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Abstract

This thesis examines distributed authentication in the process of controlling computing

resources. We investigate user sign-on and two of the main authentication technologies that

can be used control a resource through authentication and providing additional security

services.

The problems with the existing sign-on scenario are that users have too much credential

information to manage and are prompted for this information too often. Single Sign-On

(SSO) is a viable solution to this problem if physical procedures are introduced to minimise

the risks associated with its use.

The Generic Security Services API (GSS-API) provides security services in a manner in-

dependent of the environment in which these security services are used, encapsulating

security functionality and insulating users from changes in security technology. The un-

derlying security functionality is provided by GSS-API mechanisms. We developed the

Secure Remote Password GSS-API Mechanism (SRPGM) to provide a mechanism that

has low infrastructure requirements, is password-based and does not require the use of

long-term asymmetric keys. We provide implementations of the Java GSS-API bindings

and the LIPKEY and SRPGM GSS-API mechanisms.

The Secure Authentication and Security Layer (SASL) provides security to connection-

based Internet protocols. After �nding de�ciencies in existing SASL mechanisms we de-

veloped the Secure Remote Password SASL mechanism (SRP-SASL) that provides strong

password-based authentication and countermeasures against known attacks, while still be-

ing simple and easy to implement. We provide implementations of the Java SASL binding

and several SASL mechanisms, including SRP-SASL.
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Chapter 1

Introduction

1.1 Motivation

This project grew out of the need to provide a means of controlling the use of scarce

computing resources, such as international network bandwidth and network printing. On

the Rhodes University campus it is becoming increasingly necessary to have tighter control

over access to and use of these computing resources. This is due in part to an increase in

the number of users, brought about by an expanding residence networking project and an

increase in the number of machines available in public laboratories, and the corresponding

increased contention for the use of the available resources.

Many of the computing services available on a network are expensive to provide in terms

of the cost of hardware and software, the manpower in setting them up, and the expenses

incurred in keeping them running. Resources may need to be controlled because they are

scarce and need to be shared (eg. international network bandwidth). A resource may be

expensive to use and need to be controlled to justify or recover costs (eg. network printing).

A resource may be sensitive and need to have access to it restricted to certain individuals

or groups (eg. a database with student fee records). It is therefore necessary to provide a

means of controlling access to and use of these resources.

The resource control process can be broken down into essentially 3 phases, namely:

1. Identi�cation and Authentication - the process whereby an entity claims to hold some

identity and then provides evidence to prove that this identity is held.

1
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2. Authorisation - this involves consulting the resource control policy to determine how

an authenticated identity is allowed to make use of a resource.

3. Auditing - the process of keeping quantitative resource usage information for uses

such as charging, tracking, and limiting resource usage.

This work focuses on an important part of the resource control process, namely the Iden-

ti�cation and Authentication phase. The other phases are beyond the scope of this disser-

tation.

1.2 Assumptions and Goals

This research assumes the following scenario:

There are computing resources available on a network. These computing re-

sources may be standardised network services such as SMTP, POP and IMAP,

access to data such as databases and directories, or middleware services such

as the CORBA Naming and Trading Services, for example. A resource con-

troller will only allow a user to make use of a resource once it is certain of the

identity of the user and the resource control policy entitles the user to do so.

There are attackers that attempt to obtain unauthorised access to and use of

resources. These attackers are able to monitor all network communications.

They attempt to impersonate legitimate users and disrupt communications by

tampering with messages sent between a user and a resource controller. Users

and resource controllers wish to prevent unauthorised use of resources.

This is a common scenario in everyday computer use. This dissertation investigates some

of the main technologies available to make the process of a legitimate user using a resource

secure and resistant to attack. In particular we focus on password-based technologies that

have low infrastructure requirements. In addition to investigating security technology,

we also want to make the technology available to programmers. Current research in our

department is in a number of disparate �elds from computer security, computer music,

video conferencing, electronic commerce, Internet protocols to virtual reality, and more. We

provide implementations of existing security technology that provide security functionality
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in an abstract fashion that programmers can easily plug into their applications without

having to be concerned about the details of how the security works.

Although we make use of our campus as an example environment where this technology

can be applied, we are aiming to provide information and implementations that are more

generally useful to a wider audience. For this reason we have made our implementations

available as part of the Cryptix project [19]:

�Cryptix is an international volunteer e�ort to produce robust, open-source

cryptographic software libraries. Cryptix products are free, both for commercial

and non-commercial use and are being used by developers all over the world.

Development is currently focused on Java.�

1.3 Campus Scenario

Our campus scenario has a number of interesting security-related features. Much of the

information available using campus computing resources is not that valuable in monetary

terms (eg. when compared to the information transmitted by an electronic funds transfer

system). Issues of access, con�dentiality and privacy are more of a concern. However,

there are some resources - including student fees, student records, and examination papers

- that are much more security-sensitive and need to be protected accordingly.

Some services available to students, such as networked printing, are charged for and there

is therefore an incentive to bypass the charging mechanisms. There is also an incentive for

students to try to obtain sensitive information, such as copies of examination papers while

they are being printed. Sta� may have an incentive to access �nancial records and adjust

their salary �gures. There is clearly a need to control these resources.

Another factor is that there is a limited number of sta� employed to deploy and manage the

various available services. Much of their time is spent on the daily activities of interacting

with users, monitoring systems and resolving problems. There is no one dedicated to

setting up and maintaining a security infrastructure. For this reason it is important that

any security architecture employed be resistant to the inevitable changes that will take place

in security technology and mechanisms, so that it is easy to maintain. In addition, radical

changes in technology, for example moving from a password-based system to a public-

key based system, are harder to deploy because sta� may not have experience using and
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managing these technologies. Currently our campus security infrastructure is password-

based, so we have focused on password-based security technology.

1.4 Conventions and Terminology used

There are two main entities involved in the resource control process. The �rst is the entity

that wishes to make use of a controlled resource, and this entity is referred to as the user,

the client or the initiator. The second entity is the resource controller that controls access

to and use of the resource, verifying the identity of the initiator, and is referred to as the

resource controller, the server or the acceptor.

Following the convention used in Applied Cryptography [80, p 23], a seminal work in the

�eld of computer security, and many other security-related publications, entities may also

be referred to using common names, as follows:

Name Description

Alice Initiator

Bob Acceptor

Carol Client

Steve Server

Trent Trusted Entity

Mallory Malicious attacker

Eve Eavesdropper

1.5 Document Overview

Chapter 2 This chapter provides background information for following chapters. It de-

scribes authentication, the various types of evidence used to prove an identity, the

types of attacks that are possible and the technologies used to thwart these attacks. It

also introduces the Secure Remote Password protocol and describes our unsuccessful

attempt to further optimise it.

Chapter 3 Users sign on in order to use resources, providing an identity and credential

evidence. This chapter discusses our investigation of the problems with the current
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user sign-on scenario, using our campus scenario as an example. We describe how

these problems may be solved using single sign-on, and the risks involved in using

this solution.

Chapter 4 This chapter introduces and describes the Generic Security Services API (GSS-

API) which speci�es authentication and security services in an abstract manner. It

describes the features of this API, how it works, and the bene�ts that are gained from

using it. We describes our experiences using and implementing the Java GSS-API,

which provides a concrete implementation of the abstract GSS-API speci�cation, and

conclude with a hypothetical example illustrating its use.

Chapter 5 The underlying security functionality of a GSS-API implementation is pro-

vided by GSS-API mechanisms. In this chapter we introduce the Abstract Syntax

Notation One (ASN.1) and describe the bene�ts and problems with its use in speci-

fying message structures for GSS-API mechanisms. Thereafter we describe the stan-

dard GSS-API mechanisms, their high infrastructure requirements and the need for

low infrastructure mechanisms. This leads to a discussion of our experiences imple-

menting of the Low Infrastructure Public Key mechanism (LIPKEY) and designing

and implementing the Secure Remote Password GSS-API Mechanism (SRPGM), a

password-based low-infrastructure GSS-API mechanism that we have developed and

submitted as an IETF Internet Draft.

Chapter 6 The Simple Authentication and Security Layer (SASL) adds support for secu-

rity services to connection-based protocols. This chapter explains how SASL works

and its relationship to existing Internet protocols. We discuss existing SASL mecha-

nisms, their features and de�ciencies, and explain our motivation for developing the

Secure Remote Password SASL (SRP-SASL) mechanism that we have submitted as

an IETF Internet Draft. We describe the SMTP and POP3 SASL pro�les and discuss

the need for email security. In addition we discuss the Java SASL binding, which

provides a concrete implementation of the SASL functionality, and available SASL

mechanisms.

Chapter 7 This chapter summarizes the experience that we have gained working with

distributed authentication technology, and the contributions that we have made to

this �eld. We discuss possible applications of our work in developing an implemen-

tation of the CORBA Security Service and in improving the security on our campus.

We conclude with some �nal remarks about our research and contributions.



Chapter 2

Background

The chapter provides information on authentication that will serve as a background to the

material presented in following chapters. It explains what authentication is and discusses

the types of evidence used to prove an identity. Thereafter follows a discussion of the

attacks that are possible in a distributed environment, and how these attacks may be

countered. We introduce the Secure Remote Password protocol, discuss why we �nd it an

exciting new technology, and our contributions to its use.

2.1 Authentication

�Authentication is one of the most important of all information security objec-

tives.� Menezes et al [58]

The resource control process is aimed at restricting the use of a resource to those entities

who are authorised to use the resource according to some policy. It is therefore necessary

to be certain at all times of the identity of any entities making use of a resource. An

entity may have many identities at any one time. Di�erent identities are used for di�erent

purposes. For example, a person may be associated with a student number that they use

for borrowing books from a university library, and at the same time an ID number that

they use to vote in the general elections. In a computing environment an identity is usually

based on a name or a number and is referred to as a username.

However, anyone can claim to hold a particular identity, so in order to use a resource, it

is necessary to provide some evidence to prove that this identity is held. Authentication is

6
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the process whereby an entity asserts an identity and then provides evidence to prove that

this identity is held.

Menezes et al [58] make a distinction between entity authentication and message authen-

tication. Entity authentication is de�ned as follows:

�An identi�cation or entity authentication technique assures one party (through

acquisition of corroborative evidence) of both the identity of a second party

involved, and that the second was active at the time the evidence was created

or acquired�

Message authentication is de�ned as:

�Data origin authentication or message authentication provide to one party

which receives a message assurance (through corroborative evidence) of the

identity of the party which originated the message.�

The distinction is then whether or not the parties are active at the time authentication

takes place. Entity authentication is typically used at the beginning of a communications

session between entities when the communicating entities prove their identities to each

other. Message authentication is concerned with data integrity mechanisms that prove

who originated a message and that it was not altered in transit. Entities exchange some

information that enables them to authenticate future exchanged messages.

2.1.1 Entity authentication evidence

This evidence used with entity authentication is in the form of [98]:

� something that the user knows

� something that the user has

� something that the user is

Something that the user knows is typically in the form of a remembered password (a

short sequence of characters), passphrase (a short sequence of words), or PIN (Personal
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Identi�cation Number; a short sequence of digits). This is the most common form of

evidence, since it is simple and does not require any external input device other than a

keyboard. A problem with this form of evidence is that since users are unable to remember

information that has a large amount of entropy1, it may be possible to guess what this

information is. Password cracking, where a program tries passwords based on dictionary

words and information about the user, is a popular example of this. In addition the set

of possibilities is in some cases small enough that it is viable for an attacker to try every

possibility in order to �nd the correct one [47, Pgs 34, 40-42]. A good example is the four

digit PIN number typically used by banks with their Automated Teller Machine (ATM)

cards. There are only 9999 possible four digit PINs, which is a small set, so it is may be

viable for an attacker to try each of these possibilities. (Fortunately, ATMs have procedural

controls that only allow an attacker to enter the incorrect PIN a limited number of times).

Something that a user has may involve the use of some physical item such as an id device

or a smart card. Id devices contain information that uniquely identi�es the device, thereby

proving that the user is in possession of the device. (An example of an id device is the

Dallas chip system used at Rhodes). A smart card is �a plastic card, the size and shape

of a credit card, with an embedded computer chip� [80]. These smart cards may have

evidence and cryptographic protocols programmed into them that enable them to be used

for authentication. Something that a user has may also involve the use of some non-

remembered information, typically a private key which is part of of a public/private keypair

used in asymmetric cryptography. The asymmetric nature of a public/private keypair

means that the private key can be used to generate evidence such that it can be proved,

using the publicly available public key certi�cate, that the evidence could only have been

generated using this private key (See 2.3.1.2). Smart cards and private keys are typically

used in conjunction with remembered evidence that �unlocks� the smart card or private

key, enabling it to be used. An example of this is the bank cards used with ATMs. A

user has a ATM card that they insert into the machine and are able to use by entering

their PIN number. This combination of evidence provides better security than each form

of evidence used alone - such systems are called multi-factor systems [98].

Something that the is user refers to biometric information, which is some recorded physical

characteristic of the user. People have unique physical features that may be used to

identify them. The most well known example of this is the �ngerprint, which is used in

1Entropy is the measure of the disorder of a system. This means that user passwords are not random,

which makes them easier to guess.
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the criminal justice system. Other examples include identifying the unique patterns on the

iris and retina, and measuring the physical dimensions of a part of the body, such as the

hands. The use of biometric information and smart cards as evidence is not as common

as the use of passwords and the like since they require the use of uncommon hardware

such as �ngerprint readers and retinal scanners. In addition there is some social resistance

to the use of biometric techniques due to their association with criminals and fears that

this information will be used to invade personal privacy (for example in an Orwellian

state, the �Big Brother�). An important point made by Bruce Schneier in his ACM paper

on Biometrics [84], is that a biometric is not a secret. Once a reader has obtained the

biometric information it is able to store this information for use at a later time. It is

therefore important that if biometric information is used as evidence, steps are taken to

ensure that the user is actually present at the time the authentication takes place, and

the evidence provided is not just a replay of a previous session. (This may be done, for

example, by authenticating the biometric reader to the veri�er).

Each of these forms of evidence have their strengths and weaknesses. If passwords are

used carefully and care is taken not to expose them during the authentication process they

are a simple and useful form of evidence. However if the password is exposed, either by

writing the password down or during the authentication process, security is compromised

since anyone who knows the password can impersonate the user. An id card, smart card

or private key is a strong, di�cult to guess form of evidence as long as the user keeps

possession of it. Anyone who has possession of the id card, smart card or private key can

impersonate the user. Biometrics are useful in that they identify unique characteristics

of the user. However, if care is not taken to ensure that a trusted reader is used and the

user is present at the time of authentication, anyone who has this biometric information

can impersonate the user. Clearly the more forms of evidence used by an authentication

system the better. Multifactor systems that use combinations of evidence types, such as

in the ATM example above, provide greater security since an attacker has to obtain more,

varied information. Because the evidence is in di�erent forms, di�erent attacks need to be

used to obtain it.

On our campus we make use of an id devices, known as the �Dallas chip� [23], to control

access to physical locations such as residences and with the meal booking system. All

other computer-based authentication takes place using remembered passwords in di�erent

operating environments. Although there is interest in implementing public-key based tech-

nology and using smart cards, password-based technology will continue to be used in the
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foreseeable future.

2.1.2 Message Authentication evidence

As described above, message authentication is concerned with data integrity mechanisms

that prove who originated a message and that it was not altered in transit. (If a message is

altered in transit then it is a new message and the origin of the message has changed [58]).

In order to facilitate message authentication the entities involved in the communications

session make use of cryptography.

When symmetric cryptography is used the evidence is a keyed message authentication

code. The entities exchange some information in a process known as key agreement or

key exchange and the result is a session key. The sender makes a digest of the message to

be sent, incorporating the session key using some agreed upon algorithm (such as HMAC

[46]), and sends this digest along with the message. The receiver also computes this keyed

digest and then veri�es that the digest accompanying the message matches the computed

digest.

When asymmetric cryptography is used the evidence is a digital signature. The sender

makes a digest of the message to be sent, encrypts this digest with its private key, and

sends this digest along with the message. The receiver attempts to decrypt the digest

accompanying the message using the sender's public key. If successful the receiver also

computes the digest of the message and then veri�es that it matches the decrypted digest.

2.2 Attacks

Authentication is concerned with preventing someone from masquerading as someone else

and thereby gaining access to and use of resources that they should not have access to and

use of. In a distributed environment many more attacks are possible.

Figure ?? is an attack tree [81] that describes some examples of how an attacker may at-

tempt to gain unauthorised access to a resource. Some of the possible attacks are physical,

such as bribing or coercing users into revealing authentication evidence, or stealing physical

evidence such as id tokens or smart cards. Although it is important that countermeasures

to such attacks be found, we're concerned with attacks of a technical nature that have tech-

nical solutions. Examples of such attacks include passive attacks such as eavesdropping on



CHAPTER 2. BACKGROUND 11

Obtain unauthorised access
to computing resource

Impersonate
legitimate user

Hijack user session

bribe or
coerce user

Physically steal
evidence

Eavesdrop on
evidence being

transmitted

Obtain user
authentication

evidence

T - technical problem
P - physical problem 
A - active attack         
N - passive attack       

Tamper with
transmitted

messages

TA

TATNPP

Figure 2.1: Unauthorised access attack tree

transmitted messages, and active attacks such as tampering with transmitted messages,

replaying messages, interleaving messages and hijacking user sessions. Passive attacks do

not a�ect the protocol and are therefore di�cult to detect, so protocols try to prevent such

attacks. Since active attacks a�ect the protocol in some way, secure protocols must be

designed to detect these attacks [80, p 27].

2.2.1 Eavesdropping

Eavesdropping is when an attacker listens to the communication between entities in order

to obtain information. In this case the attacker is trying to obtain the secret the user uses

for authentication so that it can impersonate the user. In discussing the risks involved in

logging in to a service over the network, RFC 2504 [35] notes:

�All information passing over networks may be eavesdropped on... Information

passing over a network may be read not only by the intended audience but can

be read by others as well.�
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It is a basic assumption of most authentication protocols that an attacker is able to eaves-

drop on the communications medium ie. monitor all messages exchanged [80, p 5]. It is

therefore important that during authentication when the user transmits evidence to prove

its identity that this information not be useful to an attacker in trying to obtain the user's

secret.

In the proceedings of a workshop aimed at designing a security architecture for the Internet,

the Internet Architecture Board had this to say about plaintext passwords [6]:

�One security mechanism was deemed to be unacceptable: plaintext passwords.

That is, no protocol that relies on passwords sent over unencrypted channels is

acceptable.�

Sending the secret as plaintext makes it directly available to the attacker so challenge-

response authentication protocols [58, Ch 10.3] were devised that enable a user to prove

knowledge of the secret, without transmitting the secret directly, by correctly answering

a challenge based on the secret. Even if the information transmitted cannot be used to

directly obtain the secret, an attacker may use the transmitted information to guess the

secret. For example if the secret is a password, an attacker may attempt to guess the

password and use the information to check whether or not the guess was correct. Such

guesses may be made more successful through the use of a dictionary containing commonly

used passwords [58][47]. (See also 2.4.2 below). Authentication protocols that do not leak

any information that can be used by an attacker (or even the veri�er) to obtain the user's

authentication secret are known as zero-knowledge authentication protocols [58, Ch 10.4].

The only time that it is safe to use plaintext passwords is when a secure communications

session has been set up where all exchanged messages are encrypted. Such a secure com-

munications session may be set up using the Transport Layer Security [24] protocol, for

example.

2.2.2 Tampering

Tampering is when an attacker interferes with messages sent between the communicating

parties. This may be by modifying, deleting or re-ordering messages, or even creating

completely new ones.
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An example of such tampering is a man-in-the-middle attack, where an attacker inter-

cepts communications and pretends to be the other communicating party. So, if Alice

is communicating with Bob, Mallory (the malicious attacker) pretends to be Bob when

communicating with Alice, and pretends to be Alice when communicating with Bob.

Schneier [80, p 48] gives an example of a man-in-the-middle attack where Alice and and

Bob wish to set up such a secure session using their public/private keypairs:

1. Alice sends Bob her public key. Mallory intercepts this key and sends Bob his own

public key.

2. Bob sends Alice his public key. Mallory intercepts this key and sends Alice his own

public key.

3. When Alice sends a message to Bob, encrypted in �Bob's� public key, Mallory inter-

cepts it. Since the message is really encrypted with his own public key, he decrypts

it with his private key, re-encrypts it with Bob's public key, and sends it on to Bob.

4. When Bob sends a message to Alice, encrypted in �Alice's� public key, Mallory inter-

cepts it. Since the message is really encrypted with his own public key, he decrypts it

with his private key, re-encrypts it with Alice's public key, and sends it on to Alice.

All communications go through the attacker and the communicating entities are unaware

that this is taking place. [80] notes that:

�In general, a man-in-the-middle attack can defeat any protocol that doesn't

involve a secret of some kind.�

In order to counter such attacks it is necessary to have exchanged secret information, such

as a password, in some out-of-band manner. Or, it necessary to make use of a trusted third

party such as a key server or a certi�cation authority (CA)2. Secret or trusted information

can then be used in the authentication process.

Another form of tampering is re�ecting messages sent by one entity back to that entity at

a later time. To counter this, messages should contain some information that identi�es the

target of the message or the message type [58]. Malicious re-ordering of messages can be

prevented through the use of sequence numbers.

2In this case the CA's private key is the secret information.
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An attacker can use information that it has eavesdropped to replay authentication mes-

sage information exchanged during one authentication session during a later or parallel

(ie. happening at the same time) authentication session [58, Pgs 417-418]. If the authen-

tication protocol is not designed to detect replay of messages and messages are not linked

to a particular authentication session, an attacker may be successful in impersonating a

legitimate user. Techniques to prevent such replay include the use of secure timestamps

and fresh random numbers embedded in protocol messages.

2.2.3 Session Hijacking

Once a user has undergone the entity authentication process and proved its identity to

the resource controller it is able to make use of the resource. One possible attack is to

hijack the user session just after the authentication process and indicate to the user that

an error has occurred and the session has been terminated. Thereafter the attacker can

use the authenticated session to make use of the resource. In order to counter this attack

it is necessary to have message authentication in addition to entity authentication.

2.2.4 Chosen-plaintext attack

If an attacker is able to get an entity to encrypt a piece of plaintext, chosen by the attacker,

using the entity's private credential evidence, this makes it easier for the attacker to obtain

the credential evidence through cryptanalysis [80, p 6]. Such chosen-plaintext attacks can

be countered by having the encrypting entity introduce some random data into the message

before encrypting it.

2.3 Countermeasures

In addition to assuming that the attacker is able to monitor and manipulate any exchanged

messages, as discussed in the previous section, we assume that the attacker has full knowl-

edge of the working and implementation of any algorithms employed [80, p 5].

�Security is not and cannot be a cookie cutter process. There is no magic pixie

dust that can be sprinkled over a protocol to make it secure. Each protocol
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must be analyzed individually to determine what vulnerabilities exist, what

risks they may lead to, what palliative measures can be taken, and what the

residual risks are.� - Bellovin [6]

Authentication mechanisms and protocols need to be designed with attacks in mind, and

must provide adequate protection against them. Cryptography, one-way functions and

nonces are useful countermeasures.

2.3.1 Cryptography

Cryptography is �the art and science of keeping messages secure� [80, p1]. It may be used

during the authentication process as part of generating the evidence that is used to prove

an identity and to protect the messages transmitted between the communicating entities.

There are two types of cryptography used in computer security: symmetric cryptography

where parties share a secret key, and asymmetric cryptography which involves the use of

public/private keypairs.

2.3.1.1 Symmetric Cryptography

When using symmetric cryptography the parties involved share knowledge of a secret key.

The same key is used in both the encryption and decryption processes. It is imperative that

this key remain secret since anyone with access to the key can decrypt messages produced

using this key, and encrypt new messages using the key. One of the primary issues involved

in using symmetric cryptography is exchanging or negotiating this shared secret key. Many

key establishment protocols have been devised to resolve this issue [58, chapter 12] [80,

chapter 22]. Key establishment may be broken into two categories: key transport and key

agreement.

�A key transport protocol or mechanism is a key establishment technique where

one party creates or otherwise obtains a secret value, and securely transfers it

to the other(s).� - Menezes et al [58]

�A key agreement protocol or mechanism is a key establishment technique in

which a shared secret is derived by two (or more) parties as a function of

information contributed by, or associated with, each of these, (ideally) such

that no party can predetermine the resulting value.� - Menezes et al [58]
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Key establishment may be based on symmetric encryption (eg. Authenticated Key Ex-

change Protocol 2 [58, p 499]), perhaps using a trusted third party (eg. Kerberos [58, pp

501-503]). It may also be based on asymmetric cryptography (eg. Di�e Hellman [80, pp

513-514]).

Symmetric key encryption and decryption is orders of magnitude faster than asymmetric

encryption and decryption. In addition the key sizes necessary to provide the same level of

security (ie. di�culty in breaking the key) are much smaller with symmetric cryptography

than with asymmetric cryptography.

2.3.1.2 Asymmetric Cryptography

When using asymmetric cryptography (also known as public key cryptography) the user

has a keypair that consists of a private key that the user keeps secret and a public key

that the user makes available to other entities. The asymmetric nature of the private and

public keys means that a message encrypted with the private key can only be decrypted

by the corresponding public key, and vice versa. Since the public key is freely available

anyone can check whether a message was encrypted using the private key by attempting

to decrypt it using the corresponding public key.

An important part of the process of using public key cryptography is ensuring that a public

key really is associated with a particular identity. Consider the scenario described in 2.2.2

where Mallory (the malicious attacker) is able to launch a man-in-the-middle attack against

Alice and Bob by sending a fake public key to Alice claiming to be Bob, and a fake public

key to Bob claiming to be Alice. Alice and Bob think that they are communicating securely

with each other when instead Alice and Bob are passing messages through Mallory who

has full access to all information that they transmit.

One solution to this problem is though the use of a trusted entity (Trent), called a certi-

�cation authority, that has a public key that all entities involved know to be valid. Trent

veri�es the identity of an entity (using some external means) and, if valid, signs the entity's

public key using his private key, creating a public key certi�cate. Other entities that trust

Trent can be sure of the validity of the public key certi�cates by checking the signature on

the certi�cate using Trent's well-known public key. These public key certi�cates are often

stored in a publicly available directory so that the public key certi�cate associated with an

entity can be found easily.
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Another solution to the problem involves a decentralised web of trust, popularised by the

Pretty Good Privacy (PGP) [102] program by Phil Zimmerman. This model works on the

principal that �a friend of yours is a friend of mine�. Instead of having a single trusted

entity users trust each other to certain degrees. A user might trust his close friends enough

to trust any public key certi�cates that these close friends have signed. This user may then

sign these certi�cates and pass them on to other friends. By trusting entities that they

know, and these entities trusting other entities a web of trust is established, where before

a user trusts any entity's public key certi�cate it must have a certi�cation path back to

an entity that the user does trust. A scenario where all entities trust a single entity is a

degenerate case that works the same as the certi�cation authority described above.

The use of public-key cryptography has some bene�ts over the use of secret-key cryptog-

raphy. One advantage is that it supports non-repudiation, which is de�ned in the CORBA

Security Service Speci�cation (CORBASec) [68] as follows:

�Non-repudiation provides irrefutable evidence of actions such as proof of origin

of data to the recipient, or proof of receipt of data to the sender to protect

against subsequent attempts to falsely deny the receiving or sending of the

data.�

Non-repudiation makes entities accountable for their actions by storing evidence that can

be used to later resolve disputes over whether or not an action or event took place. This

service can be provided using a trusted third party and digital signatures [68]. Section 3.7

of CORBASec [68] describes this process in more detail.

Another advantage is that it provides scalability to large user populations. Using a shared-

key system, every entity must have a shared key with every other entity that it wishes

to communicate with. This means that the number of keys necessary for communication

grows exponentially with the number of entities. Public-key systems do not have this

problem due to the fact that each entity has an available public-key that can be used by

all other entities to secure communications. (Kerberos, a shared-key system, overcomes

this problem using a trusted third party).

2.3.2 One-way hash functions

�Breaking a plate is a good example of a one-way function. It is easy to smash

a plate into a thousand tiny pieces. However, it's not easy to put all of those
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tiny pieces back together into a plate.� - Schneier [80, p 29]

A one-way hash function takes an arbitrary length message as input, known as a pre-image,

and produces a �xed-length output, known as a hash or digest. Given a hash function h

= H(M), where M is the pre-image, H is the hash function, and h is the hash, it has the

following properties [80, p 429]:

� Given M, it is easy to compute h

� Given h, it is hard to compute M such that H(M) = h

� Given M, it is hard to �nd another message, M', such that H(M) = H(M')

One-way hash functions produce a digest of the original message that has security-related

applications. The digest may be used as a checksum to ensure that the message was

received without errors [58, pp 338-351]. If the digest-creation process includes the use of

a key then the output is a message authentication code (MAC). Since the digest provides

a ��ngerprint� of the original message and the MAC can only be created using the key, it

may be used to provide integrity protection or message authentication, which ensures that

a message was not tampered with during transport [58, pp 352-367].

One-way hash functions may also be used to prove knowledge of some data to another

party without revealing the data to the other party. This has particular application in

authentication protocols, such as those classi�ed as challenge-response protocols.

2.3.3 Nonces

�Nonces are opaque, transient, session-oriented identi�ers which may be used

to provide demonstrations of freshness. � - Rescorla [76]

Replay attacks, discussed above, involve replaying messages exchanged earlier in a session

or during a previous session. Such attacks can be thwarted by providing a way of checking

whether or not a message is fresh is not. A fresh message is de�ned as a message that

was recently generated. The inclusion of time-variant data, called nonces, such as secure

timestamps [58, pp 399-400], sequence numbers [58, p 399] and fresh random numbers [58,

p 398] can be used as an indication of freshness [58].
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2.4 Secure Remote Password protocol

�The lack of a secure authentication mechanism that is also easy to use has been

a long-standing problem with the vast majority of Internet protocols currently

in use. The problem is two-fold: Users like to use passwords that they can re-

member, but most password-based authentication systems o�er little protection

against even passive attackers, especially if weak and easily-guessed passwords

are used.� - Wu [99]

The Secure Remote Password (SRP) protocol is a zero-knowledge authentication and key

exchange protocol developed by Thomas Wu at Stanford University. As described above,

zero-knowledge means that it does not leak any information during the authentication

process that can enable an attacker to obtain or derive the secret authentication evidence

used. It is based on Authenticated Key Exchange (AKE) where key exchange takes place

using ephemeral public/private keypairs.

2.4.1 Operation

Rather than attempting to describe SRP in our owns words we shall rather use the protocol

description given in the original SRP paper [98]:

C Client's username

n A large prime number. All computations are performed modulo n

g A primitive root modulo n (often called a generator)

s A random string used as the user's salt

P The user's password

x A private key derived from the password and salt

v The host's password veri�er

u Random scrambling parameter, publicly revealed

a, b Ephemeral private keys, generated randomly and not publicly revealed

A, B Corresponding public keys

H() One-way hash function

m, n The two quantities (strings) m and n concatenated

K Session key
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Carol Steve

1. � C �! (lookup s, v)

2. x = H(s; P )  � s �

3. A = ga � A �!

4.  � B; u � B = v + gb

5. S = (B � gx)a+ux S = (Avu)b

6. K = H(S) K = H(S)

7. M1 = H(A;B;K) � M1 �! (verify M1)

8. (verify M2)  �M2 � M2 = H(A;M1; K)

1. Carol sends Steve her username, (eg. carol)

2. Steve looks up Carol's password entry and fetches her password veri�er v and salt

s. He sends s to Carol. Carol computes her long-term private key x using s and her

real password P .

3. Carol generates a random number a, 1 < a < n, computes her ephemeral public key

A = ga, and sends it to Steve.

4. Steve generates his own random number b, 1 < b < n, computes his ephemeral public

key B = v + gb, and sends it back to Carol, along with the randomly generated

parameter u.

5. Carol and Steve compute the common exponential value S = gab+bux using the values

available to each of them. If Carol's password P entered in Step 2 matches the one

she originally used to generate v, then both values of S will match.

6. Both sides hash the exponential S into a cryptographically strong session key.

7. Carol sends SteveM1 as evidence that she has the correct session key. Steve computes

M1 himself and veri�es that it matches what Carol sent him.

8. Steve sends CarolM2 as evidence that he also has the correct session key. Carol also

veri�es M2 herself, accepting [it] only if it matches Steve's value.

Note that the value of u may be computed as a simple function of B (see 3.2.4 of [98]).



CHAPTER 2. BACKGROUND 21

2.4.2 Features

The features of SRP are summed up in the Abstract from the original SRP paper [98]:

�This paper presents a new password authentication and key-exchange proto-

col suitable for authenticating users and exchanging keys over an untrusted

network. The new protocol resists dictionary attacks by either passive or ac-

tive network intruders, allowing in principle, even weak passphrases to be used

safely. It also o�ers perfect forward secrecy, which protects past sessions and

passwords against future compromises. Finally, user passwords are stored in a

form that it not plaintext-equivalent to the password itself, so an attacker who

captures the password database cannot use it directly to compromise security

and gain immediate access to the host. This new protocol combines techniques

of zero-knowledge proofs with asymmetric key exchange protocols and o�ers

signi�cantly improved performance over comparably strong extended methods

that resist stolen-veri�er attacks such as Augmented EKE or B-SPEKE.�

Resists passive and active dictionary attacks

During an the authentication process using passwords the server needs to verify the client's

password (P ), so it has to store some information about the password in order to do so.

In order to avoid storing cleartext passwords, they are often stored as a hash:

h = H(P )

But this scheme is vulnerable to a passive dictionary attack in which an attacker who

knows H (which is usually a well-known hash function) can precompute hashes for a large

dictionary of common passwords. By including a random salt value along with the password

as input to the hash function, it becomes much harder to precompute dictionaries for use

with a dictionary attacks, because each unique salt value gives rise to a unique dictionary.

h = H(s; P )
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(This computation of stored authentication data is commonly used in Unix systems).

Nonetheless, a particular password and salt combination can still be attacked o�ine by

testing each entry in a large dictionary of common passwords along with each possible salt

value. SRP makes the computation that an attacker has to perform even more di�cult by

storing a veri�er (v) rather than the hash:

v = gh

but this does not prevent a dictionary attack from being successful.

Many authentication protocols have the client send data (eg. h) to authenticate itself that

is plaintext-equivalent to the authentication data stored on the server (eg. h). This means

that if an attacker manages to obtain the authentication data on the server, this data can be

used directly to undertake the authentication protocol and impersonate the user. Since the

authentication data and not the client's password is used in the authentication exchange,

the client's password need not be known. The important feature of SRP's stored veri�ers

(v) is that they are not plaintext-equivalent to the data sent during the SRP authentication

exchange. This means that v is not equivalent to the information sent by the client (A

and M1) to authenticate itself to the server, so an attacker that knows v cannot directly

impersonate the client.

Since SRP is a zero-knowledge protocol, it does not leak any information during the au-

thentication exchange that aids an attacker in performing a dictionary attack.

O�ers perfect forward secrecy

This means that if a key from a previous session is compromised this does not give an

attacker any additional information to aid in obtaining the password or the session key for

any future sessions. Conversely, a compromised key from a later session does not provide an

attacker with additional information to aid in obtaining the session keys for past sessions.

Does not use a trusted third party
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Mechanisms that do not require a trusted third party in order to operate are known as low-

infrastructure mechanisms. Such mechanisms are easier to deploy than those that require

additional infrastructure such as a key server or a certi�cation authority.

Produces a shared session key

In addition to performing authentication (possibly mutual), a shared session key is ne-

gotiated as part of the authentication process. This session key can be used to provide

additional security services for the session, such as integrity and con�dentiality protection.

Has good performance

SRP has better performance than any of the other mechanisms that are not plaintext

equivalent and provide perfect forward secrecy (eg. A-EKE and B-SPEKE) [98, pp 14-

15]). Encrypted Key Exchange (EKE) based protocols, such as DH-EKE, SPEKE, A-

EKE and B-SPEKE, also provide strong secret-key based authentication. DH-EKE and

SPEKE o�er better performance than SRP and provide forward secrecy but su�er from

plaintext-equivalence. A-EKE is veri�er-based, but has poor performance and does not pro-

vide forward secrecy. B-SPEKE provides forward secrecy and provides protection against

plaintext equivalence but su�ers from comparatively poor performance [98, pp 3-4]. SRP's

main features, in addition to being zero-knowledge, are that it has good performance, is a

veri�er-based protocol and also maintains perfect forward secrecy [98].

Menezes et al [58, p 388] describe password-based authentication protocols as follows:

�Conventional password schemes involve time-invariant passwords, which pro-

vide so-called weak authentication.�

We believe that SRP is a signi�cant advance in password-based authentication technology,

since it provides strong password-based authentication, and that it has wide application in

securing computing resources. We have used it in both the SRPGM GSS-API mechanism

described in 5.5 and the SRP-SASL SASL mechanism described in 6.4.
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2.4.3 Optimised SRP

Optimised SRP, as described in Wu [98], reduces the number of message rounds it takes

to complete the protocol by grouping together pieces of information that do not depend

on earlier messages. Mutual authentication is as follows:

Client Server

� C;A �!

 � s; B �

� M1 �!

 �M2 �

where:

� M1 = H(A;B;K)

� M2 = H(A;M1; K)

2.4.4 Attempted further optimisation

�Implementing a protocol such as SRP for use in real systems brings practical

issues like performance into play. The number of message rounds, the size

of the exchanged messages, and the expected execution time of a successful

authentication attempt are all important factors in designing concrete protocol

speci�cations. Eliminating even one network message or computational round

can signi�cantly improve the utility of an authentication system.� - Wu [98]

We thought that we had discovered a simple optimisation for Optimised SRP that would

further reduce the number of message exchanges necessary for mutual authentication, but

as explained by John Myre on the sci.crypt USENET newsgroup, this optimisation made

an o�ine dictionary attack possible.

After the �rst message from the client, the server has su�cient information to derive the

session key and produce the evidence necessary to prove that it knows the session key.

With our optimisation, the acceptor presents evidence that it knows the shared session key

along with the data it sends in its �rst message, rather than doing so after the initiator

presents its evidence in round three:
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Client Server

� C;A �!

 � s; B;M2 �

� M1 �!

where:

� M2 = H(A;B;K)

� M1 = H(B;M2; K)

This means that mutual authentication takes the same number of message rounds as unilat-

eral authentication does, making it practical to use mutual authentication even in situations

where the number of message rounds is important.

However, as pointed out by John Myre on the sci.crypt USENET newsgroup, this makes

it possible for an attacker pretending to be a legitimate client to undertake an o�ine

dictionary attack (see 2.2.1 and 2.4.2).

�Now the adversary can do an o�-line password guessing attack. With the

four-message version, the server doesn't provide M2 (which can be used to

verify a guess of a password) until it checks M1 (which proves knowledge of the

password). In theory, with SRP you can't check a password guess except by

trying to log on, as long as you don't break in to the server itself.

(The attack on the 3-message version would be: start the log on, the quit as

soon as you get M2. Then guess di�erent passwords until you can compute M2

yourself).� - John Myre, sci.crypt USENET newsgroup, 14 January 2000

This attack is described in more detail as follows:

1. The attacker discovers the client's username (C). This is easy since the username is

transmitted in the clear.

2. The attacker generates its ephemeral asymmetric keypair (a and A) as normal and

sends C and A to the server.

3. The server sends s, B and M2 to the attacker.
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4. The attacker aborts the connection.

At this point the attacker has knowledge of the following data:

n; g; a; A; B; s; H(A;B;K)

The following formulae are used by a client to compute the session key:

x = H(s; P )

S = (B � gx)a+ux

K = H(S)

(It is assumed that u is computed as a simple function of B.)

The attacker has su�cient information to compute a candidateK using a guessed password

(P ). It is then able to verify whether or not this candidate K is correct or not using the

evidence given by the server:

H(A;B;K)

since it has knowledge of both A and B.

It is therefore important that the client prove its knowledge of the session key before the

server does so, because in order to do so the client needs to have knowledge of the real

password.

2.5 Further reading

Kwatsha [47] has an excellent discussion on the theoretical and practical aspects of both

host and network security. He also discusses attacks and how to counter them, focusing

on the mindset that administrators should have when dealing with these issues. Both the

Handbook of Applied Cryptography [58] and Applied Cryptography [80] are well known secu-

rity books that have extensive coverage of authentication protocols, the issues surrounding

them, and computer security in general, and are highly recommended. The author of Ap-

plied Cryptography [80], Bruce Schneier, maintains an extensive bibliography of security

papers available at [85]. Readers are encouraged to read the original SRP paper [98] and

the IETF Internet Draft on SRP [99].



Chapter 3

Single Sign-On

3.1 Introduction

Security authors and advocates proclaim that security must be pervasive in an organi-

sation. However security often gets in the way of normal organisational operations and

hinders people undertaking their daily work. It is therefore important to take users into

consideration when designing and implementing a security infrastructure.

In a computing environment, the usual authentication process is for a user to sign on

to a system, providing an identity and credential evidence. If this sign-on procedure is

successful then the user is authorised to use certain computing resources. The initial sign-

on procedure is termed the primary sign-on. Additional sign-on procedures are termed

secondary sign-ons. Typically a user will have undergo a separate sign-on procedure for

each speci�c system or resource. This means that a user usually has to undergo multiple

secondary sign-on procedures during a single session, in addition to the primary sign-on.

This often requires the memorization of numerous identities and passwords, it may even

mean supplying the same information more than once at di�erent times and it may also

involve running di�erent sign-on programs depending on the authentication technology

being used.

IBM [38] describe several problems associated with the current user scenario:

� Lack of productivity.

� Lack of convenience increases potential for compromised security.

27
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� Increased support costs.

� Devaluation of password as a security mechanism.

� Increased administration expense

� Lack of availability due to expired, forgotten or out of synch passwords.

As mentioned in the previous chapter, passwords are a simple and convenient form of

evidence to use in the authentication process as long as they are kept secret. However,

experience has shown that when users have too many passwords to remember they tend

to write them down or forget them [38]. Writing them down may devalue the password

as authentication evidence, since it is no longer something remembered. Also, there are

increased support costs involved in resetting passwords that users have forgotten, and

users may not be able to access resources that they need to perform their work if they

have forgotten or have out-of-date passwords [38]. Making users re-enter a username and

password every time they use a resource adversely impacts productivity and inconveniences

them.

3.2 Campus Scenario

At Rhodes University, use of many di�erent resources involves a separate sign-on procedure

for each resource. For example, the author has access to at least six Unix systems and two

Windows systems that have di�erent password authentication databases. This authenti-

cation information is also used to control access to other resources such as printing, using

the POP3 protocol to access mail, or retrieving �les using the FTP protocol. While it is

possible to use the same password on all systems, this results in reduced security because

a compromise of a password used with one user account leads to an attacker having access

to any of the user's accounts. This is especially a problem due to the fact that many

authentication exchanges involve the transmission of a plaintext passwords eg. FTP and

POP3 exchanges. Even if the same password is used, there is still the inconvenience that

the username may be di�erent for di�erent resources.

Some e�ort has been made to reduce the credentials that a student has to remember

in order to make use of resources. Windows NT Primary Domain Controllers (PDCs)

are used to provide centralised storage and control of authentication information for a
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group of Windows machines. This is a proprietary solution that is incompatible with

other available operating system environments. Additionally, Sainsbury [78] notes that

NT 4.0 security mechanisms are signi�cantly weakened by having to provide backward

compatibility protocols for Windows 95 clients. The Network Information Service (NIS) is

used to provide centralised storage and control of authentication information for a group

of Unix machines. While this solution is non-proprietary, it is not available for use with

Windows machines, and it is vulnerable to passive dictionary attacks. To be fair, these

e�orts have reduced the amount of username/password combinations that a typical user

has to remember to just two or three. Sta� members and postgraduate students typically

have to remember more authentication information though.

Even though the amount of authentication information has been reduced, there is still the

problem that users are prompted for this information whenever they wish to use a resource.

Some application programs, such as Netscape's POP3 client, cache this information so that

it does not have to be re-entered, but many more do not. For example, a user using the

standard available FTP client will have to re-enter username/password information every

time they access a particular server, even if they have already visited this same server

earlier in the session.

3.3 Single Sign-On

�Under SSO, you come into work in the morning, plug in your smart-card, enter

the PIN that activates it, and for the rest of the day, you don't have to do any

more logins. All of that is handled for you by the SSO mechanism. Attractive

isn't it? Of course, it's attractive. Authentication is a pain. Anything we can

do to avoid it, we'll jump at.� - Schneier and Ellison [30]

A solution to this problem is what is known as Single Sign-On. In a Single Sign-On

scenario all identi�cation and credential information that may be required to undertake

any secondary sign-on procedures during a session is collected from the user during the

primary sign-on procedure [73]. In this way, the user is only prompted for credential

information once.

One-way to achieve single sign-on is to have a single authentication mechanism in a security

domain and ensure that all resources make use of the mechanism. Kerberos, a distributed
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authentication system originally from MIT and now an IETF standard, uses this approach.

With Kerberos the primary sign-on involves the user authenticating to a Key Distribution

Server (KDS) and obtaining a Ticket Granting Ticket (TGT) if successful. This TGT can

be used for a limited time period to undertake secondary sign-on, by authenticating to other

resources that trust the KDC, without having to supply user credential information. The

Kerberos approach works extremely well in a homogeneous Kerberos-only environment.

Such centralised stores of authentication information also make management of resource

control policies and user account information easier.

Another way to implement single sign-on is to store user-supplied credential information

during the primary sign-on and use it to support secondary sign-on, without the need for

the user to re-enter any credential information. Secondary sign-on may take place using

the user-supplied credentials directly or by using them to obtain other necessary creden-

tials [73]. For example, a user-supplied password may be used to decrypt an asymmetric

private key or one password may be mapped to another password. This approach is more

suitable to a heterogenous security environment where there are numerous authentication

mechanisms, perhaps using di�erent technologies, being used in existing systems. In the

Rhodes University scenario such an approach could be used by a typical user to store the

username/password pair for use with a Windows PDC, and the username/password pair

to use with an NIS server.

The Java Security Authentication and Authorization Service (JAAS), described next,

makes use of the second approach to provide single sign-on functionality.

3.4 JAAS

The Java Authentication and Authorization Service (JAAS) is an attempt to add support

for entity authentication to the Java Development Kit (JDK). Currently the JDK enforces

access controls based on where the code came from and/or who it was signed by. JAAS

aims to provide access controls based on who runs the code ie. an authenticated identity

[91]. This user-based access control associates permissions with users, authorizing them to

perform particular actions, such as accessing �les and opening network sockets.

Our interest in JAAS is due to the fact that it can be used to provide single sign-on

[92]. During the authentication process, information can be shared between mechanism

implementations thereby removing the need for the user to enter the same information
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more than once. Authenticated identities and credentials are stored and made available

for future authentication procedures.

3.4.1 PAM

There are a large number of authentication technologies available, and traditionally ap-

plications have hardcoded support for particular technologies. To upgrade an existing

mechanism or use any new authentication technology requires changes to all such pro-

grams. For example, many UNIX applications were rewritten to make use of Kerberos.

The Open Group (through SUN) developed a solution to this problem by publishing the

Pluggable Authentication Modules (PAM) standard. It provides a means for administra-

tors to specify what authentication information is required to use a particular resource

and also provides a means for new authentication mechanisms to be seamlessly plugged in.

Application programs call methods in the PAM API in order to authenticate before using a

particular resource, and callback methods prompt the user for any authentication evidence

required. PAM provides a generic API that sign-on programs can use to authenticate

users, a Service Provider Interface (SPI) that can be used to plug in new authentication

technologies, and con�guration that allows the administrator to specify what combination

of mechanisms will be used to authenticate a particular application [48]. It is currently

being used for authentication on Solaris and some versions of Linux.

JAAS is based on the PAM speci�cation and provides all this functionality. This means

that JAAS has a pluggable architecture in that new authentication mechanisms can be

introduced and existing ones replaced. It also has a stackable architecture where a user

can be authenticated using more than one mechanism at the same time. For example,

this allows an administrator to specify a resource control policy where users may use a

resource if they are successfully authenticated using one of a number of mechanisms, or

using certain combinations of mechanisms [91].

3.4.2 JAAS Framework

In the JAAS framework, the user in the sign-on procedure is represented by an instance of

a Subject class. It holds authenticated identities and public and private credentials. For

example an identity may be a username on a host computer, a public credential may be
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a public key certi�cate, a private credential may be a password. The LoginContext inter-

face provides an API that sign-on programs can use to authenticate users. The di�erent

authentication mechanisms are represented by classes that implement the LoginModule

interface. The Con�guration object looks up the con�guration for a particular application

that speci�es what LoginModules to use for the application and the order in which to call

them.

Application Program

Callback Handler

Configuration

Name

LoginContext

LoginModule

LoginModule

Subject

Name

LoginModules

Figure 3.1: JAAS Authentication

An application program using JAAS instantiates a LoginContext passing it the name of the

application and a callback handler. Callback handlers are used so that the application itself

can decide on the best way to prompt the user for information. This may for example be

a simple text prompt, or a pop-up window. The LoginContext looks up the con�guration

for that application that speci�es what LoginModules should be used and how they should

interact. The application program then calls the LoginContext login method. This results

in the login methods of all the con�gured LoginModules being called. Each LoginModule

attempts to authenticate the user, interacting with the user via the callback handler, and

verifying the supplied authentication information in a mechanism-speci�c manner. (For

example, this may be using a password �le or a key server). If the authentication procedure

meets the requirements speci�ed in the con�guration, then the authenticated identities and

public and private credential information are added to the Subject. The application can

then retrieve the authenticated Subject from the LoginContext [91].
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3.4.3 Single Sign-on

If the primary JAAS sign-on operation is con�gured to obtain from the user all the neces-

sary authentication information that may be required to undertake any further secondary

sign-on operations during the session, then the JAAS framework can be used as part of a

Single Sign-on implementation.

As an example to illustrate this lets assume that a a username/password and a pub-

lic/private keypair are all the credentials that are necessary in a particular environment.

A user wishes to use a resource that has the following JAAS con�guration1:

auth requisite org.gjt.krb.JAAS.login.PasswordModule

auth required org.gjt.krb.JAAS.login.PKModule password_stacking=try_first_pass

This con�guration means that in order to use the resource a user must have both a user-

name/password and a public/private keypair credential. In our implementation we have

two LoginModules: the �rst veri�es a username and password, and the second attempts to

obtain a public/private keypair from a key store. Obtaining the keypair from the keystore

requires the use of a password. The �password_stacking=try_�rst_pass� indicates to the

PKModule that it should attempt to use the password the user entered when interacting

with the PasswordModule, thereby eliminating the need for the user to re-enter the pass-

word if it is available. In e�ect, the administrator has implemented a policy to encourage

reuse of the same password.

Once the user has undergone the sign-on procedure the password and keypair are stored

in the Subject object. Further authentication procedures that need to make use of these

credentials will not have to prompt the user but can rather obtain the credentials directly

from the Subject object.

Rather than using shared credentials directly, LoginModules can also use these credentials

to obtain other credentials. This may for example be by password-mapping, where a given

password is used to look up or decrypt another password. Or a user may enter a password

that a LoginModule uses to access a LDAP directory and retrieve another password, or

perhaps a private key. LoginModules may, with permission, also undertake further sign-on

operations on the users behalf, such as connecting to a Kerberos Key Distribution Centre

and obtaining a Ticket Granting Ticket, for example.

1Interested readers are referred to the JAAS documentation [91] for details on con�guration
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3.4.4 Implementation

Initially JAAS was only available as an early speci�cation detailing the various components

and how they interacted. No implementation was available, although SUN engineers had

begun working on one. This speci�cation has evolved over time and at the time of writing

SUN have released a beta-quality Early Access version. To validate the speci�cation we

have written a partial implementation of an early version of the JAAS API. In particular we

have only focused on the authentication part of the framework, omitting the authorisation

part. The code works well enough to test the available functionality, but being incomplete

and out-of-date should not be otherwise used. The implementation subsequently provided

by SUN [91] is more up-to-date.

3.5 Problems with SSO

Entity authentication was de�ned in the previous chapter as [58]:

�An identi�cation or entity authentication technique assures one party (through

acquisition of corroborative evidence) of both the identity of a second party

involved, and that the second was active at the time the evidence was created

or acquired�

Schneier and Ellison [30] point out that a serious problem with the whole SSO scenario is

that the user may not be active at the time authentication takes place:

�Unfortunately, the security value of authentication is all but completely de-

feated by SSO. Authentication is supposed to prove that the user is present at

the controlling computer, at the time of the test. Under SSO, when the user

has to rush to the washroom, any passing person can walk up to that user's

computer and sign on someplace via the SSO mechanism.�

It is clear that use of SSO does involve some security risks. Some of these risks can be

mitigated by restricting physical access to machines and using tools such as authenticated

screensavers to lock a terminal when it is not being used. In addition the time period

for which credentials are valid should be restricted to the length of a typical user session,
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for example a working day. It is important that such security measures be employed to

prevent unauthorised use of a terminal after primary authentication has taken place.

While tools such as password protected screensavers result in additional prompts for cre-

dentials, they are a necessary part of a secure system. Since they are only activated after

a period of inactivity they should not interfere with normal use of computing resources by

users. If such tools are used then a system can be sure that a user has been recently active

at the time authentication takes place.

While this is not a perfect solution, SSO seems like a reasonable compromise between

applying security measures that are not tiresome for users, while still maintaining an

acceptable level of security. In general, there is a direct trade-o� between convenience

and security. SSO provides convenience to users by reducing the amount of credential

information they have to use and remember, and reducing the number of sign-on procedures

they have to undertake. It is hoped that this convenience leads to users being more

productive and better managing their credential information. Administrators of systems

should analyse their particular environments to see whether such a solution is acceptable.

3.6 Conclusion

Much research is focused on authentication protocols, cryptographic techniques and the

like. It is important to remember that users are a critical part of the authentication

process. Single sign-on aims to reduce the amount of credential information users have to

remember and how often they have to supply it, with the goal of making security easier

for users and thereby encouraging them to better look after their credentials, while being

more productive. Single Sign-on does not guarantee that a user is active at the time

secondary authentication takes place, which is an important part of entity authentication.

A compromise can be made to allow the system to be sure that the legitimate user whose

credentials are being used was recently active on the system. Administrators should decide

whether the bene�ts of single sign-on outweigh the possible risks involved in using it.
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GSS-API

�It is a generally accepted design principle that abstraction is a key to managing

software development. With abstraction, a designer can specify a part of a sys-

tem without concern for how the part is actually implemented or represented.�

- Kaliski [42]

4.1 Introduction

The Generic Security Services API (GSS-API), as its name suggests, aims to be a generic

API that programmers can use to add security to protocols and applications. It encapsu-

lates security functionality and provides it via a standard abstract API. This shields users

from changes in the underlying security technology, localising any changes to the GSS-API

implementation and mechanisms rather than all applications that make use of the API.

Where APIs such as SASL and the CORBA Security Service (which are discussed in later

chapters) are tied to particular application areas and communication environments, the

GSS-API tries to be as independent as possible. This means that it is applicable in a wide

variety of areas and can be used as the basis for other higher-level or application-speci�c

security architectures.

�This Generic Security Service Application Program Interface (GSS-API) def-

inition provides security services to callers in a generic fashion, supportable

with a range of underlying mechanisms and technologies and hence allowing

source-level portability of applications to di�erent environments.� - Linn [53]

36
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Applications and protocols written to use the GSS-API to provide the underlying security

will be more resistant to changes in security technology and infrastructure, and will there-

fore be easier to maintain. Existing GSS-API mechanisms provide strong security using

both secret-key and public-key cryptography, and it is easy to introduce new mechanisms

as they become available. Because the GSS-API provides the user with an abstraction

from the underlying security functionality, this makes it easy for programmers working

in other computer-based �elds to plug security into their applications without having to

be concerned with how the security works, and it shields them from changes in how the

security functionality is provided.

4.2 Design

4.2.1 Goals

The GSS-API was designed with certain goals in mind [54]:

mechanism independence - It is independent of the underlying mechanisms used to

provide security services. Mechanism implementations can use secret-key or public-

key cryptography, for example.

communication protocol independence - It is independent of the communications

medium used to carry protocol messages. This means that it can be used on both

connection-oriented and connectionless communications environments, for example.

protocol association independence - It is not associated with any particular applica-

tion protocol (eg. IMAP, SNMP or LDAP), which means that a single GSS-API

library can be used by implementations of di�erent application protocols, as well as

directly by applications.

placement independence - A GSS-API implementation does not have to operate in a

Trusted Computing Base.

This independence makes it particularly resistant to change and applicable for use in a

wide number of areas.
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4.2.2 Encapsulation

�One view of object-oriented programming is that it is a discipline that enforces

modularity and clean interfaces. A second view emphasizes encapsulation, the

fact that one cannot see, much less design, the inner structure of the pieces. An-

other view emphasizes inheritance, with its concomitant hierarchical structure

of classes, with virtual functions. Yet another view emphasizes strong abstract

data-typing, with its assurance that a particular data-type will be manipulated

only by operations proper to it.� - Brookes [10]

The object-oriented concept of encapsulation is important in security engineering. An

object encapsulates some functionality by providing this functionality via a well-de�ned

interface. The actual implementation of the functionality is hidden from the user, and this

means that this implementation can be changed without a�ecting any users, as long as the

interface stays the same. It is important for the API to be well-de�ned so that users know

what functionality is available and how to make use of it.

The GSS-API is concerned with encapsulating the functionality of authenticating a user

and providing security services over a context. It de�nes an abstract programming in-

terface that encapsulates this functionality while remaining independent of the way this

functionality is implemented.

4.2.3 Resistance to change

A protocol is an agreed upon set of messages that are exchanged between entities in order

to achieve some goal. This may for example be the sending of email from one machine to

another, establishing a remote shell connection with another machine, or accessing a web

page. It is imperative that the protocol is well-de�ned and all entities involved understand

how it works in order for communication using this protocol to be reliable and successful.

This means that any changes in the protocol require all parties involved to be aware of

these changes and able to support them.

Computer security protocols are designed to achieve the goal of authenticating the iden-

tities of the entities involved, and/or protecting the messages exchanged between these

entities. With computer security, change is inevitable. This is due in part to advances in

cryptology on which much computer security is based, and the ever increasing processing
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power available to computer users. In addition, �aws are found in security protocols or

mechanisms which cause these protocols or mechanisms to either be revised or discarded.

Writing software that uses security in this sea of change is often a challenging and di�cult

task. It is therefore important that security protocols be designed to be resistant to change.

As an example, Kerberos 4 was (and still is) a popular computer security protocol. Support

for this protocol was incorporated into many applications on Unix systems such as telnet,

NFS, LDAP etc. Serious �aws were found in the protocol [7], it was revised and Kerberos

5 was released. This version is incompatible with the previous version and changes have

to be made to all applications that wish to upgrade to the new version of the protocol.

Weaknesses have been found in the Kerberos 5 initial authentication phase [96] and this

may also require changes in applications that have hardcoded support for this protocol.

By providing a common API that hides the details of the underlying security protocols,

the GSS-API insulates applications from changes in these security protocols. For example,

applications that use the GSS-API with Kerberos 4 as the underlying protocol (although

they may be unaware of this) could at a later stage use the Kerberos 5 (or any other proto-

col) without any changes. Changes are only necessary in the GSS-API security mechanisms

and the GSS-API implementation itself.

RFC 2025, the speci�cation of the Simple Public Key Mechanism (SPKM), a standardised

GSS-API mechanism, notes the following [4]:

�Because it conforms to the interface de�ned by [RFC 1508], SPKM can be

used as a drop-in replacement by any application which makes use of security

services through GSS-API calls (for example, any application which already

uses the Kerberos GSS-API for security).�

4.3 Operation

Authentication protocols have much in common with each other. They all aim to au-

thenticate users and provide security services and only di�er in how they achieve that

goal and the additional security features that they provide. Three elements are common

to all authentication protocols: a claimed user identity, evidence to prove this identity,

and a security context that represents security settings and the security mechanism mes-

sages exchanged. It is therefore possible to provide an abstraction that encapsulates this

functionality behind a common, unchanging interface.
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The GSS-API encapsulates each of these three elements and their functionality individually.

An instance of a GSSName class holds the names associated with an entity. An instance

of GSSCredential class holds the credentials associated with an entity. An instance of

a GSSContext class holds the negotiated context settings (such as security protection

required and whether or not mutual authentication should take place) and is used to

generate and process messages.

GSSName GSSCredential
1..*

GSSContext
1..*1..*

Figure 4.1: Relationships between the main GSS-API classes

In addition various utility classes are speci�ed to handle status information, signal error

messages, and manage mechanisms.

In GSS-API terminology the secure session established between the user and the resource

controller is called a context and the user is known as the initiator and the resource

controller the acceptor. Both the initiator and the acceptor have names and credentials

related to security mechanisms that allow them to authenticate themselves.

The GSS-API operational paradigm is described in RFC 2078 [54] as follows:

�GSS-API operates in the following paradigm. A typical GSS-API caller is

itself a communications protocol, calling on GSS-API in order to protect its

communications with authentication, integrity, and/or con�dentiality security

services.�

RFC 2025 [4] notes that a GSS-API caller may also be an application program which uses

a communication protocol.

A typical context works as follows:

1. The initiator provides to the GSS-API implementation naming and credential in-

formation, the security services it requires and the target it wishes to communicate
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Initiator
Communications Medium

token

token

token

Acceptor

GSS-API

token

token

GSS-API

Figure 4.2: GSS-API operation

with. The GSS-API returns an opaque token that the initiator is responsible for

transporting to the acceptor.

2. The acceptor provides naming and credential information to its GSS-API implemen-

tation, along with the token it received from the initiator. The GSS-API returns an

opaque token that the acceptor is responsible for transporting to the initiator.

3. The initiator inputs the received token to its GSS-API implementation. It checks

to see whether further tokens need to be sent. If so it transports the token to the

acceptor, else the context is established. The acceptor does the same when it receives

a token.

4. Once the context is established the initiator and acceptor are able to exchange mes-

sages. These messages will be protected with the negotiated security services for the

session, such as integrity protection, con�dentiality protection and replay detection.

From this description it is clear that the GSS-API is independent of any communication

protocol, since it is the caller's responsibility to transport tokens to the other entity involved

in the communication. This means that the GSS-API can be used in any communications

environment, including a connection-oriented TCP/IP client-server environment, a con-

nectionless UDP/IP client-server environment and a CORBA middleware environment,

for example.
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When entities request security services from their GSS-API implementations they do so

in a generic fashion, specifying the functionality that they require. Although it is possible

for a caller to request the use of a particular underlying security mechanism, for maximum

portability and to obtain the full bene�ts of the GSS-API abstraction, callers should merely

request the functionality they require. The GSS-API implementation then decides on the

appropriate underlying mechanism to use, perhaps after negotiating with the other entity

involved in the communication.

The GSS-API speci�cation gives details on naming, credential management, context es-

tablishment, status and error reporting, and providing security services. (See section 1.1

�GSS-API constructs� of RFC 2078 [54]). It also speci�es function calls in terms of their

inputs, their outputs and their expected functionality. These function calls are divided

into four groups: credential-management calls, context-level calls, message-level calls, and

support calls. (See section 2 �Interface Descriptions� of RFC 2078 [54]).

4.4 Java GSS-API

In order for the GSS-API functionality to be useful in real systems it is necessary to produce

an implementation that makes this functionality available to application programmers in

a particular programming language. RFC 2078 [54] states that:

�Concrete language bindings are required for the programming environments

where the GSS-API is to be employed�

Such language binding speci�cations describe how to provide the authentication and se-

curity services described at an abstract level by the GSS-API speci�cation in a particular

programming language. At present only the binding for the C language has been stan-

dardised (RFC 1509 [95]), but work is underway on de�ning a Java language binding [41].

4.4.1 Description

Java is our language of choice for implementing security-related applications because much

security functionality is built into the Java Development Kit (JDK) and related libraries,

such as the Java Cryptography Extension (JCE) and the Java Secure Sockets Environment
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(JSSE). In addition the fact that Java is object-oriented, type-safe and handles memory

management through garbage collection makes it a comfortable language to program in.

The Java language binding has progressed quite quickly during the time that we have

undertaken our research and implementation. At the time of writing the IETF Common

Authentication Technology (CAT) working group has asked that the Java language binding

speci�cation be advanced to Proposed Standard status.

Initially the CAT working group members working on the speci�cation de�ned concrete

classes to implement the GSS-API functionality. Others on the working group felt that

such a speci�cation lacked �exibility and made implementations in non-server environments

di�cult, such as in world-wide-web browsers where applets are heavily restricted. After

much discussion it was decided that much of the speci�cation would be de�ned in terms

of interfaces that compliant implementations would implement to provide the necessary

functionality. A concrete factory class that is used to instantiate implementations of the

interfaces and concrete classes for status and error reporting remain.

Another issue that surfaced during the discussion was the issue of how to handle mecha-

nism implementations. It was thought desirable by some to maximise �exibility by having

a provider-based framework, like that used by other Java security services, to allow an

implementation to make use of implementations made available by di�erent provider im-

plementations. For example the SUN provider that comes with the SUN JDK provides an

implementation of the SHA hash algorithm but not the HAVAL hash algorithm. A user

of the JDK can specify that another provider implementing this algorithm should be used

in addition to the SUN provider and the HAVAL algorithm will be available in the same

way that the SHA algorithm is. Other people keen to use the GSS-API in environments

with constraints on space, memory and security, such as embedded environments, did not

want to the overheads associated with an additional layer of pluggable providers. It was

therefore decided to make the provider-based service provider interface (SPI) a separate

speci�cation that would work under the main Java GSS-API (JGSS). Those not wishing

to use the SPI are free to implement mechanisms that work directly under the JGSS.

The Java GSS-API speci�cation speci�es interfaces whose implementations provide the

functionality of the function calls described in the GSS-API. Credential-management calls

are provided by the Name and Credential interfaces. Context-level calls, message-level

calls and the speci�cation of security services are provided by the GSSContext interface.

The MessageProp class is used for status reporting and the GSSException class is used
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for error reporting. The Factory class provides a means for applications to instantiate

implementations of the JGSS interfaces.

The SPI speci�cation provides a broker layer where GSS-API mechanism providers reg-

ister the mechanisms that they provide. This broker layer stores naming and credential

information for particular mechanisms and allows callers to access the functionality of a

particular mechanism implementation.

The API used by application programmers is the JGSS API, which has stabilised and

is on the verge of becoming a Proposed Standard. The SPI, which is used by GSS-API

mechanism implementors, is under development and still needs to be aligned with the

current JGSS API.

4.4.2 Implementation

One of our stated goals of this research was to produce implementations of security func-

tionality that programmers could use to provide security in their applications. To achieve

this goal, we have undertaken an implementation of both the main JGSS API and the SPI

that works under it. The implementation is functional and has been contributed to the

international Cryptix project1 where it continues to be developed [21]. One problem that

we have had with all of our implementations is that the speci�cations that they are based

on have not been �nalised and standardised. This has made it di�cult to construct an

implementation that conforms to the API, because this goal has been a moving target. Our

implementations are based on recent versions of the respective speci�cations, and continue

to track new developments.

In order for our Java GSS-API library to provide or test any real functionality it is nec-

essary to have an implementation of a GSS-API security mechanism. GSS-API security

mechanisms are discussed in the next chapter.

4.5 Example

As an example of how the GSS-API might be used to secure an application let us assume

the following scenario:

1http://www.cryptix.org/
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We have a resource that makes examination marks available to students. Due to the

sensitivity of this information, a student must �rst authenticate to the resource controller

using her student number and memorised password. The resource controller must verify

the student's credentials and if successful return the student's examination marks.

This resource is implemented as a client-server application with the server listening on a

well-known port. Authentication of the student could be performed by hardcoding support

for a particular security technology, such as the Secure Remote Password protocol, into the

application. However, if the security technology on the server was at a later stage changed,

to Kerberos perhaps, this would require that the client and server be changed to make use

of this new technology. To make future maintenance easier, authentication is provided by

a GSS-API implementation.

The client and server establish a mutually authenticated security context by making the

appropriate GSS-API function calls. They request that the default GSS-API mechanism

be used, which makes them unaware of the speci�c GSS-API mechanism that is being

used to provide them with security functionality, and they request that the integrity and

con�dentiality protection security services be provided over the context. Once the context

is established, the server sends the examination marks to the client. Before being sent, this

information is wrapped in a GSS-API token, protected using the requested security services.

Upon receipt by the client, this information is unwrapped, unprotected and presented to

the student in its original form.

The client and server will be unaware and una�ected by any change in the GSS-API or

underlying GSS-API mechanism used to provide them with authentication and security

services. Any changes will be con�ned to the GSS-API implementation and GSS-API

mechanisms.

4.6 Conclusion

The GSS-API is an abstract API for providing security in a manner independent of the

environment in which this security is used. Authentication protocols all aim to authenticate

users and provide security services and only di�er in the security technology used to do

so. The encapsulation of the functionality of authentication protocols behind a common

API insulates users of the API from the inevitable changes in the underlying technology.
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Implementations of the abstract API in a particular language, such as the Java language

binding implementation provided, make the API calls available to users.



Chapter 5

GSS-API Mechanisms

5.1 Introduction

The underlying security functionality of a GSS-API implementation is provided by GSS-

API mechanisms.

A GSS-API mechanism speci�cation describes the procedures and messages that the mech-

anism uses to establish an authenticated context and provide security services over this

context. The notation used to specify the message data structures must be unambiguous

and �exible enough to express the data used by di�erent mechanisms. The Abstract Syn-

tax Notation One has been chosen to specify the message data structures for GSS-API

mechanisms.

The procedures used to populate and interpret mechanism messages depend on the underly-

ing security protocols and technology that are used by the mechanism. Existing mechanism

speci�cations de�ne mechanisms that make use of shared key technologies, asymmetric-key

technologies or a combinations of both.

Mechanisms may also be classi�ed according to the infrastructure that they require to

operate. Recent interest in the IETF CAT working group has been in mechanisms that have

lower infrastructure requirements than the standardised GSS-API mechanisms - SPKM and

Kerberos.

47
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5.2 Abstract Syntax Notation One

5.2.1 Introduction

Professor John Larmouth of the University of Salford1 in his book ASN.1 Complete [50]

describes the Abstract Syntax Notation One (ASN.12) as follows:

� It is an internationally-standardised, vendor-independent, platform-independent and

language-independent notation for specifying data structures at a high level of ab-

straction.

� It is supported by rules which determine the precise bit-patterns (again platform-

independent) to represent values of these data-structures when they have to be trans-

ferred over a computer network, using encodings that are not unnecessarily verbose

RSA Laboratories guide to ASN.1 [42] describes the ASN.1 notation:

�ASN.1 is a �exible notation that allows one to de�ne a variety [of] data types,

from simple types such as integers and bit strings to structured types such as

sets and sequences, as well as complex types de�ned in terms of others�

ASN.1 was originally developed for use with the ISO's (International Standards Organi-

sation) OSI (Open Systems Interconnection) architecture, but has gained wide use in the

speci�cations of a number of protocols.

OSS Nokalva [64] describe a number of current uses of ASN.1, a few of which are listed

here:

� It is used in the TCAP protocol used in cellular phones

� It is used by telecommunications companies for routing (using the Signalling System

7 OMAP messages) and providing ISDN services

� It is used in aviation �ight control systems and ground-to-ground exchanges

1http://salford.ac.uk/iti/jl/larmouth.html
2The original abbreviation for the Abstract Syntax Notation was ASN1. The dot was added to avoid

confusion with ANSI, the American National Standards Institute [50].
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� Federal Express uses ASN.1 to track its packages

� It is used in the ISO X.509 standard to specify digital certi�cates

� Kerberos 5 uses it to specify all of its message structures

5.2.2 Encoding Rules

�The encoding rules say how to represent with a bit-pattern the abstract values

in each basic ASN.1 type, and those in any possible constructed type that can

be de�ned using the ASN.1 notation.� - Larmouth [50]

There are several standard encoding rules3 used to convert the ASN.1 data structures into

bitstrings:

� Basic Encoding Rules (BER)

� Distinguished Encoding Rules (DER)

� Canonical Encoding Rules (CER)

� Packed Encoding Rules (PER)

The Basic Encoding Rules (BER) were the �rst standardised encoding rules and they

use the Type-Length-Value encoding. They provide two options for encoding data values

depending on whether the length of the data value is known beforehand or not. This gave

rise to the Canonical Encoding Rules (CER) and the Distinguished Encoding Rules (DER)

which are variants of BER that encode data values each using one the options available in

BER [50].

Encoding rules, such as DER and CER, that provide exactly one possible encoding for a

particular populated ASN.1 structure are important for security purposes. For example,

X.509 public key certi�cates are speci�ed in ASN.1. The public key of a particular X.509

certi�cate should only have one possible encoding so that the signature on this public key

can be veri�ed correctly. The Distinguished Encoding Rules (DER) are the most popular

3ASN.1 Complete [50] provides excellent coverage of the di�erent types of encoding rules. The interested

reader is referred there for more information.
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with regards to security. They have gained wide use is security services due to their use

in the ISO X.509 standard for specifying digital certi�cates, and their use in specifying

message structures in the Kerberos 5 authentication protocol.

The Packed Encoding Rules were designed to provide very compact encodings of ASN.1

data structures. They are used in bandwidth-constrained environments where the pro-

tocol messages must be as small as possible. (For example, they are used in aviation to

communicate between ground stations and aircraft) [50].

One new set of ASN.1 encoding rules that we �nd particularly intriguing and hope will

gain wider use in future is the XML Encoding Rules (XER)[101]. These rules are

currently being standardised by a joint ISO/ITU committee. We believe that they will be

particularly applicable to IETF protocols, which are typically character-based.

�Extensible Markup Language (XML) is a simple, very �exible text format

derived from SGML. Designed to meet the challenges of large-scale electronic

publishing, XML will also play an increasingly important role in the exchange

of a wide variety of data on the Web. . . . XML is a low-level syntax for

representing structured data . . . The �exibility of XML makes it ideal for

interchange of structured data .� - Connolly [18]

These rules specify a means of converting ASN.1 structures into XML. Since XML is text-

based this makes the encodings human-readable, making it easier to manually view and

interpret the encoded ASN.1 structure. Also, standard ASN.1 tools can be used to encode

and decode the ASN.1 data structures. This is an important feature because one of the

biggest criticisms of ASN.1 is the fact that use of the current encoding rules realistically

requires the use of specialised tools. One disadvantage of this encoding, however, is that it

is much more verbose than any of the other encodings due to the fact that it is character-

based.

�The encoding rules approach enables a degree of information hiding (and �ex-

ibility in making future changes to encodings) that is hard to match with other

approaches to specifying encodings.� - Larmouth [50]

The separation of message syntax from message encoding has some advantages. Separating

the encoding rules that convert the abstract ASN.1 structures in bitstrings from the ASN.1
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structures themselves means that the encodings can be changed without a�ecting the

ASN.1 structures. This allows di�erent encodings of the same ASN.1 structures do be

used in di�erent environments. For example, in a bandwidth-constrained environment the

Packed Encoding Rules may be used, and in an environment where it is important that

there be only one possible encoding the Distinguished Encoding Rules may be used. It also

means that it is possible for a protocol to easily use a new set of encoding rules, without

a�ecting the protocol data structures.

5.2.3 Using ASN.1

ASN.1 provides a protocol designer with a rich set of elements with which to construct the

messages used in the protocol. This makes it possible to specify complex message struc-

tures in a clear and precise manner, with no ambiguity. It hides �nal data representation

and allows the protocol designer to concentrate on the contents of the protocol message

structures rather than how the message structures will be encoded.

Implementing a protocol speci�ed using this notation requires code in a particular pro-

gramming language to represent, encode and decode the message structures according to

a set of encoding rules (eg. DER). Fortunately there are software libraries available that

provide implementations of the basic elements that can be used to represent message struc-

tures in a particular language. They also provide support for encoding and encoding these

message structures using one or more of the standard encoding rules. There are also some

tools available that take an ASN.1 speci�cation and automatically generate all the pro-

gramming language code necessary to represent the message structures and encode and

decode messages during protocol interaction.

�It [ASN.1] is supported by tools available for most platforms and several pro-

gramming languages that map the ASN.1 notation into data-structure de�ni-

tions in a computer programming language of choice, and which support the

automatic conversion between values of those data structures in memory and

the de�ned bit-patterns for transfer over a communication line . . . The imple-

mentation task is a simple one: the only code that needs to be written (and

debugged and tested) is the code to perform the semantic actions required of the

application. There is no need to write and debug complex parsing or encoding

code. . .
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It is the case today that there are good ASN.1 tools (called �ASN'1 compilers�)

available that will map an ASN.1 type de�nition to a type de�nition in (for

example), the C, C++, or Java programming languages (see Section I Chapter

6), and will provide run-time support to encode values of these data structures

in accordance with the ASN.1 Encoding Rules. Similarly, an incoming bit-

stream is decoded by these tools into values of the programming language

data-structure.� - Larmouth [50]

Attempting to implement an ASN.1-speci�ed protocol without the aid of such automated

tools is di�cult and error-prone, as we discovered with our LIPKEY implementation (de-

scribed below). Our �rst use of ASN.1 involved using the DSTC4 Java ASN.1 library [27].

This library provides implementations of the basic ASN.1 elements and a means of im-

plementing your own ASN.1 structures using these elements. It also provides a means of

encoding and decoding the ASN.1 data structures using BER or DER. Implementing our

own ASN.1 structures turned out to be time-consuming and error-prone.

This led to the adoption of the Cryptix ASN.1 compiler [20] which takes an ASN.1 speci�-

cation and automatically produces Java code that implements the ASN.1 structures. The

use of this compiler and its associated library drastically reduces the amount of time neces-

sary to test and use an ASN.1 speci�cation, since many of the time-consuming activities are

performed automatically. We also used ARC [32] from Forge Technologies which provides

similar functionality.

ASN.1 is used in IETF standards when public key infrastructure is involved, since ISO

X.509 digital certi�cates are used and these are speci�ed using ASN.1 and encoded using

DER. Additionally, ASN.1 is used with version 5 of the Kerberos protocol. Hence, it

is used to specify the message structures in both the Kerberos and Simple Public Key

Mechanism (SPKM) GSS-API mechanisms. Other work-in-progress GSS-API mechanism

speci�cations also use ASN.1 because many of them are based on SPKM.

5.2.4 Problems with ASN.1

ASN.1 is not without its critics, since in practice there are problems related to its abstrac-

tion, complexity, accessibility and use.

4Distributed Systems Technology Centre at Queensland University of Technology
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5.2.4.1 Abstraction

ASN.1 advocates claim that the way in which the ASN.1 structures will eventually be

encoded is of no consequence to the designer of these structures and should be ignored.

�You don't know or care about the electrical or optical signals used to represent

bits, so why care about the bit patterns used to represent your abstract values?�

- Larmouth [50]

Others disagree. Tom Yu from MIT criticises this claim:

�Another problem with ASN.1 is the outright *lie* that you can write an ab-

stract syntax for the protocol without regards to how it will be encoded. That

might be a nice theoretical dream, but actual implementations as well as the

design of the encoding rules basically ensure that you *cannot* write an e�ec-

tive abstract syntax for a protocol without careful consideration of how it will

be encoded.�

�If protocol designers end up designing protocols that they have no clue of the

encodings of, it is quite possible that only at the implementation stage will

problems with the protocol be discovered. This is a way in which needless

abstraction can hurt badly.�

� Tom Yu - IETF CAT WG mailing list - 10 December 1999

We believe that designing a protocol without concern for how or where it will be used is

not a sensible thing to do. However, there are currently encoding rules available that are

suitable for use in most environments that are likely to be encountered at present.

5.2.4.2 Complexity

The currently standardised ASN.1 encoding rules are highly optimised and complex. This

complexity means that it is necessary to employ the use of a software tool in order to

perform these encodings, as described above, since it is extremely di�cult to perform the

encodings by hand. This complexity and the need for such specialised tools has ham-

pered ASN.1's adoption for use with Internet standards. Even in IETF standards where

ASN.1 has been adopted, problems have been experienced, as noted by one of the Kerberos

developers:
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"Certainly our experience with Kerberos is that there were a lot of interop-

erability problems caused by the use of people misunderstanding ASN.1, and

if the protocol data units are simple enough, it's not clear that ASN.1 adds

su�cient value to be worth its cost in implementation complexity. If we were

doing Kerberos V5 all over again, we would *not* have used ASN.1. It has

caused us far more problems than it has ever saved us, and it is continuing to

cause us problems even today as we discuss RFC 1510bis."

� Theodore Y. Ts'o - IETF CAT WG [40] mailing list - 5 March 1999

In a later message he adds:

�ASN.1 has a lot of complexity to it, and so it gives you plenty of rope with which

to hang yourself (and other hapless users and implementors of your protocol)

with. The �ameage of whether or not ASN.1 is a good thing or not basically

revolves around quantifying the costs and the bene�ts. Advocates of ASN.1

think the bene�ts are great, and downplay the costs, saying that �someone who

knows what they're doing won't have problems with ASN.1� and �that's what

ASN.1 compilers are for�. People who don't like ASN.1 counter that the costs

are a lot higher�

� Theodore Y. Ts'o - IETF CAT WG [40] mailing list - 10 December 1999

We believe that the complexity of the encoding rules and the di�culty of using them in

practice without specialised tools is one of the biggest problems with the use ASN.1. It is

our hope that the XML Encoding Rules (XER) described above will alleviate this problem

somewhat due to the fact that generic XML tools can be used to perform the encoding

and decoding.

5.2.4.3 Accessibility

An additional factor is that the ASN.1 speci�cation (X.208) is an ISO document and thus

only available for a fee. Although it is possible to download documents such as RSA

Laboratory's A Layman's Guide to a Subset of ASN.1, BER and DER [42] and, recently

and more importantly, Professor John Larmouth's ASN.1 Complete [50] for free, these are

no substitute for the actual standards documents, as expressed by Tom Yu from MIT on

the CAT WG mailing list:
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�Anyway, the problems I see with the ASN.1 standards in terms of someone not

connected to the ISO/ITU-T standards process are largely due to the inacces-

sibility of authoritative copies of the speci�cation, including:

* The ASN.1 speci�cation is a joint ITU-T/ISO e�ort, thus multiplying by

two the number of documents out there.

* There have been multiple revisions of the documents, some of which are

not completely compatible with each other, but these incompatibilities largely

revolve around the deprecation of the macro notation in 1994 or so and replacing

it with the "information object" speci�cation.

* The ISO and ITU-T versions of the same documents have di�erent "pub-

lication" dates due to procedural di�erences between the ISO and ITU-T.

* Not the least, both the ISO and the ITU-T want serious $$$ for copies of

the spec.�

� Tom Yu - IETF CAT WG [40] mailing list - 9 December 1999

5.2.4.4 Our experience

In our implementation of the LIPKEY GSS-API mechanism and the development of our

GSS-API mechanism (SRPGM), ASN.1 presented us with the greatest di�culties.

It was initially di�cult for us to �nd information on ASN.1 and when we did it was in-

complete. (The recent availability of ASN.1 Complete [50] as a free download is extremely

welcome in this regard). The initial version of the SRPGM speci�cation was based pri-

marily on the SPKM speci�cation without a thorough understanding of ASN.1. We have

improved on the speci�cation as we have gained more experience working with ASN.1.

In our experience, the use of an ASN.1 compiler can make the use of ASN.1 in a protocol

implementation fairly painless if the compiler output is well documented and bug-free.

However, existing Java compilers that we have found are either expensive, have bugs or

are not yet complete. We hope that this will change in the near future.
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5.3 Standard Mechanisms

The currently standardised GSS-API mechanisms are Kerberos [45], which is uses secret-

key technology, and the Simple Public Key Mechanism (SPKM) [4] that uses public-key

technology. Recently GSS-API mechanisms have been proposed that have lower infrastruc-

ture requirements than these standard mechanisms. These include the Low Infrastructure

Public Key (LIPKEY) mechanism and the Secure Remote Password GSS-API Mechanism

(SRPGM).

5.3.1 SPKM

The Simple Public Key Mechanism (SPKM), as its name suggests, provides authentication

and security services under the GSS-API based on public-key cryptography (see 2.3.1.2).

RFC 2025 [4] (the SPKM speci�cation) describes it as follows:

�This mechanism provides authentication, key establishment, data integrity,

and data con�dentiality in an on-line distributed application environment using

a public-key infrastructure.�

RFC 2025 de�nes the protocol procedures and message structures for negotiating the algo-

rithms to be used over the context and the security services to be provided, for undertaking

unilateral or mutual authentication and for exchanging messages after context establish-

ment is complete. It describes two GSS-API mechanisms that have minor di�erences.

SPKM-2 requires the use of secure timestamps for replay detection during context estab-

lishment, which requires that the entities involved have access to secure time. To avoid

the requirement of secure time, SPKM-1 uses random numbers for replay detection during

the context establishment phase, but this involves an extra message exchange in the case

of unilateral authentication.

SPKM makes use of public key cryptography to perform authentication. All context-

establishment tokens are integrity protected which allows the receiver to check if they have

been tampered with. The two parties involved negotiate the sets of one-way function,

integrity, and con�dentiality algorithms that will be available for use over the context.

They also negotiate the security services, such as integrity protection, con�dentiality pro-

tection sequencing and replay detection, that will be used to protect messages after context

establishment.
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5.3.2 Kerberos

Kerberos is a network authentication service based on shared secret keys and the use of a

trusted third parties.

RFC 1510 [45] describes the Kerberos authentication process:

�The authentication process proceeds as follows: A client sends a request to the

authentication server (AS) requesting "credentials" for a given server. The AS

responds with these credentials, encrypted in the client's key. The credentials

consist of 1) a "ticket" for the server and 2) a temporary encryption key (often

called a "session key"). The client transmits the ticket (which contains the

client's identity and a copy of the session key, all encrypted in the server's

key) to the server. The session key (now shared by the client and server) is

used to authenticate the client, and may optionally be used to authenticate the

server. It may also be used to encrypt further communication between the two

parties or to exchange a separate sub-session key to be used to encrypt further

communication.�

The above description describes two di�erent sub-protocols. The �rst is the protocol

involving message exchanges between the client and the Authentication Server (AS) - a

trusted third party with which the client shares a secret - where the client obtains a ticket.

The second in the protocol involving message exchanges between the client and the server

where the client uses the ticket to authenticate itself to the server.

Kerberos also has the notion of a special type of server called a Ticket-Granting Server

(TGS) that issues tickets for other servers. In order to use the TGS, the client �rst obtains

a special ticket from the Authentication Server called the Ticket Granting Ticket (TGT).

The client then presents this TGT to the Ticket-Granting Server and requests a ticket for

an application server [45]. (The use of the TGT allows Kerberos to provide Single Sign-On

- see 3).

The Kerberos GSS-API mechanism, described in RFC 1964 [56], encapsulates the Kerberos

client/server authentication protocol that takes place between the client and the application

server. It assumes that the client has already authenticated itself to the Authentication

Server (and perhaps Ticket-Granting Server) and obtained a ticket for the application

server. RFC 1964 describes how a secure context is established between the client and the
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application server, authenticating the client and server to each other, and negotiating the

security services to be employed and the algorithms to be used.

5.3.3 Infrastructure Requirements

SPKM requires some additional infrastructure in order to operate. As discussed in 2.3.1.2,

when public-key technology is used it is necessary to have a Certi�cation Authority that

all entities in a security domain trust to sign and certify public keys, generating public key

certi�cates. All entities involved in using SPKM need to have a private key and a public

key certi�cate signed by a trusted Certi�cation Authority. This means that procedures

need to be put in place to control the generation of keypairs and the signing of public keys.

Secure storage needs to be provided to store the private keys, and procedures need to be

implemented to restrict access to these keys only to legitimate users.

Also RFC 2025 [4] says:

�In order to accomplish context establishment, it may be necessary that both

the initiator and the target have access to the other party's public-key certi�-

cate(s)�.

This is certainly the case with mutual authentication, which RFC 2025 states is expected

to be the common case [4]:

�It is envisioned that typical use of SPKM-1 or SPKM-2 will involve mutual

authentication. Although unilateral authentication is available for both mech-

anisms, its use is not generally recommended.� - Adams [4]

This means that it is necessary for the initiator and acceptor to exchange public-key cer-

ti�cates during context establishment phase, or obtain the required certi�cates from an

external source, which is usually a centralised directory where entities can look up the

required certi�cates using the name of the entity associated with the certi�cate.

Kerberos also has additional infrastructure requirements. In order for entities to commu-

nicate using the Kerberos protocol they have to make use of a trusted third party - an

authentication server with which they have established a shared key - in addition to the

infrastructure required on each client and application server to manage and use tickets [45]:
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�The implementation consists of one or more authentication servers running

on physically secure hosts. The authentication servers maintain a database of

principals (i.e., users and servers) and their secret keys.� - Kohl [45]

These infrastructure requirements make it di�cult to deploy these mechanisms in some

environments. Due to their complexity, the client and server architectures need to be

installed and maintained by experienced administrators who have the necessary skills to

do so. The use of public-key infrastructure on the client-side, as opposed to a simple

remembered password, may require the use of additional technology such as smart cards

and the training of users in the management and use of this infrastructure and technology.

The need for GSS-API mechanisms with lower infrastructure requirements was acknowl-

edged by the community making up the Common Authentication Technology (CAT) work-

ing group (WG) [40] of the Internet Engineering Task Force (IETF) that de�nes and man-

ages the GSS-API and related security technologies. John Linn, chairman of the CAT

working group, in an email message to the CAT mailing list:

�At several points during the Orlando IETF meeting, culminating at the EAP

BOF5 on Friday morning, I heard interest expressed in the availability of "low-

infrastructure" mechanisms under GSS-API. Most of the mechanisms which

have been discussed within CAT require fairly substantial infrastructures to

be deployed in order to operate. Simpler technologies (e.g., challenge-response

mechanisms, some of which have been designed for use at the SASL layer),

have been considered easier to apply but may not o�er the same range of

security services or resist the same range of attacks. If such mechanisms were

to be implemented under GSS, it could become possible to port GSS caller

applications to a broader range of environments.�

Several low-infrastructure mechanisms have been proposed. The Low Infrastructure Public

Key mechanism (LIPKEY) has gained the greatest support and is soon to become a pro-

posed standard. Other mechanisms include the SPKM with Shared Secret Keys Mechanism

(SSKM), the GSSEasy mechanism, and the Secure Remote Password GSS-API Mechanism

(SRPGM), which we developed.

5Birds of a Feather(BOF). A meeting of people with a common goal.
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5.4 Low Infrastructure Public Key mechanism

We wanted to implement a GSS-API mechanism to make security functionality available

with our implementation of the Java GSS-API bindings. After searching for existing Java

implementations of these mechanisms, we found that a Java implementation of Kerberos

had been undertaken by both the Open Group [72] and DSTC [26], but that there was no

available Java implementation of SPKM.

However, SPKM requires the deployment of public key infrastructure on both clients and

servers in order to operate. Instead, our interest in mechanisms with lower infrastruc-

ture requirements led us to implement LIPKEY, a close relative, that only requires such

supporting infrastructure on the server side.

5.4.1 Overview

LIPKEY is a low-infrastructure GSS-API mechanism that performs password-based au-

thentication using a variant of SPKM. It aims to operate in the same paradigm as the

Transport Layer Security protocol (formerly known as the Secure Sockets Layer or SSL

protocol), which is as follows [29]:

� initiator obtains the acceptor's certi�cate,

� veri�es that it was signed by a trusted Certi�cation Authority (CA),

� generates a random symmetric session key,

� encrypts the session key with the server's public key,

� sends the encrypted session key to the server

� sends additional data protected using the session key

With SPKM-1 and SPKM-2 both the client and the server are required to have private

keys and public key certi�cates. LIPKEY only requires that the server have a private

key and public key certi�cate, thereby reducing the infrastructure requirements on the

client-side. The LIPKEY speci�cation de�nes a new SPKM mechanism, called SPKM-

3, that is similar to unilateral authentication using SPKM-1. It makes some changes to
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the mandatory integrity, con�dentiality and one-way-function algorithms, and makes some

requirements on the contents of tokens, but does not substantially change the operation of

SPKM. After SPKM-3 authentication is complete, LIPKEY makes use of the GSS-Wrap

and GSS-Unwrap GSS-API methods to encrypt the username and password sent from the

client to the server [29]. As with all other GSS-API mechanisms, message structures are

de�ned using Abstract Syntax Notation One (ASN.1) and messages are encoded using the

Distinguished Encoding Rules (DER).

5.4.2 Infrastructure Requirements

The client is required to have a memorized password and a list of trusted Certi�cation Au-

thorities (CAs) and their public keys. The server is required to have a password database,

a private key, and a public key certi�cate signed by one of the trusted CAs. Many systems

already have a password database, so the private key and public key certi�cate on the

server, and the public keys of trusted CAs on the client are the only additional infrastruc-

ture requirements [29]. Hence the reason why LIPKEY is known as a low-infrastructure

mechanism.

5.4.3 Implementation

Our implementation of LIPKEY was based on an early version of the Java GSS-API speci-

�cation. We implemented it directly under this API, rather than through a service provider

layer, since no such layer had been de�ned at this time. We used the ASN.1 library from

DSTC [27], which required us to manually implement the LIPKEY ASN.1 structures using

the ASN.1 elements provided. Fortunately the source code for the library was provided

which gave us some idea of how to go about implementing the ASN.1 structures as Java

classes. This implementation of the ASN.1 classes turned out to be time-consuming and

error-prone though, and led to slow development of the mechanism implementation. The

implementation of the context-establishment functionality was completed, but there were

still some minor ASN.1-related bugs in the code. We have recently started moving our

LIPKEY implementation over to using the Cryptix ASN.1 compiler and related classes,

but this has not yet been completed.
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5.5 Secure Remote Password GSS-API Mechanism

5.5.1 Introduction

Our initial work with the GSS-API involved understanding SPKM, and then implementing

LIPKEY (SPKM-3). During the course of this implementation we learnt a lot about

how the GSS-API functions, how the Abstract Syntax Notation One (ASN.1) and its

Distinguished Encoding Rules (DER) work, and what measures could be employed to

counter attacks.

We noted that there was no available password-based GSS-API mechanism that provided

strong authentication and security services, while not requiring the use of long-term asym-

metric keys or signi�cant infrastructure to operate. The only standardised password-based

GSS-API mechanism was Kerberos, and it needed to make use of trusted third party in-

frastructure - a Key Distribution Server (KDS) - in order to operate. LIPKEY (described

above) is password-based and has low infrastructure requirements, but it requires that

each server use and manage long-term asymmetric keypairs in addition to maintaining a

password-database used to authenticate users.

The Secure Remote Password protocol (SRP), which is described in more detail in 2.4,

provides strong authentication and the participants negotiate a session key which can be

used to provide security services. It requires very little infrastructure to operate:

�Trusted key servers and certi�cate infrastructures are not required, and clients

are not required to store and manage any long-term keys.� - Wu [99]

The initiator requires a remembered password, and the acceptor a veri�er database. This

means that it has even fewer infrastructure requirements that LIPKEY does, while still

providing the same level of security. We realised that we could use SRP and the knowledge

that we had gained working with SPKM to implement our own GSS-API mechanism that

�lled this niche.

Our aim was to take the SRP protocol and make it available as a GSS-API mechanism,

providing additional security services and countermeasures. We decided to base our mech-

anism on SPKM with which we were familiar.
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5.5.2 Operation

We used optimised SRP, as described in [98], since this reduces the total number of mes-

sages exchanged by grouping together pieces of information that do not depend on earlier

messages. The SRP data (refer to 2.4) and the tokens used to carry this data are illustrated

below:

SRP data GSS-API Token SRP data

C;A; n; g � SRPGM-REQ �!

Initiator  � SRPGM-REP � s; B Acceptor

M1 � SRPGM-EVIDENCE �!

 � SRPGM-EVIDENCE � M2

The SRPGM-REQ and SRPGM-REP tokens also contain information used to negotiate

the sets of integrity, con�dentiality, and one-way function algorithms that will be used

over the context, the security services that will be active after context-establishment is

complete, and the time period that the context will be valid for.

This assumes that the values for n and g that the initiator used were the same as those

being used by the acceptor. If initiator uses di�erent values or doesn't know what values

to use, an extra message needs to be sent by the acceptor to inform the initiator of the

correct values:

SRP data GSS-API Token SRP data

C;A; n; g � SRPGM-REQ �!

 � SRPGM-PARAMETERS �

Initiator C;A; n; g � SRPGM-REQ �! Acceptor

 � SRPGM-REP � s; B

M1 � SRPGM-EVIDENCE �!

 � SRPGM-EVIDENCE � M2

We recommend that the initiator cache the values for n and g used by a particular acceptor

to avoid this extra message exchange in future contexts.
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5.5.3 Relationship to SPKM

SRPGM context establishment tokens correspond to SPKM context establishment tokens

as follows:

SPKM SRPGM

SPKM-REQ SRPGM-REQ

SPKM-REP-TI SRPGM-REP

SPKM-REP-IT SRPGM-EVIDENCE

SPKM-ERROR SRPGM-ERROR

5.5.3.1 Reused features

We were able to reuse many of the procedures, structures and countermeasures that SPKM

employs:

� The method of negotiating algorithms to be used over the context

Algorithm negotiation takes place as follows: The initiator proposes sets of integrity, con-

�dentiality and one-way functions that it wishes to use over the context and sends this

information to the acceptor in the SRPGM-REQ token. For interoperability, these sets

must include those algorithms for which mandatory support is speci�ed in the SRPGM

speci�cation. The acceptor selects out of these sets those algorithms that it is able to

support over the context, and sends this information to the initiator in the SRPGM-REP

token. If the initiator is not happy with the negotiated algorithms it aborts the context,

otherwise these sets of algorithms become those that are available for use over the context.

See section 4.5 of SRPGM [14].

� The process of deriving subkeys from the negotiated session key

Once the sets of integrity and con�dentiality algorithms that are to be used over the

session have been negotiated, and the shared session key has been established, subkeys are

generated for each of these algorithms. Having a separate key for each algorithm improves

security, because it means that there are more keys that an attacker has to crack in order

to completely breach security, and if an attacker manages to obtain a particular subkey
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due to a weakness in the algorithm, this does not compromise the keys used with other

algorithms. It also means that the negotiated session key is not used directly, which means

that it is not available for an attacker to crack.

� The use of sequence numbers to avoid malicious loss, replay or re-ordering of tokens

after context establishment

As discussed in 2.3.3, sequence numbers can be used to detect tampering by making each

integrity protected token in a session unique. They are only really useful when used in

conjunction with integrity protection, because this allows modi�cation of the sequence

numbers to be detected. Also, since a di�erent session key is used for each session, tokens

from other sessions (past or parallel) can be detected because the integrity checksums will

not match.

� Quality of Protection values, and support functions

Quality of Protection values are a way for callers of GSS-API message protection functions

to select amongst the available integrity and con�dentiality algorithms using high level

quali�ers, such as strong, medium and weak.

� ASN.1 token formats and procedures for per-message and context deletion tokens

After context establishment is complete, SRPGM operates in the same way that SPKM

does, using the same token formats and procedures.

5.5.3.2 Di�erences

� Use of public-key technology

SRPGM is not based on public-key technology. Public-key speci�c data (such as digital

certi�cates) have been replaced with SRP-speci�c data. Public-key speci�c options (such

as requesting the other party to send a public key certi�cate) have been removed. In

addition, algorithms that use asymmetric keys (eg. md5WithRSAEncryption) have been

replaced with corresponding algorithms that use symmetric keys (eg. HMAC-MD5) .
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� Key establishment

The entities using SPKM negotiate the use of a separate key establishment algorithm to

establish a session key for use over the session. For key establishment, RFC 2025 speci�es

that mandatory support for the use of the RSA Encryption algorithm must be provided

and recommends that support for the use of the Di�e-Hellman key agreement protocol be

provided. With SRP, key establishment is an inherent part of the protocol.

� Replay detection during the context establishment phase

SPKM-1 uses random numbers for replay detection during the context establishment phase.

The initiator generates a fresh random number (ie. a number with a high probability of not

having being used before) and sends it to the acceptor with the SPKM-REQ token. The

acceptor generates a fresh random number and sends it along with the initiator's random

number to the initiator. Subsequent tokens include both of these random numbers.

With SRP, the initiator and acceptor generate fresh ephemeral asymmetric keypairs at the

start of each protocol session. The generated public keys are included in the SRPGM-REQ

and SRPGM-REP tokens respectively. Since these public keys are freshly generated they

perform the same function as the random numbers in SPKM. In addition, each SRPGM-

EVIDENCE token is di�erent because it contains evidence to prove knowledge of the

session key, which is di�erent for each session.

5.5.4 Evolution of SRPGM

This mechanism has evolved over time and below we discuss the various versions of the

mechanism, the problems and issues we encountered and how they were resolved.

5.5.4.1 Initial Design

As mentioned above, we decided to base the mechanism on SPKM-1. So, we started with

the SPKM ASN.1 tokens and began removing the public-key speci�c data, since SRP is

secret-key based. Thereafter we added the SRP data elements to the appropriate tokens.
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SRP data GSS-API Token SRP data

C, A � SRPGM-REQ �!

Initiator  � SRPGM-REP � s, B, u, n, g Acceptor

M1 � SRPGM-EVIDENCE �!

 � SRPGM-EVIDENCE � M2

Although the contents and structure of the tokens has changed as the mechanism evolved,

this basic framework has remained.

5.5.4.2 Integrity Protection

With SPKM-1 both the initiator and the acceptor have public keys that they can use

to integrity protect tokens that they send. All SPKM-1 tokens sent during the context-

establishment phase are integrity protected, using a checksum of the token data signed

using the sender's public key, which means that any tampering with these tokens can be

detected.

Since SRP is based on shared keys, integrity protection can only be provided once both

parties know the shared key. The shared context key is only available to both parties

after the acceptor has received the SRPGM-REQ token and the initiator has received

the SRPGM-REP token. The contents of the SRPGM-REQ and SRPGM-REP tokens

were not integrity-protected and could be modi�ed by an attacker (to negotiate the use

of the weakest possible encryption algorithm, for example). For this reason, information

negotiated using these tokens (eg. algorithms, sequence numbers and security settings to

be used over the context) was included in the SRPGM-EVIDENCE token, which was

integrity protected using a checksum of the token data, the HMAC-SHA1 algorithm and

the negotiated session key. The initiator and acceptor were required to check that the

values in the SRPGM-EVIDENCE token were what they expected them to be.

Using digests

Initially we included all the negotiated information the was sent in both the SRPGM-

REQ and SRPGM-REP tokens in the SRPGM-EVIDENCE token. This resulted in much

data being transmitted twice, so we decided to include a digest of the data sent in the
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SRPGM-REQ token and a digest of the data sent in the SRPGM-REP token instead. So,

a digest of the encoded SRPGM-REQ token sent by the initiator would be included in the

SRPGM-EVIDENCE token sent by the acceptor in order for the initiator to be sure that

the SRPGM-REQ token was received unmodi�ed. Similarly for the SRPGM-REP token

sent by the acceptor and SRPGM-EVIDENCE token sent by the initiator.

In order to reduce the number of times the digest was computed, we decided to use the

following process: The initiator computes the digest of the SRPGM-REQ token, stores this

digest and sends it along with the SRPGM-REQ token. The acceptor can then include the

digest directly into the SRPGM-EVIDENCE token without having to compute it. Upon

receipt of the SRPGM-EVIDENCE token the initiator can verify the digest against its

stored value. In this way, the digest value only gets computed once. Similarly for the

SRPGM-REP token sent by the acceptor and SRPGM-EVIDENCE token sent by the

initiator.

Using the context key earlier

The acceptor has su�cient knowledge to compute the shared context key once it has

received the SRPGM-REQ token. We realised that this means that the acceptor can use

the context key to integrity protect the SRPGM-REP token using a keyed checksum. The

initiator can only derive the context key once it has information that is contained in the

SRPGM-REP token, but once it has this information it can derive the context key and

verify that the information in the SRPGM-REP token is correct by computing the keyed

checksum itself and checking that it matches the checksum included with the SRPGM-REP

token.

This means that the digest of the SRPGM-REQ token can now be included in the SRPGM-

REP token, rather than the SRPGM-EVIDENCE token, since it is now also integrity

protected. This allows the initiator to determine earlier that the SRPGM-REQ token

has been tampered with, and no digests need to be included in the SRPGM-EVIDENCE

token.
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5.5.4.3 The values n and g

SRP requires that both the initiator and the acceptor use the same values of n and g. Wu

[98] states that either the values can either be determined in some external means (such as

by standardising on particular values for a security domain or agreeing on them in some

out-of-band manner) or they can be transmitted from the acceptor to the initiator during

the protocol exchange. With GSS-API the initiator initiates the context establishment

process, so the acceptor sending the values for n and g before the initiator creates A

requires an additional protocol round, since for security reasons the acceptor can only

transmit B once it has received A6(See 3.2.4 of [98]). For performance reasons we wanted

to avoid this extra round if possible.

We decided that the creation of the SRPGM-REQ token would initially assume that the

values for n and g had been predetermined and generate the ephemeral asymmetric keypair

using these values. Upon receipt of the SRPGM-REQ token the acceptor would assume

that the initiator had used the correct values. It would then generate its own asymmetric

keypair using its own values for n and g, but include these values in the SRPGM-REP

token sent to the initiator. Upon receipt of the SRPGM-REP token, the initiator would

then check that the values for n and g used by the acceptor were the same values that

it had used in its calculations. If the values were the same it would continue with con-

text establishment by sending the SRPGM-EVIDENCE token, and if not it would restart

context establishment, recreating the SRPGM-REQ token using these new values.

This achieved the goal of not requiring extra message exchanges if the values for n and

g had been predetermined, but it had performance problems in the case where n and g

had not been predetermined. The generation of the ephemeral asymmetric keypairs is a

computationally-intensive time-consuming process. In the case where the values for n and

g had not been predetermined, both the initiator and the acceptor would have to undertake

this generation process twice. Our goal was now to avoid both extra message exchanges

and unnecessary generation of ephemeral keypairs.

The solution that we came up with is to have the initiator include the values for n and

g that it is using in the SRPGM-REQ token. Upon receipt of the SRPGM-REQ token,

the acceptor checks that these values are the same as the values it is using. If they are it

continues context-establishment by generating an SRPGM-REP token, and if they are not

6The reason for this is that the value u is usually a simple function of B and u must not be revealed

before A is received (see section 3.2.4 of [98]).
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it sends the correct values to the initiator using an SRPGM-PARAMETERS token.

If the initiator has no idea what values the acceptor is using, it can set the values of n, g

and A in the SRPGM-REQ token to zero. These values for n and g are guaranteed to be

incorrect and the acceptor will send the correct values using an SRPGM-PARAMETERS

token. This way the initiator does not have to waste time generating an ephemeral keypair

using possibly incorrect values, and extra message exchanges are avoided if possible. It is

recommended that the initiator cache the values for n and g used by a particular acceptor

to avoid the extra message exchanges in future.

5.5.4.4 The value u

Initially we included the value u as a separate data element in the SRPGM-REP token..

However, Wu notes in section 3.2.4 of [98] that the value of u (see 2.4) can be computed

as a simple function of B. We decided to make u be the result of using B as input to the

SHA-1 one-way-function, instead of transporting it as a separate value in the SRPGM-REP

token.

5.5.4.5 Algorithms

We decided to change the mandatory integrity algorithm from HMAC-SHA1 to the HMAC-

MD5 for performance reasons. HMAC-MD5 has superior performance to both HMAC-

SHA1 and MAC algorithms based on secret key encryption algorithms [29]. Our initial

concerns about using MD5 with HMAC, due to weaknesses found in MD5, turned out to

be unfounded[25].

Due to the fact that some countries have restrictions on the use of cryptography we decided

to follow the convention used in other GSS-API mechanisms of specifying a con�dentiality

algorithm as recommended rather than as mandatory. The recommended con�dential-

ity algorithm was initially DES-CBC, because this is what SPKM recommends, but was

changed to Blow�sh-CBC, because there are concerns about the security of DES [80, pp

300-301]. We chose the Blow�sh cipher because [82]:

� it is free from intellectual property constraints

� it is fast
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� it supports variable key lengths from 32 bits to 448 bits

� it has withstood cryptanalysis since 1993

� a number of implementations in various programming languages are freely available

5.5.4.6 Attempted optimisation of SRP

As discussed in 2.4.4, we thought that it would be possible to reduce the number of message

exchanges necessary to undertake mutual authentication with SRP by having the acceptor

send its evidence proving its knowledge of the session key before the initiator does so.

SRPGM could then be optimised as follows:

SRP data GSS-API Token SRP data

C;A; n; g � SRPGM-REQ �!

Initiator  � SRPGM-REP � s; B;M2 Acceptor

M1 � SRPGM-EVIDENCE �!

However, it has been established that this optimisation adversely a�ects the security of

SRP by making an o�ine dictionary attack possible.

5.5.4.7 Published Versions

The initial speci�cation for this mechanism was written by taking RFC 2025 (the SPKM

speci�cation), removing inappropriate sections and adding in sections motivating for the

use of SRP, specifying what algorithms were to be used, and describing the ASN.1 token

structures. It was published as an IETF Internet Draft draft-ietf-cat-srpgm-00.txt.

This document was updated two months later with another Internet Draft - draft-ietf-

cat-srpgm-01.txt. It contained more details on functionality of SPKM that was reused in

SRPGM. It also removed whole sections that had been copied verbatim from RFC 2025,

providing references to the appropriate sections in RFC 2025 instead. The mandatory

integrity algorithmwas changed from HMAC-SHA1 to HMAC-MD5, and the recommended

con�dentiality algorithm was changed from DES-CBC to Blow�sh-CBC.

We then began to work on many of the issues discussed in 5.5.4 above. This resulted in

draft-ietf-cat-srpgm-02.txt, a re�ned version of the previous document, being published.
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This document provides clari�cations in a number of areas and more detail to the ASN.1

token de�nitions, as well as incorporating our new ideas regarding the integrity protection

of context establishment tokens and establishing the values of n, g and u.

5.5.5 Implementation

As described in 4.4 above the Java GSS-API (JGSS) Service Provider Interface (SPI) is

a provider-based broker layer that allows mechanism implementors to easily plug their

mechanism implementations into the JGSS framework.

We have implemented SRPGM under the JGSS SPI and have made it available, along

with the rest of the JGSS implementation, as part of the Cryptix project. Due to the fact

that the JGSS API and SPI speci�cations have not been �nalised and that SRPGM has

undergone many changes, this implementation is still work-in-progress.

5.6 Conclusion

Available GSS-API mechanisms are based on both shared-key and public-key technol-

ogy and their message structures are speci�ed using the Abstract Syntax Notation One

(ASN.1). ASN.1 separates the speci�cation of the message syntax from message encod-

ing, which allows the messages to be encoded using the encoding rules best suited to the

environment were the messages are being used. It is widely used in many di�erent areas,

although there are problems related to its abstraction, complexity, accessibility and use.

An important criterion for the use of a particular GSS-API mechanism is the infrastructure

required in order to deploy it. The standardised GSS-API mechanisms, SPKM and Ker-

beros, have relatively high infrastructure requirements and there has been recent interest

in the development of so-called low-infrastructure GSS-API mechanisms that have lower

infrastructure requirements. Such low-infrastructure mechanisms include the Low Infras-

tructure Public Key (LIPKEY) mechanism and the Secure Remote Password GSS-API

Mechanism (SRPGM), both of which we have implemented.

SRPGM was designed by us based on the Secure Remote Password (SRP) protocol and the

existing Simple Public Key Mechanism (SPKM). It has evolved over time into a speci�ca-

tion that has been published as an IETF Internet Draft, and is an important contribution
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due to the fact that it is password-based, has low infrastructure requirements and does not

require the use of long-term asymmetric keys.



Chapter 6

SASL

�Security's worst enemy is complexity� - Bruce Schneier

6.1 Introduction

Some computing resources available on campus are in the form of services provided using

standard Internet protocols. Examples include access to email via POP31 and IMAP2,

and sending email via SMTP3. As currently employed on our campus, these services o�er

little or no security, since at best they use plaintext passwords or weak challenge-response

mechanisms. The Simple Authentication and Security Layer provides a means of adding

stronger security to these protocols.

The Simple Authentication and Security Layer (SASL) is a Internet Engineering Task

Force (IETF) standard speci�ed in RFC 2222 [61]. It describes a means of using authen-

tication with connection-based protocols. Each such protocol must have an SASL pro�le

that speci�es how the available mechanisms are listed, how a mechanism is selected, and

how the exchange of mechanism data takes place. Pro�les have already been written for

existing connection-based Internet protocols, such as SMTP, POP3, IMAP and LDAP4.

An authentication mechanism speci�es the data that must be transmitted between the

initiator and the veri�er in order to authenticate the identity of one or both parties, and

1Post O�ce Protocol version 3
2Internet Message Access Protocol
3Simple Mail Transfer Protocol
4Lightweight Directory Access Protocol
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in some cases to set up a security layer. This security layer may provide features such as

integrity and con�dentiality protection, and protection against other network attacks by

providing features such as sequencing and replay detection.

The SASL speci�cation in RFC 2222 [61] describes how SASL works in general terms. We

have implemented the API described in the Java-SASL speci�cation [94] which describes

an API for providing and using SASL functionality using the Java programming language.

In addition we have implemented some of the standard SASL mechanisms, as well as some

work-in-progress mechanisms, including one developed by the author.

6.2 Relationship to the GSS-API

SASL and the GSS-API complement each other nicely. The GSS-API speci�es that it

is the application's responsibility to transport tokens between the client and the initiator.

SASL pro�les specify how authentication mechanism messages are transmitted between the

communicating entities. When the authentication mechanism is the SASL GSS-API [62]

mechanism then these messages are GSS-API tokens. Thus, the GSS-API SASL mechanism

allows GSS-API functionality to be used by the connection-based protocols that support

it by calling on an underlying GSS-API library and providing a means of transporting the

returned GSS-API tokens.

However, currently standardised GSS-API mechanisms (Kerberos and SPKM) require sig-

ni�cant infrastructure to be available in order to operate. Also, most GSS-API mechanisms

make use of Abstract Syntax Notation One (ASN.1) with the Basic Encoding Rules (BER)

or Distinguished Encoding Rules (DER), that require a compiler to encode and decode

message structures. These high infrastructure requirements and the complexity of using

ASN.1 based encodings are reasons why there is resistance to the use of the GSS-API in

the environments where SASL mechanisms are typically employed. For this reason much

of the current activity in the CAT working group has been on specifying low-infrastructure

mechanisms, such as LIPKEY and SRPGM.

SASL mechanisms on the other hand are much simpler. They do not require a signi�cant

amount of infrastructure in order to operate [43], typically just a remembered password

on the client side and a veri�er database on the server side. No special encoding of mes-

sages is done either. One reason for this simplicity is that many of them are only used for

authentication - entity authentication and sometimes message authentication - and don't
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provide additional security services, such as sequencing, replay-detection and con�dential-

ity protection. Consequently, while being more complex, GSS-API mechanisms o�er more

security functionality than existing SASL mechanisms. The SRP-SASL mechanism that

we have developed aims to provide all the functionality that GSS-API mechanisms provide,

while being simpler and easier to implement, because it requires little infrastructure and

does not use a complex encoding scheme.

6.3 SASL Mechanisms

A number of SASL mechanisms have been proposed. Some of these have been standardised

and are available as IETF RFCs. Others are speci�ed in working documents as IETF

Internet Drafts. We have implemented some of these mechanisms and they are available

as part of the Cryptix SASL library, which we also developed5.

Mechanism Speci�cation Implemented

ANONYMOUS RFC 2245 yes

CRAM-MD5 RFC 2195 yes

PLAIN RFC 2595 yes

OTP RFC 2444 no

KERBEROS_V4 RFC 2222 no

GSS-API RFC 2222 partially

DIGEST-MD5 draft-leach-digest-sasl-04.txt no

SRP-SASL draft-burdis-cat-srp-sasl-02.txt yes

(At the time of writing the SASL GSS-API mechanism implementation does not support

a security layer, although this will be added in future).

As an introduction to why we developed the SRP-SASL mechanism, we describe some

existing SASL mechanisms that provide authentication using reusable passwords.

6.3.1 CRAM-MD5

The Challenge Response Authentication Mechanism (CRAM-MD5 [43]) was speci�ed for

use with the POP3 and IMAP protocols but may be used with other protocols that have

5This library is still under development and is available from http://www.cryptix.org/products/sasl
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SASL pro�les. It is a challenge-response protocol that makes use of a keyed message au-

thentication code (produced using the HMAC-MD5 algorithm [46]) to protect the evidence

being transmitted. A message-id that changes with every authentication session provides

protection against replay attacks.

Carol Steve

<�- m �

� HP (m) �->

where:

� m is a message-id eg. <5HeScLXP2qs.945642602947@146.231.31.104>

� P is the shared secret

� H() is the HMAC-MD5 algorithm

� HP () is the HMAC-MD5 algorithm using the shared secret

This message-id is a nonce (see 2.3.3) and is constructed as per RFC 1939 [60]:

�For example, on a UNIX implementation in which a separate UNIX process

is used for each instance of a POP3 server, the syntax of the timestamp might

be:

<process-ID.clock@hostname>

where `process-ID' is the decimal value of the process's PID, clock is the decimal

value of the system clock, and hostname is the fully-quali�ed domain-name

corresponding to the host where the POP3 server is running.� - Myers et al

[60]

As noted by the authors, this mechanism is susceptible to certain attacks. Su�cient

information is made available to enable an attacker to undertake an o�ine dictionary

attack in order to guess the authentication evidence. (An attacker knows the algorithm,

the message-id, and the keyed MAC). The mechanism only authenticates the client to

the server at the start of the session and provides no message authentication during the

session, so protocols using this mechanism are also susceptible to active attacks such as

session hijacking and message tampering.
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6.3.2 PLAIN

Using the PLAIN mechanism [67] the client sends a plaintext username and password to

the server in order to authenticate itself.

Carol Steve

� U , P �->

where:

� U is the username

� P is the password

This mechanism is useful where existing clients and servers only support plaintext pass-

words. However, the Internet Architecture Board Security Workshop [6] made it unac-

ceptable to use plaintext password mechanisms with Internet protocols over unencrypted

channels:

�One security mechanism was deemed to be unacceptable: plaintext passwords.

That is, no protocol that relies on passwords sent over unencrypted channels is

acceptable.�

Therefore the PLAIN mechanism may only be used when an encrypted channel is in place.

Newman [67] explicitly states that it should not even be advertised if an encrypted security

layer is not in place. Such an encrypted channel is typically provided using the Transport

Layer Security (TLS) protocol described in [24]. As with SASL protocols each connection-

based protocol that uses TLS must have a pro�le that speci�es how the encrypted channel

is invoked. Such TLS pro�les are speci�ed for the POP, IMAP and ACAP protocols in

[67] and the SMTP protocol in [36], for example.

6.3.3 DIGEST-MD5

This challenge-response mechanism introduces the HTTP Digest Authentication mecha-

nism [33] as an SASL mechanism. It is intended to be more secure than the CRAM-MD5

mechanism and provides functionality that counters many the attacks possible against
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CRAM-MD5. Like CRAM-MD5 it makes use of a nonce to counter replay attacks. How-

ever, it also provides protection against chosen-plaintext attacks and provides a security

layer with optional integrity and/or con�dentiality protection. As the author of the mech-

anism discusses in [51] it only provides weak authentication, since it still susceptible to

some active attacks, such as an online dictionary attack and a man-in-the middle attack.

He summarizes the mechanism as follows [51]:

�By modern cryptographic standards Digest Authentication is weak, compared

to (say) public key based mechanisms. But for a large range of purposes it

is valuable as a replacement for plaintext passwords. Its strength may vary

depending on the implementation.�

Although this mechanism achieves its desired goal of being more secure than existing SASL

mechanisms such as CRAM-MD5, we believe the fact that it provides weak authentication

makes it less useful. A password-based mechanism that provides strong authentication and

protection against all passive and active attacks is necessary.

6.4 SRP-SASL Mechanism

While the SASL mechanisms discussed above provide authentication, many of them are

susceptible to active attacks during the authentication process, and provide no protection

for messages exchanged after authentication. Out of all the currently speci�ed SASL

mechanisms, both standardised and work-in-progress, only KERBEROS_V4, GSS-API,

Digest and SRP-SASL provide support for a security layer. Problems have been found with

the Kerberos version 4 protocol [7], so it is not be advisable to use the KERBEROS_V4

SASL mechanism. As discussed in 6.2 employing GSS-API based mechanisms may be

di�cult due to infrastructure requirements and/or the di�culty in implementing these

mechanisms due to the use of ASN.1 (see 5.2.4). As discussed in 6.3.3 Digest authentication

is weak.

As discussed in 2.4, the Secure Remote Password (SRP) protocol provides strong password-

based authentication and the negotiation of a session key between the communicating

parties. This makes it an excellent basis for developing an SASL mechanism that provides

more comprehensive security than existing mechanisms.
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The SRP-SASL mechanism aims to provide strong authentication and a security layer that

employs countermeasures for known attacks, while being relatively simple in design and

easy to implement. It makes use of the SRP-SHA1 protocol described in [99] and optimized

SRP as described in [98], since this reduces the total number of messages exchanged by

grouping together pieces of information that do not depend on earlier messages. The

mechanism describes how the SRP-SHA1 data is encoded for transmission between the

client and server, and it adds extra control information to enable the client to request

additional security services to be provided by a security layer. Messages are encoded

using netstrings [8] because they are very easy to generate and parse, unlike more complex

encoding schemes such as ASN.1 and its associated encoding rules.

6.4.1 Authentication

The mechanism data exchanges are shown below (refer to 2.4):

Client Server

 � n; g; Z �

� C;A; o �!

 � s; B �

� M1 �!

 � M2 �

where:

� M1 = H(H(n)
L

H(g) jH(C) j s jZ jA jB jK)

� M2 = H(C jA j o jM1 jK)

and:

� H is a one-way function (in this case SHA-1)

� j is the concatenation operator

�
L

is the XOR operator

� Z is the options byte indicating which of the security services the server can provide
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� o is the options byte indicating requested security services

� M1 is the client's evidence that the shared key is known

� M2 is the client's evidence that the shared key is known

� n; g; C; A; s; B are as on page 19 in 2.4.1.

6.4.2 Security Layer

SRP provides authentication and the negotiation of a shared session key between the

client and server. Additional security services can be provided over the session using the

negotiated session key. Support for security layer functionality is advertised by the server

using an 8-bit bitstring (Z) sent by the server, and such functionality is requested by the

client using an 8-bit bitstring (o) sent by the client during the authentication exchange.

(Unassigned bits are reserved for future use). The client and server verify that the other

party's settings were received unmodi�ed by including them as part of the evidence (M1

and M2) that they use to prove to the other party that they have knowledge of the shared

session key.

Bit number Meaning if set

0 Integrity protection using HMAC-MD5

1 Replay detection using sequence numbers (Bit 0 must also be set)

2 Con�dentiality protection using Blow�sh in CBC mode

Integrity protection, provided using the HMAC-MD5 algorithm [46] and the negotiated

session key to produce a message checksum, provides message authentication for messages

exchanged during the session and prevents active attacks such as session hijacking and

message tampering. Replay detection may be provided in conjunction with integrity pro-

tection by using sequence numbers to ensure that every message exchanged during a session

will be di�erent, which means that the checksum on messages with identical data will be

di�erent. The receiver of the message must check that the sequence number of a received

message matches the sequence number that it expected to receive and discard the message

if it does not. After each message is received the expected sequence number is incremented.

Since session keys are di�erent for each session, interleaving messages from currently ac-

tive sessions and reusing messages from past sessions will also be detected, because the
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integrity checksums will not match. Con�dentiality protection, using the Blow�sh cipher

[82] in CBC mode and the negotiated session key, provides a means to ensure the privacy

of exchanged messages.

The reason that security layer functionality is made optional is due to the fact that the

client or server may not want the functionality enabled or may not be able to use it due to

legal restrictions. For example, a server may not be allowed to use con�dentiality protection

due to legal restrictions on the use of cryptography, or a client may not wish to use replay

detection due to the extra overhead required in maintaining sequence numbers.

6.4.3 Netstrings

This mechanism makes extensive use of netstrings6, which are described in more detail in

[8]:

�A netstring is a self-delimiting encoding of a string. Netstrings are very easy

to generate and to parse. Any string may be encoded as a netstring; there are

no restrictions on length or on allowed bytes. Another virtue of a netstring

is that it declares the string size up front. Thus an application can check in

advance whether it has enough space to store the entire string.�

Since the length of the data is declared up front it is possible for the receiver of the message

to allocate bu�er space in advance and know exactly how many bytes to read in order to

obtain all the data. Extracting the di�erent �elds out of a sequence of bytes is also easy

since netstrings clearly delimit where one �eld ends and another �eld starts. The fact that

you can nest netstrings means that you can have an arbitrary number of sub�elds inside

any �eld, so you can represent complex data structures if necessary.

�Any string of 8-bit bytes may be encoded as {len}":"{string}",". Here {string}

is the string and {len} is a nonempty sequence of ASCII digits giving the length

of {string} in decimal. The ASCII digits are <30> for 0, <31> for 1, and so

on up through <39> for 9. Extra zeros at the front of {len} are prohibited:

{len} begins with <30> exactly when {string} is empty.

6Professor Daniel Bernstein at the University of Illinois at Chicago (UIC) originated the netstring idea.
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For example, the string "hello world!" is encoded as <31 32 3a 68 65 6c 6c 6f

20 77 6f 72 6c 64 21 2c>, i.e., "12:hello world!,". The empty string is encoded

as "0:,".

{len}":"{string}"," is called a netstring. {string} is called the interpretation of

the netstring.� - Bernstein [8]

One thing that this representation lacks in comparison to a more complex representation

format such as ASN.1 is any speci�cation of the names and types of the data �elds that it

contains. However, such speci�cation introduces complexity which we aim to avoid. Since

the protocol is simple, the data �elds are well-de�ned, and there is no optional data, it is

not necessary for type information to be transmitted in order for the protocol to operate.

The use of netstrings makes protocol messages easy to construct on the sender side and

easy to parse on the receiver side. This is simple enough that it may even be done by hand

if necessary.

6.4.4 Evolution of SRP-SASL

This mechanism has evolved over time, adding support for more security services, adding

countermeasures against attacks and optimising the message exchanges. Below we discuss

the various versions of the mechanism, the problems and issues we encountered and how

they were resolved.

6.4.4.1 Version 1

The initial version was published as an Internet Draft - draft-burdis-cat-srp-sasl-00.txt.

A minor update, that contained �xes for typos and clari�cation on certain issues thanks

to feedback from readers, was published as draft-burdis-cat-srp-sasl-01.txt. The abstract

described it as follows:

�This document describes an SASL mechanism based on the Secure Remote

Password protocol. This mechanism allows a client to be authenticated to a

server, and optionally the server authenticated to the client. Additionally a

security layer providing integrity protection can be provided.�
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We based the mechanism on the SRP-SHA1 protocol [99], with some additions:

Client Server

 � n; g �

� C;A �!

 � s; B �

� M1; o;m �!

 � M2 �

where:

� o is the options byte indicating requested security services

� m is the integrity checksum of the options byte

We added the options byte (o) to provide a means of selecting whether or not mutual

authentication should take place, and whether or not a security layer providing integrity

protection should be provided.

Bit number Meaning if set

0 Mutual authentication is requested.

1 Integrity protection using HMAC-SHA1 is requested.

Integrity protection was provided using the HMAC-SHA1 algorithm. We did not use the

more e�cient HMAC-MD5 algorithm, due to that fact that weaknesses had recently been

found in the MD5 algorithm. The options byte could be modi�ed by an attacker before

reaching the server. For this reason a keyed MAC (m), generated using the HMAC-SHA1

algorithm and the shared context key, was used so that the server could verify its integrity.

We decided not to support con�dentiality protection with the following reasoning:

�It was decided not to provide support for con�dentiality protection. Such sup-

port usually requires the negotiation of a suitable cryptographic algorithm and

it is felt that such negotiation would make the protocol unnecessarily complex.

It is suggested that those who need a mechanism with this functionality use one

of the GSS-API based mechanisms. Avoiding con�dentiality protection also has

bene�ts in that it may allow use of this mechanism in countries that have strict
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controls on the use of cryptography. It is felt that a simple SASL mechanism

that provides authentication and integrity protection will be useful.�

At the time of writing this draft we had just �nished the initial version of our SRPGM

speci�cation (see 5.5), which provided may additional security services including integrity

protection, con�dentiality protection and replay detection. We felt that adding support for

additional security services to SRP-SASL would go against our goal of making a mechanism

that was simple to implement, and that those who wished to have con�dentiality protection

could use SRPGM under the SASL GSS-API mechanism.

6.4.4.2 Version 2

After more research into the possible attacks that can be undertaken in a distributed envi-

ronment (see 2.2) we noticed that this mechanism did not provide any protection against

replay attacks. This could be remedied by making use of integrity protected sequence

numbers to make each message exchanged during a session unique, and since session keys

are di�erent for each session, interleaving messages from other sessions can be detected

because the integrity checksums won't match. So we decided to add an option for replay

detection to the security layer.

We also came up with a way of including support for con�dentiality protection without

having to undertake a complex negotiation procedure. The HMAC-SHA1 integrity algo-

rithm was mandatory and all implementations had to have support for it. By making

support for a particular set of con�dentiality algorithms mandatory we could ensure that

an algorithm selected by the client would be supported by the server. So we decided to

add support for con�dentiality protection using the Blow�sh cipher.

We chose the Blow�sh cipher because [82]:

� it is free from intellectual property constraints

� it is fast

� it supports variable key lengths from 32 bits to 448 bits

� it has withstood cryptanalysis since 1993

� a number of implementations in various programming languages are freely available
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At this time we also decided to switch the mandatory integrity algorithm to HMAC-MD5,

since it o�ers better performance than both HMAC-SHA1 and MAC algorithms based on

secret key encryption algorithms [29]. Our concerns about using MD5 with HMAC turned

out to be unfounded [25].

Bit number Meaning if set

0 Mutual authentication is requested.

1 Integrity protection using HMAC-MD5 is requested.

2 Replay detection using sequence numbers (Bit 1 must also be set)

3 Con�dentiality protection using Blow�sh in CBC mode

This new speci�cation was written up as draft-burdis-cat-srp-sasl-02.txt and was due to be

submitted. However, we discovered a possible optimisation to the authentication exchange

described in 2.4.4 which caused us to delay publication in order to verify whether or not

the optimisation compromised the security of SRP in any way. In the meantime we made

further changes.

6.4.4.3 Version 3

One concern we had was with using an integrity checksum (MAC) on a byte of data, as

used to protect the client's options byte (o) during the authentication exchange, since the

input is so small. It transpires that it was not necessary to make use of a MAC to protect

the client's options byte (o). Section 3.1 of [99] describes how the client and server generate

the evidence necessary to prove to the other party that they have knowledge of the shared

session key. In order to verify that elements of data being transmitted (eg. n and g) were

received unmodi�ed, these data elements are included as part of the evidence generation

process. By including the options byte (o) as part of the evidence generated by the server

we can ensure that the server received the options byte unmodi�ed, since the evidence will

not verify correctly if it did not. This is a much simpler way of performing the veri�cation,

which meets one of our stated goals. The message exchanges were then as follows:
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Client Server

 � n, g �

� C, A, o �!

 � s, B �

� M1 �!

 � M2 �

As noted in 6.4.4.1 we were concerned that adding support for con�dentiality protection

would preclude use of SRP-SASL in countries that have restrictive policies on the use of

cryptography. However, we had not provided a means for a server to specify whether or not

it was able to provide con�dentiality protection. The use of sequence numbers for replay

detection requires that each party maintain a running count of the number of messages

that have been received. This may be undesirable in certain situations, so we decided it

was also necessary to provide a means for a server to indicate that it was not willing to

provide replay detection. For these reasons, we decided that the server should advertise

the security services that it was willing to provide using an options byte (Z), the same

as that used by the client to select options, and that the client would then select services

from those advertised. However, we decided that it would be mandatory for a server to

provide integrity protection, since this counters a wide variety of attacks, does not require

maintenance of state, and does not use cryptography. The message exchanges were then

as follows:

Client Server

 � n, g, Z �

� C, A, o �!

 � s, B �

� M1 �!

 � M2 �

The unmodi�ed transmission of the server's options byte (Z) needs to be veri�ed in the

same way that the client's options byte (o) is veri�ed, so the client includes it as part of the

evidence that is uses to prove to the server that it knows the shared session key, so that that

server can verify that it was received correctly. This means that mutual authentication is

now a necessity in order for proper veri�cation to take place, so it is now mandatory and

is no longer a security service option. The options byte is now speci�ed as follows:
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Bit number Meaning if set

0 Integrity protection using HMAC-MD5 is requested.

1 Replay detection using sequence numbers (Bit 0 must also be set)

2 Con�dentiality protection using Blow�sh in CBC mode

6.4.4.4 Attempted optimisation of SRP

As discussed in 2.4.4, we thought that it would be possible to reduce the number of message

exchanges necessary to undertake mutual authentication with SRP by having the acceptor

send its evidence proving its knowledge of the session key before the initiator does so.

SRP-SASL could then be optimised as follows:

Client Server

 � n; g; Z �

� C;A; o �!

 � s; B;M2 �

� M1 �!

where:

� M1 = H(H(n)
L

H(g) jH(C) j s jZ jB jM2 jK)

� M2 = H(C jA j o jB jK)

However, it has been established (see 2.4.3) that this optimisation adversely a�ects the

security of SRP by making an o�ine dictionary attack possible.

6.5 SASL Pro�les

Each protocol that wishes to use SASL for authentication and security services must have

an SASL pro�le that speci�es how the available mechanisms are listed, how a mechanism is

selected, and how the exchange of mechanism data takes place. Pro�les have already been

written for existing connection-based Internet protocols, such as SMTP, POP3, IMAP,

ACAP and LDAP. Below we describe the SMTP and POP pro�les, motivating for their

use and giving examples from our implementation. Pro�les for other protocols are similar

to the examples given.
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6.5.1 SMTP Pro�le

The SMTP SASL pro�le [63] speci�es how SASL functionality is made available with the

SMTP protocol. Two motivations for the use of this pro�le are given below. Thereafter

follows an example of the pro�le in action.

6.5.1.1 UCE

Unsolicited Commercial Email (UCE), more commonly known as spam, is a big problem

for mail system administrators. Not only does UCE make undesired use of computing

resources, such as processor time and queue space, it also irritates some users. For these

reasons, senders of UCE have been blocked by many mail administrators. When the source

of the email is known such blocking can be done e�ectively, even on a per-user basis if

necessary. However, in order to get around these restrictions and to avoid being identi�ed

as the origin of these unsolicited messages, some spammers have taken to using third-party

relays to send their messages.

In the early days of the Internet, when it was primarily used by military and educational

institutions, mail hosts would accept messages from anyone and happily resend messages

not destined for them on to the destination host. The message volumes were not large

and this was the friendly thing to do. However, in the current unfriendly Internet such

open relays are targets for spammers who wish to obscure the origin of UCE messages.

Current recommended practice is to only accept messages destined for the mail host, and

to only relay messages originated by users known to the mail host. Initiatives such as the

Real-time Blocking List (RBL) [57] aim to enforce this practice by maintaining an active

list of known open relays. Many mail system administrators block all mail from mail hosts

in the RBL list in order to cut down on the amount of UCE received. The maintainers

of the RBL actively advise and encourage the administrators of those hosts on the list to

restrict their relaying and thereby not make their mail systems susceptible to abuse by

spammers. The fact that many mail systems will refuse to accept mail from these hosts is

an added incentive.

Relaying is a necessary practice, since there is rarely an SMTP server on every user's

machine directly connected to the Internet. Usually there is a central mail server (or pool

of mail servers) for a department or organisation that is used to send outgoing mail. It is

therefore necessary to provide a means of identifying those who should be allowed to relay
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messages. One such method is to use the source IP address of the user. This method is

commonly used in practice but is susceptible to DNS spoo�ng [15]. Until Secure DNS [28]

is in wide use, reliance on DNS is not secure. Another better method is to authenticate

the user to the mail server.

6.5.1.2 Email as a critical resource

Email is a critical part of many organisations today, where it is fast becoming the primary

means of disseminating information. It is therefore important that user's have some means

of ensuring that the system that they are submitting their message to is really their mail

system, and not some attacker's machine. This assurance can be provided by having the

mail server authenticate to the user, in addition to the user authenticating to the mail server

- a process known as mutual authentication. Submission of messages may also need to be

protected from attack. For example, an attacker may hijack a session after the user has

authenticated and then use the mail server to send messages (possibly UCE) as the user,

or an attacker may replay previously entered commands used to send a message, resulting

in multiple copies of a message being sent to the recipient. (Such a denial-of-service attack

is known as a mail-bomb.)

6.5.1.3 Pro�le

In order to address these problems, SASL can be used for authentication and the provision

of a security layer that has countermeasures against various attacks. The SASL SMTP

pro�le [63] speci�es how SASL mechanisms are listed and chosen, how mechanism mes-

sages are exchanged, and how error messages and warnings are indicated. It introduces

a new command keyword - AUTH. When the client supplies this command without any

parameters, the server lists the available mechanisms. In order to specify a particular

mechanism the client issues the AUTH command with the mechanism name as an argu-

ment. Exchanges of mechanism messages, which are base64 encoded, continue until the

server indicates that either authentication was successful or failed.

6.5.1.4 Example

Below is an example exchange using the SASL SMTP pro�le and our SRP-SASL mecha-

nism. Lines beginning with �C:� indicate messages sent by the client, and lines beginning
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with �S:� indicate messages sent by the server. These indicators and the �xed line wrapping

are for illustrative purposes only and are not part of the protocol exchange. (Note that

with the SMTP pro�le, messages are Base64 encoded).

� Server sends list of supported SASL mechanisms

S: 250 AUTH SRP-SASL CRAM-MD5 ANONYMOUS PLAIN

� Client selects a mechanism

C: AUTH SRP-SASL

� Server sends n, g and Z

S: CZOrEZ8rDZgiQzj1CagQc/5ctbuJYLWlhtAsPHc7xWVyCPAKFRLWKADpASkqe9d

jWPFWTNTdeJtL8nAhImCn3Sr/IAdQ1FrGw0WvQUstPx3FO9KNcXOwisOQ1VlL.g

heAHYfbYyBaxXL.NcJx9TUwgWDT0hRzFzqSrdGGTN3FgSTA1v4QnHtEygNj3eZ.

u0MThqWUaDiP87nqha7XnT66bkTCkQ8.7T8L4KZjIImrNrUftedTTBi.WCi.zlr

BxDuOM0da0JbUkQlXqvp0yvJAPpC11nxmmZOAbQOywZGmu9nhZNuwTlxjfIro0F

OdthaDTuZRL9VL7MRPUDo/DQEyW.d4H.UIlzpB34w0Ymi

� Client sends C, A, o

C: 38tCperEcjbQNHeB38rDZfx1sE4pEQoyeD2nbzmtUMWwSSTCp6TGtb7vcap8qV/

bbVcn.IeqomkF22YSV4Ugjx.xUScNgrxKAmh78Mp84kWw1Hyuy1BZSAtb12Hfq7

0hLHlfMKTG2XoHkJdUpVdPBmcVxPGfjgHj1ZbP4BK/DYVMWJry8Jav12Hi0d2XP

CByMhn0VPSLxIxB16Py.rDmLmuxvOVf6KgxNa3aviAn7f5XjxLhKAQfTdGP3Cwy

PHadLYOpnl6Itlpujk48ODa06uonK/v6nzm4xPRf3TKtJ2K3ew2ILj9l7erh9bs

ljQf7YhkOwwTAtp2HRk4xSy/X/NGm7F2qxJjXwwn38cDBH8EB34w0omi

� Server sends s, B

S: oDpKwCJ0wypqEXUPzRC1jHomoDJOw5xCIXiCv.qIiwAYp4JfHS8tzT/ldIJebtD

V.Ou0Kl6lzvfRchVHVVfFMb3IQ8Rx7KTj/X/4KNMA0ULuTCdvfHr69nhyUyqeYz

HDhAgG5jgGRprEXgFw/wYfWpkpN2.vBPA28l7WhFRgpYUI157g7sA1/3fOCF1cc

oX9OwuQadWWjlK0W9/gCTn6QzQ5eXvG0xPw718i0eLsCrWmj.RSIuAA1GGsSSqY

.nk08R1Vufybf91ro9bO3iLA5R9ujU.xGa46ePak2ebmiQk//wjBic2VkOOvoph

AC3uQuAfGCZspHZpN2MvX8SKuwx9rtYx0LGkbXZ6ybvK5NJI8hq5paa2mi
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� Client sends M1

C: CZ0wxM16xDTUotqOlHkBGmAy6ZA/1Qyi

� Server sends M2

S: CZ0weNVacSqwztVeRR3SJ79.Yk/TSO8i

� Client sends null string so that the server can send its success or failure notice

C:

� Server sends success notice

S: 235 SRP-SASL authentication successful

Most existing SMTP servers do not have support for authentication using SASL. For this

reason we developed an SMTP proxy that understands the SASL SMTP pro�le commands

and undertakes authentication on behalf of the SMTP server. Once authentication is

complete all other commands are passed on to the SMTP server. Since the proxy listens

on the standard SMTP port (port 25), the real SMTP server should be con�gured to

listen on a di�erent port. The server should also only accept local connections to avoid

remote users bypassing the proxy and accessing the SMTP server directly. Note that

clients are not required to have SASL support, but those that do have support can now be

accommodated. Since the proxy listens directly for client connections it must be con�gured

with information, either based on DNS or preferably an authenticated user, to determine

which clients are allowed to relay. Unfortunately this proxy is not very useful at present

since few, if any, mail user agents support SMTP authentication. We expect this to change

in future.

6.5.2 POP3 Pro�le

The Post O�ce Protocol (POP) enables a user to fetch their mail from a central mail store

for local reading. Mailbox manipulation features are also provided. For example, after

reading a message the user may choose to leave it on the server or delete the message. As
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discussed in section 6.5.1.2 email is becoming a critical resource, so it is important that

retrieval and management of email messages be secure. Version 3 of the POP protocol

(known as POP3) is speci�ed in IETF RFC 1939. This RFC also speci�es two types of

authentication. The �rst (USER/PASS) is a simple plaintext username/password mecha-

nism which is unacceptable for use over unencrypted channels. The second (APOP) sends

a digest of the password instead of the password itself, but is susceptible to a wide range

of passive and active attacks, and therefore provides very little security. The POP3 SASL

pro�le provides a much better means of protecting the protocol. It introduces a new com-

mand keyword - AUTH. When the client supplies this command without any parameters,

the server lists the available mechanisms. In order to specify a particular mechanism the

client issues the AUTH command with the mechanism name as an argument. Exchanges

of mechanism messages, which are base64 encoded, continue until the server indicates that

either authentication was successful or failed.

6.5.2.1 Example

Below is an example exchange using the SASL POP pro�le and the CRAM-MD5 SASL

mechanism. Lines beginning with �C:� indicate messages sent by the client, and lines be-

ginning with �S:� indicate messages sent by the server. These indicators are for illustrative

purposes only and are not part of the protocol exchange. (Note that with the POP pro�le,

messages are Base64 encoded).

S: <5HeScLXP2qq.945642019150@146.231.31.104>

C: AUTH CRAM-MD5

S: + 3mrI6LJOqnOK39nSIuvD3KsD38mCJaoDpP0CJGsBZ8pCIupCIunC3G.

C: 1hPMbqQ22b0VnvC9GBbC1biWYili3t

S: +OK CRAM-MD5 authentication successful

C: QUIT

S: +OK

Refer to 6.3.1 for details of the CRAM-MD5 message exchanges.

6.6 Java SASL Library

The Java SASL API [94] provides a concrete implementation of the concepts and protocols

described and speci�ed in RFC 2222 [61]. This API provides functionality via well-de�ned
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abstract interfaces that hide the complexity of the underlying mechanisms. A means is

provided for callers to query the available mechanisms, but all mechanisms are accessed

through the same common API. Mechanism implementations are also written to a standard

API, which enables changes to these implementations to remain localised. It is also easy

to add and remove mechanism implementations. In addition to providing authentication

services it also provides a security layer that can be used to provide security services, such

as message authentication, replay detection and con�dentiality protection, after authenti-

cation has taken place.

The abstract nature of the API means that a single Java SASL library can be used with

multiple protocols. Our Java SASL implementation, which is available as part of the

Cryptix project, was used with both the SMTP and POP3 SASL pro�le implementations

described above.

6.7 Conclusion

SASL is used to provide support for authentication and security services to connections-

based protocols, such as the SMTP and POP3 protocols that are employed on our campus.

SASL pro�les for these protocols specify how the available mechanisms are listed, how

a mechanism is selected, and how the exchange of mechanism data takes place. SASL

mechanisms provide authentication and security service functionality, but existing SASL

mechanisms provide weak authentication and do not counter all known attacks. While

SASL can be used in conjunction with GSS-API mechanisms by being a transport for

GSS-API tokens, there are concerns due infrastructure requirements and message encoding

complexity of these mechanisms. The SRP-SASL mechanism that we have developed aims

to provide strong authentication and a security layer that employs countermeasures for

known attacks, while being relatively simple in design and easy to implement. The Cryptix

SASL Project provides a concrete implementation of the Java SASL API and some SASL

mechanisms, which enables implementors of connection-based protocol clients and servers

to make use of SASL functionality in their applications.
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Conclusions and Future Research

7.1 Experience and Contributions

During the course of our research we have gained much experience with distributed au-

thentication and its use as part of a resource control architecture, and have made some

useful contributions to this �eld:

� Our research into the authentication process, the attacks that are possible in a dis-

tributed environment and how they can be countered, gave us su�cient background

knowledge to understand how to protect the mechanisms that we designed from

known attacks.

� Much of our work is based on the Secure Remote Password protocol, which we con-

sider to be a signi�cant advance in password-based security technology. We made

an unsuccessful attempt to further optimise this protocol, and we give the details of

this attempt so that others can learn from and not repeat our experience.

� We investigated the problems with the current user sign-on scenario, with particular

reference to our campus environment, and discovered that it is common for users to

have too much credential information to manage and to be prompted for it too often..

Research indicated that these problems could be solved using single sign-on, and we

determined, through a partial implementation, that the Java Authentication and

Authorisation Service (JAAS) could be used for this purpose. We provide pragmatic

physical solutions to the security concerns associated with single sign-on.

95
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� The GSS-API insulates callers from changes in the underlying security technology by

encapsulating security functionality under an abstract API. By making applications

independent of the inevitable changes in security implementations, the GSS-API

reduces maintenance requirements by localising changes to the GSS-API implemen-

tation and GSS-API mechanisms.

� In our work with GSS-API mechanisms we gained experience with the use of the

Abstract Syntax Notation One (ASN.1). We found that ASN.1 is very �exible and

powerful, but that the complexity associated with the encoding rules used to convert

the ASN.1 speci�cation into bitstrings means that in practice the use of automated

tools is recommended.

� Existing standardised GSS-API mechanisms require signi�cant additional infrastruc-

ture to operate. Much current work in the IETF CAT working group is centered

on developing GSS-API mechanisms with lower infrastructure requirements. We de-

veloped SRPGM because we noted that there was no available GSS-API mechanism

that was password-based, had low infrastructure requirements and did not require

the use of long-term asymmetric keys.

� SASL can be used to provide authentication and security functionality to existing

Internet protocols, many of which currently have weak or non-existent security. These

protocols are being used to provide standard services to many users, so improving the

security of these protocols will have the e�ect of signi�cantly upgrading the standard

of security available at many sites.

� SRP-SASL is a simple, easy-to-implement SASL mechanism that provides strong

password-based authentication and a security layer with integrity protection, replay

detection and con�dentiality protection. We developed SRP-SASL because existing

SASL mechanisms provide weak security and are susceptible to various active and

passive attacks. SRP-SASL avoids the complexity of encoding protocol messages

using ASN.1 by using netstrings which are simple to create and parse.

� Our work on SRPGM and SRP-SASL culminated in the publication of speci�cations

for these two mechanisms as IETF Internet Drafts. SRPGM was published under

the auspices of the IETF Common Authentication Technology (CAT) working group,

and SRP-SASL was an individual submission.
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� One of our stated goals was to make security technology available to programmers.

We have achieved this goal by implementing both the Java GSS-API and Java SASL

bindings, in addition to the LIPKEY and SRPGM GSS-API mechanisms and various

SASL mechanisms, including SRP-SASL. All of this work is freely available as part

of the international Cryptix project.

7.2 Related and future work

7.2.1 CORBA Security Service

7.2.1.1 Introduction

The Common Object Request Broker Architecture (CORBA) is the communications com-

ponent of the Object Management Architecture, a distributed middleware architecture

produced by the Object Management Group [69]. It makes use of object request brokers

(ORBs) that allow for communication between remote objects, providing the means to

perform remote method calls on objects. It provides several bene�ts for distributed pro-

gramming, such as location transparency, programming language independence, a clear

separation of object interfaces from object implementations and a number of standardised

services[71].

The CORBA Security Service [68] provides security services in the CORBA middleware

environment. It works by intercepting all method requests to be invoked on CORBA

objects and determining whether or not they are allowed according to the security policy.

�Conceptually, the object invocation access control service is implemented by

having it intercept every object invocation (ie. Request), possibly on both

the Client and Target sides. Having intercepted the object invocation, the

Credentials object is consulted to obtain the privileges with which the Client

is operating. This set of privileges are then used as a parameter to the ac-

cess_allowed operation on the AccessDecision object, which either grants or

denies permission to continue the object invocation.� - Chizmadia [17]
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7.2.1.2 Sign-on

The Credentials object contains the client's credentials, such as a username/password or

public/private keypair, that enable it to authenticate itself and thereby succeed in invoking

a method on a particular object if allowed to do so by the security policy.

�A principal must establish its credentials before it can invoke an object se-

curely. For many clients, there are default credentials, created when the user

logs on. This may be performed prior to using any object system client. These

default credentials are automatically used on object invocation without the

client having to take speci�c action.� - Chizmadia [17]

These default credentials could be obtained in the traditional way by prompting the client

for information, but a more user-friendly way would be to use a Single Sign-on setup as

described in chapter 3. A Java implementation of the CORBA Security Service could use

the Java Authentication and Authorisation Service (JAAS) to provide this functionality.

7.2.1.3 Security Services

�clients and objects in a CORBA system deal exclusively with operation re-

quests and responses back to those requests; however �under the covers� the

ORB maintains a more persistent connection between the client and the ob-

ject. The CORBA Security Service uses this persistent connection as the basis

for secure associations, which provide: identi�cation and authentication of the

client to the object and the object to the client, protected transfer of credentials

between the client and the object, and a way to negotiate the minimum amount

of transport message . . . protection that is acceptable to both the client and

the object� - Chizmadia [17]

The Generic Security Services API (GSS-API) provides authentication, a secure context

and security services over this context via a generic API. It is possible for a CORBA

Security Service implementation to have the required security functionality provided by an

underlying GSS-API implementation. Such reuse of existing technology implementations

is recommended by the CORBA Security Service speci�cation:
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�The use of standard, generic APIs for interactions with external security ser-

vices not only allows interchangeability of security mechanisms, but also enables

exploitation of existing, proven implementations of such mechanisms.� - OMG

[68]

The GSS-API was one of the generic APIs that the writers of this speci�cation had in

mind:

�several interfaces in Section 15.4, Security Architecture, have been designed to

allow easy mapping to GSS-API functions, and the Credentials and Security

Context objects are consistent with the GSS-API credentials and contexts.� -

OMG [68]

As discussed in 4.1 and 4.2 the GSS-API insulates users of the API from changes in

the underlying security technology, con�ning the a�ect of any changes to the GSS-API

implementation and mechanisms.

7.2.1.4 Summary

A CORBA Security Service implementation built on top of the GSS-API would make it

substantially independent of the security technology used to provide the security func-

tionality, and the architecture of this service lends itself to such an implementation. In

addition, making use a Single Sign-On architecture, such as that provided by JAAS, to

provide client credentials would make such an implementation easier and more transparent

for clients to use.

A possible application of our work would be to implement the CORBA Security Service

in Java using the JAAS implementation from SUN and GSS-API implementation that we

have produced.

7.2.2 Possible campus scenario

Below we describe a possible new campus scenario that could be implemented using the

technology that we have investigated, developed and partially implemented.
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7.2.2.1 User sign-on

The user's primary sign-on for a session requires the entering of a memorised username/password

combination for each security domain of which it is a member. For example, there may

be a student security domain and an administration security domain. This may require

an undergraduate student to enter a username/password for the student security domain

that allows her to access resources available to students, such a public laboratory machines

and networked printers, and it may require that a sta� member enter an additional user-

name/password combination for the administration security domain that gives him access

to student record information. This credential information is stored and made available

for secondary sign-on procedures.

Now the user is able to use resources that require sign-on without having to re-enter creden-

tial information. Such secondary sign-on procedures take place using the stored credential

information. Physical security measures are employed, such as password-protected screen

savers, to prevent unauthorised users from undertaking secondary sign-on operations after

primary authentication has taken place.

Due to the security risks involved in undertaking sign-on using stored credential infor-

mation, where the authenticated user may not be present, it is recommended that access

to sensitive resources, such as �nancial records for example, be protected using a sepa-

rate username/password combination that is not cached by the single sign-on architecture.

However, most resources available on campus are not sensitive, so the risks involved in

using single sign-on with these resources is acceptable.

7.2.2.2 Resource control

Where possible, each server that makes resources available to users has an SRP authen-

tication database that it uses to verify the identity of users attempting to make use of a

resource. This database of veri�ers may be stored in a distributed directory - such one

accessible using the Lightweight Directory Access Protocol (LDAP) - that is replicated so

that the same authentication database can be used by a number of application servers.

Connection-based Internet services are secured using the Simple Authentication and Se-

curity Layer (SASL). Security functionality is provided either by the SRP-SASL SASL

mechanism or by the GSS-API SASL mechanism with SRPGM as the underlying GSS-

API mechanism. This means that protocols such as FTP (remote �le access), and IMAP
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(remote access to electronic mail), now use strong password-based authentication instead

of plaintext passwords, and provide a connection that is resistant to many forms of attack.

Connections to remote UNIX hosts are provided using the TELNET protocol and secured

using the SRP TELNET security extension [100], using applications such as TeraTERM

and the Java Telnet Applet [97] that provide support for this. Other computer resource

implementations, such as virtual reality and music applications for example, are secured

using the GSS-API with SRPGM as the underlying GSS-API mechanism.

7.2.2.3 Summary

The use of SRP, SASL and GSS-API can be used to improve the level of security on our

campus.

7.3 Final Words

Distributed authentication is an important part of the process of controlling access to

and use of computing resources. We have investigated and explored two of the primary

authentication APIs available and have made contributions towards their use. In addition

to researching and developing technology to thwart attackers, we have focused on making

security more user-friendly by taking the user into consideration when developing a security

infrastructure. We hope that our contributions are tools that others can use to provide

better security for people.
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