

Connection Management Applications

for High-Speed Audio Networking

A thesis submitted in fulfilment of the requirements for the

degree of MASTER OF SCIENCE in Computer Science

At

RHODES UNIVERSITY

By

PHATHISILE SIBANDA

December 2007

 ii

ABSTRACT
Traditionally, connection management applications (referred to as patchbays) for

high-speed audio networking, are predominantly developed using third-generation

languages such as C, C# and C++. Due to the rapid increase in distributed audio/video

network usage in the world today, connection management applications that control

signal routing over these networks have also evolved in complexity to accommodate

more functionality. As the result, high-speed audio networking application developers

require a tool that will enable them to develop complex connection management

applications easily and within the shortest possible time. In addition, this tool should

provide them with the reliability and flexibility required to develop applications

controlling signal routing in networks carrying real-time data. High-speed audio

networks are used for various purposes that include audio/video production and

broadcasting. This investigation evaluates the possibility of using Adobe Flash

Professional 8, using ActionScript 2.0, for developing connection management

applications. Three patchbays, namely the Broadcast patchbay, the Project studio

patchbay, and the Hospitality/Convention Centre patchbay were developed and tested

for connection management in three sound installation networks, namely the

Broadcast network, the Project studio network, and the Hospitality/Convention Centre

network. Findings indicate that complex connection management applications can

effectively be implemented using the Adobe Flash IDE and ActionScript 2.0.

 iii

ACKNOWLEDGEMENTS
I would like to express my utmost gratitude to everyone who honestly contributed to

the successful completion of this investigation.

Firstly, I would like to thank God for the strength he has given me throughout this

investigation. I thank Him for having given me the opportunity to work with all the

people at Rhodes University who I must thank for being such an inspiration to me, I am

truly grateful.

Secondly, I would like to thank my supervisors Professor Richard Foss and

Professor Greg Foster for whom I have great respect. They were always ready to

help and give me technical or moral support throughout the investigation in spite of

their busy schedules. Thank you, may God bless you abundantly.

This project could not have succeeded without the assistance from the Audio

Engineering Group (AEG) members at Rhodes University Computer Science

Department. I also thank John Ebden and my sister Sibusisiwe Sibanda for proof

reading this thesis work, Thanks and may God Bless you.

I would also like to thank ANDREW MELLON PRESTIGIOUS SCHOLARSHIP

for their financial support, which made it possible for me to study towards my MSc

degree at Rhodes University.

Lastly, I would like to take this opportunity to acknowledge the financial support from

Telkom SA, Business Connexion, Converse SA, Verso Technologies, Stortech,

Tellabs, Mars Technologies, Amatole Telecommunication Services, Bright Ideas

Project 39 and THRIP through the Telkom Centre of Excellence at Rhodes University

which assisted the department in maintaining and giving us good service in terms of

purchasing software and hardware for us, Thank you.

 iv

TABLE OF CONTENTS

1 Introduction..1

1.1 Project Motivation...4
1.2 The Problem Statement ...6
1.3 Chapter Summaries ...8

2 The Current Status of mLAN and the mLAN Client/Server Architecture..10

2.1 The current mLAN Architecture...11
2.1.1 The Enabler ..13

2.1.1.1 mLAN Plug Abstraction Layer..13
2.1.1.2 A/M Manager Layer ..13
2.1.1.3 Hardware Abstraction Layer (HAL)..13

2.1.2 The Transporter ..15
2.1.2.1 mLAN Sequence Encapsulation and Extraction Hardware............15
2.1.2.2 mLAN Audio and Music data Transmission...................................17

2.1.3 mLAN Device Synchronisation Mechanism..20
2.2 mLAN Client/Server Configuration..23
2.3 Chapter Summary ...30

3 Connection Management Applications for Sound Installations Networks ..32

3.1 Types of Sound Installation Networks..33
3.1.1 Broadcast Networks ...33
3.1.2 Project Studio Networks...33
3.1.3 Hospitality/Convention Centre Networks ..33

3.2 Current non-mLAN Client/Server Connection Management Applications
 34

3.2.1 Grid-Based Patchbays ..34
3.2.1.1 OTARI mLAN Control Software ..35
3.2.1.2 CobraNetTM Manager ..40
3.2.1.3 ESControl Management Software ...43

3.2.2 List-Based Patchbays ...45
3.2.2.1 Yamaha mLAN Patchbay..45
3.2.2.2 PathFinderPC Software ...47

3.2.3 Graphic-Based Patchbays...49
3.2.3.1 Yamaha mLAN Graphic Patchbay ..49

3.3 Current mLAN Client/Server Connection Management Applications52
3.4 Chapter Summary ...57

4 An Alternative Development Environment for mLAN Cli ent/Server
Patchbays ..59

4.1 Possible Alternative Client Development Environments..........................60
4.1.1 Microsoft Silverlight ..61
4.1.2 Sun Microsystems JavaFX ...62
4.1.3 Adobe Systems Adobe Flash Professional 8..63
4.1.4 Adobe Systems Adobe Flex 2 ..63
4.1.5 Laszlo Systems OpenLaszlo...64

4.2 The Alternative Development Environment and Scripting Language for
mLAN Client/Server Clients..65

 v

4.2.1 Adobe Flash Professional 8 Description ..65
4.3 Chapter Summary ...77

5 Broadcast Patchbay Design and Development..78

5.1 Broadcast Patchbay Requirements Analysis...79
5.2 Broadcast Patchbay Description ...80
5.3 Broadcast Patchbay Design and Implementation......................................84

5.3.1 Modelling Broadcast Software Requirements......................................84
5.3.1.1 Use-Case Driven Analysis...85
5.3.1.2 Class-Driven Analysis ...88

5.3.2 Broadcast Patchbay Sequence Diagrams and Implementation90
5.3.2.1 “Connect to mCMS server” Use Case...90
5.3.2.2 “Establishing Audio Connections” Use Case..................................96
5.3.2.3 “Breaking Audio Connections” Use Case100
5.3.2.4 “Setting/Clearing Master/Slave Configurations” Use Case104
5.3.2.5 “Identify Device” Use Case...111
5.3.2.6 “Change Plug Layout” Use Case...112
5.3.2.7 “Clear Dangling Connections” Use Case114
5.3.2.8 “Change Device Name” Use Case...115
5.3.2.9 “Managing Files” Use Case...116

5.2 Broadcast Patchbay Usability Testing ..118
5.2.1 Usability Testing User Profiles ..119
5.2.2 Usability Methodologies and Findings...119

5.2.2.1 Broadcast Patchbay Usability Testing Results122
5.2.2.2 Redesigning of the Broadcast Patchbay ..126
5.2.2.3 Broadcast Patchbay Version 2 Test feedback................................127

5.3 Chapter Summary ...128

6 Project Studio Patchbay Design and Development.......................................129

6.1 Project Studio Patchbay Requirements Analysis129
6.2 Project Studio Computer Prototype ..130
6.3 Project Studio Patchbay Description...132
Figure 6.4: Moving Plug Blocks..137
6.4 Project Studio Patchbay Design and Implementation.............................137

6.4.1 Project Studio Patchbay Implementation Sequence Diagrams137
6.4.1.1 “Connect to mCMS server” Use Case...139
6.4.1.2 “Establishing Audio Connections” Use Case................................141
6.4.1.3 “Breaking Audio Connections” Use Case143
6.4.1.4 “Setting/Clearing Wordclock Master/Slave Configurations” Use
Case 145
6.4.1.5 “Identify Device” Use Case...145
6.4.1.6 “Managing Files” Use Case...146

6.5 Project Studio Patchbay Usability Testing..147
6.5.1 Project Studio Patchbay Usability Testing Results147
6.5.2 Improvements to the Project Studio Patchbay150
6.5.3 Redesigning of the Project studio patchbay151
6.5.4 Good Features of the Project Studio Patchbay...................................151

6.6 Chapter Summary ...151

 vi

7 Hospitality/Convention Centre Patchbay Design and Development...........153
7.1 Hospitality/Convention Centre Patchbay Requirements Analysis..........154
7.2 Hospitality/Convention Centre Patchbay Description158
7.3 Hospitality/Convention Centre Patchbay Design and Implementation ..161

7.3.1 Project Studio Patchbay Sequence Diagrams and Implementation....161
7.3.1.1 “Connect to mCMS Server” Use Case ..163
7.3.1.2 “Establishing Audio Connections” Use Case................................165
7.3.1.3 “Breaking Audio Connections” Use Case167
7.3.1.4 “Setting/Clearing Word Clock Master/Slave Configurations” Use
Case 168
7.3.1.5 “Identify Device” Use Case...168
7.3.1.6 “Managing Files” Use Case...169

7.4 Hospitality/Convention Centre Patchbay Usability Testing170
7.4.1 Hospitality/Convention Centre Patchbay Usability Testing Results..171
7.4.2 Redesigning of the Hospitality/Convention Centre Patchbay............173
7.4.3 Good Features of the Hospitality/Convention Centre Patchbay174

7.5 Chapter Summary ...174

8 Adobe Flash Professional 8 Tools for developing mLAN Client/Server
Patchbays ..176

8.1 Development of the Patchbay User Interfaces..176
8.1.1 Adobe Flash Built-In Components...176
8.1.2 Adobe Flash Graphic Authoring IDE and ActionScript Capabilities 178

8.1.2.1 Adobe Flash Graphic Tools and ActionScript Capabilities for
Developing the Broadcast Patchbay ..178
8.1.2.2 Adobe Flash Graphic Tools and ActionScript Capabilities for
Developing the Project Studio Patchbay..183
8.1.2.3 Adobe Flash Graphic Tools and ActionScript Capabilities for
Developing the Hospitality/Convention Centre Patchbay187

8.1.3 Adobe Flash Application Portability..189
8.2 Development of the Patchbay Back-end Components............................189

8.2.1 Adobe Flash XML Capabilities..189
8.2.2 Adobe Flash XMLSocket Class ...190

8.3 Adobe Flash ActionScript Limitations ...191
8.4 Chapter Summary ...192

9 Conclusion ..194

REFERENCES...197

APPENDIX A: Software Requirements Specification Documents203

A1 Broadcast Patchbay Software Requirements Specification Document............203
A2 Project Studio Patchbay Software Requirements Specification Document.....217
A3 Hospitality/Convention Centre Patchbay Software Requirements Specification
Document...224

APPENDIX B: mLAN Client/Server Communication Protocol230

APPENDIX C: Usability Documentations...243

C1 User Test Profile Form...243

 vi
i

C2 Usability Testing Questionnaire...246
C3 Heuristic Evaluation Checklist Form ...251
C4 Hospitality/Convention Centre Paper Prototype Questions265

 vi
ii

LIST OF FIGURES

Figure 1.1: Simple Legacy Studio Configuration ..1
Figure 1.2: Simple Studio with Firewire Configuration ..3
Figure 1.3: NAS Explorer Patchbay ..4
Figure 2.1: mLAN Version 2 Architecture ..12
Figure 2.2:The Enabler’s Layers and Interfaces ..14
Figure 2.3: mLAN Node Controllers in a Transmitting Device (Synthesiser) and a
Receiving Device (Mixer)..16
Figure 2.4: An Isochronous Stream with Sequences ...18
Figure 2.5: The Isochronous Packet Format ..19
Figure 2.6: Sample Clock Synchronisation ...21
Figure 2.7: mLAN Client/Server Configuration..23
Figure 2.8: Client Server Communication Model..24
Figure 2.9: mLAN Client/Server Communication Interfaces......................................26
Figure 3.1: OTARI mLAN Control Software..35
Figure 3.2: OTARI mLAN Control Software – Bus Pane...36
Figure 3.3: OTARI mLAN Control Software – Device Pane......................................37
Figure 3.4: Update and the Apply Buttons ..39
Figure 3.5: OTARI mLAN Control Software – Clock Setup Pane39
Figure 3.6: CobraNetTM Manager ..42
Figure 3.7: ESControl Management Software...44
Figure 3.8: Yamaha mLAN Patchbay – Audio Page...46
Figure 3.9: mLAN Patchbay – Word clock Synchronisation47
Figure 3.10: PathfinderPC Router Control Software...49
Figure 3.11: The Yamaha mLAN Graphic Patchbay...50
Figure 3.12: mLAN Graphic Patchbay – Tool bar ..50
Figure 3.13: Yamaha mLAN Graphic Patchbay – Establishing Audio Connection....51
Figure 3.14: mLAN Graphic Patchbay – Successful Connection................................52
Figure 3.15: NAS Explorer Patchbay ..53
Figure 3.16: NAS Explorer Patchbay - Establishing Audio Connections54
Figure 3.17: NAS Explorer Patchbay - Breaking Audio Connections55
Figure 3.18: NAS Explorer Patchbay - Clearing Dangling Connections55
Figure 3.19: NAS Explorer Patchbay - Setting Master/Slave Configurations.............56
Figure 4.1: Microsoft Silverlight Application Authoring Environment61
Figure 4.2: Microsoft Silverlight Architecture ..62
Figure 4.3: Pandora Music Discovery Service ..64
Figure 4.4: Adobe Flash Professional 8 Design and Animation Authoring IDE.........67
Figure 4.5: Adobe Flash Professional 8 IDE Timeline..68
Figure 4.6: Creating a MovieClip Symbol – Flash Document70
Figure 4.7: Converting a graphic drawing into a MovieClip Symbol71
Figure 4.8: Specifying MovieClip Properties ..72
Figure 4.9: MovieClip in the Library Panel...72
Figure 4.10: Specifying MovieClip Properties ..74
Figure 5.1: An Iterative and Incremental Process (RUP) ..79
Figure 5.2: Broadcast Patchbay Control Window ...81
Figure 5.3: Broadcast Patchbay Wordclock Settings Panel...83
Figure 5.4: Broadcast Patchbay Server Settings Panel – Server Settings....................84
Figure 5.5: Broadcast Patchbay Server Settings panel – PC Plugs..............................84

 ix

Figure 5.6: Broadcast Patchbay Use Case Diagram ..86
Figure 5.7: Broadcast Patchbay Object Model ..89
Figure 5.8: Broadcast Patchbay Start-Up Sequence Diagram91
Figure 5.9: Accessing the Server Setting Dialog Box...92
Figure 5.10: Receiving the Configuration XML Document Sequence Diagram.........94
Figure 5.11: Updating the Grid-Matrix..96
Figure 5.12: Pending and Live Connections on the Grid-Matrix97
Figure 5.13: Establishing Audio Connections in “Delayed Mode”.............................99
Figure 5.14: Pending and Live Connections on the Grid-Matrix101
Figure 5.15: Breaking Audio Connections in “Delayed Mode”103
Figure 5.16: Accessing the Wordclock Source Panel..105
Figure 5.17: Setting the Word Clock Source and Sample Rate.................................105
Figure 5.18: Setting the Word clock Source and Sample Rate..................................106
Figure 5.19: Setting a Global Master Device...108
Figure 5.20: Setting individual Slave Devices...109
Figure 5.21: Release all Master Device Slave Devices ...110
Figure 5.22: Removing a Particular Slave Device...111
Figure 5.23: Identifying a Device ..112
Figure 5.24: Change Plug Layout ..113
Figure 5.25: Select Plug Layout Panel...113
Figure 5.26: Clearing Dangling Connections ..115
Figure 5.27: Rename Device Panel..116
Figure 5.28: Renaming a device ..116
Figure 5.29: Broadcast Patchbay Version 1...123
Figure 5.30: Broadcast Patchbay Version 2...127
Figure 6.1: Project Studio Patchbay Prototype..131
Figure 6.2: Project Studio Control Window ..133
Figure 6.3: Device Information Panel..135
Figure 6.4: Moving Plug Blocks..137
Figure 6.5: Project Studio Patchbay Object Model ...139
Figure 6.6: Receiving the XML Configuration Document Sequence Diagram.........141
Figure 6.7: Maximising Inputs and Outputs Plug Blocks..142
Figure 6.8: Establishing Audio Connections ...143
Figure 6.9: Breaking Audio Connections ..144
Figure 6.10: Identifying a Device ..145
Figure 7.1: EMS-based Hotel Paper Prototype..155
Figure 7.2: daVinc -based Hotel Paper Prototype ...156
Figure 7.3: Custom-Built Hotel Paper Prototype...156
Figure 7.4: Usability Studio Equipment ..157
Figure 7.5: Hospitality/Convention Centre Patchbay Control Window159
Figure 7.6: Hospitality/Convention Centre Patchbay Network Configuration Panel 160
Figure 7.7: Hospitality/Convention Centre Patchbay Object Model163
Figure 7.8: Receiving the Configuration XML Document Sequence Diagram.........164
Figure 7.9: Update Plugs Connection Status Sequence Diagram..............................165
Figure 7.10: Establishing Audio Connection Sequence Diagram166
Figure 7.11: Breaking Audio Connections Sequence Diagram.................................167
Figure 7.12: Identify Device Sequence Diagram...168
Figure 8.1: Project Studio Patchbay – Device Information Dialog Box....................177
Figure 8.2: Broadcast Patchbay Interface Components...179
Figure 8.3: The Project Studio Device and Plug..184

 x

Figure 8.4: Establishing Audio Connections ...186
Figure 8.5: Breaking Audio Connections ..187
Figure 8.6: Hospitality/Convention Centre Patchbay Interface.................................188

 xi

LIST OF TABLES

Table 1.1: Current non-mLAN Patchbays Examples ..5
Table 2.2: SFC (Nominal Sampling Frequency Code) Definition22
Table 3.3: CobraNet™ Capabilities...41
Table 3.4: Ways of Setting and Manipulating Bundle Numbers41

 1

CHAPTER 1

1 Introduction

The evolution of legacy Analogue studios to Firewire (IEEE1394 standard) based

technology brought with it many complications with respect to audio and control data

routing between communicating studio devices. In a simple legacy studio

configuration, a large number of cables (of different types) are used to connect audio

devices [Figure 1.1, Foss, 2005].

Figure 1.1: Simple Legacy Studio Configuration
[Foss, 2005]

Each cable type carries different types of audio data. Figure 1.1 shows a simple

analogue studio configuration with cables carrying:

• MIDI (Musical Instrument Digital Interface) data – For example, cables

between the MIDI Breakout Box device and the Effect Unit device.

• Analogue audio data – For example, cables between the Mixing Desk device

and the Analogue Audio Patchbay device.

ADAT

Analogue Audio

Microphone

Mixing
Desk

Effect Unit
Audio Breakout Box

PC

MIDI Breakout Box

Synthesizer Analogue Audio Patchbay

MIDI

MIDI

MIDI

Analogue Audio

AES3

Analogue Audio

 2

• ADAT (Alesis Digital Audio Transmission) – For example, cables between

the Mixing Desk device and the Audio Breakout Box device.

• AES3 (An audio Engineering Society Standard for the transmission of stereo

digital audio, often termed AES/EBU) – For example, cables between the

Mixing Desk device and the Effect Unit device.

As observed in Figure 1.1, many cables (of different types) are required to route

audio, MIDI and control data between audio devices. As a result, adding one device

requires an addition of more cables into the network, resulting in undesirable cable

clutter. This makes connection management costly in terms of time and the money

required for purchasing many cables of different types, and difficult. It is also labour

intensive for sound engineers, since audio routing for these networks is performed by

physically switching cables between devices. Moreover, additional costs are incurred

through purchasing hardware Analogue Audio Patchbays, which are used to increase

the flexibility of the network to allow fast and convenient access to audio signals at all

strategic points in the signal paths [Sound On Sound Ltd, 1999]. Audio signals

converge to a single, convenient location for effective routing using hardware

Analogue Audio Patchbays.

In 1993, Yamaha Corporation initiated a project called mLAN in which Firewire was

chosen as the networking standard for small and large professional studios to reduce

cable clutter and provide a flexible peer-to-peer networking standard. mLAN stands

for music Local Area Network. It is a Firewire-based protocol for high-speed

transmission and control of multiple channels of audio and MIDI streams over a

network [Yamaha Corporation, 2004c]. It involves intelligent connection management

that allows the audio engineer to make connections and have full control over the

entire music network without having to plug or unplug a single cable [Yamaha

Corporation, 2004c]. Figure 1.2 shows the studio devices displayed in Figure 1.1,

this time they are daisy-chained using a single Firewire cable in an mLAN network.

Daisy-chaining audio devices using a single Firewire cable significantly reduces cable

clutter and the cost of installing and managing the studio since there is no need for

purchasing many cables (of different type) and hardware Analogue Audio Patchbays.

 3

Figure 1.2: Simple Studio with Firewire Configuration

In the mLAN network configuration [Figure 1.2], the use of one Firewire connector

for carrying data means that audio, MIDI and control data traverse the same cable

using time-division multiplexing techniques with each signal sent occupying a

dedicated channel. The number of audio channels supported by mLAN is influenced

by the speed of the bus, which directly affects the bandwidth of the network, and how

many channels the total network can support. mLAN can support thousands of MIDI

cables and thus tens of thousands of MIDI channels. It is however, very common for

manufacturers to make equipment with 8 MIDI ports supporting 128 MIDI channels

per device [Yamaha Corporation, 2004c].

Audio routing in mLAN networks is done on a central network controlling

application, referred to as a patchbay, running on a workstation that is connected to

the mLAN network. Many audio solution companies have developed patchbays using

third-generation languages for use with their proprietary hardware. The Audio

Engineering Group (AEG) of the Rhodes University Computer Science Department is

working in collaboration with Yamaha Japan, to improve the original mLAN

architecture and develop a flexible mLAN Client/Server architecture that is discussed

in chapter 2.

Microphone

IEEE1394 node with device

MIDI and digital audio Over Firewire

Synthesizer

Effect Units

Mixing Desk

PC

 4

1.1 Project Motivation

Only the Windows Explorer - style patchbay (also known as NAS Explorer patchbay

– Figure 1.3) has been developed for the client side of the mLAN Client/Server

architecture described in section 2.3. The NAS Explorer patchbay uses two

collapsible/expandable tree lists that display the source and destination devices on the

network. It is easy to use even for first time users and allows the viewing of many

devices on the network. However, the NAS Explorer patchbay cannot be used in all

sound installation networks (Broadcast networks, Project studio networks and

Hospitality/Convention Centre networks – these networks are discussed in detail in

section 3.1). For instance, although the NAS Explorer patchbay allows for the display

of many network devices at a time and is easy to use, it does not provide a graphical

representation of the connection status for individual device plugs (whether a plug is

connected or not connected). This feature is essential in complex sound installations

such as Broadcast networks. Broadcast networks are complex, distributed in nature,

and deal with many connections at a time. Due to this complexity, it is important for

the sound engineer to readily view the connection status of plugs.

Figure 1.3: NAS Explorer Patchbay

 5

Music producers and musicians in Project studio networks prefer a patchbay that

displays, visually, devices on the network such as graphic-based patchbays instead of

tree lists used for the NAS Explorer patchbay. As a result, the NAS Explorer patchbay

is difficult to use in Project studio networks. Hospitality/Convention Centres networks

are usually controlled by inexperienced personnel who do not need to see the whole

list of plugs as exposed by the NAS Explorer patchbay [Figure 1.3], but only those

(plugs) that have devices connected to them. Furthermore, the naming convention for

devices and plugs used by the NAS Explorer patchbay is too complex for novice users

in Hospitality/Convention Centres networks. The NAS Explorer patchbay makes use

of names such as OGT - I/One Dest and AES1L for device nodes and plugs

respectively. These do not make sense to Hospitality patchbay users; they prefer

working with simple familiar names such as speaker, microphone and radio that make

sense to them.

Table 1.1 shows examples of current non-mLAN patchbay types that are developed

using third-generation languages such as C, C++ and C# for Broadcast, Project studio

and Hospitality/Convention Centre networks. Non-mLAN patchbays do not utilise the

mLAN Client/Server architecture described in section 2.3.

Table 1.1: Current non-mLAN Patchbays Examples
Patchbay Type Patchbay Examples

Grid-Based Patchbays • OTARI mLAN Control Software , the CobraNetTM

Manager

• Digigram’s ESControl Management Software for

EtherSound networks

List-Based Patchbays • mLAN Patchbay

• PathfinderPC Router Control Software

Graphic-Based Patchbays • mLAN Version 2 Devices patchbay

• Digigram’s Hospitality Audio Manager

Chapter 3 gives a detailed description of these non-mLAN patchbays. They are

categorised into three groups namely; grid-based patchbays, list based patchbays and

graphic-based patchbays.

 6

1.2 The Problem Statement

Due to the rapid increase in distributed audio/video Firewire-based network usage in

the world at the time of this investigation, mLAN patchbays that control audio routing

over these networks have also evolved in complexity to accommodate more

functionality. Furthermore, the inclusion of Firewire as a networking standard has

resulted in a steady increase in the use of Graphic User Interface (GUI) as more and

more people move away from physically switching audio cables to perform audio

routing to software based audio routing. More functionality needs to be exposed on

the patchbay interface for the user. This functionality can be incorporated into

patchbay applications using third-generation languages as explained in the preceding

section but at a high cost in terms of the effort and time required to develop them. In

addition to this, current software development techniques require that software be

developed iteratively in cycles, alternating the development phases with testing. This

means software development tools and networks used should support fast

development of prototypes and parts of the system for testing as well as provide a way

of quickly modifying these, once they are tested at each cycle level. This has led to a

need among high-speed audio networking patchbay developers for a development tool

and environment that will:

• Enable the development of connection management applications easily and

within the shortest possible time.

• Provide strong graphic control component capabilities that will allow the

developers to incorporate as much functionality as possible on the patchbay

interface with least effort without compromising the quality of the software.

• Provide the reliability and flexibility required for developing applications

controlling signal routing in networks carrying real-time data.

• Allow for the implementation of connection management applications that

satisfy specific studio network requirements for different sound installation

networks.

The main aim of this investigation was to evaluate the possibility of using a high-level

graphic tool that supports scripting technology for developing mLAN connection

management applications instead of the traditional third-generation languages. Five

 7

possible scripting technologies that could be used include; the Microsoft Silverlight,

the Sun Microsystems JavaFX, the Adobe Systems Adobe Flash Professional 8, the

Adobe Systems Adobe Flex 2, and the Laszlo Systems OpenLaszlo [Chapter 4].

Adobe Flash Professional 8 using ActionScript 2.0 was chosen as the Integrated

Development Environment (IDE) of choice for developing mLAN connection

management applications for mLAN Client/Server networks. It was chosen for this

investigation because of its support for Object Oriented Programming (OOP) concepts

and its XML capabilities. In addition to this, in the beginning of this investigation,

there was Adobe Flash expertise in the Rhodes Computer Science department and the

software was already available locally. No costs were incurred to use Adobe Flash

and the developer had access to experienced Adobe Flash users, which accelerated his

learning of the Adobe Flash toolkit. To achieve this goal, three connection

management applications were developed for controlling audio routing in three sound

installation environments, namely Broadcast networks, Project studio networks and

Hospitality/Convention Centre networks. Two usability techniques were then

employed for evaluating the usability of the three applications to see if they fulfilled

the requirements of each audio. The two usability techniques used include a heuristic

evaluation that was done to find usability problems and missing functionality on the

patchbays that were fixed before the applications were sent to potential users for a

further usability testing based on a usability questionnaire.

The secondary aim of this investigation was to determine, using specific sound

installation requirements, which patchbay design (grid-based, list-based and graphic-

based) would best suit the three sound installation networks. Two prototypes, a

computer prototype and a paper prototype, were designed and tested by real users to

gather requirements, help decide on the best design and layout for the Project studio

and the Hospitality/Convention Centre patchbays respectively. Since the nature of

Broadcast networks are well defined and well known within the audio industry, the

best design and layout for the Broadcast patchbay was chosen from analysing current

Broadcast network patchbays [Chapter 3].

 8

1.3 Chapter Summaries

Chapter 2 describes the current state of the mLAN project. It discusses the main

mLAN components, namely the Enabler/Transporter architecture, the mLAN

Client/Server configuration, and the XML communication protocol that was used for

communication between the mLAN patchbays and the server (known as the mLAN

Connection Management (mCMS) server).

Chapter 3 describes current non-mLAN Client/Server and mLAN Client/Server

connection management applications. This chapter identifies and describes the three

basic sound installation network categories that include:

• Broadcast networks.

• Project Studio networks.

• Hospitality/Convention Centre networks.

Chapter 4 discusses five alternative development environments for developing mLAN

client patchbays:

• The Microsoft Silverlight.

• The Sun Microsystems JavaFX.

• The Adobe Systems Adobe Flash Professional 8.

• The Adobe Systems Adobe Flex 2.

• The Laszlo Systems OpenLaszlo.

The Adobe Systems Adobe Flash Professional 8 was chosen for developing mLAN

Client/Server connection management applications. A detailed description of the

Adobe Flash Professional 8 programming interfaces is also given.

Chapters 5, 6 and 7 describe the development process of a grid-based patchbay for

Broadcast networks, as well as two graphic-based patchbays for Project studio and

Hospitality/Convention Centre networks, respectively. Use case, Sequence diagrams,

and Object models are used to describe the functionality incorporated into each

 9

patchbay discussed. Each application was evaluated and tested using a heuristic

evaluation checklist and a usability test questionnaire.

Chapter 8 describes Adobe Flash Professional 8 and ActionScript 2.0 capabilities that

aided the development of the three mLAN Client/Server patchbays described in

chapters 5, 6 and 7.

Chapter 9 gives the conclusion to this research, and briefly discusses the benefits of

using Adobe Flash and ActionScript 2.0 for developing mLAN Client/Server

patchbays.

 10

CHAPTER 2

2 The Current Status of mLAN and the mLAN

Client/Server Architecture

A number of audio networking technologies have been developed and deployed by

various audio solution providers across the audio industry, to deal with end-to-end

connection management in various sound installations. These (audio networking

technologies) are a combination of hardware and software protocols that are designed

to control audio and MIDI data routing over various mediums such as Firewire and

Ethernet. True end-to-end connection management provides the capabilities of routing

audio and MIDI data from a hard-end plug of a device or a data-bus line implemented

within a device, onto an audio network, and vice-versa [Okai-Tettey, 2005]. This is

done using a user-level application that exposes virtual plugs of devices on the

network. The sound engineer performs audio routing tasks on this user-level

application. Examples of current audio networking solutions include:

• The Yamaha Corporation’s mLAN Digital Network Interface Technology

[Yamaha Corporation, 2004c].

• The Aviom’s A-NetTM Pro64 Technology [Aviom Inc, 2007].

• The Axia Audio’s Livewire Technology [Axia Audio/TLS Corporation,

2005].

• The Cirrus Logic’s CobraNetTM technology [Cirrus Logic, 2007].

• The Digigram’s EtherSound technology [Digigram, 2007].

• The Intelligent Media’s SmartBuss Technology [IMT Inc, 2005].

The Yamaha Corporation’s mLAN Digital Network Interface Technology was chosen

for this investigation as its extensive development was done by the Rhodes Audio

Engineering Group in collaboration with Yamaha Japan. This provided the researcher

with easy and cheap access to mLAN resources such as the mLAN source code and

documentation. Furthermore, the researcher had the opportunity of interacting and

learning directly from experienced mLAN developers at no cost. mLAN uses its

architecture (the Enabler/Transporter architecture – section 2.2) to support true end-

 11

to-end connection management with reasonable Quality of Service (QoS) and it

implements mechanisms that control bandwidth allocation within the network,

therefore optimising its utilisation and its distribution of audio to network devices.

This chapter defines mLAN and describes the mLAN Enabler/Transporter

architecture and its components that enable successful connection management in

mLAN networks.

2.1 The current mLAN Architecture

According to Fujimori and Foss (2003), mLAN can be described as a networking

technology that allows the transport of audio and music control data between audio

devices1. mLAN uses Firewire, also known as IEEE 1394, as its base networking

technology. Firewire is a high-speed serial-bus standard that offers enhanced

connectivity and data transfer for video, audio and storage peripheral applications

through a universal input/output (I/O) interface [Anderson, 1999]. It was chosen as

the mLAN base networking technology for the following reasons [Anderson, 1999,

Foss, 2005]:

• It has low latency transmission of audio (i.e. does not have long delays in

audio transmission) and determinism (i.e. provides guaranteed transmission

within a particular time frame) required by a network carrying real-time data.

• It has power-carrying capabilities that enable the connection of devices with

no power supply.

• It supports hot-plugging and plug-and-play performance capabilities, which

eliminate the need for a host workstation when attaching or detaching devices.

This is because when attaching/detaching devices to/from the network, an

automatic bus reset forces network re-enumeration, a process which

automatically detects new devices without the need for a controlling

workstation.

• It provides peer-to-peer data transfer capabilities. This eliminates the need for

routing audio and MIDI data to a controlling workstation in order for one

device to communicate with another. This reduces processing overhead and

improves communication speeds between devices.

1 mLAN network devices are also referred to as nodes , IEEE 1394 nodes or units.

 12

Figure 2.1 displays the current mLAN version 2 architecture that was utilised for this

investigation. The diagram shows two mLAN compatible devices, the Synthesizer and

the Mixer, connected to a controlling host Workstation. On the Workstation is a

module known as the Enabler that enables connections between mLAN plugs to be

made [Foss, 2005]. The Enabler comprises a Hardware Abstraction Layer, an A/M

(Audio and Music data) Manager layer, and an mLAN Plug Abstraction Layer. Each

mLAN device incorporates a Transporter, which is responsible for the transport of

audio and music data in a manner that is compliant with the Audio and Music data

transmission protocol [Fujimori et al. 2003]. The Transporter comprises a Node

Controller and the firmware that facilitates audio and music data encapsulation and

transmission between communicating mLAN devices.

Figure 2.1: mLAN Version 2 Architecture
 [Fujimori et al. 2003]

 13

2.1.1 The Enabler

The Enabler is responsible for setting audio and music data parameters for

transmission and reception of audio and music data sequences for all Transporters

under its control [Foss, 2005]. Many Enabler modules may exist within one mLAN

network but each Transporter is controlled by only one Enabler at a time [Fujimori et

al. 2003].

2.1.1.1 mLAN Plug Abstraction Layer

The top most layer of the Enabler module is the mLAN Plug Abstraction Layer,

which is responsible for implementing input and output mLAN plug abstractions for

all possible “hard” end points of all Transporters under the Enabler’s control

[Fujimori et al. 2003]. These mLAN plug abstractions can be viewed as the

terminators of the audio and music data sequences that are transmitted and received

by the Transporters. This layer also provides an API (Application Programming

Interface) that can be used by connection management applications (patchbays) for

performing tasks such as making and breaking audio connections and word clock

synchronisation [Foss, 2005].

2.1.1.2 A/M Manager Layer

Below the mLAN Plug Abstraction Layer is the A/M Manager layer, which is

responsible for reading audio and music data transmission and reception parameters

from the associated Transporter, and for updating these parameters in response to

requests from the mLAN Plug Abstraction layer [Fujimori et al. 2003]. Figure 2.2

shows the Enabler’s layers and interfaces. It can be seen from the diagram that each of

the Transporters under the control of an Enabler has a Transporter object that keeps its

state information and handles requests from both the Plug Abstraction Layer and the

actual Transporter [Fujimori et al. 2003]. The A/M Manager layer also provides an

API that is used by the Plug Abstraction Layer to perform its tasks.

2.1.1.3 Hardware Abstraction Layer (HAL)

The bottom layer of the Enabler is the Hardware Abstraction Layer (HAL) whose sole

purpose is to hide away the hardware implementations of the Transporters. This layer

and the Transporter Control Interface allow non-mLAN chip manufacturers to acquire

mLAN compliance [Fujimori et al. 2003, Figure 2.2]. Each chip manufacturer can

 14

provide a plug-in that bridges between the A/M Manager and their vendor specific

Transporter Control Interface [Figure 2.2].

Figure 2.2:The Enabler’s Layers and Interfaces
 [Fujimori et al. 2003]

Figure 2.2 shows three Transporters; one of which contains a Node controller from

Manufacturer A, and two of which contain Node Controllers from manufacturer B.

Both Manufacturer A and B have created workstation plug-ins and embedded

Transporter Control Interface software. In addition to this, Manufacturer A and B will

have created their own proprietary messaging protocols between their respective plug-

ins and Transporter Control Interfaces. The A/M Manager shown in Figure 2.2 has

instantiated three Transporter objects that provide for A/M related control, and access

to their respective hardware Transporters. The plug-ins are responsible for fulfilling

these control and access requests. Via interaction with these Transporter objects, the

 15

mLAN Plug Abstraction layer can build mLAN plug objects, which in turn are

accessible to connection management applications [Fujimori et al. 2003].

2.1.2 The Transporter

The Transporter is composed of hardware chips and firmware that allow mLAN

devices to transport isochronous streams within the mLAN network as well as detect

and interpret instructions passed by the controlling Enabler via asynchronous

transactions [Foss, 2005]. These Transporter hardware chips and firmware

collectively form a Node Controller. All devices participating in mLAN network

transactions host a Node Controller. Hardware chips that have been implemented for

the mLAN project include the PH1 chip, the NC1 chip, and the PH2 chip [Fujimori et

al. 2003, Foss, 2005].

2.1.2.1 mLAN Sequence Encapsulation and Extraction Hardware

The components of an mLAN connection management system are designed to control

the encapsulation of sequences into streams on the transmitting device side and their

subsequent extraction on the receiver’s side [Fujimori, et al, 2003]. Data structures,

formats and hardware have been developed for this encapsulation and extraction of

sequences in mLAN networks. Figure 2.3 displays two Node Controllers for a

Synthesiser (the transmitting device shown in Figure 2.1) and for a Mixer (the

receiving device shown in Figure 2.1).

 16

Figure 2.3: mLAN Node Controllers in a Transmitting Device (Synthesiser) and
a Receiving Device (Mixer) [Fujimori et al. 2003]

Each Node Controller comprises the following components [Foss, 2005]:

• An mLAN 2.0 Configuration ROM (Read Only Memory) – It keeps and

provides information for the device enumeration process. Information

provided by the ROM is utilised for:

a) Identifying software drivers for network devices.

b) Identifying diagnostic software for network devices.

c) Specifying capabilities for network devices.

Abstract View of
mLAN Node
Controller in
Receiving Device -
Mixer

Abstract View of
mLAN Node
Controller in
Transmitting
Device -
Synthesiser

 17

d) Optionally specifying module, node and unit characteristics for

network devices.

• The A/M Manager Layer – This layer is responsible for reading audio and

music data transmission and reception parameters from the associated

Transporters, and for updating these parameters in response to requests from

the Enabler.

• The Link Layer – This layer provides the interface between the transaction

layer (A/M Manager Layer) and the physical layer during asynchronous

transactions.

• The Physical Protocol Layer – This layer is the bottom layer of the

Transporter and provides the interface to the IEEE 1394 bus. It is this layer

that is responsible for detecting packet bits from the bus and transmitting

them packet bits to the network. This layer is implemented in hardware.

• The Processor – It controls the functioning of the A/M Manager Layer by

translating to it the asynchronous commands it receives from the controlling

Enabler.

2.1.2.2 mLAN Audio and Music data Transmission

Audio and control data in mLAN networks can be transmitted either isochronously or

asynchronously.

a) Isochronous Transactions

Isochronous streams transmitted and received by mLAN devices constitute

isochronous packets, which form sequences that transport successive samples of an

audio channel, or successive MIDI commands of a MIDI command stream [Fujimori

et al. 2003, Figure 2.4].

 18

Figure 2.4: An Isochronous Stream with Sequences
[Fujimori et al. 2003]

Figure 2.4 displays an isochronous stream with isochronous packets. Each packet

contains a number of data blocks. A data block comprises audio samples and MIDI

data from different sequences that occur at the same point in time. The sampling rate

of the transmitting device determines the number of data blocks in an isochronous

packet. The isochronous packet [Figure 2.4] consists of six data blocks and a header

that contains a channel number. All packets with the same channel number form an

isochronous stream. Each data block contains 32-bit quadlets that carry audio and

MIDI data. The quadlets are ordered within the data blocks, and those (quadlets) that

occur at a particular data block position are referred to collectively as a sequence

[Fujimori et al. 2003]. Figure 2.5 displays the packet format of an isochronous packet

[Foss, 2005].

Data Blocks

Isochronous
Packet

Header with
Channel Number

Isochronous
Stream

 19

Figure 2.5: The Isochronous Packet Format
 [Foss, 2005]

This section describes only a few isochronous packet fields shown in Figure 2.5 that

are relevant to this investigation [Foss, 2005]:

• The data length field - Holds a value that specifies the number of bytes of data

carried in the packet.

• The channel field - Holds the isochronous channel number assigned to the

packet and can contain any number from 0 to 63, which is the number of

nodes allowed on a single bus in mLAN networks. To achieve packet

transmission between two communicating devices, both devices should

transmit and receive packets at the same channel number.

• The SID (Source node ID) field - Holds the source device identifier, which is a

6-bit physical ID of the node transmitting the packet.

• The DBS (Data Block Size) field - Holds a number that indicates the data

block size.

 20

• The DBC (Data Block Count) field - Holds a sequence counter and continuity

checker that is used by receivers for audio synchronization and to detect any

lost data blocks.

• The SYT (Time Stamp) field - Indicates the time that a particular data block

within the packet should be presented at the receiver. This is also used for

audio synchronization.

In isochronous transactions, isochronous packets are transmitted every 125

microseconds which is equivalent to 8000 packets per second.

b) Asynchronous Transactions

Asynchronous transactions enable an IEEE 1394 node to write/read commands

to/from another node’s addressed memory location. According to Foss (2005), an

asynchronous transaction is initialised by a requester node and received by a

responder node. Each transaction consists of two subsections that include [Foss,

2005]:

• A request subaction - Transfers the address, command and data (for writes)

from the requester to the responder.

• A response subaction – Returns completion status (writes) back to the

requester node, or returns data during read transactions.

Asynchronous transactions are performed using asynchronous packets.

2.1.3 mLAN Device Synchronisation Mechanism

In order for two communicating devices to successfully transmit and receive audio

data from each other, they need to transmit and receive data at the same sample rate to

avoid duplication of audio samples and buffer overflows, which introduces undesired

audio breaks that affect the quality of the transmitted audio [Foss, 2005]. Current

supported sample rates are 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz

and 192 kHz. mLAN utilises the device synchronisation mechanism defined in the

IEC 61883-6 specification [IEC, 2005], which depends on two key points:

 21

• A cycle master/cycle slave relationship.

• The inclusion of the Common Isochronous Packet (CIP) header below the

IEEE 1394 isochronous header in each isochronous packet transmitted.

Each mLAN node implements a Cycle_Time register, which is incremented via a

24.576 MHz clock. The Cycle_Time registers of all nodes are synchronized by cycle

start packets sent by the cycle master node every 125 microseconds. These cycle start

packets contain the Cycle_Time value of the Cycle_Time register of the cycle master

device. All isochronous packets transmitted are time stamped with a 25-bit sample

rate of the transmitting device’s Cycle_Time register value and a delaying offset

added to it. This value is stored in the SYT field of the CIP header [section 2.1.2.2].

At the receiving device, the SYT field time stamp value is extracted and used to re-

create the sampling rate of transmitted audio samples [Figure 2.6].

Figure 2.6: Sample Clock Synchronisation
[Foss, 2005]

In Figure 2.6, a transmitter device is generating audio samples at 48 kHz, and

formatting them into data blocks within isochronous packets. At each 8th sample rate

clock tick, the Cycle_Time value of the transmitter device is sampled and an offset

added before its transmission within the next packet in the SYT field of the CIP

packet header. The value in the SYT field is intended to be the presentation time of a

data block (event) received by the receiver. The offset is known as the

TRASNFER_DELAY, and takes care of the delay incurred in the transfer of an

48 kHz

Transmitter Device Receiver Device Cycle Master Device

Cycle Time
Register

Cycle Time
Register

Cycle Time
Register

Isochronous packet

PLL

Time stamp
match?

8th sample
Time stamp + offset

Audio samples
(48 kHz)

 22

isochronous packet from its transmitter to its receiver, and allows packets travelling

along different paths to be presented at the same time. It also takes into account bus

resets that may occur during transmission. At the receiver’s side, the time stamp is

read. If this value is the same as the receiver’s Cycle_Time register value, it indicates

a match to the Phase Locked Loop (PLL) [Figure 2.6]. A CIP packet may contain

multiple events and only one time stamp. In order to associate the SYT time stamp

with a particular event, a unit known as the SYT_INTERVAL is used that varies

according to the sampling rate [Table 2.1]. The SYT_INTERVAL is defined as the

number of events between two successive SYT time stamps.

Table 2.2: SFC (Nominal Sampling Frequency Code) Definition

SFC (Nominal Sampling Frequency Code) definition
Value (decimal) Sample transmission frequency SYT_INTERVAL
0 32 kHz 8
1 44.1 kHz 8
2 48 kHz or not indicated 8
3 88.2 kHz 16
4 96 kHz or not indicated 16
5 176.4 kHz 32
6 192 kHz or not indicated 32
7 Reserved

The transmitter prepares the time stamp for the event using the following condition:

mod (DBC, SYT _ INTVAL) = 0

where DBC is the Data Block Count and SYT _ INTVAL is the number of events

between two successive SYT time stamps [Table 2.1].

At the receiver’s side, the index within a packet of the event to which the SYT time

stamp applies can be calculated from:

index = mod((SYT _ INTVAL - mod(DBC, SYT _ INTVAL)), SYT _ INTVAL)

where DBC is the Data Block Count and SYT _ INTVAL is the number of events

between two successive SYT time stamps [Table 2.1].

 23

The receiver is responsible for estimating the timing of events between valid time

stamps. Using this formula, the receiver determines the time stamp of a received

packet as well as its data block. If the time stamp does not match its register value, it

will not process this data block, and following data blocks until the cycle time is

matched [Foss, 2005]. Using these mechanisms two mLAN devices can be

synchronised to transmit and receive audio and MIDI data from each other at the same

sample rate.

2.2 mLAN Client/Server Configuration

Figure 2.7 displays the mLAN Client/Server configuration that is used by the mLAN

networks and that was utilised by connection management applications developed in

this investigation.

Figure 2.7: mLAN Client/Server Configuration

 [Fujimori et al. 2003]

Synthesizer

XML messages

Client Device
running mLAN

Control Patchbay

TCP/IP socket
connection

Firewire

mLAN mCMS

Enabler API
+

Enabler module mLAN
compatible units

Transporter Module Transporter Module

IEEE 1394 Node
Controller

IEEE 1394 Node
Controller

Mixer

 24

The mLAN Client/Server configuration [Figure 2.7] shows two mLAN compatible

devices (the Synthesizer and the Mixer) connected to the mLAN Connection

Management Server (mCMS) workstation using a Firewire cable. The mCMS

workstation integrates the Enabler module and the Enabler API. Each device on the

mLAN network hosts a vendor specific Transporter module [section 2.1] and an IEEE

1394 Node Controller. It is a requirement that all devices on the mLAN network

incorporate an IEEE 1394 Node Controller, which enables mLAN devices to

communicate with each other and the mCMS workstation over Firewire.

A communication protocol has been defined by Klinkradt (2004) that utilises

Extensible Markup Language (XML) messages. This communication protocol enables

mLAN client applications to communicate with the mCMS server through a TCP/IP

socket [Figure 2.8]. The current socket number is 52941. Any communication

medium can be used between the client and the server as long as they are able to

communicate over the TCP/IP socket.

Figure 2.8: Client Server Communication Model
 [Klinkradt, 2004]

The Client/Server approach allows for the decoupling connection management

between the controlling workstation that runs the client applications and the mCMS

server. In addition to this, communication using generic XML messages allows for

multiple applications, developed in any language to connect and communicate with

the mCMS server. The network can use any medium (physical Firewire cables,

wireless or Ethernet technologies) as long as the communicating devices can pass

mLAN Client

XML

TCP/IP

mLAN Server

XML

TCP/IP

 25

messages via TCP/IP [Fujimori et al. 2003]. As a result, client applications can be

deployed for a wide range of devices that include Laptops and standalone

workstations. When a user performs a connection management request (e.g. making a

connection or disconnection between two plugs) on the connection management

application, a request-specific XML document is created by the application and sent

to the mCMS server. Listing 2.1 shows a typical connection request XML document

that requests a connection between an output plug with sourcePlugID “1” (on a

device with device GUID “0013f00400011” and of type “audio”) to an input plug

with destinationPlugID “33” (on a device with device GUID “0013f00400000014”

and of type “audio”). When the request is fulfilled, audio is routed from the output

plug to the newly connected input plugs.

Listing 2.1: XML “connection” Request Document

On the server side, the Request Server module processes the information in the XML

document and forwards the request to the Devices Interface module. The Devices

Interface uses the Enabler API to access the Firewire bus and implement the request

in collaboration with the Transporter modules on each communicating device [Figure

2.9].

 26

Figure 2.9: mLAN Client/Server Communication Interfaces

mCMS server responses are sent by the server to the connection management

application using XML documents. Listing 2.2 shows a section of an XML

“configuration” document that is sent to the mLAN client application at start-up, and

each time the sound engineer requests an application update from the mCMS server.

Enabler API

Connection and
Configuration
Requests

IEEE 1394 Bus

Patchbay

TCP/IP socket

Request
Server

Enabler

Devices
Interface

Connection
Information

XML Documents

 27

Listing 2.2: XML “cconfiguration” Document

The XML “configuration” document elements correspond to the actual physical

components that constitute the mLAN network, and include:

• The IEEE1394Network element.

• The IEEE1394Bus element.

• The IEEE1394Device element.

a) The AudioPlug element.

b) The mLANDevicePlugLayouts element.

c) The mLANDeviceSyncSources element.

d) The mLANDeviceWordclockOutputs element.

• The connections element.

• The session element.

 28

The following sub-sections describe these elements in detail.

2.2.1 The IEEE1394Network element

The IEEE1394Network element is the top-level element that contains zero or more

IEEE1394Bus elements, one connections element and one session element.

2.2.2 The IEEE1394Bus element

The IEEE1394Bus element contains zero or more IEEE1394Device element(s). The

number of bridges on the mLAN network determines the number of IEEE1394 buses

that the network has. Listing 2.2 shows an IEEE1394 bus named “3FF”, which

represents the local IEEE1394 bus connected to the host workstation. The bandwidth

attribute value “2756” is the amount of unused bandwidth on the mLAN network.

2.2.3 The IEEE1394Device element

The IEEE1394Device element constitutes of four sub-elements, zero or more

AudioPlug element(s), one mLANDevicePlugLayouts element, one

mLANDeviceSyncSources element, and one mLANDeviceWordclockOutputs element.

It maps directly to a particular physical mLAN device on the mLAN network.

Globally Unique Identifier (GUID) numbers are used to uniquely identify each

mLAN device on the network. Listing 2.2 displays two IEEE1394Device elements,

which represent two devices with GUIDs “0013f00400400011” and

“0013f00400000014”. Other attributes of the IEEE1394Device element(s) include:

• Firmware – The firmware of the device.

• Model – The model number of the device.

• Nickname – The nickname of the device.

• NicknameIsWriteable – The variable which specifies whether a device

nickname can be changed (“yes”) or not (“no”).

• NumPossibleDeviceConnections – The number of possible connections for the

device.

• Vendor – The vendor of the device.

 29

2.2.3.1 The AudioPlug element

Each IEEE1394Device element contains one mLANDevice element, which in turn

contains zero or more AudioPlug elements. The mLANDevice element indicates that

the current device is an mLAN device. There are two types of AudioPlug elements;

the AudioInPlug element and the AudioOutPlug element. The direction attribute

identifies the type of AudioOutPlug element. The AudioInPlug element represents an

input audio plug, and the AudioOutPlug element represents an output audio plug.

Other AudioPlug element attributes include:

• Id – This attribute is the identification number of the plug.

• IsDangling – This attribute states whether the plug has a dangling connection

or not.

• NameIsWriteable – This attribute specifies whether the name of the plug can

be changed.

• PlugName – This attribute specifies the name of the plug.

• PlugType – This attribute specifies the type of the plug (Audio or MIDI).

2.2.3.2 The mLANDevicePlugLayouts element

Each IEEE1394Device element contains one mLANDevicePlugLayouts element,

which contains device Plug Layouts that are supported by the device.

2.2.3.3 The mLANDeviceSyncSources element

Each IEEE1394Device element contains one mLANDeviceSyncSources element,

which contains synchronisation sources that are supported by the device.

2.2.3.4 The mLANDeviceWordclockOutputs element

Each IEEE1394Device element contains one mLANDeviceWordclockOutputs

element, which contains the currently set word clock for the device.

2.2.4 The connections element

The connections element constitutes of one or more patch element(s), which represent

individual connections that exist between mLAN devices on the mLAN network.

 30

Each patch element identifies a single connection using two attributes; the

destEndPointLocator attribute and the srcEndPointLocator attribute.

• The destEndPointLocator attribute holds information that identifies a

particular destination plug. Listing 2.2 shows a patch element with

destEndPointLocator attribute value of :

 "NODE_GUID='0013f00400400011', MLAN_PLUG_ID='Audio In 1'"

Where the NODE_GUID variable holds the GUID of the destination device

(0013f00400400011) and the MLAN_PLUG_ID variable holds the plug

name (Audio In 1) of the destination plug receiving audio from the source

plug.

• The srcEndPointLocator attribute specifies the information that identifies the

source plug such as:

 "NODE_GUID='0013f00400000014', MLAN_PLUG_ID='Audio Out 2'"

Where the NODE_GUID variable holds the GUID (0013f00400000014) of

the source device transmitting audio and the MLAN_PLUG_ID attribute

holds the textual name of the source plug (Audio Out 2).

2.2.5 The session element

The session element holds session information for managing time-based sessions, and

is not used in the current implementation of mLAN.

2.3 Chapter Summary

This chapter discussed the current status of mLAN and its Enabler/Transporter and

mLAN Client/Server architectures. mLAN is defined as a networking technology that

is based on Firewire, which allows the transport of audio and music control data

between audio devices. Firewire was chosen as the base networking technology for

mLAN for the following reasons:

 31

• It has low latency and determinism required by a network carrying real-time

data.

• It has power-carrying capabilities and supports hot-plugging and plug-play

performance capabilities which eliminate the need of a controlling host

workstation

mLAN was chosen for this investigation because most of its development was done

by the Rhodes University Audio Engineering Group in collaboration with Yamaha

Japan. This provided the researcher with easy and cheap access to mLAN resources.

Furthermore, the researcher had the opportunity of learning from mLAN developers

themselves. mLAN, using the Enabler/Transporter architecture [section 2.1] supports

true end-to-end connection management with reasonable Quality of Service (QoS).

Data formats and hardware, such as the PH1, the NC1 and the PH2 chips, have been

developed for sequence encapsulation and extraction in mLAN networks. Collectively

these components described in this chapter ensure effective connection management

in mLAN networks and form the basis for this investigation. The mLAN

Client/Server architecture using XML messages enables the decoupling of client

applications from the underlying Enabler module. Therefore, mLAN clients can be

developed in any language and deployed on mLAN networks as long as they can

communicate with the server over TCP/IP.

The next chapter surveys current connection management applications for three sound

installation networks (the Broadcast networks, the Project studio networks and the

Hospitality/Convention Centre networks).

 32

CHAPTER 3

3 Connection Management Applications for Sound

Installations Networks

A connection management application (patchbays) can be regarded as the nerve

centre for audio signal routing within high-speed audio/video networks [Axia Audio,

2007]. It facilitates connection management by allowing the user to perform many

signal routing tasks on a single application. This presents the user with centralized

signal control capabilities in small personal studios and large professional audio

networks. Tasks that can be performed on a patchbay application include:

• Establishing and breaking audio connections between device plugs.

• Setting and clearing word clock Master/Slave configurations.

• Viewing network topology at different levels (Network, Bus and Device

levels).

• Saving/loading routing settings to/from a text file.

• Enabling the sound engineer to edit device properties such as device and plug

names.

• Enabling the sound engineer to create or delete user accounts as well as

manage resource distribution within the audio network.

• Enabling network users to book devices for their private use.

Connection management applications have been developed and deployed for various

sound installation networks, each having different audio routing requirements. For

purposes of this investigation, three sound installation networks were identified, and

these include:

• Broadcast networks.

• Project studio networks.

• Hospitality/Convention Centre networks.

 33

The following sub-sections discuss in detail each of these sound installation networks.

3.1 Types of Sound Installation Networks

3.1.1 Broadcast Networks

Broadcast networking solutions involve a high degree of complexity. In Broadcast

studios, digital audio/video is distributed as a stream of digital data bits over a single

or combination of two or more networks. As a result, Broadcast networks span large

areas and involve the use of complex mixers and bridge units to route various kinds of

audio/video data between audio devices and/or networks. Network Administrators for

these networks are usually highly skilled sound engineers who understand how the

audio/video data is routed on the network. These networks involve patching of many

plugs, therefore requiring a complex connection management application that can

expose as many plugs as possible for effective connection management.

3.1.2 Project Studio Networks

Project studio networks are much smaller than Broadcast networks, which tend to be

distributed in nature. Project studio networks are usually located in one building or

one room with only one administrator, and relatively fewer devices. These networks

usually consist of only one network (routing only one type of audio or video data)

while Broadcast networks combine one or more audio networks. It follows therefore

that they typically deal with fewer connections. Due to the small nature of Project

studio networks, sound engineers for these networks tend to develop a mental model

of the layout and topology of their studio. This is because there are shorter distances

between devices to be connected or disconnected. A the result, network administrators

for these networks tend to physically switch the cables connecting network devices to

perform audio routing. Sound engineers for these networks are usually music

producers, who have enough technical knowledge of their studio network to route

audio while Broadcast studio sound engineers are not necessarily music producers but

specially trained audio network administrators.

3.1.3 Hospitality/Convention Centre Networks

Hospitality/Convention Centre networks are the least complex of the three sound

installation networks, and can be operated with minimal experience and training.

 34

They are usually operated by inexperienced users who have no time to spend learning

or understanding the inner workings of the network, and how audio is routed and

transmitted by the network. All they are concerned about is performing the audio

routing tasks on the patchbay without having to know how these tasks are

implemented on the network. As a result, connection management applications for

these networks should hide the physical implementation of the network that is

involved in the routing of audio and expose only devices to be connected in a manner

that can be understood by an inexperienced user.

3.2 Current non-mLAN Client/Server Connection

Management Applications

mLAN-based and Non-mLAN connection management applications have been

developed that do not utilise the mLAN Client/Server architecture described in

section 2.1. Traditionally, these are predominately developed using third-generation

languages such as C, C++ and C#. Three categories of non-mLAN Client/Server

connection management applications can be identified, and they include:

• Grid-based patchbays.

• List-based patchbays.

• Graphic-based patchbays.

The following sections discuss these connection management application categories

in detail, and give current examples for each.

3.2.1 Grid-Based Patchbays

Grid-based patchbays are the most complex. They display devices and their plugs as

well as visually display their connection status. Grid-based patchbays combine a tree-

like structure (collapsible/expandable tree nodes) to display devices on the audio

network, and a grid-matrix that displays a visual representation of the connection

status of individual plugs on the network (whether a plug is connected, disconnected

or not usable). Grid-based patchbay examples include:

• The OTARI mLAN Control Software.

 35

• The CobraNetTM Manager.

• The Digigram’s ESControl Management Software.

3.2.1.1 OTARI mLAN Control Software

Figure 3.1 displays a screenshot of the OTARI mLAN Control Software for Otari

ND-20B networks that was developed by Otari using C++. It displays five Otari ND-

20B devices, namely mLAN ND-20B (54) – (1), mLAN ND-20B (57) – (2), mLAN ND-

20B (59) – (3), mLAN ND-20B (FE) – (4) and mLAN ND-20B (FF) – (5)[Figure 3.1].

OTARI (2001) defines an OTARI ND-20 unit as a “network distribution unit which

provides a networking solution for audio signals”. Multiple OTARI ND-20 units can

be connected via an IEEE 1394 network to convert supplied audio signals into

different formats or distribute audio signals within the network. OTARI ND-20 units

support 24-bit quantization and 96 kHz sample rate therefore can be used as a high

quality analogy-to-digital and/or digital-to-analogy converter, or a digital signal

sample rate converter. It has a maximum of 32-channel audio capacity (16 channels at

96 kHz) and a maximum of 96 channels for the entire ND-20 network system

[OTARI, 2001].

Figure 3.1: OTARI mLAN Control Software
[OTARI, 2005]

5

2

3

4

1

Live Connections

Unusable Cross-Points

 36

The OTARI mLAN Control Software application comprise of three panels on which

connection management tasks are performed. These include:

• The Topology pane.

• The Audio Routing Matrix pane.

• The Clock Setup pane.

a) Topology Pane

The Topology pane enables the sound engineer to view the layout of the IEEE 1394

network at three different topology levels, namely the Network level, the Bus level,

and the Device level. Network level topology is displayed on the Network pane,

which displays all buses and bridges connected to the host workstation. If there is no

bridge unit on the IEEE 1394 network, only one bus is displayed on the Network

pane. Bus level topology is shown on the Bus pane, which shows all devices on a

particular bus on the IEEE 1394 network [Figure 3.2].

Figure 3.2: OTARI mLAN Control Software – Bus Pane

Selected Device: mLAN ND-20B (54)

Master Device: mLAN ND-20B (65)

Device Details

Slave Devices

 37

The number in parenthesis affixed to each device name is the Device ID. In Figure

3.2, the device mLAN ND-20B (65) is configured as the word clock master for the

network, whilst all other devices are slaves. The right hand section of Figure 3.2

displays the Symbol Key, and the selected Device Details, which shows information

for a particular device, which is selected on the bus Topology pane. The Device

Details section currently shows details for the device mLAN ND-20B (54), which is

selected on the display. Device information displayed includes:

• Its device name – mLAN ND-20B (54).

• Its device vendor – OTARI.

• Its device model – ND – 20B.

• Its device Input plugs – A-1: AES3 to A-5: AES3.

• Its device Output plugs – A-1: AES3 to A-5: AES3.

The Device pane displays input and output plugs for a particular device on the IEEE

1394 network [Figure 3.3].

Figure 3.3: OTARI mLAN Control Software – Device Pane
[OTARI, 2005]

Plug Details

 38

If a plug is selected on the main display of the Device pane (i.e. A-1: AES3 plug in the

Figure 3.3 --circled), its information is displayed on the right section of the pane (the

Plug Details). A-1: AES3 plug details displayed include:

• Its plug name – A-1: AES3.

• Its plug type – audio plug and is an output plug.

• Its sample rate – 48.0 kHz.

b) Audio Routing Matrix

The Audio Routing Matrix is used for setting audio routings. It displays IEEE 1394

devices and their associated plugs in two trees [Figure 3.1]. At the centre of the

application is a grid-matrix that displays the connection status of IEEE 1394 device

plugs, on which connection management is performed. The tree list on the left side of

the matrix lists input plugs while the tree list shown above the matrix lists the output

plugs. Plug cross-points with blue round dots represent live connections [Figure 3.1].

For example, inputs plug C-1: AD on device mLAN ND-20B (57) is connected to

output plug A-1: AES3 on device mLAN ND-20B (54). The red “x” icons represent

the cross-points on which connections cannot be made. For instance, red “x” icons are

shown at the device level column of the outputs tree for the device mLAN ND-20B

(57) (shown circled in Figure 3.1) and its open plugs on the input plugs tree because a

plug cannot be connected to a device but only to another plug, and plugs of the same

device cannot be connected to each other. The “–” icon denotes a point connecting

different layers such as a bus to a unit, or a unit to each I/O plug [Figure 3.1].

Audio connections and disconnections are made by simply clicking on the cross-point

of two plugs to be connected or disconnected. Connections and disconnections are

applied by clicking the Apply button [Figure 3.4].

 39

Figure 3.4: Update and the Apply Buttons
 [OTARI, 2005]

The Update button is used to force a process that gets the latest information about the

network devices, and plugs connection states. Although working with the Routing

Matrix is easy once a user is oriented with it, it does not clearly show the user which

tree list contains output nodes or which tree list contains input nodes. By using a

combination of colours and shapes to represent different connection states of the

device plugs, the Audio Routing Matrix makes it easy for the sound engineer to see

which plugs are connected. Collapsible trees allow for the viewing of many devices at

a time.

c) Clock Setup Pane

Figure 3.5 shows the Clock Setup pane in which word clock Master/Slave

configurations are performed on the OTARI mLAN Control Software.

Figure 3.5: OTARI mLAN Control Software – Clock Setup Pane

[OTARI, 2005]

Apply Button Update Button

Make Slave Button Remove Slave Button

 40

The Word Clock pane has two main sections [Figure 3.5], namely the “Capable

Masters” section, and the “Capable Slaves” section. The “Capable Masters” section

displays devices that can be configured as master devices and the “Capable Slaves”

section displays devices that can only be made slaves. Devices that are not currently

set as a slave or a master are displayed in the middle column between the “Capable

Masters” column and the “Capable Slave” column. To set a word clock Master/Slave

configuration, the sound engineer clicks and selects a device to be made a master on

the “Capable Masters” field, and then clicks and selects as many slave devices as

possible from the “Capable Slaves” field. Clicking the Make Slave button makes sure

newly set slave device nodes appear under their master device on the “Capable

Masters” field. If the sound engineer is satisfied, clicking the Apply button would

apply the configuration to the network.

To clear a word clock Master/Slave configuration, the sound engineer simply clicks

and selects the master device to be cleared and clicks the Remove Slave button. When

the Apply button is clicked, the slave setting is cleared and applied to the network.

3.2.1.2 CobraNetTM Manager

The CobraNet™ Manager software, like the OTARI mLAN Control Software,

displays the current status of the CobraNet™ network using a combination of two

device tree lists and a grid-matrix. CobraNet™ is a standard developed by Peak Audio

that is owned by Cirrus Logic Inc [Cirrus Logic, 2007]. It is based on the hardware

and protocol-layer of traditional Ethernet networks [D and R Electronica B. V., 2007].

Benefits of using CobraNet™ include:

• Its transportation of high fidelity, uncompressed digital audio in real time over

off-the-shelf, switched Ethernet networks.

• Its use of standard Ethernet hardware and equipment, which guarantees cost

effective digital networking as no new infrastructure need to be installed to use

it.

• Its use of SNMP (Simple Network Management Protocol) combined with

numerous fault tolerant features provides reliability, powerful control and

monitoring of the network and its devices.

 41

Three packet types make up the CobraNet™ protocol, namely beat, isochronous data

and reservation packets [Cirrus Logic, 2007]. The beat packet is directed at a

multicast address and carries the network operating parameters, clock, and

transmission permissions. Only one device on the network transmits beat packets, but

all devices on the network are required to listen for these packets [Okai-Tettey, 2005].

The isochronous packet is the carrier of audio data and is subdivided into bundles. A

bundle is the smallest network audio routing envelope, with a capacity to transmit up

to 8 audio channels. Table 3.1 summaries CobraNet™ capabilities.

Table 3.3: CobraNet™ Capabilities
Capability Description

Latency

2.66 ms and 1.33 ms with low latency mode,

5.33 ms otherwise.

Number of channels Up to 64 channels of 20-bit audio at 48 kHz
sample rate.More channel count with 16-bit
audio and less with 24-bit audio.

Network transport CAT-5 cabling. Daisy chain and star

Control and monitoring CobraNetTM Manager developed by D&R
Electronica

Open standard/Proprietary based Proprietary based, but uses a standards based
transport

Figure 3.6 shows the CobraNet™ Manager software interface. Each device displayed

on the CobraNet™ Manager software has 4 receiving sockets and 4 transmitting

sockets, and a reference number [Figure 3.6]. These form the connection points for

connection management on the matrix. CobraNet™ Manager Software makes audio

connections by setting-up bundle numbers. An audio connection is made between a

receiver and transmitter if they have the same bundle numbers set. Bundle numbers

range between 1 and 65535. Different manufacturers/products use different ways of

manipulating these bundle numbers [Table 3.4].

Table 3.4: Ways of Setting and Manipulating Bundle Numbers

Manufacturer/Product Method for controlling bundle
numbers

D&R Lyra Use a webpage
Rane NM48/NM84 Use an encoder
Yamaha NHB32-C/ACU16-C Use USB with an external computer
Crown PIP Use their own IQ software
Others Use DIP Switches

 42

Bundle numbers can also be automatically assigned to devices when the sound

engineer clicks on a cross-point of two sockets to be connected on the matrix. The

cross-points are prepared using SNMP messages [D and R Electronica B. V., 2007].

Figure 3.6 shows an example of this concept for two cross-points for sockets Tx2 on

device USB Mixer and Rx2 on device Lyra and sockets Tx2 on device Yamaha NHB-

32USB Mixer and Rx3 on device Lyra.

Figure 3.6: CobraNetTM Manager
 [D and R Electronica B. V., 2007]

The Gray Matrix Area on the routing matrix depicts cross-points for sockets that

cannot be connected because they are on the same device (internal audio routing is not

allowed). The Yellow Matrix Area represents cross-points for sockets that can be

connected. There are three types of connections that can be made on the CobraNet™

Manager software [D and R Electronica B. V., 2007]:

• Multicast connections - These involve a single transmitter transmitting to

many receivers.

Grey Matrix Area Yellow Matrix Area

 43

• Unicast connections - These involve a single transmitter transmitting to only

one receiver using bandwidth on a dedicated link.

• Private connections - These involve a private receiver only receiving audio

from a known transmitter.

The CobraNet™ Manager software uses a built-in scheduler to plan connections that

are applied to the network based on the time they are scheduled to run. A user can

configure a cross-point of two sockets to hold a multicast, private, unicast and secure

connection events by simply right-clicking the required cross-point and selecting the

correct menu item. CobraNet™ Manager software also allows the user to define

custom plug-in functions and macros that can be triggered from the scheduler and/or

from any plug-in. Each macro can hold one or more events. The sound engineer uses

the Macro Event List to add, delete and change macro events. There are three types of

events that can be added onto a Marco Event List:

• SNMP Events – These are events that can be triggered by SNMP messages.

• Cross-Point Events – These are events set on a cross-point of two sockets.

• Plug-in Functions – There are events triggered by external plug-in functions.

3.2.1.3 ESControl Management Software

The ESControl Management Software [Figure 3.7] is a Client/Server application for

connection management in Digigram's EtherSound range of products that include

EtherSound ES8in, ES8mic, ES881, ES1241, ES16161, LX6464ES and miXart 8 ES

[Digigram SA, 2007a].

 44

Figure 3.7: ESControl Management Software
 [Digigram SA, 2007a]

Like the OTARI mLAN Control Software and the CobraNetTM Manager Software

discussed in sections 3.3.1.1 and 3.3.1.2 respectively, the ESControl Management

Software combines two tree lists and a grid-matrix on which connection management

is performed. The ESControl Management Software Server application uses a non-

dedicated Ethernet to connect to the EtherSound network it controls. The ESControl

Management Software also incorporates a multi-client application with the following

features and capabilities [Digigram SA, 2007a]:

• A matrix interface [Figure 3.7].

• Automated network discovery capabilities.

• Save network-wide EtherSound configurations for instant reload.

• Supports remote system management and diagnosis using TCP/IP to connect

to the server.

To establish audio connections, the sound engineer simply clicks the cross-point of

two plugs to be connected [Figure 3.7]. The green “x” icons on the grid-matrix

Live Connections

Grid-Matrix

 45

represent a live connection. Audio connections can be broken by clicking a cross-

point with a green “x” icon for the plugs to be disconnected.

3.2.2 List-Based Patchbays

List-based patchbays display devices and their associated plugs in a list structure. This

means list-based patchbays display a large number of device nodes and plugs at a

time, a feature that is required for large and complex audio networks. List-based

patchbay examples include the Yamaha’s mLAN Patchbay and the PathfinderPC

Router Control Software.

3.2.2.1 Yamaha mLAN Patchbay

Figure 3.8 shows the list-based Yamaha mLAN Patchbay for controlling audio

routing between version 1 mLAN devices [Yamaha Corporation, 2004b]. It has three

panels on which connection management tasks are performed, namely the Audio

panel, the MIDI panel, and the Word Clock panel. The Audio tab, the MIDI tab, and

the Word Clock tab are used to access these panels [Yamaha Corporation, 2004b,

Figure 3.8]. The mLAN Patchbay Audio and MIDI panels display device plugs in two

separate lists. The From list displays source plugs and the To list displays destination

plugs. If a plug on the From list is connected, the connection information of the

destination plug that is connected to it is shown directly opposite to it on the To list. If

a plug on the From list is not connected, a “---” (hyphen) is displayed on the To list

[Figure 3.8]. Figure 3.8 shows that the output plug AUX2 is connected to input plug

Input 1, and is transmitting at 32 kHz.

 46

Figure 3.8: Yamaha mLAN Patchbay – Audio Page
 [Yamaha Corporation, 2004b]

To establish audio connections on the Yamaha mLAN Patchbay, the sound engineer

right-clicks the source plug on the From tree list. By traversing the submenus that

appear, the engineer selects the desired destination plug. Output plugs that cannot be

selected are disabled (shown greyed-out on the Audio panel [Figure 3.8]). Right-

clicking areas that are displayed as “----” has no effect. If the connection is successful,

the destination plug information immediately appears in the To column of the Yamaha

mLAN Patchbay [Figure 3.8]

To break audio connection, the sound engineer right-clicks the output plug on the

From section of the Yamaha mLAN Patchbay and selects the “Disconnect (T)” menu

item on the submenu that appears. Word clock Master/Slave configurations are set on

the Word Clock panel of the Yamaha mLAN Patchbay. To set the Master/Slave

configuration, the sound engineer right-clicks the device to be made slave on the

Slave section of the Word Clock panel [Figure 3.9]. On the submenus that appear, the

user selects the proper master device for the selected slave. Figure 3.9 shows this

process for setting the master device magnolia.

Audio Tab MIDI Tab Wordclock Tab Sources List Destinations List

 47

Figure 3.9: mLAN Patchbay – Word clock Synchronisation
[Yamaha Corporation, 2004b]

3.2.2.2 PathFinderPC Software

The PathFinderPC software is a Client/Server Router control software package. It is

designed to provide facility-wide control over any number of audio, video and

Machine Control routers including the Axia Livewire distributed routing system [Axia

Audio, 2007]. The software consists of a server module called the PathFinderPC

Server that communicates via a serial port or Ethernet with the routers, and a client

application called the PathfinderPC Client that is a graphical user interface on which

sound engineers perform connection management tasks [Axia Audio, 2004, 2007].

The client application connects to the server using the TCP/IP protocol over any

established Local Area Network or even over the Internet. The server application

makes the client requested-changes to any of the routers in the routing system and

provides updates to the client application interface. The PathfinderPC package also

includes a tool called the Panel Designer and an additional application called the

PathfinderPC Mini. The Panel Designer tool allows a designer to create custom

software routing panels. These panels are then available in the PathfinderPC Client

application for the end-user. The PathfinderPC Mini application is used in a situation

where the only controls the end user should access are those available through one of

the custom designed panels [Axia Audio, 2004, 2007].

Details of the PathFinderPC Server are beyond the scope of this investigation.

However, additional information can be acquired from the PathfinderPC manual

[Axia Audio, 2004, 2007]. The PathfinderPC client application includes the following

features and capabilities [Axia Audio, 2007]:

• It has three different routing views and methods for viewing and for making

route changes.

 48

• It has a simple interface for creating and activating entire scene changes to

quickly change multiple routes in the system.

• It has the ability to lock routes so that they may not be changed by another

user during a show.

• It has resource sorting capabilities.

• It has a Virtual Router Creation panel to create custom route lists for a

particular room and/or to tie points together from different kinds of routers.

• It has an Event Programming Interface for creating standard events.

The PathfinderPC client is used to make routes, create and edit virtual routers, create,

edit, and activate scene changes, as well as schedule events. It also has a search

engine for finding route points and scenes throughout the entire routing system. At

start-up, a Server details dialog box opens that allows the sound engineer to specify

the IP address or a fully qualified name of the computer running the server application

as well as the TCP/IP socket number of the server application (the default socket

number is 5200). When the sound engineer clicks the Chart View under the view

menu, a graphical grid view of the routing status is displayed [Figure 3.10]. Green

dots represent cross-points with live connections which have streaming audio. Grey

dots represent cross-points with live connections but with no streaming audio.

 49

Figure 3.10: PathfinderPC Router Control Software
[Axia Audio / TLS Corporation, 2007]

3.2.3 Graphic-Based Patchbays

Graphic-based patchbays provide a pictorial representation of the devices and plugs

on the audio network. The Yamaha’s mLAN Graphic patchbay for version 2 devices

is an example of graphic-based patchbays.

3.2.3.1 Yamaha mLAN Graphic Patchbay

The Yamaha mLAN Graphic patchbay enables the user to setup and manage

connections between mLAN devices using a graphic interface to connect and

disconnect virtual audio/MIDI connectors [Yamaha Corporation, 2004a]. C++ was

used for developing the Yamaha mLAN Graphic Patchbay. Figure 3.11 shows a

screenshot of the Yamaha mLAN Graphic patchbay that displays three mLAN

devices on the IEEE 1394 network:

• The mLAN Windows PC.

• The O1x.

• The MOTIF ES7.

Live Connections with
No Streaming Audio

 Live Connection
with Streaming Audio

 50

Device graphics can be dragged around to specified locations within the Yamaha

mLAN Graphic patchbay display. In Figure 3.11, the O1x device is dragged from the

right-side of the application shown as a solid brown square (its original location) to

the left-side of the application by simply clicking it, dragging and dropping it at one

of the Drop locations designated by the brown empty squares.

Figure 3.11: The Yamaha mLAN Graphic Patchbay
 [Yamaha Corporation, 2004a]

The Menu Bar of the Yamaha mLAN Graphic Patchbay contains various editing and

setup function menu items. Menu Bar items can be assessed by clicking the desired

menu name to display the pull-down menu, and then choose the appropriate menu

item to apply [Yamaha Corporation, 2004a]. Figure 3.12 shows the Tool bar of the

Yamaha mLAN Graphic Patchbay that contains icons, which allow the sound

engineer to use the same functions and commands that can be accessed from the Menu

bar.

Figure 3.12: mLAN Graphic Patchbay – Tool bar
[Yamaha Corporation, 2004b]

mLAN Windows PC

O1x

MOTIF ES7

 51

Tool bar icons enable access to capabilities such as:

• Opening saved routing settings (1).

• Saving routing settings (2).

• Viewing either MIDI or Audio plugs (3).

• Setting Master/Slave configurations (4).

• Refreshing the mLAN Graphic Patchbay (5).

• The help documentation (6).

To establish audio connections using the Yamaha mLAN Graphic Patchbay, the

sound engineer opens the “Outputs Connector Window” of the source device and the

“Inputs Connector Window” of the destination device by clicking their maximise

buttons. These display the input and output plugs in detail [Figure 3.13]. Figure 3.13

shows the MOTIF ES7 device and the mLAN Windows PC device to be connected. To

make the connection between plugs, for example between the plug Out 1 of the

MOTIF ES7 device and the plug In 1 of the mLAN Windows PC device, the sound

engineer clicks the box next to the output and input labels of the two plugs on the

open “Output” and “Input Connector Windows”.

Figure 3.13: Yamaha mLAN Graphic Patchbay – Establishing Audio Connection
[Yamaha Corporation, 2004b]

MOTIF ES7

mLAN Windows PC

 52

A virtual cable connector appears in the box [Figure 3.13] for the plug Out 1 of the

MOTIF ES7 device. If the connection is successful, a coloured cable of the same

colour as the output node is drawn to reflect the connection between the two plugs

connected [Figure 3.14].

Figure 3.14: mLAN Graphic Patchbay – Successful Connection
[Yamaha Corporation, 2004b]

Other connection management tasks that can be performed on the Yamaha mLAN

Graphic Patchbay include:

• Breaking audio connections.

• Setting word clock Master/Slave configurations.

3.3 Current mLAN Client/Server Connection Management

Applications

At the time of this investigation, only a Windows Explorer - style patchbay (known as

the NAS Explorer patchbay – Figure 3.15) had been developed above the mLAN

Client/Server architecture described in section 2.2. The NAS Explorer patchbay is a

list-based connection management application that allows users to perform various

audio patching tasks such as establishing audio connections or disconnections

between output and input plugs of two or more transporter nodes, and setting of word

mLAN Windows PC

MOTIF ES7

 53

clock configurations [I/One Connects, 2007a]. The devices shown in the NAS

Explorer patchbay screenshot [Figure 3.15] are two I/One audio breakout boxes, the

OGT - I/One Src and the OGT - I/One Dest, and a Yamaha Corporation’s MAP4

board, as well as the host workstation, mLAN Windows PC. An I/One breakout box

carries over a hundred audio channels with word clock and control data on one

Firewire cable [I/One Connects, 2007b]. Each of these devices hosts an IEEE 1394

Node Controller that it uses to communicate with other devices over Firewire.

Figure 3.15: NAS Explorer Patchbay

The NAS Explorer patchbay uses the Client/Server architecture of the mLAN project

and utilises XML messages as the communication protocol between it and the mLAN

Connection Management Server (mCMS) server. In Figure 3.15, two separate

sections of the NAS Explorer patchbay are visible. There is the Source section and

Destination section. The Source section displays a tree list of output plugs of four

nodes on the mLAN network, while the Destination section displays input plugs of

the four nodes on the mLAN network. Using these two collapsible/expandable tree

lists, the NAS Explorer enables sound engineers to view many devices in a simple and

understandable way. Due to the NAS Explorer’s simplicity, connection management

Bandwidth Label

 54

tasks are easily performed. For instance, to establish a connection between two plugs,

the sound engineer clicks and expands the two device nodes whose plugs are to be

connected on the Source and Destination trees (OGT - I/One Src and the OGT - I/One

Dest devices - Figure 3.15). Once the trees are expanded, the sound engineer can

select the plugs to be connected and right-click either of them.

In Figure 3.16, the sound engineer selected the output plug Analog In 1 on the source

device OGT - I/One Src and the input plug Analog out 1 on the destination device

OGT - I/One Dest. A “Connect Analog In 1 --> Analog Out 1” submenu will appear

[Figure 3.16] that the sound engineer clicks to establish the connection between the

two plugs. The request is implemented automatically without any further involvement

of the sound engineer if there is enough bandwidth on the network otherwise an error

message dialog box pops up notifying the user of the problem. If the connection is

successful, audio should be routed from the output plug Analog In 1 on the source

device OGT - I/One Src to the input plug Analog Out 1 on the destination device OGT

- I/One Dest.

Figure 3.16: NAS Explorer Patchbay - Establishing Audio Connections

Breaking audio connections is performed by right-clicking one of the plugs to be

disconnected, either on the Sources tree or Destination tree and clicking the

“Disconnect OGT - I/One Src -> Analog Out 1” submenu that appears [Figure 3.17].

This command will break the audio connection between Analog Out 1 on device OGT

- I/One Src and Analog In 1 of device OGT - I/One Dest.

 55

Figure 3.17: NAS Explorer Patchbay - Breaking Audio Connections

Dangling connections can be cleared by simply right-clicking the plug with the

dangling connection. A “Clear Dangling Connection” submenu item will appear that

the sound engineer clicks to clear the dangling connection [Figure 3.18].

Figure 3.18: NAS Explorer Patchbay - Clearing Dangling Connections

A dangling connection is a destination-less routing left only at the sending or

receiving side of two communicating devices. This may occur on the receiving device

plug if the corresponding source device it is receiving from is removed from the

network without performing a proper disconnection. The opposite is also true in

which case the dangling connection would occur on the source plug.

Setting word clock Master/Slave configurations is done on the Wordclock panel

[Figure 3.19]. To set a global master the sound engineer right-clicks the device to be

made a global master on the Available Wordclock Masters section of the Wordclock

panel. A submenu will appear with the menu item “Make Global Master” that the

user clicks to commit the setting to the mLAN network. There is also the option of

selecting the word clock source and the sample rate of the device to be a master.

 56

Figure 3.19: NAS Explorer Patchbay - Setting Master/Slave Configurations

The NAS Explorer patchbay also displays the amount of bandwidth available on the

mLAN network. Figure 3.15 shows that at the time this snapshot was taken there was

57% available bandwidth. The sound engineer operating the NAS Explorer

application has an option of viewing either Audio or MIDI plugs individually or

together by simply unselecting or selecting the appropriate check box on the top-

middle section of the NAS Explorer application. Additional functionality that can be

performed on the NAS Explorer patchbay includes:

• Renaming mLAN devices on the network.

• Modifying the server port number and its DNS name.

• Saving network routings status into a file.

• Opening saved settings.

Although the NAS Explorer patchbay can serve the needs of small sound installation

networks like simple Project studios, it can not be used in application areas. For

instance, b simply looking at the trees, one cannot tell the connection status of a plug

or which plugs are connected, except by physically expanding the individual plugs.

This may prove to be disadvantageous in large and complex networks like in

 57

Broadcast networks. Other patchbay designs need to be implemented that utilise the

mLAN Client/Server architecture to deal with the diverse requirements in complex

networks.

3.4 Chapter Summary

This chapter listed general audio routing requirements for high-speed audio networks

that need to be satisfied by any reliable connection management application. Some of

the important audio requirements include:

• Establishing and breaking audio connections between device plugs.

• Setting and clearing word clock Master/Slave configurations.

• Saving/loading routing settings to/from a text file.

• Enabling the sound engineer to edit device properties such as device and plug

names.

• Enabling the sound engineer to create/delete user accounts as well as manage

resource distribution within the audio network.

• Enabling network users to book devices for their private use.

This investigation identified three sound installations, namely the Broadcast networks,

Project studio networks and Hospitality/Convention Centre networks for which

patchbays are to be developed that utilise the mLAN Client/Server architecture

discussed in section 2.2. Broadcast networks are the most complex of the three

networks since they span large areas and are distributed in nature, and use

sophisticated software and hardware such as bridges and routers to connect one or

more audio/video networks routing various kinds of data while

Hospitality/Convention Centre networks are the simplest and are usually operated by

musicians. They deal with fewer connections compared to Broadcast networks that

require experienced engineers to operate and deal with hundreds of connections at a

time. Project studio networks are in between the two extremes in terms of connection

complexity.

A number of non-mLAN Client/Server connection management applications have

been developed for these networks using third-generation languages such as C, C++

 58

and C#. These applications can be grouped into three groups, namely the Grid-based

patchbays, the List-based patchbays, and the Graphic-based patchbays. Only one

mLAN Client/Server-based patchbay, the NAS Explorer, has been developed. The

NAS Explorer patchbay is easy to use and understand but cannot be used in all sound

installation networks.

The next chapter investigates the alternative development environment for mLAN

Client/Server patchbays.

 59

CHAPTER 4

4 An Alternative Development Environment for

mLAN Client/Server Patchbays

Connection management application developers for mLAN Client/Server patchbays

need to achieve a balance between producing a high quality, highly interactive

application, and the amount of time and effort required to develop the application.

mLAN Client/Server patchbays are connection management applications that utilise

the mLAN Client/Server architecture discussed in section 2.2. As discussed in

chapter 3, current non-mLAN and mLAN Client/Server patchbays (e.g. the NAS

Explorer patchbay discussed in section 3.3) are predominantly developed using third-

generation languages such as C, C++ and C#, which require enormous amounts of

effort and time to develop a usable Graphic User Interface. This is because third-

generation languages and their development environments do not provide essential

tools and techniques for quickly creating and manipulating the behaviour of the

graphic elements that form GUI applications. Furthermore, third-generation languages

use complex syntax and structures that make it difficult for GUI developers to

develop highly interactive GUI applications in the shortest possible time.

This investigation evaluates the possibility of using an IDE that supports scripting

technologies for developing mLAN Client/Server patchbays. Scripting technologies

were initially created for purposes of manipulating and gluing together components

for distributed systems that are developed using third-generation languages such as C

and C++. At the time of this investigation, scripting technologies had matured to

incorporate powerful development tools, OOP concepts and support the development

of highly interactive GUI applications for both the web and desktop standalone

applications.

Prechelt (2002) compared scripting languages and third-generation languages for the

following characteristics:

• Run time.

 60

• Memory consumption.

• Source text length.

• Comment density.

• Program structure.

• Reliability.

• Amount of effort required to write programs.

Prechelt (2002) concluded that scripting languages are more effective and productive

than third-generation languages like C and C++. Prechelt (2002) also found that third-

generation language programs are typically two to three times as long as scripting

language programs and they tend to contain a significantly higher density of

comments. Moreover, his investigation found that scripting language programs take

only one third of the time required by programmers for the third-generation to design,

write, and test the program. This is mainly because of many improvements in

scripting technologies that have evolved to include many third-generation language

concepts such as OOP, inheritance, use of classes, objects, encapsulation, constructors

and powerful graphics development tools. Examples of scripting languages and

development environments available for application development today include

JavaScript, HyperText Preprocessor (PHP), Perl, ActionScript, Sun Microsystems

JavaFX, Adobe Systems Flash Professional 8, and Adobe Flex 2.

4.1 Possible Alternative Client Development Environments

This section discusses possible mLAN Client/Server clients development

environments and scripting languages that can be used by interactive application

developers. The development environments discussed include:

• The Microsoft Silverlight.

• The Sun Microsystems JavaFX.

• The Adobe Systems Adobe Flash Professional 8.

• The Adobe Systems Adobe Flex 2.

• The Laszlo Systems OpenLaszlo.

 61

4.1.1 Microsoft Silverlight

Microsoft Silverlight is a cross-browser, cross-platform for building and delivering

next generation .NET based media experiences and rich interactive applications for

the Web [Microsoft Corporation, 2007a]. It supports Asynchronous JavaScript and

XML (AJAX), Visual Basic.Net (VB.Net), C#, Python, and Ruby [Microsoft

Corporation, 2007a]. It also uses vector-based graphics, media, text, animation, and

overlays that enable seamless integration of graphics and effects into any existing

Web application. Since Microsoft Silverlight is based on the Microsoft .NET

Framework, it gives developers the opportunity to use existing skills and tools.

Microsoft Silverlight presentation capability is based on the Microsoft .NET

Framework 3.0 (the Windows programming infrastructure) and the eXtensible

Application Markup Language (XAML) [Microsoft Corporation, 2007b]. Figure 4.1

shows the Microsoft Silverlight authoring environment where developers create and

modify media components during application development.

Figure 4.1: Microsoft Silverlight Application Autho ring Environment
 [Microsoft Corporation, 2007b]

 62

The XAML tab is used to access the XAML editor that allows the developer to enter

XAML commands to control the application graphics, and add interactivity to the

application under development. Microsoft Silverlight applications run on both Mac

and Windows Operating Systems (OS). Its architecture comprises of three

components; the presentation framework, the .Net Framework and the installer and

updater modules [Figure 4.2].

Figure 4.2: Microsoft Silverlight Architecture
 [Microsoft Corporation, 2007b]

4.1.2 Sun Microsystems JavaFX

Sun Microsystems JavaFX is a group of products developed by Sun Systems that are

based on Java technologies which enable developers to create and deploy interactive

Rich Internet Applications (RIA) of high quality easily and in a very short space of

time. Sun JavaFX applications can run on the desktop, on most popular web browsers,

or on mobile devices that support Sun Microsystems JavaFX technologies. At the

time of this investigation, the Sun Microsystems JavaFX releases included the JavaFX

Script and the JavaFX Mobile [Sun Microsystems, 2007]:

 63

• JavaFX Script2 - Is a scripting language that is declarative and statically typed

allowing developers to create rich, interactive Graphic User Interface

applications with ease using the Java2D swing GUI components.

• JavaFX Mobile – Is a software system that provides a unified runtime

environment, which allows for flexible development of interactive RIA for

wireless carriers and mobile devices.

4.1.3 Adobe Systems Adobe Flash Professional 8

Adobe Flash Professional 8 (also known as Adobe Flash) is a powerful multimedia

authoring and playback system from Adobe Systems that is bandwidth friendly

because it uses small files and is browser independent [Adobe Macromedia, 2005].

Adobe Flash Professional 8 uses vector-graphic animation technology that allows

developers to develop quality interactive RIA for a wide range of platforms. It uses

ActionScript as its scripting language for application development [section 4.2].

4.1.4 Adobe Systems Adobe Flex 2

Adobe Flex3 (Flex), like Adobe Flash Professional 8 is an ActionScript-based

development system for developing Flash-based applications that was developed by

Adobe Systems. It was initially introduced as a Java 2 Platform, Enterprise Edition

(J2EE) application. Adobe Flex compiles ActionScript code and XML-based user

interface descriptions (MXML) into binary Flash files (SWF files) like Adobe Flash

Professional [Adobe Systems, 2007]. Armed with a wide range of user interface

functions and tools, Flex is a powerful tool for creating rich client applications. It

provides a modern, standards-based language and programming model that supports

common design patterns and includes an Eclipse-based development environment,

advanced data services, and a fast, enterprise-class client runtime based on the Adobe

Flash Player software [Adobe Systems, 2007]. While Adobe Flash provides a

powerful authoring tool for web developers, Adobe Flex enables more application

developers to leverage the powerful Flash runtime to create data-driven RIA. Adobe

Flash and Adobe Flex seem to be directed at doing the same thing but in actual fact,

2 JavaFX Script Programming Language Reference -
https://openjfx.dev.java.net/JavaFX_Programming_Language.html
3 Adobe Flex 2 Language Reference - http://livedocs.adobe.com/flex/2/langref

 64

they complement each other to produce high performance cross-platform applications

for desktops and the web.

4.1.5 Laszlo Systems OpenLaszlo

OpenLaszlo4 is an open-source platform for developing rich internet applications for

the web. OpenLaszlo applications run on any popular browsers and platforms

(Windows, Mac, Linux, Internet Explorer (IE), and Firefox). Its programs are written

in XML and JavaScript, and then compiled into Flash. It also supports a rich graphics

model with scalable vectors, bitmaps, movies, animation, transparency, fonts, audio,

streaming media, reusable components, user interface widgets, control panels,

property sheets, keyboard navigation, browser "back button" navigation, and

graphical editing tools [Laszlo Systems, 2007]. Figure 4.3 shows a typical

OpenLaszlo application called Pandora, which is a music discovery service that uses

OpenLaszlo to implement a slick, easy to use interface for listening to personalized

internet radio stations via streaming MP3 audio.

Figure 4.3: Pandora Music Discovery Service
 [Laszlo Systems, 2007]

4 OpenLaszlo documentation - http://www.openlaszlo.org/documentation

 65

4.2 The Alternative Development Environment and
Scripting Language for mLAN Client/Server Clients

Of the 5 development environments discussed in the preceding section, Adobe Flash

Professional 8 using ActionScript 2.0 was chosen as the development environment for

mLAN Client/Server clients. Adobe Flash Professional 8 was chosen because at the

time of the inception of this investigation there was Flash expertise in the Rhodes

Computer Science department and the software was already available locally. No

initial costs were incurred to use Adobe Flash and the developer had access to

experienced Adobe Flash users, which accelerated his learning of the Adobe Flash

toolkit. Adobe Systems uses the term Adobe Flash, or simply Flash, to refer to both

the Adobe Flash Player and to the Adobe Flash Professional 8 multimedia authoring

program [Adobe Macromedia, 2005]. For this investigation, Adobe Flash Professional

version 8 was utilized.

4.2.1 Adobe Flash Professional 8 Description

Adobe Flash Professional 8 is an authoring tool that designers and developers use to

create presentations, applications, and other content that enables user interaction

[Adobe Macromedia, 2005]. It was originally designed to create animations for

display on web pages in the 1980 s.This is because Adobe Flash files are smaller in

size as they use vector graphics, which require significantly less memory and storage

space than bitmap graphics5. At the time of this investigation, Adobe Flash

Professional 8 provided a powerful interactive platform, with an object-oriented, type

safe dynamic scripting engine that supports ActionScript 2.0, graphics effects filters,

blend modes, bitmap rendering and advanced video and audio playback features

[Adobe Macromedia, 2005]. Coupled with these features is its flexible design and

animation authoring IDE that is composed of many programming interfaces, which

include the code editor, the animation editor, the vector art editor, a compiler, a

debugger and a very good help system, which were all essential in the development of

mLAN Client/Server clients.

5 Vector graphics are smaller because they are represented by mathematical formulas while
bitmap graphics are larger because each individual pixel in the image requires a separate piece of data
to represent it [Macromedia, 2005].

 66

Blend modes allow the user to create composite images, in a process called

compositing. Compositing is the process of varying the transparency or colour

interaction of two or more overlapping objects. Blending allows the user to create

unique effects by blending the colours in overlapping MovieClips6 [Adobe

Macromedia, 2005]. Elements that make-up a blend mode include [Adobe

Macromedia, 2005]:

• Blend colour - Is the colour applied to the blend mode.

• Opacity - Is the degree of transparency applied to the blend mode.

• Base colour - Is the colour of pixels underneath the blend colour.

• Result colour - Is the result of the blend's effect on the base colour.

The blend modes feature was utilised for representing the changing states of the

connection status for mLAN plugs on the Broadcast network patchbay (grid-matrix)

when the user either performed a connection or disconnection.

Another feature of the Adobe Flash Professional 8 IDE that was useful in developing

mLAN Client/Server clients is the graphics effects filter. Filters allow the user to add

interesting visual effects to text, buttons, and MovieClips and are most often

associated with applying drop shadows, blurs, glows, and bevels to graphic elements

[Adobe Macromedia, 2005]. This feature was integral in developing the

Hospitality/Convention Centre patchbay that required the use of shadows on the

MovieClip objects, which represented individual rooms in a hospitality building. This

feature will be explored further in chapter 7 that discusses the development of a

patchbay for Hospitality/Convention Centre networks.

Figure 4.4 shows the important components of the Adobe Flash Professional 8 design

and animation authoring IDE that were utilised for creating patchbay graphics,

animations and writing the scripts that control these graphics.

6 A MovieClip symbol in Adobe Flash is a reusable piece of flash computer graphic - usually
consisting of one or more graphic/button symbols. MovieClip behaviours are controllable easily using
ActionScript. MovieClip properties that can be controlled using ActionScript include; MovieClip
dimensions, position, colour, and alpha value to mention but a few. MovieClips can be deleted, and
duplicated using the copy-paste functionality. MovieClips form the basic unit for an Adobe Flash
application.

 67

Figure 4.4: Adobe Flash Professional 8 Design and Animation Authoring IDE

When developers are creating Adobe Flash content using the Adobe Flash

Professional 8 IDE they work in a Flash document file. These Flash documents have

the file extension .fla (FLA). The components that form a Flash document include

[Adobe Macromedia, 2005]:

• The Stage which is the rectangular area where the developer places graphic

content, including vector art, text boxes, buttons, imported bitmap graphics or

video clips, when creating Flash documents. The Stage has many features that

aid graphics creation such as the zoom-in and out capabilities to change the

view of the Stage as you work, the grid, the guides, and the rulers, which help

the developer position content precisely on the Stage and the Hand tool that

lets one move the Stage for example if because of zooming- out, one cannot

see some parts of the Stage. The Stage area is also the rectangular space in

Adobe Macromedia Flash Player or in a web browser window that appears

when the Flash application is being played back.

Tools Panel Timeline Stage Library Panel

Actions Panel

 68

• The Timeline organizes and controls a document's content over time in Layers

and Frames. Flash documents divide lengths of time into frames. Layers are

like multiple strips stacked on top of one another, each containing a different

image that appears on the Stage. The major components of the Timeline are

layers, frames, and the playhead. Figure 4.5 shows the Adobe Flash

Professional 8 IDE Timeline components.

Figure 4.5: Adobe Flash Professional 8 IDE Timeline

Figure 4.5 shows three layers, the “Labels” layer, the “Styles” layer and the

“Actions” layer. The “Labels” layer contains all the labels that the user sees

when the application is loading like “Please wait, the application is loading

components” in three patchbays. The “Styles” layer contains the styles that the

applications use. These include all the skins that were used for Flash build-in

components, the colours and the Text Font styles. The “Actions” layer

contains the ActionScript 2.0 code that controls the behaviour of the graphics

and MovieClips on the Stage. At playback time the “Playhead” moves

through the timeline as a document plays to display the current frame

displayed on the Stage and subsequently the Stage contents on that particular

frame. The current frame number is indicated by the “Current Frame

Indicator” while the rate at which frames are being viewed is indicated by the

“Frame Rate Indicator”, and is measured in frames per second (fps). The

default frame rate for Adobe Flash applications is 12 fps. The “Elapsed Time

Indicator” displays the time in seconds taken to reach a particular frame in the

Timeline from the beginning of the playback at frame 1.

D Current Frame Indicator
E Frame Rate Indicator
F Elapsed Time Indicator

 Layers Frames Playhead

 G Centre Frame Button H Onion-Skinning Buttons

 69

• The Library panel is where Adobe Flash Professional 8 stores and displays a

list of the media elements in the Flash document. These are usually

MovieClips, bitmap graphics, Fireworks artwork and any Flash built-in

components that the developer adds to the Flash document.

• ActionScript code shown in the Actions panel in Figure 4.4 allows the

developer to add interactivity to the media elements in the Flash document’s

Library panel. This investigation utilised ActionScript 2.0. ActionScript 2.0 is

a scripting language based on ECMAScript scripting programming language

that was standardized by ECMA International7 and specified in the ECMA-

262 specification8.

These 4 components are fundamental in the creation of Adobe Flash applications

components. The following section discusses how these components are utilised for

creating a MovieClip Flash graphic symbol, which forms the basis for Flash

applications.

• The first step is to open a new Flash Document [Figure 4.6]. The Flash

Document exposes many drawing and programming interfaces that are used

for creating the symbol. Some important interfaces that are shown in Figure

4.6 include the Tools panel, the Colour Mixer Panel, the Library Panel, the

Alignment Panel and the Actions Panel. The initial graphic is created using

the Rectangle Tool that the user clicks and draws the shape graphic required

on the Stage [Figure 4.6]. The Stroke Colour Tool is used to specify the

border colour of the graphic to be drawn whilst the Fill Colour Tool is used to

specify the fill colour.

7 European Computer Manufacturers Association (ECMA) website - http://www.ecma-
international.org
8 Standard ECMA-262 (3r d Edition - December 1999) -
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

 70

Figure 4.6: Creating a MovieClip Symbol – Flash Document

• When the basic graphic has been drawn on the Stage, it is selected using the

Selection Tool [Figure 4.6].

• With the graphic selected, right-click it and choose the “Convert to Symbol…”

menu item to convert the graphic into a symbol [Figure 4.7].

 Tools Panel Timeline Stage Colour Mixer Panel

Selection Tool
Rectangle Tool

Stroke Colour Tool
Fill Colour Tool

 test_MovieClip graphic Library Panel

 Alignment Panel

Actions Panel

 71

Figure 4.7: Converting a graphic drawing into a MovieClip Symbol

• A Convert To Symbol panel appears on which attributes of the new symbol are

specified. Attributes that can be specified include [Figure 4.8]:

a) The symbol name – Specifies the name of the MovieClip.

b) The symbol type – Specifies the type of the graphic to be created

(MovieClip, Button or Graphic). Note that in Figure 4.8, the Movie

Clip radio button is selected because a MovieClip symbol is being

created.

c) The symbol registration – Specifies the registration point of the

MovieClip.

d) The symbol linkage identifier – Specifies the ID name that will be used

to reference the MovieClip in the Library Panel.

e) The symbol class – Specifies the name of the class to be assigned to

the MovieClip.

 72

Figure 4.8: Specifying MovieClip Properties

• After specifying the new clip attributes click the OK button. A MovieClip with

the specified name will appear in the Library Panel [Figure 4.9].

Figure 4.9: MovieClip in the Library Panel

Symbols in Adobe Flash can be drawn completely in ActionScript. The MovieClip

symbol behaviour can be controlled easily using ActionScript, which can be in the

 73

form of a class assigned to the clip in the Convert To Symbol panel or just a script

written in the Actions Panel. The MovieClip attributes that can be controlled using

ActionScript include its (this section lists only those properties that were utilised in

developing the three patchbays):

• Dimensions – The developer can specify the height and width of a MovieClip

symbol using the _height and _width variables.

• Position – The developer can specify the X and Y coordinates position of the

MovieClip symbol using the _x and _y variables.

• _alpha value – This attribute allows the developer to set the alpha

transparency value of a MovieClip symbol. Valid values are 0 (fully

transparent) to 100 (fully opaque).

• Enabled – The attribute is a Boolean variable that indicates whether a

MovieClip symbol is enabled. The default value of enabled is true but can be

set to false using “[MovieClip name].enabled = false”.

• Name – Specifies the name of the MovieClip symbol.

• Rotation – Specifies the rotation of a MovieClip symbol, in degrees, from its

original orientation. Values from 0 to 180 degrees represent clockwise

rotation; values from 0 to -180 degrees represent counter clockwise rotation.

• Visibility – A Boolean variable that indicates whether a MovieClip symbol is

visible. MovieClip symbols that are not visible ([MovieClip name]._visible =

false) are disabled.

• Mouse position – The developer can get the X and Y coordinates position of

a mouse pointer over a MovieClip symbol using the _xmouse and _ymouse

variables.

Each MovieClip symbol supports a wide range of Event Handlers, some of which

include the:

• onPress () Event Handler – Invoked when the user clicks the mouse while the

pointer is over a MovieClip symbol.

• onRelease () Event Handler – Invoked when a user releases the mouse button

over a MovieClip symbol.

 74

• onRollOver () Event Handler – Invoked when the user moves the mouse

pointer over a MovieClip symbol area.

• onRollOut () Event Handler – Invoked when a user moves the pointer outside

a MovieClip symbol area.

Other actions that can be performed on a MovieClip symbol include:

• Duplicating it using the “duplicateMovieClip(name:String, depth:Number,

[initObject:Object])” method that returns a MovieClip object.

• Deleting it using the “removeMovieClip ()” or the “unloadMovie ()” methods.

Figure 4.10 shows the Actions Panel that depicts ActionScript Event Handler code

that uses MovieClip properties and methods outlined in the preceding section.

Figure 4.10: Specifying MovieClip Properties

 75

Four MovieClip Event Handlers are shown in the Actions Panel displayed in Figure

4.10:

a) The onRollOver Event Handler

_root.test_MovieClip.onRollOver = function () {

 1. Repositions the "test_MovieClip" clip.

 2. Increases the size of the "test_MovieClip" clip by a factor of 2 (Normal size*200%).

};

b) The onRollOut Event Handler

_root.test_MovieClip.onRollOut = function () {

1. Shrinks the size of the "test_MovieClip" clip by a factor of 2 to its normal size.

2. Repositions the "test_MovieClip" back to its original _x and _y position.

};

c) The onPress Event Handler

_root.test_MovieClip.onPress = function () {

 1. Enables the "test_MovieClip" clip to be drag-able using a mouse pointer.

};

d) The onRelease Event Handler

_root.test_MovieClip.onRelease = function () {

1. Disables the "test_MovieClip" clip drag capability thus stopping the drag action.

2. Gets the final X and Y coordinates of the mouse pointer when released over a

MovieClip and outputs the values to the Adobe Flash output screen.

3. Gets the new X and Y coordinates of the "test_MovieClip" clip and outputs the

values to the Adobe Flash output screen.

};

 Once the developer creates the Adobe Flash application (or MovieClip symbol) on

the Flash document, it is published by clicking the “File” menu on the Adobe Flash

Professional 8 IDE and selecting “Publish”. A compressed version of the Flash

document with all the media is created with the extension .swf (SWF). “SWF” stands

 76

for “Small Web File”, and is a proprietary vector graphics file format produced by the

Adobe Flash software. The Adobe Flash Player is used to play the SWF file in a web

browser or as a standalone application. This investigation utilised the latest Flash

player, Adobe Flash Player 9. According to Adobe Macromedia, the Adobe Flash

Player is a high-performance, lightweight, highly expressive client runtime that

delivers powerful and consistent user experiences across major operating systems,

browsers, mobile phones, and devices [Adobe Macromedia, 2005]. Adobe Flash

Player 9 consists of five important components that ensure effective rendering of flash

applications [Adobe Macromedia, 2005]:

• A Virtual Machine (AVM) known as AVM2 that interprets and executes byte

code. ActionScript code is compiled to this byte code. AVM2 supports full

runtime error reporting, built-in debugging, and binary socket support so

developers can extend the player to work with any binary protocol. Adobe

Flash Player 9 also contains AVM1, which executes legacy ActionScript for

maintaining backward compatibility with existing content.

• A hierarchical frame-advancing Visual Object Model. Adobe Flash maintains

a hierarchy of MovieClip objects and graphics in a layered display list, where

each object has its own frame-subdivided timeline, a depth number, and layers

map onto a z-order.

• A set of media decoders that can decode and playback multiple streams of

compressed audio and video simultaneously. It has audio decoders for

Adaptive Differential Pulse Code Modulation (ADPCM), MP3, and

NellyMoser audio streams. It also supports video codecs, including the

Sorenson H.263 and Sorenson Spark codecs.

• A suit of advanced rendering algorithms for rendering vector graphics that

include lines, gradients and filtered bitmap fills. Adobe Flash is a vector

engine, but its support of bitmap fills means it is also a bitmap engine. When a

bitmap is dragged onto the Stage, Adobe Flash actually creates a four-sided

shape then attaches a bitmap fill of the graphic. Each shape fill can have a

texture transform as well as simple shader capabilities for playing with the

colour and alpha.

 77

• A framework library that has basic string functions, arrays, sorting and

mathematical functions. Adobe Flash also adds support for TCP

communications, asynchronous loading, and a very advanced and easy-to-use

XML interface that enables easy use of the communication protocol by the

mLAN client and the mCMS server.

4.3 Chapter Summary

This chapter discussed an alternative development IDE and the scripting language

chosen for developing mLAN Client/Server clients. Following from the survey of

current patchbay applications in chapter 3, it was shown that current mLAN and non-

mLAN patchbay applications are developed in C, C++ and C#. However, Prechelt in

his comparison of scripting languages and third-generation languages using the

criteria of run time, memory consumption, source text length, comment density,

program structure, reliability and amount of effort required to write programs found

that scripting languages are more effective and productive than third-generation

languages like C and C++. This is because these languages use complex syntax and

structures which require far more time and effort to write a quality GUI application

than scripting languages. For instance, he proved that third-generation language

programs are typically two to three times as long as scripting language programs and

they tend to contain a significantly higher density of comments. As a result, this

chapter evaluated an alternative development environment that supports scripting

technologies. Five possible alternative mLAN Client/Server client development

environments were considered that is Microsoft Silverlight, Sun Microsystems

JavaFX, Macromedia Adobe Flash Professional 8, Adobe Flex 2, and Laszlo Systems

OpenLaszlo. Of the five alternative development environments discussed,

Macromedia Adobe Flash Professional 8 using ActionScript 2.0 was chosen as the

development environment because it was already a known environment at the Rhodes

Computer Science Department.

The next chapter explains in detail the development process of the Broadcast network

patchbay.

 78

CHAPTER 5

5 Broadcast Patchbay Design and Development

Broadcast hardware studio networks are more complex than Project studio and

Hospitality/Convention Centre networks. Broadcast studio requirements, and the

nature of the patchbays for these networks are well defined. Therefore, it was decided

that the Broadcast patchbay be developed before the Project studio and

Hospitality/Convention Centre patchbays, as it had the potential of testing Adobe

Flash capabilities as an alternative for developing mLAN connection management

applications. The assumption was that if Adobe Flash allowed the effective

implementation of a complex patchbay such as the Broadcast patchbay, it would be

easily utilised to develop simpler patchbays for the other networks. Grid-based

patchbays are commonly deployed within Broadcast networks because they allow for

a realistic viewing of the input and output plugs of all devices on the audio network,

using two device trees and a connections grid-matrix [Chapter 3: section 3.2.1]. The

grid-matrix displays the state of the connections (connected or disconnected) for each

pair of plugs displayed on the visible tree nodes. The tree-like structure coupled with

the grid-matrix allows the display of as many devices, which is a requirement for

Broadcast networks that deal with hundreds of connections at a time. In contrast to

non-mLAN grid-based patchbays discussed in section 3.2.1, the patchbay developed

for Broadcast networks in this investigation utilised the mLAN Client/Server

architecture discussed in section 2.3.

Figure 5.1 displays eight phases of the Iterative and Incremental Process (Rational

Unified Process - RUP) that was followed in the development of the Broadcast

patchbay. RUP is a software engineering process that provides for the framework of

best software development practices. Following this process reduces risks involved in

the development of software, and ensures that the delivered software successfully

fulfils end user requirements within a predictable schedule and budget [Rational SDC,

1998, Kruchten, 2000]. This chapter discusses in detail how this process (RUP) was

adopted in the planning, designing and implementation of a grid-based patchbay for

Broadcast networks.

 79

Figure 5.1: An Iterative and Incremental Process (RUP)
[Kruchten, 2000]

5.1 Broadcast Patchbay Requirements Analysis

As already mentioned, many grid-based patchbays have been developed to control

audio routing over Broadcast networks. As a result, software requirements for the

Broadcast patchbay were acquired from already existing grid-based patchbay manuals

such as the Otari ND-20 mLAN Control Software manual [OTARI, 2005]. Broadcast

patchbay requirements were listed from analysing the functionality provided by the

Otari ND-20 mLAN Control Software. Also added were mLAN network specific

requirements such as the ability to view only audio plugs, or only MIDI plugs, or both

together, and changing device Plug Layouts. Textual scenarios (Stimulus/Response

sequences) were used to describe each feature incorporated into the Broadcast

patchbay. The IEEE Recommended Practice for Software Requirements

Specifications [IEEE Inc, 1998] was utilised as the standard guideline for

documenting these requirements. Appendix A-A1 provides a complete Software

Requirements Specification document for the Broadcast patchbay.

 80

5.2 Broadcast Patchbay Description

The Broadcast patchbay developed was named the “FireGrid”, which reflects that it

was developed for Firewire networks and would use a grid-matrix for connection

management. The Broadcast patchbay comprises three main panels, namely the

Control Window, the Wordclock panel, and the Settings panel.

The Control Window [Figure 5.2] is the main control panel that appears when the

Broadcast patchbay is started. It is on this panel that important audio routing and

connection management tasks are performed. Figure 5.2 displays a screenshot of the

Broadcast patchbay Control Window that shows a typical mLAN network with three

mLAN compatible devices, namely the mLAN Windows PC device, the IOne

Connects device, and the MAP4 device, together with their associated plugs. The

Control Window has two main sections; the “device trees” section (that comprise of

the Sources tree and the Destinations tree) and a “grid-matrix” section (that is named

the Control Grid-Matrix in Figure 5.2). The Sources tree exposes the output device

nodes and their plugs, whilst the Destinations tree displays the input device nodes and

their plugs.

 81

Figure 5.2: Broadcast Patchbay Control Window

The Control Grid-Matrix displays the connection status of two corresponding plugs

(output and input plugs) visible on the Sources tree and Destinations tree. In Figure

5.2, the Control Grid-Matrix shows two live connections between the mLAN Windows

PC and the IOne Connects devices. The source plugs, Audio Out 1 and 2 of the mLAN

Windows PC device on the Sources tree, are connected to destination plugs, Analog

Out 1 and 2 of the IOne Connects device on the Destinations tree. These live

connections are represented by green square graphic boxes on the Control Grid-

Matrix. Also shown are dangling connections, which are represented by blue round

icons on the actual input and output plug nodes on the “device trees”. Examples of

Dangling Connections

Last Configuration
Received Date Destinations Tree

Network Bandwidth
Used

Network Update
and Apply Buttons

Available Display
Modes

Symbol Key

Live Conmections

Available Settings
Modes

Sources Tree

Control Grid -Matrix

 82

dangling connections displayed include the dangling connection on the destination

plug AES2L of the IOne Connects device on the Destinations tree, and on the source

plug MIDI OUT1: MPX1 of the mLAN Windows PC device on the Sources tree.

Connection management tasks that can be performed on the Broadcast patchbay

Control Window include:

• Establishing audio connections.

• Breaking audio connections.

• Renaming mLAN network devices.

• Clearing all device connections for a particular mLAN network device.

• Viewing detailed device information for a particular mLAN network device.

• Requesting the display of only MIDI plugs, only Audio plugs or both together.

• Saving / Opening routing settings into / from a text file.

• Clearing dangling connections.

• Updating the patchbay with latest mLAN network information from the

mCMS server.

• Identifying a particular mLAN network device.

• Changing Plug Layout type for a particular mLAN network device.

• Changing the patchbay Mode Settings (either Immediate or Delayed).

The Wordclock panel [Figure 5.3] allows the user to set/clear word clock

Master/Slave configurations. It displays the mLAN network devices in two sections,

namely the “Master Capable Devices” section, and the “Slave Capable Devices”

section. The “Master Capable Devices” section displays a tree of device nodes that

can be configured as a master device on the mLAN network, and the “Slave Capable

Devices” section displays a tree of device nodes that can be configured as slaves on

mLAN network. Figure 5.3 displays a screenshot of the Wordclock panel that

displays three mLAN devices on the network, namely the mLAN Windows PC device,

the IOne Connects device, and the MAP4 device. The screenshot shows the

configured global master, the IOne Connects device, with two slaves, the mLAN

Windows PC device and the MAP4 device, below its tree node in the “Master Capable

Devices” section. A global master device is a master device for all mLAN network

 83

devices. Only one global master device can exist in an mLAN network at a time. The

IOne Connects device is transmitting and receiving at a sample rate of 48 kHz, and

therefore, all its slave devices are synchronised to transmit and receive at this sample

rate.

Figure 5.3: Broadcast Patchbay Wordclock Settings Panel

Connection management tasks that can be performed on the Wordclock panel include:

• Setting a global master unit for the whole mLAN network.

• Enslaving a single device to a particular master device.

• Releasing all slave devices of a particular master device.

• Removing a single slave device from its master device.

• Changing a master device word clock sample rate and its word clock source.

The Settings panel has two sections, namely the “Server Settings” section and the “PC

Plugs” section. The “Server Settings” section [Figure 5.4] allows the user to configure

the DNS name and the port number of the mCMS server to be utilised by the

Broadcast patchbay. The current port number is “52941” and the DNS name is

“Localhost”. The mCMS server can reside on any workstation anywhere, as long as

 84

the Broadcast patchbay can make a TCP/IP connection to it and pass XML messages

using the specified port number.

Figure 5.4: Broadcast Patchbay Server Settings Panel – Server Settings

The “PC Plugs” section of the Settings panel [Figure 5.5] allows the user to specify

the number of both MIDI and Audio source plugs for the mLAN Windows PC device.

Figure 5.5 shows that at this time, there are two audio source plugs and eight MIDI

source plugs. The audio source plugs and MIDI source plugs combo boxes are used to

configure the number of each plug type. At the time of this investigation, the mLAN

firmware did not allow for the configuration of audio and MIDI destination plugs for

the mLAN Windows PC device.

Figure 5.5: Broadcast Patchbay Server Settings panel – PC Plugs

5.3 Broadcast Patchbay Design and Implementation

5.3.1 Modelling Broadcast Software Requirements

The requirements elicitation phase discussed in section 5.1 led to the creation of two

central, high-level models, namely the Use Case Model and the Object Model, which

further reinforced the understanding of the system requirements and the patchbay

 85

users. The Unified Modelling Language (UML) was used for graphically specifying,

visualising, constructing and clearly documenting the Broadcast patchbay

requirements before the development process started. Graphically modelling the

patchbay requirements has many benefits that include:

• Providing a structured approach to solving the problem.

• Providing an easy way of dealing with the complexity of software

applications such as the Broadcast patchbay, by breaking its components into

smaller manageable bits.

• Providing a way of managing and reducing the risk of mistakes once the

development process starts [Maksimchuk and Naiburg, 2004].

The Use Case Model models the scope of the Broadcast patchbay. It is easily

understood by both developers and application users. This provides a good way of

communicating requirements between the developer and the user.

The Object Model (Class Diagram) describes a static view of the system in terms of

classes and their relationships [Booch, Rumbaugh and Jacobson, 2005]. It paves the

way for more concrete and complex models such as Activity diagrams and Sequence

diagrams, which define the system before implementation starts. For purposes of this

investigation, only sequence diagrams were utilised because they model the flow of

logic within the system in a visual manner, enabling the documenting and validating

of system requirements, and can be used for both analysis and design purposes.

5.3.1.1 Use-Case Driven Analysis

5.3.1.1.1 Use Case Diagram

Figure 5.6 displays the Broadcast patchbay Use Case diagram, which displays the

high-level functions of the Broadcast patchbay and identifies two entities (Actors) that

interact with the patchbay, namely the sound engineer and the mCMS Server.

 86

Connect to mCMS Server

Establish Audio Connections

Break Audio Connections

Update System

Apply Changes

Set/Clear Master/Slave
Configuration

Identify Device

Manage Files

Sound
Engineer

Change Plug Layout

mCMS Server

Set PCPlugs

<<extends>>

Figure 5.6: Broadcast Patchbay Use Case Diagram

5.3.1.1.2 Description of Actors

a) Sound engineer

The sound engineer is the operator of the Broadcast patchbay. In Broadcast networks,

this is usually an experienced user who understands the complexity of the network. At

the time of the investigations, the Broadcast patchbay had one user level, but it was

desirable to have multiple user levels with different rights.

b) mCMS Server

The mCMS Server services requests from the Broadcast patchbay [section 2.2 and

2.3]. It resided on the same workstation as the Broadcast patchbay, but can be

installed on a different workstation that the Broadcast patchbay can access remotely

over any medium (wireless or dedicated Ethernet cables), and communicate with

using XML messages.

 87

5.3.1.1.3 Description of Use Cases

a) “Manage Files” Use Case

This Use Case describes a feature that enables the sound engineer to save audio

routing settings into a text file on the host workstation. Saved audio routing settings

files can also be opened on the Broadcast patchbay using the Open File menu item.

b) “Connect to mCMS Server” Use Case

At start-up, this feature allows the Broadcast patchbay to connect to the mCMS server

using the server name and port number specified by the sound engineer.

c) “Establish Audio Connections” Use Case

This functionality enables the sound engineer to establish audio connections between

two plugs (input and output) of the same type (audio or MIDI), on different devices

on the grid-matrix of the Broadcast patchbay depending on the Mode set (either

Immediate or Delayed).

d) “Break Audio Connections” Use Case

This feature allows the sound engineer to break audio connections on the network,

and is based on the Mode set (either Immediate or Delayed).

e) “Update System” Use Case

The sound engineer uses this feature to force system updates and use latest

information from the mCMS Server to update the patchbay display.

f) “Apply Changes” Use Case

This feature allows the sound engineer to apply changes made on the patchbay to the

actual physical mLAN network. Examples include applying changed Master/Slave

configuration settings, and new audio connections and disconnections.

g) “Set/Clear Master/Slave Configuration” Use Case

This feature enables the sound engineer to set and clear a word clock Master/Slave

configuration on the patchbay before performing any connection management tasks,

such as establishing and breaking audio connections.

 88

h) “Identify Device” Use Case

This feature enables the sound engineer to identify a particular device on the network

to work with.

i) “Change Plug Layout” Use Case

This feature allows the sound engineer to change the Plug Layout for any device on

the mLAN network. Device Plug Layouts are changed to optimise bandwidth usage

on mLAN networks.

5.3.1.2 Class-Driven Analysis

5.3.1.2.1 Object Model

Figure 5.7 displays the Object Model that depicts the structural relationships between

objects written for the Broadcast patchbay. It is evident from the Object Model that

the patchbay developed was of sufficient complexity to test the capabilities of Adobe

Flash as a serious connection management application development tool.

 89

1

*

Device Audio Plug

PlugName
PlugType
PlugID
ParantName
PlugDirection
PlugIsDangling
PlugNameIswriteable

getPlugStatus()

IEEE1394 Device

DeviceName
DeviceGUID
BusNickname
DeviceModel
DeviceVendor
DeviceFirmware

0..*0..*

IEEE1394 Bus

BusName
NetworkName
BandwidthAvailable

0..*0..*

Login XMLDoc

DestinationTree

Audio_IN Plug
0..*0..*

Audio_OUT Plug

0..1

0..*

0..1

0..*

SourceTree

0..*0..*

ConfigurationXMLDoc

File Management

FileName

SaveSettings()
OpenSettingsFile()

IEEE1394 Network

NetworkName

0..*0..*

Login Window

UserName
Password

Login()

1

1

1

1

DisconnectionRequest
XMLDoc

ConnectionRequest
XMLDoc

UpdateRequest
XMLDoc

IdentifyDevice
XMLDoc

ChangePlugLayout
XMLDoc

Tree

TreeName
Treetype

1
1

1
1 1

1

1

1

PCPlugsXM
LDoc

RemoveSlaveX
MLDoc

globalSyncXMLDoc

Clear AllMaster/Slave
SettingsXMLDoc

MasterXML
Doc

 SampleRateXMLDoc

Wordclock Panel

1

1

1

1

11

11 11

1

1

1

1

1

1

1

1

Wordclock Source
SelectionXMLDoc

1

1

1

1

Control Window

UpdateWindow()

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

Server

1

1

1

1

1

1

1

1

ServerDetailsXML
Doc

ServerName
PortNumber

Server Settings Panel

1

1

1

1

1

1

1

1

1

1

1

1

Figure 5.7: Broadcast Patchbay Object Model

The model displays the objects that model the Broadcast patchbay human interaction

panels and the mLAN network. The IEEE1394 Network object is shown to contain an

aggregation of IEEE1394 Bus objects on the mLAN network. Each IEEE1394 Bus

object contains an aggregation of IEEE1394 Device objects, which in turn each

contain an aggregation of Device Audio Plug objects. The IEEE1394 Device and the

Device Audio Plug objects are created and instantiated by the Tree object. The model

also shows the interrelationships between the various Broadcast patchbay panel

objects (the Settings panel, the Workclock panel, Login panel, and the Control

 90

Window) and their associated XML document objects. The XML document objects

are classes that represent all XML messages that are used by the Broadcast patchbay

to communicate with the mCMS Server.

5.3.2 Broadcast Patchbay Sequence Diagrams and Implementation

This section uses sequence diagrams to describe how groups of the Broadcast

patchbay objects collaborate, and how messages are passed between them in order to

fulfil the use cases of the Broadcast patchbay discussed in section 5.3.1.1. Each

sequence diagram typically captures the behaviour of a single scenario within a use

case [Maksimchuk et al, 2004].

5.3.2.1 “Connect to mCMS server” Use Case

At start-up, a TCP/IP connection is established between the Broadcast patchbay and

the mCMS server. Once the connection is made, a pop-up Settings dialog box is

displayed [Figure 5.4]. The user utilises this dialog box to specify the server DNS

name and the port number if the patchbay is being run for the first time, and this

information is not already in the registry of the host workstation. If this is successful,

a Login pop-up dialog box appears that allows the sound engineer to specify the

username and the password information to authenticate with the mCMS server. Once

the authentication process finishes successfully, the connection information (the

server name, the port number, the username, and the password) is stored in the

registry of the host workstation. This prevents the Settings and Login dialog boxes

from popping up each time after the initial setup. Figure 5.8 is a sequence diagram

that describes this start-up process, and shows the relationships between the objects

involved in this process. It shows that at start-up, the Broadcast patchbay creates a

Server and mLANSocket objects. The Server object contains the following methods:

• getServerNameAddress () – This method gets the server DNS name from the

Server Settings dialog box.

• getPortNumber () – This method gets the server port number from the Server

Settings dialog box.

• connectToServer (serverName : String, serverPort : Number) – This method

uses the mLANSocket object to connection to the mCMS server. It takes two

 91

arguments, the server name and port number, that it gets from the

getServerNameAddress () and getPortNumber () methods.

• getUserName () – This method gets the sound engineer’s username from the

Login dialog box.

• getPassword () – This method gets the sound engineer’s login password from

the Login dialog box.

• login (userName : String, userPassword : String) – This method takes two

arguments, the sound engineer’s username and password and creates an XML

“login” message that is sent to the mCMS server, and carries the sound

engineer’s username and password for authentication.

 : Sound Engineer

 : Control Window : Server : mLANServerDetails Window : mLANSocket

 : mCMS Server

 : Login Window

2. <<create>>

2.2. setUpServer()
This method gets the Server IP address/DNS and port number of the
server to connect to either from the registry if it is not the first time to
run this application otherwise the method prompts the user for Server
infomation through the Server Settings Window

2.2.1. [no Server Info In Registry] promptUser()

2.2.3. getPortNumber()

3. PromptUser()
User is prompted for
Server information

2.2.4. [server details] connectToServer(ServerDetails)

4. [connected] login()

2.2.4.1. connectToServer(ServerDetails)

2.2.4.1.1. connect(ServerDetails)

5. login(LoginDetails)

1. Start Up

2.2.2. getServerName/Address()

2.1. <<create>>

5.1. sendLogInXML(LoginDetails)

2.2.4.2. [no Login information] promptUser()

4.1. getUserName()

4.2. getPassword()

Figure 5.8: Broadcast Patchbay Start-Up Sequence Diagram

 92

Listing 5.1 shows the XML “login” document that is sent to the mCMS server to

authenticate the user. It shows that the username is “admin” and the password is

“mlan”.

Listing 5.1: XML “login” Request Document

The sound engineer has the option of reconfiguring this connection information stored

in the host workstation’s registry by using the same Settings and Login dialog boxes

that can be accessed via the “Dialogs” menu item, or by clicking the appropriate icon

on the Tool bar of the Broadcast patchbay [Figure 5.9].

Figure 5.9: Accessing the Server Setting Dialog Box

The Use Case diagram also shows that the “Connect to mCMS Server” Use Case has

an optional feature of setting up PC plugs using the Settings dialog box [Figure 5.5].

There are a total of 4915 Bandwidth Units on the mLAN network. These Bandwidth

 93

Units are shared by all Transporter nodes on the network that wish to stream audio or

MIDI on the Firewire bus. The number of source PC plugs determines how many

Bandwidth Units are allocated to the PC. If not all PC plugs are needed, reducing their

number to a minimum of two reduces the amount of bandwidth that is in use. This

means that other devices have more bandwidth at their disposal.

Once the patchbay connects and authenticates with the mCMS server, the mCMS

server invokes the Enabler module that gets the current network information. The

mCMS server encapsulates this information into an XML “configuration” document

[Chapter 2: Listing 2.2] that is sent to the Broadcast patchbay.

On receiving the XML “configuration” document, the Broadcast patchbay extracts the

network information and uses it to reconstruct the mLAN network object hierarchy

that represents the actual mLAN network. Figure 5.10 shows a sequence diagram that

describes this network reconstruction process.

 94

 : Control Window : Server :
ConfigurationXMLDoc

 : IEEE1394
Network

 : IEEE1394 Bus : IEEE1394
Device

 : Audio_OUT
Plug

 : Audio_IN Plug SrcDevice :
IEEE1394 Device

DestDevice :
IEEE1394 Device

SrcPlug : Device
Audio Plug

DestPlug : Device
Audio Plug

 : mCMS Server

1.1.1. [XMLConfigDoc]:BuildTrees()

2. ClearCurrentTree

3. deleteRootNodes()

1.1.2. get1394Network()

1.1.3. <<createRootNodes(1394Network)>>

1.1.4. *getBus()

1.1.5. <<createBus(1394Network,busName)>>

1.1.6. addBus(busName)

For each Bus

1.1.7. *getDevice()

1.1.7.1. <<createDevice(GUID,nickname,model,vendor)>>

1.1.7.2. addDevice(1394Device)

For each
Device

1.1.8. *getPlug()

1.1.9. [srcPlug)]<<createSrcPlug((name,direction,DevGUID,type)>>

1.1.10. [src_Tree)] addPlug((srcPlug)

For each Plug

1.1.11. [destPlug)]<<createDestPlug((name,direction,DevGUID,type)>>

1.1.12. [dest_Tree)] addPlug((destPlug)

1.1.13. *getConnectionInfo()

1.1.14. getRootNodes()

1.1.15. findDev(SrcDevice)

1.1.15.1. getSrcPlug(DevGUID,srcPlugName)
1.1.16. findDev(DestDevice)

1.1.15.2. getDestPlug(DevGUID,destPlugName)

1.1.17. setConnectedPlug(DestPlug)

1.1.18. setConnectedPlug(SrcPlug)

1.1.19. Connected==true

For each
connection

1. send(XMLConfigDoc)

1.1. XMLConfigDoc

1.1.20. updateGrid()See update grid-matrix
Sequence diagram

Figure 5.10: Receiving the Configuration XML Document Sequence Diagram

Figure 5.10 shows that, to reconstruct the mLAN network, the Broadcast patchbay

loops through the XML “configuration” document elements as follows:

• It checks if the Sources tree and Destinations tree have nodes, and if not, it

creates an IEEE1394 Network node on both trees.

• Loops through all bus elements, and creates a bus node on both trees for each

XML bus element found.

• For each bus element, loops through all device elements and creates mLAN

device nodes on both trees.

 95

• For each device element, loops through its plug elements, and creates plug

nodes on both trees, depending on whether they are inputs or outputs.

The following paragraph describes how the grid-matrix of the Broadcast is updated to

reflect the latest connection information from the mCMS server.

Figure 5.11 is a sequence diagram that describes the relationships and interactions

between the Broadcast patchbay objects when the grid-matrix is updated, either when

the sound engineer scrolls the Sources tree or the Destinations tree, or whenever the

patchbay receives an XML “configuration” document from the mCMS server:

• The patchbay loops through all visible nodes on the Sources tree, and checks

the value of the Boolean variable “Connection_Ability” for each node.

• If the Boolean variable value is “false”, it means that node is not a plug,

therefore it marks the row cross-points corresponding to this node on the grid-

matrix as unusable (unusable cross-points are shown greyed-out on the grid-

matrix [Figure 5.11]).

• If the Boolean variable value is “true”, that node is a source plug node. For

this plug, it checks its Boolean variable “Connected”. If its value is “false”, it

does nothing, otherwise it loops through all visible nodes on the Destinations

tree.

• For each visible node on the Destinations tree, it checks its Boolean variable

“Connection_Ability” value. If its value is “false”, it marks the corresponding

cross-point as unusable, otherwise it checks if its “plug ID” attribute is the

same as that held by the variable “connectedDestination” of the source plug

node on the Sources tree and that the GUID of both plugs’ parent nodes are

different. If that is “true”, a live connection exists between the two plugs, and

a green graphic box is drawn at their cross-point on the grid-matrix [Figure

5.11].

 96

 : Sound Engineer

 : Control Window : Audio Panel Output_Dev :
IEEE1394 Device

 : Audio_OUT
Plug

Input_Dev :
IEEE1394 Device

 : Audio_IN Plug

1. onScroll/trigger or new Configuration XML Doc

1.2. getFirstVisibleNode(src_Tree)

1.1. [click(Src_Tree || InPut_Tree)]updateGridConnectionStatus

1.3. getNumNodesDisplayed()

1.4. *updateSrcPlugGridNodes

1.5. determineNodeType()

1.6. determineNodeConnection_Ability()

1.7. [Connection_Ability==false]drawGreyOutCrossPointForEachDestPlug

1.8. *drawGreyOutCrossPoint()

1.10. [Connection_Ability==true]

1.11. *getInPutNodeConnection_Ability

1.12. [Connection_Ability==true]

1.18. [srcDevGUID == destDevGUID]do nothing

1.21. [Connected==true]

1.9. GreyOutCrossPoint()

1.18.1. drawGreyOutCrossPoint()

For each srcPlug
node displayed

For each srcNode corresponding
to destPlug whose
Connection_Ability==false

For each destPlug
node

1.13. *getPlugsInfo()For each pair of dest
and src plugs

1.14. determineSrcNodeName()

1.15. determineDestNodeName()

1.16. determineSrcNodeParentGUID(srcPlug)

1.17. determineDestNodeParentGUID(destPlug)

1.20. determineDestPlugConnectionStatus()

1.19. [srcDevGUID != destDevGUID]

1.22. determineSrcGUID()

1.23. drawGreenBox()

Figure 5.11: Updating the Grid-Matrix

5.3.2.2 “Establishing Audio Connections” Use Case

Audio connections can be established on the Broadcast patchbay in two ways,

depending on the current mode of the patchbay, whether it is in “Delayed Mode” or in

“Immediate Mode”. Audio connections are made between mLAN plugs of the same

type that are on different mLAN devices. Plugs of different types cannot be connected

(an audio plug can not be connected to a MIDI plug).

a) Establishing Audio Connections in “Delayed Mode”

 97

If the patchbay is in “Delayed Mode”, the sound engineer makes audio connections by

clicking all plug cross-points on the grid-matrix, of plug pairs, on different devices to

be connected. This creates blue graphic circles on the clicked cross-points, which

represent pending connections [Figure 5.12]. A pending connection is a connection

that has been made on the patchbay but that has not yet been applied to the actual

physical mLAN network and has no streaming audio.

Figure 5.12: Pending and Live Connections on the Grid-Matrix

In Figure 5.12, the sound engineer is connecting output plugs Analog In 3 and Analog

In 5 on the OTG-IOne Src device (displayed on the Sources tree) to input plugs

Analog Out 7 and Analog Out 10 on the OTG-IOne Dest device (displayed in the

Destinations tree).

When the user clicks the Apply button, the patchbay loops through all pending

connection cross-points, each time creating an XML “connection request” document

Unusable Cross-Points

 98

[Listing 5.2]. The XML “connection request” documents are sent to the mCMS server

which implements the connections through the Enabler module.

Listing 5:2: XML “connection” Request Document

Listing 5:2 shows an XML “connection request” document that requests a connection

between the output plug with sourcePlugID “1” (on a device with GUID

“0013f00400011” and of type “audio”) to a destination plug with destinationPlugID

“33” (on a device with GUID “0013f00400000014”, and also of type “audio”). If the

connect request is implemented, the blue pending connection graphic changes to a

green box that reflects a live connection, and audio is routed between the two newly

connected plugs.

Figure 5.13 shows a sequence diagram that describes the process of establishing

audio connections in “Delayed Mode” as discussed in the preceding section. As the

user moves the mouse-pointer on the grid-matrix, the patchbay selects the nodes on

the Sources tree and the Destinations tree. Assuming the user wants to establish an

audio connection, and clicks a cross-point of two selected plug nodes:

• The input plug ID and its parent node GUID values are assigned to the

corresponding source plug node variables “connectedDestination” and

“connectedGUID” respectively. This occurs whether the application is in

“Delayed Mode” or “Immediate Mode” [Figure 5.12].

• Since the patchbay is in “Delayed Mode”, the source plug node Boolean

variable “n_Connected” value is set to “true”.

 99

• When the Apply button is clicked, the patchbay loops through all visible

Sources tree nodes.

• For each source plug node found, the patchbay checks its “n_Connected”

variable. If its value is “true”, an XML “connection request” document is

created and sent to the mCMS server with the destination plug node ID and its

parent device node GUID, and a green live connection graphic box is drawn

at the appropriate cross-point.

 : Sound Engineer
 : Control Window : Audio_OUT

Plug
 : Audio_IN PlugSrcDevice :

IEEE1394 Device
DstDevice :

IEEE1394 Device
 : ConnectionRequest

XMLDoc
 : Server

 : m CMS Server

1. apply Connection(s):Apply Buttun Clicked

1.1. *getSrcPlug()

1.2. *getDestPlug()

1.3. getn_ConnectedValue()

1.4. [n_Connection==true]connectNodes

1.5. getSrcPlugInfo()

For each output plug iterate through
all input nodes. Connect plugs
where n_Connection==true.

1.7. getSrcPlugType()

1.8. getSrcPlugID()

1.6. getSrcDevGUID(srcPlug)

1.9. getDestPlugInfo()

1.11. getSrcPlugType()

1.10. getDestDevGUID(destPlug)

1.12. getSrcPlugID()

1.13. <<createConnectionXMLDoc>>

1.14. <<create>> addInfo(destPlugType,destPlugID,destGUID,srcPlugNam e,srcPlugType,srcPlugID,srcGUID)

1.15. send(XMLConnectionRequestDoc)

1.15.1. send(XMLConnectionRequestDoc)1.16. n_Connected=false

1.17. connected=true

1.18. changeBlueSquareToGreenGraphic()

n_Connected --- a boolean variable representing a
pending connection. If its value is "true" it m eans the
twoplugs involved have a connectiona that has not
been applied to the network.

connected --- a boolean variable representing the
connection s tatus of a plug. If its value is true it m eans
the plug has a live connection with another plug.

The blue square graphic --- represents a pending
connection that has not been applied to the
network.

The green square graphic --- represents a live
connection and it m eans audio is s reaming from a
source plug to a particular des tination plug

Figure 5.13: Establishing Audio Connections in “Delayed Mode”

b) Establishing Audio Connections in “Immediate Mode”

If the patchbay is in “Immediate Mode”, when the sound engineer clicks a cross-point

of two plugs to be connected, an XML “connection request” document is

automatically created and sent to the mCMS server without any further involvement

of the sound engineer. The green graphic box is drawn on the clicked grid box that

represents a live connection between the newly connected plugs. Establishing audio

connections functionality is implemented as follows:

 100

• When a cross-point of two plugs (on different devices and of the same type) is

clicked on the grid-matrix, the patchbay captures the input and output plug

IDs, their parent device GUID values, and their type (MIDI or audio). The

input plug ID and its parent GUID are assigned to the output plug device

variables “connectedDestination” and “connectedGUID” respectively.

• An XML “connection request” document [Listing 5.2] is created, which

carries the input and output plug IDs, their parent device GUID values and

their type, and sent to the mCMS server that implements the request.

• The patchbay creates a green graphic box, which represents the newly created

connection.

Only one connection can be made at a time in “Immediate Mode”, in contrast to many

connections that can be made at a time when the patchbay is in “Delayed Mode”.

5.3.2.3 “Breaking Audio Connections” Use Case

Audio connections can be broken as easily as they can be made. Breaking audio

connections can be done in two ways, depending on whether the patchbay is in

“Delayed Mode” or in “Immediate Mode”.

a) Breaking Audio Connections in “Delayed Mode”

If the patchbay is in “Delayed Mode”, the sound engineer breaks audio connections

by clicking all live connections (depicted by green graphic boxes on the grid-matrix).

When a live connection graphic box is clicked in “Delayed Mode”, it changes to a red

rectangle graphic, which represents a pending disconnection. Figure 5.14 reflects that

a pending disconnection exists between the source plug Audio Out 2 on the mLAN

Windows PC device (on the Sources tree) and the destination plug Analog Out 2 on

the OGT-IOne Dest device (on the Destinations tree).

 101

Figure 5.14: Pending and Live Connections on the Grid-Matrix

To commit the disconnections to the mLAN network, the sound engineer clicks the

Apply button. This action clears all pending disconnection triangles and sends XML

“disconnection request” messages to the mCMS server for each disconnected pair of

plugs. Listing 5.3 shows a typical XML “disconnection request” message sent to the

mCMS server that carries information about the destination plug to be disconnected.

The XML “disconnection request” message requests a disconnection of the audio

input plug with ID “32” on a device with GUID “0013f00400000014” [Listing 5.3]. If

the disconnection is performed successfully, the patchbay grid-matrix is updated

appropriately.

 102

Listing 5.3: XML “disconnection” Request Document

Figure 5.15 shows the relationships and interaction between the Broadcast patchbay

objects when disconnecting plugs in “Delayed Mode”. It shows that:

• When the sound engineer clicks a particular cross-point of two connected

plugs, the source plug node ID and its parent node GUID are assigned to the

source plug node variables “n_Destination” and “n_disconnectedGUID”

respectively.

• If the patchbay is in “Delayed Mode”, the source plug node Boolean variable

“n_Disconnected” is set to “true”, which represents a new disconnection that

has not been applied to the mLAN network.

• When the Apply button is clicked, the patchbay loops through all Sources tree

nodes. For each source plug node found, the patchbay checks its

“n_Disconnected” attribute. If its value is “true”, an XML “disconnection

request” document is created and sent to the server with the destination plug

node ID and its parent node GUID. The red graphic triangle is cleared at the

cross-point.

 103

 : Sound Engineer

 : AudioPane : Audio_IN Plug DstDevice :
IEEE1394 Device

 : ConnectionRequest
XMLDoc

 : Server : mLANSocket
 : mCMS Server

 : Control Window

1. onApplyConnection

1.1. *loopThroughSrcPlugs

1.1.1. getn_Disconnected()

1.1.2. [n_Disconnected==true]

1.1.3. getDestPlugInfo()

1.1.4. getDestPlugName()

1.1.5. getDestPlugType()

1.1.7. getDestDevGUID()

1.1.8. <<createDisconnectXMLDoc>>

1.1.9. addInfo(DestGUID,DestPlugName,DestPlugType,DestPlugID)

1.1.10.1. send(XMLDisconnectionRequestDoc)

1.1.10.1.1. XMLDisconnectionRequestDoc

1.1.11. n_Disconnected==false

1.1.12. Connected==false

1.1.13. clearRedTriangle()

For each Src plug iterate through all
Destination nodes .Disconnect those
nodes where n_Disconnection==true.

1.1.10. send(XMLDiconnectionRequestDoc)

1.1.6. getDestPlugID()

Figure 5.15: Breaking Audio Connections in “Delayed Mode”

b) Breaking Audio Connections in “Immediate Mode”

If the patchbay is in “Immediate Mode”, the sound engineer breaks audio connections

by clicking each live connection (depicted by green graphic boxes on the grid-matrix)

to be disconnected. Once a live connection is clicked, its connection is immediately

disconnected without the need for the user to click the Apply button. The green live

connection graphic box is automatically cleared and the patchbay updated

appropriately. Breaking audio connections functionality is implemented as follows:

• When the sound engineer clicks a cross-point of two connected plugs, the

input plug ID and its parent node GUID are assigned to the outplug plug node

variables “n_Destination” and “n_disconnectedGUID” respectively.

 104

• An XML “disconnection request” document [Listing 5.3] is created and sent to

the server with the input plug ID, its type, and its parent device GUID.

• The green graphic box is cleared at the cross-point to reflect the disconnection.

In “Immediate Mode”, only one disconnection can be disconnected at a time whilst in

“Delayed Mode” many disconnections can be performed at a time.

5.3.2.4 “Setting/Clearing Master/Slave Configurations” Use Case
For any two mLAN devices on the mLAN network to transmit or receive audio

packets from each other, they need to be synchronised to transmit or receive at the

same sample rate. The Broadcast patchbay uses the Wordclock panel to set the

following word clock Master/Slave configurations:

• Change a master device word clock sample rate and its word clock source.

• Set a global master device for the whole mLAN network.

• Enslave a device to a master device.

• Release all slave devices for a particular master device.

• Remove a single slave device from its master device.

The Wordclock panel can be accessed using the Wordclock panel icon on the main

Control Window or through the “Dialogs” menu item [Figure 5.9]. To set a word

clock Master/Slave configuration, the sound engineer has to specify the word clock

source and the sample rate for the device to be configured as the master device.

Figure 5.16 and 5.17 show two panels that are used to set the word clock source and

the sample rate for a device called MAP4. To access the Wordclock Source panel the

user right-clicks the device on the “Master Capable Devices” section of the

Wordclock panel [Figure 5.15]. On the submenu that appears, the user selects the

“Wordclock Source Selection” menu item. A sub-panel [Figure 5.16] will be

displayed on which the user can select the desired word clock source and sample rate.

 105

Figure 5.16: Accessing the Wordclock Source Panel

Figure 5.17: Setting the Word Clock Source and Sample Rate

To select a word clock source, the sound engineer uses the “Selected Wordclock

Source” combo box that lists all possible word clock sources for the selected device.

Figure 5.17 shows two possible word clock sources for the MAP4 device, namely the

“Internal Clock” and the “SYT Clock” word clock sources. The panel also displays

possible sample rates for the MAP4 device. The current sample rate for the MAP4

device is 48 kHz shown by a selected radio button [Figure 5.17]. Supported sample

rates for the MAP4 device are 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz and 96 kHz.

Sample rates that are not supported are greyed-out (176.4 kHz and 192 kHz sample

rates) [Figure 5.17]. To change the sample rate, the user simply selects the

 106

appropriate radio button and clicks the Done button to apply the changes to the

network. An XML “wordclock source” document is created and sent to the mCMS

server.

Once the word clock source and the sample rate have been selected and applied to the

device to be made a master, the global master can now be set for the whole mLAN

network. To set a global master unit, the sound engineer right-clicks the device on the

“Master Capable Devices” section of the Wordclock panel and selects the “Make

Global Master” submenu item [Figure 5.18].

Figure 5.18: Setting the Word clock Source and Sample Rate

If the configuration is legal and there is enough bandwidth on the network, an XML

“global master” request document [Listing 5.4] is sent to the mCMS server, and the

configuration committed to the network. The Wordclock panel is updated

appropriately, and all devices, except the device being made a global master, are

deleted from the “Slave Capable Devices” section and attached to the newly set global

master device node.

 107

Listing 5:4: XML “global master” Request Document

Figure 5.19 describes the process of setting a global master when the operator right-

clicks and selects the “Make Global Master” menu item for a particular device on the

mLAN network:

• The patchbay gets the master device details (its GUID, its sample rate, its

wordClockOutputID, and its currentSyncSourceID).

• It loops through all its slave devices and gets their GUID values (making sure

that their “wordClockOutputID” variable value is the same as that of the

master device).

• It creates and sends an XML “global master” document to the mCMS server

carrying the master device and slave devices information.

• The “Capable Masters Device” and “Slave Capable Device” tree are updated

appropriately, and all slave device nodes are attached to the global master

device.

 108

 : Sound Engineer
 : Wordclock Panel MasterCapableDev

: IEEE1394 Device
 : globalSyncXMLDoc : Server

 : mCMS Server

SlaveCapableDev :
IEEE1394 Device

1. rightClickMasterDev():onMasterCapableDevTree

1.2. getMasterDevGUID()

1.3. getMasterDevSampleRate()

1.1. getClickedDevDetails()
If the wordclock
source and sample
rate are already set
for the device to be
made a global
master

1.8. <<createGlobalMasterXMLDoc>>

1.9. <<create>>addDevDetails(devGUID,devSampleRate,wordClockOutputID,currentSyncSourceID,slaveDevGUIDs)

1.10. send(globalSyncXMLDoc)

1.10.1. send(globalSyncXMLDoc)

1.11. deleteSlaveAllCapableDevNodes()

1.12. <<createSlaveDevNodeUnderMasterDev()>>

1.4. getMasterDevWordClockOutputID()

1.5. getMasterDevCurrentSyncSourceID()

1.6. *getSlaveDevsDetails()Loop through all
slave capable
mLAN network
device and get thier
details

1.7. *getSlaveDevGUIDS()

Figure 5.19: Setting a Global Master Device

It is possible to have two or more master devices on one mLAN network. In that case,

slave devices are attached to their master devices individually [Figure 5.20]. To

enslave a single device to its master device, the sound engineer selects and highlights

the master device on the “Master Capable Device” section of the Wordclock panel.

This is shown in Figure 5.20 for the MAP4 device. On the “Slave Capable Devices”

section, the sound engineer right-clicks the device to be made a slave of the selected

master, and selects the “Make A Slave” submenu item. An XML “syncsetup”

message is automatically sent to the mCMS server for implementation. Assuming the

sample rate and word clock source has been set:

• When the sound engineer selects and highlights a node on the “Master

Capable Device” section of the Wordclock panel to be a master, its

“new_Master” variable is set to “true”, its GUID and sample rate are assigned

to the global variables “masterGUID” and “masterSampleRate” respectively.

 109

• When the sound engineer selects a slave node on the “Slave Capable Devices”

section of the Wordclock panel, it is deleted and attached to the master node

on the “Master Capable Device” tree.

• An XML “syncsetup” document [Appendix B: Listing 17] is created that

carries the sample rate and GUID values for the master device, and the array

of all its slave device GUID values including the newly attached slave devices.

The XML document is sent to the mCMS server to implement the setting.

Figure 5.20: Setting individual Slave Devices

All slave devices for a particular master device can also be easily released by right-

clicking the master device and selecting the “Release all Slaves” submenu item

[Figure 5.21].

 110

Figure 5.21: Release all Master Device Slave Devices

An XML “syncsetup” message is sent to the mCMS server, which automatically

implements the request and the Wordclock panel is updated appropriately by

removing the slave device nodes from the cleared master device, and attaching them

to their respective slave device nodes on the “Slave Capable Devices” section. When

the sound engineer selects the “Release all Slaves” submenu item:

• All its slave device nodes are deleted from the “Capable Master Device” tree

and attached to their individual slave node on the “Capable Slave Device”

tree.

• An XML “syncsetup” document is sent to the mCMS server that contains the

sample rate and GUID values of the master device for which slaves have been

cleared.

• Slave device nodes are deleted from their master device node on the “Capable

Master Device” tree and attached to their individual slave nodes on the

“Capable Slave Device” tree.

It is possible to remove only one slave device from a master device with more than

one slave device. This can be done by simply right-clicking the slave device to be

removed from its master on the “Master Capable Devices” section, and selecting the

“Remove Slave” submenu item [Figure 5.22].

 111

Figure 5.22: Removing a Particular Slave Device

An XML “syncsetup” message is sent to the mCMS server, and the slave device node

is automatically removed from its master device and attached to its slave device node

on the “Slave Capable Devices”. When the sound engineer selects the “Remove

Slave” submenu item on a particular slave node:

• Its slave node is deleted from the “Capable Master Device” tree and attached

to its slave node on the “Capable Slave Device” tree.

• An XML “syncsetup” document is sent to the mCMS server that contains the

sample rate, GUID value of the master device and the GUIDs of its remaining

slave devices.

5.3.2.5 “Identify Device” Use Case
In a large mLAN network, it is often necessary for the sound engineer to identify a

particular device to work with on the network. The sound engineer can do this on the

Broadcast patchbay by right-clicking the device node on the Sources tree and

selecting the “Identify Device” submenu item [Figure 5.23].

 112

Figure 5.23: Identifying a Device

The patchbay automatically creates an XML “identify device” request document

[Listing 5.5] that is sent to the mCMS server, which contains the GUID of the device

to be identified. If the request is implemented successfully, the device will respond by

flashing one or more of its LEDs.

Listing 5.5: XML “identify device” Request Document

5.3.2.6 “Change Plug Layout” Use Case
To change the Plug Layout of a device, the sound engineer right-clicks the device

node on the Sources tree and selects the “Change Plug Layout” submenu item [Figure

5.14]. A Plug Layout panel opens [Figure 5.25]. It displays the current Plug Layout

of the selected device. The sound engineer can now use the “Select Plug Layout”

combo box to select a new Plug Layout to apply to this device.

 113

Figure 5.24: Change Plug Layout

When the user has chosen the appropriate Plug Layout on the Plug Layout panel

[Figure 5:25], the setting is applied by clicking the Apply Button.

Figure 5.25: Select Plug Layout Panel

Listing 5.6 shows a typical XML “Plug Layout” message that is sent to the mCMS

server when the sound engineer applies the Plug Layout setting by clicking the Apply

Button. It is requesting the Enabler module to apply a Plug Layout with ID “1” to a

device with GUID “0013f00400000014”. If the Plug Layout is successfully applied,

the mCMS server sends an XML “configuration” document to the patchbay with

updated network information that the patchbay in turn uses to updates its display. The

effect of changing a device Plug Layout setting is reducing or increasing the number

of plugs for the device depending on the chosen Plug Layout.

 114

Listing 5.6: XML “plug layout” Request Document

5.3.2.7 “Clear Dangling Connections” Use Case
Dangling connections can be cleared in two ways, either by connecting a plug with a

dangling connection, or by clearing the dangling connection. When the sound

engineer attempts to make a connection between two mLAN plugs, one of which has

a dangling connection, the dangling connection is first cleared automatically and then

the connection made [section 5.3.2.2.1]. When a dangling connection is cleared, an

XML “clear dangling connection” message is sent to the mCMS server that carries the

information about the plug with a dangling connection. The information carried by the

XML “clear dangling connection” message includes the GUID of the parent device of

the plug with a dangling connection, and the plug specific information that includes

the plug transmitting direction (in or out), the plug ID, and the plug type (audio or

MIDI) [Listing 5.7].

Listing 5:7: XML “clear dangling connection” Request Document

Alternatively, dangling connections can be cleared directly by left-clicking the blue

round icon of the plug with a dangling connection on the device trees. This

automatically clears the dangling connection by changing the blue dangling

connection icon of the clicked plug, and sending an XML “clear Dangling

 115

connection” message [Listing 5.7] to the mCMS server for implementation [Figure

5:2]. This method of clearing dangling connections is described by the following

sequence diagram [Figure 5.26]

If the dangling
connection is cleared
successfully, the blue
round node icon is
cleared.

 : Sound Engineer
 : Control
Window

 : IEEE1394
Device

 : Server :
DanglingConXMLDoc

 : mCMS Server

1. clickDevNode

1.1. getDevDetails()

1.2. getDevGUID()

1.3. <<createDanglingConXMLDoc> addInfo(devGUID)>

1.4. send(danglingConXMLDoc)

1.4.1. sent(DanglingConXMLDoc)

1.5. changeNodeGraphic()

Figure 5.26: Clearing Dangling Connections

The patchbay gets the GUID value of the clicked node on the tree that has a dangling

connection, creates and sends an XML “clear dangling connection” document to the

mCMS server that carries the GUID of the device to be cleared. If the Enabler

successfully clears the dangling connection, the blue round icon on the tree node

(newly cleared node) is changed to the normal yellow node icon that depicts a tree

node representing a plug with no dangling connection [Figure 5.26].

5.3.2.8 “Change Device Name” Use Case

At the time of this investigation, the mLAN device firmware allowed the renaming of

devices only, plug names could not be changed. To change the name of a device, the

sound engineer would right-click the device on the Sources tree and selects the

“Rename Device” submenu item. A Rename Device panel [Figure 5.27] appears on

which the sound engineer can specify the new name of the device.

 116

Figure 5.27: Rename Device Panel

When the sound engineer clicks the Ok button, an XML “rename device” message

[Appendix B: Listing 11] is created that contains the GUID of the device to be

renamed and the new name for that device. If the renaming process succeeds, the label

name of the device is automatically changed to the new name on both device trees on

the interface [Figure 5.28].

 : Sound Engineer
 : Control
Window

 : IEEE1394
Device

 : RenameXMLDoc : Server
 : mCMS Server

 : Rename
Device Panel

1. selectRenameDevMenu

1.2. getDevDetails()

1.3. getDevGUID()

1.6. send(RenameXMLDoc)

1.5. <<createRenameXMLDoc> addInfo(devGUID, devName)>

1.6.1. sent(RenameXMLDoc)

1.1. <<specifyNewDevName>>

1.4. getNewName()

1.7. updateDevNodeNewLabel()

Figure 5.28: Renaming a device

5.3.2.9 “Managing Files” Use Case
The Broadcast patchbay allows the sound engineer to save routing settings into a text

file as well as load saved routing settings into the patchbay. To do this, the sound

engineer uses the “File” menu on which the “Save” menu item is used to save the

 117

setting and the “Open” menu item is used to open saved settings. When the sound

engineer selects the “Save” menu item:

• The patchbay gets the Sources tree and converts its node information into an

XML object using the [Sources tree].toXML () method.

• The Sources tree XML object is then saved into a text file within a specified

location within the workstation.

To open saved routing settings in a text file within a specified location in the

workstation, the sound engineer selected the “Open” menu item on the “File menu”.

When the sound engineer selects the “Open” menu item:

• The patchbay opens the “Open” file dialog box, where the user navigates to a

specific file location and selects the file to be opened and clicks the Open

button of the “Open” file dialog box.

• The file data is loaded into the patchbay, and converted into an XML object

that is parsed as XML.

• The patchbay loops through all source device nodes displayed on the Sources

tree of the patchbay and compares them to their corresponding XML elements

in the loaded XML data. If a device node exists in the XML data but not on

the Sources tree, it is ignored, otherwise, the patchbay loops through each of

the device plugs.

• For each device plug found on the Sources tree, its “connected” variable is

compared to that of the same plug in the loaded XML data. If its value is

“true”, then that plug has a live connection. This value is compared to that of

the XML plug variable, if the plug XML “connected” variable is also “true”

the plug is ignore, otherwise the live connection is disconnected and the green

box icon cleared on the grid-matrix. If the Sources tree plug variable

“connected” value is “false” and that of the same plug in the XML data is

“true”, the patchbay gets the destination plug ID and it parent GUID of the

connected plug. This information is used to locate the destination plug on the

Destinations tree. If the plug’s parent device is on the network, its child plug

nodes are searched for the plug with the ID from the XML plug data. If the

 118

plug is found, the two plugs are connected, a green graphic box drawn on the

grid-matrix at their cross-point. An XML “connection request” is created that

contains the plug IDs, plug types and names of both plugs that is sent to the

server to implement a connection request.

5.2 Broadcast Patchbay Usability Testing

This section discusses the usability testing phase of the Broadcast patchbay. Note that

this usability testing was not meant to be an in-depth study as it was not the aim of

this investigation but was done to ensure that all Broadcast patchbay requirements

captured in the beginning of this chapter were adequately implemented.

The RUP software development process encourages consistent usability testing of the

software by potential users, to ensure that the software performs the tasks it was

designed to support satisfactorily. Various usability testing methods were employed

during and after the development of the Broadcast patchbay. The international

standard on usability testing, the ISO 9241-11 (1998), provided guidance during the

testing of the Broadcast patchbay. It defines usability as the “extent to which a

product can be used by specified users to achieve specified goals with effectiveness,

efficiency, and satisfaction in a specified context of use”. Another international

usability standard that was found to be useful is the ISO/IEC FDIS 9126-1 (2000),

which defines usability as the “capability of the software product to be understood,

learned, used, and be attractive to the user, when used under specified conditions”.

Therefore, it is clear that usability is a quality attribute that assesses how easily user

interfaces can be used. According to Nielsen (2004), usability is defined by six quality

factors:

• Fit for use (or functionality) – Determines if the developed system supports

the tasks it was designed to support.

• Ease of learning – Determines how easily the system is to learn for new users.

• Task efficiency – Determines how quickly occasional users can perform their

tasks on the system.

• Ease of remembering – Determines how easily users can re-establish

proficiency with the system if they have not been using it for a long period.

 119

• Subjective satisfaction – Determines how pleasant and satisfying the system’s

interface is for the user.

• Understandability - Determines how easy is it to understand what the system

is doing, for example in situations of system failure.

At different stages in the development of the Broadcast patchbay, different usability

testing techniques were utilised that generated a set of proposals for redesigning and

modifying the patchbay in regard to these six usability factors.

5.2.1 Usability Testing User Profiles

Broadcast networks are complex in nature, and are usually controlled by well trained

sound engineers who understand how audio is routed within the mLAN network. The

Broadcast patchbay usability testing was carried out by users who fulfilled the

following requirements:

• Had worked within Broadcast network studios for at least 3 years.

• Between the age of 18 and 60 years.

• Have experience working with grid-based patchbays.

Appendix C-C1 shows a detailed User Profile Form that was utilised for gathering

usability testing users’ information.

5.2.2 Usability Methodologies and Findings

Two different usability testing methods, namely the heuristic evaluation and the user

testing, were selected to test the usability of the Broadcast patchbay. A preliminary

heuristic evaluation was the first technique applied. It detected minor usability

problems and missing functionality in the software that were fixed as much as

possible before the user testing of the software by prospective users. Nielsen (2004)

defines the heuristic evaluation process as a “usability engineering method for finding

the usability problems in a user interface design so that they can be attended to as part

of an iterative design process”. The heuristic evaluation “System Checklist” used was

developed by Deniese Pierotti from Xerox Corporation (1994) and is shown in

Appendix C-C3. The usability principles (the "heuristics") evaluated by this heuristic

 120

evaluation checklist include the following, which comply with Nielsen’s (2005) ten

usability heuristics:

• Visibility of System Status.

• Match Between the System and the Real World.

• User Control and Freedom.

• Consistency and Standards.

• Error Prevention.

• Recognition Rather than Recall.

• Flexibility and Minimalist Design.

• Aesthetic and Minimalist Design.

• Help Users Recognize, Diagnose, and Recover From Errors.

• Help and Documentation.

The Broadcast patchbay was updated to incorporate missing functionality before it

was sent for usability testing. The usability questionnaire shown in Appendix C-C2

was used for the Broadcast patchbay usability testing, and was derived from the

Software Usability Measurement Inventory (SUMI) tool [Kirakowski, 1994], the

Purdue Usability Testing Questionnaire (PUTQ) tool [Lin, Choong and Salvendy,

1997], and the Questionnaire for User Interface Satisfaction (QUIS) tool [Chin, Diehl

and Norman, 1988]. It had 45 questions with each question grading the user’s

response on a Likert scale from 0 to 9, where 0 represented strongly disagree and 9

represented strongly agree [Siegle, 2004]. The questions utilized the following criteria

that were relevant to the three patchbays developed:

a) Consistency

The consistency section of the usability questionnaire evaluated the consistency of the

following aspects:

• The font size and type used in naming and labelling different panels of the

patchbay.

• The wording used within the patchbay interface panels and that it is consistent

with the user guidance provided.

 121

• The grouping and ordering of menu options for different panels of the

patchbay.

b) Learnability

This section tested how easy it was to learn to use the patchbay, and how much load

(names and commands to remember when performing connection management tasks)

the user was required to remember. This section also evaluated the following aspects:

• How straightforward was performing tasks on the patchbay.

• How steep was the learning curve for the user.

• How meaningful and useful were the patchbay commands.

c) Terminology, User Guidance and System Information

This section evaluated the usefulness of the system terminology and user guidance

material provided. The questionnaire evaluated:

• If the terminology used in the guidance material was related to tasks.

• System feedback - How helpful are error messages.

• If the patchbay provided the CANCEL option.

• If error messages are disruptive or informative.

d) Screen Positioning

This section of the usability questionnaire evaluated the patchbay to see if:

• Reading information on the screen is easy.

• Positioning of messages on the screen captures the attention of the user.

e) Flexibility

This section evaluated how much control the patchbay gave the user. Specifically, the

questions for this section evaluated the patchbay with respect to:

• The customisability of its panel components.

• Its zooming capabilities for clarity of the displayed interface components.

 122

• Its menu options dependability in the context of the panel and their purposes.

• Its zooming capabilities for display expansion.

f) Minimal Action

This section evaluated the patchbay to see if it provided default values, function keys

and options for accessing frequently used features.

g) Perceptual Limitation

This section of the usability questionnaire evaluated the patchbay to see if:

• It uses blending colours for different panels.

• It demarcates groups of information.

• Active windows and components are highlighted.

• Its screen density is reasonable.

h) System Capabilities

This section evaluated the efficiency and reliability of the patchbay when the user

performs connection management tasks with respect to speed, reliability, security and

error handling.

The Broadcast patchbay users were two sound engineers, one from Germany and the

other from Canada, who fulfilled test user requirements stated in section 5.4.1. The

developer could not get local usability test users who fulfilled the requirements in

section 5.4.1. As a result, the developer could not have face-to-face usability testing

sessions with the users, and instead users were asked to perform common connection

management tasks on the patchbay according to their discretion and complete the

usability testing questionnaire, which was sent them through email.

5.2.2.1 Broadcast Patchbay Usability Testing Results

This section discusses results of the Broadcast patchbay usability testing process.

Figure 5.29 shows the Broadcast patchbay version 1 interface that was sent to

usability users for the first testing iteration.

 123

Figure 5.29: Broadcast Patchbay Version 1

The following sections present usability testing results for each of the eight aspects

described in the preceding section.

a) Consistency

One of the users identified consistency issues, that the Wordclock panel title font type

and size did not match that of the main Control Window and other panels. Both users

strongly agreed that the labels were located at consistent location on all screens of the

Broadcast patchbay interface panels. Both users strongly agreed that the grouping and

ordering of menu options for different panels of the Broadcast patchbay was logical.

b) Learnability

This section evaluated how easy the patchbay was to learn to use. The following

results were noted:

MIDI and Audio Check Boxes

Blue Bar White Bar

Three Lines

 124

• Both users strongly agreed that learning to use the Broadcast patchbay was

easy.

• Both users strongly agreed that remembering names and use of commands

within the Broadcast patchbay was not challenging.

• Both users strongly agreed that performing tasks was straightforward.

• Both users strongly disagreed that the Broadcast patchbay required a steep

learning curve.

c) Terminology, User Guidance and System Information

This section of the usability questionnaire evaluated the terminology and error

messages used by the system. Both users strongly agreed that the Broadcast patchbay

terminology used was related to tasks and the error messages were not disruptive but

informative. However, one of the users strongly disagreed that the Broadcast

patchbay provided the CANCEL option. The system did not provide the user with the

option of rolling back, for instance, when one makes a mistake while performing a

connection management task.

d) Screen Positioning

This section looked at the positioning of different graphic components of the

Broadcast patchbay interface. Both users agreed that the Broadcast patchbay’s

organization of information was logical and standard. However, one the users also

thought the “Date and Time” information at the top-right corner was redundant

information, which the workstation (running the patchbay) displays by default.

Therefore, this information wasted space. The arrangement of the legend elements in

three lines also wasted valuable space [Figure 5.29]. Both users strongly agreed that

error messages dialog boxes were positioned at convenient locations to attract the

user’s attention.

e) Flexibility

This section evaluated how much control the patchbay gave the user:

 125

• Both users agreed that the Broadcast patchbay provided the user with direct

manipulation capabilities such as being able to directly manipulate the

application grid-matrix box when establishing and breaking audio

connections.

• Both users disagreed that the Broadcast patchbay allowed the users to display

elements according to their needs, for instance, the Broadcast patchbay did not

provide the user ways of customising tree list nodes or of changing its colours.

The system provide only one way of doing thing, the user was allowed to

customise aspects of its components.

f) Minimal Action

Both users strongly disagreed that the Broadcast patchbay provided default values

and function keys for frequent control entries. The system did not provide shortcut

keys and icons for fast access to frequently used panels and features.

g) Perceptual Limitation

This section evaluated the aesthetic aspects of the Broadcast patchbay interface

components. Both users had problems with the “table cloth” effect introduced by the

alternating Blue and White bars [Figure 5.22], which they thought were hard on the

eyes and gave the interface a sluggish feel. In addition, the small green and blue

graphic circles on the grid-matrix made it hard for the user to see and work easily with

the cross-points in a case where there were many connections displayed on the grid.

However, both users strongly agreed that the system screen density, that is the

spacing between patchbay interface components, was reasonable.

h) System Capabilities (Speed and Reliability)

This section evaluated the efficiency and reliability of the Broadcast patchbay when

the user performs connection management tasks with respect to speed, reliability,

security and error handling. Both users strongly agreed that tasks such as making and

breaking audio connections, which were performed on the Control Window grid-

matrix executed efficiently. One of the users disagreed that the system reliability was

good enough. Reliability issues were found on the Wordclock panel that include:

 126

• On the Wordclock panel, if one changed the sample rate of a master device

that has slave device nodes, the master device sample rate label changed but

the sample rate label of the slave device nodes remained the unchanged.

• On the Wordclock panel, one could make a word clock Master/Slave

configuration between two devices with different sample rates.

5.2.2.2 Redesigning of the Broadcast Patchbay

The usability testing process revealed problems with the patchbay, notably the

improper functioning of the Wordclock panel, the sluggishness of the grid-matrix, the

wasted space on the main Control Window, and consistency issues on the Wordclock

panel. Only the critical features were incorporated into the second version of the

Broadcast patchbay. Figure 5.30 shows the redesigned and final Broadcast patchbay.

Alternating Blue and White bars on the grid-matrix were replaced by a simple grid

with a grey background, effectively removing the “table cloth” effect. Live

connections (previously denoted by small green and blue graphic circles [Figure

5.29].) are represented by much bigger green square boxes that fill the whole grid box

in the new Broadcast patchbay version 2. The “Date and Time” labels at the top-right

of Figure 5.29 were removed and the patchbay legend moved and rearranged at the

bottom of the patchbay to save space. The rearrangements left more space for

displaying the “grid-matrix” and the “device trees”. As shown in Figure 5.30, tree list

components were resized to that node names are clearly displayed without any need

for scrolling, unlike the case for the Broadcast patchbay version 1 [Figure 5.29].

 127

Figure 5.30: Broadcast Patchbay Version 2

Standard tool bar icons and shortcut keys were added to the Broadcast patchbay for

frequently performed connection management tasks to enhance the speed by which

the user executed tasks. In addition, roll back options were added for all connection

management tasks performed on the Broadcast patchbay. Notably, the CANCEL

button was included in all the patchbay panels and the user had the option of reversing

the processes of establishing and breaking audio connections by clicking twice the

grid-matrix box which the connection status is being reversed. For instance, assuming

the sound engineer clicks the cross-point grid-matrix box of two plug nodes that are

connected by mistake. To reverse the connection if the patchbay is in “Delayed

Mode”, the sound engineer clicks again the same cross-point grid-matrix box of the

two newly connected plugs. Their connection should be broken.

5.2.2.3 Broadcast Patchbay Version 2 Test feedback

The Broadcast patchbay version 2 was further evaluated by the two prospective users.

Feedback showed that both testers were satisfied by the modifications made. They

found the interface, especially the grid-matrix, to be easy on the eyes and much

Live Connections

 128

clearer, because of the inclusion of connection and disconnection square graphic

boxes that fill the whole grid box in contrast to the small circles used in the version 1

of the patchbay. The rearrangement of the legend at the bottom of the patchbay

created more space for displaying the “device trees” clearly, and allowed for the

addition of four more rows and two columns on the grid-matrix.

5.3 Chapter Summary
Standard Human Computer Interaction (HCI) and Object Oriented Programming

(OOP) concepts were utilised in conjunction with the Rational Unified Process (RUP)

Iterative and Incremental Process for the development of the Broadcast patchbay for

Broadcast networks. The Broadcast patchbay developed comprises three main panels,

the Control Window, the Settings panel and the Wordclock panel. The Control

Window is used for audio routing and modifying device properties such as the device

nickname and device Plug Layout configurations. The Settings panel enables the user

to specify the mCMS server DNS name, port number, and the number of source PC

plugs for the host workstation. The Wordclock panel enables the sound engineer to

set/clear word clock Master/Slave configurations which allow mLAN devices to

transmit and receive packets at synchronised sample rates. It is a requirement in

mLAN networks that any two communicating devices do so at the same sample rate.

A heuristic evaluation was performed by the developer before the patchbay was sent

to prospective testers, who performed the actual usability test based on a 45-question

questionnaire shown in Appendix C-C2. Their findings resulted in the redesigning of

the Broadcast patchbay to provide for maximum space usage and ensured the proper

functioning of the Wordclock panel for setting/clearing word clock Master/Slave

configurations within Broadcast networks.

In the next chapter, the Rational Unified Process’ Iterative and Incremental Process

for software development is applied to the development of a patchbay for Project

studio networks.

 129

CHAPTER 6

6 Project Studio Patchbay Design and Development

Project studio networks are smaller than Broadcast networks, and typically deal with

fewer device connections. They are generally operated by music producers who

understand how the audio network routes audio from one output plug on a source

device to a particular input plug on a destination device. Due to the small size of

Project studio networks, sound engineers for these networks have the tendency to

switch physical audio cables between the actual physical devices to perform audio

routing. This has led to them developing mental models of their studio device

topologies, for instance, they know where each device physically lies within the

studio without necessarily looking at it.

As a result, graphic-based patchbays are normally used in these networks, because

they use graphic representations (that are customisable) of the network devices, and

therefore present sound engineers with a familiar working environment that matches

their mental model of the real studio. A well designed graphic patchbay can allow

sound engineers to customise device blocks9 to match the layout of their real studio,

and use connector lines10 between device blocks to create the cable-switching

capabilities as they would have in a real studio. The development of the Project studio

patchbay followed the eight phases of the Iterative and Incremental Process (RUP),

which includes the requirements phase, the analysis and design phase, the

implementation phase, the deployment phase, and the testing phase [Chapter 5:

Figure 5.1]. This chapter discusses in detail how these development stages guided the

development of a Project studio patchbay for use in Project studio networks.

6.1 Project Studio Patchbay Requirements Analysis
Although graphic-based patchbays are commonly deployed within Project studio

networks, it was not clear which patchbay layout and what functionality should be

incorporated into the patchbay to be developed for Project studio networks. As a

9 Device blocks are graphic boxes that represent network devices on the patchbay display
[Figure 6.1].
10 Connector lines are connection graphic lines that join two graphic plugs on the patchbay
display [Figure 6.1].

 130

result, a computer prototype of a typical graphic-based patchbay was developed for

purposes of gathering Project studio patchbay requirements, and was also used for

determining the best layout that would satisfy Project studio users. Nielsen (2004)

defines a prototype as a “working model of the final system built to develop and test

design ideas”. A computer prototype was chosen for gathering requirements for the

Project studio patchbay for the following reasons:

• It allows for interactive design of the software before its development. In

addition, a computer prototype provides interactive feedback for the user,

which enables users to visualise how the final system will behave.

• It is high-fidelity in appearance and interaction as it allows the user to explore

the graphic design of the final system. It also allows for the choosing of

appropriate colours, fonts, component alignments, icons, and the white space.

• It has low-fidelity in depth since it comprises most of the system’s

components with no backend.

The computer prototype was tested by eight typical Project studio users who fulfilled

the following requirements:

• Have experience working within Project studio networks for at least 3 years.

• Are between the ages of 18 - 60 years.

• Have experience working with graphic-based patchbays.

Appendix C-C1 shows a detailed User Profile Form that was utilised for gathering the

usability testing user information.

6.2 Project Studio Computer Prototype

Figure 6.1 shows the computer prototype that was sent to eight users within South

Africa and abroad (Germany and Canada) for testing. This prototype included the

following features and capabilities to:

• Establish audio connections.

• Break audio connections.

 131

• Drag device blocks.

• Resize device blocks.

• Add a new device block using the Add Device button.

• Expand and collapse plug blocks to view clearly the names of individual

plugs.

The prototype interface consisted of dummy graphic components, such as the

bandwidth bar, the Display buttons, the Mode Settings buttons, and the Network

buttons, that were incorporated into the final patchbay design.

Figure 6.1: Project Studio Patchbay Prototype

A shorter version of the usability questionnaire shown in Appendix C-C2, with 12

questions, was completed by each user who tested the computer prototype. Sections of

the usability questionnaire [Appendix C-C2], which were not relevant to the testing of

the computer prototype but to the final system, were removed. This therefore, reduced

the size of the questionnaire significantly. The questions removed evaluated the:

Output Plugs Block

Input Plugs Block

Device Block

Connector Line

 132

• Usefulness of error massages.

• System speed and its reliability capabilities.

• Panel components consistency (title font size and type).

These sections were only relevant if the patchbay had all its panels and the backend

mCMS server was active.

The questions used evaluated:

• How easy the system was to use for a new user, and how much mental load

the user had to carry to use the system.

• The flexibility of the system features.

• The size, colour and shape of the interface components (for instance the device

blocks and button components).

• The arrangement and layout of the patchbay interface components.

The users were given a section to write any suggestions and comments they deemed

important for the prototype design. The analysis of the gathered patchbay

requirements resulted in the developer listing of important patchbay features.

Stimulus/Response sequences were used to describe how these features were to work

in the complete product. The prototype did not have a live connection to the mCMS

server. Appendix A-A3 provides a complete list of the system requirements for the

Project studio patchbay that were gathered from the testers’ feedback, which was

collected using a usability questionnaire. The IEEE Recommended Practice for

Software Requirements Specifications [IEEE Inc, 1998] was utilised for documenting

these requirements.

6.3 Project Studio Patchbay Description
The Project studio patchbay developed was named “FireSwitch”. It comprises four

main panels, namely the Control Window, the Settings panel, the Wordclock panel,

and the Device Information panel.

 133

The Control Window [Figure 6.2] is the main panel of the Project studio patchbay,

and incorporates important features that facilitate audio routing and connection

management in mLAN Project studio networks. Figure 6.2 shows a screenshot of the

Project studio patchbay that displays a typical Project studio network with four

mLAN compatible devices, namely the mLAN Windows PC device, two I/One

breakout boxes (the OGT - I/One Src device and the OGT - I/One Dest device), and

Yamaha Corporation’s MAP4 device. The Control Window displays mLAN devices

on the network as square graphic boxes (referred to as device blocks) in different

colours, which are assigned randomly when the device blocks are first created. Each

device block displays the name of the device it represents, the word clock state of the

device (either master or slave) and the device sample rate. It also has a button labelled

“Information” that is used to display detailed information about a device.

Figure 6.2: Project Studio Control Window

Output Plugs Block

Input Plugs Block

Device Block

Connector Line

 134

Each device block has two expandable/collapsible plug blocks attached to it. The plug

blocks (the input plugs block and the output plugs block) display input plug graphics

and output plug graphics for each device. Figure 6.2 also shows the connector lines

that represent live connections between device plugs. Connection management tasks

that can be performed on the Control Window of the Project studio patchbay include:

• Establishing audio connections.

• Breaking audio connections.

• Renaming device nicknames.

• Clearing all device connections for a particular device.

• Viewing detailed information for a particular device on the mLAN network.

• Saving / Opening routing settings into / from a text file.

• Identifying a particular device on the network.

The Project studio patchbay uses the same Settings panel and the Wordclock panel as

the Broadcast patchbay described in chapter 5 [section 5.2]. The Settings panel allows

the sound engineer to:

• Configure the mCMS server name and port number.

• Configure the number of source plugs (for both MIDI and audio) of the

workstation running the Project studio patchbay.

The Wordclock panel allows the sound engineer to:

• Set a global master unit for the whole mLAN network.

• Enslave a device to a particular master device.

• Release all slave devices for a particular master device.

• Remove a single slave device from its master device.

• Change a master device word clock sample rate and its word clock source as

well as its work clock source output.

 135

The Device Information panel [Figure 6.3] displays detailed information about a

particular device. This panel is opened by clicking the Information button at the

centre of each device block displayed on the patchbay interface. Device information

that can be viewed includes [Figure 6.3]:

• The device vendor.

• The device model name.

• The device GUID.

• The device supported sample rates.

• The device current device Plug Layout.

Figure 6.3: Device Information Panel

Besides viewing device information, the Device Information panel allows the sound

engineer to:

• Rename device nicknames.

• Configure the device Plug Layout.

• Change the device background colour.

To rename a device on the Device Information panel, the sound engineer specifies the

new name of the device in the “Node Nickname” text box [Figure 6.3] and clicks the

 136

OK button. An XML “rename device” document [Appendix B: Listing 11] is created,

and is sent to the mCMS server containing the GUID of the device to be renamed and

its new name. If the renaming process succeeds, the label of the device on the

patchbay interface is automatically changed to the new name specified on the Device

Information panel.

To configure a device Plug Layout, the sound engineer selects the desired Plug

Layout to be applied on the “Select Plug Layout” combo box [Figure 6.3] of the

Device Information panel and clicks the OK button. An XML “Plug Layout”

document [Listing 6.1] is created, and is sent to the mCMS server to request the

implementation of the setting.

Listing 6.1: XML “set current plug layout” Request Document

If the setting is successfully implemented, the mCMS server sends an XML

“configuration” document to the patchbay that it uses to update the display. The

number of device plugs are then reduced or increased depending on the Plug Layout

chosen.

The sound engineer can change the device’s background colour by simply selecting

the proper colour box on the “Choose Background Colour” grid [Figure 6.3] of the

Device Information panel and clicking the OK button. The selected colour is

automatically applied to the device block. There is no client/server communication for

changing the device block colour.

The sound engineer can also drag device plug blocks to any of the eight sides of the

device block they are attached to by simply clicking and dragging the plug block to

positions highlighted [Figure 6.4]. The device blocks can also be dragged to any

 137

position within the patchbay display space. There is no client/server communication

for this process.

If a device block is too small such that its labels and word clock information cannot be

seen clearly, the sound engineer can zoom in and out as required by clicking and

dragging the Zoom button at the bottom right corner of the device block to enlarge it.

Figure 6.4: Moving Plug Blocks

6.4 Project Studio Patchbay Design and Implementation
This section discusses the design and implementation of the Project studio patchbay

using UML sequence diagrams.

6.4.1 Project Studio Patchbay Implementation Sequence Diagrams

The Project studio patchbay uses the same Use Case Diagram as the Broadcast

patchbay described in chapter 5 [section 5.3.1.1], which shows the high-level

functions of the Project studio patchbay and identifies two entities (Actors) that

interact with the patchbay, namely the sound engineer and the mCMS Server. The

high-level functions of the Project studio patchbay include:

• Managing files.

Possible Plug
Block drop
positions

Plug Block

Device Block

Zoom Button

Mouse pointer
dragging a
Plug Block

 138

• Connecting to the mCMS Server.

• Establishing audio Connections.

• Breaking audio connections.

• Updating the Project studio patchbay.

• Applying changes made on the Project studio patchbay.

• Setting/Clearing word clock Master/Slave Configurations.

• Identifying a particular network Device.

Sections 6.3.1.1 through to 6.3.1.5 describe the implementation of some of these

features in detail.

Figure 6.5 shows the Object Model that depicts the relationships and dynamic

interactions between objects written for the Project studio patchbay. The IEEE1394

Network object is shown to contain an aggregation of IEEE1394 Bus objects. Each

IEEE1394 Bus object contains an aggregation of IEEE1394 Device objects, which in

turn each contains an aggregation of Device Audio Plug objects that can either

represent an output or input mLAN plug. The model also shows the interrelationships

between the various Project studio patchbay panels (the Control Window, the

Wordclock panel, the Settings panel, the Login panel, and the Device Information

panel) and their associated XML document objects. XML document objects are

created for each XML document sent to the mCMS server when connection

management tasks are performed.

 139

plugLayout XMDoc

Audio_OUT PlugAudio_IN Plug 0..10..* 0..10..*

Logon XMLDoc

globalSyncXMLDoc

Clear AllMaster/Slave
SettingsXMLDoc

setMasterXMLDoc

serverDetailsXMLDoc
PCPlugsXMLDoc

File Managem ent

IEEE1394 Network

NetworkName

Logon Window

1

1

1

1

Wordclock Settings Window

1

1

1

1

1

1

1

1

1
1

1
1

Server / PC Plugs Details Window

1

1

1

1 1

1

1

1

mLAN Device Plug

PlugName
PlugType
PlugID
ParantNam e

IEEE1394 Bus

BusName
NetworkName
Bus ID

0..*0..*

ConnectionRequest
XMLDoc

DisconnectionRequest
XMLDoc

UpdateRequest
XMLDoc

mLAN Graphic Patchbay1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

IEEE1394 Device

DeviceName
DeviceGUID
BusName
Model
Vendor
Firmware

0..*0..*

0..*0..*

setPCPlugsXMLDoc

Graphic Display Main Window

1

1

1

1

1

1

1

1
1 11 1 11 11

1

0..*

1

0..*

1

1

1

1

1

1

1

1
RenameDaviceX

MLDoc

1

1

1

1

Figure 6.5: Project Studio Patchbay Object Model

6.4.1.1 “Connect to mCMS server” Use Case
At start-up, a TCP/IP connection is established between the Project studio patchbay

and the mCMS server. The user logs into the mCMS server by specifying the

 140

username and the password in the Login panel. When the patchbay successfully

connects and authenticates with the mCMS server, the mCMS server sends an XML

“configuration” document [Listing 5.2] to the patchbay that contains information of

the current status of the network devices and their connections. On the patchbay, the

XML elements of the XML “configuration” document are extracted, the network

hierarchy recreated and the patchbay updated with the latest network information

received as follows [Figure 6.6]:

• It loops through the XML “configuration” document IEEE1394 Network

element and creates the IEEE1394 Network object.

• It loops through all IEEE1394 bus elements, and creates IEEE1394 bus objects

for each XML bus element found.

• For each IEEE1394 bus element, it loops through all IEEE1394 device

elements, and creates IEEE1394 device objects. For each device object, a

device block graphic is created on the patchbay, which is assigned a random

background colour. Its size is determined by the number of input and output

plugs the device has.

• For each IEEE1394 device element, it loops through all its mLAN plug

elements, and creates mLAN plug objects. It creates plug blocks for each

device corresponding to each plug object, and attaches them to their device

blocks.

• For each connection element, it loops through all its patch elements, and

draws connector lines on the patchbay interface for device plugs with live

connections.

 141

 : Server :
ConfigurationXMLDoc

 : Control Window : IEEE1394
Network

 : IEEE1394 Bus : IEEE1394
Device

 : Audio Plug

 : mCMS Server

For each Bus

For each
Device

For each Plug

For each
connection

4. *getPlug()

8. *getConnectionInfo()

9. drawConnectorLine()

2. createDeviceBlock()

6. createPlugBlock()

5. addPlug(plug)

3. <<createDeviceBlock(deviceDisplayName)>>

4.1. <<createPlugObject(displayName,nickName,direction,DevGUID,type)>>

7. createPlugBlock(displayName,nickName,direction,DevGUID,type)

1. send(XMLConfigDoc)

1.1. XMLConfigDoc

1.1.1. [XMLConfigDoc]:BuildTrees()

1.1.2. get1394NetworkObject()

1.1.4. *getBusObject()

1.1.5. <<createBusObject(1394Network,busName)>>

1.1.6. addBusObject(busName)

1.1.7. *getDeviceObject()

1.1.7.1. <<createDeviceObject(GUID,nickname,model,vendor)>>

1.1.7.2. addDevice(1394Device)

1.1.3. <<createNetworkObject(1394Network)>>

Figure 6.6: Receiving the XML Configuration Document Sequence Diagram

6.4.1.2 “Establishing Audio Connections” Use Case

The Project studio patchbay allows the sound engineer to establish audio connections

between mLAN plugs of the same type and on different devices. To establish an audio

connection, the sound engineer clicks the maximise icon to expand the input and

output plug blocks of both devices to be connected [Figure 6.7]. This allows the

sound engineer to clearly view plug names of each plug block.

 142

Figure 6.7: Maximising Inputs and Outputs Plug Blocks

With both plug blocks expanded, the sound engineer clicks either the output plug or

the input plug graphic of the plug to be connected and drags the mouse pointer out of

the plug graphic towards the other plug to connect to. A connector line is drawn that

represents the new connection. In Figure 6.8, an audio connection is established from

the output plug Analog In 3 on the device OGT-IOne Src to the input plug ADAT 3 on

the device OGT-IOne Dest. When the sound engineer releases the mouse over the

input plug ADAT 3, an XML “connection request” document [Appendix B: Listing 5]

is created containing information of both plugs, and sent to the mCMS server. If the

network has enough bandwidth, the connection is implemented by the Enabler module

and a connector line is permanently drawn between the two newly connected plugs

and audio is routed between the two plugs. When the user has expanded the plug

blocks of the two devices to be connected and clicks and drags out the mouse pointer

from one of the plug graphics:

• The patchbay creates three variables to hold the ID, the plug type and name of

the plug the user is dragging from and draws a connector line to the mouse

pointer that reflects the new connection.

• As the mouse pointer is moved to the next plug, the connector line is

continuously redrawn.

Maximise Icon

Expanded Input
Plugs Plug Block

 143

• When the user releases the mouse over another plug graphic (that is not on the

same device as the first plug), the patchbay creates three other variables to

hold the connector line the ID, the plug type and name of the plug of the new

plug.

• An XML “connection request” document is created that contains the

information (the IDs, the plug types and names of the two plugs) and sent to

the mCMS server.

• If the request is successfully implemented, a permanent connector line is

drawn between the newly connected plugs and audio is routed between them.

Output plugs can have many connections, whilst input plugs can only have a single

connection at a time. This is because output plugs can transmit audio to many input

plugs, while input plugs can only receive input from only one output plug.

Figure 6.8: Establishing Audio Connections

6.4.1.3 “Breaking Audio Connections” Use Case

The Project studio patchbay also allows the sound engineer to break audio

connections. To do this, the sound engineer clicks the connector line joining the two

plugs to be disconnected and drags it [Figure 6.9]. The patchbay temporarily clears

the dragged connector line. An XML “disconnection request” document [Appendix B:

 144

Listing 6] is created that contains information of the input plug to be disconnected,

and sent to the mCMS server which invokes the Enabler module to implement the

request. If the request is successfully implemented, the cleared connector line is

deleted permanently (in which case, audio stops streaming between the two plugs),

otherwise if the disconnection failed the connector line is redrawn between the two

plugs and audio continues to stream. When the user drags the connector line joining

two plugs:

• The patchbay gets the ID, the plug type and name of the destination plug to be

disconnected and temporarily deletes the connector line.

• An XML “disconnection request” document is created that contained the

destination plug information (the ID, the plug type and name) and sent to the

mCMS server.

• If the request is successfully implemented, the connector line remains deleted

permanently otherwise it is redrawn and an error message from the server

displayed.

Figure 6.9: Breaking Audio Connections

 145

6.4.1.4 “Setting/Clearing Wordclock Master/Slave Configurations” Use

Case

The Project studio patchbay uses the same method for setting and clearing word clock

Master/Slave configurations as the Broadcast patchbay described in section 5.3.1.4.

6.4.1.5 “Identify Device” Use Case

The sound engineer can identify a particular device on the Project studio patchbay by

right-clicking the device block and selecting the “Identify Device” submenu item

[Figure 6.10]. The patchbay automatically creates an XML “identify device”

document [Appendix B: Figure 12] that is sent to the mCMS server. This XML

request document contains the GUID of the device to be identified. If the request is

implemented successfully, one or more device LEDs flash. When the user selects the

“Identify device” menu item:

• The patchbay gets the GUID of the selected device and incorporates it into an

XML “identify device” request document that is sent to the server.

• If the request is successful, one more device LEDs will flash otherwise an

error message is displayed.

Figure 6.10: Identifying a Device

 146

6.4.1.6 “Managing Files” Use Case
The Project studio patchbay allows the sound engineer to save routing settings into a

text file as well as load saved routing settings into the patchbay. The sound engineer

does this by selecting the “Save” menu item to save the routing settings into a text file

and the “Open” menu item to open saved settings. When the sound engineer selects

the “Save” menu item, the Project studio patchbay creates an XML document object

and:

• Loops through all displayed device blocks. For each device block found, a

corresponding device object is created and added to the XML object elements

hierarchy. It then loops through the device block input and output plugs,

creates a plug object for each plug found that is attached to the device XML

element in the XML document object until all device blocks have been

converted to XML objects.

• The XML document object is then saved into a text file within the

workstation.

When the sound engineer selects the “Open” menu item on the “File” menu, the

Project studio patchbay:

• Opens the “Open” file dialog box, where the user navigates to a specific text

file location and selects the file to be opened. Clicking the Open button of the

“Open” file dialog box loads the file data into the patchbay, and converts it

into an XML object that is parsed as XML.

• The patchbay loops through all displayed device blocks, and compares them

with the corresponding device XML objects.

• For each device block found, it gets each device plug displayed, and compares

its variable “connected” value to that of the plug object for the loaded XML

data. If the displayed plug variable value is “true”, whilst that of the loaded

XML object is “false”, a disconnection is performed between the two device

plugs, and the connector line between them deleted otherwise a connection is

established between the two plugs and a connector line drawn that signifies the

live connection between the two plugs.

 147

6.5 Project Studio Patchbay Usability Testing

This section discusses the usability testing phase of the Project studio patchbay. This

usability testing phase was not meant to be an exhaustive study but was done to

ensure that Project studio patchbay requirements were sufficiently implemented, and

the patchbay works properly.

Two different usability testing methods, namely the heuristic evaluation and the user

testing, were selected to test the usability of the Project studio patchbay. A heuristic

evaluation was the first technique applied. It detected minor usability problems and

missing functionality in the software that were fixed as much as possible before the

user testing of the software by prospective users. The heuristic evaluation process was

based on the same “System Checklist” heuristic evaluation form that was used for

evaluating the Broadcast patchbay [section 5.4], and is shown in Appendix C-C3.

The usability questionnaire used for testing the Project studio patchbay was

completed by eight usability testing users who tested the system. Three of the users

were local sound engineers, who were part of the Rhodes Computer Science Audio

Engineering group. The other five users were asked to perform common connection

management tasks on the patchbay according to their discretion and complete the

usability testing questionnaire that was sent to them through email as they were

located overseas (Germany and Canada) or in other parts of South Africa

(Johannesburg and East London). They all fulfilled the test user requirements stated

below:

• Have experience working within Project studio networks for at least 3 years.

• Are between the ages of 18 - 60 years.

• Have experience working with graphic-based patchbays.

6.5.1 Project Studio Patchbay Usability Testing Results

The users were asked to perform common studio tasks and to comment on their

experience using a structured usability questionnaire that tested the Project studio

 148

patchbay based on the following aspects, which are explained in detail in section

5.4.2:

• Consistency.

• Learnability.

• Screen positioning.

• Flexibility.

• Minimal action.

• Perceptual limitation.

• System capabilities.

The following sections present usability testing results for each aspect tested.

a) Consistency

No consistency issues were found on the Project studio patchbay. All users strongly

agreed that the patchbay naming (font type and size) was consistent across displays

and menu options, and the grouping and ordering of menu options was logical for all

Project studio patchbay panels.

b) Learnability

All users found the Project studio patchbay to be easy to learn and use for a first time

user. They all strongly agreed that the patchbay was easy to learn to use for

performing connection management tasks and did not involve a steep learning curve.

The Project studio patchbay allowed users to perform tasks easily, and they only

needed to open very few panels to do this.

c) Screen Positioning

This section evaluated the positioning of different graphic components of the Project

studio patchbay interface. All users strongly agreed that the patchbay’s organization

of information and components was logical.

d) Flexibility

All users strongly agreed that the Project studio patchbay allowed users to display

patchbay components according to their needs and provided them with resizing

 149

capabilities. The patchbay was found to be flexible enough, giving the user total

control. Notable features of the Project studio patchbay included:

• Its drag and drop capabilities that allowed the user to drag device blocks to any

point within the patchbay’s working space. Plug blocks could be dragged to

any of the eight positions of a device block [section 6.2].

• The resizing functionality, which allowed the user to resize the device blocks

to view clearly the details of individual device graphics.

• The ability to expand and collapse plug blocks to view individual plug names

when performing tasks such as establishing and breaking audio connections

[section 6.3.1.2].

One of the users however, disagreed that the patchbay allowed users to display

patchbay components according to their needs and perform connection management

tasks flexible enough. He cited the following flexibility issues:

• Connections were disconnected by merely clicking on the connector lines

joining connected devices. This meant when the sound engineer clicked a

connector line by mistake, the connection was broken. This he thought was

too much flexibility.

• When making connections, the system forced one to make the connection

from the output plug block to the input plug block. From the way physical

cable connections were made in a Project studio patchbay, one did not really

“care” whether a cable was first plugged in the output or to the input. If the

cable was plugged in the input first then one ensured that it goes to a source

output and vice versa. Also, existing systems such as Yamaha’s Graphic

patchbay did not have such a restriction.

• He thought, when connecting two devices it made sense to place their input

and output plug blocks facing one another. The patchbay did not allow this.

The output plug block was always above the input plug block when both plug

blocks were on the same side of a device block.

 150

e) Minimal Action

Three users disagreed that the Project studio patchbay provided default values and

function keys for frequently used control entries. It only provided the Tool bar icons

for quickly accessing capabilities such as saving and opening routing settings,

opening Settings and Wordclock panels and refreshing patchbay.

f) Perceptual Limitation

This section evaluated the aesthetic aspects of the Project studio patchbay interface

components. All users strongly agreed that the system screen density was reasonable

and the layout acceptable.

g) System Capabilities (Speed and Reliability)

All users strongly agreed that the system error messages were helpful and the

patchbay error handling capabilities were accurate. Three users however, disagreed

that the patchbay was reliable enough when performing connection management

tasks. They found that when one reduces the size of a device block, for example, to

something very small, clicking the maximise (+) button to expand the plugs blocks did

not clearly show all the plugs. Only when the size of the device block was increased,

was it clearer, and. the resizing functionality seemed to be working well on the device

block but not for the plug blocks, which remained squeezed together.

6.5.2 Improvements to the Project Studio Patchbay

The users suggested the following improvement to the Project studio patchbay, they

thought:

• The patchbay should auto-detect devices on the network. Audio connections

from the same device should be merged into a single connector line to reduce

cable “clutter” on the interface.

• If one opens an input or output plug block, the plug block plugs should be

listed with their connections. It will be nicer to incorporate a feature that when

a user clicks and holds on a particular plug graphic (input or output) will

show/highlight/draw a connector line to the other end – indicating the input or

output it is connected to, and when the mouse is released, the connector lines

disappear.

 151

• If one opens an input or output plug block, both blocks merge into a window

like the NAS Explorer but smaller so the user still has the graphic patchbay

visible. The plug connections are listed as with the current NAS explorer

(inputs left and outputs right).

6.5.3 Redesigning of the Project studio patchbay

The Project studio patchbay was redesigned to include some of the suggestions

pointed out by the patchbay testers. Only the important and critical features of the

patchbay were incorporated, and are discussed below:

• Instead of making audio connections only from the source plug, in the

redesigned Project studio patchbay version, audio connections can be made

from either the source plug or the destination plug.

• The resizing functionality was redesigned to make sure both plug blocks (input

or output) zoomed proportionate to the device block they are attached to.

• When connecting two devices, their input and output plug blocks could be

easily rearranged to face each other.

6.5.4 Good Features of the Project Studio Patchbay

The Project studio patchbay was found to be flexible enough, making it easy for the

sound engineer to perform connection management tasks. The resizing feature made

the device labels as well as the plug labels legible, assisting the user when routing

audio.

6.6 Chapter Summary

This chapter demonstrates the power of using Adobe Flash for developing connection

management applications. The Project studio patchbay involves a high degree of

flexibility as it gives Project studio sound engineers total control of the application

and allows connection management tasks to be executed easily. Adobe Flash’s

authoring IDE allowed the creation Project studio graphic components (MovieClips)

and use ActionScript 2.0 to control these graphic components’ behaviour. A computer

prototype was used for gathering software requirement for the Project studio

patchbay. A heuristic evaluation test assisted in ensuring the Project studio patchbay

incorporated all standard GUI features before it was sent for usability testing by eight

 152

usability testers locally (South Africa) and abroad (Canada and Germany). Using their

feedback and suggestions, the Project studio patchbay was redesigned as required.

In the next chapter, the Rational Unified Process (RUP) for software development is

applied in the development of a patchbay for Hospitality/Convention Centre

networks.

 153

CHAPTER 7
7 Hospitality/Convention Centre Patchbay Design

and Development

Hospitality/Convention Centre networks are simpler than Broadcast and Project

studio networks, and are usually operated by inexperienced users who have minimal

or no knowledge of the inner workings of the studio network. Connection

management applications for these networks hide away the physical complexity of the

network. As a result, they are the easiest to develop and deploy compared to

Broadcast and Project studio patchbays discussed in chapters 5 and 6 respectively.

Although at the time of this investigation, Hospitality/Convention Centre networks

were common within the audio industry, very few connection management

applications had been developed to control audio routing over these networks.

Therefore, the first step in developing the Hospitality/Convention Centre patchbay

was to determine which type of patchbay design (grid-based, list-based or graphic-

based) would best suit these networks. Since a typical Hospitality/Convention Centre

patchbay is usually operated by inexperienced users such a Hospitality/Convention

Centre secretary who do not have to see the complexity of the network or understand

how audio is actually routed on the network, the graphic-based patchbay design was

chosen for the Hospitality/Convention Centre patchbay because it uses a pictorial

representation of the network devices and their plugs, and hides away the complex

naming conventions used in Broadcast and Project studio patchbays.

Having decided on the best design, the next step was to determine the layout for the

Hospitality/Convention Centre graphic-based patchbay, and the functionality to be

incorporated into the patchbay. To do this, three paper prototypes were designed and

evaluated by five typical Hospitality/Convention Centre users to determine the best

layout and the software requirements for the Hospitality/Convention Centre patchbay.

According to Nielsen (1994), a paper prototyping is a cheap and fast technique for

rapid iterative design of user interfaces. A human simulates the backend during paper

prototype testing sessions. Advantages of using paper prototypes include the fact that

they:

 154

• Test the software design in the design phase before any code is written.

• Save money since cutting up paper and cards is not expensive in either

material or time required.

• Save time since one can create a paper prototype in just a few hours not the

days or weeks it takes to create a computer prototype.

• Are easy to learn because they are so simple.

The Hospitality/Convention Centre patchbay development process also followed the

Iterative and Incremental Process (RUP). This chapter discusses how this process was

used in the planning, designing and implementation of the Hospitality/Convention

Centre patchbay.

7.1 Hospitality/Convention Centre Patchbay Requirements

Analysis

The Hospitality/Convention Centre patchbay requirements analysis phase involved

the use of three paper prototypes from which the initial design and layout of the

patchbay was architected. The paper prototypes used included the following:

• The EMS-based hotel paper prototype – The EMS hotel system is a hotel

system developed by a company called EMS in Johannesburg, South Africa.

The paper prototype based on this system displays hotel rooms using picture

graphic zones11, and each zone source device is listed as a clickable button on

the right of the main display [Figure 7.1].

11 For purposes of this investigation, a zone is simply a room within a Hospitality/Convention
Centre building.

 155

Figure 7.1: EMS-based Hotel Paper Prototype

• The daVinci-based hotel paper prototype – The daVinci hotel system is a

customisable hotel system developed using the daVinci software program

(also known as the Audio Digital Platform). daVinci is a software program

designed to allow the creation and use of customized computer control screens

with Audio and Nexia digital systems [Biamp Systems, 2007]. The paper

prototype based on this system used a combination of buttons (representing a

limited view of the network zones – building rooms) and dialog boxes

(representing the detailed view of the network zones – building rooms)

[Figure 7.2].

 156

Figure 7.2: daVinc -based Hotel Paper Prototype

• Custom-built hotel paper prototype –A custom-built paper prototype was

designed, which combines some features of the EMS and the daVinci hotel

paper prototypes. It displays network devices as zones (square graphic boxes)

and devices connected to the plugs of a displayed device (zone) are displayed

using graphic picture icons that represent the device [Figure 7.3].

Figure 7.3: Custom-Built Hotel Paper Prototype
Five users were asked to perform five connection management tasks in face-to-face

“think aloud” sessions. These sessions were video-taped and sound recorded for post

Detailed Zone Display

Minimised Zone Buttons

 157

session feedback analysis. Figure 7.4 shows the usability studio equipment that was

setup and used for the face-to-face “think aloud” sessions.

Figure 7.4: Usability Studio Equipment

Appendix C-C5 shows the tasks used that were used to test the paper prototype and

the final patchbay software. The users fulfilled the following requirements:

• Had no prior experience working within audio networks.

• Between the age of 18 and 60 years.

• Had no experience using Hospitality/Convention Centre patchbays or any

other connection management patchbay for routing audio.

Their preliminary feedback showed that they all preferred the custom-built hotel

paper prototype, which displays each device within each zone using a picture graphic

that reflects what that device is, for instance, they thought it was better to have a

graphic picture of a speaker or a radio, not just a button labelled “speaker” or “radio”.

This created a clear visual impression for the user. By looking at the interface, the

user could see the devices in each zone and what they were. However, the interface

displays fewer zones [Figure 7.3], so a way had to be found for displaying many

zones at a time. The other two paper prototypes (the EMS-based and the daVinci-

 158

based hotel paper prototypes) were found to have a difficult interface to use. The user

was required to make too many clicks to perform a simple connection management

task (on many different dialog boxes) such as making an audio connection. Appendix

A-A3 provides a complete Software Requirements Specification document (SRS) for

the Hospitality/Convention Centre patchbay.The SRS gives a description of how each

feature of the patchbay works using Stimulus/Response sequences. Using the user

feedback, a Hospitality/Convention Centre patchbay was developed as described in

the following section.

For purposes of this discussion, each zone displayed on the patchbay interface

represents an individual mLAN device on the mLAN network while device icons

displayed within each zone represent network devices that are connected to device

plugs of devices represented by the zones.

7.2 Hospitality/Convention Centre Patchbay Description

The Hospitality/Convention Centre patchbay developed was named “FireZones” since

it displays network devices as zones. It comprises four main panels; the Control

Window, the Settings panel, the Wordclock panel, and the Network Configuration

panel on which connection management tasks are performed.

The Control Window [Figure 7.5] is the main control panel, and has two sections,

namely the “Additional Rooms” section, and the “Detailed Room Display” section.

The “Detailed Room Display” section displays the detailed view of the devices in

individual zones within a Hospitality/Convention Centre building. Figure 7.5 displays

three zones in the “Detailed Room Display” section of the Hospitality/Convention

Centre patchbay, namely the LOUNGE zone, the RECEPTION zone, and the ROOM 1

zone. Devices in each of these zones are also displayed. For instance, the LOUNGE

zone has three devices, namely the MIC, the Speaker and the DVD Player devices.

The “Detailed Room Display” section displays a maximum of nine zones at a time. If

the network has more than nine devices, the first nine of them are displayed in the

“Detailed Room Display” section and the remaining devices are displayed as

clickable buttons in the “Additional Rooms” section, such as the ROOM 2 device

[Figure 7.5]. The “Additional Rooms” section holds a maximum of 10 devices.

 159

Figure 7.5: Hospitality/Convention Centre Patchbay Control Window

Connection management tasks that can be performed on the Control Window of the

Hospitality/Convention Centre patchbay include:

• Establishing audio connections.

• Breaking audio connections.

• Clearing all device connections for a particular mLAN device.

• Saving/Opening routing settings into/from a text file.

• Identifying a particular device on the mLAN network.

The Hospitality/Convention Centre patchbay uses the same Wordclock panel and the

Settings panel [Chapter 5: section 5.1] as the Broadcast patchbay and the Project

studio patchbay described in chapter 5.2.

The Network Configuration panel [Figure 7.6] allows the sound engineers to name

the network devices and their plugs. This avoids the display of meaningless names

such as OGT-IOne PC, MAP 4 and Analog In 1, which do not identify the device

properly for a novice user in Hospitality/Convention Centre industries. The Network

Configuration panel has two main sections, namely the “Network Devices and In/Out

Plugs” section and the “User Names for Devices and Devices Connected to Plugs”

section.

 160

Figure 7.6: Hospitality/Convention Centre Patchbay Network Configuration
Panel

The “Network Devices and In/Out Plugs” section displays a collapsible/expandable

tree of the devices on the mLAN network and their plugs. The “User Names for

Devices and Devices Connected to Plugs” section is where the sound engineer

configures:

• The nicknames of the devices on the network.

• The names of input and output plugs of each device to reflect the devices

attached to them (devices the plugs are streaming to/from).

To name a device, the sound engineer clicks the device node on the “ Network

Devices and In/Out Plugs” tree list. If the device already has a nickname assigned to

it, it appears below the “Current Name of the Connected Device” in the “User Names

for Devices and Devices Connected to Plugs” section otherwise “NOT SPECIFIED”

is displayed. The new name is specified in the Specify the New Display Name text

box. When the sound engineer clicks another node on the tree or clicks the OK button,

 161

the name is automatically applied to the device. If the sound engineer is renaming or

naming a plug, the plug is clicked on the “Network Devices and In/Out Plugs” tree list

and specifies its new name, and selects the property display icon for it that shows the

device this plug is streaming to/from. Figure 7.6 shows the plug Analog In 1 on the

MAP 4 device, which is streaming to a Speaker.

7.3 Hospitality/Convention Centre Patchbay Design and
Implementation

This section describes the design and implementation of the Hospitality/Convention

Centre patchbay using Sequence diagrams and the Object Model.

7.3.1 Project Studio Patchbay Sequence Diagrams and

Implementation

The Hospitality/Convention Centre patchbay uses the same Use Case diagram as the

Broadcast patchbay described in chapter 5 [section 5.2.1.1] that shows the high-level

functions of the Hospitality/Convention Centre patchbay and identifies two entities

(Actors) that interact with the patchbay, namely the sound engineer and the mLAN

Connection Management Server (mCMS). The Hospitality/Convention Centre

patchbay high-level functions shown include:

• Managing files.

• Connecting to mCMS server.

• Establishing audio connections.

• Breaking audio connections.

• Updating system.

• Appling changes.

• Setting/Clearing word clock Master/Slave Configuration.

• Identifying a device.

• Changing device Plug Layout.

Figure 7.7 shows the Object Model that depicts the relationships and dynamic

interactions between objects written for the Hospitality/Convention Centre patchbay.

The model shows the objects for the Hospitality/Convention Centre patchbay human

 162

interaction components and the mLAN network. The IEEE1394 Network object is

shown to contain an aggregation of IEEE1394 Bus objects. Each IEEE1394 Bus

object contains an aggregation of IEEE1394 Device objects, which in turn contains an

aggregation of Device Audio Plug objects that can be either an output and input plug.

The model also shows the interrelationships between the various

Hospitality/Convention Centre patchbay panels (the Settings panel, the Workclock

panel, Login panel, and the Network Configuration panel) and their associated XML

document objects that represent XML messages used for communication purposes

between the Hospitality/Convention Centre patchbay and the mCMS server.

 163

IEEE1394 Device

DeviceName
DeviceGUID
BusName
Model
Vendor
Firmware

Audio_OUT PlugAudio_IN Plug 0..10..* 0..10..*

mLAN Device Plug

PlugNam e
PlugType
PlugID
ParantName

serverDetailsXMLDoc
PCPlugsXMLDoc globalSyncXMLDoc

Clear AllMaster/Slave
SettingsXMLDoc

setMasterXMLDoc

Logon XMLDoc

IEEE1394 Bus

BusName
NetworkName
Bus ID

ConnectionRequest
XMLDoc

DisconnectionRequest
XMLDoc

0..*0..*

0..*0..*

Settings Panel

1

1

1

1 1

1

1

1

Wordclock Panel

1

1

1

1

1

1

1

1

1
1

1
1

File Managem ent

Logon Panel

1

1

1

1

IEEE1394 Network

NetworkName

0..*0..*

Control Window

1

1

1

1

1

1

1

1

1

0..*

1

0..*

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

Network Configuration Panel

1

1

1

1

Figure 7.7: Hospitality/Convention Centre Patchbay Object Model

7.3.1.1 “Connect to mCMS Server” Use Case

At start-up, a TCP/IP connection is established between the Hospitality/Convention

Centre patchbay and the mCMS server. When the user authenticates with the mCMS

server, an XML “configuration” document is sent to the patchbay carrying the current

status information of the mLAN network. The patchbay extracts the XML elements in

the XML “configuration” document and recreates the mLAN network objects, and

updates the Hospitality/Convention Centre patchbay. The sequence diagram, Figure

7.8, describes this process of network hierarchy recreation when the patchbay receives

an XML “configuration” document.

 164

 : Server :
ConfigurationXMLDoc

 : Control Window : IEEE1394
Network

 : IEEE1394 Bus : IEEE1394
Device

 : Audio Plug

 : mCMS Server

For each Bus

For each
Device

For each Plug

For each
connection

1. send(XMLConfigDoc)

1.1. XMLConfigDoc

1.1.1. [XMLConfigDoc]:BuildTrees()

1.1.2. get1394NetworkObject()

1.1.4. *getBusObject()

1.1.5. <<createBusObject(1394Network,busName)>>

1.1.6. addBusObject(busName)

1.1.7. *getDeviceObject()

1.1.7.1. <<createDeviceObject(GUID,nickname,model,vendor)>>

1.1.7.2. addDevice(1394Device)

4. *getPlug()

4.1. <<createPlugObject(displayName,nickName,direction,DevGUID,type)>>

5. addPlug(plug)

8. *getConnectionInfo()

1.1.3. <<createNetworkObject(1394Network)>>

2. [deviceDisplayName !=null]createDeviceGraphic

3. <<createDeviceGraphic(deviceDisplayName)>>

6. plugDisplayName !=null]createPlugGraphic

7. createPlugGraphic(displayName,nickName,direction,DevGUID,type)

9. [connection !=0] updateDisplaysee Connection
Update Sequence
Diagram

Figure 7.8: Receiving the Configuration XML Document Sequence Diagram

When the Hospitality/Convention Centre patchbay receives an XML “configuration”

document from the mCMS server, it loops through its XML elements and recreate the

network objects as follows:

• It gets the IEEE1394 Network XML element, and creates the IEEE1394

Network object representing the whole mLAN network.

• Loops through all IEEE1394 bus elements, and creates an IEEE1394 bus

object for each XML IEEE1394 bus element found.

 165

• For each IEEE1394 bus element, it loops through all IEEE1394 device

elements, and creates IEEE1394 device objects. For each IEEE1394 device

object created, if its “deviceDisplayName” variable value is not “null”, a

graphic square box (zone) is drawn on the patchbay interface.

• For each device element, it loops through all its plug elements, and creates

mLAN plug objects, if the “plugDisplayName” variable value of this plug is

not “null”, a graphic representation of the plug is drawn, and attached to its

device zone on the patchbay interface.

• For each connection element, loops through all its patch elements, and if any

two devices attached to particular plugs have a live connection, a random

colour is assigned as their background colour [Figure 7.9].

For each connection element found in the
XML configuartion document, the patchbay
find the source and destination plugs as
well as their devices. Using this infomation
the patchbay gets these connected device
on the interface and change thier
background colours ,making sure they are
the same since they are connected.

 :
ConfigurationXMLDoc

 : Control Window : Audio_OUT
Plug

 : Audio_IN Plug SrcDevice :
IEEE1394 Device

DestDevice :
IEEE1394 Device

For each
connection

1. getConnection()

2. getOutputPlug()

4. getInputPlug()

3. getOutputDevice()

5. getInputDevice()

6. [Both plugDevicesDisplayed]colourConnectedDevices

Figure 7.9: Update Plugs Connection Status Sequence Diagram

7.3.1.2 “Establishing Audio Connections” Use Case

The Hospitality/Convention Centre patchbay allows the sound engineer to establish

audio connections between device plugs of the same type and on different devices. To

establish the connection, the sound engineer simply clicks the device icon of the

source device, its background colour changes to reflect that that device is now ready

to be connected to another device. Having clicked the source device, the sound

engineer clicks the output device like a Speaker to connect to in another zone. Devices

 166

in the same zone cannot be connected. Figure 7.10 is a sequence diagram that

describes the process of creating audio connections.

 : Control Window
 : Sound Engineer

SrcDevice :
IEEE1394 Device

DstDevice :
IEEE1394 Device

 : Audio_OUT
Plug

 : Audio_IN Plug : ConnectionRequest
XMLDoc

 : IEEE1394 Bus

 : mCMS Server

3. getDevDetails(source)

6. getSrcID()

7. getSrcPlugType()

12. getDestPlugID()

13. getDestPlugType()

4. getSrcDevGUID()

10. getDestDevGUID()

15. send(ConnectionRequestXMLDoc)

15.1. send(ConnectionRequestXMLDoc)

15.1.1. ConnectionRequestXMLDoc

14. <<createConnectionXMLDoc(destPlugId,destPlugTye,destGUID,srcPlugId,srcPlugTye,srcGUID)>>

1. ClickSourceDev()

2. [if NOT Connect] assignColour(colour)

5. getPlugDetails(source)

8. ClickDestDev()

9. getDevDetails(dest)

11. getPlugDetails(dest)

16. ass ignColour(colour)

Connected device
are assigned the
same background
colour

Figure 7.10: Establishing Audio Connection Sequence Diagram

When the sound engineer clicks both devices to be connected:

• The patchbay gets the details of both device plugs (the plug ID, the plug type

and the plug nickname) that are added into an XML “connection request”

document [Chapter 5: Listing 5:3], which is sent to the mCMS server that in

turn implements the request through the Enabler module [Figure 7.10].

• A random colour is assigned to both devices, which represents the connection

between both devices.

• Audio should be routed between the newly connected plugs.

 167

7.3.1.3 “Breaking Audio Connections” Use Case

The Hospitality/Convention Centre patchbay allows the sound engineer to break audio

connections made in the preceding section by right-clicking the destination device

(for instance, the Speaker shown in Figure 7.5), and selects the “Disconnect Device”

menu item. An XML “disconnection” request document is automatically created that

contains information of the output device to be disconnected, and is sent to the mCMS

server which invokes the Enabler to implement the request. If the request is

successfully implemented, the output device icon colour is changed back to its default

“grey”. If this is the only connected device to a particular source device, its (the

source device) icon colour is also changed to the default “grey”, otherwise it retains

its colour. It is also possible to disconnect all devices connected to a particular source

device by right-clicking it and selecting the “Disconnect All” menu item. Figure 7.11

is a sequence diagram that describes the process of disconnecting all audio

connections for a particular source device.

 : Sound Engineer
 : Control Window SrcDevice :

IEEE1394 Device
DstDevice :

Audio_IN Plug
 : ConnectionRequest

XMLDoc
 : mLANSocket

 : mCMS Server

4. getDestPlugID()

5. getDestPlugType

6. <<createConnectionXMLDoc(destPlugId,destPlugTye,destGUID)>>

7. send(ConnectionRequestXMLDoc)

7.1. send(ConnectionRequestXMLDoc)

7.1.1. ConnectionRequestXMLDoc

1.1.1. assignDefaultColor()

1. disconnectAllDevices

2. *getConnectedDevDetails(): For All Connected Devices

Disconnecting a
source device, forces
a disconnection of all
devices connected to
this source device

3. getDestDevGUID()

Figure 7.11: Breaking Audio Connections Sequence Diagram

If the patchbay is disconnecting all devices connected to a particular device [Figure

7.11]:

 168

• It loops through all connected devices, and in each case an XML

“disconnection” request document is created and sent to the mCMS server to

disconnect that device (one of the destination device to be disconnected).

• The device icon colour of the disconnected device is changed to the default

“grey”.

• At the end of disconnecting all connected devices, the colour of the source

device icon is also changed to the default grey.

7.3.1.4 “Setting/Clearing Word Clock Master/Slave Configurations” Use

Case

The Hospitality/Convention Centre patchbay uses the same method for setting and

clearing word clock Master/Slave configurations as the Broadcast and the Project

studio patchbays described in section 5.3.1.4.

7.3.1.5 “Identify Device” Use Case

In large Hospitality/Convention Centre networks, the sound engineer identifies a

particular zone device on the network by right-clicking the zone device graphic box

on the patchbay interface, and selects the “Identify Device” menu item. The patchbay

automatically creates an XML “identify device” request document that contains the

GUID of the zone device to be identified, and is sent to the mCMS server [Figure

7.12]. If the request is implemented successfully, the device LEDs flash.

 : Sound Engineer
 : Control
Window

 : IEEE1394
Device

 :
XMLIdentifyDeviceRequestDoc : mCMS Server

1. identifyIdevice

2. getDevGUID()

3. getGUID()

4. <<createIdentifyDevXMLDoc(GUID)>>

5. send(identifyDevXMLDoc)

Figure 7.12: Identify Device Sequence Diagram

 169

7.3.1.6 “Managing Files” Use Case
The Hospitality/Convention Centre patchbay also allows the sound engineer to save

routing settings into a text file as well as load saved routing settings into the patchbay.

The sound engineer does this by selecting the “Save” menu item to save the routing

settings into a text file and the “Open” menu item to open saved settings. When the

sound engineer selects the “Save” menu item, the Hospitality/Convention Centre
patchbay creates an XML document object and:

• Loops through all displayed zone blocks. For each zone block found, a

corresponding device object is created and added to the XML object elements

hierarchy of the XML document object.

• For each zone block, the patchbay loops through all device icons, and create

XML plug objects for each plug icon displayed within a particular zone block.

The XNL plug elements are attached to their device XML element in the XML

document object.

• The XML document object is then copied into a text file that is saved within

the workstation.

When the sound engineer selects the “Open” menu item, the Hospitality/Convention

Centre patchbay:

• Opens the “Open” file dialog box, where the user navigates to a specific text

file location and selects the file to be opened. Clicking the Open button of the

“Open” file dialog box loads the file data into the patchbay, which converts it

into an XML object that is parsed as XML.

• The patchbay loops through all displayed zone blocks, and compares them

with their corresponding device XML objects in the loaded XML document.

• For each zone block found, it loops through each device icon displayed, and

compares their variable “connected” value to that of the XML plug object for

the loaded XML data. If the displayed icon variable value is “true”, whilst that

of the loaded XML object is “false”, a disconnection is performed between the

two devices plugs and their colours updated appropriately otherwise a

connection is established between the two plugs.

 170

7.4 Hospitality/Convention Centre Patchbay Usability

Testing

This section discusses the usability testing phase of the Hospitality/Convention Centre

patchbay. This usability testing process was not meant to be an exhaustive study but

was done to ensure that Hospitality/Convention Centre patchbay requirements

captured in the beginning of this chapter using the paper prototypes were sufficiently

implemented, and the patchbay works properly.

The five users used for testing the paper prototypes were asked to perform five

connection management tasks shown in Appendix C-C5 in face-to-face “think aloud”

sessions. The tasks evaluated the main functionalities of the patchbay, which include:

• Establishing and breaking audio connections.

• Rearranging the layout of device icons with a device zone.

• Placing device zones at different positions of the “Detailed Room Display”

section of the patchbay.

• Swapping device zones between the “Additional Rooms” and the “Detailed

Room Display” sections of the patchbay.

Once again, the testing sessions were video-taped and sound recorded for post session

feedback analysis. Figure 7.4 shows the usability studio equipment that was used for

the final face-to-face “think aloud” sessions for testing the Hospitality/Convention

Centre patchbay.

As already mentioned, the test users fulfilled the following requirements:

• Had no prior experience working within audio networks.

• Between the age of 18 and 60 years.

• Had no experience using Hospitality/Convention Centre patchbays or any

other connection management patchbay for routing audio.

 171

At the end of each test session, the test coordinator and the user were involved in a

short debriefing session where the user had the opportunity to provide additional

comments about the system. This session was used to get feedback from the user

about other aspects of the patchbay that were not covered by the five usability tasks

such as the effect of the patchbay background on the user’s eyes, the general layout of

the device icons and zones and the overall performance of the patchbay, to mention

but a few. Users were also given a usability questionnaire to complete. The usability

video footage and the usability questionnaires were later analysed, and a list of

usability issues drawn for each patchbay that were raised by the users. The user tasks

and the usability questionnaire evaluated the following aspects of the patchbay, which

are explained in detail in section 5.4.2:

• Consistency.

• Learnability.

• Screen positioning.

• Flexibility.

• Minimal action.

• Perceptual limitation.

• System capabilities.

The following section presents some of the critical user feedback that was used for

redesigning the Hospitality/Convention Centre patchbay with respect to the above

stated aspects.

7.4.1 Hospitality/Convention Centre Patchbay Usability Testing

Results

This section discusses the usability testing finding for the Hospitality/Convention

Centre patchbay.

a) Consistency

Inconsistency issues were found on the Hospitality/Convention Centre patchbay.

When making audio connections, the sound engineer clicked the two device icons to

be connected but when making an audio disconnection, the sound engineer had to

 172

right-click the icon to be disconnected and select the “Disconnect Device” menu item.

This resulted in one user disagreeing that the patchbay operations were consistent. He

expected that to perform a disconnection, one would simply click the destination

device icon to be disconnected and the disconnection is performed automatically. All

users strongly agreed that the patchbay naming conventions (font type and size) used

were consistent across displays and menu options and that the grouping and ordering

of menu options was logical for all Hospitality/Convention Centre patchbay panels.

b) Learnability

All users found the Hospitality/Convention Centre patchbay to be easy to learn and

use for a first time user. They all strongly agreed that the patchbay was easy to learn

to use for performing connection management tasks and did not involve a steep

learning curve for a new user. They thought the use of familiar graphic pictures for

device icons within device zones made the patchbay visually pleasing and easy for the

user to understand and manipulate.

c) Terminology, User Guidance and System Information

All users strongly disagreed that the patchbay provided user guidance information.

The system did not provide the help system. They however, all agreed that the

terminology used especially on the Network Configuration and Wordclock panels was

related to the connection management tasks performed on those panels.

d) Screen Positioning

Screen positioning evaluated the placing of different graphic components on the

Project studio patchbay interface and its panels. All users strongly agreed that the

patchbay’s organization of information and components was logical and standard. All

panels opened at the centre of the patchbay.

e) Flexibility

All users strongly agreed that the Hospitality/Convention Centre patchbay was truly

flexible because it allowed the user to drag around individual device icons within a

device zone. This way the user had the opportunity to customise the layout of device

icons on the patchbay interface to fit one’s needs. Zones could also be dragged from

 173

the “Detailed Room Display” section to the “Additional Rooms” section and vice

versa.

f) Minimal Action

All users agreed that the Hospitality/Convention Centre patchbay provided tool bar

icons for quickly accessing capabilities such as saving and opening routing settings,

opening Settings and Wordclock panels and refreshing the patchbay.

g) Perceptual Limitation

This section evaluated the aesthetic aspects of the Hospitality/Convention Centre

patchbay interface components. All users strongly agreed that the system components

layout was logical and clear. They commended the use of the coloured background for

differentiating the two main sections of the patchbay, namely the “Detailed Room

Display” section and the “Additional Rooms” section.

h) System Capabilities (Speed and Reliability)

The Hospitality/Convention Centre patchbay speed when performing connection

management tasks was commendable. Audio connections were made by simply

clicking the two icons of the devices to be connected. However, some users found that

when making audio connections, the colour of the clicked device icon sometimes did

not change from just one click, but required the user to make many clicks. Sometimes

only one click worked. As a result, three users disagreed that the system was reliable

enough.

7.4.2 Redesigning of the Hospitality/Convention Centre Patchbay

The Hospitality/Convention Centre patchbay was redesigned to incorporate the

important aspects and features from analysing usability test feedback. Notable

improvements include the following:

• Instead of making audio disconnections by right-clicking the destination

device and selecting the “disconnect device” menu item, in the redesigned

version, one needs to just click the destination device to be disconnected and

the disconnection should automatically be implemented.

 174

• Making audio connections was modified such that only one click on each

device is sufficient for the connection to be implemented.

• A simple user-guide help system was included with the application.

7.4.3 Good Features of the Hospitality/Convention Centre Patchbay

The Hospitality/Convention Centre patchbay displays devices in each zone clearly

using graphic pictures that represent the actual devices on the network. This makes

the patchbay simple to use since the user can immediately recognise what devices are

in a particular zone without necessarily having to read their labels, which are

sometimes illegible. Audio connections could be made and broken easily, and with

least effort. The patchbay background colour was also friendly to the eyes, and also

makes efficient use of the available space. The shadows on each zone graphic made it

easy for them to visually stand out as clickable buttons that the user could not miss.

7.5 Chapter Summary

This chapter describes the use of Adobe Flash for developing a

Hospitality/Convention Centre patchbay for use in Hospitality/Convention Centre

networks. Although the Hospitality/Convention Centre patchbay was the simplest of

the three patchbays developed in this investigation, it tested the Adobe Flash’s

programming and graphic authoring capabilities. Three paper prototypes that were

evaluated by five potential hotel users were used for gathering system requirements at

the beginning of the Hospitality/Convention Centre patchbay development process.

Stimulus/Response sequences were utilised to describe features of the patchbay before

the RUP software development process was followed in the development of the

patchbay. The heuristic evaluation was done on the patchbay to determine missing

functionality in the Hospitality/Convention Centre patchbay before usability testing

was performed. The development of the Hospitality/Convention Centre patchbay was

made easier by Adobe Flash’s graphic authoring IDE and ActionScript 2.0

capabilities. This chapter shows the power of using ActionScript 2.0 code to create

and control the behaviour of graphic MovieClip symbols. MovieClip symbols were

created at run time depending on the devices currently on the network using

ActionScript 2.0 code, which are a referred to as zones and graphic device icons on

the patchbay interface. Not only was ActionScript 2.0 code able to create MovieClip

symbols but also attached to them code handlers to listen and handle user interactions

 175

with the symbols, hence controlling their behaviour. The Adobe Flash’s ActionScript

2.0 XML API and the XMLSocket class were important in the creation of various

XML request documents for communication between the patchbay and the mCMS

server.

The next chapter concludes this investigation and presents lessons learnt from using

Adobe Flash Professional 8 for developing connection management applications for

different sound installation networks as discussed in chapters 5, 6 and 7.

 176

CHAPTER 8
8 Adobe Flash Professional 8 Tools for developing

mLAN Client/Server Patchbays

This chapter discusses Adobe Flash Professional 8 IDE tools, and ActionScript

capabilities that were employed in the development of three patchbays, namely the

Broadcast patchbay, the Project studio patchbay, and the Hospitality/Convention

Centre patchbay, which are described in chapters 5, 6 and 7, respectively. As already

mentioned, the mLAN Client/Server configuration uses XML messages for

communication between the client applications and the mCMS server. This grants

client applications independence from the Enabler module, and therefore client

applications can be developed using any language as long as it provides XML

capabilities.

8.1 Development of the Patchbay User Interfaces

This section describes the Adobe Flash graphic and ActionScript capabilities that

were utilised for developing the user interface components for the three patchbays.

8.1.1 Adobe Flash Built-In Components

Adobe Flash incorporates common IDE built-in components offered by other

common development IDEs such as Visual Studio.Net for developing graphic user

interfaces. Some of these components that were useful in developing the three

patchbays include; the Button, the TextInput, the ComboBox, the Label, the

Checkbox, the RadioButton and the ProgressBar components. However, although

Adobe Flash provides these basic components, it does not provide complex built-in

components such as Windows Forms components, the TabControl component, and

the FontDialog component, to mention but a few, which enable much GUI

development. As a result, combinations of these basic components were used for

creating simple panels such as the “Device Information” panel [Figure 8.1] that were

in turn used for creating GUI applications.

Figure 8.1 shows the “Device Information” dialog box used by the Project studio for

displaying detailed information for a particular device on the mLAN network. The

 177

diagram shows the use of the TextInput, the ComboBox, and the Button components.

When the user opens the “Device Information” dialog box of the Project studio

patchbay, by clicking the Information at the centre of each device block, the patchbay

queries the device object attached to the device block for information and then updates

the panel with the device information.

Adobe Flash provides ActionScript event handlers for all built-in components and

they can be used to control their behaviour. Adobe Flash also provides programming

interfaces that enable the specification of commands using ActionScript code, which

add various kinds of functionalities to components as discussed in the following

sections. The TextInput component is used for displaying the nickname of the device,

and allows the user to input a new name for the device. The Label component displays

non-editable device information such as the device model name, the device GUID, the

device vendor, the device firmware name, and the device current Plug Layout.

The ComboBox component is used for displaying all supported Plug Layouts for the

device and also allows the user to change the current Plug Layout by choosing the

desired Plug Layout from the component dropdown list. The Button component is

used by all three patchbays for different purposes. In Figure 8.1, the Button

component is used as the OK button for saving new device settings (the new device

name and the Plug Layout), and for exiting the dialog box.

Figure 8.1: Project Studio Patchbay – Device Information Dialog Box

 178

To use the built-in components, the user drags the component from the Adobe Flash

Components panel onto the Stage12. An instance of that component is created on both

the Stage and the Adobe Flash Library [Chapter 4]. The user can then set the

properties of the component on the Stage using the Properties Window13. The user can

use ActionScript code or the Properties Window to set different component

properties.

8.1.2 Adobe Flash Graphic Authoring IDE and ActionScript

Capabilities

As discussed in the preceding three chapters [Chapters 5, 6 and 7], the patchbays

developed required the use of different kinds of graphic components. The basic

element for creating graphic components in Adobe Flash is a symbol known as a

MovieClip [Chapter 4]. A MovieClip symbol is a reusable piece of flash computer

graphic, usually consisting of one or more graphic or button symbols [Adobe

Macromedia, 2005]. A MovieClip object is assigned by default to all MovieClip

symbols that are created in Adobe Flash. Three types of symbol formats were useful

for this investigation, namely the graphic symbol, the MovieClip symbol, and the

button symbol. They all have different behaviours, and can be controlled using

ActionScript code. In the current discussion, only the MovieClip symbol attributes

and behaviours are discussed in detail since they formed the basis for all graphic

components and panels created for the patchbays, and in some instances incorporated

the other two symbols, namely the graphic symbol and the button symbols.

8.1.2.1 Adobe Flash Graphic Tools and ActionScript Capabilities for

Developing the Broadcast Patchbay

The Broadcast patchbay comprises four main parts, namely the menu and tool bars,

the Destinations and the Sources tree, the grid-matrix and, the legend [Figure 8.2].

This section explains how each of these parts was developed using Adobe Flash

graphics and Adobe Flash ActionScript capabilities.

12 As already stated in Chapter 4, the Stage in Adobe Flash is the working space where the
developer place and manipulates media when developing applications.
13 Chapter 4 describes the Properties Window.

 179

Figure 8.2: Broadcast Patchbay Interface Components

a) Menu and Tool Bars

The Adobe Flash graphic authoring IDE played an integral role in creating the menu

and tool bars. The menu bar is created at run-time using ActionScript code and a

handler is attached to each menu bar item, which enables it to provide the

functionality it is supposed to achieve. Examples of the menu bar item’s functions

include opening and saving routing settings into a text file, and opening various

patchbay panels. These functions and more are also provided by the tool bar icons.

The tool bar icons are created by inserting graphic pictures, that reflect the function of

the icon, inside MovieClip symbols, and adding interactivity to them using

ActionScript code.

Tool bar

Menu Bar

Grid Matrix

Legend

Destinations
Tree

Sources Tree

 180

b) Destinations and Sources Tree

An important feature of the Broadcast patchbay is to display as many possible devices

on the mLAN network as possible. This was achieved by using two tree list

structures, namely the Destinations and the Sources trees [Figure 8.2]. Using the

Macromedia Extension Manager14, a new customisable tree component called the

“advancedTree” component15 was used for displaying the Destinations and the

Sources trees. This is because Adobe Flash does not provide an advanced tree

component to display the complex tree structures. Moreover, the Adobe Flash IDE

does not provide the source code for built-in components to which additional event

handlers and functionality could be added. This was a requirement since the intention

was to modify the look of the component and add more functionality to make it

suitable for use in a Broadcast patchbay.

 The “advancedTree” component displays tree lists inside a rectangular scrollable

component. Each tree list item has two parts, the node icon and the node label. Node

icons were assigned to tree list nodes depending on the type of the node, whether it is

a plug or not. Each node icon is a custom-made graphic that is assigned to the node by

setting its leafGraphic attribute value, either using ActionScript code, or the

Properties Window. Node labels are assigned automatically when the patchbay

receives the XML configuration document from the server and loads them into the

components. Each tree list node is assigned an object that keeps information about the

node, its connection status and methods that control its behaviour. This information

and methods were used for fulfilling connection management tasks requested by the

user.

The“advancedTree” component, with its scroll bar and scroll buttons made it possible

to display many device nodes on the patchbay thus achieving the requirements for the

Broadcast studio network, which deal with hundreds of plugs at a time. In addition to

this, the “advancedTree” component provided built-in event handlers for handling

mouse events, thus enabling the specification of ActionScript logic for opening the

14 Macromedia Extension Manager is an application that comes with Adobe Flash software that
enables the importation of new media into the Adobe Flash IDE.
15 http://www.flashloaded.com/userguides/advancedtree/ [Flashloaded, 2007].

 181

nodes and updating the grid-matrix to display the connection status of the newly

opened nodes.

ActionScript code was used to skin the “advancedTree” component so that it fitted

well with other components of the patchbay interface.

c) Grid-Matrix

The grid-matrix was created using a single MovieClip symbol (with black borders)

that was duplicated at run-time to create a 29 row by 50 column grid-matrix. To make

a MovieClip symbol, a graphic element is drawn on the Stage using the graphic

authoring tool provided by the Adobe Flash IDE, and then converts the created

graphic into a MovieClip as described in chapter 4. There is need for writing lines of

code to create graphic components as is the case for third-generation IDEs. Each

grid-matrix box is made of two parts, namely the MovieClip symbol and the

ActionScript object that is attached to it, which contains properties and methods that

control its behaviour. Each MovieClip symbol on the grid-matrix is a cross-point of

two nodes displayed on the Destinations and Sources trees, and displays their

connection status. Five states can be displayed on each grid-matrix box. The states

include:

• The “connected” state – This state exists only if two plug nodes of the same

type and on different devices, are connected, and is represented on the grid-

matrix by a green grid-matrix box.

• The “not connected” state – This state exists between two plug nodes that are

not connected, and is represented on the grid-matrix by the default grey grid-

matrix box.

• The “cannot be connected” state – This state exists between two nodes that

cannot be connected because:

a) They are of different types. For instance, a MIDI plug node and an

audio plug node. Only plug nodes of the same type can be connected.

b) One of them or both are not plug nodes. Only plug nodes can be

connected.

 182

c) They are plug nodes on the same device. Internal routing is not

allowed, and as a result they can not be connected to each other.

This state is represented on the grid-matrix by a yellowish grid-matrix box.

• The “pending connection” state – This state exists between two newly

connected plug nodes if the system is in “Delayed Mode”, and the connection

has not been committed to the actual physical audio network but only exists on

the patchbay. This state is represented on the grid-matrix by a blue round grid-

matrix box.

• The “pending disconnection” state – This state exists between two newly

disconnected plug nodes if the system is in “Delayed Mode”, and the

disconnection has not been committed to the actual physical audio network but

only exists on the patchbay. This state is represented on the grid-matrix by a

red triangle grid-matrix box.

d) Legend

The Broadcast patchbay legend uses the Checkbox component, the Button

component, and the ProgressBar component. The “Display” Checkbox components

allow the viewing of only the MIDI plugs, only the audio plugs, or both plug types

nodes on the Sources and Destinations trees by simply clicking the appropriate

Checkbox component. Each Checkbox component is a graphic symbol that is

converted into a MovieClip, and has action handlers added to it. Assuming the user

wants to display only MIDI plug nodes, he unselects (if the Checkbox is selected) the

audio plugs Checkbox component by clicking it, and making sure the MIDI plugs

Checkbox component is selected. This action invokes an action handler that contains

ActionScript code that will tell the patchbay to loop through both tree lists and deleted

all audio plug node for each available device node. When the nodes are delete from

the Sources and Destinations trees, the grid-matrix is updated so that it displays the

connection status of only the displayed MIDI nodes.

The “Mode Settings” Checkbox components allow the user to set the mode state of

the patchbay to either “Immediate Mode” or “Delayed Mode”. These components

work just like the “Display” Checkbox components described above. They use

 183

ActionScript code to change the state of the patchbay depending on which component

was selected or unselected.

The ProgressBar component is used to display the amount of available bandwidth

units on the network. At run-time the server sends the XML configuration document

with the latest “used network bandwidth” value, and the patchbay uses the

ActionScript code to calculate the “available network bandwidth” value and

automatically invoke the ProgressBar component load () handler to load the value

units.

The Button component was used to create the Apply and Update button instances for

the “Network” button section. When clicked, the Apply button applies the changes

made (audio connections established in “Delayed Mode”) on the patchbay to the

actual network, while the Update button uses its ActionScript handlers to force a

refresh process by creating and sending an XML “refresh” document to the server,

which in turn responds by sending an XML “configuration” document to the

patchbay.

8.1.2.2 Adobe Flash Graphic Tools and ActionScript Capabilities for

Developing the Project Studio Patchbay

Different MovieClip symbols were used for creating the Project studio patchbay

device and plug blocks [Figure 8.3]. Each device block is made of a graphic element

that is converted into a MovieClip symbol. The device block incorporates a button and

a label. The button uses its ActionScript code defined in its onPress () handler to

open the Device Information panel, which displays more information about a

particular device node. One of the labels displays the name of the device represented

by the device block while the other displays clock synchronisation information for the

device. When the sound engineer changes the Master/Slave relationship and the

sample rate information of devices on the network, the labels displaying clock

synchronisation information for all displayed device blocks are updated accordingly.

Device blocks each have an ActionScript object attached to them that provide

handlers, which control their behaviour. Each device block handles mouse actions.

The ActionScript startDrag () and stopDrag () handlers enabled the incorporation of

 184

logic that allows the dragging and dropping of the device blocks at any positions

within the patchbay “work space”.

Figure 8.3: The Project Studio Device and Plug

The device blocks also incorporate a Resize button, which is located at the bottom

right corner of each block that enables the resizing of both device and plug blocks.

The Resize button is a dummy graphic element that shows the user where to click and

drag to resize the device block. The actual resizing capability is provided by a

combination of ActionScript onMouseOver () and onMouseMove () handlers, which

contain code that stretches the blocks as required. The sizing of the blocks is

calculated by comparing the x and y registration coordinates of the device block being

resized and the xmouse and ymouse coordinates. The xmouse and ymouse coordinates

identify the current position of the mouse pointer on the patchbay “work space”. As

the mouse moves, the ActionScript onMouseMove () handler is continuously

invoked, which contains the logic that redraws the block. Once the user releases the

mouse, the onMouseRelease () handler is invoked. It contains logic that redraws the

plug blocks to match the size of the main device block they are attached to. When the

user is resizing the device block, the plug blocks’ _visible attribute is set to “false” so

Possible Plug
Block drop
positions

Plug Block

Device Block

Resize Button

Mouse pointer
dragging a
Plug Block

Patchbay
Work Space

Word clock
Information

Device Name

 185

that the user can not see the plug block and the attached individual plug graphics

resized.

Plug blocks are MovieClips just like the device blocks, and contain inner individual

plug MovieClips. Just like the device blocks they can also be dragged and dropped at

any of the eight positions around the device block they are attached to, using a

combination of the x and y coordinates of the device block and those of the mouse

pointer where the user released the mouse. ActionScript code is used to keep the

device and plug blocks together by restricting the user from dragging and dropping

plug blocks only to the highlighted locations around the device block [Figure 8.3]. If

the user drops one plug block (say an input plug block) at a position already occupied

by another plug block (say an output plug block), their positions are randomly

reassigned automatically.

Individual plug MovieClips use ActionScript event handlers that enabled the user to

implement the functionality for establishing and breaking audio connections.

Assuming a user wants to establish a connection between two plugs, and clicks and

drags-out from one of the plugs. The onDragOut () handler is invoked that contains

logic which uses the Adobe Flash drawing API to draw a line from the plug to the

mouse pointer. The onDragOut () handler contains the onMouseMove () handler,

which ensures that from the moment the user drags the mouse-out from a plug, the

connector line is continuously redrawn, following the mouse, until it is released.

 186

Figure 8.4: Establishing Audio Connections

The connector line is line MovieClip which containes methods and event handlers to

control the connector line behaviour. When the user releases the mouse on another

plug, on a different device, the onMOuseOver () event handler of that plug is

invoked. It contains logic that checks if that plug is not on the same device as the first

plug and the connector line is redrawn permanently between the two plugs.

One important feature of the Project studio patchbay is the ability of to expand and

minimise the plug blocks so as to view clearly the names of the plugs when

performing connection management tasks. Each plug block incorporates a

maximise/minimise MovieClip button that contains ActionScript logic for redrawing

the plug block and its plugs as well as its connector lines when the button is clicked to

maximise or minimise the block.

The connector line MovieClip responds to a mouse drag-out by invoking the

onMouseDragOut () handler that contains code for breaking audio connections

between two plugs [Figure 8.5].

 187

Figure 8.5: Breaking Audio Connections

Like the Broadcast studio patchbay the Project studio patchbay also incorporates the

menu and tool bars for quick access to frequently used features.

8.1.2.3 Adobe Flash Graphic Tools and ActionScript Capabilities for

Developing the Hospitality/Convention Centre Patchbay

The main parts of the Hospitality/Convention Centre patchbay include; the device

zones and the plug icons, and are implemented as MovieClips [Figure 8.6]. Each

device zone MovieClip has an ActionScript object attached to it that controls what the

zone can do. The zones are simple light grey MovieClips that can be dragged to

different positions on the “Detailed Room Display” section and to/from the

“Additional Rooms” section of the patchbay. ActionScript handlers are used to do

this, as is done for device blocks for the Project studio patchbay. MovieClip shadow

effects were added to each device zones displayed on the “Detailed Room Display”

section of the patchbay [Figure 8.6]. The shadows were added to individual zones so

that they seem to be clickable areas within the patchbay interface, thus differentiating

them from the bare areas of the interface.

.

 188

Figure 8.6: Hospitality/Convention Centre Patchbay Interface

Adobe Flash allows the importation and easy manipulation of raster graphics, which

enabled the creation of plug icons using pictures similar to the actual devices they

represent on the network. This fulfilled a requirement of Hospitality/Convention

Centre patchbays, namely that network devices be graphically represented on the

patchbay. These Hospitality/Convention Centre patchbays are usually operated by

individuals who need not see the complexity of the network but be presented with a

simple interface that displays devices they are familiar with. Plug icons are graphic

pictures that are wrapped inside MovieClip symbols. This made it possible to use

built-in MovieClip action handlers to control the icons when performing connection

management tasks such as establishing and breaking connections. Third-generation

language IDEs’ will require many lines of code to draw graphic component such as

the device zones and plug icons.

MovieClip symbols were used for creating various patchbay panels, which include:

• The Control Windows.

• The Settings panel.

• The Wordclock panel.

• The Network Configuration panel.

• The Plug Layout panel.

 Device Zones Plug Icon

 189

The ability to just create graphic symbols (using common tools) and to modify and

control their behaviour so easily was an advantage of using Adobe Flash. Third-

generation language IDEs also allow the creation of graphic components but at a high

cost in terms of effort and time required, since these graphic components have to be

developed in code.

8.1.3 Adobe Flash Application Portability

Applications developed using Adobe Flash are browser or platform independent. This

is because Adobe Flash applications run on the same Flash Player, which is developed

to run on any platform. The three patchbays were developed on a Windows

workstation and were successfully ported onto an Apple Macintosh machine. No

additional coding was required. They just installed and worked properly. All that was

required was the correct Apple Macintosh Flash player plug-in to install and run the

software on a Apple Macintosh workstation.

8.2 Development of the Patchbay Back-end Components

As already stated in chapter 2, the mLAN Connection Management Server (mCMS)

communicates with the mLAN clients through a TCP/IP socket using XML messages.

This section describes Adobe Flash XML and XMLSocket object methods that were

fundamental in creating these XML documents.

8.2.1 Adobe Flash XML Capabilities
One of the most helpful features of the Adobe Flash IDE that was fundamental in the

development of the Broadcast patchbay, the Project studio patchbay, and the

Hospitality/Convention Centre patchbay was its XML API. Adobe Flash provides a

built-in XML class that comprises methods and properties for loading, parsing,

sending, building, and manipulating XML document trees. An XML document is

represented in Adobe Flash by an XML class. Each element in the XML document is

represented by an XMLNode class. The XMLNode class methods and properties that

were essential in the development of XML documents include [Adobe Macromedia,

2005]:

• childNodes : Array - An array of the specified XML object's children.

 190

• firstChild : XMLNode - Evaluates the specified XML object and references

the first child in the parent node's child list.

• lastChild : XMLNode - An XMLNode value that references the last child in

the node's child list.

• nextSibling : XMLNode - An XMLNode value that references the next

sibling in the parent node's child list.

• hasChildNodes () : Boolean - Specifies whether or not the XML object

has child nodes.

• removeNode () : Void - Removes the specified XML object from its parent.

These methods were utilised for creating all XML documents that were required for

communication purposes between the patchbays and the mCMS server. The Adobe

Flash XML API was easier and simpler to use than other API’s. All important XML

document building blocks were provided by default in the XML class. All that had to

be done, was to join the blocks together using simple ActionScript logic and provided

necessary XML element attribute values to create XML documents.

8.2.2 Adobe Flash XMLSocket Class
Adobe Flash incorporates an XMLSocket class that implements client sockets, which

allow a computer running Flash Player to communicate with a server computer

identified by an IP address or a domain name [Adobe Macromedia, 2005]. The

XMLSocket class methods that were useful for connecting to the mCMS server, and

sending and receiving XML messages to and from the mCMS server include the

following [Adobe Macromedia, 2005]:

• connect (url:String, port:Number) : Boolean - Establishes a connection to the

specified server using the specified TCP port (must be 1024 or higher), and

returns true or false, depending on whether a connection is successfully

established.

• onConnect (XMLSocket.onConnect handler) - Is invoked by the Flash Player

when a connection request initiated through the XMLSocket.connect () has

succeeded or failed and handles all responses from the server.

 191

• send (data:Object) : Void - Converts the XML object or data specified in the

object parameter to a string and transmits it to the server.

The Adobe Flash XMLSocket sends XML messages over a full-duplex TCP/IP

stream connection. Combining the Adobe Flash XML API and the XMLSocket

methods provides a powerful means of creating and sending (and receiving) XML

messages to the mCMS server.

8.3 Adobe Flash ActionScript Limitations

Although the Adobe Flash IDE provided many programming and graphic authoring

interfaces, it did not provide some fundamental capabilities that were integral to the

development and functioning of mLAN Client/Server patchbays. Some missing

functionalities include:

• Low-level methods for directly traversing the File system from the Adobe

Flash application. This capability was required for saving routing settings

into a text file on the host workstation, as well as opening these files when

needed.

• Methods for directly accessing the host workstation registry. This

functionality was required by mLAN Client/Server patchbays to store the

mCMS server name and port number, and the operator’s username and

password. This was necessary so that the patchbay did not have to

continuously ask the user for these details every time it is started after its

initial configuration, but instead could just get the details from the

computer’s registry.

To deal with these issues, an application called Zinc™ v2.5 was utilised. According to

Multimedia Limited (2006), Zinc™ v2.5 is a Rapid Application Development tool

that extends Adobe Flash by ensuring the availability of methods and functionality

provided by popular application development environments and languages such as

C++ and Visual Studio.Net. Zinc™ v2.5 provides easy-to-use methods for saving data

into a text file as well as opening the saved files. These methods included:

 192

• mdm.FileSystem.saveFile ("c:\\NetworkAudioData\set1.txt", "My text data") –

Saves text data into a text file (named set1) located in the c drive, in a folder

called NetworkAudioData.

• var savedData = mdm.FileSystem.loadFile("c:\\NetworkAudioData\set1.txt")

– Loads data in the file set1 located in the c drive, in a folder called

NetworkAudioData to the variable savedData.

• mdm.FileSystem.deleteFile ("c:\\NetworkAudioData\set1.txt ") – Deletes the

file set1 located in the c drive, in a folder called NetworkAudioData.

It also supports a wide array of methods for accessing the computer’s registry in a

simple way that enabled and empowered Adobe Flash in the development of the three

patchbays. These included the:

• mdm.System.Registry.createKey(keyBranchID:Number, keyName:String,

keyDefaultValue:String):Void – Create a new Key in the System Registry at

the location specified.

• mdm.System.Registry.saveString() – Writes a STRING value to the System

Registry.

• mdm.System.Registry.load(keyName : String) : String – Loads the data from

the specified Key in the System Registry.

8.4 Chapter Summary

Adobe Flash’s graphic authoring IDE, and its XML and XMLSocket classes played

an integral role in the development of the Broadcast patchbay, the Project studio

patchbay, and the Hospitality/Convention Centre patchbay. These programming

interfaces provided built-in capabilities for quickly creating:

• Graphic and MovieClip symbols for creating various patchbay panels and

icons.

• XML documents, which are used for communication between the patchbays

and the mCMS server.

• The TCP/IP socket through which XML messages were passed between the

patchbay and the mCMS server.

 193

The next chapter gives the conclusion to the investigation and presents guidelines that

were derived after using a high-level graphic tool, Adobe Flash Professional 8, for

creating connection management applications for controlling audio routing in

different sound installation networks.

 194

CHAPTER 9

9 Conclusion

This investigation set out to explore the possibility of using a high-level graphic tool,

Adobe Flash Professional 8, for developing connection management applications

(also known as patchbays) for high-speed audio networking. Chapters 2 and 3 give

the background information required to understand the context of this investigation. A

number of audio networking technologies have been developed that deal with end-to-

end connection management in various audio networks. These (audio networking

technologies) use a combination of hardware and software protocols to enable true

end-to-end connection management by providing the capabilities of routing audio and

MIDI data between device plugs using a user-level application that exposes virtual

plugs of devices on the network. The Yamaha Corporation’s mLAN Digital Network

Interface Technology is one of these audio networking technologies that is based on

Firewire, which was utilised in this investigation. It was chosen for this investigation

because its extensive development was done by the Rhodes Audio Engineering Group

in collaboration with Yamaha Japan. As a result, the researcher had cheap and easy

access to mLAN resources and expertise. Various architectures have been developed

for the mLAN Digital Network Interface Technology, which enables the separation of

connection management between the device and the workstation. These include; the

mLAN Client/Server architecture and the Enabler/Transporter architecture.

The mLAN Client/Server architecture uses XML messages for communication

between the front-end client applications and the back-end mCMS server application.

The use of XML messages enables the decoupling of the clients from the underlying

Enabler module. As a result, client applications can be developed using any language

as long as the application can communicate with the mCMS server using XML

messages. This feature made it possible to use Adobe Flash designed for creating

mLAN connection management applications for three types of sound installation

networks, namely the Broadcast network, the Project studio network, and the

Hospitality/Convention Centre network. Adobe Flash is traditionally designed for

developing applications for display on web pages. It motivated this investigation to

 195

see how Adobe Flash will copy when used to develop complex Object Oriented

applications for real time audio routing.

The most complex patchbay (the Broadcast patchbay) was adequately implemented

using Adobe Flash Professional 8, leading to the conclusion that Adobe Flash

Professional 8 has indeed reached a mature stage and can be used not only for web

graphic design purposes but also for creating highly interactive and complicated

Object Oriented applications. Not only did Adobe Flash Professional 8 allow for the

quick development of patchbay graphic components, but through its ActionScript,

provided a powerful way of writing objects and methods for controlling the behaviour

of the graphic components. ActionScript enabled the inclusion of complex

functionality that may not be easily implemented using third-generation languages

such as C, C++ and C#. Some of these features incorporated into the three patchbays

include:

• The Broadcast grid-matrix that was used to display the connection status of

device nodes visible on the Sources and Destinations trees. Each grid-matrix

box was implemented as a MovieClip graphic that has an ActionScript

MovieClip object attached to it by default, which controls its behaviour when

interacted with or the sound engineer scrolls the device trees. The grid was

actually created by repeatable duplicating one MovieClip symbol stored in the

Adobe Flash Library using a simple ActionScript for loop. There was no need

to directly code the graphic and its handlers as is the case with third-

generation languages.

• The dragging and dropping capabilities of the device blocks and plug icons to

any positions within the Project studio patchbay “workspace” required the use

of built-in MovieClip action handlers, startDrag () and stopDrag (), in which

lines of code were written to listen to mouse events.

• ActionScript code was used to maximise or minimise Project studio patchbay

plug blocks to view detailed information for individual plugs. This feature was

provided by using the Adobe Flash’s graphic authoring IDE for redrawing the

plug blocks and connector lines depending on whether the user maximised or

minimised the block.

 196

• The simple Adobe Flash XML model enabled quick and efficient creation of

XML messages. Adobe Flash provides an XML class that contain methods

and properties for creating XML messages. To create XML messages, in-built

XML object bits were joined together using simple ActionScript code. In

third-generation languages many lines of code are required to create XML

messages, required far more time than when using Adobe Flash’s XML

model.

In conclusion, this research showed that Adobe Flash Professional 8 using

ActionScript code can be used for developing connection management applications

for high-speed audio networking in different sound installation environments. More

importantly, Adobe Flash allows for the inclusion of complex GUI features. Adobe

Flash was adequately utilised for quickly creating graphic components for the three

patchbays, namely the Broadcast patchbay, the Project studio patchbay, and the

Hospitality/Convention Centre patchbay. Network requirements for three

environments were adequately incorporated into the patchbays far more easily using

the Adobe Flash IDE tools and ActionScript.

 197

REFERENCES

[Anderson, 1999]. Anderson, D. 'FireWire System Architecture - IEEE 1394a',

Addison Wesley, Canada. 1999.

[Axia Audio, 2004]. Axia Audio, ‘Professional Networked Audio’. [Online].

Available: http://www.axiaaudio.com/brochures/axia_9-9-2005_screen.pdf . [Access

Date 2005/12/10].

[Axia Audio/TLS Corporation, 2005]. Axia Audio/TLS Corporation, ‘Professional

Networked Audio’. [Online]. Available: http://www.axiaaudio.com/brochures/axia_9-

2005_screen.pdf. [Access Date 15/11/07].

[Adobe Macromedia, 2005]. Adobe Macromedia. ‘Flash 8 Documentation, [Online]:

Available:

http://livedocs.adobe.com/flash/8/main/wwhelp/wwhimpl/js/html/wwhelp.htm?href=0

0000001.html . [Access Date 05/10/07].

[Adobe Systems, 2007]. Adobe Systems, ‘Getting Started with Flex 2’, [Online]:

Available:

http://livedocs.adobe.com/flex/201/html/wwhelp/wwhimpl/js/html/wwhelp.htm?href=

Part1_Intro_005_1.html. [Access Date 12/10/07].

[Aviom Inc, 2007]. Aviom Inc., ‘Aviom Pro64 Products’. [Online]. Available:

http://www.aviom.com/pro64_index.cfm. [Access Date 10/09/07].

[Axia Audio, 2007]. Axia Audio, “PathfinderPC Router Control Software User’s

Guide”, [Online]: Available:

http://www.softwareauthority.com/axia/Ver4_0/PathFinderPCHelp.pdf. [Access Date

20/09/07].

[Benedek and Miner, 2002]. Benedek J. and Miner T. ‘Product Reaction Cards’,

Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052 [Online]: Available:

 198

http://www.microsoft.com/usability/UEPostings/ProductReactionCards.doc. [Access

Date 18/11/07].

[Booch, Rumbaugh and Jacobson, 2005]. Booch G, Rumbaugh J and Jacobson I.

‘The Unified Modelling Language User Guide’ 2nd Edition, Addison Wesley

Professional, United States of America, May 19, 2005.

[Biamp Systems, 2007]. Biamp Systems, ‘Audio Digital Audio Platform’, Operation

Manual. USA, 2007. [Online]: Available: http://www.biamp.com. [Access Date

18/12/07].

[Chin, Diehl and Norman, 1988]. Chin, J.P., Diehl, V.A., Norman, K.L (1988).

“Development of an Instrument Measuring User Satisfaction of the Human-Computer

Interface”.ACM CHI'88 Proceedings, 213-218. [Online]: Available:

http://oldwww.acm.org/perlman/question.cgi?form=QUIS. [Access Date 20/10/07].

[Cirrus Logic, 2007]. Peak Audio Inc., ‘CobraNet Networked Digital Audio’. 2007.

[Online]. Available: http://www.cobranet.info/en/products/pro/areas/PA106.html.

[Access Date 10/09/07].

[Digigram, 2007]. Digigram, ‘EtherSound Technology: Overview’,

[Online]. Available: http://www.ethersound.com/technology/overview.php.

[Access Date 11/09/07].

[Digigram SA, 2007a]. Digigram SA, ‘EtherSound EScontrol’,

[Online]..Available:http://www.digigram.com/products/getinfo.php?prod_key=14150.

[Access Date 28/09/07].

[D and R Electronica B. V., 2007]. D and R Electronica B. V., ‘CobraNetTM

Manager’. [Online]: Available: http://www.cobranetmanager.com/index.html.

[Access Date 28/09/07].

[Fujimori and Foss, 2003]. Fujimori J. and Foss R., ‘Convention Paper: A new

Connection Management Architecture for the Next Generation of mLAN’, Audio

 199

Engineering Society: Presented at the 114th Convention, Amsterdam. 2003. pp. 389.

[Fujimori, Foss, Klinkradt and Bangay, 2003]. Fujimori J., Foss R., Klinkradt B. and

Bangay S., ‘Convention Paper: An mLAN Connection Management Server for

Web-Based, Multi-User, Audio Device Patching’, Audio Engineering Society:

Presented at the 115th Convention, New York. 2003.

[Foss, 2005]. Notes compiled by Foss, R. 'Audio Engineering - Computer Science

Honours level course notes', Rhodes University, Department of Computer Science.

2005.

[Flashloaded, 2007]. Flashloaded (2007). “AdvancedTree Userguide v 1.0.1”.

[Online]: Available: http://www.flashloaded.com/userguides/advancedtree/ . [Access

Date 25/01/08].

[Huang, 2006]. Huang E., “Introducing Adobe Flash Player 9”, ADOBE [Online]:

Available: http://www.adobe.com/devnet/logged_in/ehuang_flashplayer9.html.

[Access Date 20/09/07].

[IEEE Inc, 1998]. Institute of Electrical and Electronics engineers , Inc. ‘IEEE

Recommended Practice for Software Requirements Specifications’, IEEE Std 830-

1998.

[IEC, 2005]. International Electrotechnical Commission, Inc. ‘Consumer audio/video

equipment – Digital interface – Part 6: Audio and music data transmission protocol’,

2nd Edition 2005-10.

[IMT Inc, 2005]. Intelligent Media Technologies Inc., ‘SmartBuss’, IMT Inc., 2005.

[Online]. Available: http://www.intelligentmedia.us/products/smartbuss/index.php.

[Access Date 18/09/07].

[I/One Connects, 2007a]. I/One Connects, ‘NAS Explorer Patchbay ’, User Manual,

2007.

 200

[I/One Connects, 2007b]. I/One, “I/One Firewire Snake”, [Online]. Available:

http://www.ioneconnects.com/. [Access Date 18/09/07].

[Kirakowski, 1994]. Kirakowski, J. ‘The Use of Questionnaire Methods for Usability

Assessment’. [Online]: Available: http://sumi.ucc.ie/sumipapp.html. [Access Date

20/12/07].

[Kruchten, 2000]. Kruchten, P. 'The Rational Unified Process - An Introduction', 2nd

Ed. Addison Wesley, London. 2000.

[Klinkradt, 2004]. Klinkradt, B. 'Draft working document: mLAN Connection

Management Server -Client Server Communication 0.0.2 (Yamaha Confidential)'.

Rhodes University, Grahamstown. 2004.

[Lin, Choong and Salvendy, 1997]. Lin, H.X. Choong, Y.-Y., and Salvendy, G.

(1997) “A Proposed Index of Usability: A Method for Comparing the Relative

Usability of Different Software Systems”. [Online]: Available:

http://oldwww.acm.org/perlman/question.cgi?form=PUTQ. [Access Date 20/10/07].

[Laszlo Systems, 2007]. Laszlo Systems, ‘Software Engineer's Guide to Developing

OpenLaszlo Applications’, [Online]: Available:

http://www.openlaszlo.org/lps4/docs/developers/index.html#0. [Access Date

20/11/07].

[Maksimchuk and Naiburg, 2004]. Maksimchuk R.A. and Naiburg E.J. ‘UML for

Mere Mortals’, Addison Wesley Professional, United States of America, October 26,

2004.

[Multidmedia Limited, 2006]. Multidmedia Limited. ‘Zinc™ v2.5 Help Manual’,

[Online]: Available:

http://www.multidmedia.com/support/learning/help/HTML/zinc/2.5/index.html.

[Access Date 03/09/07].

 201

[Microsoft Corporation, 2007a]. Microsoft Corporation. ‘Silverlight Overview’,

[Online]: Available: http://msdn2.microsoft.com/en-us/library/bb404708.aspx.

[Access Date 15/10/07].

[Microsoft Corporation, 2007b]. Microsoft Corporation. ‘Silverlight Overview’,

[Online]: Available: http://www.microsoft.com/silverlight/why-flexible.aspx. [Access

Date 05/11/07].

[Nielsen, 2004]. Nielsen, J. ‘Usability engineering’. Morgan Kaufmann, San

Francisco. 2004.

[Nielsen, 2005]. Nielsen, J. ‘Ten Usability Heuristics’ , [Online]: Available:

http://www.useit.com/papers/heuristic/heuristic_list.html . [Access Date 24/01/08].

[Ousterhout., 1998]. Ousterhout J K., ‘Scripting: Higher Level Programming for the

21st Century’, [Online]: Available: http://home.pacbell.net/ouster. [Access Date

02/10/07].

[OTARI, 2001]. OTARI, ‘ND-20 Network Audio Distribution Unit’, Operation

Manual. Edition 1.1.6a7 OTARI, Japan 2001.

 [OTARI, 2005]. OTARI, ‘mLAN Control Software’, Operation Manual. Edition

1.1.6a7 OTARI, Japan 2005.

[Okai-Tettey, 2005]. Harold A. Okai-tettey,. ‘High Speed End-to-end Connection

Management in a Bridged IEEE 1394 Network of Professional Audio Devices’, PhD

Thesis, 2005.

[Pierotti, 1994]. Deniese Pierotti. “Usability Techniques:Heuristic Evaluation - A

System Checklist”. [Online]: Available:

http://www.stcsig.org/usability/topics/articles/he-checklist.html. [Access Date

20/10/07].

 202

[Prechelt, 2002]. Prechelt L., ‘Are Scripting Languages Any Good? A Validation of

Perl, Python, Rexx, and Tcl against C, C++, and Java ’A chapter for Advances in

Computers. August 18, 2002.

[Rational SDC, 1998]. Rational the Software Development Company. ‘Rational

Unified Process: Best Practices for Software Development Teams’, Rational Software

White Paper TP026B, Rev 11/01.1998.

[Sound On Sound Ltd, 1999]. Sound On Sound Ltd, ‘Patchbays’, [Online]: Available:

http://www.soundonsound.com/sos/dec99/articles/patchbay.htm. [Access Date

15/09/07].

[Siegle, 2004]. Del Siegle, ‘Likert Scale’. [Online]: Available:

http://www.gifted.uconn.edu/siegle/research/Instrument%20Reliability%20and%20V

alidity/Likert.html. [Access Date 20/12/07].

[Sun Microsystems, 2007]. Sun Microsystems, ‘JavaFX Technology - At a Glance’,

[Online]: Available: http://java.sun.com/javafx/. [Access Date 20/09/07].

[Yamaha Corporation 2004a]. Yamaha Corporation, ‘mLAN Graphic Patchbay

Owner’s Manual’, [Online]: Available:

http://www2.yamaha.co.jp/manual/pdf/emi/english/synth/GraphicPatchbay_en_om_v

16a.pdf. [Access Date 15/09/07].

[Yamaha Corporation, 2004b]. Yamaha Corporation, ‘Graphic Patchbay User

Manual’, [Online]: Available:

http://www2.yamaha.co.jp/manual/pdf/emi/english/synth/graphicpatchbay_e.pdf.

[Access Date 20/09/07].

[Yamaha Corporation, 2004c]. Yamaha Corporation, ‘mLAN Information: Just What

is mLAN Anyway’. [Online]: Available: http://www.mlancentral.com/mlan_info.php.

[Access Date 20/11/07].

 203

APPENDIX A: Software Requirements
Specification Documents

A1 Broadcast Patchbay Software Requirements

Specification Document

1. Introduction

1.1 Revision History

Name Date Description/Reason For Changes Version

Phathisile Sibanda 27/2/06 Initial Requirements Specification for a
Broadcast Studio Routing Patchbay.

1.0

 10/03/06 Refined Requirements Specification. More
elaborate Stimulus/Response Sequences for all
features.

1.1

 15/06/06 Changed Stimulus/Response Sequences for the
establishing and breaking audio connections.

1.2

 20/07/06 Product name was changed to reflect the
functionality of the application from “Grid-based
Patchbay” to “FireGrid” which means the
application performs connection management on
a grid for firewire networks.

1.2

1.2 Purpose

This Software Requirements Specification (SRS) document explains and gives a brief
high level view of what a grid-based patchbay for Broadcast networks should do
within a music Local Area Network (mLAN) to enhance connection management
between mLAN compatible devices. It also gives a description of the User Interface
features of a grid-based patchbay.

 204

1.3 Document Conventions

The format followed in writing this Requirement Specification Document was
adopted from the IEEE Standard 830-19998 [IEEE Inc, 1998] for writing requirement
specification documents.

Acronym/abbreviation Description
mLAN mLAN stands for “music Local Area

Network” and defines a network that allows
for the transport of audio and music data
between audio devices[Fujimori and Foss,
2002].

Firewire A high-speed serial-bus standard that offers
enhanced connectivity and data transfer for
video, audio and storage peripheral
applications through a universal input/output
(I/O) interface. Firewire is also known as
‘IEEE 1394 networking technology’.

mCMS mCMS stands for “mLAN Connection
Management Server”. This server in
responsible for delivering information about
the configuration of the mLAN network to the
remote clients in the form of XML
(Extensible Mark-up Language) documents.

Unit Refers to an mLAN compatible device (for
example the Otari ND – 20B).

1.4 Intended Audience

This Requirements Specification Document is intended for Broadcast patchbay
developers to demonstrate their understanding of the system from the users’ point of
view. It will be used by the system clients and the developer to agree on the functions
and capabilities of the system before the development process began.

1.5 Product Scope

The proposed name of the application to be developed is “FireGrid”. As its name
suggests the application will be incorporated into an existing mLAN Client/Server
system for purposes of providing audio routing capabilities for communicating
mLAN network devices. In addition to making and breaking connections the
application should allow the user to view the network topology of the mLAN network
as well as open and edit properties of IEEE 1394 nodes connected to a particular
IEEE 1394 bus and set/clear Master/Slave configurations. The application will work
as a flexible mLAN network and audio routing management tool that will be installed
on XP workstations.

 205

2. Overall Description

2.1 Product Perspective

As already explained in the previous section 1.4, the Graphical User Interface
application (Broadcast patchbay) is a component part of a Client/Server system that
already exists in the Rhodes Computer Science Engineering Department. It is the
client side of the Client/Server system that interacts directly with the user, making it
the gateway for the user into the system. Figure 1.1 below shows the current
configuration environment of the mLAN Client/Server system on which the complete
application will be deployed.

2.2 Product Functions

The Broadcast patchbay will have two main panels. There will be the Configuration
and the Control windows. The Configuration window will allow the user to edit and
manage saved file routing setups while the Control window will offer four main
functionalities. The user will be able to”

XML messages

Broadcast Patchbay

TCP/IP socket
connection

Firewire

mLAN mCMS

Enabler API
+

Enabler module
mLAN

compatible units

Transporter Module Transporter Module

IEEE 1394 Node
Controller

IEEE 1394 Node
Controller

Figure 1.1: mLAN Client/Server Configuration

 206

• View the mLAN bus topologies.
• Confirm units connected to a certain mLAN bus on the Audio Pane.
• Perform signal routing and connection management on the Routing Matrix.
• Set Master/Slave configurations on the Clock Setup pane of the Control

window.

2.3 User Classes and Characteristics

The patchbay to be developed will mainly be used by Broadcast studio operators. It is
planed that the product will provide two user levels; the administrator and general
users. Administrator will generally have the ability to manage user accounts and
general maintenance of the system

2.3 Design and Implementation Constraints
No design and implementation constraints were identified at the product conception.

2.4 User Documentation

Documentation to be released with the product includes user manuals, requirement
documents, use-case diagrams as well as Object models.

2.5 Assumptions and Dependencies
One assumption will be adhered to in the first release of the application, namely that
the application is designed for a general user. A unified application will be developed
at a later stage that will incorporate two user levels, the administrator and a general
operator.

3. External Interface Requirements

3.1 User Interfaces
The user interface will be a graphical grid in nature with associated tabs and panes
clearly labelled to reflect their functions. Within each pane there will be buttons for
different actions that the user can execute once the panel is opened.

3.2 Hardware Interfaces
Figure 1.2 below shows how the graphical user interface will communicate with the
server. The patchbay forms the client side of the system and communicates with the
mLAN Connection Management Server (mCMS) through a TCP/IP socket. Any
communication medium (wireless or wired) can be used for communication as long as
the server and the client can communicate over the Internet Protocol. Extensible
Mark-up Language (XML) documents will be used to store and pass information
regarding devices, plugs and plug connections between the server and clients
[Fujimori, Foss, Klinkradt and Bangay, 2003].

 207

3.3 Software Interfaces

The user interface will only communicate with the Request Server application in the
mCMS. This will in turn talk to internal server software like the Enabler API for the
extraction of information from the IEEE bus. The section below elaborates on the
communication interfaces involved in the system communication channels.

3.4 Communication Interfaces

Figure 1.3 below shows how the Patchbay will communicate with the mCMS. Three
communication components/interfaces within the Client/Server system that will aid
communication between the Client and Server applications comprise the Patchbay,
the Request server, and the Device interface as shown in Figure 1.3. The client is
responsible for handling the users’ requests. The Request server is the middle
platform that deals with and forwards the users requests and responses to and from the
devices interface via a TCP/IP socket. The Devices interface uses the Enabler API to
get the Enabler module to solve user requests by accessing the IEEE 1394 Bus for
answers. XML documents are used to store and communicate information between
the Client and the Server modules.

Figure 1.2: Client/Server Communication Model

mLAN Server

XML

TCP/IP

mLAN Client

XML

TCP/IP

 208

4. Functional Requirements: System Features
This section describes the features found on the Patchbay application to be designed
and their associated actions and interaction with the Client/Server system and the
user. Note: The system features described in this initial requirement specification
pertain mainly to a general user. A second version of this specification will be
released that recognizes two distinct users, the administrator and a general.

The Use Case diagram [Figure 1.4] gives the general feature overview of the
Broadcast patchbay.

Connection
Information

Enabler API

Connection and
Configuration
Requests

IEEE 1294 Bus

Grid-Based
Patchbay

TCP/IP socket

Request
Server

Enabler

TCP/IP socket

Devices
Interface

Figure 1.3: mLAN Client/Server Components

XML Documents

 209

Connect to mCMS Server

Establish Audio Connections

Break Audio Connections

Update System

Apply Changes

Set/Clear Master/Slave
Configuration

Identify Device

Manage Files

Sound
Engineer

Change Plug Layout

mCMS Server

Set PCPlugs

<<extends>>

Figure 1.4 Broadcast Patchbay Use Case Diagram

a) Managing Files (Saving and Opening saved routing settings to/from a file)

Table 4.1: “Manage Files” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Manage Files
Actors sound engineer, mCMS Server
Use Case Summary • The sound engineer uses the system to save audio routing

settings into a .nsl file on the host workstation.
• The sound engineer uses the system to open saved audio

routing settings.
Pre-Condition • System information can only be saved into a file with the

.nsl extension.
• The sound engineer can save audio routing settings if

there is enough free space in the host workstation hard
disk.

• The sound engineer can open .nsl file if there are already
saved audio routing settings.

Description/Main Flow

• To save routing setting into a .nsl file, the sound engineer
clicks the “File” menu.

 210

Stimulus/Response
Sequences

• The System displays a sub menu with four menu items
(“Open”, “Save”, “Print” , “Exit”)and ,

• The sound engineer clicks the “Save” menu item and
specifies the file name in the dialog box that appears and
click the “Save” button to save the file to the workstation.

• To open saved routing setting, the sound engineer clicks
the “File” menu and select the “Open” menu item on the
sub menu that appears.

• The system displays the “Open File” dialog box
• The sound engineer navigates the file system to where the

file to be opened is saved and selects it and clicks the
“Open” button.

Post-Condition The sound engineer successfully manages and manipulates
.nsl files on the local host workstation.

Alternate Flow(s) The sound engineer can use the “Save” and “Open” file icons
for access the save to a file and open file dialog boxes.

Exceptions
Used Use Cases Update System, Apply Changes

b) Establishing a Connection to mCMS Server

Table 4.2: “Connect to mCMS Server” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Connect to mCMS Server
Actors sound engineer, mCMS Server
Use Case Summary The system connects to the mCMS server.
Pre-Condition To connect to the mCMS server, correct connection and

authentication information should be provided by the sound
engineer. Required information include:

• The server name, server port number
• The operator’s username and password

Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer starts the system.
• On start-up the system presents the sound engineer with

two dialog boxes, the Login and Server Settings dialog
boxes.

• The sound engineer inputs the username and password,
server name and server port number if this is the first time
the system is started after installation.

• The system uses the server name and server port number
to connect to the mCMS server and authenticate the
username and password.

• If the authentication process is successful, the mCMS
server sends a configuration XML document to the
system.

• On receiving the configuration XML document, the
system is updated appropriately.

Post-Condition • The system successfully connected to the mCMS server.
• The system is updated using configuration from the

 211

mCMS server.
Alternate Flow(s)
Exceptions • If the server is not found or the server name and port

number are incorrect.
• If the username and password authentication fails.

Used Use Cases Update System

c) Establishing Audio Connections

Table 4.3: “Establish Audio Connections” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Establish Audio Connections
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer establishes audio connections on the

system based on the Mode set, either Immediate or “Delayed
Mode”.

Pre-Condition • The sound engineer sets the Mode to be used, either
Immediate or “Delayed Mode”.

• The sound engineer ensures that Master/Slave
Configuration is set.

• The sound engineer identifies and selects two plugs to be
connected.

• Plugs to be connected should be on different devices since
internal routing is not allowed.

Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer identifies the plugs to be connected
and their cross-point on the grid-matrix.

• The sound engineer clicks the cross-point of the two plugs
to be connected.

• The system, based on the set mode, implements the
connection.

Post-Condition The sound engineer successfully established audio
connection(s) and audio stated routing to the designated
destination plugs.

Alternate Flow(s)
Exceptions If there is not enough bandwidth on the mLAN network, the

request will fail with an error message.
Used Use Cases Apply Changes, Set/Clear Master/Slave Configuration

 212

d) Breaking Audio Connections

Table 4.4: “Break Audio Connections” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Break Audio Connections
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer breaks audio connections on the system

based on the Mode set, either Immediate or Delayed.
Pre-Condition The sound engineer identifies and selects two plugs to be

disconnected.
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer identifies the plugs to be disconnected
and their cross-point on the grid-matrix.

• The sound engineer clicks the cross-point of the two plugs
to be disconnected.

• The system, based on the set mode, implements the
disconnection.

Post-Condition The sound engineer successfully disconnected two plugs and
audio stopped routing.

Alternate Flow(s)
Exceptions
Used Use Cases Apply Changes

e) Updating the System

Table 4.5: “Updating” Use Case Description

Heading

Description

Use Case Name Update System
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer forces system update using latest

information from the mCMS Server
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks the Update button.
• The system creates and sends an Update XML document

to the mCMS server.
• In response the mCMS server sends a configuration XML

document to the system. The configuration XML
document carries current mLAN network information.

• On receiving the configuration XML document, the
system updates the device trees and the grid matrix
appropriately.

Post-Condition The sound engineer successfully updated the system with
latest information provided by the mCMS server.

Used Use Cases

 213

f) Appling Patchbay Changes to the Network

Table 4.6: “Apply Changes” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Apply Changes
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer applies changes made on the system to the

physical mLAN network. Example changes include changed
Master/Slave synchronisation settings, new connections and
disconnections.

Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks the Apply button.

• The system loops through the device trees checking for

pending connections and disconnections. If they are found

the system follows the Establish Audio Connections and

Break Audio Connections use case to commit the found

connections and disconnections to the mLAN network.

Post-Condition The system applied the changes to the physical mLAN
network.

Alternate Flow(s)
Exceptions If there is not enough bandwidth on the mLAN network, the

request will fail with an error message.
Used Use Cases Establish Audio Connections , Break Audio Connections

 214

g) Setting/Clearing Master/Slave Configurations

Table 4.7: “Set/Clear Master/Slave Configuration” Use Case Stimulus/Response

Sequences

Heading

Description

Use Case Name Set/Clear Master/Slave Configuration
Actors sound engineer, mCMS Server
Use Case Summary • The sound engineer sets/clears Master/Slave

Configuration on the system.
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

Setting/Clearing Master/Slave Configurations can be done in
many ways on the Wordclock panel.

Post-Condition The sound engineer successfully changed/set Master/Slave
Configurations.

Alternate Flow(s)
Exceptions If there is not enough bandwidth on the mLAN network, the

request will fail with an error message.
Used Use Cases Update System, Apply Changes

h) Identifying a Device on the Network

Table 4.8: “Identify Device” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Identify Device
Actors sound engineer, mCMS Server
Use Case Summary In the event of a large network with many devices, the sound

engineer can identify a particular device on the system.
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer right-clicks a particular node either on
the Destinations or Source tree on the system.

• The system presents to the user a submenu with the menu
items that include, Rename Device, Clear All Device
Connections, More Device Info, Change Plug Layout and
Identify Device.

• The sound engineer selects the “Identify Device” menu
item.

• The system creates and sends a identify device XML
message to the mCMS server.

Post-Condition The sound engineer successfully identified a particular device
on the mLAN network through the system. The Light
Emitting Diodes of the device identified flashes.

 215

i) Changing the Plug Layout of a Device

Table 4.9: “Change Plug Layout” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Change Plug Layout
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer changes Plug Layout for any device on

the mLAN network on the system.
Pre-Condition The sound engineer selects the Plug Layout from the list of

Plug Layouts of the device whose Plug Layout is to be
changed.

Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer right-clicks a particular node either on
the Destinations or Source tree on the system.

• The system presents to the user a submenu with the menu
items that include, Rename Device, Clear All Device
Connections, More Device Info, Change Plug Layout and
Identify Device.

• The sound engineer selects the “Change Plug Layout”
menu item.

• The system pops up a dialog box showing all available
Plug Layouts for the chosen device.

• The sound engineer chooses the required Plug layout and
clicks the OK button.

• The system creates and sends a Plug Layout XML
message to the mCMS server.

• If the request is implemented successfully, the mCMS
server sends the latest configuration information to the
system with the appropriate number of plugs for the
device whose Plug Layout was changed.

• The system updates display.
Post-Condition The sound engineer successfully changed the Plug Layout of

a particular device on the mLAN network through the system.
The system is updated accordingly.

Alternate Flow(s)
Exceptions
Used Use Cases Update System

 216

Clearing Dangling Connections
a) Description and Priority

A dangling connection is a destination-less routing left only at the sending or
receiving side of a communicating device. Plugs with dangling connections
are reflected on the Broadcast patchbay tree by blue round icons.

b) Stimulus/Response Sequences

• To clear the blue dangling connection icon of plug, the user clicks the plug
icon to be cleared.

• The system changes the blue dangling connection icon colour to yellow.
• The system sends to the server an XML “clear dangling connection”

request.

 217

A2 Project Studio Patchbay Software Requirements

Specification Document

1. Introduction

1.1 Revision History

Name Date Description/Reason For Changes Version

Phathisile Sibanda 15/01/07 Initial Requirements Specification for the
Graphic Patchbay.

1.0

 25/01/07 Additions:

• Dragging device block

• Dragging plug block to any of the four

sides of the main device block.

1.1

 01/02/07 Eliminated: Hiding/Showing Output and/or Input

plug connectors for a particular device

1.2

 05/04/07 Additions:

• Making a connection

• Deleting a connection

1.3

 05/04/07 Updated: Drag plug block to any of the four

sides of the main device block.

1.4

 10/07/07 Product named “FireSwitch” patchbay. 1.4

1.2 Purpose

This Software Requirements Specification (SRS) document seeks to explain and give
a brief high level view of what a Project studio patchbay should do within a music
Local Area Network (mLAN) network to enhance connection management between
mLAN compatible devices. Also given is a description of the user interface features
of the Project studio patchbay. Functional and non-functional requirements for the
Project studio patchbay are also presented.

1.3 Document Conventions

See Appendix A-A1: section 1.3

 218

1.4 Intended Audience

This Requirements Specification Document is intended for Project studio patchbay
developers to demonstrate their understanding of the system from the users’ point of
view. It will be used by the system clients and the developer to agree on the functions
and capabilities of the system before the development process began.

1.5 Product Scope

The proposed name of the application to be developed is “FireSwitch”. As its name
suggests the application will be incorporated into an existing mLAN Client/Server
system for purposes of providing audio routing capabilities for communicating
mLAN network devices. In addition to making and breaking connections the
application should allow the user to view the network topology of the mLAN network
as well as open and edit properties of IEEE 1394 nodes connected to a particular
IEEE 1394 bus and set/clear Master/Slave configurations. The application will work
as a flexible mLAN network and audio routing management tool that will be installed
on XP workstations.

2. Overall Description

See Appendix A-A1: section 2

3. External Interface Requirements

See Appendix A-A1: section 3

4. Functional Requirements: System Features
This section describes the features of the Project studio patchbay to be designed and
their associated actions and interactions with the Client/Server system, and the user.
The Use Case diagram [Figure 1.1] gives the general feature overview of the
Broadcast patchbay.

 219

Break Audio Connection mCMS Server

Connect to mLAN Server

Make Audio Connection

Update Connections

Apply Changes

Set/Clear Master/Slave
Configuration

File Management

Manipulate Device and Plugs
Graphics

Sound
Engineer

Figure 1.1 Project Studio Patchbay Use Case Diagram

a) Managing Files (Saving and Opening saved routing settings to/from a file)

See Appendix A-A1: section 4 (Table 4.1).

b) Establishing a Connection to mCMS Server

See Appendix A-A1: section 4 (Table 4.2).

 220

c) Establishing Audio Connections

Table 4.3: “Establish Audio Connections” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Establish Audio Connections
Actors Sound engineer, mCMS Server
Use Case Summary The sound engineer establishes audio connections on the

system based on the Mode set, either Immediate or “Delayed
Mode”.

Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer ensures that Master/Slave
Configuration is set.

• The sound engineer maximises the input and output plug
blocks to the two devices to be connected.

• The sound engineer clicks and drags the mouse out from
one of the plug graphics to be connected.

• The system draws a connector line to the mouse.
• The sound engineer releases the mouse over another plug

to connect to.
• The system sends an XML “connection” request message

to the mCMS server and draws the a connector line
between the two plugs.

Post-Condition The sound engineer successfully established audio
connection(s) and audio stated routing to the designated
destination plugs.

Alternate Flow(s)
Exceptions If there is not enough bandwidth on the mLAN network, the

request will fail with an error message.
Used Use Cases Apply Changes, Set/Clear Master/Slave Configuration

 221

d) Breaking Audio Connections

Table 4.4: “Break Audio Connections” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Break Audio Connections
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer breaks audio connections on the system

based on the Mode set, either Immediate or Delayed.
Pre-Condition The sound engineer identifies and selects two plugs to be

disconnected.
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks and drags out the connector
line. Identifies the plugs to be disconnected and their
cross-point on the grid-matrix.

• The system deletes the connector line and sends an XML
“disconnect” request message to the mCMS server.

Post-Condition The sound engineer successfully disconnected two plugs and

audio stopped routing.
Alternate Flow(s)
Exceptions
Used Use Cases Apply Changes

e) Updating the System

Table 4.5: “Updating” Use Case Description

Heading

Description

Use Case Name Update System
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer forces system update using latest

information from the mCMS Server
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks the Update button.
• The system creates and sends an Update XML document

to the mCMS server.
• In response the mCMS server sends a configuration XML

document to the system. The configuration XML
document carries current mLAN network information.

• On receiving the configuration XML document, the
system updates the device trees and the grid matrix
appropriately.

Post-Condition The sound engineer successfully updated the system with
latest information provided by the mCMS server.

Alternate Flow(s)

 222

f) Appling Patchbay Changes to the Network

See Appendix A-A1: section 4 (Table 4.6).

g) Setting/Clearing Master/Slave Configurations

See Appendix A-A1: section 4 (Table 4.7).

g) Identifying a Device on the Network

Table 4.8: “Identify Device” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Identify Device
Actors sound engineer, mCMS Server
Use Case Summary In the event of a large network with many devices, the sound

engineer can identify a particular device on the system.
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer right-clicks the device block for the

device to be identified, and selects the “Identify Device”
menu item.

• The system creates and sends a identify device XML
message to the mCMS server for implementation.

Post-Condition The sound engineer successfully identified a particular device
on the mLAN network through the system. The Light
Emitting Diodes of the device identified flashes.

Alternate Flow(s)
Exceptions
Used Use Cases

 223

h) Changing the Plug Layout of a Device

Table 4.9: “Change Plug Layout” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Change Plug Layout
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer changes Plug Layout for any device on

the mLAN network on the system.
Pre-Condition The sound engineer selects the Plug Layout from the list of

Plug Layouts of the device whose Plug Layout is to be
changed.

Description/Main Flow

Stimulus/Response
Sequences

• The user opens the Device Information panel by clicking
the “information” button at the centre of each device
block.

• The system opens the Device Information panel.
• In the Device Information panel, the sound engineer

selects the new Plug Layout from the “Plug Layout”
combo box and clicks the Ok button.

• The system sends to the mCMS server the Plug Layout
XML document to implement the request.

Post-Condition The sound engineer successfully changed the Plug Layout of
a particular device on the mLAN network through the system.
The system is updated accordingly.

Alternate Flow(s)
Exceptions
Used Use Cases Update System

.

 224

A3 Hospitality/Convention Centre Patchbay Software

Requirements Specification Document

1. Introduction

1.1 Revision History

Name Date Description/Reason For Changes Version

Phathisile Sibanda 05/04/07 Initial Requirements Specification for the
Hospitality Patchbay.

1.0

 10/07/07 Product named “FireZones” patchbay 1.1

1.2 Purpose

This Software Requirements Specification (SRS) document seeks to explain and give
a brief high level view of what a Hospitality/Convention Centre patchbay should do
within a music Local Area Network (mLAN) network to enhance connection
management between mLAN compatible devices. Also given is a description of the
user interface features of the Hospitality/Convention Centre patchbay. Functional and
non-functional requirements for the Hospitality/Convention Centre patchbay are also
presented.

1.3 Document Conventions

See Appendix A-A1: section 1.3.

1.4 Intended Audience

This Requirements Specification Document is intended for Hospitality/Convention
Centre patchbay developers to demonstrate their understanding of the system from the
users’ point of view. It will be used by the system clients and the developer to agree
on the functions and capabilities of the system before the development process began.

1.5 Product Scope

The proposed name of the application to be developed is “FireSwitch”. As its name
suggests the application will be incorporated into an existing mLAN Client/Server
system for purposes of providing audio routing capabilities for communicating
mLAN network devices. In addition to making and breaking connections the
application should allow the user to view the network topology of the mLAN network
as well as open and edit properties of IEEE 1394 nodes connected to a particular
IEEE 1394 bus and set/clear Master/Slave configurations. The application will work

 225

as a flexible mLAN network and audio routing management tool that will be installed
on XP workstations.

2. Overall Description

See Appendix A-A1: section 2.

3. External Interface Requirements

See Appendix A-A1: section 3.

4. Functional Requirements: System Features
This section describes the features found on the Hospitality/Convention Centre
patchbay to be designed and their associated actions and interaction with the
Client/Server system and the user. Note: The system features described in this initial
requirement specification pertain mainly to a general user. A second version of this
specification will be released that recognizes two distinct users, the administrator and
a general.

The Use Case diagram [Figure 1.1] gives the general feature overview of the
Broadcast patchbay.

mCMS Server

Connect to mLAN Server

Make Audio Connection

Break Audio Connection

Update Connections

Apply Changes

Set/Clear Master/Slave
Configuration

File Management

Manipulate Device Zones
and Plugs Graphics

Sound
Engineer

Figure 1.1 Broadcast Patchbay Use Case Diagram

 226

a) Managing Files (Saving and Opening saved routing settings to/from a file)

See Appendix A-A1: section 4 (Table 4.1).

b) Establishing a Connection to mCMS Server

See Appendix A-A1: section 4 (Table 4.2).

c) Establishing Audio Connections

Table 4.3: “Establish Audio Connections” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Establish Audio Connections
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer establishes audio connections.
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks the two plug icons of the
devices to be connected.

• The system gets plug information of the plugs too be
connected, creates and sends a connection request XML
document to the server to implement the request.

Post-Condition The sound engineer successfully established audio
connection(s) and audio stated routing to the designated
destination plugs.

Alternate Flow(s)
Exceptions If there is not enough bandwidth on the mLAN network, the

request will fail with an error message.
Used Use Cases Apply Changes, Set/Clear Master/Slave Configuration

 227

d) Breaking Audio Connections

Table 4.4: “Break Audio Connections” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Break Audio Connections
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer breaks audio connections on the system
Pre-Condition The sound engineer identifies and selects two plugs to be

disconnected.
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer identifies the plugs to be
disconnected.

• The sound engineer right-clicks the destination plug icon
and select the “Disconnect” menu item.

• A “disconnect” request document is sent to the server to
implement the request.

Post-Condition The sound engineer successfully disconnected two plugs and
audio stopped routing.

Alternate Flow(s)
Exceptions
Used Use Cases Apply Changes

e) Updating the System

Table 4.5: “Establish Audio Connections” Use Case Description

Heading

Description

Use Case Name Update System
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer forces system update using latest

information from the mCMS Server
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks the Update button.
• The system creates and sends an Update XML document

to the mCMS server.
• In response the mCMS server sends a configuration XML

document to the system. The configuration XML
document carries current mLAN network information.

• On receiving the configuration XML document, the
system updates the device trees and the grid matrix
appropriately.

Post-Condition The sound engineer successfully updated the system with
latest information provided by the mCMS server.

 228

Alternate Flow(s)

f) Appling Patchbay Changes to the Network

Table 4.6: “Apply Changes” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Apply Changes
Actors sound engineer, mCMS Server
Use Case Summary The sound engineer applies changes made on the system to the

physical mLAN network. Example changes include changed
Master/Slave synchronisation settings, new connections and
disconnections.

Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer clicks the Apply button.

• The system loops through the device trees checking for

pending connections and disconnections. If they are found

the system follows the Establish Audio Connections and

Break Audio Connections use case to commit the found

connections and disconnections to the mLAN network.

Post-Condition The system applied the changes to the physical mLAN
network.

Alternate Flow(s)
Exceptions If there is not enough bandwidth on the mLAN network, the

request will fail with an error message.
Used Use Cases Establish Audio Connections , Break Audio Connections

 229

g) Setting/Clearing Master/Slave Configurations

See Appendix A-A1: section 4 (Table 4.7).

h) Identifying a Device on the Network

Table 4.8: “Identify Device” Use Case Stimulus/Response Sequences

Heading

Description

Use Case Name Identify Device
Actors sound engineer, mCMS Server
Use Case Summary In the event of a large network with many devices, the sound

engineer can identify a particular device on the system.
Pre-Condition
Description/Main Flow

Stimulus/Response
Sequences

• The sound engineer right-clicks a particular node either on
the Destinations or Source tree on the system.

• The system presents to the user a submenu with the menu
items that include, Rename Device, Clear All Device
Connections, More Device Info, Change Plug Layout and
Identify Device.

• The sound engineer selects the “Identify Device” menu
item.

• The system creates and sends a identify device XML
message to the mCMS server.

Post-Condition The sound engineer successfully identified a particular device
on the mLAN network through the system. The Light
Emitting Diodes of the device identified flashes.

Alternate Flow(s)
Exceptions
Used Use Cases

 230

APPENDIX B: mLAN Client/Server

Communication Protocol

The mLAN Client/Server Communication protocol presented in this section was

directly adopted from the mCMS Client/Server Communication protocol defined by

Klinkradt (2004) that utilises Extensible Markup Language (XML) messages.

1. Communication Model

The communication channel between an mLAN Connection Management Server and

its clients (patchbays) is a connected TCP/IP socket, as illustrated by Figure 1.

Extensible Markup Language (XML) is utilised above the TCP/IP layer for all

communication between clients and server. The remainder of this document specifies

the format of these XML documents.

Figure 1: mCMS Client/Server Communication Model

2. Generic Client Server Document

A generic protocol format has been defined using XML to provide a platform for

communication between mLAN Clients and Servers. XML was selected as the

protocol of choice due to its inherent advantages of human readability and platform

independence. The protocol is modelled around the underlying principle highlighted

within AES-24, and which have been echoed in ACN and UPnP. This is to provide a

platform independent mechanism for interoperability between networked devices and

mLAN Client

XML

TCP/IP

mLAN Client

XML

TCP/IP

 231

providing a means for extensibility. It must be noted that at the inception of this

protocol, it was never intended to serve any other purpose than to facilitate

communication between the mLAN Server and Clients. The generic XML document,

as represented in Listing 1, follows the Object Oriented mould of thinking. All

communication must be directed at a target object within a device. A specific method

of this object is to be invoked and the provided parameters to that method are applied.

The assumption made is that devices are aware of the services (objects and methods)

provided by other devices.

Listing 1: Generic XML Document Format

The mLANCommand element identifies this as a mLAN specific XML document, and

is flagged with a version attribute. The Object element provides the information

required for targeting a specific object which is identified through a combination of

the namespace and object name attributes. The Method element specifies the method

that is to be invoked within the target object through the use of the method name

attribute. Following this element is zero or more Parameter entities. Each of these

Parameter element entries contains a name and value attribute pair. The name

attribute identifies the targeted parameter with its value contained within the value

attribute.

3. mLAN Client/Server Documents

This section details the documents currently utilised by the Linux based mLAN

Connection Management Server and the Microsoft Windows Client. The

communication between these two systems can be loosely broken down into client

requests and server responses. The following objects have been identified and are

currently utilised for mLAN Client Server communication:

• Useradmin

 232

• Patch
• SampleRate
• Error

3.1 Useradmin Object

mLAN Client documents, as illustrated in Listing 2, which contain information

regarding the useradmin objects are targeted at the useradmin object within the

mLAN Server. The objects within these documents are not intended to reference

instances of specific classes but refer to services that will be implemented by one or

more classes within the server.

Listing 2: Example mLAN Client Useradmin document

The useradmin object currently exposed by the mLAN Server includes the following

methods:

• Logon

• Userlist

• Newuser

• Deleteuser

• Modifyuserlevel

• Modifypassword

For purposes of this investigation, only the Logon XML object was utilised since the

patchbays developed only had one user level, the general user who had no rights for

modifying user accounts.

3.1.1 Logon – Client Request

 233

Listing 3 illustrates the fields defined within a useradmin logon request, as generated

by a client in an attempt to logon to the server.

Listing 3: Useradmin Logon XML request

The method name attribute identifies the appropriate service within the server and the

parameter list consisting of name-value pair entries for username and password. The

ordering of these parameters is not defined.

Logon – Server Response

If logon is successful no response is returned, else an error response document is

returned providing a textual description of the logon failure.

3.2 Patch Object

The patch object is associated with the connection management services, for which

the following methods have been defined:

• connect

• disconnect

• setCurrentPlugLayout

• syncsetup

• clearDanglingConnection

• pcplugs

• setnickname

• identify

• refresh

The generic patch request message is illustrated in Listing 4.

 234

Listing 4: Generic Patch XML Request

3.2.1 Connect – Client Request

The connect patch request is utilised to create a connection between two mLAN

Plugs. Multiple connections within a single request have not yet been defined. The

defined parameters, as illustrated in Listing 5, are the GUID, plug type, and plug

identifier for both source and destination plugs. It is feasible that the GUID be

replaced with a nickname, but this functionality is not yet defined.

Listing 5: Patch Connect XML Request

Connect – Server Response

If the connect is successful no response is returned, else an error response document is

returned providing a textual description of the failure.

3.2.2 Disconnect – Client Request

Connections between source and destination mLAN Plugs can be broken via a

disconnect request [Listing 6]. The parameters required for this request are the GUID,

plug type, and plug identifier for the destination plug. Multiple disconnections within

one request are not yet defined.

 235

Listing 6: Patch Disconnect XML Request

Disconnect – Server Response

If the disconnect is successful no response is returned, else an error response

document is returned providing a textual description of the failure.

3.2.3 SetCurrentPlugLayout – Client Request

Listing 7: Patch SetCurrentPlugLayout XML Request

SetCurrentPlugLayout – Server Response

If setting the current Plug Layout is successful no response is returned, else an error

response document is returned providing a textual description of the failure.

3.2.4 Syncsetup – Client Request

 236

Listing 8: Patch Syncsetup XML Request

Syncsetup – Server Response

If the syncsetup is successful no response is returned, else an error response document

is returned providing a textual description of the failure.

3.2.5 ClearDanglingConnection – Client Request

Listing 9: Patch ClearDanglingConnection XML Request

ClearDanglingConnection – Server Response

If clearing dangling connection is successful no response is returned, else an error

response document is returned providing a textual description of the failure.

3.2.6 Pcplugs – Client Request

 237

Listing 10: Patch Pcplugs XML Request

Pcplugs – Server Response

If setting pc plugs is successful no response is returned, else an error response

document is returned providing a textual description of the failure.

3.2.7 SetNickname – Client Request

Listing 11: Patch SetNickname XML Request

SetNickname – Server Response

If setting the nickname is successful no response is returned, else an error response

document is returned providing a textual description of the failure.

3.2.8 Identify – Client Request

 238

Listing 12: Patch Identify XML Request

Identify – Server Response

If identifying the device is successful no response is returned, else an error response

document is returned providing a textual description of the failure.

3.2.9 Refresh – Client Request

A client can request a refresh of topology information through the use of the refresh

request. No parameters are currently specified for this request.

Listing 13: Patch Refresh XML Request

The server refresh response contains a snapshot of all or a subset of the devices on the

mLAN Network to which the server is connected. The format of this response is given

in Listing 14.

Refresh – Server Response

The server refresh response contains a snapshot of all or a subset of the devices on the

mLAN Network to which the server is connected. The format of this response is given

in Listing 14.

 239

Listing 14: Patch Refresh XML Response

The value field contains a timestamp indicating when this document was generated by

the server. The mLANConfiguration element contains the device specific information

and is formatted as indicated in Listing 15.

Listing 15: Configuration XML Document

 240

The IEEE1394Network shown in Listing 15 contains all of the IEEE1394Bus

elements, Connections and session elements. There is a separate IEEE1394Bus

element for every bus that is present on the network. Each bus is identified by a

busName attribute, with the value of 3FF indicating referring to the local bus. Under

each bus element are zero or more devices represented by the IEEE1394Device

element. Attributes of this element include:

• GUID – The GUID of this node

• currentSampleRate – The sample rate that this device is currently utilising.

• currentSyncMode – The synchronisation modes that are supported by this

device.

These are defined as indicated in table 1.

Synchronisation Mode Value
No synchronisation supported 0
Only SYT synchronisation mode
supported

1

Only internal synchronisation supported 2 2
SYT and internal synchronisation
supported

3

masterGUID – The GUID of the master device that this device is currently slaved to.

The value of “none” is utilised if the device is not currently a slave.

• model – The model number of this device.

• vendor – The vendor of this device.

• supportedMasterSampleRates – A delimited list of master sample rates (in hex

format) that are supported by this device.

• supportedSlaveSampleRates – A delimited list of slave sample rates (in hex

format) that are supported by this device.

The mLANDevice element indicates that the current device is an mLAN device and

contains an mLANTransporter Element. The mLANTransporter Element is a

 241

container for a list of mLANDevicePlug elements, which represent the plugs exposed

by the mLAN device. The attributes of the mLANDevicePlug element includes:

• direction – This attribute indicates if this plug is a source or destination plug.

• plugName – A textual name that is currently assigned to this plug. This textual

name is typically displayed to an end user.

• plugType – This attribute specifies the type of plug that is being defined.

Currently defined types include audio and midi.

The Connections element specifies the connections that are currently present between

devices on the network. An individual connection is represented by a patch element

which defines the following attributes:

• destEndPointLocator – The destination of data passing via this connection

• srcEndPointLocator – The source of data for this connection.

The attributes of the destEndPointLocator and srcEndPointLocator are specified using

a comma delimited list. For example: NODE_GUID=”guid”,

MLAN_PLUG_ID=”textual plug name” The session element is currently not utilised,

but is in place to facilitate the management of time-based sessions with the automatic

allocation of devices within these sessions.

3.3 SampleRate Object

The SampleRate object provides for the setting of sample rates on targeted devices as

well as allowing clients to setup master and slave device relationships. For this

purpose the following methods have been defined:

• setGlobalMasterRate

• syncsetup

3.3.1 setGlobalMasterRate – Client Request

The setGlobalMasterRate document is illustrated below in Listing 16.

 242

Listing 16: Patch setGlobalMasterRate XML Response

The server will slave all devices to the device specified within the masterGUID

attribute and at the rate specified within masterSampleRate.

3.3.2 setGlobalMasterRate – Server Response

No response is currently defined.

3.4 Notify – Server Response

The notify method is intended to notify a client user of a failed server request, an

example of which is illustrated in Listing 17. The only defined parameter is the

description parameter, which provides the error message in its value attribute.

Listing 17: Error Notify Response

 243

APPENDIX C: Usability Documentations

C1 User Test Profile Form

1. USER IDENTIFICATION INFORMATION

User Age:

User Occupation:

Gender:

2. USER EXPERIENCE AND PREVIOUS KNOWLEDGE

2.1. Highest education

Please mark with an X in the correct column.
Tertiary (university)
Trade (apprenticeship)
Secondary (high school)
Primary
No formal education

2.2. Length of time in current position

Please mark with an X in the correct column.
Less than 6 months
6 months – 1 year
1 – 2 years
Over 2 years
other

Indicate with an X in the correct column
<18 18-30 31-40 40-50 51<

Indicate with an X in the correct column
Male Female

 244

2.3. Length of time with this organization

Please mark with an X in the correct column.
Less than 6 months
6 months – 1 year
1 – 2 years
Over 2 years
other

2.4 Computer usage

Please mark with an X in the correct column.
This section determines how often you use a computer system.
Experience: <1 month 1-6 months 6 months-

2 years
Over 2 years

Frequency:
Daily
Weekly
Monthly
Never

2.5. PC Features

PC Type:
Memory Size:

Processor
Speed:

HDD Size:

Network
Connection
Speed:

Patchbay
Type:

Please specify the type of patchbay you are using.
Grid-Based Graphic-

Based
Other

If you chose “other” specify the type of
patchbay you are familiar with:

 245

2.6. Learning Cycle

Please mark with an X in the correct column.
This section evaluates how you learnt using the Patchbay software
you specified in section 2.5.
Trail and error Follow documentation Follow documentation

and Trail and error

2.7. Notes

3. WHAT THE USER DOES

3.1. Duties

1.

2.

3.

4.

5.

6.

 246

C2 Usability Testing Questionnaire

Please tick on the appropriate square for each software feature
attribute.

1. CONSISTENCY

Allocated Scores for each software
feature attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature
Attribute

 Feature
Attribute

1. The naming is
consistent across
displays and menu
options of the
<<application name>>?

Strongly
disagree

 Strongly
agree

2. The labels are located
at consistent location on
screens of the
<<application name>>?

Strongly
disagree

 Strongly
agree

3. The wording used is
consistent with user
guidance provided?

Strongly
disagree

 Strongly
agree

4. The grouping of
menu options is logical?

Strongly
disagree

 Strongly
agree

5. The ordering of menu
options is logical?

Strongly
disagree

 Strongly
agree

2. LEARNABILITY

Allocated Scores for each software
feature attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. Learning to operate
the <<application
name>> system is
easy?

Strongly disagree Strongly agree

2. Remembering
names and use of
commands within the
<<application name>>
System is not
challenging?

Strongly disagree Strongly agree

3. Performing tasks is
straightforward?

Strongly disagree Strongly agree

4. Supplemental
reference materials are
useful?

Strongly disagree Strongly agree

5. Command names
are meaningful?

Strongly disagree Strongly agree

6. The <<application
name>> require a
steep learning curve?

Strongly disagree Strongly agree

 247

3. TERMINOLOGY, USER GUIDANCE AND SYSTEM INFORMATIO N

Allocated Scores for each software feature
attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. Is the terminology
used in the system related
to task?

Strongly disagree Strongly agree

3. System feedback: How
helpful are error
messages?

Strongly disagree Strongly agree

4. Does the <<application
name>> provide
CANCEL option?

Strongly disagree Strongly agree

5. Is HELP provided? Strongly disagree Strongly agree
6. Is completion of
processing indicated?

Strongly disagree Strongly agree

7. Are error messages no
disruptive/ informative?

Strongly disagree Strongly agree

4. SCREEN

Allocated Scores for each software feature
attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. Reading characters on
the screen is easy?

Strongly disagree Strongly agree

2. Organization of
Information is logical and
standard?

Strongly disagree Strongly agree

3. Position of messages on
screen.

Strongly disagree Strongly agree

 248

5. FLEXIBILITY

Allocated Scores for each software feature
attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. Does the <<application
name>> have direct
manipulation capability?

Strongly disagree Strongly
agree

2. Are the menu options
dependent on context?

Strongly disagree Strongly
agree

3. Can the user display
elements according to their
needs?

Strongly disagree Strongly
agree

4. Are users allowed to
customize windows?

Strongly disagree Strongly
agree

5. Can users assign
command names?

Strongly disagree Strongly
agree

6. Does the system provide
zooming for display
expansion?

Strongly disagree Strongly
agree

6. MINIMAL ACTION

Allocated Scores for each software feature
attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. Does the <<application
name>> provide default
values?

Strongly disagree Strongly agree

2. Does <<application
name>> provide function
keys for frequent control
entries?

Strongly disagree Strongly agree

3. Is the menu selection by
pointing? primary
Means of sequence
control?

Strongly disagree Strongly agree

4. Does the <<application
name>> require minimal
cursor positioning?

Strongly disagree Strongly agree

 249

7. PERCEPTUAL LIMITATION

Allocated Scores for each software
feature attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. Is the cursor
distinctive?

Strongly disagree Strongly agree

2. Are display elements
distinctive?

Strongly disagree Strongly agree

3. Does it provide
easily distinguished
colours?

Strongly disagree Strongly agree

4. Is the active window
indicated?

Strongly disagree Strongly agree

5. Are menus distinct
from other displayed
information?

Strongly disagree Strongly agree

6. Are groups of
information
demarcated?

Strongly disagree Strongly agree

7. Is the screen density
reasonable?

Strongly disagree Strongly agree

8. SYSTEM CAPABILITIES

Allocated Scores for each software feature
attribute evaluated

0 1 2 3 4 5 6 7 8 9

Testing Question Feature Attribute Feature
Attribute

1. System speed is good
enough

Strongly disagree Strongly agree

2. System reliability is
good enough

Strongly disagree Strongly agree

 250

9. OVERALL REATION TO THE SOFTWARE:
 Product Reaction Cards (Microsoft Wording Scales)

Please tick on the appropriate square for each Key Word that best describes the
overall software. The user can select as many Key Words as possible.

□Accessible □Desirable □Gets in the way □Patronizing □Stressful

□Appealing □Easy to use □Hard to use □Personal □Time-consuming

□Attractive □Efficient □High quality □Predictable □Time-saving

□Busy □Empowering □Inconsistent □Relevant □Too technical

□Collaborative □Exciting □Intimidating □Reliable □Trustworthy

□Complex □Familiar □Inviting □Rigid □Uncontrollable

□Comprehensive □Fast □Motivating □Simplistic □Unconventional

□Confusing □Flexible □Not valuable □Slow □Unpredictable

□Connected □Fresh □Organized □Sophisticated □Usable

□Consistent □Frustrating □Overbearing □Stimulating □Useful

□Customizable □Fun □Overwhelming □Straight Forward □Valuable

 251

C3 Heuristic Evaluation Checklist Form

 1. Visibility of System Status

The system should always keep user informed about what is going on, through appropriate feedback wi
thin reasonable time.

Review Checklist Yes No N/A Comments

1.1
Does every display begin with a title or
header that describes screen contents?

O O O

1.2
Is there a consistent icon design scheme
and stylistic treatment across the system?

O O O

1.3
Is a single, selected icon clearly visible
when surrounded by unselected icons?

O O O

1.4
Do menu instructions, prompts, and error
messages appear in the same place(s) on
each menu?

O O O

1.5
In multipage data entry screens, is each
page labelled to show its relation to
others?

O O O

1.6
If overtype and insert mode are both
available, is there a visible indication of
which one the user is in?

O O O

1.7
If pop-up windows are used to display
error messages, do they allow the user to
see the field in error?

O O O

1.8
Is there some form of system feedback for
every operator action?

O O O

1.9

After the user completes an action (or
group of actions), does the feedback
indicate that the next group of actions can
be started?

O O O

1.10
Is there visual feedback in menus or
dialog boxes about which choices are
selectable?

O O O

1.11
Is there visual feedback in menus or
dialog boxes about which choice the
cursor is on now?

O O O

1.12

If multiple options can be selected in a
menu or dialog box, is there visual
feedback about which options are already
selected?

O O O

1.13
Is there visual feedback when objects are
selected or moved?

O O O

1.14
Is the current status of an icon clearly
indicated?

O O O

2. Match Between System and the Real World

 252

The system should speak the user’s language, with words, phrases and concepts familiar to the user,
rather than system-oriented terms. Follow real-world conventions, making information appear in a
natural and logical order.

Review Checklist Yes No N/A Comments

2.1
Are icons concrete and
familiar?

O O O

2.2

Are menu choices
ordered in the most
logical way, given the
user, the item names,
and the task variables?

O O O

2.3

If there is a natural
sequence to menu
choices, has it been
used?

O O O

2.4

Do related and
interdependent fields
appear on the same
screen?

O O O

2.5

If shape is used as a
visual cue, does it
match cultural
conventions?

O O O

2.6

Do the selected colours
correspond to common
expectations about
colour codes?

O O O

2.7

When prompts imply a
necessary action, are
the words in the
message consistent
with that action?

O O O

2.8

Do keystroke
references in prompts
match actual key
names?

O O O

2.9

On data entry screens,
are tasks described in
terminology familiar to
users?

O O O

2.10
Are field-level prompts
provided for data entry
screens?

2.11

For question and
answer interfaces, are
questions stated in
clear, simple language?

O O O

2.12

Do menu choices fit
logically into
categories that have
readily understood
meanings?

O O O

2.13
Are menu titles parallel
grammatically?

O O O

 253

 3. User Control and Freedom

Users should be free to select and sequence tasks (when appropriate), rather than having the system do
this for them. Users often choose system functions by mistake and will need a clearly marked
"emergency exit" to leave the unwanted state without having to go through an extended dialogue. Users
should make their own decisions (with clear information) regarding the costs of exiting current work.
The system should support undo and redo.

Review Checklist Yes No
N/A

Comments

3.1
If setting up windows is a low-frequency task, is it
particularly easy to remember?

O O O

3.2
In systems that use overlapping windows, is it easy for users
to rearrange windows on the screen?

O O O

3.3
In systems that use overlapping windows, is it easy for users
to switch between windows?

O O O

3.4
When a user's task is complete, does the system wait for a
signal from the user before processing?

O O O

3.5 Can users type-ahead in a system with many nested menus? O O O

3.6
Are users prompted to confirm commands that have drastic,
destructive consequences?

O O O

3.7
Is there an "undo" function at the level of a single action, a
data entry, and a complete group of actions?

O O O

3.8 Can users cancel out of operations in progress? O O O

3.9 Are character edits allowed in commands? O O O

3.10
Can users reduce data entry time by copying and modifying
existing data?

O O O

3.11 Are character edits allowed in data entry fields? O O O

3.12
If menu lists are long (more than seven items), can users
select an item either by moving the cursor or by typing a
mnemonic code?

O O O

3.13
If the system uses a pointing device, do users have the option
of either clicking on menu items or using a keyboard
shortcut?

O O O

3.14
Are menus broad (many items on a menu) rather than deep
(many menu levels)?

O O O

3.15
If the system has multiple menu levels, is there a mechanism
that allows users to go back to previous menus?

O O O

 254

4. Consistency and Standards

Users should not have to wonder whether different words, situations, or actions mean the same thing.
Follow platform conventions.

Review Checklist Yes No
N/A

Comments

4.1
Have industry or company formatting standards been
followed consistently in all screens within a system?

O O O

4.2
Has a heavy use of all uppercase letters on a screen been
avoided?

O O O

4.3 Do abbreviations not include punctuation? O O O

4.4
Are integers right-justified and real numbers decimal-
aligned?

O O O

4.5 Are icons labelled? O O O

4.6 Are there no more than twelve to twenty icon types? O O O

4.7 Are there salient visual cues to identify the active window? O O O

4.8 Does each window have a title? O O O

4.9
Are vertical and horizontal scrolling possible in each
window?

O O O

4.10 Does the menu structure match the task structure? O O O

4.11
Have industry or company standards been established for
menu design, and are they applied consistently on all menu
screens in the system?

O O O

4.12 Are menu choice lists presented vertically? O O O

4.13
If "exit" is a menu choice, does it always appear at the
bottom of the list?

O O O

4.14 Are menu titles either cantered or left-justified? O O O

4.15
Are menu items left-justified, with the item number or
mnemonic preceding the name?

O O O

4.16
Do embedded field-level prompts appear to the right of the
field label?

O O O

4.17
Do on-line instructions appear in a consistent location across
screens?

O O O

4.18 Are field labels and fields distinguished typographically? O O O

4.19
Are field labels consistent from one data entry screen to
another?

O O O

Review Checklist Yes No Comments

 255

N/A

4.20
Do field labels appear to the left of single fields and above
list fields?

O O O

4.21 Are attention-getting techniques used with care? O O O

4.22 Intensity: two levels only O O O

4.23 Size: up to four sizes O O O

4.24 Font: up to three O O O

4.25 Blink: two to four hertz O O O

4.26
Colour: up to four (additional colours for occasional use
only)

O O O

4.27
Are there no more than four to seven colours, and are they
far apart along the visible spectrum?

O O O

4.28
Is a legend provided if colour codes are numerous or not
obvious in meaning?

O O O

4.28
Have pairings of high-chroma, spectrally extreme colours
been avoided?

O O O

4.30
Are saturated blues avoided for text or other small, thin line
symbols?

O O O

4.31
Is the most important information placed at the beginning of
the prompt?

O O O

4.32
Are user actions named consistently across all prompts in the
system?

O O O

4.33
Are system objects named consistently across all prompts in
the system?

O O O

4.34
Do field-level prompts provide more information than a
restatement of the field name?

O O O

4.35
Are menu choice names consistent, both within each menu
and across the system, in grammatical style and terminology?

O O O

4.36
Does the structure of menu choice names match their
corresponding menu titles?

O O O

4.43
Do abbreviations follow a simple primary rule and, if
necessary, a simple secondary rule for abbreviations that
otherwise would be duplicates?

O O O

 256

5. Help Users Recognize, Diagnose, and Recover From Errors

Error messages should be expressed in plain language (NO CODES).

Review Checklist Yes No
N/A Comments

5.1 Is sound used to signal an error? O O O

5.2
Are prompts stated constructively, without overt or implied
criticism of the user?

O O O

5.3 Do prompts imply that the user is in control? O O O

5.4 Are prompts brief and unambiguous? O O O

5.5
Are error messages worded so that the system, not the user,
takes the blame?

O O O

5.6
If humorous error messages are used, are they appropriate
and inoffensive to the user population?

O O O

5.7 Are error messages grammatically correct? O O O

5.8 Do error messages avoid the use of exclamation points? O O O

5.9 Do error messages avoid the use of violent or hostile words? O O O

5.10 Do error messages avoid an anthropomorphic tone? O O O

5.11
Do all error messages in the system use consistent
grammatical style, form, terminology, and abbreviations?

O O O

5.12 Do messages place users in control of the system? O O O

5.13
If an error is detected in a data entry field, does the system
place the cursor in that field or highlight the error?

O O O

5.14 Do error messages inform the user of the error's severity? O O O

5.15 Do error messages suggest the cause of the problem? O O O

5.16
Do error messages provide appropriate semantic
information?

O O O

5.17
Do error messages provide appropriate syntactic
information?

O O O

5.18
Do error messages indicate what action the user needs to take
to correct the error?

O O O

5.19
If the system supports both novice and expert users, are
multiple levels of error-message detail available?

O O O

6. Error Prevention

 257

Even better than good error messages is a careful design which prevents a problem from occurring in
the first place.

Review Checklist Yes No
N/A Comments

6.1
If the database includes groups of data, can users enter more
than one group on a single screen?

O O O

6.2 Have dots or underscores been used to indicate field length? O O O

6.3
Is the menu choice name on a higher-level menu used as the
menu title of the lower-level menu?

O O O

6.4
Are menu choices logical, distinctive, and mutually
exclusive?

O O O

6.5 Are data inputs case-blind whenever possible? O O O

6.6
If the system displays multiple windows, is navigation
between windows simple and visible?

O O O

6.7
Are the function keys that can cause the most serious
consequences in hard-to-reach positions?

O O O

6.8
Are the function keys that can cause the most serious
consequences located far away from low-consequence and
high-use keys?

O O O

6.9 Has the use of qualifier keys been minimized? O O O

6.10
If the system uses qualifier keys, are they used consistently
throughout the system?

O O O

6.11
Does the system prevent users from making errors whenever
possible?

O O O

6.12
Does the system warn users if they are about to make a
potentially serious error?

O O O

6.13
Does the system intelligently interpret variations in user
commands?

O O O

6.14
Do data entry screens and dialog boxes indicate the number
of character spaces available in a field?

O O O

6.15
Do fields in data entry screens and dialog boxes contain
default values when appropriate?

O O O

 258

7. Recognition Rather Than Recall

Make objects, actions, and options visible. The user should not have to remember information from one
part of the dialogue to another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.

Review Checklist Yes No
N/A

Comments

7.1
For question and answer interfaces, are visual cues and white
space used to distinguish questions, prompts, instructions,
and user input?

O O O

7.2
Does the data display start in the upper-left corner of the
screen?

O O O

7.3
Are multiword field labels placed horizontally (not stacked
vertically)?

O O O

7.4
Are all data a user needs on display at each step in a
transaction sequence?

O O O

7.5
Are prompts, cues, and messages placed where the eye is
likely to be looking on the screen?

O O O

7.6
Have prompts been formatted using white space,
justification, and visual cues for easy scanning?

O O O

7.7 Do text areas have "breathing space" around them? O O O

7.8
Is there an obvious visual distinction made between "choose
one" menu and "choose many" menus?

O O O

7.9
Have spatial relationships between soft function keys (on-
screen cues) and keyboard function keys been preserved?

O O O

7.10
Does the system gray out or delete labels of currently
inactive soft function keys?

O O O

7.11
Is white space used to create symmetry and lead the eye in
the appropriate direction?

O O O

7.12
Have items been grouped into logical zones, and have
headings been used to distinguish between zones?

O O O

7.13
Are zones no more than twelve to fourteen characters wide
and six to seven lines high?

O O O

7.14
Have zones been separated by spaces, lines, colour, letters,
bold titles, rules lines, or shaded areas?

O O O

7.15
Are field labels close to fields, but separated by at least one
space?

O O O

7.16
Are long columnar fields broken up into groups of five,
separated by a blank line?

O O O

 259

8. Flexibility and Minimalist Design

Accelerators-unseen by the novice user-may often speed up the interaction for the expert user such that
the system can cater to both inexperienced and experienced users. Allow users to tailor frequent
actions. Provide alternative means of access and operation for users who differ from the "average" user
(e.g., physical or cognitive ability, culture, language, etc.)

Review Checklist Yes No N/A Comments

8.1

If the system supports
both novice and expert
users, are multiple
levels of error message
detail available?

O O O

8.2

Does the system allow
novices to use a
keyword grammar and
experts to use a
positional grammar?

O O O

8.3
Can users define their
own synonyms for
commands?

O O O

8.4

Does the system allow
novice users to enter
the simplest, most
common form of each
command, and allow
expert users to add
parameters?

O O O

8.5

Do expert users have
the option of entering
multiple commands in
a single string?

O O O

8.6

Does the system
provide function keys
for high-frequency
commands?

O O O

8.7

For data entry screens
with many fields or in
which source
documents may be
incomplete, can users
save a partially filled
screen?

O O O

8.8
Does the system
automatically enter
leading zeros?

O O O

8.9

If menu lists are short
(seven items or fewer),
can users select an item
by moving the cursor?

O O O

8.10

If the system uses a
type-ahead strategy, do
the menu items have
mnemonic codes?

O O O

 260

9. Aesthetic and Minimalist Design

Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant units of information and diminishes their relative
visibility.

Review Checklist Yes No
N/A

Comments

9.1
Is only (and all) information essential to decision making
displayed on the screen?

O O O

9.2 Are all icons in a set visually and conceptually distinct? O O O

9.3
Have large objects, bold lines, and simple areas been used to
distinguish icons?

O O O

9.4 Does each icon stand out from its background? O O O

9.5
If the system uses a standard GUI interface where menu
sequence has already been specified, do menus adhere to the
specification whenever possible?

O O O

9.6 Are meaningful groups of items separated by white space? O O O

9.7
Does each data entry screen have a short, simple, clear,
distinctive title?

O O O

9.8 Are field labels brief, familiar, and descriptive? O O O

9.9
Are prompts expressed in the affirmative, and do they use the
active voice?

O O O

9.10
Is each lower-level menu choice associated with only one
higher level menu?

O O O

9.11 Are menu titles brief, yet long enough to communicate? O O O

9.12
Are there pop-up or pull-down menus within data entry fields
that have many, but well-defined, entry options?

O O O

 261

10. Help and Documentation

Even though it is better if the system can be used without documentation, it may be necessary to
provide help and documentation. Any such information should be easy to search, focused on the user’s
task, list concrete steps to be carried out, and not be too large.

Review Checklist Yes No
N/A

Comments

10.1
If users are working from hard copy, are the parts of the hard
copy that go on-line marked?

O O O

10.2 Are on-line instructions visually distinct? O O O

10.3 Do the instructions follow the sequence of user actions? O O O

10.4
If menu choices are ambiguous, does the system provide
additional explanatory information when an item is selected?

O O O

10.5
Are data entry screens and dialog boxes supported by
navigation and completion instructions?

O O O

10.6
If menu items are ambiguous, does the system provide
additional explanatory information when an item is selected?

O O O

10.7
Are there memory aids for commands, either through on-line
quick reference or prompting?

O O O

10.8
Is the help function visible; for example, a key labelled
HELP or a special menu?

O O O

10.9
Is the help system interface (navigation, presentation, and
conversation) consistent with the navigation, presentation,
and conversation interfaces of the application it supports?

O O O

10.10 Navigation: Is information easy to find? O O O

10.11 Presentation: Is the visual layout well designed? O O O

10.12
Conversation: Is the information accurate, complete, and
understandable?

O O O

10.13 Is the information relevant? O O O

10.14 Goal-oriented (What can I do with this program?) O O O

10.15 Descriptive (What is this thing for?) O O O

10.16 Procedural (How do I do this task?) O O O

10.17 Interpretive (Why did that happen?) O O O

10.18 Navigational (Where am I?) O O O

10.19 Is there context-sensitive help? O O O

10.20 Can the user change the level of detail available? O O O

 262

11. Skills

The system should support, extend, supplement, or enhance the user’s skills, background knowledge,
and expertise ----not replace them.

Review Checklist Yes No
N/A

Comments

11.1
Can users choose between iconic and text display of
information?

O O O

11.2 Are window operations easy to learn and use? O O O

11.3
If users are experts, usage is frequent, or the system has a
slow response time, are there fewer screens (more
information per screen)?

O O O

11.4
If users are novices, usage is infrequent, or the system has a
fast response time, are there more screens (less information
per screen)?

O O O

11.5
Does the system automatically colour-code items, with little
or no user effort?

O O O

11.6
If the system supports both novice and expert users, are
multiple levels of detail available.

O O O

11.7 Are users the initiators of actions rather than the responders? O O O

11.8 Does the system perform data translations for users? O O O

11.9
Do field values avoid mixing alpha and numeric characters
whenever possible?

O O O

11.10
If the system has deep (multilevel) menus, do users have the
option of typing ahead?

O O O

11.12
When the user enters a screen or dialog box, is the cursor
already positioned in the field users are most likely to need?

O O O

11.13 Can users move forward and backward within a field? O O O

11.14
Is the method for moving the cursor to the next or previous
field both simple and visible?

O O O

11.15
Has auto-tabbing been avoided except when fields have fixed
lengths or users are experienced?

O O O

11.16 Do the selected input device(s) match user capabilities? O O O

11.17
Are cursor keys arranged in either an inverted T (best for
experts) or a cross configuration (best for novices)?

O O O

12. Pleasurable and Respectful Interaction with the User

 263

The user’s interactions with the system should enhance the quality of her or his work-life. The user
should be treated with respect. The design should be aesthetically pleasing- with artistic as well as
functional value.

Review Checklist Yes No
N/A

Comments

12.1
Is each individual icon a harmonious member of a family of
icons?

O O O

12.2 Has excessive detail in icon design been avoided? O O O

12.3 Has colour been used with discretion? O O O

12.4
Has the amount of required window housekeeping been kept
to a minimum?

O O O

12.5
If users are working from hard copy, does the screen layout
match the paper form?

O O O

12.6
Has colour been used specifically to draw attention,
communicate organization, indicate status changes, and
establish relationships?

O O O

12.7 Can users turn off automatic colour coding if necessary? O O O

12.8
Are typing requirements minimal for question and answer
interfaces?

O O O

12.9
Do the selected input device(s) match environmental
constraints?

O O O

12.13
If the system uses multiple input devices, has hand and eye
movement between input devices been minimized?

O O O

12.14
If the system supports graphical tasks, has an alternative
pointing device been provided?

O O O

12.15
Is the numeric keypad located to the right of the alpha key
area?

O O O

12.16
Are the most frequently used function keys in the most
accessible positions?

O O O

12.17
Does the system complete unambiguous partial input on a
data entry field?

O O O

 264

13. Privacy

The system should help the user to protect personal or private information- belonging to the user or the
his/her clients.

Review Checklist Yes No
N/A

Comments

13.1 Are protected areas completely inaccessible? O O O

13.2
Can protected or confidential areas be accessed with certain
passwords?

O O O

13.3 Is this feature effective and successful? O O O

System Title: __________________________ Release #: __________________________

Evaluator: __________________________ Date: __________________________

 265

C4 Hospitality/Convention Centre Paper Prototype

Questions

a) Establishing An Audio Connection

i. Connect the computer in the Reception zone to a speaker in the

Lounge zone and to a speaker in the Room 4 zone.

b) Rearranging Hotel Zone Devices

ii. Place the “CD player” at the bottom-left corner of the Reception

zone.

iii. Place the Computer at the centre of the Reception zone.

c) Rearranging Hotel Zones

iv. Replace Room 2 zone by Room 1 zone.

d) Rearranging Hotel Zones

v. Replace Room 2 zone by Room 8 zone.

e) Making An Audio Disconnection

i. Disconnect the speaker in the Lounge zone.

