; Steed, 96; Steed, 97]. This dialogue structure is a particular

implementation of a data flow network. The system was designed with the intention of allowing users

to build up an interface immersively, from within the application.

Each input device in the system returns one or more streams of data. These streams are send to virtual

tools, which manipulate the properties of the environment and its objects. Between the tools and the

input devices, the stream of data passes through various nodes, which perform simple operations (e.g.

logical conjunction) on multiple streams of data, to produce a resultant output. This output is then

passed on to the next node in the system, or to the tool.

The VEDA system implements an immersive interface building system. The interface is built up as a

3D graph, with pipes representing the flow of data. The system also uses a heaven and earth style

interface, where a distinction is made between the application being developed and the development of

its interface [Steed, 94].

2.3.2.2.2. VB2 (Virtuality Builder II)

Virtuality Builder II (VB2) is an experimental VR toolkit developed at the Swiss Federal Institute of

Technology with the aim of experimenting with 3D interaction techniques and to provide a basis for the

construction of interactive applications. The goal of the system is to place users in the loop of a real-

time simulation, immersed in a world both autonomous of and responding to their actions [Gobbetti,

93; Gobbetti, 94]. A VB2 application comprises of various different processes, each executing

separately, but communicating via inter-process communication or IPC calls. A central application

process manages the model of the virtual world, and simulates its evolution in response to events

coming from the processes that are responsible for reading the input devices.



24

Designing and Implementing a Virtual Reality Interaction Framework

Chapter 2 – Related Work

During interaction, the user is the source of a flow of information, propagating from the input device

sensors, and manipulating the environment. Multiple mediators can be interposed between sensors and

models in order to transform the information according to interaction metaphors. The application can

be viewed as a network of interrelated objects (a data flow network) whose behaviour is specified by

the actions taken in response to changes in the objects on which they depend [Gobbetti, 93]. The

dynamic components in the system are modelled by active variables (which store the state of various

properties of the system), while relations are modelled using hierarchical constraints (a method of

declaring long-lived, multi-way relations between active variables). Daemons are used to sequence

between system states in response to changes in variable values and an incremental constraint solver

(based on SkyBlue) efficiently evaluates the constraint network. The constraints are not limited to

simple algebraic expressions, but can be general side-effect free procedures that ensure the satisfaction

of the constraint after their execution by computing some of the constrained variables as a function of

the others [Gobbetti, 93].

The VB2 system implements a very detailed data flow model where the links between objects can be

either on or off (depending on the constraints) and must be evaluated whenever new data needs to be

propagated. Using this system, techniques such as direct manipulation, gestural input and virtual tools

can all be implemented in a generic way. Additionally, since all the tools are simply nodes in the data

flow network, they can be combined to create powerful composite tools [Gobbetti, 94].

2.3.2.2.3. VRML ’97 (Virtual Reality Modelling Language ’97)

The Virtual Reality Modelling Language (VRML ’97) is a standard for publishing 3D content on the

World Wide Web [Carey, 97]. While this is not an immersive environment, the VRML standard is used

widely for specifying VR environments and may be used to construct immersive VR environments.

VRML is also not a VR toolkit as such, rather it can be considered as being a transmission standard for

specifying VR systems. VRML does include support for limited interaction system development using

a data flow type system.

The VRML system is based on a scene graph hierarchy for specifying the properties of the objects in

the system. Each node in the system may have one or more inputs. The arrival of data in these input can

trigger the execution of an internal function (or script), which may propagate data to any other

connected nodes (a standard data flow network). VRML allows for data such as colour and position. to

be exchanged between nodes. User interaction is achieved through the use of various sensors, which

can be activated by the user in various ways. The data from the sensors is transformed in the

interpolator nodes and eventually affects the environment.

VRML allows for the specification of a data flow system that can be rendered using various toolkits.

Steed [Steed, 97] gives a good comparison of VRML with formal data flow systems (e.g. VEDA).
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2.4. Summary

Past research into the workings of immersive VR interfaces provides important insight into what is

required to achieve a usable immersive, interactive VE. The eventual goal of any VE interface should

be to allow the user to interact in an effective way, while at the same time, keeping the cognitive load

introduced by the interface to a minimum. Reducing the cognitive load introduced by the interface

allows users to concentrate on the task they are trying to achieve, rather than concentrating on using the

interface. Many VR systems attempt to mirror the real world in as many ways as possible. While this

naturalistic approach is important and effective, we believe that unnatural (or magic) interaction

techniques can go a long way to making an interface more effective and usable. The set of taxonomies

for travel, selection, release, manipulation and system commands give an abstract view to application

developers of what their interfaces need to be capable of doing. Various VR toolkits have been studied

and the different methods for implementing them (e.g. data flow vs. event based) have been compared.

A brief overview of various systems has also been provided for the purposes of later comparison with

the CoRgi interaction system.
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3.1. Overview

The interaction system implementation was built on top of the CoRgi VR toolkit (developed at Rhodes

University) using a simplified data flow model and the concept of listeners to implement interaction

between the user and the system. A data flow model (covered in the previous chapter) describes the

operation of an application in terms of input data, which is transformed via various nodes in the system,

until it is finally used to update the application, producing some form of output. The sources and

destinations of this data are not important to the data flow model (i.e. a piece of data from an input

device will be treated in the same way as a piece of data of the same type generated by the application

itself). The data flow model used in the CoRgi interaction system is loosely based on the Virtual

Environment Dialogue Architecture (VEDA), which is similar to the data flow model used in the

Virtual Environment Modelling Language (VRML) 2.0 standard [Steed, 96; Steed, 97]. The use of a

data flow system to describe the interaction between various objects is justified by considering the

differences between the standard desktop interface (commonly an event-based system with a single

command stream) and an immersive interface [Jacob, 99].

Additionally, the CoRgi interaction system uses ideas from the MR Toolkit [Shaw, 92; Shaw, 93] and

the Cognitive Coprocessor Architecture [Robertson, 89] to define the interfaces between the various

parts of the system. Shaw [Shaw, 92] proposes that VR applications be divided into four separate parts,

presentation, interaction, computation and geometric model. Robertson [Robertson, 89] separates his

system into three parts, a user, a user discourse manager (interaction) and a task machine. Both support

the idea of separating the application program from the interaction part of the system, as was done with

the CoRgi system. This separation, along with a thorough definition of the interfaces between the

separate parts, allows the system to be developed as several separate entities, each optimised for its

particular task.

3.2. Abstract Implementation of the Model

As an aid to understanding the system it is presented first in an abstract form. The abstract system will

then be expanded with more implementation specifics followed by an example of the use of the system

by a developer. The example consists of a simple Table Tennis game where the user controls a bat,

which must be used to hit a ball. In a distributed version of this system (explained in the CORBA

section) one user could compete against another user.

The overall interaction system can be broken up into six main parts. These six parts are the system

component, input component, interaction component, intermediaries, entities and widgets. The

recommended data flow relationships between these parts are detailed in Figure 3 – 1.
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3.2.1. System Component

The system component will be different for each particular application and the only thing that we

describe about it is how it must interact with the other components. The purpose of the system

component is to implement the semantics that are unique to the particular application it supports. The

system component is often implemented as the overall application, encapsulating the other components

and bringing them all together to form some useful whole. The system component is also responsible

for producing the output that the user sees.

3.2.2. Input Component

The input component is responsible for getting values from all the different input devices and passing

them on to the relevant interaction component. This component holds the implementations of all the

device level drivers required for each particular input device. These drivers are written to conform to a

certain standard, which allows them to plug into the input server.

The input component is implemented as a pair of processes (input server and input actor) that

communicate with each other via a network connection (Figure 3-1). The input server usually runs on a

dedicated machine and communicates with a number of input actors (one for each particular device

present on the server machine). These in turn communicate with the application they service. This form

of implementation is necessary, since there is a wide range of different input devices available and they

are not all able to run on a common architecture. The network layer separation provides the basic

flexibility to be able to use all these different devices in a single application.

Input Component
(Input Server + Input Actor)

Interaction Component

Intermediary

Widget

Entity

Figure 3 – 1 – The Recommended Data Flow Hierarchy for the Components of the
Interaction System.
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Entity
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Entity

Widget

Entity

Intermediary
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3.2.3. Interaction Component

The interaction component receives data from the input component and must interpret this data, passing

on any relevant parts to the other components. Each application may use several different interaction

components (e.g. one to implement a virtual hand and another to implement a head-tracked viewpoint

display). Each interaction component may, in turn, use several different input devices (e.g. the virtual

hand uses a Polhemus magnetic tracker [Polhemus, 96] and a data glove/stick). The CoRgi interaction

system currently uses several different interaction components, each implementing some form of

recognised immersive VR interaction technique [Bowman, 97; Mine, 95; Mine, 97]. For example, the

hand actors use a simple form of gesture recognition to determine what action the user wishes to

perform. By checking which of the fingers are closed and which are open on the user’s hand, different

gestures (like a point or a fist) can be recognised.

3.2.4. Intermediaries

Intermediaries make up the data flow part of the interaction system implementation. An intermediary

corresponds to a node on a data flow diagram that performs some processing. Since objects are only

willing to process types of data that correspond to some attribute they possess, intermediaries are

required to convert data from one form to another. For example, a Menu generates integer data. This

data does not correspond to any of the attributes of a Entity object (for example), but using an

intermediary, the integer data may be transformed into 3D positional data, which can then be passed on

to the Entity object. Thus, intermediaries receive data from some source (or multiple sources), process

the data in some way (usually producing some other data type) and pass it on to its destination. The

sources of data in the system are usually the interaction components, widgets or input actors. The sinks

(or destinations for the data) are usually entities but, as in the Table Tennis example, the data may also

be passed on to interaction components.

3.2.5. Entities

The coupling between the interaction component and the objects in the world is based on the idea that

each object should know how to react to a finite set of commands issued by the interaction component.

Such objects in the system are called entities. Each entity knows details about itself, so these details do

not have to be stored centrally (in the system for example) but can be distributed amongst the entities

themselves. Thus, the system does not need to know how to deal with each particular type of object -

rather it has a finite set of commands that it is able to issue to any entity, and the entity itself must

decide what action to take. The entity also provides feedback to the system as to whether the command

was executed or not. This is useful in the case where we have several possible entities that could

receive a certain command. If the first on the list does not execute the command, the system may send

the command on the second, and so on through the hierarchy.
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The choice of what commands the entities must be able to understand is a difficult one. Rather than try

to create a complete list of commands that satisfy all possible VR applications, the system implements

a group of commands which satisfy the basic needs of a large number of VR applications. Additionally,

the entities and interaction components are constructed in such a way as to allow extra commands to be

added easily. The current set of commands is:

•  Grab: Select an object within the ‘reach’ of the user.

•  Drop: Unselect a ‘grabbed’ object.

•  Point: Select an object outside of the ‘reach’ of the user.

•  UnPoint: Unselect a ‘pointed’ object

•  Press:  Activate an object.

The method by which the application decides what command to send to what entity is totally dependent

on the programmer and usually implemented as part of the interaction component. The various

interaction components, already implemented in the system, use methods such as collision detection

and ray-casting to identify the entity, and simple gesture recognition to decide what command to send.

In addition to the standard set of commands that an entity is able to respond to, each entity has a unique

set of attributes. These attributes include information like size, shape, position, etc. The attributes are

openly available to the system, and can be changed to reflect changes in the application. Entity

attributes are usually changed via intermediaries, activated by widgets through a data flow network. As

discussed earlier, each attribute usually has an associated Set method that can be used by the

application to include the entity in a data flow network.

3.2.6. Widgets

Widgets in the CoRgi system are simply specialised forms of the basic entity. They take the form of

controls, which users are able to manipulate in order to send commands to the application. Unlike

standard entities (which simply respond to commands received from an interaction component),

widgets generate data depending on the commands they receive from the various interaction

components (e.g. a button widget generates a unique integer when it receives a press command) as well

as storing data about their current state. This data is then sent along a data flow network (usually

containing at least one intermediary) to its destination.
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3.2.7. System Summary

Component Name Purpose Example Purpose of Example

Input Component

(Input Device/Input Actor)

Connect the user input device
into the application in a generic
way.

VRPolhemusInputDevice Provide position and
orientation data read from a
Polhemus InsideTrak
magnetic tracker.

Interaction Component Act as the extension of the user
in the virtual environment.

VRHandInteractionActor Provide the user  with a virtual
hand with which to interact
inside the application.

Intermediaries Perform functions to transform
the data in the data flow
network.

VRIntScaleIntermediary Transform integer data into
scale data using some pre
defined method.

Entities Container class for the objects
in the system allows easy
integration with the data flow
system.

VRGenericEntity Enable to object to be
interacted with using a
interaction component i.e.
selected, manipulated, etc.

Widget Container class for
implementing user control
objects in the system.

VRButtonWidget Provide a button control with
which the user can perform
some action in the system.

3.3. The CoRgi Interaction Model

The CoRgi data flow model is based on data types defined by the system. This data is passed between

the different objects that make up the system, operating by changing the values of the attributes of

these objects. Each different category of object in the system has several different attributes, depending

on its purpose. An object can only be included as part of a data flow network, if it supports an attribute

of a given data type. Additionally, the setting of attributes in objects need not be a passive operation i.e.

having a given attribute set may cause an object to propagate some data through another data flow

network of which it is the root, or to execute some code.

Since, in a data flow system, only the data itself (not its source or destination) are important, the system

does not need to concern itself with the source or destination of the data. If two objects are linked in a

data flow network, then the system may presume that both are able to handle whatever type of data the

network carries. This idea is enforced through the use of attribute setting methods. If an object is to be

included in a particular type of data flow network, then it will contain a method (linked to the type of

data that the particular network propagates) that is used to propagate the data. Thus, at compile time,

the compiler type-checking makes sure that no object can be linked in a data flow network for which it

has no handler method. It is also possible to build up the data flow networks during run time. Here

again, the compiler type-checking ensures that no object can be connected into a network for which it

has no handler method.

We call this idea of commonly named handler methods the listener model. In this model, objects

contain methods based on the types of data they are able to handle. The type of data handled is, in turn,

linked to the attributes of the object type. For example, the VRWidget object type (described in more
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detail later) has a position attribute, which stores the current position of the object in the system in the

form of a Point3D (a data type defined in the base CoRgi system). Related to this attribute, the

VRWidget contains a method named SetPoint3D, which takes a single Point3D data value as its

parameter. The invocation of this method on a particular instance of a VRWidget object causes that

instance to change its position as specified in the parameter passed to the SetPoint3D method.

Certain types of objects (called propagators) pass data on to other objects when certain methods are

invoked to build up the data flow network. These propagators have attributes (called listeners) which

consist of pointers to objects of a specific type, to which the propagator can be linked in a data flow

network. Each different type of object a propagator wishes to be linked to requires a separate listener

attribute of that type. These listener attributes are assigned to particular instances of an object by the

LinkTo method. Each propagator has a LinkTo method (defined with the appropriate parameters)

for each specific listener attribute. Thus, a propagator may have multiple listeners, each of a different

type. For example, the VRButtonWidget object type has two listeners, one of type

VRMenuWidget and one of type VREntity. Thus, the VRButtonWidget can act as the root for

two separate data flow networks. The activation of the data flow network and the data it carries can

come from any source within the application.

The usage of the data listener idea greatly reduces overhead on the system by removing the need for

any sort of centralised messaging/event system. The event model works well when many recipients

need to receive a given event. The listener system works well where there is a specific (usually single)

destination for a given message. We decided that most of our events would be directed toward specific

objects and those that were not could be simulated by the listener system. Thus we chose the lower

overhead listener system over the central event based system used by most current (2D) user interface

systems.

3.4. Integrating the Interaction System With a VR Toolkit

The interaction system is designed to integrate with an existing VR toolkit. Figure 3 –2 details the

relationship between the interaction system, the VR toolkit and the hardware. The interaction system

resides between the user and the VR application (built on the VR toolkit). The interaction system must

Interaction System

 Graphics Abstraction
Layer (e.g. OpenGL)

VR Toolkit (e.g. CoRgi)

Input

Database
(Virtual Environment)Output

Interaction System

Figure 3 – 2 – The Interaction System Integration with a VR Toolkit.

Application
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be able to get data from the input devices and use this data to make changes in the virtual environment

(usually implemented as a database of objects and their properties). As long as a VR toolkit is able to

provide these services, the interaction system can be altered to co-exist with it.

3.5. Justification of the Framework

In order to prove the effectiveness of our system as a VR interaction toolkit we describe a set of case

studies of how the system has been used to create interactive VR applications (Chapter 4). In addition,

we relate the toolkit back to the guidelines described in the previous chapter in order to ascertain how

the system fits into the abstract interaction taxonomies. Each of these taxonomies is considered

separately, in the order in which they were presented in the previous chapter.

3.5.1. Travel

The position and orientation of the user’s viewpoint in the system is controlled via a camera object.

The camera determines what the view of the world should be, based on its position and orientation

attributes. The Indicate Orientation branch of the travel taxonomy is implemented by linking an input

actor to the orientation attribute of the camera object and having the data from the input device  (e.g. a

Polhemus tracker, which is attached to the user’s head) constantly update the orientation for the

display. The input actor may also provide positional information, which is used to make small

movements in the environment corresponding to movements made by the user’s head.

The Indicate Position branch of the travel taxonomy is implemented by setting a vector movement

attribute in the camera object. The vector movement method stores a 3D-vector value, which is used to

update the position of the camera object at constant intervals. The camera object has a thread method,

which is called, at regular intervals by the system component, thus allowing the camera to update its

position, giving the feeling of movement.

All three of the sub-branches of the Specify Position branch can be implemented by setting the vector

movement attribute as follows:

3.5.1.1. Continuous Specification

Continuous specification can be implemented by continuously updating the vector movement attribute.

For example, gaze-directed travel could be implemented by linking the input actor for the camera

object (which gives a value for where the user is looking) to an intermediary, which takes in a

Quaternion and produces a 3D-vector value based on it. The intermediary is then linked back to the

movement vector attribute of the camera object. Thus, whenever users change the orientation of their

heads, this new orientation is translated into a 3D-vector value and used to update the movement of the

camera object. An example data flow diagram for this is shown in Figure 3 – 3.
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3.5.1.2. Discrete Target Specification

These sub-branches can be implemented by setting the relevant values into the movement vector

attribute of the camera object. The position attribute of the camera object could also be used simply to

place the camera in a new position, but as explained in the previous chapter, it is better to change the

position of the user by small steps to avoid disorientation. Figure 3 – 4 illustrates a system whereby the

user chooses a destination using a virtual menu; this destination is then translated into a corresponding

3D-vector value and used to move the camera object.

3.5.1.3. Controlling Speed, Acceleration, etc.

The Specify Velocity and Specify Acceleration branches can also be implemented using the vector

movement attribute. The length of the vector sets how far the user is moved for each discrete step, and

this value can be changed over time to simulate acceleration. The Stop Moving and Start Moving

branches are implemented using a movement attribute, which can be set or cleared and is checked by

the thread routine before updating the position.

3.5.2. Selection

The selection taxonomy is a product of the interaction between the interaction components and the

entities in the system. Feedback can be supplied to the user through either graphical or audio means in

the CoRgi system. The method used the most in the current system involves displaying a semi-

transparent bounding box around the selected object, making it obvious to a user what has been

Camera ObjectCamera Input Actor
Position & Orientation

Destination Selection Menu Integer → Vector Intermediary
3D-Vector

Figure 3 – 4 – Simple data flow diagram for a discrete
destination selection system.

Figure 3 – 3 – Simple data flow diagram for gaze directed
movement.

Camera Input Actor Camera Object
Position & Orientation

Orientation → Vector IntermediaryOrientation 3D-Vector
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selected. The sub-branches of the Indication of Object branch vary widely in their implementation and

each will be considered separately.

3.5.2.1. Object Touching

Collisions detection in a VR system is a detailed field of research in itself. We simply use the collision

detection routines implemented as part of the CoRgi VR system. Checking for collisions can be done in

one of two ways. The system component can do a global check of all the objects in the system, at

regular intervals. When two objects are identified as colliding, the system component informs each of

them and they are left to react appropriately. The other method involves a particular object (usually an

interaction component) checking for collisions between itself and the other objects in the system. When

an object is identified as colliding with the interaction component, the appropriate command (e.g.

Grab) is dispatched for the object to execute.

Figure 3 –5 details the operation of an object touching selection system as an automated transition

network (ATN). The close hand interaction component begins execution in the Move phase. In the

Move phase, the position and orientation of the representation of the hand is updated from the

corresponding input actor. The values being read from the stick input device (measuring the gesture of

the user’s hand i.e. what fingers are open, and what fingers are closed) are used to change the system

into one of either the Pressing or Grab phases (depending on the gesture of the user’s hand). Once the

system is in Grab mode, it remains there until the user’s hand gesture changes (back to Move phase) or

there is a collision with an object in the system (Holding phase). In the Holding phase, the object is

manipulated with the hand, until the user’s hand gesture changes and the system is placed back in the

original Move phase. The Pressing phase is similar to the Grab phase. Once an object collision is

detected in the Pressing phase, that object is sent a press command and the system automatically

returns to the Move phase, with no further intervention from the user.

Move

Holding

GrabPressing

Action

Close fingers

Open fingers

No object

Collision

Open fingers

Press

Stop pressing

Collision

No object

Figure 3 – 5 – Automated Transition Network (ATN) detailing the
operation of the close hand interaction component.
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3.5.2.2. Pointing and Occlusion

Pointing implies a ray-casting technique with the ray oriented according to the orientation of the

interaction component. Occlusion can be implemented using the same ray-casting technique, but with

the ray oriented according to the orientation of the user’s head i.e. the camera object. The ray-casting

technique is implemented by taking each of the objects in the scene and checking whether there is any

intersection between that object and the ray. This is implemented in the CoRgi system by first

approximating the shape of the object to a sphere enclosing the object and then using geometry to

check for an intersection between this sphere and the ray. This is done by computing:
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where S gives the 3D-co-ordinates for the origin of the object, I gives the co-ordinates of the origin of

the ray, R is the 3D-vector describing the direction of the ray and r is the radius of the sphere

approximating the shape of the object. Each of the objects in the scene is checked in turn, until an

intersection is found or all the objects have been checked.

3.5.2.3. Indirect Selection

Indirect selection can be implemented simply by storing pointers to the objects of interest and

presenting these to the user is some useful way. For example, all the objects in the system can be used

to generate a menu, from which the user can select the required object.

The Indication of Select branch is implemented as part of the Interaction Component. For example, the

interaction component may do simple gesture recognition on the user’s hand, deciding what command

to issue to the selected object based on this.

The arm extension techniques used for selecting distant objects can be implemented using an

intermediary between the input actor and the interaction component. For example, Figure 3 – 6 shown

a simplified data flow diagram for the implementation of the go-go extension technique. Instead of the

Polhemus Tracker Input Go-Go Intermediary Hand Interaction
Actor

Positional data Positional data

Figure 3 – 6 – Simple data flow diagram for Go-Go arm
extension technique
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Polhemus tracker input actor connecting directly to the hand interaction actor, it passes through a Go-

go intermediary, which implements the function detailed in Figure 2 – 6. Thus, if the positional data

coming from the Polhemus tracker input actor is closer to the user than some threshold D it is simply

passed on and updates the position of the interaction component. If the data is greater than D then the

data is updated (using the non-linear function F) and this new value used to update the position of the

interaction component.

3.5.3. Release

The Release taxonomy is also implemented as part of the interaction component. The same method

used for the Indication of Select can be employed for Indication of Drop, but using a different activator

(e.g. different gestures for select and release). The Object Final Location is also implemented as part of

the interaction component. The final position of the object is controlled by the interaction component

using the pointer to the object received from the selection phase. When the object is released, it remains

in the position specified by the interaction component just before release.

3.5.4. Manipulation

The Manipulation taxonomy lists several different groups of methods that allow the user to map some

movement into the environment and use this to manipulate the position/orientation of an object. The

interaction component is usually responsible for this mapping. All of these mappings require some way

of recording the movements made by the user and applying these to an object in the system. The

movements made by the user are accessible thought the various input actors, and the object to be

manipulated is identified in the selection phase. Thus, any manipulation technique of this kind can be

implemented using an intermediary to do the mapping between the user’s movements and the

corresponding movements of the object. For example, consider an arbitrary manipulation technique

whereby the position on the interaction component was mapped directly to the selected object, but the

orientation of the object was not changed. Figure 3 – 7 shows the simple data flow diagram for this

system. The data from the Polhemus tracker input actor is sent to the interaction component (as usual)

and it is also sent to the movement intermediary. The movement intermediary then passes on the

positional data from the Polhemus tracker input actor to the object, updating its position.

Figure 3 – 7 – Simple data flow diagram for an arbitrary
manipulation technique.
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3.5.5. System Commands

All of the branches of the System Commands taxonomy are supported in the CoRgi system. The Direct

Input sub-tree is supported through the use of the IBM ViaVoice speech recognition package and a

speech input actor object. Gesture recognition is also being developed [Winnemoeller, H, 99]. The

menu and button functions supplied in the widget objects provide the indirect mechanisms.

3.6. Comparison with Other VR Interaction Frameworks

As mentioned earlier in this chapter, the CoRgi Interaction system and its associated generic

framework are built on the assumptions of the MR Toolkit [Shaw, 92; Shaw, 93] and the Cognitive

Coprocessor Architecture [Robertson, 89]. All three systems operate on the principle that the

interaction system may be totally separated from the remainder of the VR toolkit. Communication

between the interaction system and the toolkit takes place through rigidly defined interfaces only. This

assumption is well in line with modern object oriented programming practices and allows the system to

be developed and extended in a generic way i.e. not dependent on a single VR toolkit.

The CoRgi Interaction system uses a data flow model similar to that defined in the VRML ’97 standard

[Carey, 97] and that used in the VEDA architecture [Steed, 96; Steed, 97]. The data flow system used

is simpler than that used in the VB2 system actions [Gobbetti, 93; Gobbetti, 94] where the network

uses a sophisticated constraints-based solver to continuously evaluate the connection in the network. In

the CoRgi system, the making and breaking of links in the data flow network is left completely up to

the application developer. The constraint solving system was identified as the major bottleneck in the

VB2 system and thus, we opted for a simpler, more efficient data flow system.

Jacob’s system [Jacob, 99] of combining the data flow model with an event-based model was also

considered. The CoRgi interaction system does not implement specific support for any particular event

based system, but this does not preclude the developer from using event-based models. Jacob illustrates

how a data flow system can be used to simulate an event-based system. The CoRgi interaction system

does this by setting up a standard data flow network between all the parties interested in a particular

event, and propagating the event as data through this network. The interactions between the interaction

component and the entities/widgets can also be thought of as an event-based system since only single

events (e.g. grab, drop, etc.) are dispatched to the recipient. In addition, most VR toolkits, while not

providing specific interaction layer support, do provide a generic event system for communicating

between the objects in the system. This lower level event handling system can easily be integrated into

the interaction layer.
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3.7. Implementation Specifics

3.7.1. System Component

The standard system component will create a VREnvironment, a VRSink and any input,

interaction, entity and widget components that the application needs. Once all the pieces are in place,

the system component enters into a processing loop which continually executes the RunComponents

method which activates the run loop for the system to update the display, get data from input devices

and so on.

3.7.2. Input Component

The input actors communicate with the application using the data flow and listener methods. Each

input actor holds a listener attribute of the VRActor type. VRActor is the base class for any object

that is controlled directly by the user (i.e. needs to communicate with an input device). Depending on

what input device the input actor is connected to, it calls a method in the listener, passing it data

received from the input server. For example, the VRPolhemusInputActor connects (via the input

server) to a Polhemus FastTrak magnetic tracker [Polhemus, 96]. The magnetic tracker provides values

related to its position (a Point3D) and its orientation (a Quaternion). These two values are

contained in a composite class called VRInputCoordinates. Thus, when the

VRPolhemusInputActor receives new data from the input server, it calls the

SetVRInputCoordinates method in the instance of the VRActor class pointed to by the listener

attribute, passing the new position and orientation as parameters.

All input actors inherit from the VRInputActor base class. They provide individual functionality by

overriding the HandleData method and implementing semantics for their specific types of data. At

the input actor level, we are no longer concerned with hardware specifics, rather we are already

focusing on data provided. Thus, two separate pieces of hardware that provide the same data (e.g. two

different makes of magnetic tracker) would use the same input actor. The input server on the other

hand is concerned with hardware specifics. The input server creates instances of specific input devices,

one for each device connected to the machine on which it is running. All of these input devices inherit

from the base class VRInputDevice, and override the method GetData to implement the

semantics of a particular input device. The input server then calls the GetData methods in all the

VRInputActor

VRTouchPadInputActor

VRStickInputActor

VRPolhemusInputActor
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VRInputDevice instances it has. It is responsible for abstracting the device from a hardware level to

a data level and providing the input actor with this data. Further details of the VRInputActor classes

are shown in Appendix A, Figure 1.

3.7.3. Interaction Component

The base class for interaction components is the VRInterfaceActor (which inherits from

VRActor). The methods for connecting to input actors (e.g. SetVRInputCoordinates) can be

used as inherited from VRActor with no changes required. Each interaction actor is allowed to

implement its specific semantics in its own way. For example, the VRHandActor implements its

particular semantics in the CheckGesture method. This method is defined as virtual and is

overridden in the child classes of the VRHandActor (e.g. VRCloseHandActor and

VRDistantHandActor) to provide different types of functionality. For example, the

VRCloseHandActor uses collision detection to detect what object the user wishes to interact with,

while the VRDistantHandActor uses ray-casting techniques. Further details of the

VRInterfaceActor classes are shown in Appendix A, Figure 2.

3.7.4. Intermediaries

All intermediaries inherit from the base class VRIntermediary. The base class defines two

methods, Register and Link and any extra input methods required to handle input data types (e.g.

SetInt). There is usually only one intermediary type for each pair or input-output data types. For

example, the VRIntToScaleIntermediary takes an integer data type as input, producing a

Scale3D as output. The conversion from integer to scale can be done in a number of different ways,

as is the case with any generic input-output pair. Instead of having a separate intermediary type for

each different conversion method, intermediaries implement many different conversion methods within

VRActor

VRInterfaceActor

VRHandActor

VRContextHandActor

VRDistantHandActor

VRCloseHandActor

VRIntermediary

VRIntScaleIntermediary
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the same object. The choice of what method to use in a particular instance is set using the Register

method. Each intermediary contains a list (in string form) of all the different conversion methods it

implements. When setting up the data flow network containing the intermediary, the application first

calls the Link method with a source and a destination. The source is where the intermediary gets its

input data and the destination is where it sends its resultant output. The intermediary then becomes a

listener of the source. Once the Link method has been invoked, the Register method needs to be

invoked to set a conversion function for the link. The Register method takes in a pointer to the

source object (must be the same pointer used to set up the link) and a string. The string identifies the

conversion method to be used. Once the intermediary identifies the particular conversion method to

use, it associates a function pointer to the conversion method with the source. When the source invokes

an input method in the intermediary, the method referred to by this function pointer is used to make the

conversion and pass out the output data. Further details of the VRIntermediary classes are shown

in Appendix A, Figure 3.

3.7.5. Entities

Entities are based on the VREntity base class. The base class contains methods to handle all the

commands that may be dispatched by an interaction component. In this base class, these methods are

implemented as dummy methods, simply returning 0 to the calling component to indicate that this

specific entity does not implement that action. In order to do something useful, this base class must be

overridden and these methods implemented. Once the method has performed some useful action, it

should return 1 as an indication that the command was received an executed. For example, the

VRGenericEntity class inherits from the VREntity class and implements the Grab and Drop

methods. Thus an interaction actor is able to grab and drop VRGenericEntity objects. The

VREntity base class also implements the attribute setting (input) methods. These can be overridden

if necessary, but most objects will simply use them as they are.

Additionally, the VREntity base class is responsible for maintaining a list of all active entities in the

system. Pointers to all the entities in the system are stored, indexed by their objectID (a unique ID

assigned by the system) in a linked list, which forms part of the VREntity base class. For example,

when using collision detection to find the object a user is interested in, the system returns to the

interaction actor, objectIDs of all the objects that are within a certain distance of the interaction

VREntity

VRButtonEntity

VRHoldEntity

VRGenericEntity

VRButtonEntity
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actor. These are cross-referenced with the list of entities, giving a list of entities that are colliding with

the interaction actor. In the distributed system (explained in a later chapter) this list of entities is moved

into a totally separate object and stored in a central server. Further details of the VREntity classes are

shown in Appendix A, Figure 4.

3.7.6. Widgets

The design and implementation of widgets for a VR system is a field of study in itself. For the purposes

of the CoRgi interaction system, we implemented a set of simple widgets. To show the flexibility of the

system, we also implemented a more complicated slider widget.

Currently, the system has two main types of widget, the VRMenuWidget and the

VRButtonWidget, both inheriting from the base VRWidget class. The VRWidget class acts as a

wrapper class to the standard VREntity class, encapsulating the extra code required for a widget. For

example, the VRButtonWidget class creates an instance of the VRButtonEntity class in its

constructor. The VRButtonWidget class is a propagator class, meaning that it passes data along into

the data flow network. It has a LinkTo method and listener attribute, as described earlier in this

chapter. The VRButtonEntity provides a visual representation of the widget in the system and

allows the interaction component to interact with the widget as it would interact with any other entity in

the system. The VRButtonEntity class includes a pointer to an instance of the parent

(VRButtonWidget) class. It overrides the Press method of the standard VREntity class causing

it to pass a unique action ID (set in the constructor) up to the parent widget class, through the parent’s

SetInt method. The SetInt method of the VRButtonWidget simply passes the value received

from the button to the next node in the data flow network, as specified by its listener attributes.

Usually, a group of buttons (each with a unique ID) is contained within a single VRMenuWidget

object. The VRMenuWidget also has an associated VREntity object that provides a visual

representation for the widget as well as enabling the user to interact with it (e.g. by overriding the

Grab and Drop methods). The action ID of the last button that was pressed (passed through the data

flow network) is stored in the VRMenuWidget as well as being passed on to any further nodes in the

data flow network. The VRMenuWidget object also implements a GetInt method that can be used

by the main program to check if any of the buttons on the menu has been activated and if so, which

one. Further details of the VRWidget classes are shown in Appendix A, Figure 5.

VRWidget

VRMenuWidget

VRButtonWidget

VRSliderWidget
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The slider widget data flow diagram is shown in Figure 3 – 8. The slider widget operates by providing

a rail, along which a marker can be moved. The distance of the marker from the bottom of the rail

represents some float value. When the hand interaction actor grabs the widget, a connection is

activated between the Polhemus input actor (for the hand) and a Position – Float intermediary (as

shown). The position of the hand, the position of the slider widget and a vector describing the

orientation of the slider widget and its length are all used to calculate how far along the rail the marker

is moved (i.e. what value the slider represents). This value is then passed back to the slider (with the

SetFloat method) and can be accessed through the GetFloat method, or through connecting the

slider to a listener.

3.8. Example Application

As an example of the use of the interaction system to produce an immersive, interactive application, we

have chosen to develop a simple Table Tennis game. The user controls a bat (using a Polhemus tracker)

which must be used to hit a ball. The user also interacts with the system using a second Polhemus

tracker and a simple button input device, which operate a virtual hand inside the system. The hand can

be used to pick up the ball and operate the various system controls. A simplified data flow model of the

application is shown in Figure 3 – 9.

3.8.1. System Component

In the Table Tennis game example, the system component is also responsible for rendering the scene,

getting the data from the various input devices and passing this on to the input actors. The system

component is also used to do global collision detection on the objects in the system, informing each

when a collision occurs. The gravity in the system was also implemented as part of the system

component, though this could have been distributed amongst the components.

Figure 3 – 8 – Simple data flow diagram for the slider widget.
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3.8.2. Input Component

The application requires a Polhemus tracker with which the user controls the position of the bat in the

system. This is plugged into the input server machine and communicates with a

VRPolhemusInputActor in the application. The input actor supplies data to the application

relating to the position and orientation of the user’s hand and thus the bat, which is used to update the

display. There is an additional VRPolhemusInputActor for the hand interaction component and

another for the head mounted display. The Polhemus tracker on the head mounted display is linked to a

VRHMDActor which updates the display to coincide with the movements of the user’s head. The hand

also requires a VRStickInputActor to measure the gesture of the user’s hand.

3.8.3. Interaction Component

The Table Tennis application has two different interaction components. One of these is the bat, which

the user uses to interact with the ball during the game. When the bat collides with an object in the scene

the global collision detection system works out the new trajectory of the object and sets it. The speed

and position of the object are attributes of the object’s VREntity and are updated using the Set

methods. The other interaction component is a virtual hand (VRCloseHandActor), which the user

can use to retrieve balls that have fallen off the table and to give various commands to the system. The

VRCloseHandActor picks up the ball by issuing a Grab command to the ball entity when a

collision occurs between the hand and the ball and the user is performing the correct grabbing gesture.

The ball is released by issuing a Drop command to the ball entity when the user performs the dropping

gesture. Commands are relayed to the system through the use of control widgets. These widgets are
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Figure 3 – 9 – Data flow diagram for example table tennis
application
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activated by Press commands from the VRCloseHandActor. These Press commands are

activated when the hand collides with the control widget and the user is performing the correct pressing

gesture.

3.8.4. Intermediaries

The Table Tennis game example uses an intermediary to calculate the velocity at which the bat is

moving.  The VRPolhemusInputActor receives data about the position of the tracker from the

input server. This constantly updated position information is then used, in conjunction with timing

information, to calculate the velocity at which the bat is moving

(VRPositionVelocityIntermediary). This velocity is then passed on to the bat interaction

component (along with the standard position and orientation information) and used for calculating new

trajectories when interacting with the balls in the system (Figure 3 – 9).

3.8.5. Entities

There are several entities in the system - the ball, the table, the net, the floor and the control widget

representations. The attributes of the ball, include its shape, colour, elasticity (how much it reacts to

collisions with other objects e.g. the bat or table), position and velocity. The ball knows how to respond

to Grab and Drop commands from the interaction actors. A Grab command causes the ball to attach

itself to the interaction component issuing the command, thereby allowing the user to manipulate its

position. The Drop command causes the reversal of the attachment formed from the Grab command.

Interactions between the bat and the ball, where the ball changes direction/velocity based on the

movement of the bat, are handled by the global collision detection system. The table, net and floor

entities do not respond to any commands from the interaction actors (i.e. the user is not able to interact

with these entities). They are used to check for collisions with the ball. Collisions between the ball and

each of these entities are handled by the global collision detection system. The control widget entities

react to Press commands from the interaction actors. These Press commands activate the operation

of that particular control. For example, pressing the reset widget causes the state of the game to be set

to some initial value.

3.8.6. Widgets

The Table Tennis example contains a single, simple button widget, which responds to a Press

command by instructing the system component to reset that game and start again. In this case, the

widget is simply polled from the system component and the system resets when the widget is activated.
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3.9. Summary

Immersive VR interfaces require a different approach from that used for traditional desktop interfaces.

The data flow approach allows the interface to consist of multiple data pathways all operating in

parallel. The CoRgi interaction system implements this data flow idea using listener attributes. The

listener attribute is simply a pointer to an object in the system that is informed when a certain operation

occurs. Thus, the data flow network in the CoRgi interaction system comprises objects, linked together

by their listener attributes.

The CoRgi interaction system is abstractly separated from the remainder of the CoRgi VR system

according to the framework detailed in Figure 3 – 2. This separation allows the different portions of the

system to be developed independently, provided the interfaces between these parts are specified and

those specifications adhered to. We have detailed the specifications for these interfaces and given

details on the current implementation of the system under the CoRgi VR toolkit.

We have provided an example to the operation of the system, and justification of its workings based on

the interaction taxonomies detailed in Chapter 2. We have also compared the system with other similar

toolkits.



47

Designing and Implementing a Virtual Reality Interaction Framework

Chapter 4 – Case Studies

-----_. 



48

Designing and Implementing a Virtual Reality Interaction Framework

Chapter 4 – Case Studies

4.1. Introduction

Thus far, our interaction framework has been justified in terms of what have been identified as the

important aspects of interaction in immersive VR. In order for the framework to be truly justified, we

need to present examples of its use in the area it was designed for, namely the production of immersive,

interactive VR applications. The system has been used by a number of post-graduate students in the

Computer Science Department of Rhodes University. The applications they have developed are

described, with the emphasis placed on their usage of the interaction framework. We also describe

various smaller applications developed along with the framework itself, to illustrate the use of the

various components. All of the screenshots shown in this chapter are reproduced, in colour, in

Appendix C.

4.2. Sample Framework Applications

Several small applications were developed along with the interaction framework, to illustrate and test

the various components.

4.2.1. Virtual Remote Control

The Virtual Remote Control (VRC) [Rorke, 99], is not a standalone application, but rather an

interaction component/widget hybrid, which when used in conjunction with a specialised hardware

device (a small touch-pad and Polhemus tracker) presents a unique interaction paradigm to the user.

“The VRC consists of a physical device (a small touch-pad tracked using a Polhemus InsideTrak

magnetic tracker) which the user is able to hold and for which there is a representation in the virtual

environment. The VRC is represented in the environment by a virtual menu. Users are able to make

selections from the virtual menu by moving their thumb around the touch pad part of the VRC and

'tapping' on the required action. Additionally, the user is able to select an object for the action to be

applied on, by 'pointing' the representation of the VRC at the object - as one would point a remote

control at a Hi-fi or TV set.”

[Rorke, 99]

There are two distinct functions for the VRC – that of making menu selections (a widget function) and

that of selecting objects in the VE (an interaction component function). The VRC is implemented in the

CoRgi Interaction system by the VRRemoteControlActor class. This class inherits from both the

VRInterfaceActor class and the VRWidget class, making it both an interaction component and a

widget. The VRC operates in a similar manner to the VRMenu object in that it behaves as a container

class for a set of VRButton widgets, each of which is assigned a particular function. The user selects
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what button to activate by moving a finger over the touch-pad to position a cursor over the required

button. ‘Tapping’ a finger on the touch-pad then makes the selection.

In the case of the menu widget, a separate interaction component (usually a virtual hand) is responsible

for activating the buttons by sending Press commands. The VRC is itself an interaction component,

and activates its own buttons (with Press commands) in response to the user ‘tapping’ on certain

portions of the touch-pad. The selection part of the VRC implements the ray-casting technique

described in Chapter 3. This is the same technique used by the VRHandActor.

Figures 4 – 1 and 4 – 2 show screenshots from two example applications that use the VRC. Figure 4 –1

shows the Virtual Keypad application which enables a user to input exact numerical data into an

immersive VR application, using the VRC – a task which would otherwise be rather difficult since the

user is unable to see a keyboard through a HMD. Figure 4 – 2 shows the Texture Selector application.

The Texture Selector allows the user to interactively apply textures to entities in the system. The

textures are previewed as buttons on the VRC, and applied by selecting the required object (pointing

the VRC at it) and selecting the texture by ‘tapping’ over the correct button on the VRC. Figure 4 – 3

shows the data-flow network for this component.

Figure 4 – 3 – Simple data flow diagram for the texture
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Figure 4 – 1 – The Virtual Keypad. Figure 4 – 2 – The Texture Selector.
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The button widgets on the VRC generate integer values when pressed these are sent to the ‘integer to

texture intermediary’ which generate new textures, passing them on to the object. The ‘integer to

texture intermediary’ also needs to know what object is currently selected in order to properly generate

and apply the new texture. Also present in Figure 4 – 2 is a VRHandActor interaction component.

The VRC application demonstrates how multiple interaction components can exist in the same

application, interacting with the system in the same way, but each offering a unique interaction

paradigm to the user. Since the entities in the environment simply respond to commands, without

regard as to what particular object issued the command, the addition of multiple interaction

components becomes trivial. Different interaction components can be dynamically added to the system

at runtime, without the need for any change to the interaction code. The implementation of the VRC

did not require the implementation of any extra widgets in the system, but the integration of a widget

and input component object into a single entity proved to be useful. This integration was accomplished

without any need to change the design or implementation of the interaction framework.

4.2.2. VRHandApp

The VRHandApp is a small application designed to test the interactions between the interaction

components and the entities/widgets in the system. The application presents the user with an immersive

virtual environment, which contains a number of entities. The user is presented with a virtual hand

interaction component with which to interact with the entities in the system. The initial number, type,

position and orientation of the objects in the system are read in from a configuration file when the

application is executed. The system may also include a set of widgets, which the user can use to send

commands to the system. The main purpose of this application is to test the workings of the different

components of the interaction system, but it also serves as a good introduction to immersive, interactive

VR systems for novice users requiring training.

The three screenshots in Figure 4 – 4 show the three of the main aspect of the VRHandApp application.

The first shows the interaction component (the hand), a widget (a virtual menu with a single button)

and entities (the chess pieces). The second screenshot shows the interaction component ‘grabbing’ one

of the entities – notice the feedback to the user supplied in the form of a transparent bounding box

Figure 4 – 4 – Screenshots of the VRHandApp.
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(selection feedback) and a set of axes (orientation feedback). The last screenshot shows the interaction

component activating the ‘New Wall’ button on the virtual menu widget.

4.3. Virtual Reality Image Viewer

Mundell [Mundell, 99] researched the feasibility of creating a VR operating system (i.e. an application

to control the operation of a computer from inside a VE).

“… explores the virtual interface from a design perspective. A simple virtual reality image viewer

application is tested with a variety of users, producing a virtual interface design reference model, and

a set of virtual interface design guidelines.”

[Mundell, 99]

The image viewer is intended as a test case whereby the different interaction paradigms of VR could be

tested on a variety of users in order to asses the usefulness of each. The purpose of the image viewer is

to present the user with an intuitive way to store, select and display images stored on a computer, in a

virtual environment. Two versions of the application were developed to test the two main paradigms of

VR interaction – a real world version, which mimics objects from everyday life, and an abstract

version, which moves away from real objects, toward more creative representations of objects. These

two versions correspond to the natural and magical interaction paradigms (introduced in Chapter 2)

respectively. The applications were both developed under the CoRgi system, using the interaction

framework to implement the various VR interaction paradigms required.

Both applications use the virtual hand (VRHandActor) as their primary interaction component. The

applications are only concerned with allowing the users to interact with objects within their reach.

Thus, there is no allowance made for the user to travel inside the world, and only a collision selection

technique is used to choose objects. Figure 4 – 5 details the data flow for the applications.

Figure 4 – 5 – Simple Data Flow Diagram for the VR Image
Viewer.
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4.3.1. Real World Image Viewer

“This version of the image viewer is aimed at copying real life actions and objects. This favours the use

of the hand interaction metaphor. The VE consists of a room with the hand and three objects: a

bookcase, a picture frame, and a book of pictures. The idea is that many sets of images can be held in

different books in the bookcase. A book removed from the bookcase can be placed anywhere, at which

point it will open, displaying a set of images. Any of the images can then be selected for display in the

picture frame; the book page can be turned to display another set of images, or the book can be

returned to the bookshelf.”

[Mundell, 99]

In addition to using the VRHandActor as the primary interaction component, various widgets from

the CoRgi interaction system were also used in this application. The book is a specialized version of the

VRMenuWidget, with additional functionality included to make it behave like a book (e.g. the ability

to open and close, respectively hiding and displaying its component buttons). The images contained in

the book were simply instances of a VRButtonWidget, linked to an integer-to-picture intermediary,

which translated the unique integer ID each button produced when pressed, into a picture, which was

displayed on the wall.

Figure 4 – 6 shows three screenshots from the real world image viewer. The first shows the selection of

a particular image from the ‘book’. The second shows the open book and virtual hand. The third shows

the hand manipulating the ‘closed’ book.

The real world image viewer application required the implementation of several new widgets in the

system. The book widget was the most interesting of these because, while based on the standard menu

widget, significant extra functionality was implemented. The standard grab method used in the menu

widget was overridden to implement the closing book function so that when moving the book around

with the input component, the book closed and hid the buttons from the user. The bookcase is another

interesting widget developed for this application. The bookcase widget implements a hierarchy of

container widgets (i.e. containers for containers). In this case, the book acts as a container widget for

the buttons, while the bookcase acts as a container widget for the book. This container hierarchy was

Figure 4 – 6 – The ‘Real World’ Image Viewer.
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implemented using the listener (or parent) property of the widgets. The buttons have the menu as their

parent and report any change in their state to the menu. The menu, in turn, records which button

changed state last. Thus, the application need only query the menu (as to which button changed state

last) instead of querying each separate button as to its state. The bookcase, which is essentially a

container of menus, can also record which menu had a button that changed state, thereby eliminating

the need to poll each menu. All of these extensions to the system were completed using the standard

interaction framework – there was no need to change the basic framework to implement these

applications.

4.3.2. Abstract Image Viewer

“Originally it was thought that the abstract image viewer would use surfaces with grids on them in

place of the bookshelf. A shaded block in the grid selected would produce a plane holding the images.

A network of these gridded surfaces was envisaged as a start towards experimenting with effective

ways of accessing the system in a virtual world. However, once the real world version was developed it

became clear that this is too complex and the specification was changed to a more direct replacement

of the real world version.”

[Mundell, 99]

The implementation of the Abstract Image Viewer mirrored that of the Real World Viewer in that all

the components are the same, only their visual representations changed. The book is replaced by a ring,

which gives the user better spatial cues about where to position the widget for best effect.

Figure 4 – 7 shows three screenshots from the abstract image viewer. The first shows the virtual hand,

the virtual menu and buttons for each of the images and the pole to store the menu. The second

screenshot shows the virtual hand manipulating the ‘closed’ menu. The last screenshot shows the

selection of a particular image from the menu.

Figure 4 – 7 – The ‘Abstract’ Image Viewer.
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4.4. Physical Modelling

Dembovsky [Dembovsky, 99] developed a generic system for handling object interaction and physical

modelling in a VR system.

“Physical modeling in Virtual Reality is a new and expanding field. Most such applications are either

graphically rich but present little usability and have poor object interactions or are physically correct

but have little visual appeal.

We design a framework, VRPhysicsEnvironment, that is at once graphically rich, has a wealth of object

interactions and physical correctness.”

[Dembovsky, 99]

The system implements a fast collision detection algorithm (RAPID) based on oriented bounding

boxes. The objects in the system are all based on a specialized form of the VREntity object, called

VRPhysicsEntity. The VRPhysicsEntity class adds the following attributes to the standard

VREntity class:

•  Mass and velocity: necessary for calculating momentum for use in collision equations.

•  Force: necessary for calculating the overall effect of two objects colliding.

•  Gravity constant: set to 9.8 m/s by default but changeable if required.

•  Physical Type: this attribute defined how the object behaves in a collision. For example, a wall will

not move, not matter how hard it is hit.

•  Collision Type: defines which of the two collision detection types to use – either spherical or box

shaped. This feature was not completely implemented in the final system.

Figure 4 – 9 – The VRTTApp Application.Figure 4 – 8 – The VRPhysicaApp Application.
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These attributes are accessed in the same way that the standard VREntity attributes (e.g. position) are

accessed usually via a Set/Get method pair (e.g. SetMass and GetMass). Collisions are handled

centrally by a global collision detection and handling function which resides in the virtual environment.

To demonstrate the use of this system, two applications were developed – the VRPhysicsApp and

the VRTTApp.

4.4.1. VRPhysicsApp

Figure 4 – 8 shows a screenshot taken from the VRPhysicsApp application. The VRPhysicsApp

application is designed as a physical modelling simulation application. Objects are placed in the system

and the system is then ‘released’ allowing gravity and object interactions to take the system into its

final stable, state. Figure 4 – 8 shows four different types of object in the system. The green square is a

wall object, the coloured spheres are all ball objects, the semi-transparent object is an anti-gravity pad

(reversing the effects of gravity on objects within its influence) and the final object is a conveyor belt.

Each of these objects behaves differently in an object collision situation by having implemented

different versions of the various property setting methods. For example, in a collision between a wall

and a ball, each of the objects has their SetVelocity methods called by the collision detection

system. The implementation of these two methods is different for each different type of object. The ball

sets its new velocity to that given to it by the collision detection system. The wall on the other hand,

simply ignores the commands to change velocity, since it cannot move and therefore has no velocity.

In the case of the VRPhysicsApp, the collision detection system runs as part of the VR application,

not as a component of the interaction system. But, since the collision detection system operates only on

VRPhysicsEntities, it can be considered to be another example of an interaction component. The

input actor in this case would be an timer function, activating the collision input component at discrete

intervals to check for collisions. Once a collision was detected, the mathematics for the new properties

of each of the colliding parties could be calculated and the end results set in each of the

VRPhysicsEntities.  Figure 4 – 10 shows a data flow diagram using the collision input

component.

Figure 4 – 10 – Simple Data Flow Diagram using the
Collision Input Component.
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The implementation of the VRPhysicsEntity class illustrates how the standard entity class (and the

overall interaction framework) can be overloaded with specific operations and properties to provide

extended functionality. In this case, the standard entity was given extra properties and methods. These

new entities still interact with standard input components in the same way, but specialised input

components, which are aware of their extra functionality are able utilise this extra functionality. Thus,

the interaction framework is extensible in that overloading an existing class can add new types of

interaction and/or object, which remain compatible with the general system. Figure 9 of Appendix A

shows the UML diagrams for the VRPhysicsEntity classes and their relation to the standard

VREntity class.

4.4.2. VRTTApp

Figure 4 – 9 shows a screenshot from the VRTTApp application. The VRTTApp application is a

physical modelling system designed to simulate a table tennis game. This example was used in Chapter

3 to illustrate the use of the interaction framework to create a real application (see Figure 3 – 9). Figure

4 – 9 shows the table tennis table with one end rotated at 90o to the other. This orientation of the table

is to allow a single user to play the game by hitting the ball against the upright portion of the table. The

diagram also shows the two interaction components in the system i.e. the virtual hand and the virtual

bat, as well as the ball. The virtual hand in this system is a specialised form of the standard

VRHandActor, which automatically collects the ball when the grab command is issued. The bat

interaction component works simply by following the movements of the user’s hand (via a Polhemus

tracker) and causing object interactions with the ball.

4.5. Conclusion

The choice of applications to use as case studies was one made by the users of the interaction system

i.e. those people wanting to write immersive, interactive, VR applications. As such, the choice was

made based on what applications were currently required as opposed to what applications will best use,

test and justify the our implementation of the framework. Chapter 3 justified the framework itself, but a

particular implementation of that framework can only be justified by creating real applications with it.

Thus, while the framework may be considered to be complete, our implementation must be justified by

actual applications such as those presented here.

Certain aspects of the framework were not covered by any of these applications. For example, none of

the case studies uses wide range travel techniques. These techniques form part of the framework, and

were implemented with the CoRgi interaction system. They have been tested in so far as writing a

small application to check their basic functionality, but no large integrated applications have used them

so far. Nonetheless, the case studies presented here integrate and use most of the functions of the

framework and provide proof of the functionality of our implementation.
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4.6. Summary

Several applications have been developed using the interaction framework described in the previous

chapters. They have been described from the point of view of what parts of the interaction framework

they utilise as well as any extensions they made to the original framework. These applications, along

with the theoretical justification for the framework given in Chapter 3, serve as justification for the

usefulness and completeness of the interaction framework, and its implementation – the CoRgi

Interaction system.
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5.1. The CoRgi Environment Distribution Paradigm

The basic CoRgi system supports distributed VR in the form of a client-server architecture. An

application can create a central server environment, to which other client environments can connect.

The server environment acts as a central repository for all the data comprising the virtual environment.

Clients connect to the central server and obtain copies of this data, which they cache locally. When the

data changes, the clients receive updates from the server. The distributed environment is currently

implemented using standard TCP/IP and UDP. Since the interaction system is implemented separately

from the rest of the system, as proposed by Shaw [Shaw, 1992], it is not necessary to distribute both in

the same way.

In order to distribute the basic VR system, it is necessary to efficiently disseminate large amounts of

data to all the clients. Thus, the system is distributed at the lowest possible level (the TCP network

layer) in order to make it as efficient as possible. The interaction system is designed from the start to be

separable into numerous distinct parts, with the interfaces between these parts designed to minimise the

data flow between them. Thus, since the amount of data passing between the different parts is relatively

small, we decided to distribute the interaction system at a higher level than the rest of the VR system.

The definition of the interfaces between the different components was standardised early on in the

implementation phase of this project. This interface definition was then used, in conjunction with the

Common Object Request Broker Architecture (CORBA) middleware layer, to allow the interaction

system to be spread over different platforms in a network.

5.2. The Common Object Request Broker Architecture
(CORBA)

5.2.1. Introduction

“The CORBA specification, written and maintained by the Object Management Group (OMG),

suppiles a balanced set of flexible abstractions and concrete services needed to realise practical

solutions for the problems associated with distributed heterogeneous computing” [Henning, 1999]

Modern networks typically consist of various different types of machine, operating system,

applications and transport layers, all having to talk to one another. The heterogeneous nature of these

networks is due partially to legacy systems and partially to the fact that there is no best tool for all jobs.

Any given combination of hardware, software and network will only perform well for a small subset of

applications i.e. different applications place different demands on a system. The heterogeneous nature

of modern data networks is also an advantage in that it increases the resilience of the overall system -
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hopefully any problem (short of a loss of physical networking media) will only affect an isolated

section of the network.

This heterogeneous nature of networks makes the writing (or porting to new systems) of distributed

networking applications a difficult task. Not only do programmers have to deal with the different

hardware and software conventions of the different systems, but they also have to deal with different

network types, in order to get their product to the widest audience. [Henning, 1999] proposes two very

general rules for solving the problems of distributing an application over a heterogeneous network:

•  Find platform-independent models and abstractions that you can apply to help solve a wide variety

of problems.

•  Hide as much low-level complexity as possible without sacrificing too much performance.

These general rules are the basis of CORBA.

5.2.2. The Object Management Group (OMG)

The OMG was formed in 1989 to address the problems associated with developing a portable,

heterogeneous application distribution system. The OMG produced a set of specifications, called the

Object Management Architecture (OMA), which has at its core the CORBA specification. The OMA

specifies how distributed objects are handled in a platform independent way and how these objects are

able to interact with one another. The OMA is split into two related models – the Object Model and the

Reference Model.

5.2.2.1. The Object Model

The Object Model describes how the interfaces to distributed objects may be described in a platform

independent way. It describes an object as an encapsulated entity with an immutable distinct identity

whose services are accessed only through well-defined interfaces. Clients use an object’s services by

issuing requests to the object [Henning, 1999]. The implementation of these services is not important to

the calling object and, along with the location of the object, is not directly accessible.

5.2.2.2. The Reference Model

The Reference Model describes how distributed object interaction is achieved across heterogeneous

networks. It provides interface categories that are general groupings for object interfaces. An Object

Request Broker (ORB) conceptually links all of these interface categories. The ORB transparently

facilitates the communications between the objects, activating them (if necessary) when they are

requested. The Reference Model defines several categories of interfaces, all linked together using the

ORB communications infrastructure:

•  Object Services: these are domain independent interfaces, used by many different distributed

object applications. Examples of these are the Naming and Trading Services. The naming services
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acts as a central repository of object identities, which an application may search in order to get a

reference (pointer) to the object that it requires. The trading service provides the same

functionality, but instead of searching for a particular object, the application make a request for

some particular service, and the trading service returns a reference to the best possible object.

•  Domain Interfaces: these services play roles similar to the Object Services, except that they are

domain specific i.e. less general in their application than the Object Services.

•  Application Interfaces: these are developed specifically for a given application. These application

specific services are not standardised by the OMG. However, should similar services appear in

many different application domains, they may become standardised as part of one of the other

interface categories.

5.2.3. CORBA Features

5.2.3.1. General Request Flow

Figure 5 – 1 shows the abstract data flow model for a client application making a request of a server

application. Requests pass from client to server as follows:

1. The client has a choice of two options when making a request. The request can be passed to the

ORB through either the static stubs or the Dynamic Invocation Interface (DII). The static stubs are

compiled into the object’s interface implementation whereas the DII interface allows object

interfaces to change during runtime. The DII also allows for the addition of new objects during

Figure 5 – 1 – Basic Data Flow in the CORBA Model.
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runtime. For the majority of cases, (and the CoRgi Interaction system in particular) the static stubs

are sufficient, as the object interfaces are known at compile time.

2. The client ORB dispatches the request to the server ORB using the networking infrastructure.

3. The server ORB, on receiving a request, dispatches it to the object adapter responsible for creating

the target object.

4. The client side object adapter then contacts the servant1 on the server side, which implements the

target object. Similarly to the client side, the server has the choice between a static and a dynamic

invocation mechanism when contacting the servant.

5. After the servant has executed the request, the return values are passed back to the caller object in

the client.

CORBA also implements several different types of request:

•  Synchronous: dispatching a synchronous request causes the client to block until a return value is

received. This form of request is identical to a remote procedure call.

•  Deferred Synchronous: in this case, the client makes the request, continues processing and later

polls for the response. Currently (as of CORBA 2.2) this form of request is only available through

the DII interface.

•  Oneway: this is a best effort type of request where the client is not assured that the request will get

to the server. Oneway requests are simply sent to the server, the client continues executing and no

response is allowed. These requests are most often used by ORB’s for communicating network

conditions e.g. congestion.

5.2.3.2. Interface Definition Language (IDL)

One of the requirements for a heterogeneous distributed system is to have some platform independent

way of defining and distributing the interfaces to the objects in the system. The OMG defined the IDL

to accomplish this task. The interface to an object lists the operations that it handles, as well as the data

                                   

1 CORBA terminolog

short
long
long short
unsigned short
unsigned long
unsigned long long
float
double
long double
char
wchar
boolean
octet
OMG IDL C++
CORBA::Short
CORBA::Long
CORBA::LongLong
CORBA::Ushort
CORBA::Ulong
CORBA::UlongLong
CORBA::Float
CORBA::Double
CORBA::LongDouble
CORBA::Char
CORBA::Wchar
CORBA::Boolean
CORBA::Octet

Table 5 – 1 – IDL to C++ Data Type Mapping
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y for the eventual implementation of an abstract object
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types that those operations utilise. The IDL is not a programming language and defines the interfaces to

objects only, not the implementation of the operations listed in the interface. The language independent

nature of the IDL allows object implementations written in various different languages (those the IDL

Mappings 2) to inter-operate seamlessly. The IDL has integrated support for simple data types like int

and long. Since these data types need to be language independent and have a fixed size, the IDL data

types are mapped onto CORBA:: data types as detailed in Table 5 – 1. In addition to the simple data

types listed in Table 5 – 1, the IDL also supports constructed types, such as enumerated types,

structures, discriminated unions, sequences and exceptions. IDL also provides a module construct

which is used for name scoping purposes.

The following is a fragment of the IDL definition of the CORBA Entity object defined as part of the

CoRgi distributed interaction system:

struct CORBA_objectID
{
  long id;
};

// IDL definition of CORBA_Entity object
interface CORBAEntity
{
  // Attributes identifying whether to 'snap' the object
  attribute short SnapPosition;
  attribute short SnapOrientation;

  // VREntity action definitions
  long Grab(in CORBA_objectID parent);
  long Drop(in CORBA_objectID parent);
  long Point(in CORBA_objectID parent);
  long UnPoint(in CORBA_objectID parent);
  long Press(in CORBA_objectID parent);
};

The example shows the definition of a data structure called CORBA_objectID containing a single

long value and the interface to an object called CORBAEntity which has four methods Grab,

Drop, Point, UnPoint and Press, each taking a CORBA_objectID as a parameter and

returning a long. The CORBAEntity object also includes two attributes, SnapPosition and

SnapOrientation.

In IDL, method arguments need to have specified directions in order for the ORB to know what values

need to be returned to the calling object. All of the parameters in the example are defined to be in

parameters, meaning that they are passed from the client to the server only. It is also possible to define

a parameter as an out parameter, in which case it is passed from the server back to the client or as an

inout parameter which is passed both ways. IDL interfaces are also able to inherit from one another

allowing for the definition of polymorphic objects. It should also be noted that all IDL objects inherit

                                                          

2 Currently only C, C++, Smalltalk, COBOL, Ada and Java
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from the Object base class defined in the CORBA module. The Object base class defines a set of

operations that are necessary for all CORBA objects.

In order to implement and use an IDL interface, it has to be translated into a suitable language

mapping. For each IDL construct, the language mapping defines how that particular facility is

implemented in a given programming language, making the objects accessible to application

programmers. The C++ language mapping maps the IDL interfaces onto classes and operations of

those interfaces are mapped onto methods within that class. Object references3 map onto the

operator-> function i.e. they are either a pointer to a class, or an object of a class with an

overloaded operator-> member function).

5.2.3.3. Operation Invocation and Dispatch Facilities

CORBA applications operate by receiving/invoking requests on CORBA objects. The OMG specifies

two general approaches to do this:

•  Static invocation and dispatch: here, the IDL is translated into language specific stubs and

skeletons, which are then compiled into the application programs. This gives the applications static

knowledge of the programming language data types and functions mapped from the IDL

definitions of the remote objects. The stub is the client side construct that allows the request to be

made to the remote object via a normal function call. In C++, the stub is a member function of a

class called a proxy because it represents the remote target object in the local application.

Similarly, the skeleton is the server side construct that processes the request and dispatches it to the

appropriate servant function.

•  Dynamic invocation and dispatch: here, the construction and dispatch of CORBA requests is

handled at run time rather than at compile time (as was done with the previous approach).

Information about the interfaces and types of the remote objects is obtained either from a human

operator or from an Interface Repository (IR), a CORBA service that provides run time access to

IDL definitions.

5.2.3.4. Object Adapters

An object adapter is an object that adapts the interface of one object to a different interface expected

by a caller i.e. it uses delegation to allow a caller to invoke requests on an object without knowing the

objects true interface [Henning, 1999]. Thus, the object adapter serves to connect the language

dependent servant implementations (along with their invocation and dispatch facilities) to the CORBA

ORB. CORBA object adapters have the following requirements:

                                                          

3 An object reference is a handle used to identify, locate and address a CORBA object
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•  The create the object references that allow clients to access the objects.

•  They ensure that each target object has a servant implementation.

•  The dispatch requests from the client-side ORB to the appropriate servant.

The object adapter was introduced as a separate layer from the ORB in order to perform these duties

and thereby simplify the implementation of the ORB itself. In C++, servants are instances of C++

objects, typically derived from base classes produced by compiling the IDL interface definitions. In

order to use these servants, they must be registered with an object adapter, which will dispatch any

client requests to the appropriate servant. As of version 2.1 of CORBA, there are two different types of

object adapter, the Basic Object Adapter (BOA) and the Portable Object Adapter (POA).

5.2.3.4.1. Basic Object Adapter (BOA)
Initially, CORBA had only one type of object adapter, the BOA. The BOA was designed to be the only

object adapter, but due to unforeseen circumstances, had the following deficiencies:

•  The BOA did not account for the fact that, due to the need to support the servant implementations

themselves, the BOA would end up being language dependent.

•  Some necessary features were omitted from the BOA. Certain interfaces were not defined and

there was no mechanism for servant registration operations. ORB vendors tended to overcome

these problems with proprietary solutions, resulting in poor portability between different ORB

implementations.

5.2.3.4.2. Portable Object Adapter (POA)
The POA provides a portable (between different ORB vendors) way of interfacing language dependent

servant implementations with language independent IDL interfaces. The POA is responsible from

creating objects and object references. An object reference always results from the creation of a

CORBA object. Once created, the object can alternate between being activated and being deactivated.

When activated, the object is capable of servicing client requests. In order to receive client requests, the

Object Non-existent Object Non-existent

Object Activated

Servant Incarnated

Object Deactivated

Servant Etherialised

Creation Destruction

Activate Deactivate

Object Exists

Figure 5-2 – The CORBA Object Life Cycle
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object must be incarnated (or implemented) by a servant. It should be noted that the lifetimes of

servants are completely separate from the lifetimes of CORBA objects. A single servant incarnates any

given CORBA object at a given time. But the servant object incarnated by a CORBA object is able to

change over time. Eventually, each servant is etherialised to break the bond between it and its CORBA

object. Finally the CORBA object is destroyed and returns to a non-existent state (Figure 5-2). POA’s

maintain no persistent state i.e. they have to re-register each of their servants at each execution of the

application.

A key feature of the POA specification is that applications can contain multiple POA instances. Each

POA instance represents a group of objects with similar characteristics. The POA characteristics are

controlled via policies, which have to be specified when the POA is created. All server applications

must have at least one POA, the RootPOA, which has a standard set of policies. POA policies are, in

fact, objects in the system with their interfaces defines in the PortableServer module.

The CoRgi distributed interaction system was implemented using the BOA initially but was later

changed to support the POA for portability (between different ORB vendors) issues. The system does

not require any of the advanced options supported by the POA (like persistent or transient 4 objects), so

only the RootPOA was used. Additionally, a single automatic ServantManager was used to

automate the process of binding CORBA objects to servants, taking further load off the developer. In

our case, the change from BOA to POA did not introduce any additional functionality into the system,

but it did improve the system’s overall portability.

5.2.3.5. Inter-ORB Protocols

Before CORBA 2.0, ORB vendors used their own network protocols (or borrowed them from other

vendors) and there was no standard way for different vendors ORBs to communicate. In CORBA 2.0,

this communication was standardised with the General Inter-ORB Protocol (GIOP). GIOP specifies

transfer syntax and a standard set of message formats to allow independently developed ORBs to

communicate over any connection-oriented network connection. The Internet Inter-ORB Protocol

(IIOP) is a GIOP implementation over TCP/IP and must be supported by all ORBs that claim CORBA

2.0 (or greater) compliance. Additionally, ORB interoperability requires the use of a standard object

reference format. While object references are opaque to the applications that use them, they contain

information that all ORBs must be able to understand in order to communicate with the desired object.

The standard reference format is called Interoperable Object Reference (IOR) and remains flexible

enough to support any GIOP implementation. The IOR identifies one or more supported protocols and,

for each protocol, encapsulates the data required to contact the server using that particular protocol. For

                                                          

4 These types of objects have their activation handled automatically by the CORBA system and are

able to preserve their internal data between different program executions
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example, an IIOP IOR contains a host name, TCP/IP port number and an object key that identifies the

given object on the particular host/port combination.

5.2.3.6. Request Invocation

Clients manipulate objects by sending requests and getting results back from these requests. In order to

make a request, the client must hold an object reference to the target object. This object reference acts

as a unique handle for identifying the target object. In order to make a request, the following sequence

of events occurs:

•  The client obtains an object reference to the target object. This would usually be done using a

Naming or Trading Service, but the object reference could also be passed by some other method.

For example, in the CoRgi interaction system, the VR server creates an Entity Naming Object

which identifies all the objects in the systems and stores their corresponding object references. In

order for clients to be able to access this central object repository, they need to be supplied with an

object reference for it. This object reference is passed to the client (using standard TCP/IP network

methods) when it initially registers with the server.

•  The client ORB then uses this object reference to locate the target object.

•  The request is then passed on to the server ORB. The server ORB is responsible for

activating/allocating a servant to the object if there is not already one present.

•  The server ORB then calls the servant object with any arguments that were passed in the request.

The ORB then waits for the servant to process the request.

•  The server ORB then passes back to the client ORB any in and inout parameters that were part

of the request. Should there be any problem with the execution of the request, the server ORB

returns an exception (along with any additional data about the problem) to the client ORB.

•  The client ORB then passes the returned request back to the client.

To the client application, the request invocation mechanism is completely transparent. The client makes

the request using standard C++ method invocations on the CORBA stub (or DII interface) and the

remainder of the mechanism is handled by the CORBA system. In particular, request invocation has the

following characteristics:

•  Location transparency: the client is not made aware of the actual location of the target object. The

mechanism for making the request is the same whether the target object exists in the local address

space, in a separate thread or process or on a separate machine altogether. In addition, server

processes do not have to always execute on the same machine. There are mechanisms in CORBA

to move them transparently to other machines.

•  Server transparency: the client has no knowledge of which server implements which objects.

•  Language independence: the implementation language of the servant is no important to the client

object. For example, a C++ client can call an Java server using the same mechanism that it would

use to call a C++ server. In addition, the implementation language of a servant can be changed

without affecting any client requests.
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•  Implementation independence: the client needs no knowledge of the implementation details of the

servant object. For example, the server may implement its servants by using non-object oriented

techniques, yet the client still accesses these servants using the same, consistent object-oriented

techniques that it uses for any other request.

•  Architecture independence: the client is unaware of the server CPU architecture and is

transparently shielded from details such as byte ordering, marshalling and structure padding. In

addition, the client can make assumptions about the size of data types on the server.

•  Operating system independence: the client is not made aware of the operating system of the server

architecture.

•  Protocol independence: the client has no control over the communication protocol used to contact

the server. If several protocols are available, it is the job of the ORB to choose the best one for the

job.

•  Transport independence: the client is not aware of the transport and data link layer used to

communicate the requests. ORBs can transparently use a variety of different networking

technologies like Ethernet and ATM.

5.2.3.7. Object References

CORBA object references are analogous in use to C++ class instance pointers. Unlike C++ pointers

though, they may denote objects implemented in different threads, processes or even on different

machines. Aside from the distributed addressing capability, object references have many of the same

attributes as C++ class instance pointers. The following is a list of the major attributes of CORBA

object references:

•  An object reference supports exactly one object instance i.e. a client holding an object reference

may expect that the reference will always denote the same object, while that object continues to

exist. An object reference is permitted to stop working only when its target object is permanently

destroyed, in which case, any requests made using that object reference will produce an exception.

Additionally, after an object is destroyed, its reference becomes permanently non-functional i.e.

there is no chance that a reference to a destroyed object will accidentally refer to some other object

at a later date.

•  Several different references may denote the same object i.e. each reference names a single object,

but any given object may have several names. This means that two object references, with

different contents, do not necessarily refer to different objects. This is analogous to the operation

of C++ class instance pointers.

•  References may be null i.e. point nowhere. CORBA actually defines a specific pointer value to

mean a NULL pointer.

•  References may dangle (i.e. resemble C++ pointers that have had their instances deleted). Once an

object adapter has supplied a client with an object reference, the adapter no longer has any control

over it. This means that there is no automatic mechanism to inform a client when the object servant

to the object reference that it holds, no longer exists. To find out whether a servant exists for a
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given object reference, CORBA provides the non_existent object method to all CORBA

objects.

•  References are opaque i.e. the client may not examine or alter their contents. Parts of the object

reference are standardised across all ORB implementations and parts are proprietary to a particular

vendor. Thus, altering parts of the reference may render it unusable by certain ORBs.

•  References are strongly typed i.e. each object reference contains some indication of the interface of

the object that it points to. This allows ORBs to enforce type safety at run time. For statically typed

languages (not using the DII interface) type safety is also enforced at compile time.

•  References support late binding i.e. clients may treat a reference to a derived object as if it were a

reference to a base class object. This is directly analogous to C++ virtual method calls. One of the

major advantages of CORBA over traditional RPC implementations is that CORBA fully supports

the concepts of late binding and polymorphism.

•  References can be persistent. Clients can convert the object reference to a string and store it

somewhere to be used at a later date. Provided that the servant that the reference pointed to is still

operational, the reference will still operate as expected.

•  References can be interoperable i.e. a reference supplied by one vendor’s ORB will be equally

valid on the ORB of another vendor, provided the standard IOR format is used.

5.2.3.7.1. Object Reference Content
Due to the issues of transport and location transparency inherent in CORBA, the object references all

need to contain some minimum amount of information, encapsulated in a standard for that all ORBs are

able to understand, the IOR.

An IOR contains the following basic information (Figure 5-3):

•  Repository ID: a string identifying the most derived type of the IOR at the time the IOR was

created. The repository ID allows you to locate a detailed description of the interface in the

Interface Repository. The ORB is also able to use the Interface Repository to implement type-safe

down casts.

•  Endpoint Info: this field contains all the information needed by the client ORB to establish a

network connection with the server ORB. The field contains information about what network

protocol to use and physical addressing information appropriate to the network protocol chosen.

The endpoint field may contain the actual address of the endpoint server, or it may point to some

other implementation repository, which in turn contains details about the location of the server.

This abstraction allows server processes to migrate from one machine to another without breaking

Repository ID Endpoint Info Object Key
(Proprietary)

Figure 5 – 3 – Object Reference Contents.



70

Designing and Implementing a Virtual Reality Interaction Framework

Chapter 5 – CORBA and the Distributed Interaction System

existing object references. CORBA also allows for the inclusion of several different types of

network information in the endpoint field. This data allows the ORB to choose the best form of

network connection when contacting the server.

•  Object key: this field contains information, which is proprietary to a particular ORB vendor. The

client side simply sends this field as a block of data (even the client ORB may not be able to

decode it). Since the server ORB created the reference in the first place, it knows how to read it

and will use it to address the correct object.

The combination of endpoint and object key fields may appear multiple times in the IOR. These

multiple endpoint-key pairs (known as multicomponent profiles) permit an IOR to efficiently support

more than one protocol and transport layer.

5.2.3.8. References and Proxies

When a client obtains an object reference, the client-side ORB instantiates a proxy object in the client’s

address space. This proxy is a C++ instance that supplies the client with an interface to the target

object. The interface that the proxy presents to the client is the same as the interface on the target

object. Any requests sent using the object reference go to the proxy object. The proxy object, in turn,

sends a corresponding request to the remote object (through the ORB). When both objects (client and

server) exist within the same address space, the proxy object is still used in order to maintain a uniform

interface to all objects, remote and local.

5.3. The CoRgi Distributed Interaction System

The CoRgi distributed interaction system allows numerous different VR applications to share the same

virtual environment i.e. users of one application are able to see and interact with objects created by

users of other applications. Using this system, applications have the ability to create objects and (using

CORBA) make them accessible to other applications.

The CoRgi interaction system consists of three main parts, the CORBA Entities, the CORBA

Interaction Actors and the Entity Naming Object. The CORBA Entities and CORBA Interaction Actors

are extensions of the standard CoRgi system Entities and Interaction Actors respectively, while the

Entity Naming Object is an addition to the system. In the standard system, the VREntity object

contains a static variable based linked list structure, which is used by the system to identify what

entities are present in the environment. With the distributed system, this list needed to be centralised

and accessible to all the clients, so it was moved into a separate object, the Entity Naming Object.

In order to retrofit CORBA into the already existing interaction system, several details had to be

considered. The data passing between the objects was often in the form of system specific data types

and not simple data types (e.g. int or float). In order to distribute these data types through

CORBA, they first had to be defined in IDL. It was then necessary to create various translation
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procedures to switch between the data types used in the base VR system and those defined for

distribution by CORBA. Since the data types were very similar, the translation procedures were small,

but they did introduce further overhead into the system. The other option was to redefine the base VR

system data types as those created from the CORBA IDL. This idea was rejected, as it would have

forced the use of CORBA even when the system was not being used to create a distributed application.

This in turn would have introduced unnecessary overhead into single user applications.

5.3.1. CORBA Entities

The VRCORBAEntity is a class of the distributed system, corresponding to the VREntity base class

from the standard system. Details of the VRCORBAEntity class are depicted in Figure 6 of Appendix

A. The VRCORBAEntity class inherits from the POA_CORBAEntity base class which is generated

automatically by the CORBA system from the IDL interface definition. These automatically generated

base classes should not be edited, thus the functionality of the CORBA Entity is implemented in the

inherited VRCORBAEntity class.

The VRCORBAEntity class contains the same methods as the VREntity class, making it seem

equivalent from the application developer’s point of view. Since many of the method calls pass or

return data types defined by the system, the methods had to be overloaded with the CORBA data types

as parameters. Making a method call on a VRCORBAEntity using the system data types as

parameters will result in the parameters being converted into equivalent CORBA types, and the method

call repeated with the new type parameters. Thus, the method calls with the system data types should

not be overridden in an inherited object (as was done with the VREntity class), rather functionality is

included by overriding the CORBA data type methods, which are defined as virtual in the

VRCORBAEntity class. As an example of an inherited class that implements functionality, the

VRGenericCORBAEntity inherits from the VRCORBAEntity class and overrides the Grab,

Drop, Point and UnPoint methods.

The IDL used to generate the CORBAEntity base class contained definitions for 2 attributes for the

class, SnapPosition and SnapOrientation. These attributes were also present in the VREntity class,

where they were implemented as publicly available variables. They are used to set whether or not an

entity should have its position/orientation snapped to some set of finite values. In the CORBAEntity

class, these attributes are implemented as CORBA attributes. They have methods (SnapPosition

and SnapOrientation) implemented in VRCORBAEntity which are used to set/get the values of

the attributes. The other attributes associated with Entities (e.g. position, orientation, shape, etc.) are

not implemented using the standard CORBA attribute implementation. In order to retain compatibility

with the previous system (i.e. same method names), the setting/getting of the standard entity attributes

was implemented as standard method calls, identical to the VREntity implementation.
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5.3.2. CORBA Interaction Actors

The VRCORBAHandActor class is the distributed equivalent of the VRHandActor class. Both

inherit from the VRInterface base class. Unlike the VRCORBAEntity class, the

VRCORBAHandActor does not inherit from an CORBA generated class i.e. it does not offer any of

its methods over the network. The VRCORBAHandActor does include the CORBA.h header file in

order to be able to handle the object references that it uses to access objects. The major difference

between the VRHandActor and the VRCORBAHand actor is the way in which they locate the correct

object to perform an action on. Both use some method (collision detection by default, but ray-casting

has also been implemented) to decide which object the user wishes to perform an operation on. These

techniques provide the hand actor with an objectID (a unique identifier, used by the CoRgi system

to address the objects). In the distributed system, when an Entity is created, its objectID is

automatically stored, along with its object reference, in the central Entity Naming Object. In the non-

distributed system, Entities are created inside of a linked list structure, searchable by objectID.

Thus, the VRCORBAHandActor queries the central database to get the object reference, while the

standard VRHandActor simply searches the local linked list of entities. Once the hand actor has the

object reference (or pointer) to the required object, making a method call on the target object performs

the relevant action. Further details of the object structure of the VRCORBAHandActor can be found

in Figure 7 of Appendix A. As with the standard VRHandActor, the VRCORBAHandActor is

usually inherited and the CheckGesture method overridden to provide the eventual functionality.

This is demonstrated in the VRCloseCORBAHandActor class.

5.3.3. Entity Naming Object

The Entity Naming Object is a simplified version of the CORBA Naming Service. The exact details of

the class are documented in Figure 8 of Appendix A. During normal usage of the system, it was noted

that lookups for object references were the most prevalent of the CORBA requests made by the system.

This was identified as being an area that required the maximum possible optimisation. The standard

CORBA Naming Service is not optimised for this kind of system (it was designed for a more general

case scenario), so we opted to develop our own, simple naming service which we could optimise as

much as possible. The Entity Naming Object is defined in the class EntityNamingObject, which

inherits from the class POA_EntityNamingObject_CORBA, which is automatically generated

from the IDL interface definition of the interface. The EntityNamingObject implementation makes use

of a class called TreeNode which, along with a static variable defining the root of the tree,

implements a binary search tree structure for storing object references based on CORBA_objectIDs.

The interface to the EntityNamingObject is similar to the interface provided by the standard

CORBA Naming Service. There are two public methods, LocateName and BindName for

retrieving and saving object references respectively. There are additional private methods that

implement the binary search tree semantics.
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The CORBA system is plagued by the same chicken and egg problem that plagues all networking

systems. In order for the system to operate, it needs to know the location of a Naming Service (or the

Entity Naming Object in our system), but how is this reference passed to the system? Most current

CORBA systems overcome this problem in one of two ways. First, the Naming Service can be

persistently running on a certain machine/port combination. Many ORBs provide a function for

contacting a service running on a certain machine/port, but this is not standardised. The other method

(currently being standardised by the OMG) is called Resolve Initial References. This involves the ORB

itself storing details about CORBA services (usually retrieved from a system wide configuration file)

and passing these on to the application as required. The CoRgi interaction system uses a slightly

different method to those described above. Since we are dealing with a client server type architecture,

we decided to store the object reference for the naming object in the central server. When an Entity

Naming Object is created (either by a client or a server) its object reference is converted into a string

and stored in the central server. When an application needs to access the naming object, it contacts the

central server, retrieves the string corresponding to the object reference, and creates a CORBA object

reference which is then used to address the naming object. The object reference for the naming object

is stored in a string form in the central server so as not to force the central server to have any

knowledge of the inner workings of CORBA object references.

The storing of object references in the Entity Naming Object is carried out transparently. When an

application creates a new VREntity object, the CreateObject method in the VREntity class

automatically retrieves the object reference of the naming object (if this has not already been done) and

binds the object reference of the newly created object.

5.3.4. Results

The system implementation has been recently completed and is currently being tested. Several

application programs are being developed, using the system, as part of the Rhodes Computer Science

postgraduate degree. The main question that is currently being investigated is whether the extra

overhead of using a middleware layer in a real-time application like VR is acceptable.

IRIX - Linux CORBA
CoRgi

IRIX (Local) CORBA
CoRgi

Linux (Local) CORBA
CoRgi

Standard Deviation (s) 0.0161900 0.0009234 0.0149617

Average time (s) 0.0187984 0.0026867 0.0170428
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Table 5 – 2  – Timings for CORBA Implementation of Distributed CoRgi Interaction System
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aming Object and implements a binary search tree containing CORBA object references for all the
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entities in the system, indexed by their objectID. A call to Find takes an objectID as its only

parameter, and returns a CORBA object reference. The values of these timings are listed in Table 5 – 2.
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6.1. Introduction

Our framework was designed based on previous research and other interaction toolkits. The

implementation was completed and used for several example applications. What follows is a synopsis

of the work detailed in this thesis, along with a list of the achievements of this project and some ideas

for future work in this field.

6.2. Related Work

Past research into the workings of immersive VR interfaces provides important insight into what is

required to achieve a usable interactive VE. The eventual goal of any VE interface should be to allow

users to interact in an effective way, while at the same time keeping the cognitive load introduced by

the interface to a minimum. Reducing the cognitive load introduced by the interface allows the user to

concentrate on the task they are trying to achieve, rather than concentrating on using the interface.

Many VR systems attempt to mirror the real world in as many ways as possible. While this naturalistic

approach is important and effective, it is believed that unnatural (or magic) interaction techniques can

go a long way to making an interface more effective and usable.

The set of taxonomies for travel, selection, release, manipulation and system commands give an

abstract view to application developers of what their interfaces need to be capable of doing. Various

VR toolkits have been studied and the different methods for implementing them (e.g. data flow vs.

event based) have been compared. A brief overview of various systems has also been provided for the

purposes of later comparison with the CoRgi interaction system.

Many years of research have produced a good understanding of the techniques required to implement

interaction in current VR systems. All these different techniques were considered when designing and

implementing our interaction framework.

6.3. Implementation

Immersive VR interfaces require a different approach from that used for traditional desktop interfaces.

The data flow approach allows the interface to consist of multiple data pathways all operating in

parallel. The CoRgi interaction system implements this data flow idea using listener attributes. The

listener attribute is simply a pointer to an object in the system that is informed when a certain operation

occurs. Thus, the data flow network in the CoRgi interaction system comprises objects, linked together

by their listener attributes.
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The CoRgi interaction system is abstractly separated from the remainder of the CoRgi VR system

according to the framework detailed in Figure 3 – 2. This separation allows the different portions of the

system to be developed independently, provided the interfaces between these parts are specified and

those specifications adhered to. We have detailed the specifications for these interfaces and given

details on the current implementation of the system under the CoRgi VR toolkit.

We have provided an example to the operation of the system, and justification of its workings based on

the interaction taxonomies detailed in Chapter 2. We have also compared the system with other similar

toolkits.

The justification of the framework using the accepted taxonomies of interaction, shows that the system

includes all the salient features considered important for interaction in current VR systems. The

comparison with other interaction toolkits shows our framework to be more general in its application,

but also expandable to any particular specialised case.

6.4. Case Studies

Several applications have been developed using the interaction framework described in the previous

chapters. They have been described from the point of view of which parts of the interaction framework

they utilise as well as any extensions they made to the original framework. These applications, along

with the theoretical justification for the framework given in Chapter 3, server as justification for the

usefulness and completeness of the interaction framework, and its implementation – the CoRgi

Interaction system.

The applications in Chapter 4 all demonstrate the flexibility of the framework. Each application was

inherently different and required different services from the interaction system. Our framework was

able to provide all the required services without requiring any modification other than logical extension

(e.g. the implementation of new widgets). Additionally, these applications were developed by people

with no previous knowledge of the system. They were able to quickly gain a working knowledge of the

use of the interaction framework, thus demonstrating its ease of use.

6.5. Distributed System

The CoRgi interaction system was designed to be easily separable from the remainder of the CoRgi VR

system. We defined the interfaces between the different parts of the interaction system and the

remainder of the VR system at an early stage. CORBA is ideally suited for abstracting away network

specific details in object oriented programming. Using CORBA and our predefined interfaces, we were

able to extend the CoRgi interaction system to a distributed system.

The main problem encountered when using CORBA for real time applications (like VR) is the extra

overhead introduced by the abstraction layer. We found that with careful planning of the interfaces to
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minimise data flow across them, we were able to reduce the impact of the CORBA abstraction layer to

the point where other factors in the system (namely the distribution of the VE itself) caused

significantly more overheads.

The distribution of the system was made easy by using common interfaces to objects and a well

designed abstraction layer, CORBA. The ease with which the system distributed is another measure of

the flexibility of the framework.

6.6. Achievements

The eventual goal of this research is to produce a interaction framework, which can be used to easily

and efficiently create immersive, interactive, VR applications. To this end, we have completed the

following:

•  A review of the current state of the art in VR interaction. This gives a detailed description of the

current state of the art as regards VR interaction. The research includes details about particular

interaction techniques, structures for classifying these techniques and overall frameworks and

taxonomies of the techniques.

•  Identification of the problems associated with interaction in immersive VR. We have used

previous research from several different sources to compile a definitive list of the current

shortcomings of immersive VR interaction. We have included problems like tracker accuracy and

equipment cost, which we are unable to address, as well as problems like lack of tactile feedback

and limited depth information, which we are able address by using accepted interaction techniques

to solve specific problems.

•  A discussion of interaction techniques and design philosophies for overcoming these problems.

We have included detailed descriptions of the common interaction techniques as well as

taxonomies for the classification of techniques into common groupings. These taxonomies are

useful in that they allow us to identify the salient features of each group of techniques. This

identification of salient features allows us to justify the completeness of a particular interaction

toolkit, by showing that it satisfies all the features of each interaction technique section. Thus, we

do not have to show details for each technique, rather we identify common features and show that

our framework satisfies these.

•  Identification of the requirements for a VR interaction framework to implement these techniques

in a generic and extendable way. We have provided details of all the important factors that

influence the design and implementation of an interaction framework.

•  A review of current interaction toolkits and frameworks. A small number of interaction abstraction

toolkits exist in the field, but most are geared towards solving some particular problem. We have

examined the design and implementation of each of these toolkits and used this information to

extend our own framework.

•  The design of a flexible and generic VR interaction framework based on previous research. The

framework is important in that it provides the basis upon which all the particular techniques will
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depend. We based the design on accepted techniques in the field, thus eliminating the need to

reproduce research that has already been carried out. Our eventual framework is based on several

of the design methodologies considered. We examined each methodology in detail and chose the

best points of each to integrate into our eventual design.

•  A working implementation of this framework. The implementation of the interaction framework

was completed as independently as possible from the underlying VR toolkit that was used – the

Rhodes University CoRgi VR toolkit in this case. In this way, we were able to make our

implementation of the framework as generic as possible. We showed the generic nature of our

framework and its implementation by creating a distributed version of the implementation, using

CORBA.

•  Justification of the framework on theoretical basis by comparison against a proven taxonomy. We

have illustrated how our framework is able to satisfy each of the requirements identified in the

interaction technique taxonomy we utilised. Thus, the framework is able to satisfy all the

requirements for each of the particular interaction techniques we detailed, as well as future

techniques supported by the taxonomy.

•  Justification of the framework on a practical basis by case studies and examples. We show

practical use of the framework and its implementation by detailing several projects, completed as

part of the Rhodes University postgraduate school, all utilising our interaction framework. The

case studies also highlight the generic nature of the framework in that all the examples required

some extension to the existing implementation, yet all the extensions are handled within the

original framework.

•  Proof of the usability of the framework by having case studies designed and implemented by

developers not involved in the design and implementation of the interaction system. All the

developers who used the system were new to the system, none had any part in the original design

and implementation of the system. All were able to gain a working knowledge of the system in a

short time and were able to produce applications that utilised and even extended the original

implementation.

•  Proof of the generic nature of the framework by moving to a distributed platform. The extension of

the implementation to a distributed platform (using CORBA) highlights the generic nature of the

framework and its implementation. The move to a distributed system was made easy through the

design of the interfaces between the interaction system and the VR toolkit. These interfaces were

designed so that a minimum amount of information need flow between the interaction system and

the VR toolkit, thus changing to a different VR toolkit is made as easy as possible.

•  A comparison of our framework against other existing interaction frameworks. Comparison with

exiting immersive VR interaction toolkits showed our toolkit to be more generic than the existing

ones, and thus able to be useful in a greater number of applications. But, while being more generic,

our toolkit still retained the ability to efficiently implement all of the required interaction

techniques and applications.
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The framework and implementation we have developed are important to the field of VR as they enable

application developers to quickly and easily implement interaction in their immersive VR applications.

The interaction system handles the details of how the interaction is accomplished at a data level,

leaving the developer free to think and implement their application at a higher abstract level. We have

demonstrated the usefulness of the system through a series of case studies and the theoretical

completeness of the system by comparison with other interaction toolkits and taxonomies of interaction

techniques. In addition, we have shown that the framework is sufficiently generic to be easily

extendable, but not to generic as to prove difficult to tailor to specific examples.

6.7. Future Work

The CoRgi interaction system provides the basic low-level functions required to implement a VR

interaction system. Currently, it provides only a very basic set of widgets to the application developer,

namely the menu and button widgets. These two widgets can be used to implement usable VR

interfaces, but do not constitute a complete set. Further research in this area could concentrate more on

the psychological issues of 3D widgets, providing a more complete set of useful widget tools to the

developer. Mine [Mine, 97-2] describes several 3D widgets developed specifically for interaction in

VR. These widgets range from variations on standard desktop widget themes (e.g. the rotary selector)

to purely immersive ideas (e.g. the head-butt zoom). Mundell [Mundell, 99] has done some research in

this field, using the CoRgi interaction system. The research involved giving more intuitive

representations to the standard menu and button widgets. The system currently implements a very

limited set in interaction methods. As more applications are developed, so the interaction methods they

require can be implemented using the CoRgi interaction system and incorporated into the overall

system.

There has been much research lately in the field of formal specifications for interfaces. Most of this

research has involved standard desktop interfaces, but an increasing number of researchers are now

looking into formal specifications for immersive interfaces. For example, Jacob [Jacob, 99] has

produced a specification language based on the parallel data-flow nature of immersive interfaces. The

basis for Jacob’s specification (a data-flow model) corresponds very well with the data-flow model

used in the CoRgi interaction system. Future work could involve writing interpreters for Jacob’s

specification language, enabling CoRgi application developers to implement interfaces in a more

intuitive manner. Currently, in the CoRgi system all interfaces are either hard coded into the

application as raw C++ code, or read in from simple definition files, which define only the physical

characteristics of the interface elements (e.g. size, shape, etc.) and contain no details of their data flow

specifics.

Jacob also uses a visual tool for constructing his interfaces. Visual tools enable the developer to

concentrate on the actual operation of the interface, instead of wasting time on the semantics of the

interaction system implementation. The ideal for VR systems is to have an immersive tool for

designing the immersive interfaces. Research in this area has been carried out for many years, with
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several systems being produced [Conner, 92; Gobbetti, 93; Gobbetti, 94; Steed, 96; Steed, 97; Stevens,

94; Zeleznik, 93]. Many of these systems (e.g. [Steed, 96; Steed, 97]) utilise the same data-flow ideas

employed in the CoRgi interaction system. They would thus form a sound basis for the implementation

of a similar immersive interface construction application for the CoRgi interaction system.

Distributing the system could also introduce scope for future research. The current distribution system

has been developed more as a proof of concept application than a usable system. Distributing the

system introduces many new factors that are not covered in the current implementation, for example,

the idea of ownership. Objects in the system may be owned by different users, and any particular user’s

ability to interact with a given object may depend on the objects ownership rights, in much the same

way as the files in a UNIX file system have ownership attributes that determine what users are able to

read, modify, etc. them.
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VRPolhemusInputActor

HandleData(somedata : VRDeviceInputHeader*) : void
VRPolhemusInputActor(ServerName : char*, ServerPort : int, Device : int, Listener : VRActor*) : VRPolhemusInputActor
~VRPolhemusInputActor()

VRStickInputActor

HandleData(somedata : VRDeviceInputHeader*) : void
VRStickInputActor(ServerName : char*, ServerPort : int, Device : int, Listener : VRActor*) : VRStickInputActor
~VRStickInputActor()

VRTouchPadInputActor

HandleData(somedata : VRDeviceInputHeader*) : void
VRTouchPadInputActor(ServerName : char*, ServerPort : int, Device : int, Listener : VRActor*) : VRTouchPadInputActor
~VRTouchPadInputActor()

VRActor

VRNetworkInput UDPChannel

VRInputActor

devicename : char*

ConnectDevice(ServerName : char*, ServerPort : int, Device : int) : void
HandleData(somedata : VRDeviceInputHeader*) : void
VRInputActor(ServerName : char*, ServerPort : int, Device : int, Listener : VRActor* = NULL, devname : char* = "Uninit") : VRInputActor
VRInputActor(source : VRSource&, Device : int, Listener : VRActor* = NULL, devname : char* = "Uninit") : VRInputActor
LinkTo(Listener : VRActor*) : void
~VRInputActor()
ThreadRoutine() : void

0..1

1

#Parent0..1

1

0..1

1

#outlink0..1

1

1

1

#outConnection1

1

Figure 1 – UML Diagrams for Input Component Classes.
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VRCloseHandActor

CheckGesture(FingerPOS : VRGloveData*) : void
CheckClose() : VREntity*
VRCloseHandActor(RightHand : int = 1) : VRCloseHandActor
~VRCloseHandActor()

VRDistantHandActor

CheckGesture(FingerPOS : VRGloveData*) : void
CheckClose() : VREntity*
CheckPointing() : VREntity*
VRDistantHandActor(RightHand : int = 1) : VRDistantHandActor
~VRDistantHandActor()

VRInterfaceActor

VRInterfaceActor(thing : objectID = INVALIDOBJECTID) : VRInterfaceActor
ThreadRoutine() : void
~VRInterfaceActor()

VRActor

Timer

VRContextHandActor
TimeTaken : double

CheckGesture(FingerPOS : VRGloveData*) : void
CheckClose() : VREntity*
CheckPointing() : VREntity*
VRContextHandActor(RightHand : int = 1) : VRContextHandActor
~VRContextHandActor()

1

1

-clock1

1

Vector3D

VREntity

Scale3D

VRHandActor
Finger : VREntity* [5] [3]
Accuracy : double
SnapDistance : double

CheckGesture(FingerPOS : VRGloveData*) : void
VRHandActor(RightHand : int = 1) : VRHandActor
ThreadRoutine() : void
~VRHandActor()
GetPalm() : VREntity*
ReadValue(Type : int&) : VREntity*
SetInputCoordinates(HandPOS : VRInputCoordinates*) : void
SetGloveData(FingerPOS : VRGloveData*) : void
SetScale3D(size : Scale3D) : void
Identify() : objectID

0..1

1

#Palm

0..1

1

0..1

1
#palmPLANE

0..1

1 0..11

#fingerPLANE
0..11
0..1

1
#thumbPLANE

0..1
1

0..1

1

#Holding
0..1

1

0..1

1

#pointing
0..1

1

1

1

#Movement
1

1

1

1

#Size
1

1

Figure 2 – UML Diagrams for Interaction

Component Classes.
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VRIntermediary

VRIntermediary() : VRIntermediary
Register(ParentWidget : VRWidget*, ConvertFunc : char*) : void
~VRIntermediary()
Link(caller : VRWidget*, Destination : VREntity*) : void
SetInt(caller : VRWidget*, Value : int) : void

VRWidget

VREntity

VRIntScaleIntermediary
Conversion : FunctionPointer [10]
RegisterCount : int
LookUpChar : char* [10]
LookUpFunc : FunctionPointer [10]

VRIntScaleIntermediary() : VRIntScaleIntermediary
Register(ParentWidget : VRWidget*, ConvertFunc : char*) : void
~VRIntScaleIntermediary()
Link(caller : VRWidget*, Destination : VREntity*) : void
SetInt(caller : VRWidget*, Value : int) : void

101 #RegisteredWidget101

10
1

#RegisteredEntity10
1

Figure 3 – UML Diagrams for Intermediary Component Classes.
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VRGenericEntity

VRGenericEntity(EntityFileName : char*) : VRGenericEntity
VRGenericEntity(EntityFileName : char*, ThisTEX : TextureManager*) : VRGenericEntity
VRGenericEntity(EntityFileName : char*, ScratchType : TypeDescriptor) : VRGenericEntity
VRGenericEntity(EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : TextureManager*) : VRGenericEntity
VRGenericEntity(EntityShape : VisualRepresentation*) : VRGenericEntity
VRGenericEntity(EntityShape : VisualRepresentation*, ScratchType : TypeDescriptor) : VRGenericEntity
VRGenericEntity(CurrentObject :  objectID) : VRGenericEntity
Grab(parent : objectID) : int
~VRGenericEntity()
Drop(parent : objectID) : int
Point(parent : objectID) : int
UnPoint(parent : objectID) : int

VRAxisActor

1

1-axis

1

1

VRHoldEntity

VRHoldEntity(EntityFileName : char*) : VRHoldEntity
VRHoldEntity(EntityFileName : char*, ThisTEX : TextureManager*) : VRHoldEntity
VRHoldEntity(EntityFileName : char*, ScratchType : TypeDescriptor) : VRHoldEntity
VRHoldEntity(EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : TextureManager*) : VRHoldEntity
VRHoldEntity(EntityShape : VisualRepresentat ion*) : VRHoldEntity
VRHoldEntity(EntityShape : VisualRepresentation*, ScratchType : TypeDescriptor) : VRHoldEntity
VRHoldEntity(CurrentObject : objectID) : VRHoldEntity
Grab(parent : objectID) : int
~VRHoldEntity()
Drop(parent : objectID) : int

1

1

-axis

1

1

objectID

VRButtonEntity
ActionID : int

VRButtonEntity(Caller : VRWidget*, EntityFileName : char*, Action : int) :  VRButtonEntity
VRButtonEntity(Caller : VRWidget*, EntityFileName : char*, ThisTEX : TextureManager*, Action : int) :  VRButtonEntity
VRButtonEntity(Caller : VRWidget*, EntityFileName : char*, ScratchType : TypeDescriptor, Action : int) :  VRButtonEntity
VRButtonEntity(Caller : VRWidget*, EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : TextureManager*, Action : int) :  VRButtonEntity
VRButtonEntity(Caller : VRWidget*, EntityShape : VisualRepresentat ion*, Action : int) :  VRButtonEntity
VRButtonEntity(Caller :  VRWidget*, EntityShape : VisualRepresentation*, ScratchType : TypeDescriptor, Action : int) :  VRButtonEntity
VRButtonEntity(Caller :  VRWidget*, CurrentObject : objectID, Action : int) :  VRButtonEntity
Press(parent : objectID) : int
~VRButtonEntity()

VREntity
IsMovable : int
SnapPosit ion : int
SnapOrientat ion : int

CreateObject(EntID : objectID, EntityShape : VisualRepresentat ion*) : void
VREntity(EntityFileName : char*) : VREntity
VREntity(EntityFileName : char*, ThisTEX : TextureManager*) : VREntity
VREntity(EntityFileName : char*, ScratchType : TypeDescriptor) : VREntity
VREntity(EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : TextureManager*) : VREntity
VREntity(EntityShape : VisualRepresentation*) : VREntity
VREntity(EntityShape : VisualRepresentat ion*, ScratchType : TypeDescriptor) : VREntity
VREntity(CurrentObject : objectID) : VREntity
RemoveCurrentEntity() : void
~VREntity()
AbsolutePosit ion(EntityPOS : Point3D) : void
Position(EntityPOS : Vector3D) : void
AbsoluteOrientation(EntityORIENTATION : Quaternion) : void
Orientation(EntityORIENTATION : Quaternion) : void
Type(EntityType : TypeDescriptor) : void
Identify() : objectID
SetWidgetParent(parent : VRWidget*) : void
GetWidgetParent() : VRWidget*
Grab(parent : objectID) : int
Drop(parent : objectID) : int
Point(parent : objectID) : int
UnPoint(parent : objectID) : int
Press(parent : objectID) : int
SetPoint3D(pos : Point3D) : void
SetQuaternion(orient : Quaternion) : void
SetVisualRepresentation(EntityShape : VisualRepresentat ion*) : void
SetScale3D(Value : Scale3D) : void
SetVector3D(Value : Vector3D) : void
SetIsMovable(s :  int) : void
GetIsMovable() : int

1

0..1

1

-$EntityListStart
0..1

1

0..1

1

-$EntityListEnd
0..1

11

-NextEntity

1
1 -EntityID1
1

VRMenuEntity
ActionID : int

VRMenuEntity(EntityFileName : char*) : VRMenuEntity
VRMenuEntity(EntityFileName : char*, ThisTEX : TextureManager*) : VRMenuEntity
VRMenuEntity(EntityFileName : char*, ScratchType : TypeDescriptor) : VRMenuEntity
VRMenuEntity(EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : TextureManager*) : VRMenuEntity
VRMenuEntity(caller :  VRWidget*, EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : TextureManager*, action : int) : VRMenuEntity
VRMenuEntity(EntityShape : VisualRepresentation*) : VRMenuEntity
VRMenuEntity(EntityShape : VisualRepresentation*, ScratchType : TypeDescriptor) : VRMenuEntity
VRMenuEntity(CurrentObject : objectID) : VRMenuEntity
Grab(parent : objectID) : int
~VRMenuEntity()
Drop(parent : objectID) : int
Point(parent : objectID) : int
UnPoint(parent : objectID) : int
Push(parent : objectID) : int

VRWidget

1

0..1

1

0..1

0..1

1

-Dummy0..1

1

0..1

1

-ParentWidget0..1

1

1

0..1

1

0..1

1

0..1

1

0..1

Figure 4 – UML Diagrams for Entity Component Classes.
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VRButtonEntity

VRMenuEntity

TextureManager

VRButtonWidget

VRButtonWidget(Caller : VRWidget*, EntityFileName : char*, ButtonType : TypeDescriptor, TEXManager : TextureManager*, Action : int) : VRButtonWidget
VRButtonWidget(Caller : VRIntermediary*, EntityFileName : char*, ButtonType : TypeDescriptor, TEXManager : TextureManager*, Action : int) : VRButtonWidget
GetInt( ) : int
~VRButtonWidget( )
SetInt(Caller  : VRWidget*, Value : int) : void
Identify() : VRButtonEntity*
LinkTo(NewParent : VRWidget*) : void
LinkTo(NewParent : VRIntermediary*) : void

0..1

1

#ThisEntity0..1

1
VRMenuWidget

CurrentAction : int
buttons : VRButtonWidget**
totalButtons : int
file : char*

CreateRepresentation(DEFFileName : char*, TEXManager  : TextureManager*) : void
VRMenuWidget(Caller : VRWidget*, DEFFileName : char*, TEXManager : TextureManager*) : VRMenuWidget
VRMenuWidget(Caller : VRIntermediary*, DEFFileName : char*, TEXManager : TextureManager*) : VRMenuWidget
VRMenuWidget(DEFFileName : char*, TEXManager : TextureManager*) : VRMenuWidget
GetInt( ) : int
~VRMenuWidget( )
SetInt(Caller  : VRWidget*, Value : int) : void
SetButtonRepresentation(ButtonNumber : int, NewShape : VisualRepresentation*) : void
LinkTo(NewParent : VRWidget*) : void
LinkTo(NewParent : VRIntermediary*) : void
Identify() : VRMenuEntity*

0..1

1

#ThisEntity0..1

1

0..1

1

#texMan0..1

1

VRIntermediary

0..1

1

#EntityParent

0..1

1

0..1

1

#IntermediaryParent 0..1

1

VRWidget

VRWidget()  : VRWidget
GetInt( ) : int
~VRWidget( )
GetEntity() : VREntity*
SetInt(Caller  : VRWidget*, Value : int) : void
LinkTo(NewParent : VRWidget*) : void
LinkTo(NewParent : VRIntermediary*) : void

0..1

1

#WidgetParent0..1

1

0..1

1

#WidgetParent 0..1

1

1 0..11 #Widget0..1

0..1

1

#IntermediaryParent0..1

1

Figure 5 – UML Diagrams for Widget Component Classes.
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POA_CORBAEntity

VRGenericCORBAEntity

VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityFileName : char*) : VRGenericCORBAEntity
VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityFileName : char*, ThisTEX : Tex tureManager*) : VRGenericCORBAEntity
VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityFileName : char*, ScratchType : TypeDescriptor) : VRGenericCORBAEntity
VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityFileName : char*, ScratchType : TypeDescriptor, ThisTEX : Tex tureManager*) : VRGenericCORBAEntity
VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityShape : VisualRepresentation*) : VRGenericCORBAEntity
VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityShape : VisualRepresentation*, ScratchType : TypeDescriptor) : VRGenericCORBAEntity
VRGenericCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, CurrentObject : objectID) : VRGenericCORBAEntity
Grab(parent : const CORBA_objectID&) : CORBA::Long
Drop(parent : const CORBA_objectID&) : CORBA::Long
Point(parent : const CORBA_objectID&) : CORBA::Long
UnPoint(parent : const CORBA_objectID&) : CORBA::Long

objectID

EntityNamingObject_CORBARef

VRCORBAEntity
SnapPOS : int
SnapOR : int
$ NamingFound : int

CreateObject(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr , EntID : objectID, EntityShape : VisualRepresentation*) : void
VRCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr , EntityFileName : char*) : VRCORBAEntity
VRCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr , EntityFileName : char*, ThisTEX : TextureManager*) : VRCORBAEntity
VRCORBAEntity(poa : PortableServer::POA_ptr , orb : CORBA::ORB_ptr, EntityFileName : char*, ScratchType : TypeDescr iptor) : VRCORBAEntity
VRCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityFileName : char*, ScratchType : TypeDescr iptor, ThisTEX : TextureManager*) : VRCORBAEntity
VRCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr , EntityShape : VisualRepresentation*) : VRCORBAEntity
VRCORBAEntity(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, EntityShape : VisualRepresentation*, ScratchType : TypeDescr iptor) : VRCORBAEntity
VRCORBAEntity(poa : PortableServer ::POA_ptr, orb : CORBA::ORB_ptr, CurrentObject : objectID) : VRCORBAEntity
AbsolutePosition(EntityPOS : Point3D) : void
AbsolutePosition(EntityPOS : const CORBA_Point3D&) : void
~VRCORBAEntity( )
Position(EntityPOS : Vector3D) : void
Position(EntityPOS : const CORBA_Vector3D&) : void
AbsoluteOrientation(EntityORIENTATION : Quaternion) : void
AbsoluteOrientation(EntityORIENTATION : const CORBA_Quaternion&) : void
Orientation(EntityORIENTATION : Quaternion) : void
Orientation(EntityORIENTATION : const CORBA_Quaternion&) : void
Type(EntityType : TypeDescriptor) : void
Grab(parent : objectID) : int
Grab(parent : const CORBA_objectID&)  : CORBA::Long
Drop(parent : objectID) : int
Drop(parent : const CORBA_objectID&)  : CORBA::Long
Point(parent : objectID) : int
Point(parent : const CORBA_objectID&)  : CORBA::Long
UnPoint(parent : objectID) : int
UnPoint(parent : const CORBA_objectID&)  : CORBA::Long
Press(parent : objectID) : int
Press(parent : const CORBA_objectID&)  : CORBA::Long
SetScale3D(Value : Scale3D) : void
SetScale3D(Value : const CORBA_Scale3D&) : void
SetPoint3D(EntityPOS : Point3D) : void
SetPoint3D(EntityPOS : const CORBA_Point3D&) : void
SetQuaternion(EntityORIENTATION : Quaternion) : void
SetQuaternion(EntityORIENTATION : const CORBA_Quaternion&) : void
Identify()  : CORBA_objectID
SnapPosition()  : CORBA::Short
SnapPosition(value : CORBA::Short) : void
SnapOr ientation()  : CORBA::Short
SnapOr ientation(value : CORBA::Short) : void

1
1

-EntityID1
1

11 +$NamingObject11

Figure 6 – UML Diagrams for the CORBA Entity Component Classes.
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VRInterfaceActor

Timer

VRCloseCORBAHandActor

TimeTaken : double

CheckClose() : CORBAEntity_ptr
VRCloseCORBAHandActor(RightHand : int = 1) : VRCloseCORBAHandActor
CheckGesture(FingerPOS : VRGloveData*) : void
~VRCloseCORBAHandActor()
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Vector3D
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Finger : VREntity* [5] [3]
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$ orb_init : int

VRCORBAHandActor(RightHand : int = 1) : VRCORBAHandActor
ThreadRoutine() : void
~VRCORBAHandActor()
GetPalm() : VREntity*
ReadValue(Type : int&) : CORBAEntity_ptr
SetInputCoordinates(HandPOS : VRInputCoordinates*) : void
SetGloveData(FingerPOS : VRGloveData*) : void
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Figure 7 – UML Diagrams for CORBA Hand Actor Classes.



96

Designing and Implementing a Virtual Reality Interaction Framework

Appendix A – UML Diagrams

POA_EntityNamingObject_CORBA

~POA_EntityNamingObject_CORBA()
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BindName()
ResolveName()
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POA_EntityNamingObject_CORBA()
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_this()
dispatch()
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EntityNamingObject(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, env : VREnvironmentServer*) : EntityNamingObject
EntityNamingObject(poa : PortableServer::POA_ptr, orb : CORBA::ORB_ptr, env : VRRemoteEnvironment*) : EntityNamingObject
LocateNode(name : CORBA::Long, ret_node : TreeNode*&) : unsigned char
Locate(name : CORBA::Long, obj : CORBA::Object_ptr&) : unsigned char
Insert(name : CORBA::Long, obj : CORBA::Object_ptr) : void
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Figure 8 – UML Diagrams for the CORBA Entity Naming Object Classes.
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Figure 9 – VRPhysicsEntity UML Diagrams.
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Communication Hierarchy in CoRgi

Widget and Interaction Component Communication Methods

Currently, there are two types of communication in the CoRgi system - Interaction Component (e.g. the

VRHand or VRRemoteControl) and Widget (e.g. the VRMenuWidget) communication, each of

which is handled differently

Interaction Component Communication

An interaction component is able to communicate with objects in the world (including widgets) by

sending commands or actions to the objects to execute. The current method for doing this is to get a

pointer to the object in question. This pointer may be stored in the program, or received via collision

detection, ray casting, etc. Once we have a pointer to the object, we issue the command that we require

by calling an action method in the object. The current form of object Entities (or objects in the system

that have control methods) allows for 5 types of action - Grab, Drop, Point, UnPoint and Press. For

example, the following code fragment (taken from VRCloseInteractionActor) issues a Press

command to the entity pointed to by the pointer pointing:

VREntity *pointing;

/* CheckClose : collision detection method */

pointing = CheckClose();

if (pointing!=NULL)

{

  MenuSelect = pointing->Press(Finger[2][1]->Identify());

  if (MenuSelect) GotMenu = 1;

}

When issuing the action to the object, the ObjectID of the calling object is passed. This may or may

not be used by the object, but is there if required. The entity replies to the action request with an integer

value. The value of this return integer tells the calling method whether the action was carried out or

not, and possibly, what value the action returned. A return value of 0 means that the action is not

supported by that particular entity (e.g. a Press attempt on a VRGenericEntity - which only

implements Grab, Drop, Point and UnPoint - returns a 0). Any positive integer means that the action

was successfully carried out. In the case of VRButtonEntitie's, the return value is the ActionID

for that particular entity.

In order to specify how a particular type of object will react to the various actions, you need to create a

VR*Entity object which inherits methods from the base class VREntity and implements those that
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it wishes to override. As an example of this see VRGenericEntity, VRHoldEntity, and

VRPointEntity.

Widget Communication

Widgets are simply classes of entity in the world that generate some callback when they receive a valid

action from an interaction component in the world. For example, the VRButtonWidget generates a

callback when it receives a Press command. Widgets have associated entities, which define their

physical presence in the world and also how they may be interacted with. When creating a widget, a

pointer to a parent object needs to be passed. The parent object must have a Set* method which will

be called by the entity. For example:

void SetInt(Widget* Caller, int Value)

This method acts as the callback for the widget and is called whenever the widget receives a valid

interaction command.  An entity can have multiple Set methods, with each method handling a different

data type e.g. SetDouble or SetInputCoordinates. The parameter Caller is a pointer to the

widget which made the callback, while Value is some value indicating what the current state of the

widget is or, in the case of a button widget, what action is assigned to that widget. The particular Set*

method is the parent object must pass the value it receives on to its own parent (if it has one) and

perform some action relevant to the value it has received.

When creating menus, buttons, etc. that need their values sent to the main program, we use the Read*

method with the appropriate data type (e.g. ReadInt), to access their values, since we are unable to

pass a pointer to the main program in order to set-up a callback.  The Read* method should only be

used by the main program to get the value of the particular widgets in the world.

Linking Widgets and Entities
Quite often it is useful to link a widget directly onto some entity. For example, if we had a menu

widget with numbers on the buttons corresponding to object sizes, we could link this menu to a

particular widget and the values selected from the menu would be immediately transferred to the

connected entity to be processed. When linking widgets and entities, be aware of what data type the

widget produces and what data type the entity is willing to accept. As an example of this, the menu

widget produces integer values i.e. it calls the SetInt method in its parent. Entities do not have

SetInt methods, as it is not obvious how an integer value should affect an entity i.e. should it change

its position, size, shape, etc. Instead, entities have methods like SetSize, SetPoint3D, etc. whose

effects are obvious. Thus, when linking a widget to an entity, we need to as a VRIntermediary,

whose job it is to take in a certain data type and produce another data type, based on some set of rules.

As an example of this the VRIntScaleIntermediary has a SetInt method which the widget

calls to pass it some value. In turn, it uses this integer value to create a Scale3D value, which it
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uses to make a SetScale3D call in its parent entity. The rules on how to convert input data to output

data within the intermediary are encapsulated as methods inside the particular intermediary object.

When linking an entity to an intermediary, you are required to choose which of the available methods

you wish to use to translate your data. The following piece of code, taken from the VRWidgetDemo

application, demonstrates the linking of a menu widget with a VRGenericEntity:

/* Create a new Int-To-Scale intermediary*/

VRIntScaleIntermediary* Int2Scale = new

VRIntScaleIntermediary()

/* Create a new generic entity */

ConnectedObject = new VRGenericEntity("object_files/king",

ScratchType, texManager);

/* Create a new menu widget linked to the intermediary*/

VRMenuWidget* Menu = new VRMenuWidget(Int2Scale, "menu1.def",

texManager);

/* Choose a conversion method from into to scale */

Int2Scale->Register(Menu, "IntToScale");

/* Link the result from the menu to the entity */

Int2Scale->Link(Menu, ConnectedObject);

Overview
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Set*
Read*

VRMenuWidget

SetInt
ReadVInt

VRButtonWidget

SetInt
ReadInt

VREntity

P

VRButtonEntity VRMenuEntity
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Object Overloading

Object Instances
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Figure 4 – 1 – The Virtual Keypad.

Figure 4 – 2 – The Texture Selector.
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Figure 4 – 4 (1) – Screenshots of the VRHandApp.

Figure 4 – 4 (2) - Screenshots of the VRHandApp.
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Figure 4 – 4 (3) – Screenshots of the VRHandApp.

Figure 4 – 6 (1) – The ‘Real World’ Image Viewer.
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Figure 4 – 6 (2) – The ‘Real World’ Image Viewer.

Figure 4 – 6 (3) – The ‘Real World’ Image Viewer.
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Figure 4 – 7 (1) – The ‘Abstract’ Image Viewer.

Figure 4 – 7 (2) – The ‘Abstract’ Image Viewer.
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Figure 4 – 7 (3) – The ‘Abstract’ Image Viewer.

Figure 4 – 8 – The VRPhysicaApp Application.
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Figure 4 – 9 – The VRTTApp Application.
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