
An investigation into the use of
intuitive control interfaces and

distributed processing for enhanced
three dimensional sound localization

Submitted in fulfilment of the requirements of the degree

MASTER OF SCIENCE

Rhodes University - Grahamstown

M. L. Hedges

2015

Abstract

This thesis investigates the feasibility of using gestures as a means of control for local-

izing three dimesional (3D) sound sources in a distributed immersive audio system.

A prototype system was implemented and tested which uses state of the art technol-

ogy to achieve the stated goals. A Windows Kinect is used for gesture recognition

which translates human gestures into control messages by the prototype system, which

in turn performs actions based on the recognized gestures. The term distributed in

the context of this system refers to the audio processing capacity. The prototype

system partitions and allocates the processing load between a number of endpoints.

The reallocated processing load consists of the mixing of audio samples according to

a specification. The endpoints used in this research are XMOS AVB endpoints. The

firmware on these endpoints were modified to include the audio mixing capability

which was controlled by a state of the art audio distribution networking standard,

Ethernet AVB. The hardware used for the implementation of the prototype system

is relatively cost efficient in comparison to professional audio hardware, and is also

commercially available for end users.

the successful implementation and results from user testing of the prototype system

demonstrates how it is a feasible option for recording the localization of a sound

source. The ability to partition the processing provides a modular approach to build-

ing immersive sound systems. This removes the constraint of a centralized mixing

console with a predetermined speaker configuration.

Acknowledgments

Firstly I would like to acknowledge my family for all the love and support they have

given me throughout the course of my studies. I am confident in saying that I would

never have been where I am today if it wasn’t for the motivation that they have given

me throughout the years of my life.

I would like to thank my fellow postgraduates in the Audio Engineering research

division at Rhodes University for making this journey such an enjoyable one. The

support and help you have given me throughout this project has been remarkable.

I would like to thank the National Research Foundation (NRF) for funding my mas-

ters studies, and the Telkom Centre of Excellence for Distributed Multimedia for the

funding they provide to Rhodes University’s Computer Science department.

I would like to thank Mr Tom Ammermann of New Audio Technology who was

never hesitant to provide help towards this project.

Lastly I wish to thank Professor Richard Foss for supervising both my Honours and

Masters research. The support and dedication that Richard has given me through-

out this research is immeasurable. The knowledge that Richard has imparted to me

within and beyond the realm of computer science will be carried with me forever. I

firmly believe that Richard’s wisdom and values make him a role model to all of the

computer science students at Rhodes University. Thank you Richard.

Table of Contents

1 Introduction 1

1.1 Research Question . 2

1.2 Research Objectives . 3

1.3 Thesis Layout . 4

2 Surround Sound and Immersive Sound - State of the Art 6

2.1 Speaker Placement . 6

2.1.1 2.1 Surround . 6

2.1.2 4.1 Surround . 8

2.1.3 5.1 Surround . 9

2.1.4 7.1 Surround . 13

2.1.5 Auro3D 9.1 . 16

2.1.6 The KinectSound system Speaker Configuration 18

2.2 3D Audio Encoding . 19

2.2.1 Dolby Atmos . 20

2.2.2 Auro3D Octopus . 21

2.2.3 MPEG-H 3D Audio . 21

2.2.4 Digital Theater Systems’ Multi Dimensional Audio 23

2.2.5 SMPTE 25CSS . 23

2.2.6 The EBU MPEG Surround Encoding 24

2.2.7 The KinectSound system Encoding 25

2.3 Sound localization and panning . 29

2.3.1 Ambisonics and Higher Order Ambisonics 29

2.3.2 Binaural localization . 32

2.3.3 Vector Based Amplitude Panning 35

2.3.4 Distance Base Amplitude Panning 39

2.4 Chapter Summary . 49

3 Human Computer Interaction (HCI) for Digital Audio 52

3.1 Usability Metrics . 53

3.2 Device Controlled HCI for Real-time Audio Panning 54

3.2.1 New Audio Technology’s Spatial Audio Designer 55

3.2.2 Iosono Anymix Pro . 56

3.3 HCI for Audio Production Using 3D Hardware 57

3.3.1 The Haptic Feedback Prototype 57

3.3.2 The JL Cooper NUAGE Surround Panner 59

3.3.3 A Usability Review of 3D Localization Control Approaches . . 60

3.4 Hardware That Enables Device Free Control 62

3.4.1 The Leap Motion Controller 62

3.4.2 Standard Web Camera . 64

3.4.3 The Windows Kinect . 67

3.4.4 An Analysis of the Usability of Device Free Control Interfaces 68

3.5 Sound Localization with the KinectSound system 68

3.5.1 The KinectSound System’s User Interface 69

3.5.2 Panning Audio with the KinectSound System 73

3.5.3 A Usability Review of the KinectSound system 74

3.6 Chapter Summary . 75

4 A Distributed Approach to Surround Sound Processing 77

4.1 Audio/Video Networking Technologies 78

4.2 Ethernet AVB in Depth . 85

4.2.1 IEEE 802.1 Qat . 85

4.2.2 IEEE 802.1 Qav . 88

4.2.3 IEEE 802.1 AS . 92

4.3 IEEE 1722.1 - AVDECC . 93

4.3.1 AVDECC Talkers . 93

4.3.2 AVDECC Listeners . 94

4.3.3 AVDECC Controllers . 94

4.4 The KinectSound system configuration 95

4.4.1 Streamware Echo NIC-1 Network Adaptor 96

4.4.2 Extreme Networks Ethernet Bridge 97

4.4.3 XMOS AVB Low-cost Audio Endpoints 98

4.4.4 The Flow of Data . 100

4.4.5 AVDECC in the KinectSound system 104

4.5 Chapter Summary . 108

5 Design and Implementation of the KinectSound system110

5.1 System Design . 110

5.1.1 Requirements Specification . 111

5.1.2 Use Case Diagrams . 113

5.1.3 Class Diagram . 116

5.1.4 Sequence Diagrams . 117

5.2 Device Free HCI . 119

5.2.1 The Windows Kinect . 119

5.2.2 The Interfaces for a Device Free System 124

5.2.3 Interacting with the KinectSound system 129

5.3 Digital Audio Workstation (DAW) control 134

5.3.1 Drivers and Channels . 134

5.3.2 MIDI Control . 135

5.4 Audio Encoding . 139

5.4.1 Restoring stored Co-ordinates 140

5.4.2 Saving current co-ordinates 141

5.5 3D Audio Panning . 144

5.5.1 Converting from Absolute Distance to Relative Distance . . . 146

5.5.2 Converting Distance To Mix Levels 151

5.5.3 Sketchup Display . 157

5.6 Ethernet AVB for KinectSound . 159

5.6.1 Extreme Networks Bridge . 159

5.6.2 XMOS Attero Tech Endpoint Implementation 162

5.7 Chapter Summary . 171

6 System Testing 173

6.1 The Testing Process . 173

6.1.1 The Tasks . 174

6.1.2 Qualitative Questionnaire . 175

6.2 Quantitative results . 176

6.3 Qualitative results . 179

6.4 Further User Feedback . 181

6.5 Chapter Summary . 185

7 Conclusion 187

7.1 Chapter Summaries . 187

7.2 Review of the Research . 189

7.2.1 The Research Question . 189

7.2.2 Research Objectives . 189

7.3 Limitations and Future Work . 191

7.3.1 Improve Sketchup Display . 191

7.3.2 Added Reverberation . 191

7.3.3 Power over Ethernet (PoE) . 193

7.3.4 Test the Device Limitations 193

7.3.5 Further Testing . 193

Bibliography 194

8 Appendix 205

8.1 The Complete EBU Layout . 205

8.2 The Sketchup plugin for the KinectSound system 214

8.3 Class diagram and sequence diagrams 217

8.4 Summarized manuals for testing purposes 233

8.5 The KinectSound system User manual 243

List of Figures

2.1 The “Equilateral Triangle” setup used for 2.1 speaker placement [1] . 8

2.2 The two different 4.1 speaker configurations used. 9

2.3 The 5.1 Speaker configuration defined by the AES [2] 11

2.4 The 5.1 Speaker configuration defined by Dolby/DTS 13

2.5 The 7.1 Speaker configuration defined by Dolby [1] 14

2.6 The 7.1 SDDS configuration [3] . 16

2.7 The Auro3D 9.1 speaker layout [4] 17

2.8 The 7 speaker KinectSound system configuration modelled in Sketchup 19

2.9 The metadata structure of the EBU specification 25

2.10 The decoding stage in the KinectSound system 26

2.11 The three additional channels used for first order ambisonics 30

2.12 The vertical ambisonics field shown from zeroth (A) to fourth (E) order. 32

2.13 Delay shown between a listeners two ears 34

2.14 A virtual source shown by an angle α, in a 2D layout 36

2.15 The vector formulation for 2D VBAP 37

2.16 2D VBAP for more than two speakers 38

2.17 The vector formulation for 3D VBAP 39

2.18 Pythagoras’ Theorem being used in 3D 40

2.19 Relationship between speaker amplitude (Y) and distance (X) 42

2.20 Relationship between decibel value (Y) and distance (X) for the

inverse distance calculation . 43

2.21 Relationship between speaker amplitude (Y), and distance (X) for

inverse squared (A), and inverse (B) functions 44

2.22 Relationship between decibel value (Y) and distance (X) for the

inverse distance squared calculation 44

2.23 The co-ordinate movement over a space of 24 Kinect frames 49

3.1 The mix interface for the Spatial Audio Designer 55

3.2 The user interface for Anymix Pro . 56

3.3 The Novint Falcon haptic device . 57

3.4 The haptic feedback 3D display [5] 58

3.5 The configuration of the workstations in the haptic feedback system [5] 59

3.6 The JL Cooper surround panner . 60

3.7 A user’s hands being detected by the Leap Motion and rendered in 3D 63

3.8 The joints on a user’s hand as detected by the Leap Motion 63

3.9 A user’s hand as detected by the CAMShift algorithm 65

3.10 Detection of a user’s hand via background subtraction 66

3.11 The Kinect skeleton . 67

3.12 The KinectSound system’s Home Interface 70

3.13 The KinectSound system’s Track Selection Interface 72

3.14 The KinectSound system’s Track Recording Interface 73

3.15 A user panning in 3D with KinectSound 74

4.1 The processing distribution between centralized and decentralized

systems. 77

4.2 An example of an EtherSound device configuration 81

4.3 MSRP talker advertisement with responding listeners 87

4.4 Graphical layout of the attributes of the Credit Based Shaper Algorithm 90

4.5 The Ethernet Layout and System Architecture of the KinectSound

system . 96

4.6 An Echo NIC-1 Network Adaptor [6]. 97

4.7 The layout of an XMOS low-cost endpoint. 98

4.8 The flow of data in the KinectSound configuration. 100

4.9 The layout of an Audio Data packet. 102

4.10 The layout of an AVDECC Discovery Protocol Packet 105

4.11 The layout of an AVDECC Connection Management Protocol Packet 106

4.12 The layout of an AVDECC Enumeration and Control Protocol Packet 107

5.1 The Use Case Diagram for the main system 114

5.2 The Use Case Diagram for the Sketchup system 115

5.3 The Class Diagram for the KinectSound system. 116

5.4 The Sequence diagram for the startup of the KinectSound system. . . 118

5.5 The Kinect skeleton and enumerated type joint values 121

5.6 The KinectSound system displaying the user’s left arm, and right

hand crosshair. 124

5.7 The three interfaces used by the KinectSound system. 125

5.8 A structure showing how interfaces and buttons are stored. 128

5.9 The flowchart showing how to determine a button click 131

5.10 The Reaper routing matrix. 135

5.11 Communication between the KinectSound system and the DAW

using internal MIDI. 136

5.12 The 3 steps for assigning transport command shortcuts 137

5.13 The linked list implementation for storing audio data 141

5.14 The Sequence diagram for saving audio data 142

5.15 Recording the user’s hand co-ordinates and dispatching the mix levels

to the endpoints . 145

5.16 The X and Y displacement from the Kinect’s camera eye. 146

5.17 The effects of scaling the Kinect’s co-ordinates. 147

5.18 The origins and ranges of the Kinect’s origin (A) and the

KinectSound system’s origin (B). 148

5.19 The absolute and scaled values of Z used for panning. 150

5.20 The Sketchup procedure for updating the crosshair’s position 159

5.21 Terminal output of a show AVB command. 160

5.22 Terminal output of a show port command. 161

5.23 Audio processing within a listener endpoint 163

5.24 The data flow between the modified functions and their respective

processing tiles. 165

6.1 The means and standard deviations of the task times 178

6.2 Graphical representation of the questionnaire 181

6.3 A Sketchup camera view error . 184

7.1 The resource usage on XMOS endpoints 192

1

Chapter 1

Introduction

Audio distribution systems are used in a wide variety of venues for both commercial

and personal use. Audio distribution in venues such as cinemas, home theaters, and

live music venues is more commonly referred to as surround sound. Surround sound

aims to provide sound all around the user at ear level, enhancing their overall listen-

ing experience. This is achieved by localizing and moving sounds within a multitrack

audio production to different areas of a listening environment. Standard surround

sound has led to the concept of immersive surround sound. Immersive sound con-

tains speakers at height levels that are higher and lower than the height of the user’s

ear. This enables a system to envelop the user in a listening environment with a much

improved listening experience.

Conventional surround sound content production systems use a preset speaker con-

figuration such as the Dolby 7.1 surround [1] or the Auro3D 9.1 immersive high and

low [4], and have a central mixing matrix. This will mix the audio and distribute ana-

log audio signals to speakers over fixed physical cabling. The mixing matrix receives

the input audio from a live source such as a microphone preamplifier or a storage

medium such as a DVD.

The use of network technology as a means of audio transport is becoming increasingly

popular due to the advantages it provides over conventional systems. These advan-

tages include easy configuration, convenient cabling, and digital patch bays where the

audio signal is not degraded [7]. The use of digital networks as opposed to physical

cabling has allowed intelligent routing of audio streams as well as providing remote

control of the audio devices. Digital audio must be converted into an analog signal

before it can be played. By using a digital approach to distributed audio, each audio

device endpoint must convert the digital signals to an analog signal that is ready for

2

output.

Sound panning in the context of immersive sound is the process of adjusting the

level of sound at multiple endpoints such that the sound appears to be emanating

from a particular location, or appears to be moving. Sound panning is done in the

film and music industry, where a sound is moved between a number of speakers. The

locations for a moving sound source can be encoded in a variety of ways, and then de-

coded by an audio decoder before it is distributed. The encoding method that is used

must be compatible with the decoder to achieve sound localization. There are a num-

ber of different methods that have been used to localize sound sources in professional

systems. Examples of these are Higher Order Ambisonics [8], Binaural Delay [9], Vec-

tor Based Amplitude Panning [10], and Distance Based Amplitude Panning [11] [12].

These four methods are frequently used to localize sound in professional systems.

The panning of an audio source is often done as a post-recording effect. This typi-

cally requires an audio engineer to pan the audio using instruments such as a Panning

Potentiometer (pan pot) and encode the result so that it may be reproduced at a

later stage. The digital approach to panning uses software as a post-recording tool to

localize the audio into areas of the listening space. This provides a much simpler way

than using conventional panning instruments such as the pan pot. Panning a sound

source in three dimensions (3D) is slightly more complicated, as it requires movement

in two different planes. This is required because of the height factor that is intro-

duced with 3D immersive audio. With the increase in the use of immersive audio,

there are commercially available systems that have been released which provide 3D

localization. An example of one of these systems is the Spatial Audio Producer [13].

1.1 Research Question

This research investigates the requirements and implementation of a gesture controlled

immersive sound system to overcome the limitations of currently available systems.

The system uses intelligent endpoints in a distributed audio configuration. Intelli-

gent endpoints aim to extend the functionality of each endpoint by enabling them to

3

perform additional audio processing and Digital Signal Processing (DSP). By doing

this, a significant portion of the processing would be reallocated from the workstation

to the endpoints. This removes the limitation of a preset speaker configuration and

provides the capability of adding endpoints incrementally. The configuration of this

system will be simplified even further by utilizing the Power over Ethernet (PoE)

capability [14]. This would allow complete configuration and control via Ethernet

cabling.

This research also investigates the use of human gestures and movements as a method

of localizing a sound source. This will be done by utilizing the features of a Windows

Kinect “hands free” controller [15]. This aims to enable dynamic sound source local-

ization in a 3D environment by representing a user’s hand as a sound source. The

use of dynamic panning for 3D movements eliminates the need of having to locate

a sound in two different planes as 3D localization can be performed with a single

movement of a user’s hand. To achieve this, the location of the user’s hand and thus

the location of a sound source has to be translated into a series of mix levels applied

at each endpoint.

1.2 Research Objectives

The research described in this thesis had the following goals:

• To investigate various speaker configurations that are used for current surround

sound and immersive sound systems, and from this to determine a suitable

configuration for use in testing the prototype system.

• To determine the effectiveness of utilizing a distributed processing system for

the implementation of immersive sound control. An implementation goal was to

use low-cost hardware that is easily available and doesn’t require any specialized

configuration, together with open standard for control.

• To incorporate and evaluate a form of device-free control to be included as part

of the implementation. The intention was to control the system via intuitive

4

user interfaces using human gestures. The localization of the sound sources was

to be performed via the detection of the user’s 3D hand position.

• To acquire both qualitative and quantitative feedback from user testing. This

required a sample of users to test the system implemented for this research and

also to test a commercially available immersive sound system.

The system implemented for this research will be referred to as the KinectSound

system throughout the thesis.

1.3 Thesis Layout

The layout of the chapters contained in this thesis are described below.

• Chapter 2 - Investigates various surround and immersive sound speaker config-

urations and determines a configuration that is optimal to implement and test

the KinectSound system. This chapter also investigates methods of encoding

audio, and four different techniques used to localize audio in a 3D space.

• Chapter 3 - Defines usability metrics and the determining factors of a usable

system. Included in this chapter is a review of existing sound panning and

localization software, as well as software that does not use regular workstation

control devices.

• Chapter 4 - Gives an overview of technologies used to distribute audio across

a network and introduces Ethernet AVB and the control protocol associated

with it. It also describes why Ethernet AVB was the protocol of choice for the

KinectSound system’s configuration and introduces the components that make

up the KinectSound system.

• Chapter 5 - Provides details of the design and implementation of the key areas

of the KinectSound system, and how they fit together to fulfill the requirements.

5

• Chapter 6 - Describes the steps taken to perform user testing and provides

consolidated quantitative and qualitative results. The results obtained from the

tests are also discussed in this chapter.

• Chapter 7 - Presents a closing discussion of this research and future work.

The research and system implementation are also described more concisely in two

papers presented at the 2013 South African Telecommunications, Networking, and

Applications Conference (SATNAC) [16] and 2014 Audio Engineering Society (AES)

convention [17].

6

Chapter 2

Surround Sound and Immersive Sound - State of

the Art

2.1 Speaker Placement

Speaker placement is a key element of surround sound and immersive sound systems

as a large part of the sound experience depends on where the speakers are located.

The goal of surround sound and immersive sound systems is to provide an enhanced

listening experience for the user by using speakers arranged around the user. Each

speaker is the source of one or more audio channels. In cases where there is more

than one channel of audio, they will have to be mixed together in order to produce a

final output. The simplest surround sound system is known as “2.1 Surround Sound”,

which is simply two stereo speakers and a sub woofer. The purpose of the sub woofer

is to manage the bass by playing the low frequency component of each channel [18].

The “.1” is derived from the sub woofer’s strictly limited frequency bandwidth [3].

This section discusses the most common speaker setups used in surround sound and

immersive sound environments. These range from the 2.1 speaker configuration to

the Auro3D 9.1 speaker configuration. It also discusses the 7 speaker configuration

used by the KinectSound system.

2.1.1 2.1 Surround

The simplest and earliest form of surround sound is the Stereophonic 2.1 speaker

setup1. Stereophonic sound is sound that is divided into two separate channels which

have been pre-recorded. The sound is then mixed to an extent and reproduced

through 2 speakers and a sub woofer. The earliest recorded instance of “Stereo”

1Although one must be careful when designating this configuration as “Surround Sound”

7

being produced was by French engineer Clement Ader. He achieved this by using

a series of telephone transmitters on the stage of an opera theatre, and sent these

signals along short telephone lines. People at the Paris Electrical Exhibition could

listen to the stream of the live stereo audio by holding a telephone receiver to each

ear [19].

Stereo is by far the most common form of surround sound. Almost all computers,

radios, and other home sound systems use a 2 speaker stereo setup. Stereo evolved

from Monophonic sound, which is a single channel of audio that can be sent to one

or more speakers. This results in all the speakers playing the same audio and is

the most basic format of sound output [20]. Monophonic sound is easier as well as

cheaper to record, and is used in telecommunications, intercoms, and public address

systems where the surround experience is insignificant. Stereo is used in media play-

ers, cinema, and television. The speaker placement for 2.1 systems is described as

the standard “Equilateral Triangle” setup [18]. The triangle’s points are comprised

of the left speaker, right speaker, and user. The triangle cannot always be strictly

equilateral, due to space limitations as well as objects obstructing the speaker place-

ment. For a home entertainment system, the speakers should be between 22 ◦ - 30 ◦

on each side of user, where 0 ◦ is the line from the user to the television screen [1].

As the viewing distance between the user and the television screen increases, so will

the distance between the speakers in order to keep the triangle consistent.

8

Figure 2.1 : The “Equilateral Triangle” setup used for 2.1 speaker placement [1]

Figure 2.1 shows the setup of the speakers with the user at a 12 foot viewing

distance (approximately 3.5 meters). The viewing distance is not fixed as this may

vary depending on the size of the display between the speakers. The viewing distance

and the screen size are directly proportional to each other [1]. The components in

the figure are numbered as follows:

1. The User

2. The Speakers

3. The Speaker Angles

4. The Sub-woofer

2.1.2 4.1 Surround

There are two speaker configurations for a 4.1 surround system [3], these are known

as the Quadraphonic and Cinema configurations. Figure 2.2 shows the Quadraphonic

configuration (A), and the Theater configuration (B).

9

Figure 2.2 : The two different 4.1 speaker configurations used.

The quadraphonic configuration is the 4.1 configuration used in home theater

systems. This setup is often referred to as the phantom configuration as it uses a

stereo mix between the front speakers to generate a center channel. The purpose of

the surround speakers is to provide ambience channels from the back, creating an

“immersive” environment. These channels are rendered using a matrix format, either

with four mono channels, or two stereo channels feeding the left/right speakers.

The theater configuration uses three front channels, and one surround channel. The

surround channel feeds one (or more) speakers located behind or to the sides of the

audience in cases where more than 1 surround speaker is used. The use of a single

channel feeding the surround speakers limits the 360◦ localization capability.

The inability to localize sound in the theater setup, as well as the lack of a center

speaker in the quadraphonic configuration, led to the development of 5.1 surround.

This configuration was able to produce the desired localization effects not possible

with 4.1.

2.1.3 5.1 Surround

The first instance of complete “surround sound” dates back to 1941 with Disney’s

release of the movie Fantasia. Disney achieved this by recording a different reel of

sound for a specific scene and splicing it in for that scene when it was needed in the

movie [21].

Surround sound, as we know it today, became digital in 1992 and was introduced by

10

Dolby Laboratories as ’AC-3’ (Audio Encoding 3). This encodes the sound into a

film’s optical tracks, but in digital form as opposed to analog [21]. In 1993 Digital

Theater Systems (DTS) also introduced their first surround sound technology. DTS

recorded their sound on a CD and synchronized that with a DTS time code printed

between the frames and sprocket holes [22]. DTS’s first commercial film with surround

sound was Steven Spielberg’s award winning “Jurassic Park”. Dolby and DTS are

the two major competitors in today’s home theater systems and are often referred to

as the “Coke and Pepsi of modern day sound”.

Five point one (5.1) is the most commonly used speaker setup in today’s home theater

systems [23] [18]. 5.1 speaker setups are composed of 6 audio channels being fed into

6 independent speakers.

A 5.1 surround system is composed of 3 speakers at the front, 2 at the rear, and a

sub-woofer situated below the front right speaker or directly behind the user [18]. 5.1

configurations have been specified by the Audio Engineering Society (AES), as well

as by Dolby and Digital Theater Systems (DTS).

The AESTD1001 configuration

The Audio Engineering Society have provided a standardized speaker configuration,

which is intended to provide the listener with an optimal surround sound experi-

ence [18] [2].

11

Figure 2.3 : The 5.1 Speaker configuration defined by the AES [2]

Figure 2.3 shows the optimal speaker placement for a 5.1 surround sound system.

The left and right speakers (labelled ’L’ and ’R’) are in the same position as they

would be in a 2.1 speaker setup. This is 30 ◦ on each side of the listener where 0 ◦

is directly in front of the listener in the center of the viewing screen. In addition to

2.1, there is a center speaker which is located at 0 ◦ and is either above or below the

screen (labelled ’C’), as well as two more speakers. The height that these speakers

should ideally be placed is 1.2 meters above the ground [2] with the center speaker

height being dependent on its size, so that it does not obscure the screen.

The two additional speakers are labelled ’LS’, and ’RS’ which stands for Left Surround

and Right Surround. These audio channels are known as “Ambience Channels” [2].

These speakers are located between 100 ◦ and 120 ◦ to each side of the listener [18].

12

Their height can be anywhere above 1.2 meters with their tilt at a maximum of 15 ◦

downwards.

The speaker location angles can be described mathematically as follows, where θ is

0 ◦ or the center of the screen as viewed by the user. The letters used in the equations

denote the angles of the speaker locations rather than the channels:

– C = θ

– L|R = θ ±30 ◦

– LS|RS = θ ± (110 ◦±10 ◦)

The Dolby / DTS configuration

The Dolby or DTS configuration2 has a similar configuration to that of the AES

configuration, but discards the accuracy of the speaker position. This is due to

inevitable space limitations and shapes of the venues. The AES configuration requires

the speakers to be placed in a circular fashion around a single listener at certain angles.

The Dolby/DTS configuration requires the user to be in the center of the five speakers

which are placed as either a square or rectangle around the user [1].This allows the

configuration to be used in venues such as cinema theaters and homes where there

are space limitations.

2This configuration is used by more than just these two audio/visual brands

13

Figure 2.4 : The 5.1 Speaker configuration defined by Dolby/DTS

Shown in Figure 2.4 is a diagram of the Dolby/DTS layout of a 5.1 surround

system. The center square shows where the user (or audience) is located.

2.1.4 7.1 Surround

The seven point one (7.1) surround sound system is a surround sound speaker setup

that is also commonly used in home theater systems today. There are two main

configurations that are used for 7.1 surround. These are known as the Dolby Home

Theater configuration [1] and the Sony Dynamic Digital Sound (SDDS) configuration.

The Dolby Home Theater configuration

This 7.1 surround system uses all the components of a 5.1 channel system, but has

two extra audio channels in order to provide better rear localization [24]. The 7.1

configuration has two speakers adjacent to the user, and two behind the user [24].

14

Figure 2.5 : The 7.1 Speaker configuration defined by Dolby [1]

Figure 2.5 shows the 7.1 surround configuration defined by Dolby. The left and

right speakers (labelled 2) are placed exactly how they would be in the 2.1 stereo

placement. The center speaker (labelled 3) is located in the same place as in the 5.1

configuration.

The components in the figure are numbered as follows:

1. The User

2. The left and right speakers (L/R)

3. The center speaker (C)

4. The left and right speaker angles

5. The Sub-woofer

6. The left and right surround speakers (LS/RS)

7. The left and right back speakers (LB/RB)

15

The speaker configuration can be described in a similar mathematical fashion as the

5.1 configuration, where θ is 0 ◦, and is the center of the screen as viewed by the user.

– C = θ

– L|R = θ ± (26 ◦±4 ◦)

– LS|RS = θ ± (100 ◦±10 ◦)

– LB|RB = θ ± (142.5 ◦±7.5 ◦)

The Sony Dynamic Digital Sound (SDDS) configuration

The Sony Dynamic Digital Sound (SDDS) configuration was first used in the movie

Last Action Hero in 1993. It is a configuration that supports up to 8 independent

channels, however only a small fraction of films using this method of encoding have

used all eight channels. This configuration is not intended for private consumers, but

rather for large venues such as cinemas and auditoriums. There are two main reasons

as to why this configuration is not used privately:

1. The SDDS encoding is not available in any form of home entertainment

2. The equipment required for this setup is very expensive

The cinemas where this would be used are ones where the screen is large enough to

accommodate two further speakers, for example IMAX cinemas. This speaker layout

is similar to the DTS 5.1 configuration, with an additional two speakers in between

the center, and left/right speakers. These speakers are known as the center left (CL)

and center right (CR) speakers.

16

Figure 2.6 : The 7.1 SDDS configuration [3]

2.1.5 Auro3D 9.1

Auro3D is an audio format which has enabled immersive sound by adding on to

current surround configurations [4]. The Auro3D configurations have added channels

for height, as well as over head, to the current surround channels contained in Dolby

5.1 configurations. Due to the fact that the Auro3D configurations add speakers on

to the default 5.1 layout, the configurations are often referred to as 5.1 + x where x

is the number of speakers that have been added on to the 5.1 configuration.

The 9.1 configuration (alternatively known as 5.1 + 4) uses the 5.1 configuration

with 4 added speakers for the height channels. Shown below is the speaker layout of

the Auro3D 9.1 surround [4].

17

Figure 2.7 : The Auro3D 9.1 speaker layout [4]

Shown in Figure 2.7 is the 5.1 Dolby layout as well as the added Auro3D height

layer. The speakers in the 5.1 configuration are shown around the lower circle, while

the Auro3D height layer is shown around the upper circle.

The speaker positions can be described by a rotation in degrees relative to θ, where

θ = 0◦, and an elevation in degrees relative to φ, where φ = 0◦ [3] [4].

Speaker rotation Speaker Elevation

C θ φ

L θ - 30◦ φ

R θ + 30◦ φ

LS θ - 110◦ φ

RS θ + 110◦ φ

HL θ - 30◦ φ + 30◦

HR θ + 30◦ φ + 30◦

HLS θ - 110◦ φ + 30◦

HRS θ + 110◦ φ + 30◦

18

2.1.6 The KinectSound system Speaker Configuration

The KinectSound system configuration uses a variation of the Auro3D 9.1 system [4],

which is the 7.1 with height configuration [25]. This configuration excludes the RB

and LB speakers from the 7.1 Dolby configuration shown in Figure 2.5, and replaces

them with two height speakers located in the front height layer(θ± 30◦, φ + 30◦).

The 7.1 with height configuration was chosen for the following reasons:

1. Audio routing - The AVB bridge (Chapter 4) provided 8 populated RJ45 ports.

Due to the fact that one port was reserved for the workstation3, it only allowed

7 endpoints to be connected. The Presonus Firepod which was used to route

audio conventionally, also provided 8 outputs, which allowed 7 speakers and a

sub-woofer to be connected. The Presonus Firepod was the audio interface used

with commercial sound localization systems for comparative purposes.

2. Endpoint availability - Each speaker used within the system contained an Attero

Tech AVB endpoint. During the construction of this system only 7 Attero Tech

endpoints were available for use. This limited the number of surround speakers

to 7. The subwoofer was not included in the configuration as the system was

testing panning and localization rather than the overall user experience.

Figure 2.8 shows the layout of the KinectSound system speaker configuration. The

Dolby 5.1 speakers are shown on the grey plane, with the LH and RH speakers in the

front. The ideal listening position of a user is also shown.

3This was for the audio multicast and control packets for the endpoints

19

Figure 2.8 : The 7 speaker KinectSound system configuration modelled in Sketchup

The height surround speakers were left out in preference for height front speakers

due to the fact that a humans echo location accuracy decreases when a sound source

is moved beyond the θ± 90◦ rotation [26]. Having speakers in this region would not

be as effective as having them in front of the user.

2.2 3D Audio Encoding

3D Audio, or spatial audio, refers to the technology used to recreate a scene that is

able to “immerse” a person in a sound space [28] [29]. Enveloped immersive audio

refers to the ability to virtualize a sound source at a position in space with accurate

audio localization [29]. Several 3D audio encoding standards are beginning to use

a similar paradigm to Object Oriented Programming (OOP). The OOP languages

encapsulate attributes and operations that relate to each other, in single objects [28].

The object approach is used for audio encoding as it enables transport of an audio

scene as discrete entities as opposed to fixed channels. These entities are often referred

to as audio metadata. Audio renderers are able to re-create the audio scene for various

speaker configurations from the attributes of the audio objects. Since the audio scene

is recreated at the decoding stage, this allows for greatly improved scalability when

20

compared to the transmission of fixed signals. This also allows various audio effects

to be applied to the audio signal in realtime [28].

Extensible Markup Language (XML) schemas are commonly used to describe audio

scenes as they provide a simple, yet robust method of representing audio metadata.

XML is able to describe most parameterized data via the use of tags. An XML tag

may contain either a set of attributes, or further XML tags. This enables an object

oriented approach since tags containing sets of attributes or further tags may be

treated as objects. Immersive audio systems are now evolving to have flexible audio

formats, rather than a fixed channel approach [30]. XML plays an important role in

this evolution because it can be easily parsed. This allows a sound localization system

to re-create an audio scene, as long as it is able to parse the XML file correctly, and

a prescribed standard is being followed.

2.2.1 Dolby Atmos

Dolby Atmos is an immersive sound technology developed by Dolby Laboratories and

released in 2012 [31]. Atmos can pan up to 128 audio tracks which are dynamically

rendered depending on the speaker configuration’s requirements. There are three

components which make up an Atmos mix, these are:

1. Bed audio - consists of channel based premixes or stems. This audio is often

used for ambient audio effects.

2. Object audio - is any mono or stereo audio that requires dedicated panning.

The panning of the object audio is controlled by the Atmos metadata.

3. Atmos metadata - contains the data which describes the panning automation

for each audio object.

The 128 tracks in an Atmos encoded audio piece consist of up to 9.1 bed audio

tracks and 118 independent audio objects. The audio beds are routed directly to the

speakers whereas the objects have their positions described by the metadata and are

rendered in realtime. The Atmos’ metadata format is not open and an Atmos mix

requires a Dolby Rendering and Mastering Unit (RMU) to be rendered.

21

2.2.2 Auro3D Octopus

The Auro3D Octopus codec provides an immersive playback format with 3D spatial

audio capabilities. The Auro3D codec is used by Barco [32], a Belgian visual hardware

manufacturer for cinema configurations. This codec is backward compatible and is

able to downmix audio streams for standard surround sound systems. Upmixing a

stream requires the Auro-Matic plugin in order to decode the signal [33]. This codec

uses a channel-based approach as a means of audio transport.

The Auro3D Octopus codec uses 24 bits for the audio delivery format, mainly for

compatibility purposes with existing high-resolution audio standards. An audio signal

using 18 bits provides a range of up to 105dB, which is sufficient for the reproduction of

most professional audio. The remaining bits are utilized by Auro3D Octopus to carry

audio metadata. Some of the important attributes contained in Auro3d Octopus’

metadata are [33]:

• An identification and channel count of an audio stream.

• Simple post-production effects such as range reduction.

• Instructions for the upmixing or downmixing of the audio stream.

As the Auro3D Octopus codec is proprietary, the format of this codec is not available.

2.2.3 MPEG-H 3D Audio

MPEG-H is a group of audio standards in development by the Moving Picture Ex-

perts Group (MPEG), a group working on the development of standards for digital

audio [34]. The goal of MPEG-H audio is to provide an audio codec that is able to:

• Render 3D audio for a variable number of speakers in a surround/immersive

speaker configuration.

• Complement Ultra High Definition (UHD) displays which currently provide up

to an 8K (7680 x 4320 pixels) resolution

22

MPEG-H implements a format converter which allows audio to be converted for

playback to a variety of speaker configurations [35]. It uses a combination of channel

based audio, object based audio, and Higher Order Ambisonics (HOA) to reproduce

an audio scene. There are 5 operations in the rendering of MPEG-H audio, which

are [35]:

1. Audio signals are decoded in a Unified Speech and Audio Coding (USAC) stage

known as USAC-3D. USAC is the audio encoding scheme used by MPEG which

maps a single input channel to multiple output channels. USAC-3D enhances

USAC by allowing it to decode audio into a 3D context.

2. Channel based signals are mapped to the target speaker configuration by a

format converter. The format converter renders the sound to a speaker config-

uration using the raw audio that has been decoded in step 1.

3. Object based signals are rendered to the target speaker configuration by an

object renderer which uses MPEG metadata. Contained in the metadata are

attributes such as azimuth and elevation angles, radius, gain, element spread,

and an optional dynamic priority4.

4. Signals encoded by the original Spatial Audio Object Coding (SAOC) are ren-

dered to the target configuration using their associated metadata. This step

serves as an alternative measure for signals that use the SAOC codec as op-

posed to the USAC codec.

5. Higher Order Ambisonics (HOA) signals are rendered to the target configuration

using their associated HOA metadata.

4A full description of the MPEG metadata can be found in [36]. Each object uses these attributes

to describe their position in a 3D space. The object renderer uses Vector Based Amplitude Panning

(VBAP) to localize the objects’ sound source.

23

2.2.4 Digital Theater Systems’ Multi Dimensional Audio

Digital Theater Systems (DTS) is an American digital audio solutions provider [37].

Their solutions are used in a variety of audio configurations ranging from commercial

to home systems. The DTS-HD Master is the most frequently used audio codec for

Blu-ray encoding [38]. DTS has announced the release of DTS:X, an immersive audio

technology based on object audio. This technology was announced for release in

March 2015 [38]. The object audio in this codec uses X, Y, and Z co-ordinates which

are attached to objects in order to localize them in a listening environment. The

speaker placement can be flexible to accommodate configurations that aren’t similar

to professional configurations. This will be complemented by backwards compatibility

to allow current surround sound and stereo configurations to use DTS:X [38].

2.2.5 SMPTE 25CSS

The Society of Motion Picture and Television Engineers (SMPTE) announced the

TC-25CSS project in March 2013 [39]. The aim of this project is to standardize

areas within the digital cinema (D-cinema) architecture, and in turn provide inter-

operability between independently developed audio systems [40]. There is no current

standard for audio systems that utilize Object Based Audio Essence (OBAE) for the

distribution of audio. The TC-25CSS project has 5 five main goals within its scope,

these are [40]:

1. Create a standard that specifies an OBAE file format which contains all the

metadata about an audio piece. This audio piece is able to play back on different

configurations and have the same localization intent as the original encoding.

2. Create a specification which specifies how the OBAE bitstream is transported

throughout the configuration. This specification needs to take into account any

security protocols used by the D-cinema specification.

3. Create a standard renderer that is able to render the received bitstream to

a variety of different speaker configurations. This requirement should fulfil a

24

variation of speakers along with the different sizes of the venues that will be

used.

4. Ensure synchronization from a central server which is accurate to each dis-

tributed audio sample. The synchronization messages sent from the server will

be interoperable with the current D-cinema architecture.

5. Work with the TC-21DC standard, a standard for high frame rates in D-cinema

applications. This should allow the mapping of OBAE into the Digital Cinema

Package (DCP). The DCP is a collection of digital audio and image files used

to create cinema content.

6. Supply a document to consumers with instructions on how to calibrate the

system to achieve the desired interoperability.

7. Create any other standards that are necessary in order for TC-25CSS to reach

its specified goal

2.2.6 The EBU MPEG Surround Encoding

The European Broadcasting Union (EBU) provides a specification for the metadata

description of audio objects. This does not include an actual format for carrying audio

data, but rather the metadata which is carried with the audio in order to reproduce

an audio scene [30]. The entire model is split into two different parts, the content

part, and the format part. The essential elements of the EBU standard that provides

the metadata description for an audio piece use the following structure5:

• The audio objects that are to have their metadata specified contain a start time

and a duration.

• Each object is associated with a track which is an object that is associated with

a Broadcast Wave Format (BWF) file.

5Only the elements that are relevant to the metadata description are shown in this diagram. The

full description of the EBU specification is shown in Appendix 8.1

25

• Each audio track is contained within an audio stream and consists of audio

channels and audio packs. An Audio Pack is responsible for grouping channels

together. An Audio Channel consists of audio blocks

• The audio blocks specify co-ordinates for object localization, as well as a start

time and duration for each set of co-ordinates.

The layout of the structure is shown in Figure 2.9

Figure 2.9 : The metadata structure of the EBU specification

2.2.7 The KinectSound system Encoding

The KinectSound system uses an encoding scheme similar to that of the EBU stan-

dard. The KinectSound system’s encoding utilizes the DSP capability at each end-

point to mix the audio according to the localization’s metadata provided with each

audio object. A layout of the decoding process is shown in Figure 2.10

26

Figure 2.10 : The decoding stage in the KinectSound system

The metadata for the KinectSound system is encoded using XML. This method

of encoding uses three different tags, which all appear in their own separate layers.

These provide a simple approach for the main system to read the data about tracks

and use it for calculating the mix levels required for each track. Due to the simple

appearance of this metadata, it is also easily readable by an end user.

The AudioPiece tag

The main tag within which all the data is contained, is called the AudioPiece tag.

The KinectSound system only allows one AudioPiece to be stored at a time. Shown

in Listing 2.1 are the opening and closing AudioPiece tags as they would appear in

the XML data file.

1 <AudioPiece>

2 <!−−Addit iona l t rack metadata−−>
3 </AudioPiece>

Listing 2.1: The AudioPiece tags.

The purpose of the AudioPiece is distinguish between the beginning and end of the

audio piece.

The Track tag

Within the AudioPiece tag there are several Track tags which make up the AudioPiece

block. Each track tag contains metadata about a single track. Shown in Listing 2.2

27

is how the several Track tags appear within the AudioPiece block.

1 <AudioPiece>

2 <Track><!−−TRACK1−−>
3 <!−−Data de f i n i n g track 1>

4 </Track>

5 <Track><!−−TRACK2−−>
6 <!−−Data de f i n i n g track 2>

7 </Track>

8 <!−−Addit iona l t r a ck s>

9 <Track><!−−TRACKN−−>
10 <!−−Data de f i n i n g track n>

11 </Track>

12 </AudioPiece>

Listing 2.2: Track tags within the AudioPiece tag.

The AudioPiece tag may contain as many tracks as the system requires. The current

KinectSound system is set to deal with a maximum of 8 tracks, so the XML file will

only contain 8 Track tags within the AudioPiece. All the data pertaining to a single

track will be found within its respective tag.

The TimedCoOrd tag

The TimedCoOrd tags provide localization information. Each TimedCoOrd tag rep-

resents the location of the sound source at 1
30

second intervals, the rate at which

frames are received from the Kinect. The X, Y, and Z co-ordinates represent the

distance in millimeters from the bottom front left corner of the room, referred to

as the KinectSound Origin which is described in Chapter 5. The X, Y, and Z co-

ordinates have maximum values, which are set by the KinectSound system for the

current speaker configuration. Each TimedCoOrd tag contains a frame count, as well

as an X, Y, and Z co-ordinate. Shown in Listing 2.3 are the first 20 TimedCoOrd

tags for Track 1 of an audio piece, as they would appear in the XML file.

28

1 <AudioPiece>

2 <Track><!−−TRACK1−−>
3 <TimedCoOrd frameCount= ‘ ‘0 ” X= ‘ ‘1377 .895 ” Y= ‘ ‘1176 .144 ” Z= ‘ ‘1542 .129 ”/>

4 <TimedCoOrd frameCount= ‘ ‘1 ” X= ‘ ‘1428 .809 ” Y= ‘ ‘1175 .578 ” Z= ‘ ‘1539 .043 ”/>

5 <TimedCoOrd frameCount= ‘ ‘2 ” X= ‘ ‘1472 .935 ” Y= ‘ ‘1172 .690 ” Z= ‘ ‘1554 .777 ”/>

6 <TimedCoOrd frameCount= ‘ ‘3 ” X= ‘ ‘1505 .147 ” Y= ‘ ‘1174 .622 ” Z= ‘ ‘1558 .291 ”/>

7 <TimedCoOrd frameCount= ‘ ‘4 ” X= ‘ ‘1551 .846 ” Y= ‘ ‘1171 .641 ” Z= ‘ ‘1581 .572 ”/>

8 <TimedCoOrd frameCount= ‘ ‘5 ” X= ‘ ‘1585 .886 ” Y= ‘ ‘1171 .407 ” Z= ‘ ‘1599 .222 ”/>

9 <TimedCoOrd frameCount= ‘ ‘6 ” X= ‘ ‘1637 .469 ” Y= ‘ ‘1165 .953 ” Z= ‘ ‘1625 .263 ”/>

10 <TimedCoOrd frameCount= ‘ ‘7 ” X= ‘ ‘1677 .192 ” Y= ‘ ‘1163 .507 ” Z= ‘ ‘1647 .021 ”/>

11 <TimedCoOrd frameCount= ‘ ‘8 ” X= ‘ ‘1731 .982 ” Y= ‘ ‘1153 .885 ” Z= ‘ ‘1684 .686 ”/>

12 <TimedCoOrd frameCount= ‘ ‘9 ” X= ‘ ‘1767 .906 ” Y= ‘ ‘1151 .372 ” Z= ‘ ‘1708 .127 ”/>

13 <TimedCoOrd frameCount= ‘ ‘10 ” X= ‘ ‘1800 .588 ” Y= ‘ ‘1146 .840 ” Z= ‘ ‘1738 .155 ”/>

14 <TimedCoOrd frameCount= ‘ ‘11 ” X= ‘ ‘1856 .947 ” Y= ‘ ‘1144 .492 ” Z= ‘ ‘1761 .973 ”/>

15 <TimedCoOrd frameCount= ‘ ‘12 ” X= ‘ ‘1913 .656 ” Y= ‘ ‘1141 .081 ” Z= ‘ ‘1785 .314 ”/>

16 <TimedCoOrd frameCount= ‘ ‘13 ” X= ‘ ‘1968 .975 ” Y= ‘ ‘1139 .749 ” Z= ‘ ‘1797 .092 ”/>

17 <TimedCoOrd frameCount= ‘ ‘14 ” X= ‘ ‘2018 .503 ” Y= ‘ ‘1138 .705 ” Z= ‘ ‘1816 .894 ”/>

18 <TimedCoOrd frameCount= ‘ ‘15 ” X= ‘ ‘2063 .627 ” Y= ‘ ‘1141 .803 ” Z= ‘ ‘1805 .307 ”/>

19 <TimedCoOrd frameCount= ‘ ‘16 ” X= ‘ ‘2134 .559 ” Y= ‘ ‘1121 .020 ” Z= ‘ ‘1855 .604 ”/>

20 <TimedCoOrd frameCount= ‘ ‘17 ” X= ‘ ‘2165 .708 ” Y= ‘ ‘1123 .483 ” Z= ‘ ‘1851 .895 ”/>

21 <TimedCoOrd frameCount= ‘ ‘18 ” X= ‘ ‘2207 .926 ” Y= ‘ ‘1121 .637 ” Z= ‘ ‘1858 .915 ”/>

22 <TimedCoOrd frameCount= ‘ ‘19 ” X= ‘ ‘2288 .948 ” Y= ‘ ‘1116 .037 ” Z= ‘ ‘1863 .848 ”/>

23 <!−−Addit iona l TimedCoOrd tags>

24 </Track>

25 . . .

26 <Track><!−−TRACKN−−>
27 <!−−TimedCoOrd tags f o r Track n>

28 </Track>

29 </AudioPiece>

Listing 2.3: The TimedCoOrd tags contain data about a track.

The interval between each TimedCoOrd tag is a constant 1
30

of a second. This is

because the Kinect is able to stream co-ordinates and the camera image to the main

system at a rate of 30 frames per second [15]. Section 2.3.4 discusses the feasibil-

ity of using the Kinect’s frame rate as an interval between co-ordinates for sound

localization.

Adoption of audio encoding standards

Storage formats such as DVDs have adopted surround sound encoding which allows

an end user to play the surround sound through a home theater system. The Dolby

AC-3 method of encoding is considered the surround sound standard and is used in

both DVD and Blu-ray discs. DTS has been adopted by DVDs after its initial use by

the Jurassic Park movie, however there are very few that use it. DTS uses a higher

bitrate therefore providing better quality audio, but the difference is often considered

neglible [27].

29

Dolby and DTS both provide further encoding for 7.1 surround on Blu-ray discs.

Dolby Digital Plus and DTS-HD are considered ”lossy” due to the audio compression

used. Dolby TrueHD and DTS-Master HD are uncompressed and lossless, making

them identical to the studio master. Due to the fact that most Blu-ray discs have

optional extras on them, storage space is often limited so these further encoding

standards are often not included on the discs [27].

2.3 Sound localization and panning

Sound localization is a process naturally carried out by humans on a daily basis. It is

the process of determining where a specific sound, or combination of sounds is coming

from. A sound source is localized by its distance and direction. The direction can be

described by its Azimuth (horizontal rotation), and its Elevation (vertical rotation).

Two of the properties of a sound source which enable a human to identify its location

are the Interaural Amplitude Difference (IAD), and the Interaural Time Difference

(ITD) [41]. The IAD refers to the difference in amplitude of the sound perceived by

the two ears. This allows a human to determine the distance from the sound source.

The ITD refers to the difference in time taken for a sound to reach each ear. This

allows a human to determine the direction in which the sound is coming from. Most

of the speaker-based sound localization techniques today utilize speaker amplitude

difference to localize a sound [41].

The following sections describe four different sound localization techniques, outlining

the differences and discussing which was best suited for the KinectSound system.

2.3.1 Ambisonics and Higher Order Ambisonics

Ambisonics is an audio format based on Spherical Harmonics [8] [41] that is able to re-

produce a sound field from a given direction rather than a sound source from a specific

location [41]. Ambisonics works from the assumption that sound waves are planar

and that the listener is located in the center of a spherical co-ordinate system [8]. A

speaker configuration described as Spherical is a 3D speaker configuration where the

distance between the user and any speaker remains constant. This method divides

30

the sound field’s direction into two components: the Azimuth, and the Elevation an-

gles. The concept of using a general field or direction rather than a specific location

renders the encoding and decoding of a sound (or series of sounds) using ambisonics,

independent of the speaker configuration. Although the loudspeaker configuration is

independent of the encoded audio, the best possible localization is achieved by having

orthogonal speaker positions [10]. The accuracy of the ambisonic field is dependent

on the extent of the ambisonic order that the encoder has used. Increasing the num-

ber of speakers in an ambisonic configuration does not increase the accuracy of the

localization to a significant extent [10].

Ambisonics begins at the Zeroth order, which represents a mono signal (W) in a single

channel. The W channel is given by S ∗ 1√
2
, where S is the signal sound source and

is omni-directional. First order ambisonics uses three additional channels to encode

sound fields on the X, Y, and Z, axes. Figure 2.11 shows the sound fields created by

first order ambisonics.

Figure 2.11 : The three additional channels used for first order ambisonics

Figure 2.11 shows the sound fields generated by the 3 channels that have been

added to create first order ambisonics. As mentioned above, these are generated

by the formulae for spherical harmonics, which use an input signal to generate an

amplitude for a particular field. The positive and negative results for each ambisonic

field are shown in white and black respectively. The formulae which correspond to

each set of fields are given below [42]. The azimuth angle is given by θ, the elevation

31

angle is given by φ, and the source signal is given by S:

A. X = S ∗ cosφ.cosθ

B. Y = S ∗ sinθ.cosφ

C. Z = S ∗ sinφ

Simple ambisonic panners encode a source by either recording with a soundfield mi-

crophone or by supplying the ambisonic formulae with a mono source in order to

calculate the sound fields. The main ambisonic encoding format is called B-format,

which allows multichannel audio [43]. The 4 channels resulting from the encoding

equations are decoded by an ambisonics decoder. For 2D ambisonics, the decoding

equations for a 4 speaker layout are as follows:

1. Front Left =
√

8 * (2W + X + Y)

2. Front Right =
√

8 * (2W + X - Y)

3. Back Left =
√

8 * (2W - X + Y)

4. Back Right =
√

8 * (2W - X - Y)

The formulas shown above can be extended to include a height factor Z for decoding

in a 3D environment. In the decoding stage the decoder supplies a portion of the

spatial encoded audio to each speaker. This is done proportionally for the speaker

layout [44]. As the ambisonic order increases, the number of ambisonic fields increases.

This results in the size of each ambisonic field decreasing to achieve a more accurate

result. The number of fields in a given ambisonics order can be given by f = (r+ 1)2,

where f is the number of fields and r is the ambisonics order, which begins at the

zeroth order. Figure 2.12 provides a visualization of the single vertical ambisonics

field up the the 4th order.

32

Figure 2.12 : The vertical ambisonics field shown from zeroth (A) to fourth (E) order.

Ambisonics was considered as the localization method in the KinectSound sys-

tem due to it being independent of speaker configurations. Due to the accuracy

requirement, Higher (third) Order Ambisonics (HOA) would be used. The azimuth

and elevation angles can be determined by using the 3D co-ordinates provided by

the Kinect in conjunction with the tan/arctan rule. This is given by (tanθ = o
a

;

tan−1(o
a
) = θ) where o is the distance of the side opposite θ and a is the distance

of the side adjacent to θ. This approach was discarded due to the computational

complexity of the sound field calculations. The encoding stage requires 2 sets of tan

calculations for each of the 16 channels in HOA to calculate the azimuth and elevation

angles. Following this the B-format channels would be created using the azimuth and

elevation angles [43]. These channels would need to be decoded to provide a signal

to each speaker.

2.3.2 Binaural localization

Binaural localization refers to the ability of humans to localize a single sound source

using sound stimuli at their two ears (binaural). Binaural localization was introduced

in this section for the sake of completeness. The intention of the KinectSound sys-

tem was to use an immersive configuration, however using a stereo configuration or

headphones could be an option in future.

33

Binaural localization utilizes two components, the Interaural Time Delay (ITD), and

the Interaural Amplitude Difference (IAD)6 [9]. The human brain is able to detect

subtle differences in the sound received by each ear, which enables it to locate the

position of a sound source. ITD occurs when the sound from a source reaches the

ear that is located physically closer to the source before the ear that is further from

the source. The IAD occurs due to the fact that the listeners head will block a

small portion of the sound energy from the ear located further away from the sound

source [9]. Both ITD and IAD are greater when the sound source is located at ±90◦

from the user’s facing direction, where 0◦ is directly in front of the user. These will

also decrease as the source approaches 0◦ or 180◦. When the source is positioned at

0◦ or 180◦ there will be no difference in the amplitude of the sound source or the time

that it takes to reach the listener’s two ears.

The ITD can be calculated under the assumption that the head is perfectly round [45].

Figure 2.13 shows a sound source labelled S approaching a listener from an angle of

45◦

6Also referred to as Interaural Intensity Difference (IID)

34

Figure 2.13 : Delay shown between a listeners two ears

The sound source is shown as S in Figure 2.13 and will approach the human head

at a certain angle, given by θ. The ITD can be calculated by using the following

formula, where ∆D is the extra distance the sound has to travel to reach the user’s

right ear and S is the speed of sound:

ITD = ∆D
S - Eq. 2.1

The extra distance the sound has to travel is broken down into two components shown

in Figure 2.13 as Y, and Z. The value of Z is given by Z = (θ
360

)2πr as it is a portion of

the circumference of the head. There are two line segments labelled Y in Figure 2.13,

which are equal lengths as both sets of intersecting lines are parallel. The Y at the

lower right of the figure can be calculated using the cosine law, due to the fact that

the angle α = 90◦− θ, and r are known. The value of Y is given by Y = r.cos(90-θ),

this can further be simplified as cos(90-θ) = sin(θ), so Y = r.sin(θ).

Assuming the average human head has a diameter of approximately 20cm and the

35

speed of sound at sea level travels at 340.29 meters per second, the delay between

ears can be calculated using the following formula:

(θ
360)2π(0.1)+(0.1)sin(θ)

340.29 - Eq. 2.2

Localizing a sound using ITD and IAD can result in what is known as a cone of

confusion which occurs when the ITD and IAD are identical. Cones of confusion are

a result of the sound being deflected off the pinnae into the ear canal which causes a

slight change in the ITD and IAD.

The use of binaural localization is most commonly used for stereophonic headphones,

or two loudspeakers. It has been proven that for loudspeakers, it is better to pan us-

ing 3 speakers as 2 speakers produce sound images that are often more widely spaced

than the actual sound source location [45]. The use of binaural delay for headphones

works effectively and allows a simple localization technique which does not require

any complex encoding or decoding.

2.3.3 Vector Based Amplitude Panning

Vector Based Amplitude Panning (VBAP) uses speaker locations as well as the lis-

tener location in order to produce a sound from a specific source within the listening

environment [10]. For two speakers, 2D VBAP gives the same results as the tangent

law [41]. The tangent law predicts the location of a sound source (given by A) in a

2D environment with the following equation [45]:

A = arctan(tan(45)*(g1-g2) / (g1 + g2)) - Eq. 2.3

This equation implies that the speakers are located at a direction of -45◦ and 45◦ in

relation to the user. The two variables labelled as g1 and g2 are the gain factors of

the sound to be located for the two different speakers. These control the amplitude

of the sound. In order to maintain a constant sound power, the sum of the speaker

gain factors needs to have a constant value. This is shown by:

g2
1 + g2

2 = C - Eq. 2.4

36

Where g1 and g2 are the gain factors, and C is the sound power that is required to

remain constant.

Figure 2.14 shows a virtual source placed in the listening environment with an azimuth

angle of α from the listener’s 0◦ position. The speakers in a VBAP configuration are

required to be equidistant from the location of the listener [10].

Figure 2.14 : A virtual source shown by an angle α, in a 2D layout

Figure 2.14 uses ±α0 to describe the speaker angles. The layout in Figure 2.14

shows the listener at an orthogonal base where ±α0 = ±45◦. The vector basis which

describes the sound source location for 2D panning is formulated from the speaker

configuration shown in Figure 2.14. Figure 2.15 shows the vectors used for 2D vector

formulation.

37

Figure 2.15 : The vector formulation for 2D VBAP

Figure 2.15 introduces a new vector, p = [p1 p2]
T , which points toward the virtual

sound source location7. This is the resultant vector of a linear combination of the

loudspeaker vectors l1 = [l11 l12]
T , and l2 = [l21 l22]

T and can be formulated as

follows:

p= g1l1 + g2l2. - Eq. 2.5

This equation can be written in matrix form pT = gL12 where g = [g1 g2] and L12

= [l1 l2]
T , and can be used to calculate the gain factors for both speakers. This can

be solved if L−112 exists [10] [41]:

g = pTL−1
12 = [p1 p2]

l11 l12

l21 l22

−1

- Eq. 2.6

The inverse matrix of L−112 exists when α 6= 0◦ or 90◦ [10]. When ±α0 6= ±45◦, the

gain factors have to be normalized in order to maintain a constant sound energy. The

normalized gain factors are given by the following formula [10]:

7The T superscript denotes a matrix transposition.

38

gscaled =
√
C g√
g2

1+g2
2

- Eq. 2.7

Two dimensional VBAP with two speakers may be extended to localize sources be-

tween more than two speakers by reformulating the vector base to the pair of speakers

closest to the localization point. The configuration would consist of a series of speaker

pairs, with each speaker belonging to two pairs. Figure 2.16 shows the vector bases

for a 2D VBAP configuration using 4 speakers.

Figure 2.16 : 2D VBAP for more than two speakers

Figure 2.16 shows the configuration divided into 4 arcs. Each arc represents an

area for localizing the sound source. Two of the speakers in an active arc are used

to localize the sound source. The active arc refers to the vector base inbetween the

two speakers where the sound source is to be located [10]. The fundamentals of this

approach are the same is stereo VBAP, but with a changing vector base.

VBAP is able to pan in a 3D space by introducing a height component. The speakers

39

for a 3D configuration can be in an arbitrary position but still require that they

are equidistant from the listener [46]. VBAP allows a virtual sound source to be

localized within a triangle formed by a triplet of speakers. The triangle is required

to be observable from the listeners position [10]. Figure 2.17 [10] [46] shows three

speakers, and the triangle that is formed amongst them.

Figure 2.17 : The vector formulation for 3D VBAP

The same laws apply for 3D VBAP as 2D VBAP, this includes the gain normal-

ization as well as the vector calculation. The vector p in a 3D area can be calculated

by p = g1l 1 + g2l 2 + g3l 3 [10]. The gain coefficients are also required to maintain the

sound amplitude, and are normalized by the following [10] [41]:

gscaled =
√
C g√

g21+g22+g23
- Eq. 2.8

2.3.4 Distance Base Amplitude Panning

Distance Based Amplitude Panning (DBAP) is a matrix-based spatialization tech-

nique [11] which uses the actual positions of speakers in a speaker configuration to

pan a sound. DBAP overcomes limitations associated with ambisonics and VBAP,

which assume that the listener is located at a fixed position, and the speakers are

40

in a ring or spherical formation around the listener [11] [12]. The distance between

a virtual source in a 3D space with co-ordinates (xs, ys, zs) and any speaker in a 3D

space with co-ordinates (xi, yi, zi) can be calculated using the Pythagoras Theorem

in a 3D space [11]. This is illustrated in Figure 2.18

Figure 2.18 : Pythagoras’ Theorem being used in 3D

Points A and B in Figure 2.18 show an example of a speaker’s position (A), and

the position of a sound source to be located (B). The side labelled d is the direct

distance between the speaker and the sound source. Given below are the distances

related to the calculation of the required distance, d:

m = xs − xi
n = ys − yi
o = zs − zi
p =

√
(ys − yi)2 + (zs − zi)2

q =
√

(xs − xi)2 + (ys − yi)2

d =
√

(xs − xi)2 + (ys − yi)2 + (zs − zi)2.

The gain for each speaker is required to be normalized in order to maintain a constant

power for the system, similar to the process performed within VBAP. This formula

is shown below [12], where g is the gain factor for each speaker indicating the change

in sound amplitude of the speaker:

N∑
n=1

g2
n = 1 - Eq. 2.9

41

This equation reflects the fact that power is proportional to the square of the ampli-

tude. The gain factor for each speaker can be calculated since the amplitude, and

hence sound pressure at a sound source is inversely proportional to the distance of

the sound source from the speaker [3]. This can be given by gn = c/dn where g is

the gain factor of speaker n, d is the distance of the sound source from speaker n

in meters, and c is a constant dependent on the exact nature of the inverse distance

law for sound propagation. These two formulae may be combined to produce the

following speaker gain:

gn = 1

dn

√∑N
i=1

1
d2
i

- Eq. 2.10

DBAP in the KinectSound system

A modified form of DBAP was used in the KinectSound system. DBAP was chosen

because it did not impose any constraints on the position of the speakers or of the

user. The size of the room was also taken into account when the KinectSound system’s

DBAP calculations were being formulated. The room was small, approximately 4

meters in length and width with a 2.5 meter high ceiling. Multitrack audio samples

were generated every 1
48000

seconds (20.8µs) which required the audio mixing for a set

of samples to be done in less than 20.8µs. When an endpoint receives a multitrack set

of samples, it multiplies each sample by an amplitude factor ai, associated with track

i. This amplitude factor varies between 0 and 1. When the amplitude is adjusted,

the pressure of the sound waves travelling through the air is similarly adjusted.

As indicated previously, the inverse distance law for a single speaker’s gain can be

expressed as:

gn = c
dn

- Eq. 2.11

where gn is a gain factor, and c is a constant that is context dependent.

42

In the following equations and graphs, we use the term amplitude factor an, rather

than gain factor gn, since gain is often associated with dB units. So the equation is:

an = c
dn

- Eq. 2.12

The problem with this is that the amplitude factor tends to infinity as the distance

tends to zero. An offset of 1 meter can be applied which will result in a gain factor

that varies from 1 to approximately 0.2 if a constant value of c = 1 is used. This is

given by the formula:

an = 1
1+dn

- Eq. 2.13

A graphical representation of this is shown in Figure 2.19

Figure 2.19 : Relationship between speaker amplitude (Y) and distance (X)

By graphing the dB value rather than the amplitude factor, it can be seen that

there is a 10dB reduction and a perceptual halving of the loudness when the sound

is located in the middle of the room. This is shown in Figure 2.20.

43

Figure 2.20 : Relationship between decibel value (Y) and distance (X) for the inverse

distance calculation

Listening tests conducted in a room of a similar small size with a system that used

the inverse distance law [47] showed that there was a large spatial width. This resulted

in the sound being difficult to locate when it was moved around. The KinectSound

system proposed and used an inverse square calculation. This was done by using the

following equation for sound amplitude, where an is the amplitude factor applied to

each sample for a speaker n, and dn is the distance of the speaker from the sound

source:

an = c
1+d2n

- Eq. 2.14

Line A in Figure 2.21 shows that by using this formula with c = 1, there is a faster

drop in the amplitude of the sound source with distance, appropriate for a small

room. The line marked B in Figure 2.21 shows the amplitude drop when the inverse

distance law is used.

44

Figure 2.21 : Relationship between speaker amplitude (Y), and distance (X) for

inverse squared (A), and inverse (B) functions

Looking at the decibel values for the inverse distance squared calculation, there

is a 20 decibel reduction in the center of the room. The decibel values for the inverse

distance squared calculation are shown as line A in Figure 2.22. The decibel values

for the inverse distance law are shown as line B for comparative purposes.

Figure 2.22 : Relationship between decibel value (Y) and distance (X) for the inverse

distance squared calculation

45

This approach was confirmed with listening tests presented in Chapter 6. These

listening tests consisted of users testing the KinectSound system against a commercial

system that used VBAP for localizing sound sources.

One of the assumptions for DBAP is that the energy of a virtual sound source should

be constant as it moves [11] [12]. This assumption does not hold when the speakers

are not evenly spaced. The energy will tend to be higher when the sound source is

located close to a cluster of speakers, and lower when the sound source is located

further away from a cluster of speakers. This assumption implies the following, since

the energy of a sound wave is proportional to the square of its pressure:

N∑
i=1

a2
i = 1 - Eq. 2.15

This equation can be combined with the inverse square distance calculation used

in the KinectSound system to get:

N∑
i=1

c2

(1+di)4 = 1 - Eq. 2.16

From this it can be inferred that:

c = 1√
N∑
i=1

1
(1+di)

4

- Eq. 2.17

From this, the final amplitude factor for a speaker n can be calculated using:

an = 1

(1+dn)2∗
√

N∑
i=1

1
(1+di)

4

- Eq. 2.18

The factor added to this calculation from the original DBAP calculation serves to

lower the speaker amplitude when the virtual sound source is close to a cluster of

46

speakers and will increase the amplitude when the source is distant from any clusters,

thereby ensuring constant energy.

The time feasibility of DBAP in the KinectSound system

A performance test was done to calculate the feasibility of using these calculations

in the KinectSound System. For this performance test, every calculation consisted of

the distance and mix level calculations for 8 soundtracks per endpoint. Each time the

calculation was done, the sound source distances for each track were assigned random

values in the range that was feasible for the 3D sound source positions.

The processing times for the distance calculations as well as the amplitude factor

calculations are shown Table 2.1. The amplitude factors are used to determine the

mix levels at the speaker endpoints. Table 2.2 shows the processing times for a set of

8 samples, keeping the sound energy of the room constant as shown in the calculation

above.

n 1 2 3 4 5 x̄ per sample

10000 75ms 74ms 75ms 77ms 78ms 7.6µs

50000 365ms 368ms 370ms 368ms 371ms 7.4µs

100000 748ms 774ms 746ms 751ms 746ms 7.5µs

500000 3770ms 3749ms 3765ms 3787ms 3777ms 7.5µs

Table 2.1 : Times taken to process a set of 8 samples for an endpoint

47

n 1 2 3 4 5 x̄ per sample

10000 470ms 477ms 472ms 471ms 463ms 47.1µs

50000 2314ms 2285ms 2335ms 2270ms 2387ms 48.3µs

100000 4971ms 4678ms 4623ms 4593ms 4616ms 47.0µs

500000 22960ms 23769ms 22956ms 22990ms 23365ms 46.4µs

Table 2.2 : Times taken to process a set of 8 samples for an endpoint, keeping the

energy constant.

The tables above show the times taken to perform the distance and mix level

calculations for the inverse squared distance law, and the inverse squared distance law

with a constant overall energy. Each calculation calculates the distance between the

endpoint and a sound source in a virtual space, then uses the distances to determine

mix levels.

The column labelled n shows the number of sample sets that have had their distances

and mix levels calculated. Each sample set contained 8 randomized 3D co-ordinates.

Each calculation performed a distance and mix level calculation for the co-ordinates

of a track and another fixed co-ordinate, which would represent a speaker in the

context of the KinectSound system.

The columns labelled 1 - 5 show the time taken to perform the calculations on 5

different occasions. The column furthest to the right shows the average time taken

per set of samples to be processed. This number can be multiplied by the number of

endpoints to calculate the amount of time it will take to process a single set of samples

for a given number of endpoints in a system. The KinectSound system performs these

calculations for 7 endpoints every time a frame is received by the system.

The processing time of the mix levels would only start to affect the system once the

total time taken for the processing exceeds the time interval between when frames

are presented to the system. The processing time exceeding the frame interval may

48

be caused by increasing the number of endpoints, which would increase the overall

processing time.

The KinectSound system receives new frames at a rate of 30 frames per second. It uses

this new frame indicator as a trigger to dispatch a set of mix levels to the endpoints

in the system. The performance test was done to determine whether the system was

able to complete the mix level calculations within the interval between receiving two

consecutive frames from the Kinect.

With the KinectSound system having 7 endpoints and a Kinect that is able to transmit

at 30 frames per second, the time surplus that is available to be used for further

processing may be calculated by using the following equation:

t = f − 48.3x10−6 ∗ S
t = 33.33x10−3 − 48.3x10−6 ∗ 7

t = 32.99x10−3s = 32.99ms - Eq. 2.19

where f is the frame interval in seconds, S is the number of endpoints used in the

configuration, and t is the time surplus. The longest time taken to process a set

of samples is taken from Table 2.2 and used in the above formula, which is a

constant 48.3µs

In order to determine that a co-ordinate sampling rate of 30 times a second provided

an accurate sound panning motion, a test was conducted to determine the average

distance a sound would move when the user is panning a sound very quickly. The

sound source was panned steadily across the space of 3 meters over the time of

approximately 800ms (24 Kinect frames). The average distance that the sound source

moved during each frame interval was 13cm. A gap this small between each interval

would appear to be a smooth movement of sound when it is detected by the human

ear. Figure 2.23 shows the movement of the sound location as it would appear during

this test.

49

Figure 2.23 : The co-ordinate movement over a space of 24 Kinect frames

Figure 2.23 shows two lines labelled D and d. D is the total movement of the

sound source between two points of the movement area, labelled Db and De. The line

labelled d shows the location of the sound source as it is localized after each frame

during the movement from db to de. Fast panning of sounds with the KinectSound

system is enabled by the scaling of the co-ordinates. The KinectSound system scales

the co-ordinates received from the Kinect by a factor of 7. This was initially done in

order for the user to reach the front corners of the movement space. This would be

impossible without scaling as the user’s hand would not be within the Kinects vision.

The scaling of the user’s hand co-ordinates is discussed further in Chapter 5.

2.4 Chapter Summary

This chapter has discussed 3 core topics relevant to surround sound and immersive

sound, namely speaker configurations, digital audio encoding, and surround sound

localization techniques.

The first section covered various speaker configurations ranging from small home

stereo systems, up to the Auro3D 9.1 configuration. The configuration for the Kinect-

Sound system was shown, and was described as a 7.1 with height configuration, ex-

cluding the sub-woofer. Two main reasons were provided as to why this configuration

was chosen, they were:

• 7 free ports on the AVB bridge

50

• Limited availability of Attero Tech AVB boards

Section 2 of this chapter discussed digital audio encoding techniques used in the

industry, these were:

• Dolby Atmos

• Auro3D Octopus

• MPEG-H 3D Audio

• DTS Multi Dimensional Audio

• SMPTE 25CSS (A standardization of audio encoding)

• EBU MPEG Surround Encoding

The encoding method used for the KinectSound system was described. This was

shown as an XML representation of 3D co-ordinates in which the endpoints would

decode and localize in real time.

Section 3 of this chapter discussed four different methods used to pan audio in a 3D

space. These methods were Higher Order Ambisonics (HOA), Binaural Localization,

Vector Base Amplitude Panning (VBAP), and Distance Base Amplitude Panning

(DBAP). The principles behind each method were discussed, along with diagrams

and examples. The section on DBAP gives a further description of the relationship

between sound pressure, sound power, sound energy, and amplitude. This section also

described why DBAP was chosen as the preferred panning method for the Kinect-

Sound system. The reasons for this are:

• The listener does not have to be located in a specific listening position.

• This method uses any number of speakers, which are not required to be in any

specific configuration.

• It does not require complex decoding and can be performed in real time

51

The section following DBAP gives a time feasibility analysis of the KinectSound sys-

tem. It also describes how the control packets are dispatched whenever a frame is

sent from the Kinect detecting the frames to the main system and how the frame rate

may affect the processing if it gets too high. This was shown as an unlikely event

to occur as only a small fraction of the total time is being used. If this did happen,

alternative measures are able to be put in place in the form of timed sampling. This

would change the procedures to happen on a timed interval as opposed to whenever

a frame comes in from the Kinect.

52

Chapter 3

Human Computer Interaction (HCI) for Digital

Audio

In recent years graphical user interfaces have been used to good effect by the software

for audio systems. This has enabled enhanced control over audio systems. However

the audio industry has not fully embraced current interactive interfaces [48]. There

have been systems developed that allow remote control using devices such as tablets

with a touch screen interface. These often, however, do not display more than the

physical appearance of a device and contain controls such as knobs and faders [48].

This chapter describes usability metrics and compares various interfaces currently

used for the production of audio including sound placement. Usability metrics mea-

sure various parameters of a system in order to determine a generalized measure

of Usability, a term that has been loosely defined in the past [49]. The following

sections describe user interfaces that enable the panning of audio sources, including

control that is neither a mouse or keyboard based. A need for 3D control is presented

and discussed by example of a system that was developed as part of this thesis, the

KinectSound system.

The KinectSound system displays how a gesture controlled system used to pan audio

allows the user to have a more interactive approach to sound control. It also satisfies

the requirements of 3D control. There is a discussion of the various factors that had

to be taken into consideration throughout the design and implementation stages of

this system.

53

3.1 Usability Metrics

The usability of a system has been defined in various different ways in the past. The

definitions of usability fall loosely into three main categories, these are [50]:

• Semantics - Semantics refer to how User-friendly a system is. This definition

of usability identifies a system as highly “usable” if users are able to complete

the task relatively easily, in a reasonable amount of time. This definition of

usability may also refer to the amount of training a user needs with the system

in order to use it.

• Features - This refers to the presence or absence of features contained in the

interface that aid the user in completing a task. This requires interfaces to have

enough features in order to complete a task, but not so many as to render the

system complicated to use

• Operations - This measures the system in terms of how satisfied the user is

with the end result of the operations the system has performed.

Evaluations of systems require a more detailed definition of the term usability in

order to give an accurate determination of the user’s experience of the system. Such

a definition needs to encompass various aspects of the user’s experience in order to

provide an indication of how satisfied users may be with the system. The usability

metrics of a system can be categorized into what is known as the Five E’s of System

Usability [51]. The Five E’s are defined by the following terms [49] [51]:

• Efficient - Efficiency refers to the time it takes a user to complete a task, and

the accuracy of the completeness. This can often vary depending on the user’s

past experience with similar software, or if they have been trained to use the

software.

• Effective - Effectiveness refers to the user being able to accomplish the goals

they wish to achieve. This is the kingpin of system usability because if the main

goal of the system cannot be achieved, then nothing else really matters.

54

• Engaging - Engaging refers to what most people know as user friendly. The

broad areas of engagement are the visual presentation of data and functions,

types of images used, and any colour variation on the interface. A system’s

engagement may include many other factors which are application specific.

• Error tolerance - The error tolerance of a system refers to the prevention and

recovery of errors that may be caused by the user. It may also refer to the

ability to recover from any errors caused by the system if there are any.

• Easy to learn - A system that is classed as easy to learn assumes that little

or no training is required in order to use the system effectively.

3.2 Device Controlled HCI for Real-time Audio Panning

This section describes the approaches that two current device controlled systems

have taken towards 3D sound localization. The term device controlled systems refers

to systems that use a standard keyboard and mouse as the user interaction. The

usability of each of these systems is discussed in context of the Five E’s described in

the previous section. The examples given in this section were the only 3D localization

systems that enabled localization of sound in real time.

Current real-time audio panning applications typically provide the following views of

a venue within which a sound source will be located via user controlled audio panning.

These are either:

1. Two dimensional (2D) views of the venue, viewed from different aspects which

allow the user to view the speakers and sound source with reference to any two

of the X, Y, and Z axes.

2. A 3D view of the venue which enables the user to view the speakers and sound

source in a 3D environment.

Examples of each of these views are shown later in the chapter.

55

3.2.1 New Audio Technology’s Spatial Audio Designer

Spatial Audio Designer (S.A.D) is a Virtual Studio Technology (VST) [52] plugin for

a Digital Audio Workstation (DAW). It provides mixing and monitoring of sound

formats from mono up to 13.1 surround [13]. The plugin provides different speaker

layouts that are pre-defined, an example of this being the Auro3D 9.1 layout [4].

Figure 3.1 shows the mixing interface for the S.A.D using an 11.1 preset as the

speaker layout.

Figure 3.1 : The mix interface for the Spatial Audio Designer

In the lower region of Figure 3.1, the user’s head is shown in relation to the various

speakers. The user is then able to pan any of the sound sources listed in the upper

region by clicking on the coloured dot that represents a particular sound source and

moving it around in the 3D space. The left hand grid allows the user to pan the

front/back and left/right movements of the audio, whereas the right hand grid allows

56

the user to pan the left/right and high/low movements of the audio. Any specific

movements that the user wishes to record may be done so and exported using the

Track Automation feature, a feature which is provided by the supporting DAW.

3.2.2 Iosono Anymix Pro

Anymix Pro is a VST plugin created by IOSONO, a provider of end user electronics

for audio [53]. The goal of Anymix Pro is to mix audio at preset inputs to preset

outputs. These inputs and outputs range from mono to 8.1 surround. It can upmix

or downmix from any input to any output. Figure 3.2 shows the interface for Anymix

Pro.

Figure 3.2 : The user interface for Anymix Pro

Figure 3.2 shows a downmix from a 7.1 input to a stereo output (A) and an upmix

from a mono input to a 5.1 output. A major advantage of Anymix Pro is that it is

able to localize sound sources outside of the speaker configuration. This allows it to

localize sound approaches and pass bys where the sound source moves from outside

the speaker configuration, through the configuration and out of it again [53]. The

Distance dependent parameters on the right of each interface in Figure 3.2 allow the

user to automate the loudness and equalization of the sound movement, enabling a

57

more realistic sound when the audio is approaching or moving away from the listener.

A major disadvantage of this panning software is that it is limited to a maximum of

8 speakers, which does not include height. Immersive surround sound configurations

require height panning.

3.3 HCI for Audio Production Using 3D Hardware

This section describes and discusses two audio panning systems that do not use the

keyboard and mouse for panning, but rather use specialized 3D hardware to pan

audio. These two systems were the only two systems at the time of writing that

allowed localization without the use of a keyboard and mouse.

3.3.1 The Haptic Feedback Prototype

A prototype for a sound localization system which utilizes haptic feedback was in-

troduced in 2013 by Melchior et al. [5]. The hardware used for localizing audio in

this system is a Novint Falcon, a haptic controller. This device contains a small con-

troller which the user may grip and move around in 3 dimensions. The controller is

connected to three arms which allows the free 3D movement of the controller. It also

contains four small buttons on the top which allow additional input from the user.

Figure 3.3 shows the structure of a Novint Falcon with the controller labelled ’A’ and

the two visible arms labelled B1 and B2.

Figure 3.3 : The Novint Falcon haptic device

58

The device provides haptic feedback in the form of a force that is applied when

the user is approaching the boundaries of the panning area. The boundaries of the

panning area are predefined and are visible in the scene rendering section of the

custom developed software. When a user panning the source approaches a boundary,

the device will impose a force in the opposite direction.

The Novint Falcon is connected to a workstation via a USB port. This workstation

contains a DAW and uses custom built software to provide visualization and audio

control. The visualization is a 3D representation of the localization area and contains

coloured objects to show the positions of the sound sources. Figure 3.4 shows the 3D

display as it appears on the haptic feedback system.

Figure 3.4 : The haptic feedback 3D display [5]

A second workstation is used which renders the spatial audio using commercial

software. This workstation connects to the main workstation via a Multichannel

Audio Digital Interface (MADI) for the audio data from the DAW, and an Ethernet

connection for the control (localization) data. Figure 3.5 shows the configuration of

59

the haptic feedback system.

Figure 3.5 : The configuration of the workstations in the haptic feedback system [5]

The system was tested and evaluated by a group of sound production professionals.

It was tested against another sound localization system which used the mouse to

change the sound source location from a bird’s eye view with an additional slider to

change the height of the sound source location. The users were required to perform

a series of movements of a sound source using both systems and give feedback on

their experience with the system. The results from this test indicated that the haptic

feedback system was more practical for movements involving all 3 dimensions. The

users gave a better evaluation for the mouse controlled system when the movement

was only through 2 dimensions as the mouse provided better control for smaller and

more accurate movements.

3.3.2 The JL Cooper NUAGE Surround Panner

The JL Cooper NUAGE surround panner is a surround sound controller developed by

JL Cooper electronics. It contains a joystick, a series of buttons, rotary encoders, and

an LED display as the control mechanisms that the user may interact with [54]. The

surround panner is used in conjunction with the system “NUAGE” which it connects

to via an Ethernet interface. NUAGE is a system that incorporates both Yamaha

hardware and a Steinberg DAW to create a real time or post production tool [55].

60

The DAW used for NUAGE is Steinberg’s Nuendo [56]. Nuendo allows NUAGE to

apply a variety of sound effects to an audio piece and provides support for Anymix

Pro, the plugin by IOSONO described in Section 3.2.2. Figure 3.6 shows the surround

panner.

Figure 3.6 : The JL Cooper surround panner

The joystick on the surround panner is able to rotate around 3 axes, providing

the capability to pan in a 3D environment. Although the joystick can perform 3D

movements, NUAGE does not yet provide a tool to perform 3D panning using the JL

Cooper surround panner.

As stated in the requirements of the KinectSound system, the intention was to create

a system with complete device free control. The user should be able to control the

system without having to interact with a keyboard, mouse, or any other device.

3.3.3 A Usability Review of 3D Localization Control Approaches

This section revisits the Sections 3.2 and 3.3 in this Chapter and reviews them in

terms of the Five E’s as described in Section 3.1.

61

Standard Mouse and Keyboard Systems

The localization systems that have been discussed in Section 3.2 do not allow a user to

move a sound source through all three dimensions in a single movement. They require

a separate action to move the source through the height dimension. This makes the

system less efficient than a system which enables immediate 3D input. However the

mouse does provide accurate input and in this regard could be seen to be effective.

This requires experience with VST plugins and for a user unfamiliar with VST this

would require a learning curve. The time it takes for a user (efficiency) of each system

is directly related to the user’s previous experience with audio recording software and

this may vary from user to user. The only real errors that would be encountered in

these systems would be incorrect sound localization which may be attributed to the

user, and this is easily rectifiable.

3D Hardware Control

The 3D hardware systems described in Section 3.3 provide a more efficient approach

to sound panning than the systems described in Section 3.2 because they allow sound

sources to be localized with 3D hardware rather than the standard keyboard and

mouse combination. The ability to pan audio sources in three dimensions enables

faster and more intuitive (efficient) entry than both the S.A.D which requires two

different movements for 3D panning, and Anymix Pro which does not provide 3D

panning.

The JL Cooper NUAGE panner and the Novint Falcon require the user to translate

their perception of a 3D sound location into control movements. The control move-

ments can then be made by interacting with the 3D control hardware. Although

this 2 step stage of localizing a sound source provides a solution, complete device

free control is more desirable. Device free control would allow the user to localize

the sound source at the desired location by direct movements instead of a movement

from a perceived location.

The Kinect was able to provide the device free control that was required by using the

62

3D co-ordinates of the user’s hand as the location of the sound source. This allowed

the user to control the location of the sound source via direct hand movements. It did

not require perception of the sound source to be translated into a movement which

they had to control via the 3D hardware.

Table 3.1 gives an indication of the degree to which each system has satisfied each of

the Five E’s of system usability for a 3D sound localization system.

X Efficient Effective Engaging Error

Tolerance

Easy to

learn

S.A.D Excellent Excellent Adequate Excellent Adequate

Anymix

Pro
Adequate Poor Excellent Excellent Excellent

NUAGE

panner
Adequate Poor Poor Excellent Poor

Novint

Falcon
Excellent Excellent Adequate Excellent Adequate

Table 3.1 : A table describing the Five E’s for the localization systems in this chapter.

3.4 Hardware That Enables Device Free Control

This section presents hardware that enables device free control and discusses each

one’s potential to be incorporated into a spatial audio system.

3.4.1 The Leap Motion Controller

The Leap Motion controller is a device that uses hand recognition in order to provide

control of a workstation via a USB port. The dimensions of the Leap Motion are

76mm x 13mm x 13mm [57] which allows it to be located in front of a seated user.

The Leap Motion controller provides accurate hand and finger tracking and can track

the joints of each hand independently. Figure 3.7 shows a 3D rendering of a user’s

63

hands as they are detected by the Leap Motion controller in real time. Figure 3.8

shows a 3D rendering of the joints located on each of a user’s hands as they are

detected by the Leap Motion [57].

Figure 3.7 : A user’s hands being detected by the Leap Motion and rendered in 3D

Figure 3.8 : The joints on a user’s hand as detected by the Leap Motion

Along with the accurate hand tracking, the Leap Motion provides an Application

Programming Interface which renders it suitable to be used for device free control for

audio panning and localization. The Leap Motion has been used for audio production

and panning in systems such as the Motion Mix [58] system.

64

3.4.2 Standard Web Camera

Standard USB webcams may be used to provide control over a workstation via the use

of hand tracking. Many of the systems that use hand tracking do so by integrating

a library known as Open source Computer Vision, or more commonly referred to as

OpenCV. OpenCV is an open source computer vision library which is supported across

various programming languages and is compatible with most operating systems [59].

It provides classic and state of the art tracking and learning algorithms which may be

included and utilized in programming modules. Two of the most common webcam

based hand tracking algorithms included in OpenCV are:

1. CAMShift

The Continuously Adaptive Mean Shift (CAMShift) algorithm tracks hands based

on a colour that has been selected. It performs this by adapting colour sequences

on an image to the selected colour. To show the colour field it is tracking, it shows

an ellipse which encapsulates the colour being detected by the CAMShift algorithm.

The accuracy of CAMShift tracking is dependent on how unique the selected colour

to be tracked is. If this colour is similar to other objects in the room, the algorithm

may not function properly and track incorrect objects. Systems that use CAMShift

often choose to track luminous objects that are easily distinguished from any other

objects in the room. Figure 3.9 shows a user’s hand being tracked with CAMShift

along with the colour histogram of the user’s hand.

65

Figure 3.9 : A user’s hand as detected by the CAMShift algorithm

2. Background subtraction

Background subtraction uses a static background as a template and subtracts it from

newly detected frames derived from a webcam to determine where changes in the

frame have occurred. These changes are then passed through a filter so that only

significant sections will be shown. The changes that will appear in the subtracted

frames will be the user’s hands that are not contained in the static background frame.

A running average frame is often used for background subtraction rather than a

static background. This eliminates stationary objects that have entered the frame.

The running average implementation is better suited for hand tracking and gesture

recognition as it would only detect changes in the hands gesture or position when it

changes [60].

OpenCV provides a contour extraction mechanism which is used to find the edges

of a user’s hand and identify the concave and convex regions which are the user’s

fingers. Figure 3.10 shows the hand recognition using background subtraction.

66

Figure 3.10 : Detection of a user’s hand via background subtraction

Figure 3.10 shows 4 different images that are used in the background subtraction

hand recognition process, these are:

A. The static background used as the template for background subtraction.

B. The frame containing the user’s hand as it is seen by the webcam.

C. The difference between Frame A and Frame B converted into a black and white

image.

D. Frame C once the OpenCV contour and hand recognition have been applied.

This frame shows the concave and convex points on the users hand which are

used to detect the user’s fingers.

67

3.4.3 The Windows Kinect

The Windows Kinect is a device developed by Microsoft that was initially used for

motion sensing with the XBox 360. This provided a user with an interactive way

of gaming by using their motions to control certain features of a game. The Kinect

contains a standard RGB camera, an infrared emitter, an infrared receiver, and a

microphone array [61]. It is able to detect human skeleton structures via a series of

algorithms, after it has used the light structuring technique [62]. The Kinect performs

light structuring by using the infrared emitter to project a known pattern of infrared

light onto a scene. The infrared sensor is able to render 3D objects by detecting any

deformations of the emitted infrared light. The skeleton structure detected by the

Kinect is composed of 20 joints as shown in Figure 3.11.

Figure 3.11 : The Kinect skeleton

The Kinect may be connected to a workstation via a USB port and accessed

through the SDK released by Microsoft [63]. This allows software modules to access

68

and use the features of the Windows Kinect. All of the algorithms required for skeleton

tracking are encapsulated within the SDK and accessed directly. This eliminates the

need for a user to implement the algorithms as they would have to for a webcam

implementation. The Kinect’s movement tracking is able to track any user uniquely.

This is independent of their size (as human bodies differ) and does not require any

further configuration [64]. These features make the Kinect an attractive choice of

hardware for device-free workstation control.

3.4.4 An Analysis of the Usability of Device Free Control Interfaces

The Leap Motion provides a form of device free localization that fitted all the re-

quirements of the implementation for this research. The Leap Motion was considered

as the choice of hardware for the project presented in this thesis, however it was only

made available in July 2013 to customers that had pre-ordered it. This was more

than 6 months into the start of this research, in which a significant amount of imple-

mentation work had already been completed.

Tracking a user’s hand movements and gestures with a webcam would be possible,

but the requirement of 3D control makes this approach less attractive. The concept of

depth perception would require 2 webcams and a significant amount of extra process-

ing to be done by the system. By using a Kinect, the skeleton tracking performed by

the Kinect could be utilized and the 3D co-ordinates of the user’s skeleton retrieved

directly from the Kinect SDK. The Kinect’s skeleton tracking capabilities are also

a lot more accurate and reliable than a user-implemented hand tracking algorithm

done using a webcam [64]. This minimized the risk of error when controlling the

workstation.

3.5 Sound Localization with the KinectSound system

The Kinect provided a solution to the limitations described in the previous sections.

This section describes how the Kinect was used to provide a usable system that is

able to localize audio in three dimensions.

69

3.5.1 The KinectSound System’s User Interface

Device free control of the application had to be implemented because the user is not

able to use the mouse or keyboard due to the position they are in when they are

using the KinectSound system. Device free control was achieved by superimposing

controls and any relevant information onto the displayed camera image acquired from

the Kinect and displaying this in a different dialog box as shown in Figure 3.15. The

KinectSound system’s consists of three different User Interfaces. Each user interface

consists of a set of controls. The controls on each interface provided either a similar

function or provide navigation to another interface. A user is able to select a control

option (provided it is selectable) by moving their left hand into the control area, then

moving their left hand forward as if they were pressing a button in the virtual space.

The controls’ functions were grouped by colour to indicate their functionality. The

colour of each control refers to the colour of it’s border. These colours were chosen

based on their visibility and how likely they were to contrast against background

colours. The colour groups are as follows:

• Dark green buttons indicate navigation buttons. By selecting one of these

buttons, the user will be directed to a new interface.

• Yellow buttons indicate commands sent to the system. These buttons perform

a specific command, which is described within the button.

• Light blue / light green buttons are track buttons. Tracks are all light blue

by default and change to light green when they have been selected.

• Purple buttons are buttons that have changed the state of the system. The

only buttons that may change to purple are the Record and Playback buttons

on the recording interface. These change the state of the system to recording

and playing respectively.

70

• Dark grey buttons are buttons that have been disabled. The user is not able

to select a button that has been disabled.

The three interfaces are described further in the following sections. A black back-

ground is used for each interface. When the system is in use, the background will

appear as a frame from the Kinect’s camera.

The Home Interface

The Home Interface is the interface that is displayed upon system startup. This

interface contains 3 control options which do the following:

• Proceed to the track selection interface.

• Clear any recorded track data.

• Shutdown the system.

By only having three control options on this interface, the user would not be over-

whelmed by their first interaction with the system. This design decision was made to

improve the engaging factor of the system, and to let the user gain a level of confi-

dence when they use the system for the first time. The layout of the Home Interface

is shown in Figure 3.12.

Figure 3.12 : The KinectSound system’s Home Interface

71

The Track Selection Interface

The track selection interface consists of 8 track controls, one for each track that can

be recorded or muted. A user is able to choose which tracks are unmuted/muted and

select a single track for recording. The track that is being recorded will be unmuted

by default. Each track button contains a text display that informs the user of its

muting state, and a red circle to indicate if it has been selected for recording. This

interface also contains controls that do the following:

• Set recording state.

• Toggle the muting state.

• Return to the Home Interface.

• Proceed to the Recording Interface.

The controls for selecting a track for recording or toggling the muting state will

perform their respective commands on a track that has been selected. A user may

select a track in the same manner as they would select any other interface control. As

mentioned in this section’s introduction, a selected track will have its border shown in

light green. When a command is applied to a track, its state will change to unselected

after the command has been applied.

The navigation controls allow the user to return to the home interface, or proceed

to the Recording Interface. The layout of the Track Selection Interface is shown in

Figure 3.13.

72

Figure 3.13 : The KinectSound system’s Track Selection Interface

The Recording Interface

The Recording Interface is the interface that allows the user to record sound local-

ization data for tracks as well as play back any tracks using the recorded data. This

interface contains 4 controls which do the following:

• Begin recording localization co-ordinates for the track that has been selected

for recording.

• Play the audio piece back using newly recorded data as well as stored data for

other tracks.

• Stop the system from recording/playing.

• Return to the Home Interface.

This interface also contains a display which shows the 8 tracks and their muting/record-

ing state and a time which shows how long the track has been recording or playing for.

When the user begins recording or playback, all of the controls on the user interface

are disabled except the control used to stop the recording/playback. This prevents the

user from switching states during recording or playback and also prevents the user

from navigating to the Track Selection interface and changing the states of tracks

73

during recording or playback.

The layout of the Recording Interface is shown in Figure 3.14.

Figure 3.14 : The KinectSound system’s Track Recording Interface

Figure 3.14 shows the Recording Interface as it would appear to the user with all

of the tracks unmuted and track 1 selected for recording. The timestamp is shown at

the top right of the interface. A time of 0.0 shows that the system is neither recording

or playing the audio piece.

3.5.2 Panning Audio with the KinectSound System

The Kinect provides a dynamic way of panning a sound source around an area with

simple hand movements. The KinectSound system is able to pan a sound source in

3D as it treats the users right hand as the sound source and can perform panning that

involves all 3 axes in a single movement. It provides feedback about the location of the

users hand via a dialog showing the 3D co-ordinates of the hand, as well as Sketchup,

a 3D modelling tool. Figure 3.15 shows a user panning using the KinectSound.

74

Figure 3.15 : A user panning in 3D with KinectSound

The crosshair in Figure 3.15 shows the location of the user’s right hand, which

the system treats as the sound source. The dialog box on the left hand side of the

figure shows the co-ordinates of the right hand as X, Y, and Z. These co-ordinates

represent the lateral displacement, height displacement, and depth of the users right

hand in millimeters.

3.5.3 A Usability Review of the KinectSound system

In order for the KinectSound system to achieve a high degree of usability, there were

several design considerations that took place before it was implemented. The Kinect-

Sound system was intended to provide a usable system in which users could intuitively

record and playback immersive audio.

The system was made efficient and easy to learn by using large buttons with concise

descriptions of their functions. The same button layout is used for commands, se-

75

lecting tracks, and navigation. Each interface displays relevant details such as track

muting states on the track selection interface and the recording time on the record-

ing interface. These details are also made clearly visible to a user. The buttons are

grouped into three different interfaces. This in turn allows each interface to be associ-

ated with a specific functionality to improve the engaging aspect of the system by not

overwhelming the user with controls. The tracks are able to be recorded and played

back on the same interface, which allows the user to overwrite any pre-recorded data

that they wish to change.

The visual aid of Sketchup complements the dialog display of the 3D co-ordinates.

This allows the user to get a 3D representation of the sound source’s localization point

so as to minimize the chance of localization errors. The error tolerance is aided by

the scaling of the user’s right hand’s co-ordinates. This allows the user to localize the

sound source in a more constrained area and pay more attention to the 3D display

indicating where the source is located.

The KinectSound system was tested by a sample of users. Each user was required

to complete a set of tasks using the KinectSound system and fill in a questionnaire

which related to the system’s usability. The results and discussion of these tests can

be found in Chapter 6.

3.6 Chapter Summary

This chapter has described the Five E’s of usability metrics. These are efficiency,

effectiveness, engagement, error tolerance, and ease of learning. If all of these are

satisfied (or mostly satisfied), the system will have high usability. The rest of the

components that make up this chapter are described and summarized in terms of the

Five E’s in order to gain a measure of their usability

Various audio localization systems were introduced. The interfaces for Spatial Audio

Designer (S.A.D) and Iosono Anymix Pro used a 2D view of the listening environment.

The 2D interface allowed a user to view 2 axes of the listening environment and

localize the sound within these 2 axes. The Haptic Feedback Prototype and The JL

Cooper NUAGE surround panner were described. This section also described how

76

these systems used 3D hardware to localize audio. The term 3D hardware refers to

hardware that is able to localize an audio source through the X, Y, and Z axes in a

single movement or motion. The Haptic Feedback Prototype used the Novint Falcon

for localization while the JL Cooper NUAGE surround panner used a 3D joystick.

Due to the requirement of device-free control, several current approaches to device-

free control were analyzed and discussed. These approaches were discussed in terms of

their capability to provide a solution to a device-free system that enabled 3D control.

The device-free approaches that were discussed were the Leap Motion Controller,

a standard webcam, and the Windows Kinect. The Kinect was chosen due to its

ability to perceive depth as well as provide an accurate skeleton tracking algorithm.

The Leap Motion wasn’t publicly available when this research began which is why it

wasn’t used. The KinectSound system was then introduced. This section explains

the procedures involved in using the system to record the tracks in an audio piece.

The KinectSound system contains three different User Interfaces that the user may

navigate between to achieve what is desired. A 3D view of the listening environment

is also provided by Sketchup. This allows the user to gain a better understanding of

where the sound is being located in the 3D environment.

77

Chapter 4

A Distributed Approach to Surround Sound

Processing

This chapter introduces current audio networking protocols and explains the Ether-

net AVB transport and control mechanisms used by the KinectSound system. It also

introduces the distributed processing approach that the KinectSound system Imple-

ments.

One of the main goals of the KinectSound system was to distribute a significant

portion of the audio processing from the workstation, to “intelligent endpoints”. Fig-

ure 4.1 shows the allocation of audio processing in a non-distributed processing system

(1), and a distributed processing system (2).

Figure 4.1 : The processing distribution between centralized and decentralized sys-

tems.

78

The figure represents audio processing using circular arrows, and data flow with

uppercase and lowercase letters. The uppercase A shown in system 1 represents

unicast audio data that is endpoint specific. This data is sent to the bridge and

routed to each endpoint. The distributed configuration of system 2 shows multicast

audio data as a lowercase a, and endpoint specific control packets as an uppercase

C. Audio mix ratios are extracted from each control packet and then applied to the

audio samples. These samples are then mixed and sent to their respective speakers

for presentation.

4.1 Audio/Video Networking Technologies

Audio/Video (AV) networks are networks of devices that allow real-time streaming

of AV data between devices that are connected to the network. Although there

are various protocols that enable AV networking, each of them has a similar set of

requirements in order to successfully transport AV data. These are:

1. Synchronization - When a single AV stream is transported from a source

such as a workstation to more than one destination, then the endpoints, which

might be powered speakers are required to present the samples for each channel

simultaneously. If delay is required, then this should be precisely controllable.

All devices on the network must therefore have the same clock. Apart from the

issue of simultaneous presentation, if source and destination don’t operate from

the same clock, audio buffer underflow or overflow may occur.

2. Bandwidth reservation - The network should be able to guarantee the re-

sources that are required to transport the AV data from its source to its desti-

nation.

3. Low latency - AV networks transmit the data in real-time which requires them

to have low latency. If there is latency in the network, it must be minimized

and deterministic. The most common maximum allowable latency is 5ms [65]

There are several existing protocols which satisfy the requirements mentioned above

and allow endpoints to connect and communicate with each other. Examples of these

79

systems are described below:

IEEE 1394 (Firewire)

The IEEE 1394-1995 task group specified an isochronous, as well an asynchronous

method of transporting data through buses [66], more commonly known as Firewire.

The main advantage of Firewire is the speed at which it is able to transfer data. This

ranges from 50MB/s (Firewire 400) up to 400MB/s (Firewire S3200). Due to the

speed requirement of AV traffic, the speed of Firewire makes this technology suitable

for AV transport. The devices on a Firewire network are organized into a logical tree

structure according to node ID, with a root node at the base of the tree.

Firewire devices are required to obtain an isochronous channel number and bus band-

width from the Isochronous Resource Manager (IRM) before they are able to trans-

mit [67]. When a node has acquired the resources to transmit, it will subtract its

bandwidth usage from the IRM’s BANDWIDTH AVAILABLE register. The IRM is

located in the Bus Management Layer of the Firewire communications model. This

layer is responsible for bus configuration and management [7]. If more than one node

requires to transmit data, the root node decides the order in which nodes are able

to send their data via a process known as network arbitration. Arbitration happens

in 125µs cycles, which play an important role in the synchronization of devices. The

start of each cycle is determined by the device which is the root node. At the begin-

ning of each cycle, the root node broadcasts a cycle start packet to each node. Upon

a node receiving a cycle start packet, it will [68]:

1. Synchronize its time base to the time in the cycle start packet.

2. Send an arbitration request if it has data to transmit

The root node will grant a single node at a time the permission to transmit its

isochronous data over the bus. When a node has finished sending its data, the re-

maining nodes will re-transmit their arbitration requests after the bus has been idle

for 40ns. When all of the isochronous transfers are complete, the remainder of the

125µs cycle will be used for asynchronous transfers. Isochronous transfers are able to

80

occupy up to 80% of the bus bandwidth [69].

The major problem with Firewire is the inability to transport data over long distances.

The maximum distance a Firewire cable may run is 4.5 meters [7]. Another disad-

vantage of Firewire is that it does not use existing infrastructures. Many computers

do not come with a Firewire port. In this case a Firewire card has to be purchased

and installed. The network infrastructure for Firewire networks can be expensive to

install due to the cable length limitations. If the distance between two devices is

greater than 4.5 meters, a repeater box will have to be used. IEEE 1394c specifies

extensions to which allow maximum cable distances of up to 100m over CAT5 ca-

ble [70]. Products that utilize the IEEE 1394c are not available, which limits Firewire

configurations to 4.5m cable lengths. This in turn limits the capabilities of a surround

sound system as distances between speakers are often greater than 4.5m.

EtherSound

EtherSound is an Ethernet based layer 2 audio transport protocol. EtherSound is

able to transmit audio at a rate of 44.1KHz, 48KHz, and multipliers of those with

low latency [71].

EtherSound achieves synchronization through a device known as the primary master.

This is the first device on the network, to which the rest of the devices are referred

to as slaves. The primary master is responsible for generating the wordclock for the

network and propagating it to all the slave devices on the network.

EtherSound devices may be configured in the following topologies:

1. Daisy-chain - Devices are connected in a series, and audio packets must prop-

agate through each device to reach a destination. Packets in this configuration

can be sent bi-directionally.

2. Ring - Similar to the daisy-chain configuration but the last device is connected

to the first device. This provides redundant cabling in the case of cable failure.

3. Star (tree) - Many devices are connected to a single Ethernet switch. This

provides intelligent routing, however the devices are only able to travel uni-

81

directionally.

Due to the topologies used by EtherSound, the network latency is stable and deter-

ministic, as each device adds 1.5µs to the overall latency [72]. The latency is also

independent of the number of channels in an audio stream [73]. Figure 4.2 shows a

configuration of EtherSound devices [74].

Figure 4.2 : An example of an EtherSound device configuration

The configuration shown in Figure 4.2 shows a hybrid of a daisy-chain topology

(devices 1 - 3) and a star topology (devices 4 - 6). If Device 3 was connected to

Device 1, the daisy-chain section of this configuration would be transformed into a

ring topology. Device 1 would be the primary master on this network as it is the first

node on the network. Connections between EtherSound devices can be classed as one

of the following:

• Downlink - audio data travelling away from the primary master

• Uplink - audio data travelling towards the primary master

Both of these connections are shown in Figure 4.2 between Device 1 and Device 3.

The rest of the devices have a uni-directional downlink due to the star topology.

A disadvantage of EtherSound is that it requires a dedicated infrastructure, which

82

removes the opportunity for convergence using existing infrastructures. The protocol

used for EtherSound is also proprietary requiring specialized software for remote

control and monitoring [75].

CobraNet

CobraNet is regarded as the first successful audio over Ethernet installation. It pro-

vides successful routing in large venues such as airports, conference centers, and

stadiums. CobraNet devices provide two network interfaces, the primary interface is

operational and the secondary interface assumes functionality when it detects a fault

or malfunction in the initial connection [76].

CobraNet networks contain a single device known as a conductor. A device will es-

tablish itself as the conductor if it is the first powered device to establish itself on

the network, with the cabilities of being a conductor. The rest of the devices on

the network are referred to as performers. One of these performers will become a

conductor if the current conductor fails or is removed from the network [77]. The

conductor is responsible for synchronization on CobraNet networks. The sampling

rates supported by CobraNet networks range from 750Hz to 48KHz. The clock that

generates the sampling rate will either be an external clock or a clock that is present

in the conductor. The timing information is sent in a beat packet, where each packet

denotes the beginning of an isochronous cycle [78].

CobraNet performs bandwidth allocation by broadcasting reservation packets. Reser-

vation packets are transmitted as the devices require bandwidth or at a typical rate

of 1 per second. These packets are also responsible for remote device monitoring and

connection management [77]. CobraNet devices use the Simple Network Management

Protocol (SNMP) for the transmission of reservation packets [79]. Each CobraNet de-

vice contains an SNMP agent, which is SNMP software running on a device that

has the capability to be managed remotely. CobraNet networks are recommended to

have a dedicated infrastructure due to the unpredictability of burst Ethernet traffic

on existing networks [76].

The CobraNet protocol is proprietary and although CobraNet has had major suc-

83

cess in the industry [78], the use of CobraNet devices continues to diminish with the

development of open standard protocols such as Ethernet AVB and AES67.

Dante

Dante was started by an Australian based company, Audinate, in 2006. It is a layer

3 protocol which transmits audio data using UDP packets. Dante is intended for use

on Gigabit Ethernet networks, which provide the required throughput for the audio

traffic [80]. As an IP based protocol, Dante provides the advantage of transporting

audio via routers. Although Dante claims Ethernet AVB layer 2 interoperability, it

has not provided any evidence of achieving this.

Dante devices provide network synchronization via the use of the IEEE 1588 Preci-

sion Time Protocol (PTP) [81]. This protocol uses the Best Master Clock Algorithm

(BMCA) to choose a network clock. This protocol is described later on in this chapter

as it is also used for Ethernet AVB synchronization. Dante networks also provide the

capability of having an external clock which may be used for network synchronization.

The number of channels that can be transmitted through a Dante network depend on

the bandwidth that is available. This ranges from 96 channels on a 100Mbps to 1024

channels on a Gigabit network [82]. Dante network traffic is given a higher priority

than standard network traffic.

Dante network switches have to be configured and managed for the use of Dante de-

vices. The Dante protocol requires specialized software from Audinate for controlling

their devices as their protocol is proprietary.

Ethernet AVB

The Institute of Electrical and Electronics Engineers (IEEE) Audio Video Bridging

task group of the 802.1 standards committee defined a set of standards known as Au-

dio Video Bridging (AVB). AVB networks enhance the current IEEE 802 architecture

in a number of ways which allow the transport of AV data over existing Ethernet net-

works. The AVB standards are able to guarantee quality of service for time sensitive

AV data [83] which is prioritized and not affected by external data. AVB bridges are

84

required to route the data between a source and a destination. These perform the

same functions as network switches in Ethernet networks, however, they provide the

mechanisms which allow the routing of time sensitive AV data.

Ethernet AVB can be described as a combination of protocols that co-operate in or-

der to fulfill the requirements for a fully functional audio distribution network. These

protocols are:

• 802.1Qat - The Stream Reservation Protocol (SRP) provides admission control

and is used by AVB for bandwidth reservation.

• 802.1Qav - Traffic shaping algorithms that provide queuing and forwarding

enhancements for AVB network traffic.

• 802.1As - A tightly-constrained profile of the IEEE 1588 protocol, which pro-

vides synchronization for IEEE 1722 devices.

A major benefit of AVB is that there is an open standard for the protocol, which

allows it to be easily incorporated into audio systems. AVB traffic uses standard

Ethernet cabling, which provides opportunity for convergence with existing infras-

tructure.

Ethernet AVB provides a solution to a custom built distributed surround sound sys-

tem and is able to satisfy the requirements for AV transport. Due to the open protocol,

endpoints are able to be remotely controlled by a custom built system, as long as the

control messages follow the predefined AVB standard.

AES67

AES67 is a layer 3 protocol specified by the Audio Engineering Society which allows

low latency transport of professional audio [84]. This refers to audio that is sampled

at 44.1KHz and higher. AES 67 is designed to allow interoperability between layer 3

transport protocols.

Devices implementing AES67 synchronize their clocks to a single device on the net-

work using the IEEE 1588-2008 precision time protocol [84]. The Quality of Service

85

(QoS) for AES67 networks is achieved through the use of the Differentiated Services

(DiffServ) architecture described in RFC 2474 [85]. This architecture provides mech-

anisms for classifying and managing networking traffic of different priorities by the

use of a Differentiated Services Code Point (DSCP) field in the packet header [85].

Network packets with varying DSCP values will be treated differently at the switches

and endpoints according to their DSCP values.

The standard for AES67 is open and can be downloaded from the AES website [86].

An open standard provides the opportunity of integrating this protocol into an end

user developed sound system. This protocol was not chosen for the KinectSound

system as it was only standardized in September 2013, 8 months after the start of

the KinectSound system’s development.

4.2 Ethernet AVB in Depth

Devices on an AVB network can be classified into two main categories which are:

• Endpoints - Endpoints are devices on the network that are responsible for

transmitting and receiving audio data to and from the network respectively.

• Bridges - Bridges are devices on the network that provide routing of audio pack-

ets between endpoints or other bridges. They contain mechanisms for queuing

and forwarding of AV data.

Devices that transmit audio data onto a network are known as Talkers, while devices

receiving audio data are known as Listeners. Quality of service in AVB networks is

enabled by three different IEEE 802.1 sub protocols. Each protocol works towards

satisfying the synchronization, bandwidth reservation, and latency requirements that

were mentioned earlier in the chapter. Each of these protocols is described in further

detail below.

4.2.1 IEEE 802.1 Qat

The 802.1 Qat protocol defines the mechanisms which reserve network bandwidth to

guarantee Quality of Service (QoS). The Stream Reservation Protocol (SRP) utilizes

86

three signaling protocols to guarantee network resource from a single talker to one or

more listeners (end-to-end). These protocols are [87]:

1. Multiple VLAN Registration Protocol (MVRP) - One of the mecha-

nisms used to guarantee QoS is the transmission of AV data over Virtual LANs

(VLANs). MVRP provides a dynamic way of assigning unique identifiers to

VLANs that are assigned to potential AV streams and registering bridge ports

that are being used for these streams.

2. Multiple MAC Registration Protocol (MMRP) - MMRP provides the

ability to group together a number of devices. This provides the ability to con-

fine specific multicast messages to groups of devices, thus reducing unnecessary

traffic on the network.

3. Multiple Stream Registration Protocol (MSRP) - This provides an in-

dication of whether there is sufficient bandwidth to transmit a stream from a

talker to a listener. This involves determining:

- Which listeners will be receiving the stream.

- Which routes across the network are capable of supporting the stream’s re-

quirements between the talker and prospective listeners.

Figure 4.3 shows the events that occur when a talker advertises on a small AVB

network. The network consists of a talker (T), and three listeners (L1, L2, and L3)

networked across two AVB bridges (B1 and B2).

87

Figure 4.3 : MSRP talker advertisement with responding listeners

The following events occur in Figure 4.3:

1. Talker advertising

- The talker broadcasts an advertise message (a) to all the listeners on the net-

work.

- Listeners L1 and L2 receive the message. Bridge B2 is incapable of transmit-

ting a stream, so it forwards a Talker Failed message (f) to the listener.

2. Listeners responding

- Listeners L1 and L3 respond with Listener Asking Failed messages (f). These

indicate that they are interested in receiving the stream but there are insufficient

88

resources available.

- Listener L2 responds with a Listener Ready message (r). This indicates that

the listener is interested in receiving the stream and that there are sufficient

resources to transmit a stream between the talker and listener.

- The talker receives a Listener Ready Failed (lrf) message from the bridge.

This message indicates that there are at least 2 listeners requesting the stream,

and at least one capable of receiving the stream [87].

3. Stream reservation

- The talker begins transmitting a stream onto the network.

- Bridges that are aware of listeners requesting the stream will allocate resources

accordingly and forward the AV data to the respective listeners.

AVB talkers that wish to transmit data across the network must make an MSRP

declaration. This declaration contains the bandwidth requirements in order to suc-

cessfully transmit a stream of AV data between two points in the network, until the

stream is terminated. The declaration broadcasts to all the listeners on the network,

which will respond by giving their ability (or inability) to receive a stream. The

inability to receive a stream may be determined by limitations such as the listener

already receiving it’s maximum number of streams, or insufficient network resources.

The talker will then begin transmission if the required resources are available.

802.1 Qat satisfies the AV requirement of bandwidth reservation, as described earlier

in the chapter.

4.2.2 IEEE 802.1 Qav

The 802.1 Qav protocol defines the queuing and forwarding enhancements for AVB

endpoints and bridges. The endpoints and bridges are required to support two differ-

ent types of traffic classes, of which one must be MSRP compatible [80]. The MSRP

compatible traffic class is required in order to treat the time-sensitive AVTP traffic as

High Priority traffic. The other class is used to transmit any Low Priority network

traffic that is not time-sensitive or loss-sensitive.

89

The high priority queues in the endpoints and bridges are drained using a Credit

Based Shaper Algorithm [88]. Queues that support this algorithm have the following

attributes:

• Credit - The transmission credit that is available to each port. If the port’s

transmitting attribute is false, this value will constantly increase if there are

packets in the queue and reset to zero if the port is idle with a positive credit

value. The rate at which the credit slope increases is determined by the idle slope

attribute. If the port’s transmitting attribute is true, the credit will constantly

decrease. The rate at which credit decreases is determined by the send slope

attribute.

• Transmitting - Set to true when the current port is transmitting a packet, set

to false when the port is idle.

• Transmission rate - The rate at which the port is able to transmit data. This

is measured in bits per second.

• Idle Slope - The rate at which a port gains credit when it is not transmitting

and has packets in the queue.

• Send Slope - The rate at which a ports credit decreases when it is transmitting

a packet.

• Transmit Allowed - Determines whether the port is allowed to transmit a

packet or not. This is true when the credit is greater than or equal to 0.

Shown in Figure 4.4 is an example of the credit based shaper algorithm being used in

a port with conflicting traffic. Conflicting traffic may be the result of events such as:

1. Other ports with a higher priority currently transmitting traffic.

2. Ports of the same priority with a higher credit value currently transmitting

traffic.

90

Figure 4.4 : Graphical layout of the attributes of the Credit Based Shaper Algorithm

Figure 4.4 shows 10 different numbered events that occur throughout the given time

frame. Each of these events is described below:

1. Packet A is ready for transmission (e), but is queued because of conflicting

traffic (d) elsewhere in the device/switch. Due to a positive credit (credit = 0),

and the Transmit Allowed attribute being true, the port begins to gain credit

91

at a rate given by the Idle Slope (a).

2. There is no more conflicting traffic and the port has a positive credit, therefore

Packet A begins transmitting (c). The credit slowly decreases at a rate given

by the Send Slope (a).

3. Packet A is finished transmitting and the credit is still positive. As mentioned

above, a port cannot be idle and have credit greater than 0, so the credit is

reset to 0.

4. Packet B is ready for transmission and credit is equal to 0 so Packet B begins

to transmit. This action decreases the credit to a negative value which in turn

sets the Transmit Allowed attribute to false.

5. Packet B has finished transmitting and the credit is negative. This port will be

unable to transmit any further packets until the credit has reached a positive

value again, so credit will begin to constantly increase until it reaches 0.

6. There is conflicting traffic elsewhere on the device/switch (d).

7. Packet C is ready for transmission, the port is allowed to transmit but it cannot

due to the conflicting traffic, so it is queued (e). Credit begins to increase again.

8. There is no conflicting traffic, the port is ready to transmit and has a positive

credit, Packet C begins transmission (c).

9. Credit falls below zero, so the Transmit Allowed attribute will be set to false.

This will continue until Packet C is finished transmitting.

10. Packet C is finished transmitting, credit starts to increase again until it reaches

0 (a).

802.1 Qav ensures that there is minimal traffic latency, and also guarantees the band-

width on an existing LAN infrastructure in order to support the transport of AVTP

traffic. This satisfies the AV requirement of minimal latency on a network.

92

4.2.3 IEEE 802.1 AS

The 802.1 AS protocol is responsible for providing a time domain in order to achieve

synchronization and syntonization within the network. Synchronization refers to all

the devices on the network being time synchronized with each other, in order to

present audio samples at the same time. This is done by the use of the generalized

Precision Time Protocol (gPTP) defined in the IEEE 1588 specification [89]. This

protocol selects a device known as the Grandmaster from the devices on the network,

which contains the base time information for the network. The network is able to

select a grandmaster by using the Best Master Clock Algorithm (BMCA) [90], which

selects a device with the “best” clock. The grandmaster is chosen on initialization.

The BMCA works as follows:

1. All devices that are capable of being a grandmaster broadcast announce mes-

sages containing parameters of their own clock.

2. When a device receives an announce packet, it compares its own clock param-

eters to the clock parameters in the announce message.

3. If the clock parameters in the announce message indicate a better quality clock,

it will move into a slave state, with the master node being the device that

transmitted the message.

4. All of the devices on the network will maintain a record of the most recent

announce message from the current grandmaster.

5. The BMCA is able to select a new grandmaster if the devices haven’t received

an announce message from the current grandmaster for a period of time.

In order to satisfy the requirements for synchronization, any device on the network is

required to know the grandmaster’s time in relation to its time, and its time in relation

to the grandmaster. This time needs to be accurate due to the time-sensitivity of the

traffic. This is easily achievable as the delays within local area networks (LAN) are

often fixed [90].

93

Syntonization refers to the encoding and decoding of digital data at the same given

rates [90]. Audio data is encoded at a specific rate by the talker and then transmitted

onto the network. The listeners will receive the packets from the stream and decode

the data into a presentable signal. If the encoding rate and decoding rate differ, the

final sound will have glitches due to buffer underflow or overflow. The grandmaster

plays an important role in the syntonisation of a network as each device can compare

their clock against the grandmasters in order to derive a sample frequency.

4.3 IEEE 1722.1 - AVDECC

Ethernet AVB provides a control protocol which is known as the IEEE 1722.1 pro-

tocol, or more commonly referred to as AVDECC [91]. The name AVDECC stands

for Audio\Video Discovery, Enumeration, Connection management, and Control -

which are the responsibilities of this protocol for devices on AVB networks. Devices

that make use of the AVDECC protocol are known as AVDECC devices and are thus

capable of transmitting and receiving AVDECC messages as well as the AVTP traffic

within the network. Each AVDECC device is assigned a Globally Unique Identifier

(GUID). A GUID is derived using the MAC address of the device.

Apart from talkers and listeners (described in Section 4.2), AVDECC provides an-

other type of device which is a controller. Given below is a description of each device

in the context of AVDECC.

4.3.1 AVDECC Talkers

An AVDECC talker is an AVDECC entity that is capable of transmitting one or

more streams onto the AVB network. A stream is set up via an AVDECC Con-

nection Management Protocol (ACMP) message, which is sent from an AVDECC

controller [91].

94

4.3.2 AVDECC Listeners

An AVDECC listener is an entity which is the recipient of an AVTP audio stream.

The listener must be capable of receiving the audio data, decoding it, and presenting

it as an audible signal. The listener must be able to respond to connect and disconnect

messages from the AVDECC controller [91].

4.3.3 AVDECC Controllers

An AVDECC controller is an entity which initiates message and audio data exchange

between other devices on the network. Any AVDECC entity is able to be a controller,

as long as it supports the receiving and transmission of connection management and

control messages. A network is able to have more than one controller, however,

the LOCK ENTITY command must be used in order to perform atomic operations.

When an AVDECC device receives this command, it will only accept control com-

mands from the controller that locked it [91]. The entity must be unlocked by the

controller in order to be controlled by other controllers. If this is not done the lock

will expire after 1 minute.

An AVDECC controller may be contained within a talker or listener, as long as it

fulfills the above-mentioned requirements.

The AVDECC protocol is broken up into three separate protocols. These are known

as:

• AVDECC Discovery Protocol (ADP)

• AVDECC Connection Management Protocol (ACMP)

• AVDECC Enumeration and Control Protocol (AECP)

AVDECC packets use a similar header to the AVBTP control packets however, some

of the fields are redefined depending on the AVDECC sub-protocol being used. The

following sections discuss each AVDECC device type in further detail, as well as the

95

sub-protocols that make up AVDECC [91].

The functionality of AVDECC is dependent on 3 sub protocols, these are:

1. ADP - The AVDECC discovery protocol which performs AVDECC discovery.

This is the process by which AVDECC controllers identify all the AVDECC

devices connected to the AVB network. This protocol is able to identify devices

as they are added and removed from the network

2. ACMP - The AVDECC Connection Management protocol is responsible for

creating and terminating connections between two AVDECC devices. These

connections refer to audio streams between an AVDECC talker and an AVDECC

listener.

3. AECP - The AVDECC Enumeration and Control Protocol deals with the capa-

bilities, formats, and controls of AVDECC devices [91]. Enumeration is aimed

at discovering these attributes for each device, while control deals with the

manipulation of these attributes.

4.4 The KinectSound system configuration

The network configuration of the KinectSound system uses Ethernet AVB for trans-

porting audio traffic. Although both AES67 and Ethernet AVB satisfy all of the

requirements, AES67 was not published at the time when this project was started.

The endpoints in the KinectSound configuration use AVDECC for discovery, connec-

tion management, and control. Figure 4.5a shows the Ethernet configuration of the

KinectSound system. Figure 4.5b shows the system architecture of the KinectSound

System. The following sections describe each component in Figure 4.5 in further

detail.

96

Figure 4.5 : The Ethernet Layout and System Architecture of the KinectSound system

4.4.1 Streamware Echo NIC-1 Network Adaptor

The Streamware NIC-1 Network Adaptor (Echo Card) serves as both a network adap-

tor, as well as a sound card for AVB [6]. Shown in figure 4.6 is an Echo Card.

97

Figure 4.6 : An Echo NIC-1 Network Adaptor [6].

An Echo Card was fitted into the workstation controller as a means of providing

an AVB/AVDECC link between the Ethernet devices and the workstation. The Echo

Card will automatically begin to discover IEEE 1722.1 devices once it’s drivers have

been installed and initialized. The network adaptor requires an empty PCI slot in

the workstation that it may be plugged into [6]. The PCI plug on the Echo card is

shown as ’B’ in Figure 4.6. Part ’A’ shown in Figure 4.6 is the Ethernet interface on

the Echo Card, which allows it to provide a connection between the workstation and

the AVB network.

The Echo Card contains an ASIO 2.3 sound card driver which supports four streams

of up to 16 channels on each stream [6]. ASIO is an API from Steinberg [92] which

provides a link between software applications and sound cards.

4.4.2 Extreme Networks Ethernet Bridge

The Ethernet bridge used in the KinectSound system configuration is an Extreme

Networks Summit x440-8p. This is a 12 port Ethernet bridge, however ports 9-12 are

unpopulated and were therefore not usable with the current configuration. Ports 1-8

contain RJ45 Ethernet jacks, which allow the Echo Card to connect and control a

maximum of 7 other devices1. This bridge is also able to provide Power over Ethernet

(PoE) to devices that are PoE enabled. The bridge’s AVB capability is disabled by

default and required activation before it provided AVB support. This can be done by

1This figure can be enhanced by using further bridges

98

connecting to the bridge using the Serial-to-Ethernet cable connection provided with

the switch, and using terminal emulator software. A user is then able to log in and

access the Xtreme Operating System (XOS) where configuration can be done, and

changes can be made.

4.4.3 XMOS AVB Low-cost Audio Endpoints

The XMOS Low-cost Audio Endpoints shown in Figure 4.5 provide an interface be-

tween the digital audio being transported over an AVB network, and an analog signal

input/output. These evaluation devices were jointly developed by XMOS and At-

terotech [93]. A photo of the AVB Low-cost Audio Endpoint is shown in Figure 4.7.

Figure 4.7 : The layout of an XMOS low-cost endpoint.

The different components of an XMOS AVB Low-cost endpoint labeled in Fig-

ure 4.7 are as follows:

A. Power supply - Socket for a 5V DC power adaptor which is used to power

the XMOS endpoint. These devices require external power and do not support

power over Ethernet.

B. RJ45 Ethernet Port - This port provides an interface between the XMOS

endpoint and an AVB network.

99

C. xTAG-2 Programming Slot - Slot into which an xTAG-2 programmer card

may fit. The programmer card provides a USB interface, allowing a user to run,

flash, and time XC code on the endpoint.

D. xCORE multicore microprocessor - The XMOS microprocessor used on

this endpoint is an XCORE XS1-L16-128 Multicore Microprocessor [93]. This

microprocessor is capable of running at 800 - 1000 MIPS. It has 16 concurrent

processing cores, each supporting high performance DSP [93]. The processing

cores are distributed across a number of processing tiles within the micropro-

cessor. Each tile on the XS1 microprocessor provides at least 1 logical core, a

scheduler, and 64KB of RAM [80].

Inter-process communication is enabled through the use of channels. Channels

provide a lossless point-to-point communication mechanism between concur-

rent processes. A process is required to provide a channel end for each channel,

which allows it to send and receive data through a specified channel.

E. Output audio jacks - The output jacks may be used to connect a speaker to

an endpoint when the endpoint is defined as a listener. These jacks contain a

3.5mm stereo jack, as well as a set of RCA stereo connector jacks.

F. Input audio jacks - The input jacks contain the same set of jacks as the

output jacks, however these are used for input devices such as microphones,

media players, and any other devices capable of transmitting audio. These are

used when the endpoint is defined as a talker.

G. Reset Button - This button is used to power cycle the board, allowing the

user to reset various settings and return the microprocessor back to its original

state.

H. GPIO Buttons and LEDs - The general purpose input/output on this end-

point is composed of 4 LED lights, and 3 buttons.

100

4.4.4 The Flow of Data

With the system doing the audio mixing at the endpoints by utilizing the xCORE

microprocessor, it has successfully reallocated a significant amount of processing, typ-

ically done at the workstation, to each endpoint. The workstation is also required

to send endpoint-specific control packets from the KinectSound system to each end-

point. These packets contain the mix levels for each channel, at each endpoint. The

KinectSound system uses the packet capture API (PCap) to send layer 2 control pack-

ets [94]. The XMOS endpoints mix the audio according to the mix levels specified by

the control packets.

Figure 4.8 shows the data flow of the audio data and control data, from the worksta-

tion to the endpoints.

Figure 4.8 : The flow of data in the KinectSound configuration.

The audio data is shown as a solid line, which is a single stream that is multi-

cast to each endpoint. A single audio stream consists of 8 channels, as shown on

101

the right hand side of Figure 4.8. The dashed lines show the control data, which

is sent from the KinectSound system. Ethernet AVB transports audio by using a

protocol known as the AVB Transport Protocol (AVBTP) defined in the IEEE 1722

standard [83]. This standard defines the packet layout for both AVBTP data packets,

and AVBTP control packets. The audio data is contained in a Common Isochronous

Packet (CIP) [95], which is a format originally developed for Firewire streams. This

is then encapsulated in an AVBTP data unit packet and has an Ethernet header [83].

The layout for an audio data packet is shown in Figure 4.9.

102

Figure 4.9 : The layout of an Audio Data packet.

103

Although only 1 set of samples is shown in Figure 4.9 for the 8 channels, each

packet will contain a number of sets of samples, the number depending on the sample

rate - 6 samples for 48KHz. For a stream of audio data that is sampled at 48KHz,

the packet throughput would be 48000
6

= 8000 packets per second.

Header fields in Figure 4.9 that are important in the context of the KinectSound

system are listed below:

• Destination MAC address - MAC address of the device which will receive

the packet. In this case, it will be a multicast address.

• Source MAC address - MAC address of the device that sent the packet. This

will be the Echo network adaptor as it is the only talker on this network

• Ethertype - Indicates the type of protocol that in encapsulated within the

Ethernet packet.

The two fields that are highlighted in grey represent optional fields. These two fields

will occur if the first Ethertype field has a value of 0 x8100. This value specifies that

the packet is being sent on a Virtual LAN. The relevant fields within the IEEE 1722

header are described below:

• p - The Priority of the packet. This is in the range of 0 - 7 and can be used to

prioritize different classes of network traffic.

• VLAN Identifier - Identifies which VLAN the packet belongs to. Values

0 x0000 and 0 xFFFF are reserved, any other values within this range may be

used. All AVB packets are VLAN tagged, as this allows them to be treated as

priority traffic.

• sv - The Stream ID Validation field contains a 0 or 1 depending on whether the

Stream ID contains a valid Stream ID (1), or if it does not contain a valid ID

(0).

• tv - Timestamp Validation describes whether the AVBTP Timestamp field

contains a valid timestamp(1), or if it should be ignored(0).

104

• stream ID - The Stream Identification field contains a 64 bit number associated

with the AVBTP packet which uniquely identifies a single stream. End-stations

which receive a packet that has a Stream Validation field set to 0 will simply

ignore this entire field.

• AVBTP timestamp - Contains the presentation time of the samples within

the AVBTP packet if the Timestamp Validation field is set to true. This is a

value given in nanoseconds, and has a maximum value of (232 − 1)ns.

4.4.5 AVDECC in the KinectSound system

As the KinectSound uses the Ethernet AVB implementation, it requires the use of

AVDECC to control the endpoints in the system. AVDECC messages use the stan-

dard AVBTP control message header , but redefine certain fields depending on which

AVDECC messages are sent. The redefined header is shown as the first 12 bytes of

Figure 4.10, Figure 4.11, and Figure 4.12. For each figure, the redefined fields are

shown in grey. Following each figure is a description of the fields that are relevant

to the KinectSound system. The way in which the KinectSound system uses each

AVDECC sub protocol is described in the following subsections.

Discovery

AVDECC discovery alerts the controllers when a device is added or removed from the

network. This is done via ADP messages. ADP messages are sent from each device

at regular intervals, and “advertise” that they are on the network. This enables the

controller that is doing the discovery to know which devices are currently connected

to the network. The Echo network adaptor performs AVDECC discovery and the

devices can be seen in the Echo Streamware software display. This shows all the

devices on the network and adds and removes devices as they are added or removed

from the network. The layout of an ADP packet is shown in Figure 4.10

105

Figure 4.10 : The layout of an AVDECC Discovery Protocol Packet

Important fields in the ADP packets that relate to the KinectSound system are:

• valid time - The valid time of an ADP message indicates how long the con-

troller will recognize it as being connected to the network. If this time for a

specific device expires before another ADP message is received, the controller

will assume this device has been disconnected from the network. An AVDECC

device broadcasts discovery messages at roughly 1
4

of the valid time of the mes-

sages. There is a trade off in this situation between the timely detection of a

device being removed from the network, and the amount of traffic generated as

a result of the ADP messages.

• entity ID - The Globally Unique ID identifies the device that has sent the

ADP message.

• talker capabilities - Describes the capabilities of the device as a talker. The

talker capabilities of the endpoints in the KinectSound system were disabled to

ensure that there is only one talker, which is the Echo network interface.

• listener capabilities - Describes the capabilites of the device as a listener.

The endpoints in the KinectSound system all have the same listener capabilities

106

(0 x4001). This value describes two separate capabilities, these are:

- 0 x0001, supports the implementation of an AVDECC listener.

- 0 x4000, has the capability to receive an audio stream.

Connection Management

The connections for the KinectSound system were managed using the Streamware

software provided by Echo corporation [6]. This allows a user to create audio streams

between the Echo network interface and the endpoints. The workstation sends audio

data via ASIO drivers to the Echo network interface, which then sends it to the

endpoints specified by the connections that have been created. When a connection

is created, the controller broadcasts ACMP messages that specify which device is

the talker and which is the listener. The layout of an ACMP packet is shown in

Figure 4.11

Figure 4.11 : The layout of an AVDECC Connection Management Protocol Packet

Important fields in the ACMP packets that relate to the KinectSound system are:

• controller entity ID - The GUID of the AVDECC controller, this is the

device that is initiating the connection. This will always be the GUID of the

Echo network interface in the KinectSound system as it is the only controller

in the network.

107

• talker entity ID - The GUID of the AVDECC talker. This is the device

transmitting the audio data over the network, which will also always be the

Echo network interface.

• listener entity ID - The GUID of the AVDECC listener. This will be the

GUID of the device that is the recipient of the audio data from the stream, an

endpoint on the KinectSound system’s network.

• stream VLAN ID - Allows the controller to specify a VLAN for the stream.

As already mentioned, AVB transmits over a VLAN as it supports prioritization

of the audio data.

Control

The KinectSound system endpoints were controlled by creating AECP packets in

the workstation and sending them onto the network via the Pcap API [94]. The

control packets were endpoint specific and contained the mix values for the 8 different

channels. These values are stored at each endpoint and applied to each audio packet

that is received and are updated when a new control packet is received. The audio

packets are received at a much faster rate than the control packets. The layout of an

AECP packet is shown in Figure 4.12.

Figure 4.12 : The layout of an AVDECC Enumeration and Control Protocol Packet

Important fields in the AECP packets that relate to the KinectSound system are:

108

• msg type - The message type indicates what the purpose of the message is.

Each mix level message in the KinectSound system is an AEM COMMAND,

which has a value of 0 x00.

• target entity ID - The GUID of the device that will receive the AECP message.

This will be the GUID of one of the endpoints.

• controller entity ID - The GUID of the controller that is the source of the

message. This is always the Echo network interface for the KinectSound system.

• command type - Specifies the command type of the AECP packet. The mix

level packets in the KinectSound system will always be SET MIXER commands,

which have a value of 0 x001C.

• command specific payload - Carries the payload of the control packet. The

payload contained in the KinectSound system’s control packets consists of 8

bytes, each with a value between 0 x00 and 0 x64 (0 - 100). These values

correspond to the mix levels of the 8 tracks.

4.5 Chapter Summary

This chapter has outlined the functionality of existing audio networking systems and

introduced the concept of using a distributed processing system for surround sound

processing. Current audio networking technologies that were described are IEEE 1394

(Firewire), EtherSound, Cobranet, Dante, Ethernet AVB, and AES67. Ethernet

AVB, the chosen protocol was described as a combination of protocols that work

together to achieve a common goal. These protocols are:

• IEEE 802.1 Qat - Alternatively known as the Multiple Stream Reservation

Protocol, reserves network bandwidth to guarantee quality of service (QoS).

• IEEE 802.1 Qav - Provides queuing and forwarding enhancements for AVB

endpoints and bridges. This protocol uses a credit based shaper algorithm in

order to drain the queues at the endpoints.

109

• IEEE 802.1 AS - Uses the generalized precision time protocol which provides

a time domain for the network. This enables synchronization and syntonization.

The AVDECC (Audio/Video Discovery, Enumeration, Connection management, and

Control) protocol was described as a means of controlling AVB devices on a network.

An AVDECC device can be classified as a talker, listener, and/or controller. AVDECC

controllers initiate the data exchange between other devices on the network, and can

perform actions such as creating an audio stream between a talker and a listener.

AVDECC is comprised of 3 sub-protocols, these are:

• ADP - The AVDECC Discovery Protocol is responsible for identifying any

AVDECC enabled devices on a network.

• ACMP - The AVDECC Connection Management Protocol is responsible for

creating and terminating audio streams between AVDECC devices.

• AECP - The AVDECC Enumeration and Control Protocol is responsible for

both identifying and controlling capabilities of AVDECC devices.

The network configuration of the KinectSound system was introduced. This showed

how the KinectSound system utilizes Ethernet AVB and AVDECC to distribute the

surround sound processing amongst the endpoints. The distributed configuration

provides the following advantages:

1. The processing is distributed amongst the endpoints, which reduces the pro-

cessing requirement of the workstation controller.

2. The network configuration has the capability to supply Power over Ethernet

(PoE) which would result in easy configuration of the system.

3. The configuration can be built incrementally by adding new endpoints. Since

there is no limitation on the number or position of the endpoints, the user is

able to configure them to suit their requirements.

110

Chapter 5

Design and Implementation of the KinectSound

system

This chapter describes and builds on the various aspects of the KinectSound system

which have been mentioned in the previous chapters. These are the audio encoding

and mixing techniques from Chapter 2, the device-free HCI from Chapter 3, and the

Ethernet AVB components from Chapter 4.

The KinectSound system is a system that was developed to enable dynamic 3D pan-

ning of a virtual sound source. The system is divided up into two separate sections,

the Main System, and Sketchup. The Sketchup component of the KinectSound system

provides a realtime display of the user’s right hand location and utilizes the Sketchup

software [96]. The main system is responsible for the rest of the system’s functionality,

excluding audio mixing. Throughout the course of development and implementation

there were several design considerations which had to fit the requirements of the

system. In order to gain a better understanding of the system’s functionality, this

chapter also describes the design in further detail along with programming code and

diagrammatic examples.

5.1 System Design

The KinectSound system was designed using the Unified Modelling Language (UML) [97].

The design of the system bridges the gap between the system requirements and the

low level interactions between classes within the system. The system was designed

using Rational Rose software [98]. This is a UML modelling tool developed by Ra-

tional Software.

The following subsections describe the steps taken in the process of designing the

111

KinectSound system.

5.1.1 Requirements Specification

The requirements specification is a high level overview of the system’s functions. It

describes the tasks that the system is able to perform as required by the user. There

are 7 requirements which form the specification, which are:

Device-free Interaction

The user must be able to select menu options and fulfil all of the requirements of the

system without having to use any devices. Any interaction has to be done purely by

gestures and hand movements. This requirement provides a more interactive approach

to the panning of audio, and also increases the user-friendliness of the system. This is

done by displaying large controls that are easy to read, and provide clear instructions

to anybody using the system. A user may select options that are displayed on the

screen by moving their left hand into a control and then moving it forward, as if they

were pressing a button. The system was required to provide accurate tracking of the

user’s hands in order to meet this requirement.

Selecting a Track

The KinectSound system presents the user with 8 tracks, which make up a single audio

piece. The user must be able to select a track on which they are able to perform an

action, such as change its muting state or recording state. A selected track must

be made clearly visible to the user once it has been selected. This will ensure that

the user does not make a mistake such as muting or recording the wrong tracks. A

maximum of one track can be selected at any given time.

Muting/Unmuting Tracks

The user must be able to mute and unmute specific tracks in the KinectSound system.

Upon system startup, all of the tracks will be unmuted by default. Each track must

112

display its muting state so the user knows which tracks are muted or unmuted. When

the user selects a Mute/Unmute button, the KinectSound system will check which

track is selected, and change its muting state as well as deselect it. If no tracks are

selected nothing will happen.

Recording a Track

In a similar way to the muting command, a user must be able to choose a Record

Select option, which will arm a selected track for recording. If a track is selected for

recording, it will always be unmuted. If a user selects a track and selects the mute

option and the track has already been selected for recording, nothing will happen.

When a track has been selected for recording, a user may begin recording the sound

locations for that track. This is done by sampling the position of the user’s right hand

at regular intervals. These positions will represent the 3D co-ordinates of a sound

source, which is the track they have selected for recording. A 3D display of the user’s

current right hand location is also provided. This allows the user to view the location

of their hand in 3 dimensions, relative to each speaker. The sound will be mixed by

an endpoint at each speaker in real time, which will allow the user to hear the current

position of the track being recorded. All of the tracks that are not muted will also

play whilst the system is in a recording state. When a user selects the Record option,

the system will go into a recording state after a 5 second countdown.

The data for these tracks is stored externally and is restored upon the user starting

recording or playback. If a track has not been recorded, it will use its default co-

ordinates.

Playback

When the user selects the Play option, the KinectSound system will give a 5 second

countdown and start playing the audio piece using the stored co-ordinates for each

track. This procedure is similar to what happens during the recording state, with the

exception that no tracks are being recorded.

113

Stop Recording/Playback

When the system is in a recording or playing state, the user must be able to change

the system back into an idle state when they wish to. This can be done by selecting

a Stop option. The user is required to stop recording or playback in order to switch

between the recording and playback state. This can be done in order to allow the

user to playback any newly recorded tracks. When the stop option is selected, the

audio data relating to each track is saved.

Reset Tracks

The Reset option allows the user to reset all the tracks to the default location. The

default location is determined by the average X, Y, and Z co-ordinate values for the

3D positions of each speaker. When this option is selected, all of the current data

about recorded tracks is erased and replaced with the default locations. This data is

then saved to an external file.

5.1.2 Use Case Diagrams

The UML use case diagrams provide a layout of the system’s functions as well as any

external actions that may influence the behaviour of the system. The KinectSound

system has 2 use case diagrams. One is for the main system, and the other is for the

Sketchup component.

Figure 5.1 shows the Use Case Diagram for the main system.

114

Figure 5.1 : The Use Case Diagram for the main system

Every function of the system is the result of user interaction which invokes these

functions. The user’s hands are recognized by the Windows Kinect and have their

gestures interpreted by the system, which will in turn invoke the different functions.

Upon the system entering the recording or playback state, the system will send con-

trol packets to the AVB network. Each control packet contains 8 mix levels, which

correspond to the 8 tracks shown in the KinectSound system. When an endpoint re-

ceives an audio packet, it will perform the audio mixing of channel samples and send

the mixed samples to the speaker that it is connected to. The rest of the system’s

functions have been explained in the requirement specification.

Figure 5.2 shows the Use Case Diagram for the Sketchup component of the Kinect-

Sound system.

115

Figure 5.2 : The Use Case Diagram for the Sketchup system

On startup of the main system, Sketchup is opened and initializes the venue with

the crosshair in the center of the room. This is done by inserting the models from

two external Sketchup models into the current model. One of these models is the

crosshair, and the other is the venue. The Sketchup camera view is also changed so

the user is viewing the room from a high-angle. The Ruby code for the KinectSound

system’s Sketchup plugin is shown in Appendix 8.2. To ensure the accuracy of the

system, the venue that Sketchup is using is built to scale with the size of the room

and speakers the user is using. The venue initialization also places a crosshair at the

origin, which is also saved as an external Sketchup file. The position of the crosshair

is constantly updated by the main system to correspond to the user’s right hand

movements. The main system and Sketchup system communicate through a socket

connection.

116

5.1.3 Class Diagram

Figure 5.3 shows the class diagram for the KinectSound system.

Figure 5.3 : The Class Diagram for the KinectSound system.

117

Each class in the diagram contains the following:

• Class Name - A unique identifier given to each class. This name should be

relevant and be able to briefly describe the functionality of the class.

• Class Attributes - Each class may contain one or more attributes which aid

the functionality of the class. These may be defined to be either accessible or

inaccessible from other classes. Each attribute has a data type associated with

it. This is not shown in the class diagram.

• Class Operations - Each class operation is a sequence of events that occur

to achieve a specific outcome. These operations are also able to return a value

depending on how they are defined. Class operations are usually directly acces-

sible from other classes, but they can also be made inaccessible.

The attributes and components are explained further at the relevant points in this

chapter and how they relate to the programming constructs used to achieve the goals

of the KinectSound system.

5.1.4 Sequence Diagrams

Sequence diagrams show the interaction between objects as a sequence of events that

occur when the system is fulfilling one of the requirements. These diagrams contain

a number of messages between objects in order to achieve the desired outcome.

Figure 5.4 shows the sequence diagram for the system startup. The following sub-

sections use sequence diagrams where they are necessary to describe the system im-

plementation. The state transition diagram and remaining sequence diagrams can be

found in Appendix 8.3.

118

Figure 5.4 : The Sequence diagram for the startup of the KinectSound system.

119

The functions in each sequence of events are as follows:

• The user starts the KinectSound system (1).

• The Kinect object creates instances of each audio endpoint in the AudioPiece

object (2, 3). The endpoints are specified by the user in the programming code

before runtime.

• The Kinect object creates an instance of each User Interface and adds it to the

interface vector, where it is able to access them when they are needed (4 - 9).

• The Kinect object initializes the Kinect’s camera so the KinectSound system is

able to use it (10).

• A socket connection is created between the Kinect object and Sketchup to enable

inter-process communication (11).

5.2 Device Free HCI

As stated in Chapter 3, one of the fundamental goals of the KinectSound system was

to have device free control. This required the user to have complete control of the

system without having to use a mouse or keyboard. This was achieved by the use of

a Windows Kinect, which provided the stated requirements.

5.2.1 The Windows Kinect

The Windows Kinect’s SDK API is used by the KinectSound system to gain ac-

cess to the gesture recognition capability of the Kinect. The Kinect’s camera image

is accessed and displayed using Open Graphics Libraries (OpenGL) via the Simple

DirectMedia Layer (SDL) or the OpenGL Utility Toolkit (GLUT) [99]. The Kinect-

Sound system used the SDL for displaying the camera image and user’s skeleton to a

windows dialog box. GLUT was initially used for the interfaces, but this was changed

to SDL as it provided better control over the OpenGL functions that were required

to implement the interfaces.

120

Initializing the Kinect’s camera

The Kinect’s components need to be initialized before it may be used within an

application. The KinectSound system uses the camera and skeleton tracking features,

so there is no need to initialize the microphone array. Listing 5.1 shows the pseudocode

for initializing the Kinect as it is done in the KinectSound system, adapted from [99].

1 Get Kinect Sensor

2 IF (KinectSensor detected)

3 I n i t i a l i z e Kinect Sensor f o r use

4 I n i t i a l i z e t ex tu r e s

5 I n i t i a l i z e OpenGL

6 Set camera viewport t rans fo rmat ion

7 WHILE (f o r e v e r)

8 Try and get next frame from Kinect Sensor

9 IF (frame e x i s t s)

10 Draw frame

Listing 5.1: Pseudocode for initializing the Kinect.

The first two lines of the pseudocode check if there is a Kinect connected to the

computer. This step requires the Kinect SDK to be installed. If it establishes that

there is a Kinect connected, it initializes the components needed to detect and display

frames from the camera. These components are [99]:

1. Sensor - The sensor includes the Kinect’s camera as well as the infrared trans-

mitter and receiver.

2. Textures - The textures contain the image frames that are received from the

Kinect’s camera. The KinectSound system uses a 640 x 480 resolution for

displaying the image.

3. OpenGL - OpenGL is used to draw the frames from the Kinect’s camera onto

a window.

4. View-port - The OpenGL view-port specifies the region of a window in which

a specific image will be displayed. In this case it will define where the camera

image is displayed.

121

Tracking a Skeleton

The KinectSound uses OpenGL to superimpose certain Kinect Skeleton parts over

the camera image. As mentioned in Chapter 3, the Kinect skeleton is composed of

20 core joints found in the human body. The Kinect SDK uses an enumerated type

which contains the values between 0 and 19 to distinguish between the different joints.

Figure 5.5 shows the core joints of the Kinect skeleton [100] as well as the enumerated

type values for each joint.

Figure 5.5 : The Kinect skeleton and enumerated type joint values

The KinectSound system uses the left arm and the right hand for menu selection

and panning respectively, so these are the only sections of the skeleton that are

displayed. The KinectSound system uses the methods in Listing 5.2 to convert the

skeleton co-ordinates from displacement values into pixels. This code is part of the

GetSkeleton method.

122

1 for (int i = 0 ; i < 19 ; i++){ // f o r each j o i n t in the ske l e t on

2 JointVec = ske l e t on . Ske l e t onPos i t i on s [i] ;

3 NuiTransformSkeletonToDepthImage (JointVec , &xCoOrd , &yCoOrd) ;

4 s k e l e [0] [i] = xCoOrd∗2 ;

5 s k e l e [1] [i] = yCoOrd∗2 ;

6 }

Listing 5.2: Converting skeleton positions into 640x480 display co-ordinates.

When the Kinect detects a skeleton, it stores the joints shown in Figure 5.5 in a

Vector4 (4D vector) array called SkeletonPositions. A Vector4 structure stores the

W, X, Y, and Z values. W is a scaling factor, and the X, Y, and Z values are the 3D

co-ordinates [101]. NuiTransformSkeletonToDepthImage transforms the temporary

W, X, Y, and Z values stored in JointVec into X and Y floating point values for

image display. These values are stored in the xCoOrd and the yCoOrd variables, as

they are passed by reference to this method. These co-ordinates are then stored in

their respective positions in the array named skele. This is a 2 x 20 array which stores

the X and Y display co-ordinates of each joint that comprises the Kinect skeleton.

The values had to be multiplied by a factor of 2 before they were stored as the Kinect’s

skeleton tracking capability uses a 320 x 240 resolution and the KinectSound system

is displaying to a 640x480 window.

Listing 5.3 shows the procedure for drawing the user’s left arm, and the crosshair on

the right hand. This code is contained within the DrawSkeleton method.

1 for (int j = NUI SKELETON POSITION SHOULDER LEFT; j < NUI SKELETON POSITION HAND LEFT; j++){
2 glBegin (GL LINES) ;

3 g lVertex 2 f (s k e l e [0] [j] , s k e l e [1] [j]) ;

4 g lVertex 2 f (s k e l e [0] [j+1] , s k e l e [1] [j+1]) ;

5 glEnd () ;

6 }
7 g lCo lor 3 f (1 , 0 , 0) ; //Change co lour

8 g lBegin (GL LINES) ; // Crossha i r

9 // Hor i zonta l l i n e

10 g lVertex 2 f (s k e l e [0] [NUI SKELETON POSITION HAND RIGHT]−10 ,

11 s k e l e [1] [NUI SKELETON POSITION HAND RIGHT]) ;

12 g lVertex 2 f (s k e l e [0] [NUI SKELETON POSITION HAND RIGHT]+10 ,

13 s k e l e [1] [NUI SKELETON POSITION HAND RIGHT]) ;

14 glEnd () ;

15 g lBegin (GL LINES) ;

16 // Ve r t i c a l l i n e

17 g lVertex 2 f (s k e l e [0] [NUI SKELETON POSITION HAND RIGHT] ,

18 s k e l e [1] [NUI SKELETON POSITION HAND RIGHT]−10) ;

19 g lVertex 2 f (s k e l e [0] [NUI SKELETON POSITION HAND RIGHT] ,

20 s k e l e [1] [NUI SKELETON POSITION HAND RIGHT]+10) ;

21 glEnd () ;

22 g lCo lor 3 f (0 , 1 , 0) ; //Change co lour

123

23 glBegin (GL POINTS) ; // Jo in t s on arm

24 for (int j = NUI SKELETON POSITION SHOULDER LEFT; j <= NUI SKELETON POSITION HAND LEFT; j++){
25 g lVertex 2 f (s k e l e [0] [j] , s k e l e [1] [j]) ;

26 }
27 glEnd () ;

Listing 5.3: Drawing the user’s left hand arm and right hand crosshair using OpenGL.

The code in listing 5.3 superimposes shapes over the Kinect image displayed in the

window by using OpenGL. The KinectSound system uses two different OpenGL

modes to draw the user’s skeleton, these are:

1. GL LINES - Joins a set of vertices with straight lines

2. GL POINTS - Draws bullets on a set of vertices. The bullets may have their

shape specified by the user.

The colour and weight of the bullets and lines are able to be changed via OpenGL

functions. The OpenGL mode is specified as an argument in the glBegin function.

This function along with the glEnd function delimit the OpenGL drawing procedure.

The purpose of each OpenGL segment is as follows:

• The iteration in lines 1 - 6 use the OpenGL mode GL LINES to draw a set of

3 straight lines which make up the users left arm.

• Line 7 changes the current drawing colour to red, as this is the colour used to

draw the crosshair for the right hand display.

• Lines 8 - 21 use the GL LINES mode twice to draw the crosshair as a separate

vertical and horizontal line.

• Line 23 changes the colour to green, which is used for drawing the points along

the user’s arm.

• Lines 23 - 27 use the OpenGL mode GL POINTS to draw points at the positions

of each joint in the users left arm.

Figure 5.6 shows the outcome of the code in Listings 5.2 and 5.3.

124

Figure 5.6 : The KinectSound system displaying the user’s left arm, and right hand

crosshair.

5.2.2 The Interfaces for a Device Free System

A user interface, in the context of the KinectSound system, is a group of buttons that

are all displayed at the same time. This can be seen by the aggregation relationship

in the class diagram (Figure 5.3). As a user navigates between interfaces, the groups

of buttons being displayed will change according to which user interface the user has

navigated to. The KinectSound system has 3 different user interfaces, these are:

1. Home Interface - the interface displayed upon startup. This user interface

allows the user to navigate to the Track Selection Interface, clear track data,

or shut down the system. The user may return to this interface at any time by

selecting the Home option on any of the other interfaces

2. Track Selection Interface - allows the user to change the recording state

and the muting state of the tracks. The user may do this by selecting a track

125

and then selecting either the MUTE/UNMUTE SELECTED or the RECORD

SELECT options.

3. Recording Interface - allows the user to start and stop the recording and

playback of the audio piece.

Figure 5.7 shows the Home Interface (A), the Track Selection Interface (B), and the

Recording Interface (C). The interfaces in Figure 5.7 are shown with black back-

grounds. The background for each interface would appear as the camera image show-

ing the users right hand and left arm, as it is seen in Figure 5.6.

Figure 5.7 : The three interfaces used by the KinectSound system.

The KinectSound system is able to create instances of three button classes, which

it is able to add to an interface. The button classes are:

• Button Class - This is the most basic button found within the KinectSound

system. Instances of this class can be added to an interface for performing basic

126

commands such as navigation between interfaces. The remaining button classes

in the system contain the attributes and operations of this button class.

• Track Button Class - The Track Button objects have attributes that corre-

spond to the tracks that make up the audio piece. These properties are the

Muting State and the Recording State, and are displayed within the button.

Each Track Button also has the ability to be selected. A Track Button will

have to be selected before a user is able to change its recording or muting state.

The Track Button will change colour when it is selected.

• Record Interface Button Class - The Record Interface Button objects have

the capability to be active. This allows the user to change the state of the

system between recording, playing, and idle. The button will change colour

when it is active so that the user is able to see which button has been selected.

The UserInterface class provides a method called AddButton which allows a user to

add one of the three button types to an interface. The AddButton method has been

overloaded in order to determine which button to create. The function signatures for

the AddButton functions are shown in Listing 5.4.

1 //Three over loaded methods to add d i f f e r e n t button types to an i n t e r f a c e

2 // 1 . Function to add a Button

3 void AddButton (int xPos , int yPos , int controlLength , int controlWidth , char tName [] , f loat ∗
de fau l tCo lours , int controlGroupID) ;

4 // 2 . Function to add a Record I n t e r f a c e Button

5 void AddButton (int xPos , int yPos , int controlLength , int controlWidth , char tName [] , f loat ∗
de fau l tCo lours , int controlGroupID , bool de f au l t S e l e c t e d) ;

6 // 3 . Function to add a Track Button

7 void AddButton (int xPos , int yPos , int controlLength , int controlWidth , char tName [] , f loat ∗
de fau l tCo lours , int controlGroupID , bool defaultMuteState , bool d e f a u l t S e l e c t S t a t e) ;

Listing 5.4: Function signatures for adding buttons to an interface.

Each argument in the AddButton method defines one of the attributes of the button

that it is creating. Not all of the buttons attributes are required in the signature

as they can be given a default value (such as clickThreshold). The first AddButton

function is for a standard button, the second is for a Record Interface Button, and

the third is for a Track Button. A description of each argument is given below:

• int xPos - The horizontal position of the button.

127

• int yPos - The vertical position of the button.

• int controlLength - The length of the button.

• int controlWidth - The width (height) of the button.

• char tName[] - The name of the button, which will be displayed in the center

of the button.

• float *defaultColours - A pointer to an array consisting of 3 floating point

values. These values represent RGB values that are used to colour the button.

• int controlGroupID - This specifies which user interface the button is on. This

value will be 1 for the Home Interface, 2 for the Track Selection Interface, and

3 for the Recording Interface. This value is used to create the unique buttonID

associated with each button.

• bool defaultSelected - Required to create Recording Interface Buttons. It spec-

ifies the default selected state of the button.

• bool defaultMuteState - The first overloaded argument for creating a Track

Button. Specifies the default muting state of the track.

• bool defaultSelectState - The second overloaded argument for creating a Track

Button. Specifies the default selected state of a Track Button.

The Kinect object contains a list which stores the 3 instances of the UserInterface

class that have been mentioned earlier. The instance of each user interface is created

by the Kinect object, which also calls the functions to add the buttons to each inter-

face. Each instance of the interface class has 3 different Vectors which store instances

of the three different button types.

The interface and button storage structures are shown in Figure 5.8

128

Figure 5.8 : A structure showing how interfaces and buttons are stored.

The Kinect class contains an integer variable which indicates the active interface.

This is the current interface that will have its buttons displayed to the window, and

will change when the user navigates between interfaces.

When the Kinect object creates the interfaces, to does the following steps for each

interface:

1. Create an instance of an interface and add it to the interface list.

2. Add each button to the interface.

The buttons are added to an interface straight after it has been created so the in-

terfaceList.size() function can be used to specify the controlGroupID. The order in

which the interfaces are created is important in that it maintains the integrity of the

controlGroupID and the process of creating the ID for each button. Listing 5.5 shows

examples of the AddButton function being called.

129

1 // I n i t i a l i z i n g the i n t e r f a c e

2 f loat ∗d = new f loat [3] ;

3 d [0] = 0 . 0/255 . 0 f ; d [1] = 255 . 0/255 . 0 f ; d [2] = 127 . 0/255 . 0 f ;

4 i n t e r f a c e L i s t . push back (I n t e r f a c e (”Home I n t e r f a c e ”)) ; //Add i n t e r f a c e

5 i n t e r f a c e L i s t . at (0) . AddButton (50 , 480−50−112 , 140 , 112 , ”EXIT” ,d , i n t e r f a c e L i s t . s i z e ()) ; //Add

button

6 //Add other i n t e r f a c e buttons

7 d [0] = 123 . 0/255 . 0 f ; d [1] = 205 . 0/255 . 0 f ; d [2] = 237 . 0/255 . 0 f ;

8 i n t e r f a c e L i s t . push back (I n t e r f a c e (”Track S e l e c t i o n I n t e r f a c e ”)) ;

9 AddTrackToInterface (1 , 10 , 25 , 140 , 90 , ”TRACK1” ,d , i n t e r f a c e L i s t . s i z e () , 0 , 0 , 1) ;

10 //Add other i n t e r f a c e buttons

11 d [0] = 255 . 0/255 . 0 f ; d [1] = 255 . 0/255 . 0 f ; d [2] = 0 . 0/255 . 0 f ;

12 i n t e r f a c e L i s t . push back (I n t e r f a c e (”Recording I n t e r f a c e ”)) ;

13 i n t e r f a c e L i s t . at (2) . AddButton (10 , 10 , 140 , 140 , ”RECORD” ,d , i n t e r f a c e L i s t . s i z e () , 0) ;

14 //Add other i n t e r f a c e buttons

15 //Other I n i t i a l i z a t i o n

16

17 //Function that adds a button to the i n t e r f a c e and a track to the aud iop i ece

18 void Kinect : : AddTrackToInterface (int interfaceNumber , int xPos , int yPos , int controlLength , int

controlWidth , char tName [] , f loat ∗de fau l tCo lours , int controlGroupID , bool defaultMuteState ,

bool de f au l t S e l e c t S t a t e , int trackNo)

19 {
20 i n t e r f a c e L i s t . at (interfaceNumber) . AddButton (xPos , yPos , controlLength , controlWidth , tName ,

de fau l tCo lours , controlGroupID , defaultMuteState , d e f a u l t S e l e c t S t a t e) ;

21 A−>AddTrack (tName , trackNo) ;

22 }

Listing 5.5: Calling the AddButton function.

All of the buttons are added to their respective interfaces upon system startup. When

a Track Button is added to the interface, it is done by calling the AddTrackToInterface

function. The reason for this is that when a Track Button is added, a Track must

also be added to the AudioPiece class, which is done in this function along with the

AddButton function. The attributes for each track button must remain the same

as the attributes corresponding to their respective tracks which are contained in the

AudioPiece class. These are the Recording and Muting attributes.

5.2.3 Interacting with the KinectSound system

The user uses his left hand to select a button. This is done by moving the left hand

into the boundary of the button, and then moving the hand forward. Each button

required 4 attributes in order to detect this selection. These are:

• handWithin - A boolean variable indicating whether the hand is within the

boundaries of a button

130

• zChecker - A floating point value which stores the Z co-ordinates of the user’s

hand upon entering the boundary of a button

• clickThreshold - An integer variable which indicates the distance (in millime-

ters) the user is required to move their hand forward in order to signal a button

click

• switchState - A boolean variable which states whether a button has been

clicked

The procedure for determining a button click is shown using a flowchart in Figure 5.9.

This procedure occurs every time a frame is received.

131

Figure 5.9 : The flowchart showing how to determine a button click

Each step in the flowchart can be described in further detail as follows:

1. The Kinect determines the co-ordinates of the user’s skeleton.

2. The active interface is determined by the reading the value of the activeInterface

variable.

3. The Kinect class calls the DrawInterface function for the active interface. The

current X, Y, and Z co-ordinates of the user’s left hand are passed to this

function.

132

4. The active interface iterates through the 3 different button lists and checks for

a click on each button instance. The remaining steps in the flowchart happen

for each button on the active interface.

5. A check is done to see whether the position of the user’s left hand is inside the

boundary of the button. Each button has an (X, Y) co-ordinate set for it’s

location, as well as a length and width. By using the current location of the

user’s hand, the system is able to determine whether or not the user’s hand is

within the boundaries of the button.

6. If the user’s hand is not in the boundaries of the button, the variables switchState

and handWithin are both set to false.

7. The system checks whether the value of handWithin is true or false. This con-

dition will only result in being true when the users hand enters the boundaries

of the button.

The following 2 steps describe the events that take place upon the user’s left

hand entering the button’s boundary.

8. The handWithin value is set to true.

9. The zChecker value is set to the current Z value of the user’s left hand.

10. If handWithin is true, the system calculates the difference between the current

Z value and the value of the zChecker.

11. The system checks whether the calculated difference is greater than the prede-

fined clickThreshold

12. The values of switchState and enabled are checked. The value of switchState is

required to be false and the value of enabled is required to be true for the system

to signal a button click. The switchState check is done to prevent the system

from signalling multiple button clicks once the clickThreshold is exceeded. If

the user wishes to select the same button twice, they must remove their left

hand from the button’s boundaries which will set the value of switchState back

133

to false as shown in step 6. The enabled check is done so the user is unable to

select buttons that have been disabled.

13. If all of the conditions are satisfied, the CheckClick function signals a button

click by returning the identifier of the button that has been selected. The value

of switchState is changed to true to prevent unnecessary button click signals.

14. If one of the conditions are not satisfied, the CheckClick function will return

zero.

Listing 5.6 shows the programming code used for the CheckClick function.

1 int Button : : CheckClick (f loat coOrdX , f loat coOrdY , f loat coOrdZ){
2 bool xIn = fa l se ;

3 bool yIn = fa l se ;

4 // Check X−co−o rd ina t e s

5 i f (coOrdX >= this−>X && coOrdX <= ((this−>X)+(this−>l ength))) xIn = true ;

6 else

7 {
8 handWithin = fa l se ;

9 swi tchState = fa l se ;

10 return 0 ;

11 }
12 // Check Y co−o rd ina t e s

13 i f (coOrdY >= this−>Y && coOrdY <= ((this−>Y)+(this−>width))) yIn = true ;

14 else

15 {
16 handWithin = fa l se ;

17 swi tchState = fa l se ;

18 return 0 ;

19 }
20 //When hand en t e r s button boundary

21 i f (xIn && yIn && ! handWithin)

22 {
23 handWithin = true ;

24 Zchecker = coOrdZ ;

25 return 0 ;

26 }
27 // I f a l l the cond i t i on s are s a t i s f i e d

28 i f (handWithin && Zchecker − coOrdZ > c l i ckThre sho ld && ! swi tchState && this−>enabled == true)

29 {
30 swi tchState = true ;

31 return this−>buttonID ;

32 }
33 }

Listing 5.6: The CheckClick function.

134

5.3 Digital Audio Workstation (DAW) control

The DAW uses the Streamware ASIO driver [6] to transmit a maximum of 8 audio

channels onto the AVB network. Although the ASIO driver is capable of transmitting

a maximum of 64 channels, the endpoints are only capable of receiving 8. A form

of interaction had to be established between the KinectSound system and the DAW

to allow the remote playing and stopping of the audio piece. Internal MIDI control

messaging was used to do this as it provided a simple method of DAW transport

control.

5.3.1 Drivers and Channels

The DAW uses the Streamware ASIO drivers which are provided with the Echo

network adaptor. The network adaptor is an AVDECC talker (Section 4.3.1) and

AVDECC controller (Section 4.3.3) by default. The multicast stream between the

workstation and the endpoints is configured using the Streamware software, which is

also provided by Echo Audio. The channels for the stream are configured so that the

ASIO outputs correspond to the stream channel numbers, as shown in Figure 5.10.

For example: ASIO output 1 in the DAW corresponds to channel 1 in the multicast

stream. This has to be done so that the track configuration in the KinectSound Track

Selection interface corresponds to the configuration in the DAW.

135

Figure 5.10 : The Reaper routing matrix.

The routing configuration shown in Figure 5.10 will route Track 1 (drums) to

Output 1, Track 2 (guitar) to Output 2, and so on. The outputs shown in the DAW

correspond to the 8 tracks available in the KinectSound Track Selection Interface. The

user is also able to route 2 tracks to one output if they wish. The KinectSound system

will treat this as a single track, in which all of the tracks’ localization properties will

be identical.

5.3.2 MIDI Control

As already stated, the KinectSound system uses MIDI messages to communicate

with the DAW. These messages are sent to a MIDI driver known as LoopBE Internal

MIDI [102], which allows applications within a workstation to send MIDI messages

to each other. Figure 5.11 shows how the internal MIDI port allows communication

between the KinectSound system and the DAW.

136

Figure 5.11 : Communication between the KinectSound system and the DAW using

internal MIDI.

The internal MIDI software is automatically detected as a MIDI device by the

DAW when it is installed. The KinectSound system uses MIDI control messages [103]

to signal the DAW to start or stop playback. MIDI control messages are 3 byte MIDI

messages which have the following properties:

1. Status - The first byte of the MIDI control message indicates the type of

message and the channel that it is sent through. The KinectSound system sets

this byte to 0 xB0, which indicates a MIDI control message on MIDI channel 1.

2. Control Number - The second byte of the MIDI control message indicates

the control function that is used by the message. The KinectSound system sets

this byte to 0 x1A, which is a value in the MIDI standard that currently has no

control function and is reserved for future use [103].

3. Value - The third byte of the MIDI control message contains a value between

0 - 127 inclusive. This value is used to identify any further information about

the control message. The KinectSound system will set this to 0 x00 to signal a

Play command, and 0 x01 to signal a Stop command.

The hexadecimal values for each completed MIDI message that is sent by the Kinect-

Sound system will appear as follows:

• Play - 0 xB01A00

• Stop - 0 xB01A01

137

The actions for these messages had to be configured in the DAW as shortcuts to

perform transport commands. The transport commands in Reaper include actions

such as Play, Pause, and Stop. These are configured by opening the action list (“?”

hotkey) and doing the following:

1. Select the transport command that will have a shortcut added to it.

2. Click on the “Add” button in the “Shortcuts for selected action” region of the

window.

3. Send the internal MIDI control message which will correspond to the selected

transport action. The MIDI message’s status, control number, and value will

appear in the “Shortcut” field of the dialog. Select “OK” to assign the shortcut

to the transport command.

The 3 steps for assigning transport shortcuts are shown in Figure 5.12.

Figure 5.12 : The 3 steps for assigning transport command shortcuts

138

Listing 5.7 shows the initialization of the MIDI message class in the KinectSound

system.

1 #include <MMSystem . h>

2 MidiCommands : : MidiCommands(void)

3 {
4 MIDIOUTCAPS moc ;

5 CString loopBe , currentDev ice ;

6 int loopID = −1 ;

7 loopBe . Format (”LoopBe In t e rna l MIDI”) ;

8 for (int i = 0 ; i < midiOutGetNumDevs () ; i++)

9 {
10 // Get i n f o about the next dev i ce

11 i f (! midiOutGetDevCaps (i , &moc , s izeof (MIDIOUTCAPS)))

12 {
13 currentDev ice . Format (”%s” ,moc . szPname) ;

14 i f (strcmp (currentDevice , loopBe) == 0)

15 {
16 loopID = i ;

17 break ;

18 }
19 }
20 }
21 i f (loopID == −1) return ;

22 midiOutOpen ((LPHMIDIOUT) &MidiHandleDAW , loopID ,NULL, 0 , 0) ;

23 msgDAW. MidiByte [0] = 0xB0 ;

24 msgDAW. MidiByte [1] = 0x1A;

25 msgDAW. MidiByte [3] = 0x00 ;

26 }

Listing 5.7: Initializing the MIDI message class.

This function loops through all the MIDI devices that are found on the current work-

station (8 - 20) and checks each one’s name to see if it is “LoopBE Internal MIDI”

(13 - 14). If it finds the LoopBE Internal MIDI device, it stores the ID of the device

and exits the loop (16 - 17). If the loop ends and a LoopBE internal MIDI device

has not been found, the function will exit as it does not have a valid MIDI device

to connect to (21). If the Internal MIDI device was found, the KinectSound sys-

tem will open it as an output device (22) and set the 1st byte of the MIDI message

to 0 xB0 (23), the MIDI Control Change command. The 2nd byte is set to 0 x1A,

the reserved control command which is used by the KinectSound system (24). The

4th byte of this message is set to 0 x00 (25) as it is unused by the KinectSound system.

Listing 5.8 shows how the KinectSound system configures and sends the MIDI start\stop

messages.

139

1 void ∗MidiCommands : : MidiStartWrapper (void∗ wrapping)

2 {
3 return ((MidiCommands∗) wrapping)−>MidiStart () ;

4 }
5 void ∗MidiCommands : : MidiStart (void)

6 {
7 msgDAW. MidiByte [2] = 0x00 ;

8 S leep (5000) ;

9 midiOutShortMsg (MidiHandleDAW , msgDAW. MidiData) ;

10 return 0 ;

11 }
12 void MidiCommands : : MidiStop (void)

13 {
14 msgDAW. MidiByte [2] = 0x01 ;

15 midiOutShortMsg (MidiHandleDAW , msgDAW. MidiData) ;

16 }

Listing 5.8: Sending start and stop messages to the DAW.

As indicated in Section 5.1.1 there is a 5 second delay before recording or playback

begins. This delay can be implemented via a Sleep command which necessitates a

separate thread of execution. The POSIX Threads library was used for thread cre-

ation. This is an IEEE standard which provides an API for creating and manipulating

threads [104]. Functions that are created on a new Pthread require a wrapper function

as the Pthreads library doesn’t allow thread creation on an object’s member function.

The wrapper function (which calls the MidiStart function) is shown in Listing 5.8.

The wrapper function is called from the Kinect class via a pthread create command,

which creates a new thread for the duration of the function’s execution.

5.4 Audio Encoding

Chapter 2 described the way in which the audio localization was encoded and stored

using XML. The KinectSound system accesses the XML audio localization file and

does the following:

• Reads from the file and temporarily stores the audio data to convert into mix

levels for the endpoints.

• Makes changes to the data when a track is finished being recorded.

• Saves any changes in the audio localization back to the file.

140

The methods and mechanisms used to perform each of these tasks is described in

further detail in the following subsections.

5.4.1 Restoring stored Co-ordinates

The KinectSound system uses the Document Object Model (DOM) for deserializing

the audio localization data. The DOM is a cross platform API which interacts with

objects in HTML, XHTML, and XML files [105]. The DOM uses the elements and

attributes of an XML file and organizes them in a tree structure which allows easy

access and manipulation. The KinectSound system uses the DOM to retrieve each

Track element, and further retrieves each TimedCoOrd tag’s attributes from each

track. The attributes are then stored using a linked list implementation. The dese-

rialization process occurs whenever the user selects the Record or Playback option in

the Recording Interface.

A structure called mixNode was created within the Track class to store the attributes

of every timedCoOrd tag. Each track contains a pointer to a mix node, which stores

the attributes of a timedCoOrd tag and contains a pointer to the next mix node. This

implementation is shown in Figure 5.13

141

Figure 5.13 : The linked list implementation for storing audio data

The pseudocode for deserializing the audio data is shown in Listing 5.9.

1 DOM −> I n i t i a l i z e

2 Load <AudioXML>

3 DOM −> get ”AudioPiece ” node

4 DOM−> get number o f ”Track” nodes

5 FOR <number o f tracks>

6 Track−>c l e a r l i s t

7 DOM−> get a l l ”timedCoOrd” nodes

8 FOR <each timedCoOrd node>

9 GET ”frameCount”

10 GET ”X”

11 GET ”Y”

12 GET ”Z”

13 Track −> Add Node <frameCount , X, Y, Z>

14 ENDFOR

15 ENDFOR

Listing 5.9: The pseudocode for deserializing the audio data.

5.4.2 Saving current co-ordinates

The serialization of localization data in the linked lists to XML happens whenever the

user selects the Stop option on the Track Recording interface. The sequence diagram

142

for saving co-ordinates is shown in Figure 5.14, followed by the code for serialization

in Listing 5.10:

Figure 5.14 : The Sequence diagram for saving audio data

143

1 void AudioPiece : : S e r i a l i z e (void)

2 {
3 FILE∗ f i l e ;

4 CString f i l ename , l i n e ou t ;

5 f i l ename . Format (”AudioData2 . xml”) ;

6 f i l e = fopen (f i l ename , ”w”) ;

7 fput s (”<AudioPiece>\n” , f i l e) ;

8 for (int trackLoop = 0 ; trackLoop < 8 ; trackLoop++)

9 {
10 l i n e ou t . Format (”\t<Track><!−−TRACK%i−−>\n” , trackLoop+1) ;

11 fput s (l i neout , f i l e) ;

12 t r a ckL i s t . at (trackLoop)−>ResetCurrent () ;

13 l i n e ou t . Format (”\ t\t<TimedCoOrd frameCount=\”%i \” X=\”%.3 f \” Y=\”%.3 f \” Z=\”%.3 f \”/>\n” ,

t r a ckL i s t . at (trackLoop)−>GetCurrentFrameCount () , t r a ckL i s t . at (trackLoop)−>GetCurrentX (

fa l se) , t r a ckL i s t . at (trackLoop)−>GetCurrentY (fa l se) , t r a ckL i s t . at (trackLoop)−>GetCurrentZ (

fa l se)) ;

14 fput s (l i neout , f i l e) ;

15 while (t r a ckL i s t . at (trackLoop)−>LastNode () != true)

16 {
17 t r a ckL i s t . at (trackLoop)−>GetNextNode () ;

18 l i n e ou t . Format (”\ t\t<TimedCoOrd frameCount=\”%i \” X=\”%.3 f \” Y=\”%.3 f \” Z=\”%.3 f \”/>\n” ,

t r a ckL i s t . at (trackLoop)−>GetCurrentFrameCount () , t r a ckL i s t . at (trackLoop)−>GetCurrentX (

fa l se) , t r a ckL i s t . at (trackLoop)−>GetCurrentY (fa l se) , t r a ckL i s t . at (trackLoop)−>
GetCurrentZ (fa l se)) ;

19 fput s (l i neout , f i l e) ;

20 }
21 fput s (”\t</Track>\n” , f i l e) ;

22 }
23 fput s (”</AudioPiece>” , f i l e) ;

24 f c l o s e (f i l e) ;

25 }

Listing 5.10: The serializing of audio data and storing it in an XML file.

1. (3 - 7) - A file is declared and opened using the filename AudioData2.xml. The

file is opened using the write (w) argument, which opens the file and clears its

contents.

2. (8 - 12) - The function creates a loop which will iterate through each track

(8), and within the track, iterate through each mix node and retrieve the co-

ordinates. At the beginning of a track iteration, a Track tag is written to the

file1, and the current pointer for the linked list is reset (12), which makes it

point to the head node for its respective list.

3. (13 - 14) - The function formats the lineout CString to contain the frameCount,

X, Y, and Z values from the head node and write it to the file. The attributes

1This also writes the track number in as a comment

144

for the remaining nodes are formatted and written in the same way.

4. (21) - When the loop has reached the last node in the list, a closing Track tag

is written to the file and serialization will begin for the next track.

5. (23 - 24) - When all of the iterations are complete, a closing AudioPiece tag

is written to the file and the file is closed.

A similar process occurs when the user selects the Clear Track Data option. This

does an iteration for each track and creates a single timedCoOrd tag using a frame

count of 0 and the average of the X, Y, and Z endpoint positions for the respective

attributes in the XML tag.

5.5 3D Audio Panning

The sound localization data for panning is read from an XML file, as explained in

Section 5.4. This happens when the system is both in a recording and playback

state. The following sections describe the data stored in the XML file, and how this

is converted into endpoint specific mix levels. The way in which the KinectSound

system communicates with Sketchup is also explained. This communication enables

the KinectSound system to display the user’s right hand position in three dimensions

via Sketchup.

The sequence diagram for recording the track co-ordinates is shown in Figure 5.15.

The sequence diagram for the playing process is similar to the recording process,

but excludes the real-time audio panning which is shown as the last 4 steps in the

recording diagram. The following subsections describe each step in the diagram in

further detail.

145

Figure 5.15 : Recording the user’s hand co-ordinates and dispatching the mix levels

to the endpoints

146

5.5.1 Converting from Absolute Distance to Relative Distance

The Windows Kinect SDK reads the positions of the users skeleton joints as meter

co-ordinate measurements relative to the Kinect’s eye. The X co-ordinate is the

horizontal displacement from the center of the Kinect’s eye. The Y co-ordinate is

the vertical displacement from the center of the Kinect’s eye. Figure 5.16 shows the

absolute X and Y displacement when the user is looking at the Kinect, labelled ’K’

in the figure. The Z displacement is towards the reader, perpendicular to the page.

Figure 5.16 : The X and Y displacement from the Kinect’s camera eye.

The Z co-ordinate is the displacement from the X / Y plane containing the Kinect

eye to the user’s joint. These co-ordinates require a scaling factor of 7 so the user is

able to pan the sound with movements that are not excessive. The value used for the

scaling factor was determined by means of experimentation. A scaling factor that is

too high reduces the smoothness of the sound panning. If the scaling factor is too

small, it would limit the panning towards the front of the room due to the Kinect’s

field of vision. When the Kinect cannot see a significant portion of the user’s body,

it loses tracking accuracy for the joints that it can see. Scaling the co-ordinates also

allows the user to pan the sound to the front corners of the listening space which

would be unreachable without scaling due to the Kinect’s field of vision. An added

advantage of scaling is that it allows the user to pan the sound source across the

147

room quicker, as the required hand movement is reduced with the scaling factor.

These distances have minimum and maximum values so that the user is not able to

pan the sound beyond the listening space. Figure 5.17 shows the effects of scaling

the co-ordinates. This figure shows the movement area marked as ’M’, which limits

the user to the boundaries of the panning space. If the scaling factor was too low,

the front corners of the movement area wouldn’t be within the Kinect’s vision.

Figure 5.17 : The effects of scaling the Kinect’s co-ordinates.

Once the distances are scaled, the KinectSound system sends a message with the

scaled values to Sketchup. Sketchup then uses these values to display a crosshair at

the position of the co-ordinates.

The X and Y co-ordinate values then have an offset of 1500mm and 1000mm added

to them respectively, transforming them to distances from the KinectSound Origin,

148

the bottom left corner at the front of the movement area where X = 0, Y = 0, and Z

= 0. This is done so that the distance from the skeleton joint of the user’s right hand

to each endpoint may be calculated for localization purposes. The position of each

endpoint is stored relative to the KinectSound system’s origin. The minimum and

maximum values for each axis in the KinectSound system are given in millimeters by:

• [0mm ≤ (Xs + 1500mm) ≤ 3000mm]

• [0mm ≤ (Ys + 1000mm) ≤ 2000mm]

• [0mm ≤ Zs ≤ 3000mm]

The origins and scaled ranges for the Kinect (A) and the KinectSound system (B)

are shown in Figure 5.18. The origin used for the Sketchup display is similar to

the Kinect’s origin with the exception that it’s Z value ranges between 1500mm and

-1500mm.

Figure 5.18 : The origins and ranges of the Kinect’s origin (A) and the KinectSound

system’s origin (B).

149

The X and Y co-ordinates obtained from the Kinect API are scaled by applying a

scaling factor of 7 to their current values, converting the co-ordinates to millimeters,

and then adding the offset to the scaled value. If the scaled value is beyond the room’s

boundaries, then the maximum value is used.

The Z co-ordinate scaling has to have a pre-determined point between the user and

the Kinect’s eye which serves as the midpoint of the room along the Z axis. The

mid-point value that is used in the KinectSound system is 1.5m from the Kinect’s

eye. With this distance, the Kinect provided accurate detection and the user is able

to pan between all the areas of the listening environment. If this distance is increased,

the scaling factor would also need to be increased to allow the user to pan between

the minimum and maximum X and Y values (refer to Figure 5.16).

Examples of the the Z co-ordinate calculations are shown below, where Za is the ac-

tual distance obtained from the Kinect API, and Zs is the scaled value of Z, both

shown in meters. This allows the KinectSound system to convert a distance of the

user from the Kinect’s eye to a value between 0mm and 3000mm which is used for

localizing sound:

When Za = 1.5m, Zs = 1.5m, the Z-origin and center of the movement space

When Za = 1.5m-1.5m
7

= 1.286m, Zs = 0m, where 7 is the scaling factor

When Za = 1.5m+1.5m
7

= 1.714m, Zs = 3.0m, where 7 is the scaling factor

Figure 5.19 shows the movement zone (M) with the minimum and maximum values

of both absolute (ZA) and scaled (ZS) values of Z.

150

Figure 5.19 : The absolute and scaled values of Z used for panning.

The minimum and maximum values of the Z co-ordinate of the user’s hand relative

to the Kinect’s eye are 1.286, and 1.714, and these are converted to values between

0mm and 3000mm. If the user’s hand is beyond the minimum or maximum distance,

the value of 0mm or 3000mm will be used, respectively. The following equation is

used to calculate the scaled Z value (Zs):

Zs = Za−1.286
0.428 ∗ 3000, where [1.286 ≤ Za ≤ 1.714] - Eq. 5.1

The code for performing co-ordinate scaling for the user’s right hand in the Kinect-

Sound system is shown in Listing 5.11. The offset addition for the X and Y values is

explained further in Section 5.5.2

151

1 JointVec = ske l e t on . Ske l e t onPos i t i on s [NUI SKELETON POSITION HAND RIGHT] ;

2 JointVec . x = min (max(JointVec . x∗1000∗7 , −1500) , 1500) ;

3 JointVec . y = min (max(JointVec . y∗1000∗7 , −1000) , 1000) ;

4 CString r ightH ;

5 rightH . Format (”%i :% i :% i ” , (int) (JointVec . x) , (int) (JointVec . y) ,

6 //Z − mult ip ly by s c a l i n g f a c t o r o f 7 and convert to mm, apply Sketchup d i sp l ay o f f s e t (1500∗
s c a l i n g f a c t o r)

7 min (1500 ,max(−1500 , (((int) (JointVec . z∗7∗1000)−(1500∗7))∗−1)))) ;

8 char∗ msg = rightH . GetBuffer (r ightH . GetLength ()) ;

9 SC−>SendDataTest (msg) ; //Sketchup message sent

10 JointVec . z = min (max ((((JointVec . z−1 . 286) /0 . 428)∗3000) , 0) , 3000) ;

Listing 5.11: Scaling the right hand’s co-ordinates.

The code in Listing 5.11 does the following:

1. Gets the current position of the user’s right hand from the Kinect API (1).

2. Performs X and Y co-ordinate scaling and checks whether these values are within

the boundaries and uses the maximum values if they are not(2, 3)

3. Declare a CString variable (4) which is formatted as a message (5-7) that will

be sent to Sketchup. The Z value requires a display offset to be subtracted

from it so the Kinect’s co-ordinate origin (1.5m from the eye) corresponds to

the center of the Sketchup venue being displayed.

4. The message generated by the CString.format function is converted to a char-

acter array named msg(8).

5. The SendDataTest function is called from the socket connections (SC) object

which sends a string over a socket that Sketchup is listening on (9).

6. The value of Z is converted to the value used for localizing the audio by using

the equation shown above(10).

Following the co-ordinate scaling, the offset values are added and the appropriate

endpoint mix levels are calculated.

5.5.2 Converting Distance To Mix Levels

To calculate the mix levels for each track at an endpoint, the KinectSound system

is required to calculate the distance between the sound source and each endpoint.

152

When the KinectSound system is in a recording or playing state, it will send control

packets containing a set of mix levels (one for each track) to each endpoint every

time it receives a frame from the Kinect. This ensures that the control packets are

dispatched at regular intervals.

The KinectSound system creates an instance of the Endpoint class for each endpoint.

Each instance of the Endpoint class contains the location of the endpoint as a dis-

tance in meters from the KinectSound Origin, and the Ethernet MAC address of the

endpoint. This enables each instance of the Endpoint class to calculate the distance

between the sound source and itself. Mix levels are calculated using this distance

value and dispatched to the endpoint using the endpoint’s MAC address. The proce-

dure for calculating the mix levels can be grouped into two sub-functions. Each one

is explained below with the programming code that perform each function.

Function 1 - Update current co-ordinates using latest Kinect frame

When the KinectSound system receives a frame from the Kinect, the X, Y, and Z co-

ordinates in the AudioPiece object are updated. Asynchronous transmissions weren’t

supported by the system so the co-ordinates were updated on receipt of a Kinect

frame. The Audiopiece object then uses its current co-ordinates to calculate the mix

levels and dispatches the control packet if it is in a recording or playback state. The

code for updating the current co-ordinates is shown in Listing 5.12

1 /∗ Kinect Class ∗/
2 A−>SetCoOrdinates (JointVec . x , JointVec . y , JointVec . z) ;

3 /∗ AudioPiece Class ∗/
4 void AudioPiece : : SetCoOrdinates (f loat x , f loat y , f loat z)

5 {
6 this−>X = x ;

7 this−>Y = y ;

8 this−>Z = z ;

9 //Further c a l l s to c a l c u l a t e d i s t an c e s and di spatch packets

10 }

Listing 5.12: The call from the Kinect class to update the current co-ordinates.

When the KinectSound system is in the recording state it is simultaneously in the

playing state. When the user is recording a track, all of the other tracks will be

playing.

153

Function 2 - Calculate the distances between the sound sources and end-

points and convert them to mix levels

When the AudioPiece object receives a new set of co-ordinates at the start of a frame,

it will:

1. Calculate, for each endpoint, the distance from the sound source location to

the endpoint for each track at that frame count using the stored data from the

track linked lists.

2. If the system is in a recording state, it will use the current right hand co-

ordinates as the source location for the track that has been chosen for recording.

It will add another node to the track linked list with the new data. This data

contains the latest frame count, followed by the current X, Y, and Z co-ordinates

of the user’s right hand.

The code for this procedure is shown in Listing 5.13

1 //AudioPiece c l a s s

2 void AudioPiece : : SetCoOrdinates (f loat x , f loat y , f loat z)

3 {
4 //Update co−o rd ina t e s code

5 :

6 :

7 :

8 :

9 i f (this−>play ing)

10 {
11 for (int trackLoop = 0 ; trackLoop < t r a ckL i s t . s i z e () ; trackLoop++)

12 {
13 trackFactorSums [trackLoop] = 1 ;

14 for (int EPLoop = 0 ; EPLoop < endpoints . s i z e () ; EPLoop++)

15 {
16 i f ((trackLoop == recordingTrack−1) && (this−>r e co rd ing == true))

17 {
18 t r a ckL i s t . at (recordingTrack−1)−>NewNode(frameCount ,

19 (this−>X)+1500 . 0 ,

20 (this−>Y)+1000 ,

21 this−>Z) ;

22 frameCount++;

23 trackFactorSums [trackLoop] += endpoints . at (EPLoop)−>CalcTrackDistance (

24 recordingTrack−1 , ((this−>X)+1500 . 0) /1000 ,

25 ((this−>Y)+1000) /1000 , (this−>Z) /1000) ;

26 continue ;

27 }
28 trackFactorSums [trackLoop] += endpoints . at (EPLoop)−>CalcTrackDistance (

29 trackLoop , t r a ckL i s t . at (trackLoop)−>GetCurrentX (true) /1000 ,

30 t r a ckL i s t . at (trackLoop)−>GetCurrentY (true) /1000 ,

31 t r a ckL i s t . at (trackLoop)−>GetCurrentZ (true) /1000) ;

32 }

154

33 for (int EPLoop = 0 ; EPLoop < endpoints . s i z e () ; EPLoop++)

34 {
35 endpoints . at (EPLoop)−>CalcMixLevel (trackLoop , sq r t (trackFactorSums [trackLoop])) ;

36 }
37 }
38 for (int EPLoop = 0 ; EPLoop < endpoints . s i z e () ; EPLoop++)

39 {
40 endpoints . at (EPLoop)−>DispatchPacket () ;

41 }
42 for (int i = 0 ; i < 8 ; i++)

43 {
44 i f ((i == recordingTrack−1) && (this−>r e co rd ing == true)) continue ;

45 t r a ckL i s t . at (i)−>GetNextNode () ;

46 }
47 }
48 }
49 //Endpoint c l a s s

50 double Endpoint : : CalcTrackDistance (int trackNum , f loat X, f loat Y, f loat Z)

51 {
52 d i s t anc eBu f f e r [trackNum] = sq r t (

53 pow(fabs (l o c a t i o n [0] − X) , 2)+

54 pow(fabs (l o c a t i o n [1] − Y) , 2)+

55 pow(fabs (l o c a t i o n [2] − Z) , 2)) ;

56 return (1 / pow(1 + d i s t anc eBu f f e r [trackNum] , 4)) ;

57 }
58

59 void Endpoint : : CalcMixLevel (int trackNum , double factorSum)

60 {
61 mixLeve lBuf fer [trackNum] = 1 / (pow(1+d i s t anc eBu f f e r [trackNum] , 2)∗ factorSum) ;

62 }

Listing 5.13: Calculating the distances between the sound locations of each track at

each endpoint.

The code in Listing 5.13 determines whether the system is in a playing state (line 5)

and if it is, does the following:

1. Iterates through each track at each endpoint (11, 14) to determine the distance

between the sound source and the endpoint, and its respective mix level.

2. A trackFactorSums array is used (13) to store the factor for each track that is

used to keep the sound energy at a constant level.

3. Lines 16 - 24 are executed when the system is also in a recording state and

localize the sound source in real time if it is. This will create a new node in the

linked list (18 - 21) and store the frame count as well as current co-ordinates

of the track being recorded. The X and Y co-ordinates have an offset added to

them to take the KinectSound system’s origin into account. The frame count is

155

then incremented(22). The CalcTrackDistance member function of the Endpoint

object is called (23 - 25) for the recording track. This function calculates the

distance between a given track and the endpoint that it is associated with and

stores it in a buffer (52 - 55). It then returns a value (56) which is added to the

trackFactorSums array for the track being recorded.

4. Lines 28 - 31 perform the same distance and factor calculations as mentioned

above for the tracks that are not being recorded.

5. With the constant energy factor for each track calculated, the KinectSound sys-

tem calls the CalcMixLevel function for each endpoint (33 - 36). This calculates

the amplitude factor for a track in an endpoint by implementing the formula

(61) described in Section 2.3.4.

Dispatch of control packets

Upon receiving each successive Kinect frame, the control packets for each endpoint

are filled with the amplitude values for each track and dispatched to their respective

endpoints. The tracks will be mixed using these values at the endpoints. Listing 5.13

shows the calculation call to dispatch the control packets to each endpoint (38 - 41).

The DispatchPacket member function calls the SendPacket member function of the

PCapFunctions class and supplies it with the destination MAC address of the packet,

and the mix level buffer which used to populate the payload fields of the packet. The

mix level buffer is populated with the latest set of mix levels, as described in the

previous two functions. The SendPacket function is shown in Listing 5.14.

156

1 int PcapFunctions : : SendPacket (u char ∗destBoard , u char ∗mixValues)

2 {
3 //Create the packet

4 u char packet [50] ;

5

6 // s e t MAC de s t i n a t i on address to supp l i ed endpoint address

7 for (int i = 0 ; i <=5 ; i++) packet [i] = destBoard [i] ;

8

9 // s e t mac source address to Echo card

10 packet [6] = 0x00 ;

11 packet [7] = 0x14 ;

12 packet [8] = 0x86 ;

13 packet [9] = 0x00 ;

14 packet [10] = 0x01 ;

15 packet [11] = 0x44 ;

16

17 // Set the p ro toco l type to 1722 AVB

18 packet [12] = 0x22 ;

19 packet [13] = 0 xf 0 ;

20

21 // Set con t r o l i nd i c a t o r and AVBTP subtype

22 packet [14] = (0x80 | 0x7b) ;

23

24 // Set AVBTP stream ID , AVBTP Version , and message type

25 packet [15] = (0x00 | 0x00 | 0x00) ;

26

27 // Other s t a t i c ass ignments //

28

29 // Set the ta rg e t GUID (Atterotech Board)

30 packet [18] = destBoard [0] ;

31 packet [19] = destBoard [1] ;

32 packet [20] = destBoard [2] ;

33 packet [21] = 0 x f f ;

34 packet [22] = 0 x fe ;

35 packet [23] = destBoard [3] ;

36 packet [24] = destBoard [4] ;

37 packet [25] = destBoard [5] ;

38

39 // Set the c o n t r o l l e r GUID (

40 packet [26] = 0x00 ;

41 packet [27] = 0x14 ;

42 packet [28] = 0x86 ;

43 packet [29] = 0 x f f ;

44 packet [30] = 0 x fe ;

45 packet [31] = 0x00 ;

46 packet [32] = 0x01 ;

47 packet [33] = 0x44 ;

48

49 // Populate the payload

50 for (int i = 42 ; i <= 49 ; i++) packet [i] = mixValues [i−42] ;

51

52 //Send the packet

53 pcap sendpacket (adapterHandle , // the adapter handle

54 packet , // the packet

55 50) // the l ength o f the packet

56 }

Listing 5.14: The SendPacket function contained in the PcapFunctions object.

The SendPacket function does the following:

157

1. Creates a “packet” as an array of 50 unsigned characters whcih represent bytes

in the packet (4).

2. Uses the supplied MAC address to set the destination MAC address (7).

3. Assign the MAC address of the Echo Card as the source MAC address (10 - 15)

4. Set the protocol type to 1722 AVB (18 - 19)

5. Set the control indicator to true and the AVBTP subtype to AECP (22). The

first bit of this byte represents the control indicator (0x80) and the remaining

7 bits represent the AVBTP subtype (0x7b).

6. The 16th byte (25) of the packet contains a valid stream flag (1st bit), an

AVBTP version (bits 2 - 4), and a message type (last 4 bits). These are all set

to zero which indicates that this packet isn’t part of an AVB stream, and that

the message type is an AEM command.

7. Assigns the target GUID (30 - 37) and the source GUID (40 - 47) by using their

respective MAC addresses.

8. Uses the supplied mix levels to populate the payload fields (50).

9. Sends the packet via a preselected network adaptor (The Echo card) to the

network (53 - 55). This Echo card is selected as the default adaptor on startup.

5.5.3 Sketchup Display

Sketchup is a 3D modelling tool originally created by Google and is now owned by

Trimble [96]. It allows a user to create 3D object models using a set of predefined

Sketchup Tools. 3D objects in Sketchup are referred to as entities. Sketchup also

allows a user to view models from many different aspects by moving the camera

around using the mouse or camera tools.

As well as 3D modelling, Sketchup provides an API in the form of “Plugins” which

are written by a user and loaded by Sketchup upon startup. Plugins are segments of

158

Sketchup Ruby code which are saved as files with ’rb’ extensions, indicating they are

Ruby files. Plugins extend the functionality of Sketchup by:

• Simplifying multi-step operations

• Allowing external operations

• Perform automated actions upon startup

The KinectSound system uses Sketchup to display the location of the user’s right hand

in it’s 3D environment in real-time. The KinectSound system used a TCP socket

to establish a connection with Sketchup. Sketchup provides a socket class called

SKSocket (Sketchup Socket) which allows basic socket programming functionality,

however it is not officially supported and documented [106]. The KinectSound system

sends the co-ordinate values in millimeters as a colon separated string containing the

scaled X, Y, and Z values respectively.

The origin for the Sketchup model is the center of the panning environment, therefore

the co-ordinate values of the crosshair in Sketchup differ from the co-ordinates used

for the sound source panning as described in Section 5.5.1. The Kinect plugin for

sketchup receives the string mentioned above over the socket and uses the X, Y, and

Z values to update the crosshair’s position. The flowchart for updating the crosshair

is shown in Figure 5.20

159

Figure 5.20 : The Sketchup procedure for updating the crosshair’s position

5.6 Ethernet AVB for KinectSound

The KinectSound system uses AVDECC for connecting talker streams to listener

endpoints. During implementation, the Extreme bridge was used as a diagnostic

tool. This section describes how the Extreme ethernet bridge is used as a diagnostic

tool for AVB, and also describes the embedded implementation of the audio mixing

on the XMOS endpoints.

5.6.1 Extreme Networks Bridge

Section 4.4.2 has explained the use of the Extreme Networks Ethernet bridge in the

Ethernet AVB implementation of the KinectSound system. The default Extreme Op-

erating System (XOS) on the Bridge did not provide an AVB capability. The XOS

was updated so the AVB capability could be enabled. This can be done using ter-

160

minal emulator software and connecting the workstation to the bridge via a Serial to

Ethernet connection.

Once the connection to the bridge is established, there are two commands which are

used to monitor the network status of the bridge. These are the “Show AVB” com-

mand, and the “Show port” command. The function and usage of these commands

is described in further detail in the following subsections.

AVB status

The AVB status is viewed by typing the command “show AVB” as a terminal

command. The AVB status shows whether the generalized precision time protocol

(gPTP), Multiple Stream Reservation Protocol (MSRP), and Multiple VLAN Regis-

tration Protocol (MVRP) are enabled and functional. These protocols were described

in Section 4.2.1. If these protocols are enabled, the terminal will furthermore show

the ports on the bridge that are using the respective protocols. Figure 5.21 shows the

terminal output of a show AVB command.

Figure 5.21 : Terminal output of a show AVB command.

Figure 5.21 shows that there are AVB capable devices connected to ports 1 (Echo

161

Card), 4, 5, 6, and 7 (XMOS endpoints)2. This command is used as a diagnostic tool

to detect which (if any) devices are not being detected by the AVDECC controller,

which in this case is the Echo Card connected to Port 1.

Port Status

The port status of the bridge is viewed by typing the command “show port” as

a terminal command. The port status shows the information about each port on

the bridge which is the VLAN Name, state, link speed, and duplex information.

Figure 5.22 shows the terminal output of a show port command.

Figure 5.22 : Terminal output of a show port command.

This command shows the 12 ports contained on the X440-8p bridge, of which only

8 are usable by the current configuration. This excludes ports 9 to 12 as they are

unpopulated combo ports and do not contain RJ45 jacks. The unpopulated ports are

2The XMOS endpoints that are usually connected to ports 2, 3, and 8 were not connected during

this screenshot.

162

disabled and show a ’D’ under the port state column. By looking at the Speed Actual

and Duplex Actual columns, a user is able to see which ports contain connections to

active devices. The VLAN column shows the name (or number) of the VLAN that

the audio stream is being transported across. The Echo Card (connected to Port 1)

is always on the VLAN, and any devices that it is streaming to will be on the same

VLAN. Figure 5.22 shows the Echo Card only streaming to a single device, which is

connected to Port 5.

5.6.2 XMOS Attero Tech Endpoint Implementation

The XMOS endpoints are required to do the processing and mixing of the audio

samples to satisfy the distributed processing requirement. The processing component

on each endpoint performs the following tasks:

1. Receive and process Ethernet AVB data packets and AVDECC control packets.

2. Perform amplitude adjustment of the 8 audio channels by applying a mix ratio

to each one.

3. Mix the adjusted channels and send the resulting sample to a speaker for pre-

sentation.

The endpoints provide an Ethernet AVB implementation which is able to process up to

8 channels of audio at 48KHz and transmit them to the I2S interface [93]. Figure 5.23

shows a high level view of the audio processing within a listener endpoint.

163

Figure 5.23 : Audio processing within a listener endpoint

The I2S interface is located on processing tile 0 of the XS1 microprocessor and

is initialized upon startup. The I2S interface uses buffers to temporarily store any

output audio samples that it has received over the XMOS channel, which it then

sends to the output component to be presented at the speaker. The output audio

data samples received from the AVB network are stored in shared memory FIFOs

and can be extracted via a function call media output fifo pull sample. The extrac-

tion call is made in the media output fifo to xc channel split lr function. The me-

dia output fifo to xc channel split lr function sends the samples to the I2S interface

over an XMOS channel.

The AVB implementation also provides a function for handling IEEE 1722.1 con-

164

nection management and control packets. This enables the connection of a stream

between the endpoint and another device on the network.

The firmware on each endpoint was modified to fit the requirements of the Kinect-

Sound system. This required the following modifications:

• DSP functionality - The media output fifo to xc channel split lr function is

enhanced to provide Digital Signal Processing (DSP). The DSP consists of an

amplitude adjustment for each sample, and the mixing of the 8 adjusted samples

so they are sent out as a single channel. The amplitude is adjusted according

to a set of mix levels that are stored within the function. The stored mix levels

are updated by a set of mix levels received over an XMOS channel.

• Disabled channel selection - The initial AVB firmware received 8 channels

of audio in a stream, but would only output 2 of them. The user was able

to change which channel pair was sent to the output by pressing the channel

select GPIO button located on the endpoint. This needed to be disabled as the

KinectSound system required all the channels to be mixed and output over a

single channel.

• Control packet handler - A handler function was added to the 1722.1 control

packet handler within the demo function on tile 1. This function is called when

an AVDECC control packet containing an AEM COMMAND is received. Each

AEM command network packet contains a set of 8 mix levels. The mix levels

are extracted and used to update the set of mix levels within the DSP function.

The DSP and control functions run in parallel and use XMOS channels to send data to

each other. Figure 5.24 shows the data flow between the media output fifo to xc chan-

nel split lr (Tile 1) and demo (Tile 0) functions which were modified for the Kinect-

Sound system. Each element of the data flow is labelled and described below the

figure:

165

Figure 5.24 : The data flow between the modified functions and their respective

processing tiles.

A. The channel between the two tiles is used to send the set of mix levels extracted

from the control packet to the DSP function. The DSP function stores the

166

latest set of mix levels it has received.

B. The channel between the DSP function and the I2S functions is used to send

the mixed audio data from the DSP function for presentation.

C. The media output fifo pull sample function call which updates the set of audio

samples. This happens at the beginning of the media output fifo to xc channel-

split lr function so that it is able to acquire the latest set of audio samples

before beginning the DSP.

D. When the demo function calls the avb process control packet function, it passes

it an array by reference. This array’s values are updated when the mix levels

are extracted from the control packet. The array also contains a flag (fl) which

indicates when the mix levels are ready to be sent across the channel to the

DSP function. The payload extraction is a result of a series of function calls

from the demo function, where each function makes the next call depending on

an attribute within the packet’s header. Each function is described below in the

order that they are called. The attribute shown in brackets at the end of each

function’s description is the attribute identified in the KinectSound system’s

packet headers which determines the next call.

- demo, receives incoming packets and tests for AVB control packets (Control

indicator).

- avb process control packet, checks what type of control is implemented in the

packet (IEEE 1722.1).

- avb 1722 1 process packet, uses the AVBTP Subtype field to determine which

AVDECC sub protocol is being called (AECP).

- process avb 1722 1 aecp packet, determines the purpose of the message by

checking the Message Type field (AEM COMMAND).

- process avb 1722 1 aecp aem msg, extracts the packet’s payload and updates

the flag and values in the array.

E. When the flag is set to MIX LEVELS READY, the demo function sends the

flag’s value and the mix level values through the channel to the DSP function.

167

F. The DSP function updates its set of mix values when it receives a

MIX LEVELS READY flag from the channel.

G. When the audio samples have been mixed, they are sent through the channel

to the I2S functions for presentation.

The programming code for each of the modifications is given below, along with

further explanation.

5.6.2.1 Control Packet Handler

The control packet functionality for the AEM command SET MIXER is implemented

to extract the set of 8 mix levels from the control packet. This happens in the

demo function. These mix level values are then sent over an XMOS channel to

the DSP function. Figure 5.24 shows the function calls in the demo function which

are described earlier. Several checks are done for attributes in each of a packet’s

layered headers in order to determine which function to call as explained above. The

lowest level function call, which is the process avb 1722 1 aecp aem msg function is

responsible for extracting the mix levels from the packet’s payload. Listing 5.15 shows

the code contained in the demo function on tile 0 that is responsible for initiating the

mix level extraction and sending the mix levels over the XMOS channel for the DSP

function on tile 1.

1 // in demo func t i on

2 s e l e c t

3 {
4 case avb ge t c on t r o l pa ck e t (c rx , buf , nbytes) : //Check f o r AVDECC cont r o l packet

5 {
6 avb p ro c e s s c on t r o l pa ck e t (buf , nbytes , c tx , mixLevels) ; // F i r s t c a l l to proce s s the

con t r o l packet

7 i f (mixLevels [0] == MIX CHANNEL READY) //Check i f the re i s a new se t o f va lues

8 {
9 c mix channe l <: MIX CHANNEL READY; //Send f l a g through XMOS channel

10 for (int i = 1 ; i < 9 ; i++) c mix channe l <: mixLevels [i] ; //Send mix l e v e l s through

XMOS channel

11 }
12 mixLevels [0] = MIX CHANNEL IDLE; // Set f l a g back to i d l e

13 break ;

14 }
15 //Other s e l e c t events

16 }

Listing 5.15: The demo function on the endpoints.

168

The select statement checks for the receipt of control packets. It may also include

checks for events such as GPIO interaction. The case statement (4) shown in List-

ing 5.15 shows the events that occur when a control packet is received, these are:

1. The avb process control packet function (6) determines the type of packet and

will call any further functions depending on the type. This function is supplied

with an array, mixLevels, which is passed by reference. This array contains 9

integer values that consist of a flag in position 0, followed by 8 mix level values.

When the mix levels are extracted from the control packet, the array’s flag is

set to MIX CHANNEL READY by the extraction function and the remaining

values are set to the mix levels extracted from the packet.

2. The demo function performs a check for a MIX CHANNEL READY in the first

element of the array (7).

3. If this returns true, it will transmit the MIX CHANNEL READY value and

the 8 mix level values over the channel (9 - 10).

4. Once this has been completed, the flag value in the array is set back to

MIX CHANNEL IDLE (12).

5.6.2.2 Digital Signal Processing (DSP)

The DSP is done in the media output fifo to xc channel split lr function before the

sample is sent to the I2S buffers. The code for this function is separated and explained

in different subsections.

5.6.2.2a Acquire Mix Levels

Listing 5.16 shows the select statement that is used to determine if there is a new set

of mix levels to update the set that is currently stored in the function.

169

1 while (1) {
2 s e l e c t {
3 case c mix channe l :> f l a g : // I f the re i s a f l a g value in the channel

4 // Extract the f i r s t mix l e v e l from the channel and s t o r e i t

5 c mix channe l :> f i f oMixVa l s [0] ;

6 :

7 :

8 //Update the l a s t value which i s a l s o the l a s t value in the channel

9 c mix channe l :> f i f oMixVa l s [7] ;

10 // Fal l through to DSP a f t e r update

11 default :

12 //DSP

13 }
14 }

Listing 5.16: The select statement for determining if an update is required.

The function uses a case statement to determine if there is a value in the c mix channel,

the XMOS channel used to transfer the mix levels between the functions. The “:>”

operator is used to read data from a channel. If a value is present in the channel, it

will be the flag value which is always sent first. This value can be discarded as the

flag’s value only serves as an indicator that 8 mix level values are currently in the

channel waiting for extraction. A further 8 values are then read from the channel and

stored in the fifoMixVals array. This array stores the mix levels for the respective 8

tracks. If a flag is not in the channel, the select statement will go to the DSP section

by default.

170

5.6.2.2b Audio Sample Mixing

The DSP section of this function is shown in Listing 5.17:

1 while (1) {
2 s e l e c t {
3 //Mix l e v e l update (exp la ined above)

4 default :

5 samples out :> timestamp ; //Get the timestamp from the channel

6 mo ts = timestamp ;

7

8 for (int i=0 ; i<8 ; i++) { //Loop to get samples from FIFO

9 unsigned sample ;

10 sample = med i a ou tpu t f i f o pu l l s amp l e (o u t p u t f i f o s [i] , timestamp) ;

11 samples [i] = sample ;

12 }
13 for (int i=0 ; i<8 ; i++){ //Bit s h i f t i n g to pre s e rve s i gn

14 samples [i] = samples [i] << 8 ;

15 samples [i] = samples [i] >> 8 ;

16 samples [i] = (samples [i]∗ f i f oMixVa l s [i]) /100 ;

17 }
18 //Mix the samples

19 sampleout = (samples [0]) +(samples [1]) +(samples [2]) +(samples [3]) +(samples [4]) +(samples [5])

+(samples [6]) +(samples [7]) ;

20 samples out <: sampleout ; //Send sample out over f i r s t channel

21 for (int i=0 ; i<7 ; i++) samples out <: 0 ; //Send nu l l va lues f o r other 7 channe ls

22 break ;

23 }
24 }

Listing 5.17: The DSP on audio samples.

Given below is a stepwise explanation of the code:

1. A timestamp from the I2S channel is received and stored (5 - 6). This timestamp

is required to get a set of samples from the output FIFO.

2. The function uses a for loop to sequentially extract samples from the output

FIFO and store them in the samples array. The function for extracting a single

sample from the output FIFO returns the sample as an unsigned integer. These

are 24-bit values which are represented using 32 bits [93].

3. An arithmetic bit-shift is then performed on each sample which preserves the

sign, making each a valid integer value. This allowed the mix values to be

added, as they are all signed integers. Each mix level is given as a percentage

(1-100) which is used to modify the current sample values to get the final result.

4. A linear mix of the modified samples is then sent to the I2S channel for presen-

tation (19/20).

171

5. A further 7 values of 0 are sent (21) to the I2S channel to indicate that the

remaining 7 I2S channels must remain silent as the final mixed product is played

over channel 1.

5.7 Chapter Summary

This chapter has described the design approach to implementing the KinectSound

system. This approach produced the following artefacts:

• Requirement Specification

• Use Case Diagrams

• Class Diagram

• Sequence Diagrams

The remaining sections in this chapter focused on the implementation of the core

functionality of the KinectSound system which enabled 3D audio panning across a

distributed processing system. The core functionality was described in the following

sections:

• Device Free HCI - This section explained the features of the Window’s Kinect

and its ability to detect a skeleton. This ability is used to provide a user with a

way to interact with the computer. Several User Interfaces are created by the

KinectSound system using OpenGL to allow the user an easy way of interacting

with the KinectSound system.

• DAW Control - This section explained how the DAW uses ASIO drivers and

channel routing to send a set of tracks onto an Ethernet AVB network. It also

describes how the KinectSound system is able to have control over the DAW via

MIDI messages. These were used to start and stop the DAW’s audio playback.

• Audio Encoding - This section explained the mechanisms used in the Kinect-

Sound system to store the audio data that is read from the external file. The

172

audio data is stored in an external XML file which the KinectSound system lo-

cates and deserializes into a linked list implementation when it enters a record-

ing or playback state. When the user stops recording or playing the audio, the

KinectSound system serializes the audio data from the linked lists and saves it

to a new XML file. This updates any recording changes that have been made.

• 3D Audio Panning - This section explained how the KinectSound system

uses the user’s right hand co-ordinates from the Kinect to create a point in

the 3D environment. These co-ordinates were converted to two different values

which are used for locating the sound, and for displaying the position of the

user’s right hand in Sketchup. The KinectSound system uses a Distance Based

Amplitude Panning (DBAP) method to calculate the mix levels for each track

at each endpoint. The mix levels are sent to each endpoint via AVB control

packets. These packets are sent at regular intervals which occur every time a

frame is received from the Kinect.

• Ethernet AVB for KinectSound - This section described how the Extreme

Networks Bridge is used as a diagnostic tool and how the KinectSound system

uses AVDECC for the connection management and control of each endpoint.

The Extreme Networks Bridge has an operating system (XOS) which allows

the user to view and change certain attributes of the switch. This can be done

through terminal emulator software with the Bridge connected to an RS232

port.

This section also described the audio processing component of each endpoint.

The endpoints use two separate tiles for processing the audio data and control

data. The tiles are able to send data between each other by using XMOS

channels. Each endpoint uses a stored set of mix levels to perform amplitude

adjustment on the sets of audio samples that are received from the network.

The stored mix levels are updated when an AVDECC AECP AEM command

packet is received, which contains a new set of 8 mix levels.

173

Chapter 6

System Testing

The functionality and usability of the KinectSound system was tested against a com-

mercially available system to see how well it compared. This was done by gathering a

sample user base, all with different background experience in HCI, computer program-

ming, and/or sound production. These users were to test the KinectSound system

against the Spatial Audio Designer (S.A.D) mentioned in Chapter 3.

The KinectSound system used the standard inverse square law for sound localization

as the need for energy normalization was only determined after the listening tests

were conducted.

There were both qualitative and quantitative measurements taken in order to compare

each system. Using these measurements, a comparison of the Five E’s of usability

(Chapter 3) can be made. These comparisons are discussed further in the chapter.

6.1 The Testing Process

Before commencing the test, each user was provided with a summarized version of the

user manuals for each system, shown in Appendix 8.41. These contained a detailed

description of how to perform the actions required for the two different tasks. The

user had to read each manual and then perform two tasks with each system. Upon

the completion of both tasks, the user was required to answer a set of questions and

provide any additional feedback which related to their experience with each system.

The feedback forms were formulated by the tester [107] [108] and given to the user

before the test.

While the user was completing each task, their actions were observed as well as having

1The full KinectSound system user manual is shown in Appendix 8.5

174

the tasks timed. The timing data gave an indication of how easily the tasks were able

to be accomplished given that the user had never seen either of the systems before.

The tests were simplified in that the user was not required to perform any technical

tasks, such as configuring audio streams and the DAW. The users were also informed

about which system they were going to test first. This changed with each test so that

half of the users had tested the S.A.D system first, while the other half tested the

KinectSound system first. This measure was taken to ensure that the results weren’t

skewed in favour of either system.

6.1.1 The Tasks

Task 1 required the user to move a sound source within a three dimensional space.

The audio piece used for testing consisted of four tracks loaded into the Reaper

DAW. The tracks could be played, stopped, and muted from both the DAW and the

KinectSound system. The tracks were listed as:

1. Drums

2. Guitar

3. Rythm

4. Vocals

The user was required to mute the Rythm track (Track 3) and select the Vocals track

(Track 4) for recording the sound source locations. Once this track setup had been

achieved, the user was able to begin recording. The task required the sound source

to be located at the following locations for roughly 7 seconds each (with exception to

part 9, as it requires a different time):

1. Middle of the room

2. Front Left speaker

3. Front Right speaker

175

4. Front Right Height speaker

5. Front Left Height speaker

6. Back Left speaker

7. Front Center speaker

8. Back Right speaker

9. 20 seconds of any movement around the room

The user was able to use the time displayed by the DAW or the KinectSound system’s

recording interface in order to time the movements. The locations listed above allowed

the user to move the sound source to all the speakers in the current configuration

(Figure 2.8). The 20 seconds of free movement allowed the user to test any specific

movements that they wished to. Some of the users wished to test a system for a

second time in order to test a certain capability such as panning between speakers or

the playback of their recorded track, as this wasn’t included in task 1.

Task 2 required the users to reset the recorded co-ordinates of the system so that the

whole audio piece was to play from the center of the room. This was done by simply

deleting any recorded data from the previous task, and in the case of the S.A.D,

moving the Vocals track to the center of the listening space.

6.1.2 Qualitative Questionnaire

The qualitative questionnaire was provided to the users before testing, and contained

questions which covered various broad areas of the system, which pertain to the Five

E’s of system usability. Each question asked the user to give a rating between 0

(least) and 10 (most). The questionnaire consisted of 8 questions, listed below:

1. How complicated did the system look at first sight?

2. How hesitant were you to start using the system?

3. How well did the manuals describe the procedures?

176

4. How easy was it to accomplish Task 1 (record a track)?

5. How easy was it to accomplish Task 2 (reset tracks to default locations)?

6. How easy was it to pan between the surround speakers?

7. How satisfied were you with the final sound product (mixed sound from each

speaker)?

8. Please rate the quality of the audio coming from the speakers (noise, sound

glitches, etc.)?

Questions 1 and 2 cover the Engaging component of system usability. The ratings

given by these questions give an indication of the user’s first impression of the system.

Questions 3, 4, and 5 cover the Easy to learn component of system usability. These

questions allowed the user to give feedback about how intuitively simple each task

was to perform, as well as how well the manual described each task. Systems that are

less intuitively easy to use often require a detailed set of instructions before the user

is able to use them. Questions 6 and 7 cover the Effectiveness component of system

usability. Effectiveness is regarded as the most important component as it pertains

to task completion. Sound source panning and appropriate mixing at the endpoints

leading to localization were the goals of the system, and this is what these questions

refer to. Question 8 covers the Error tolerance component of system usability. Errors

in systems of this nature would typically relate to sound reproduction errors.

6.2 Quantitative results

The quantitative results consisted of the times taken by the users to complete each

task for each system. The time was started from the user’s first interaction with the

system, and stopped when they had completed the task. Once the user had completed

Task 1, they were asked to briefly wait before they began Task 2. The time for Task

2 was taken from the state the system was in after panning to the time it took the

user to reset the position of the recorded tracks. These results are a measure of the

Efficiency component of system usability, as this refers to the time taken to complete

177

a specific task.

Table 6.1 shows the quantitative results from the user tests.

Table 6.1 : The times taken for each user to complete both tasks

The users were labelled A-L as their identities were to remain anonymous. For each

time measurement the values are shown in both minutes and seconds for readability

and graphing purposes respectively. Shown at the bottom of the figure is the mean

time to complete a task, the difference between the means (shown under the S.A.D

column), the standard deviation, and the difference between the standard deviations.

A visual representation of the times provide a simpler way to compare the times

taken to complete the tasks. Figure 6.1 displays a graphical representation of the

times taken. This shows the mean time taken for each task as well as the standard

deviation for each task. These graphs display the time in seconds.

178

Figure 6.1 : The means and standard deviations of the task times

The results in Figure 6.1 show that the time taken for each task was significantly

less when the user was using the KinectSound system to perform the task. The

majority of the users struggled to find specific controls on the DAW that were required

for the recording process outlined in Task 1 when using the S.A.D. Some users got

completely stuck at certain points and had to refer back to the manuals and/or

request help from the tester. Users that were more familiar with DAWs and/or had

used Reaper before were much faster in completing the tasks. The times for both tasks

varied significantly more when using the S.A.D as opposed to the KinectSound system.

This can be shown by the Standard Deviation column in Figure 6.1. The standard

deviation for each task provides a fairly accurate measure of how intuitive each system

is due to the difference in mean times. The time taken for the tasks using the S.A.D

have a larger variation, which is influenced by factors such as past experience and

179

confidence using the system. Users that had no previous DAW experience or were

hesitant to click on any DAW controls took more time to complete each task than

users with previous experience. The KinectSound system provides a simple interface

which allows users a fast as well as interactive way of learning the system. This

provided a more consistent mean, resulting in a lower standard deviation.

Although none of the users had used S.A.D before, the fact that some were familiar

with the controls on the interface of a DAW meant that they were able to easily

find the controls required to perform the task. This reduced their time significantly

compared to the people that had to refer back to the manual. Since the KinectSound

system was completely unseen and relatively intuitive, most of the users were able to

complete the tasks with similar times, with the standard deviation just exceeding 60

seconds for Task 1 and being just under 20 seconds for Task 2.

6.3 Qualitative results

The qualitative results were derived from the questionnaire and feedback given by

the users. The results of the questionnaire have been consolidated and are shown

in Table 6.2. Shown at the bottom of Table 6.2 are the mean values, the standard

deviations, and the differences between the means and standard deviations of each

system. The first two questions of the questionnaire investigate the complexity of the

user interface, and the users’ hesitance at using the system. In these questions a low

score is a positive indicator. In order to keep the graph representations consistent,

the mean value shown for questions 1 and 2 of both systems in Figure ?? is given by

11 - x̄, where x̄ is the mean.

Figure 6.2 graphs the mean values of the two systems for each question. This visual

representation of the data allows an easier comparison of the feedback for each sys-

tem.

The quantitative results show that the KinectSound system has better scores than

S.A.D for each question. The standard deviation for the KinectSound system was

lower than the score of S.A.D for each question, which shows that the KinectSound

system’s scores are consistently better and that the mean values were not influenced

180

by any outliers. The three greatest differences in the standard deviation values were

for questions 2 (hesitancy to use the system), and questions 4 and 5 (ease of task

completion). These values were influenced the most by user’s with DAW experience

as opposed to those that did not have any previous experience. The results from these

questions show that the design considerations taken before building the KinectSound

system’s interface have provided a better user experience, thus influencing the pos-

itive scores obtained. Questions 7 and 8 referred to the final mixed audio in which

the KinectSound system scored slightly higher for Question 7, and an equal score for

Question 8. These scores indicate that the immersive experience from the Kinect-

Sound system is slightly better than that of a commercially available system. The

results from Questions 7 and 8 also show that the distance based amplitude panning

method used to localize sound sources works successfully.

Table 6.2 : User feedback from the questionnaire

181

Figure 6.2 : Graphical representation of the questionnaire

6.4 Further User Feedback

Each user was given the opportunity to provide any personal feedback or recommend

any changes that they thought would improve either of the systems. All of the

feedback given by the users falls within the following subsections:

S.A.D - Complicated DAW Interface

Almost all of the users found that the interface for the DAW was too complicated.

The users generally struggled to find small controls such as Audio Effects and Track

Automation. Both controls are essential for recording using the S.A.D plugin. A

DAW is typically complex and contains many different controls, a requirement for

the range of tasks it can perform. The KinectSound system does not require any

knowledge of a DAW as the tasks required by the DAW for the KinectSound system

are done using the MIDI commands sent from the KinectSound system.

Users that had previous experience with recording and DAWs finished task 1 faster

than the rest of the users. These users were also able to find the required controls

that were mentioned in the manual relatively easily. The manual for S.A.D (shown in

182

the Appendix 8.4) shows the locations of each control required to perform the tasks,

as well as screenshots of where they are located. This issue could have been a result

of the users not reading the manuals properly.

S.A.D - Relation Between Track 1 and Track 4

When recording Track 4 sound source movements in S.A.D, all of the audio tracks

have to be routed and mixed through track 1. Track Automation has to be altered

on track 4 in the DAW in order to record the sound movements, while track 3 has

to be muted by selecting the Mute option in the S.A.D plugin. The S.A.D plugin is

considered as an additional Audio Effect of Track 1 by the DAW. The majority of the

users did not perform these two actions correctly and used the DAW Mute control to

mute track 3. Due to the fact that this track was routed through track 1, the DAW

mute control had no effect and the track would still play. Out of all the users that

made this error, a lot of them realized it and rectified it when they opened the S.A.D

Mix module, where it shows the sound sources and the correct mute controls.

The KinectSound system eliminates this complexity by providing a simple method of

changing the muting state and recording state of a track. Each track’s muting and

recording state can only be changed in the Track Selection Interface. This interface,

as well as the Recording Interface, show the muting and recording state of each track.

These are both clearly shown and easily observable by a user.

Manual Descriptions

It was evident that many users did not read the manuals thoroughly. Users were

given as much time as they needed in order to read the manuals thoroughly before

starting the tasks. Many of the users claimed to have read the manuals and were

ready to start the tasks in a much faster time than it should have taken to read the

manuals. This caused the users to get stuck whilst performing a task and having to

refer back to the manuals. The timing for each task began when they started the task,

so referring back to the manual whilst in the middle of a task increased the time taken

for them to complete the task. This happened more often with S.A.D as the manual

183

was longer and the interface proved to be less intuitive. When the users had to refer

back to the manual, they often had to refer back to the task’s instructions, which

used up more time. The KinectSound system provided intuitive interfaces and clear

controls in order to prevent the users from having to refer back to the manual. Some

of the users still referred back to the task’s instructions when using the KinectSound

system, which did not influence the time as much as referring to the manual. Some

of the users suggested that the manuals be replaced with short video clips showing

how to perform the different operations.

KinectSound system - Interface Control Selection

The KinectSound system’s button selection triggers an action when a user’s hand has

moved into a control, and moved forward by a predefined click threshold (20cm) whilst

in the control. This is easy for users to do by moving their hand horizontally into

the control, and then forward once their hand is in the control’s boundaries. Many of

the users testing the system tended to move their hand horizontally and forward at

the same time. This resulted in their hand not moving forward the required distance

once it had entered the control, and not triggering the control they wished to. This

required them to step further forward, or move their hand out of the control and

re-attempt selecting the control.

This error could be eliminated by explaining the button selection procedure in further

detail in the manual. The distance used to determine a button selection (20cm) could

also be reduced to enable easier button selection. However, there is a trade-off here.

When users move across a control in attempt to reach another control on interfaces

where there are a lot of controls, such as in the Track Selection Interface, they may

select a control that they did not want to select. The unwanted button selection still

happened with a click threshold of 20cm, although it was a rare occurrence.

KinectSound - Crosshair Jitter

At times Kinect’s co-ordinates displayed jitter. This occurred when the co-ordinates

of the user’s hand, as detected by the kinect, suddenly moved a small distance in

184

a completely random direction from the user’s hand and then back to the correct

location. This jitter would sometimes happen when the user’s hands were pointing

directly at the Kinect, or approached an area where the Kinect was unable to detect

them (such as behind the user’s back). The jitter would usually go unnoticed. How-

ever the co-ordinates in this system were scaled by a factor of 7, and this resulted in

slightly larger jitter in the range of approximately 50mm - 150mm. This was noticable

on the 3D display, but was inaudible when recording as it was not large enough to

result in an audible difference.

KinectSound - Crosshair 3D view

The 3D view was provided in order to help the users identify the location of their

hand. The disadvantage of a single 3D display is that it only enables a single camera

view. Figure 6.3 shows two different crosshair locations that appear to be in the same

place from the camera’s perspective when viewed by the user.

Figure 6.3 : A Sketchup camera view error

Figure 6.3A shows the default camera view for the KinectSound system’s 3D

display, with a crosshair appearing to be on the front right speaker. Figure 6.3B

shows a side view of the crosshair locations, which appear in the same place to a

user if the camera position is at C. This error can be prevented by observing the

185

right hand’s co-ordinates in the given dialog box. A lot of users did not do this, and

ended up making sound localization errors. This problem could be fixed by providing

several 3D views of the localization area from different perspectives. This could not

be done as Sketchup does not provide a way of viewing a single model from different

perspectives at the same time. There could have been a further extension to the

Sketchup plugin to vary the size of the crosshair as the height of the sound source

changed. This could improve the user’s idea of the sound source height.

Dynamic Panning

The main advantage of panning using the KinectSound system was the dynamic

panning. This refers to the ability to move the sound source through all 3 axes in

a single movement. Although the S.A.D was able to localize the sound in the same

region as the KinectSound system, it had to be done using two different movements.

Certain sound movements could not be done using S.A.D such as moving the sound

source between opposite corners of the movement area, which required movement

through all 3 axes. These movements were simple to record with the KinectSound

system as it allowed the user to move their hand in any direction they wished.

6.5 Chapter Summary

This chapter has described the testing methods used in order to compare the Kinect-

Sound system, and New Audio Technology’s Spatial Audio Designer. The testing

group consisted of 12 users of whom each had at least some experience in one or more

of the following: sound production, computer programming, or user interfaces. The

test included both qualitative and quantitative feedback. The quantitative results

were a measure of the time taken to complete two tasks. The qualitative data was

derived from a questionnaire as well as any additional feedback from the user.

Both quantitative and qualitative results indicated that the KinectSound system is

more intuitive and satisfies four of the Five E’s of system usability to a greater degree

than the S.A.D. Question 8 had an identical score for the two systems. This question

referred to the quality of sound while the system was in a recording or playback state

186

and is associated with the Error tolerance component of system usability.

Although the need for energy normalization was only determined after the listening

tests were conducted, the results show that localization was accurate for a room of

this size with the KinectSound system’s speaker layout without the need for energy

normalization.

187

Chapter 7

Conclusion

This thesis has described the state of the art with regard to surround sound and

immersive sound. Furthermore it has described the conceptualization and implemen-

tation of a system, the KinectSound system. This system was created with the goal

of enhancing the current state of the art, both with regard to user control and sound

processing capability

The KinectSound system’s implementation was evaluated by a sample group of users

that had a varied level of experience with audio recording software. The feedback

from the users, both qualitative and quantitative, provided a comprehensive compar-

ison of the KinectSound system’s usability and performance against a commercially

available sound localization system.

This section provides a summary of each chapter and its relevance to the KinectSound

system as well as a discussion of the research question, the research objectives and

the extent to which the objectives have been fulfilled.

7.1 Chapter Summaries

Chapters 2 - 4 each focused on an area of research that pertained to a key area of

the KinectSound system. This was required in order to formulate an optimal set of

requirements which were followed during implementation, described in Chapter 5 and

tested in Chapter 6

Chapter 2 - focused on state of the art surround sound systems. Various speaker

configurations were introduced that ranged from the standard 2.1 stereo configura-

tion to the Auro3D 9.1 speaker configuration. This chapter also discussed various

techniques for localizing sound, including distance based amplitude panning (DBAP)

188

with a constant sound energy, the panning technique chosen to be used by the Kinect-

Sound system.

Chapter 3 - provided a benchmark of usability metrics that measure the user friend-

liness and functionality of computer systems. This chapter also discussed various

audio panning software and highlighted the need for a graphical representation of 3D

sound localization.

Chapter 4 - presented the distributed approach to immersive and surround sound

processing. This gave a brief overview of audio networking technologies and the rea-

son as to why Ethernet AVB was chosen as the networking technology used for the

KinectSound system. Ethernet AVB was discussed further along with the transport

and control protocols that it utilizes. This chapter also describes the hardware used

in the networking configuration of the KinectSound system.

Chapter 5 - provides further information about the system design and implementa-

tion of the KinectSound system. The core features of the KinectSound system were

described along with their respective programming code. The core features are:

• Device free HCI

• Digital Audio Workstation (DAW) control

• Audio encoding

• 3D audio panning

• Ethernet AVB for the KinectSound system

Chapter 6 - described the steps taken in testing the implementation with a sample

group of users. The quantitative and qualitative results are shown in this chapter

along with a discussion and user feedback.

189

7.2 Review of the Research

7.2.1 The Research Question

The primary goal of the research described in this thesis was to create and then evalu-

ate the effectiveness of a gesture controlled immersive sound system with distributed

localization processing.

This goal was approached by first investigating knowledge areas related to the desired

system. The system was then designed, implemented, and tested against a commer-

cial system. The evaluation used a set of criteria which was presented to users in

order to evaluate the system.

The use of intelligent endpoints proved to be successful as they provided a way of

partitioning and reallocating the mix level processing. The endpoints were able to

be added incrementally, which removed the limitation of a preset speaker configura-

tion. The endpoints used in the implementation did however provide two limitations,

which were the limited programming code space, and the lack of power over Ethernet

(PoE). These limitations point to future work and are discussed in further detail in

Section 7.3.

The user feedback showed that gesture control was successful in doing the following

• Providing a simplified, interactive means of controlling the system.

• Allowing the user to move the sound source through 3 dimensions simultane-

ously.

• Gain a better understanding of where the sound was being located in the room.

7.2.2 Research Objectives

This section describes the degree to which the research objectives were achieved, as

stated in the introduction of this thesis

• The speaker configuration used for the KinectSound system was a variation on

the Auro3D 9.1 and the Dolby 5.1 configuration. The configuration contained

5 speakers on the same level as the user, and two speakers above the right

190

and left front speakers to incorporate height. This configuration was selected in

order to approximate an immersive sound experience given the current hardware

limitations.

• The distribution of processing to the endpoints was implemented as part of a

modular approach to building the KinectSound system. A total of 7 endpoints

were used, one for each speaker, as this was the maximum amount that were

able to be connected to the Extreme Ethernet bridge. The current firmware

on the endpoints was modified to meet the distance based amplitude panning

requirements as laid out in the specification. The user feedback relating to the

surround sound experience, and the quality of audio produced by the mixing

performed at each endpoint proved that they are capable of mixing audio to a

commercially acceptable standard.

• Device free control of the system was implemented via several user interfaces.

Users are able to interact with these interfaces using left hand movements.

As this was a concept that none of the users had experienced before, it took

them a short amount of time to adjust to the mechanics of the device free

interaction. From evaluation feedback, the interfaces proved to be more intuitive

than a commercially available sound localization system. The goal of device free

interaction was achieved in that the user was able to perform all the recording,

playback, and shutdown actions without having to touch the keyboard or mouse.

The 3D panning was successfully implemented and tested by the users. The

feedback given by the users suggested that this approach was simpler and more

effective than using a mouse to control localization via two different perspectives

of the listening environment.

• The user testing was carried out using a sample base of 12 different users who

performed the same tasks with the KinectSound system and the commercially

available sound panning software (Spatial Audio Designer). Quantitative results

were obtained from the tests by measuring the times taken to complete each

task using the two systems. The qualitative results included a questionnaire as

191

well as further feedback given by each user. These results were consolidated and

overall provided a positive comparative evaluation of the KinectSound system

as a tool for 3D sound localization.

7.3 Limitations and Future Work

This section describes the limitations that were encountered during the imple-

mentation of the system and how these could possibly be overcome through

further research.

7.3.1 Improve Sketchup Display

Figure 6.3 shows how Sketchup’s crosshair display may appear at a different

place to what the user perceives. The Sketchup plugin for the KinectSound

system could be further improved to add features such as a colour variation

of the crosshair which would provide a more accurate representation of the

crosshair’s position.

A further extension to the KinectSound system’s Sketchup display would be to

add the positions of the recorded tracks to Sketchup. This would allow the user

to view the current points in the 3D space where the already tracks are being

localized. It would also require the KinectSound system to send through the

co-ordinates of each track over the TCP socket just before the mix levels are

calculated.

7.3.2 Added Reverberation

The use of reverberation at the endpoints of the immersive sound system could

enhance the immersive sound experience. Reverberation firmware was imple-

mented and tested during the implementation of this project, however the end-

points that were used were unable to provide reverberation and the Ethernet

AVB listener capabilities on the same endpoint. This limitation was due to a

192

memory limitation of the endpoints. Figure 7.1 shows the resource usage on an

endpoint for the reverberation and Ethernet AVB implementations.

Figure 7.1 : The resource usage on XMOS endpoints

Figure 7.1 shows that if the memory on these endpoints is increased by 25.71%,

both the reverberation and Ethernet AVB implementations could be used on a

single endpoint.

193

7.3.3 Power over Ethernet (PoE)

The endpoints used in this implementation did not provide the Power PoE capa-

bility and thus each endpoint required an external power source. The Extreme

Ethernet bridge used in the implementation provided a PoE capability, and

using this capability would improve the modularity of the system by removing

the requirement of external power. Each endpoint requires an Ethernet cable

to receive the audio, so using Ethernet to power the devices would simplify

configuration.

7.3.4 Test the Device Limitations

The KinectSound system’s implementation encountered no problems with the

distribution of audio to 7 endpoints. The Extreme Ethernet bridge that was

used was an 8 port switch which only allowed 7 endpoints to be used. Further

testing could be done in order to determine the maximum number of endpoints

that the system could distribute audio to. An increased number of endpoints

would mean that more speakers could be added to the system, which would in

turn increase the overall user experience.

7.3.5 Further Testing

The user base that tested the KinectSound system consisted of 12 users. The

accuracy of the results obtained from testing the system would increase as

the pool of users was increased. The majority of the users did not have any

professional sound recording experience. Further testing by a large group of

audio professionals would enable a better understanding of how the KinectSound

system compares to the current state of the art audio recording systems.

194

Bibliography

[1] Dolby. (2013) Home theatre speaker guide. Dolby. [Online].

Available: http://www.dolby.com/us/en/consumer/setup/connection-guide/

home-theater-speaker-guide/index.html

[2] F. Rumsey, D. Griesinger, T. Holman, M. Sawaguchi, G. Steinke, G. Theile, and

T. Wakatuki., “Multichannel surround sound systems and operations,” Audio

Engineering Society, Tech. Rep., 2001.

[3] F. Rumsey, Spatial Audio, F. Rumsey, Ed. Focal Press, 2001.

[4] W. V. Baelen, T. Bert, B. Claypool, and T. Sinnaeve, “Auro3d - a new dimen-

sion in cinema sound,” Barco, vol. 1, pp. 1–11, 2011.

[5] F. Melchior, C. Pike, M. Brooks, and S. Grace, “On the use of a haptic feedback

device for sound source control in spatial audio systems,” in Audio Engineering

Society 134th Convention, Rome. AES, May 2013.

[6] Echo. (2014) Echo nic-1. Echo Audio. [Online]. Available: http://echoavb.

com/products/streamware-nic-1

[7] F. Otten, “Network simulation for professional audio networks,” Ph.D. disser-

tation, Rhodes University, June 2014.

[8] M. Neukom, “Ambisonic panning,” in Audio Engineering Society 123rd Con-

vention, New York. AES, October 2007.

[9] J. Barker, A. de Cheveign, D. P. W. Ellis, A. S. Feng, M. Goto, D. L. Jones,

K. Palomki, and R. Stern, Computational Auditory Scene Analysis, D. Wang

and G. Brown, Eds. Wiley Interscience, 2005.

195

[10] V. Pulkki, “Virtual sound source positioning using vector base amplitude pan-

ning,” Journal of the Audio Engineering Society, vol. 45, no. 6, pp. 456–466,

1997.

[11] T. Lossius, P. Baltazar, and T. de la Hogue, “Dbap - distance-based ampli-

tude panning,” in International Computer Music Conference (ICMC), Mon-

treal. ICMC, August 2009.

[12] D. Kostadinov, J. Reiss, and V. Mladenov, “Evaluation of distance based ampli-

tude panning for spatial audio,” in IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Dallas. ICASSP, March 2010.

[13] (2014) Spatial audio designer. New Audio Technology. [Online]. Available:

http://www.newaudiotechnology.com/products/spatial-audio-designer/

[14] (2014, December) Ieee 802.3 ethernet working group. IEEE. [Online]. Available:

http://www.ieee802.org/3/

[15] (2014) Kinect for windows sensor components and specifications. Microsoft.

[Online]. Available: http://msdn.microsoft.com/en-us/library/jj131033.aspx

[16] M. Hedges and R. Foss, “The use of gesture recognition to select and distribute

audio across a network,” in South African Telecommunications, Networking,

and Applications Conference (SATNAC), Stellenbosch. SATNAC, September

2013.

[17] ——, “Utilizing gesture recognition and ethernet avb for distributed surround

sound control,” in Audio Engineering Society 137th Convention, Los Angeles.

AES, October 2014.

[18] T. Holman, Surround Sound - up and running, 2nd ed., T. Holman, Ed. Focal

Press, 2008.

[19] (1881, December) Scientific american - the telephone at the paris opera.

Scientific American. [Online]. Available: http://earlyradiohistory.us/1881opr.

htm

196

[20] H. Robjohn. (1997, February) Stereo microphone techniques explained. Sound

on Sound. [Online]. Available: https://www.soundonsound.com

[21] M. Miller. (2004, September) The history of surround sound. Pearson. [Online].

Available: http://www.quepublishing.com/articles/article.aspx?p=337317

[22] T. Holman, Sound for Film and Television, F. Press, Ed. Oxford, 1997.

[23] (2011, April) Understanding surround sound formats. Crutchfield.

[Online]. Available: http://www.crutchfield.com/S-iyORSHAIY2P/learn/

learningcenter/home/hometheater\ surround.html

[24] R. Silva. (2013) 5.1 vs 7.1 channel home theater receivers - which is right

for you? About.com. [Online]. Available: http://hometheater.about.com/od/

hometheateraudiobasics/qt/5-1vs7-1diff.htm

[25] (2013, March) Guide to home theater speaker placement - understanding

speaker placement in multichannel audio. Audyssey. [Online]. Available: http://

www.practical-home-theater-guide.com/home-theater-speaker-placement.html

[26] J. Middlebrooks and D. Green, “Sound localization by human listeners,” Re-

search Paper, 1991.

[27] C. Denison. (2014, December) Ultimate surround sound guide: Different

formats explained. Digital Trends. [Online]. Available: http://www.

digitaltrends.com

[28] G. Potard, “3d-audio object oriented coding,” Ph.D. dissertation, University of

Wollongong, 2006.

[29] K. Lee, S. Jo, and D. Kim, “3d object rendering into 5.1 surround system,” in

Audio Engineering Society 136th Convention, Berlin. AES, April 2014.

[30] Audio Definition Model - Metadata Specification, Online, European Broadcast-

ing Union Specification 1.0, January 2014.

197

[31] (2013, April) Authoring for dolby atmos cinema sound manual. Manual. Dolby

Laboratories. [Online]. Available: http://www.dolby.com/

[32] Barco home. Barco. [Online]. Available: http://www.barco.com/en/

[33] B. V. Daele and W. V. Baelen. (2011, November) Auro3d octopus codec -

principles behind a revolutionary codec. Auro Technologies. [Online]. Available:

www.auro-3d.com

[34] Mpeg - the moving picture experts group. MPEG. [Online]. Available:

http://mpeg.chiariglione.org/

[35] J. Herre, J. Hilpert, A. Kuntz, and J. Plogsties, “Mpeg-h audio - the new

standard for universal statial/3d audio coding,” Audio Engineering Society,

Tech. Rep., December 2014.

[36] S. Fug, A. Holzer, C. Bor, C. Ertel, M. Kratschmer, and J. Plogsties, “Design,

coding and processing of metadata for object-based interactive audio,” in Audio

Engineering Society 137th Convention, Los Angeles. AES, October 2014.

[37] About dts. Digital Theater Systems. [Online]. Available: http://www.dts.com/

corporate/about-dts.aspx

[38] T. Nicolakis. (2015, January) Dts announces dts:x immersive surround

sound format. Audioholics. [Online]. Available: http://www.audioholics.com/

audio-technologies/dts-x-immersive-surround-sound

[39] SMPTE. (2013, March) Smpte creates new technology committee dedicated

to cinema sound. Online. Society of Motion Picture & Television Engineers.

[Online]. Available: https://www.smpte.org/news-events/news-releases/

[40] B. Vessa. (2014, May) 25css interoperability of immersive sound systems in

digital cinema. Online. Society of Motion Picture & Television Engineers.

[Online]. Available: https://kws.smpte.org/kws/public/projects/

198

[41] M. Morrell and J. Reiss, “A comparative approach to sound localisation within

a 3d sound field,” in Audio Engineering Society 126th Convention, Munich.

AES, May 2009.

[42] S. Brown. (2004, October) Simon’s graphics blog - spherical harmonics

basis functions. [Online]. Available: http://www.sjbrown.co.uk/2004/10/16/

spherical-harmonic-basis/

[43] (2008) Hoa technical notes - b-format. Blue Ripple Sound. [Online]. Available:

http://www.blueripplesound.com/b-format

[44] J. J. Hofmann. (2005, September) Ambisonics tutorial. Sonic Architecture.

[Online]. Available: http://csounds.com/resources

[45] D. Griesinger, “Stereo and surround panning in practice,” in Audio Engineering

Society 112th Convention, Munich. AES, April 2002.

[46] F. Keiler and J.-M. Batke, “Evaluation of virtual source localization using 3d

loudspeaker setups,” in Audio Engineering Society 128th Convention, London.

AES, May 2010.

[47] S. Haw, “The x170 protocol as a vehicle for 3d sound control,” Thesis, November

2011.

[48] C. Dewey and J. Wakefield, “A guide to the design and evaluation of new user

interfaces for the audio industry,” in Audio Engineering Society 136th Conven-

tion, Berlin. AES, April 2014.

[49] J. Sauro. (2011, November) 10 essential usability metrics. MeasuringU.

[Online]. Available: https://www.measuringu.com/blog/essential-metrics.php

[50] A. Dillon, Usability Evaluation, W. Karwowski, Ed. Taylor and Francis, 2001.

[51] W. Quesenbery, “What does usability mean: Looking beyond ease of use,” in

Society for Technical Communication, 48th Annual Conference, 2001.

199

[52] About the vst standard. Steinberg. [Online]. Available: https://www.steinberg.

net/en/company/technologies/vst3.html

[53] (2014) Anymix pro - the surround maker. IOSONO. [Online]. Available:

http://www.iosono-sound.com/vstaax-plug-ins/

[54] Nuage surround panner. JL Cooper Electronics. [Online]. Available:

https://jlcooper.com/

[55] A new platform for unprecedented post-production productivity.

Yamaha Commecial Audio, Steinberg. [Online]. Available: http:

//www.yamahaproaudio.com/

[56] Nuendo 6.5 - advanced post and audio production system. Steinberg. [Online].

Available: https://www.steinberg.net

[57] The leap motion controller. Leap Motion Inc. [Online]. Available: https:

//www.leapmotion.com/

[58] J. Ratcliffe, “Motionmix: A gestural audio mixing controller,” in Audio Engi-

neering Society 137th Convention, Los Angeles. AES, October 2014.

[59] (2015) Open source computer vision. Itseez. [Online]. Available: http:

//opencv.org/

[60] L. Srinivasan. (2013, April) Hand tracking and gesture de-

tection (opencv). [Online]. Available: http://s-ln.in/2013/04/18/

hand-tracking-and-gesture-detection-opencv/

[61] Kinect for windows sensor components and specifications. Microsoft. [Online].

Available: http://msdn.microsoft.com/en-us/library/jj131033.aspx

[62] D. Lau. (2013, November) The science behind kinects or kinect 1.0 versus 2.0.

Gamasutra. [Online]. Available: http://www.gamasutra.com/

[63] Kinect for windows. Microsoft. [Online]. Available: http://www.microsoft.

com/en-us/kinectforwindows/

200

[64] W. Zeng. (2012) Microsoft kinect sensor and its effect. IEEE. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6190806

[65] K. Gross, “Audio networking: Applications and requirements,” in Journal of

the Audio Engineering Society, vol. 54, no. 1/2. AES, February 2006, pp.

62–66.

[66] M. Teener. Technical introduction to ieee 1394. Presentation. IEEE. [Online].

Available: http://www.ieee802.org/802 tutorials/

[67] D. Anderson, FireWire System Architecture (2Nd Ed.): IEEE 1394a. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[68] C. Tindel and B. Pietsch, “Ieee 1394 and linux - the firewire serial

bus and its implementation,” Online, February 2000. [Online]. Available:

http://www.tindel.net/Firewire/firewire.html

[69] J. Canosa, “Fundamentals of firewire,” Online, November 2000. [Online].

Available: http://public.fh-wolfenbuettel.de/∼bermbach/research/firewire/

files/basics.pdf

[70] N. Chikwamba and R. Foss, “Enhancing end-user capabilities in high speed

audio networks,” in Audio Engineering 123rd Convention, New York. AES,

October 2007.

[71] F. Culas, “Ethersound es-giga system transport preliminary information,”

EtherSound, Tech. Rep., December 2006.

[72] Ethersound es-giga system transport. EtherSound. [Online]. Available:

http://www.ethersound.com/download/files/cutsheetESgiga.pdf

[73] C. Doering, “The ethersound standard - ethernetworking professional audio,”

Brochure, March 2006, dynamic Market Systems.

[74] EtherSound Setup Guide, Yamaha and Commercial Audio, April 2010.

201

[75] “Overview - an introduction to the es-100 technology,” Document, August 2006,

rev. 3.0b.

[76] S. Schmitt and J. Cronemeyer. Audio over ethernet: There are many solutions

but which one is best for you? Online Paper. DSPECIALISTS. [Online].

Available: http://www.dspecialists.com/

[77] (2014) About cobranet and frequently asked questions. Cirrus Logic. [Online].

Available: http://www.cobranet.info/support/

[78] B. Klinkradt and R. Foss, “A comparative study of mlan and cobranet tech-

nologies and their use in the sound installation industry,” in Audio Engineering

Society 114th Convention, Amsterdam. AES, March 2003.

[79] D. Harrington, R. Presuhn, and B. Wijnen. (2002, December) An architecture

for describing simple network management protocol (snmp) management

frameworks. The Internet Engineering Task Force. [Online]. Available:

https://www.ietf.org/

[80] J. Dibley, “An investigation of the xmos xs1 architecture as a platform for

development of audio control standards,” Masters Thesis, Rhodes University,

October 2013.

[81] (2013) Dante. Biamp Systems. [Online]. Available: http://support.biamp.com/

Tesira/Control/Dante

[82] (2014, July) Dante networking guide. Peavey Electronics Corporation. [Online].

Available: http://www.peaveyoxford.com/kc/Dante%20Networking%20Guide.

pdf

[83] IEEE, IEEE Standard for Layer 2 Transport Protocol for Time-Sensitive Ap-

plications in Bridged Local Area Networks, Draft Standard, IEEE Standard,

February 2014.

202

[84] AES standard for audio applications of networks - High-performance stream-

ing audio-over-IP interoperability, Audio Engineering Society Standard, March

2014.

[85] K. Nichols, S. Blake, F. Baker, and D. Black. (1998, December)

Definition of the differentiated services field (ds field) in the ipv4 and

ipv6 headers. The Internet Engineering Task Force. [Online]. Available:

https://www.ietf.org/rfc/rfc2474.txt

[86] Home of the audio engineering society. AES. [Online]. Available: http:

//www.aes.org/

[87] IEEE Standard for Local and Metropolitan area networks - Virtual Bridged Lo-

cal Area Networks Amendment 14: Stream Reservation Protocol, Document

Standard, IEEE Std., September 2010.

[88] IEEE Standard for Local and Metropolitan area networks - Virtual Bridged Local

Area Networks Amendment 12: Forwarding and Queuing Enhancements for

Time-Sensitive Streams, Document Standard, IEEE Std., January 2010.

[89] G. Garner. (2008, September) Ieee 1588 version 2. IEEE. [Online]. Available:

http://www.ieee802.org/

[90] IEEE Standard for Local and Metropolitan area networks - Timing and Syn-

chronization for Time-Sensitive Applications in Bridged Local Area Networks,

Document Standard, IEEE Std., March 2011.

[91] IEEE Standard for Device Discovery, Connection Management, and Control

Protocol for IEEE 1722 BasedDevices, Document Standard, IEEE Std., 2013.

[92] (2000, January) Steinberg asio 2.0. Steinberg. [Online]. Available: http:

//comp.ist.utl.pt/

[93] XMOS. (2014) Xmos avb audio endpoint reference design. XMOS. [Online].

Available: https://www.xmos.com

203

[94] (2007) Winpcap documentation - 4.0.2. CACE Technologies. [Online].

Available: http://www.winpcap.org/docs/

[95] N. Morrow and D. Mitchell, “Ieee1394 common isochronous packet (cip)

enhancements for host controllers,” June 2002, uS Patent 6,405,275. [Online].

Available: http://www.google.com/patents/US6405275

[96] (2013) Sketchup - the easiest way to draw in 3d. Trimble Navigation Limited.

[Online]. Available: http://www.sketchup.com/

[97] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user

guide. Pearson Education India, 1999.

[98] IBM. Rational rose modeler. The International Business Machines Corporation

(IBM). [Online]. Available: http://www-03.ibm.com/software/products/en/

rosemod/

[99] Kinect sdk c++ - 1. kinect basics. Princeton University. [Online]. Available:

http://www.cs.princeton.edu/

[100] Tracking users with kinect skeletal tracking. Microsoft. [Online]. Available:

http://msdn.microsoft.com/en-us/library/jj131025.aspx

[101] Vector4 structure. Microsoft. [Online]. Available: http://msdn.microsoft.com/

en-us/library/windows/desktop/bb324268%28v=vs.85%29.aspx

[102] (2012) Loopbe1 - a free virtual midi driver. Nerds.de - Audio & MIDI Particles.

[Online]. Available: http://www.nerds.de/en/loopbe1.html

[103] (2014) Midi messages. MIDI Manufacturers Association. [Online]. Available:

http://www.midi.org/techspecs/midimessages.php

[104] (1996, October) Ieee standards interpretations for ieee std 1003.1c-

1995 ieee standard for information technology–portable operating system

interface (posix) - system application program interface (api) amendment

204

2: Threads extension (c language). Standard. IEEE. [Online]. Available:

http://standards.ieee.org/findstds/interps/1003-1c-95 int/

[105] A. van Kesteren, A. Gregor, A. Russell, and R. Berjon. (2014, July)

W3c dom4. World Wide Web Consortium (W3C). [Online]. Available:

http://www.w3.org/TR/dom/

[106] J. Foltz. (2012, May) Class: Sksocket. [Online]. Available: http://www.

rubydoc.info/github/jimfoltz/SketchUp-Ruby-API-Doc/master/SKSocket

[107] T. Tullis and W. Albert, Measuring the User Experience: Collecting, Analyzing,

and Presenting Usability Metrics, M. Kaufmann, Ed. Morgan Kaufmann, 2008.

[108] E. Goodman, M. Kuniavsky, and A. Moed, Observing the User Experience: A

Practitioner’s Guide to User Research, M. Kaufmann, Ed. Morgan Kaufmann,

2012.

[109] Specification of the Broadcast Wave Format (BWF), Online, European Brod-

casting Union Specification 2.0, May 2011.

205

Appendix 8.1

The Complete EBU Layout

206

Figure 8.1: The UML layout of the EBU specification [30]

207

The specification uses Broadcast Wave Format [109] (BWF) files as an example for

the audio, as shown at the bottom of Figure 8.1. Due to the fact that a BWF file may

have multiple tracks, each track is accompanied by at least one <chna> chunk. Each

<chna> chunk contains numbers which correspond to the track which it is describing.

The reason that the list may be longer than the maximum number of tracks is that a

track may be redefined at a different time during the audio playback [30]. Each track

has an audioTrackUID which is a unique ID that is assigned to each track.

The audioTrackFormat

The audioTrackFormat describes the format that the audio data is in. This is a

requirement which allows the audio renderer to decode the signal correctly. The au-

dioTrackFormat is referred to from the audioStreamFormat class, which is responsible

for identifying the combination of tracks required to decode the track data. Shown in

Table 8.1 are the attributes and sub elements contained within the audioTrackFormat

class. Listing 8.1 shows sample XML code of a single audioTrackFormat block. This

block specifies an audio track for the Front Right speaker of a system. It is linked to

an audioStreamFormat block with an ID of AS00010002.

Attribute Description Example

audioTrackFormatID ID of the audio track AT 00010001 02

audioTrackFormatName Name of the audio track PCM FrontRight

formatLabel Descriptor of the format 0001

formatDefinition Description of the format PCM

Sub Element Description & Quantity Example

audioStreamFormatIDRef Reference to an audioStreamFormat
[
0

or 1
] AS00010002

Table 8.1 : The audioTrackFormat attributes and sub elements

208

1 <audioTrackFormat audioTrackFormatID=”AT 00010001 02” audioTrackFormatName=”PCM FrontRight”

2 formatLabel=”0001” fo rmatDe f in i t i on=”PCM”>

3 <audioStreamFormatIDRef>AS 00010002</audioStreamFormatIDRef>

4 </audioTrackFormat>

Listing 8.1: audioTrackFormat sample code

The audioStreamFormat

The main purpose of the audioStreamFormat is to establish a relationship between

the audioTrackFormat, and the audioPackFormat or audioChannelFormat. The main

use of the audioStreamFormat is to create a decodable signal which covers several au-

dioChannelFormats from encoded tracks where several audioTrackFormats have been

used. Table 8.2 shows the attributes and sub elements of the audioStreamFormat and

listing 8.2 shows corresponding sample code. This code creates an audioStreamFor-

mat with an ID of AS 00010002 for a Front Right speaker. The ID for this stream

is the same ID used as the reference in listing 8.1, this is an example of how block

formats in this model are able to reference one another. The sub elements in this

audio stream contain references to a track, and channel respectively.

Attribute Description Example

audioStreamFormatID ID of the audio stream AT 00010002

audioStreamFormatName Name of the audio stream PCM FrontRight

formatLabel Descriptor of the format 0001

formatDefinition Description of the format PCM

Sub Element Description Example

audioChannelFormatIDRed Reference to an audioChannelFormat AC 00010003

audioPackFormatIDRef Reference to an audioPackFormat AP 00010002

audioTrackFormatIDRef Reference to an audioTrackFormat AT 00010001 01

Table 8.2 : The audioStreamFormat attributes and sub elements

209

1 <audioStreamFormat audioStreamFormatID=”AS 00010002” audioStreamFormatName=”PCM FrontRight”

2 f o rmatDe f in i t i on=”PCM” formatLabel=”0001”>

3 <audioTrackFormatIDRef>AT 00010001 02</audioTrackFormatIDRef>

4 <audioChannelFormatIDRef>AC 00010003</audioChannelFormatIDRef>

5 </audioStreamFormat>

Listing 8.2: audioStreamFormat sample code

The audioChannelFormat

The audioChannelFormat contains a sequence of audio samples where actions such as

movement may occur. These actions are divided into timed chunks which are defined

by the audioBlockFormat. Shown in Table 8.3 are the attributes and sub elements of

the audioChannelFormat.

Attribute Description Example

audioChannelFormatID The ID of the channel AC 00010003

audioChannelFormatName The name of the audio channel FrontRight

typeLabel Descriptor of the type of channel 0002

typeDefinition Description of the type of channel Matrix

Sub Element Description & Quantity Attributes

audioBlockFormat A timed division of the channel contain-

ing metadata

See table 8.5

frequency Sets a high or low cut off frequency for

the audio

typeDefinition= “low-

Pass” or “highPass”

Table 8.3 : The audioChannelFormat attributes and sub elements

The typeDefinition field specifies the type of audio it is describing. There are five

possible definitions which are shown in Table 8.4.

210

Type def. Label Audio Type Audio Description

DirectSpeakers 0001 Channel-based Each channel feeds a speaker directly

Matrix 0002 Channel-based Channels are matrixed together

Objects 0003 Object-based Channels represent audio objects which

include sound location information

HOA 0004 Scene-based Used for ambisonics and Higher Order

Ambisonics

Binaural 0005 Binaural Audio playback through a stereo headset

Table 8.4 : The five different type definitions available

Shown in Listing 8.3 is sample code for the audioChannelFormat. This example

describes a direct channel fed to the Front Right speaker. The position of the speaker

is described within the audioBlockFormat tag.

1 <audioChannelFormat audioChannelFormatID=”AC 00010003” audioChannelFormatName=”FrontRight ”

2 typeDe f i n i t i on=”DirectSpeakers ”>

3 <audioBlockFormat <!−−audioBlockFormat a t t r i bu t e s>>

4 <!−−audioBlockFormat co−ord inate informat ion>

5 </audioBlockFormat>

6 <!−−other audioBlockFormats>

7 </audioChannelFormat>

Listing 8.3: audioChannelFormat sample code.

The audioBlockFormat

The audioBlockFormat represents a sequence of audioChannelFormat samples. The

audioBlockFormat contains several fixed parameters, these parameters will differ de-

pending on the typeDefinition field in the audioChannelFormat. The attributes of the

audioBlockFormat are shown in Table 8.5.

211

Attribute Description Example

audioBlockFormatID Id of the audio block AB 00010001 00000001

rtime The starting time of the audio block 00:01:00.00000

duration The time duration of the block 00:02:00.00000

Table 8.5 : The audioBlockFormat attributes

Listing 8.4 shows a channel with two different audioBlockFormats. The typeDef-

inition for these blocks has been set to Objects, which describe the sound location

for this channel as an azimuth, elevation, and distance. The azimuth and elevation

are measure in degrees while the distance is a normalized value between
[
0..1
]

from

the origin. The first audio block describes the position for 5 seconds. This can be

seen from the rtime parameter being set to zero (the beginning of the audio signal)

and the duration parameter set to 5 seconds. The next audio block’s position is de-

scribed from the 5th second, for a duration of 10 seconds. The azimuth, elevation,

and distance can be seen in these audio blocks with a slight change between the two

blocks.

1 <audioChannelFormat audioChannelFormatID=”AC 00031001” audioChannelFormatName=”Car1”

2 typeLabel=”0003” typeDe f i n i t i on=”Objects ”>

3 <audioBlockFormat audioBlockFormatID=”AB 00031001 00000001” rt ime=” 00 : 00 : 00 . 00000 ”

4 durat ion=” 00 : 00 : 05 . 00000 ”>

5 <po s i t i o n coord inate=”azimuth”>−22 . 5</pos i t i on>

6 <po s i t i o n coord inate=” e l e va t i on ”>5 . 0</pos i t i on>

7 <po s i t i o n coord inate=” d i s t ance ”>1 . 0</pos i t i on>

8 </audioBlockFormat>

9 <audioBlockFormat audioBlockFormatID=”AB 00031001 00000002” rt ime=” 00 : 00 : 05 . 00000 ”

10 durat ion=” 00 : 00 : 10 . 00000 ”>

11 <po s i t i o n coord inate=”azimuth”>−45</pos i t i on>

12 <po s i t i o n coord inate=” e l e va t i on ”>20</pos i t i on>

13 <po s i t i o n coord inate=” d i s t ance ”>0 . 75</pos i t i on>

14 </audioBlockFormat>

15 <!−−more audio blocks>

16 </audioChannelFormat>

Listing 8.4: Two audioBlockFormat blocks as they would appear in the code

Figure 8.2 shows the two different audio locations described in the listing. Figure 8.2A

shows the source at an azimuth of −22.5◦, an elevation of 5◦, and a distance of 1.0.

Figure 8.2B shows the source at an azimuth of −45◦, an elevation of 205◦, and a

212

distance of 0.75.

Figure 8.2 : Two different locations of sound sources, as described in the previous

code listing

The audioPackFormat

The audioPackFormat groups different channels together that are of the same type. If

the audio file has many channels that are of the same type, only one audioPackFormat

block would be required, which would contain references to the channels. Shown in

213

Table 8.6 are the attributes of the audioPackFormat.

Attribute Description Example

audioPackFormatID ID of the audio pack AP 00010001

audioPackFormatName Name of the audio pack Stereo

typeLabel Descriptor of the channel type 0001

typeDefinition Description of the channel type DirectSpeakers

importance Importance of the track rated from 0 -

10. This allows a renderer to discard

packs with an importance below a pre-

defined threshold

7

Sub Element Description & Quantity Example

audioChannelFormatIDRef Reference to an audioChannelFormat,[
0 .. *

] AC 00010001

audioPackFormatIDRef Reference to an audioPackFormat,
[
0 ..

*
] AP 00010002

absoluteDistance Absolute maximum distance in meters,[
0 or 1

] 3.9

Table 8.6 : The audioPackFormat attributes

The absoluteDistance sub element specifies the maximum distance a speaker,

sound object, or channel may appear from the origin. These objects will contain

a normalized distance between 0 and 1 which can be applied to the absolute dis-

tance to find out the actual distance. Shown in Listing 8.5 is sample code of an

audioPackFormat block.

1 <audioPackFormat audioPackFormatID=”AP 00040001” audioPackFormatName=”DIRECT STEREO”

2 typeLabel=”0001” typeDe f i n i t i on=”DirectSpeakers ”>

3 <audioChannelFormatIDRef>AC 00010001</audioChannelFormatIDRef>

4 <audioChannelFormatIDRef>AC 00010002</audioChannelFormatIDRef>

5 <abso luteDistance>5 . 0</abso luteDistance>

6 </audioPackFormat>

Listing 8.5: An example of an audioPackFormat block

214

Appendix 8.2

The Sketchup plugin for the KinectSound
system

215

1 Sketchup . act ive mode l . a c t i v e e n t i t i e s . e r a s e e n t i t i e s Sketchup . act ive mode l . a c t i v e e n t i t i e s [0]

2 model = Sketchup . act ive mode l

3 ven de f = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\SketchUp\\SketchUp

2013\\Components\\Audio\\Venue . skp”)

4 ven l o ca t i on = Geom : : Point 3d .new 0 .mm, 0 .mm, 0 .mm

5 transform = Geom : : Transformation .new ven l o ca t i on

6 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

7 in s tance = e n t i t i e s . add ins tance ven def , transform

8

9 def Connect ()

10 SKSocket . d i s connec t

11 puts ”Connecting to 1 2 7 . 0 . 0 . 1 (LOCALHOST) on port 30456”

12 SKSocket . connect ” 1 2 7 . 0 . 0 . 1 ” , 30456

13 puts ”Connection e s t ab l i s h ed ”

14 SKSocket . a d d s o c k e t l i s t e n e r {| recvData | s o c k e t l i s t e n e r (recvData)}
15 end

16

17 de f SendData (data)

18 SKSocket . wr i t e data

19 end

20

21 de f s o c k e t l i s t e n e r (sockData)

22 puts sockData

23 codeArr = sockData . s p l i t (” : ”)

24 c r o s s h a i r d e f = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\SketchUp\\
SketchUp 2013\\Components\\Audio\\Crossha i r . skp”)

25

26 #Moving the crosshair on all 3 axes

27 c r o s s h a i r l o c a t i o n = Geom : : Point 3d .new codeArr [0] . t o f .mm−150 .mm, codeArr [2] . t o f .mm−150 .mm,

codeArr [1] . t o f .mm−150 .mm

28

29 transform = Geom : : Transformation .new c r o s s h a i r l o c a t i o n

30 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

31 in s tance = e n t i t i e s . add ins tance c r o s s h a i r d e f , transform

32 Sketchup . act ive mode l . a c t i v e e n t i t i e s . e r a s e e n t i t i e s Sketchup . act ive mode l . a c t i v e e n t i t i e s [1]

33

34 end

35

36 de f i n i t ()

37 c r o s s h a i r d e f = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\SketchUp\\
SketchUp 2013\\Components\\Audio\\Crossha i r . skp”)

38 c r o s s h a i r l o c a t i o n = Geom : : Point 3d .new −150 .mm,−150 .mm,−150 .mm

39 transform = Geom : : Transformation .new c r o s s h a i r l o c a t i o n

40 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

41 in s tance = e n t i t i e s . add ins tance c r o s s h a i r d e f , transform

42

43 eye = [−0 . 156 , −297 . 18 , 297 . 77]

44 ta rg e t = [−0 . 272 , 407 . 261 , −381 . 39]

45 up = [−0 . 00 , 0 . 684 , 0 . 729]

46 my camera = Sketchup : : Camera .new eye , target , up

47 view = Sketchup . act ive mode l . a c t i v e v i ew

48 view . camera = my camera

49 end

50

51 de f cameraStats

52 view = Sketchup . act ive mode l . a c t i v e v i ew

53 camera = view . camera

54 eye = camera . eye

55 ta rg e t = camera . t a r g e t

56 up = camera . up

57 #UI . messagebox ”Eye : ” + eye . t o s + ”\nTarget : ” + ta rg e t . t o s + ”\nUp : ” + up . t o s

216

58 UI . messagebox ”Eye : ” + (eye [0]∗ 1) . t o s + ” , ” + (eye [1]∗ 1) . t o s + ” , ” + (eye [2]∗ 1) . t o s +

59 ”\nTarget : ” + (ta rg e t [0]∗ 1) . t o s + ” , ” + (ta rg e t [1]∗ 1) . t o s + ” , ” + (ta rg e t [2]∗ 1) . t o s +

60 ”\nUp : ” + (up [0]∗ 1) . t o s + ” , ” + (up [1]∗ 1) . t o s + ” , ” + (up [2]∗ 1) . t o s

61 end

62

63 Connect ()

64 i n i t ()

217

Appendix 8.3

Class diagram and sequence diagrams

218

The class diagram

219

Sequence diagram - Startup

220

Sequence diagram - Create home interface

221

Sequence diagram - Create track selection interface

222

Sequence diagram - Create recording interface

223

Sequence diagram - Determine task selection

224

Sequence diagram - Determine track selection

225

Sequence diagram - Change interface

226

Sequence diagram - Arm a track for recording

227

Sequence diagram - Mute a track

228

Sequence diagram - Recording a track

229

Sequence diagram - Playing a track

230

Sequence diagram - Saving a track’s co-ordinates

231

Sequence diagram - Resetting a track’s co-ordinates

232

Appendix 8.4

Summarized manuals for system testing

Recording with KinectSound

Selecting options

The KinectSound interface shows the current menu options available superim-
posed over the camera image. The Kinect displays the user’s left arm (green
squares joined with white lines) and right hand (red crosshair). The menu op-
tions from all the interfaces have black backgrounds so the user is able to read
the text within the control. An example of this is shown in the figure below.

Figure 1: The Kinect detecting a user

The user is able to select any of the menu options by moving their left hand
into the menu item and moving it forward as if pressing a button.

Recording tracks

Upon startup, the KinectSound interface will display the home interface. The
user must then navigate to the Track Selection Interface where they are able
to change track settings before proceeding to record. The layout of the track
selection interface is shown below.

Each track is shown in pale blue. When a track has been selected, the outline

1

Figure 2: The Track Selection Interface

will be shown in green. A selected track can either have its muting state changed
or its recording state changed by selecting the Mute/Unmute Selected or Record
Select options respectively. Only one track may be selected for recording at a
time. The track that has been selected for recording will have a red circle shown
at the top right of it’s boundary. The muting state of each track is shown at
the top left of the tracks boundary either in red or green, for muted or unmuted
respectively. The user may then proceed to the Recording Interface by selecting
the Proceed option.
The Recording Interface has options to do the following:

• Record - Begins recording the current position of the user’s hand and
applies it to the track that the user has chosen to record. All other tracks
will be played using their stored co-ordinates. If a user stops recording
before the end of a track, the system will assume their last hand position
as the co-ordinates used for the rest of the track.

• Playback - Plays the tracks back using their stored co-ordinates

• Stop - Stops the recording or playback

2

If a track has been muted, then it will not be played back during recording or
playback. If a track has been muted but is chosen for recording, then it will still
be played whilst the user is recording. All tracks that have not been recorded
will have their sound sources as default, which is the center of the room.

3D viewing

The user is able to identify their right hand location via co-ordinates or 3D
display. The co-ordinates of the user’s right hand are shown in a windows
dialog box, the 3D display is shown via Sketchup. Shown below are the dialog
and Sketchup display.

Figure 3: 3D viewing of the user’s right hand

Sketchup contains a translucent plane at the height of the surround speakers.
This allows the user to get a better sense of the crosshair’s height. Sketchup
also displays the Ideal listening position as a user’s head in the center of the
room.

Resetting co-ordinates

A user is able to clear any stored data by selecting the Clear Track Data option
from the home interface. The system will briefly pause to clear any stored data.
This will reset all co-ordinates to the center of the room, moving the sound
locations to the ideal listening position which is where the user’s head is shown
in Sketchup.

3

Recording with the Spatial Audio Designer (SAD)

The Spatial Audio Designer (SAD) operates as an effect plugin in a Digital
Audio Workstation (DAW), the digital audio workstation used for this will be
Reaper. The DAW has been set up with the SAD effect already added on, ready
for recording. The SAD can be accessed by clicking on the FX option of Track
1, and then the VST: 3D-SAD Mix (New Audio Technology) option. Shown
below in figure 4 is how a user is able to access the SAD.

Figure 4: Accessing the SAD in Reaper

The user needs to click on the drop down buttons for each track in order for
them to be enabled. Each track has 8 channels for each of the speakers, the
mute and solo of the channels for each track can be controlled via the Channel
1 mute/solo button. Shown below in figure 5 is what the SAD should look like
before recording.

4

Figure 5: The SAD before the user begins recording it

5

Muting\Unmuting tracks

If a user wishes to mute tracks within the SAD, this can be done by selecting
the M button located next to Channel 1 of the track they wish to mute. Shown
below in fiigure 6 is how a user would mute a track.

Figure 6: Muting a track in the SAD

Once a track has been muted, the dot representing the track within the envi-
ronment will appear a lot smaller. In the figure above, the red dot represents
the muted track and has appeared a lot smaller.

Recording Tracks

A user is able to arm a track for recording by doing the following:

1. Select the Track Envelopes/Automation of the track you wish to record in
the DAW

2. Change the automation to Write

3. Check all the boxes for ch1.p.x, ch1.p.y and ch1.p.z

These steps for arming a track are shown in figure 7 below

6

Figure 7: Arming a track for recording

Once a track has been armed for recording, the user may begin recording by
selecting the Play control in the DAW. The user can move the armed track
around in the 3D space provided by the SAD. The automation will be recording
the X, Y, and Z parameters while the user moves them around, this can be seen
in the DAW as shown in the figure below.

Figure 8: The X, Y, and Z parameters having their values changed whilst the
user is recording

7

The user is able to stop recording by selecting the Stop button on the DAW. If
the user wishes to keep the last positioned co-ordinate for the rest of the track,
they may select the last one on the recorded parameters and delete it. Shown
below is what the tracks should look like after doing this.

Figure 9: A. Before deleting the last point. B. After deleting the last point

The track can be played back by opening the Track Envelopes/Automation con-
trol mentioned above and changing the command from Write back to Read.

8

Resetting the co-ordinates

If the user wishes to reset the recorded parameter data, they may do so by
selecting the Hide/Clear option for each parameter and then selecting the Clear
Envelope command, followed by the dialog option Yes. The user may open the
SAD and move the dot indicating Track 1 of the chosen audio track back to the
original position. Shown below is how to clear the envelope data of a track.

Figure 10: Clearing the data for a single parameter, this needs to be done for
each one to remove the automated movement

9

242

Appendix 8.5

The KinectSound system user manual

Rhodes University

The Kinect Sound project

User Manual

Author:
Mitchell Hedges

Supervisor:
Prof. Richard Foss

November 24, 2014

Device requirements and configuration

The devices required for using the Kinect Sound system are as follows:

1. Windows Kinect - The kinect needs to be windows compatible with the
latest Kinect SDK installed.

2. Echo streamware NIC-1 - This card fits into the PCI slot of a workstation
and enables the transmission of digital audio packets onto an Audio Video
Bridged (AVB) network.

3. AVB Ethernet Bridge - An AVB capable Ethernet bridge is required
to distribute the audio packets and control packets over the AVB network.

4. XMOS AVB audio endpoint - These devices are required for the
processing of multiple audio channels and the Digital to Analog (DAC)
conversion of audio received from the network. These devices need to be
flashed with the required firmware in order to function correctly. This can
be done using an XTAG-2 programmer card with the xTIMEcomposer
studio1 development software.

5. Powered speakers - One speaker is required for each endpoint.

Figure 1: Layout of how the devices are to be configured

Configuring the digital audio workstation

The Digital Audio Workstation (DAW) is responsible for streaming multiple
audio channels to the network. The DAW software shown in this manual is
Reaper version 3.72.

1Version 13.0 or later is required for proper functionality

1

Importing tracks

In order to create a surround sound piece, the user must provide the separate
tracks which make up an audio piece. The tracks must be imported into a DAW
project and remain as separate tracks in order to have their 3D co-ordinates
modified separately. Figure 2 shows the layout of the tracks in a DAW

Figure 2: The separate tracks as shown in the DAW, which make up an audio
piece

The digital audio workstation has to be configured to allow internal midi commands
to control the transport functions. These commands can be found under the
Action List menu option and are to be configured as follows:

• Transport: Play - MIDI Channel 1 Control/Change (0xB0) control function
0x1A

• Transport: Stop - MIDI Channel 1 Control/Change (0xB0) control function
0x1B

This is required to enable the main system to control the playback of the DAW.

2

Routing the tracks tracks

Each track in the DAW is to be routed to its own output channel so they are
able to have their locations recorded independently. If the user requires that
two single tracks are to have their sound locations the same, then they may
route two tracks to a single output. The output tracks correspond to the track
numbers seen in the Track Selection user interface. These are best routed as a
diagonal to match the shown tracks with the outputs as shown in Figure 3.

Figure 3: The Reaper routing matrix showing how the tracks are routed to the
outputs

3

Configuring streams

The user must manually set up the audio streams by using the Echo Streamware
Controller provided. The ASIO outputs have to correspond to the stream
channels before the stream is connected. This can be done by clicking on a
listed device’s stream input and dragging it onto the first channel of the ASIO
outputs as shown below. The user then needs to click on the gears, and click on
Connect this stream. This creates an 8 channel stream between the workstation
and a single endpoint. Once a stream is connected, the user is then able to
multicast connect the stream to the rest of the endpoints by clicking on the
gears for each of the other devices and selecting the only option specified under
Multicast connect. Figure 4 shows how to drag the channels of a device into the
ASIO output channel list.

Figure 4: Specifying the channels with their current outputs

4

The User Interfaces

The Human/Computer interaction component is composed of various interfaces.
Each interface fulfills a specific purpose and provides navigation to relevant
interfaces in the system. The interface is made up of a live streaming camera
image from the Kinect with the buttons superimposed over it. The interfaces
shown in this manual exclude the camera image for ease of explanation. A
user may select a control by moving their left hand into the control boundaries
and then moving their left hand forward as if they are pressing a button. The
camera image indicates the position of the user’s left arm. The controls are
colour coded as follows.

• Dark Green controls represent navigation controls. These controls are
responsible for directing the user between interfaces.

• Yellow controls represent commands. These controls will perform a
specific action or task when selected by the user.

• Light Blue\Light Green controls indicate tracks. A track is light blue
by default and then changes to light green when a user has selected it. A
selected track may have its muting state changed as well as its recording
state changed. A track control will have its muting state shown within
the control as well as showing a red circle if it is selected for recording.
Only one track may be selected for recording at a time.

• Grey controls represent any control button that is currently disabled.
Disabled controls cannot be interacted with by the user until they become
enabled by the system.

• A Purple control indicates a command button that has been selected and
has changed the state of the system. There are only three controls in the
system that may have this colour. These are the Play, Record, and Stop
controls on the recording interface.

5

Home Interface

The Home Interface is the interface the user is presented with upon starting the
system. Shown in Figure 5 is a layout of the controls on the Home Interface.

Figure 5: The controls shown on the Home Interface

The home interface contains two command controls and a single navigation
control. These controls are used as follows:

• Track Selection will navigate the user to the Track Selection Interface.

• Clear Track Data will clear all stored co-ordinate data from the tracks.
This resets the default locations of each track to the center of the room.

• Exit will shut the system down

6

Track Selection Interface

The Track Selection Interface is the interface where the user is able to select
which tracks they wish to mute or unmute, as well as which track they wish to
record. A layout of the track selection interface is shown in Figure 6.

Figure 6: The controls shown on the Track Selection Interface

The Track Selection Interface contains eight track buttons which correspond to
the tracks in the DAW. If the audio piece the user is recording contains less
than eight tracks then the remainder of the tracks can be ignored. The track
buttons are selectable which allows a user to perform a single action on one
track at a time using the provided command controls. This interface contains
two command controls as well as two navigation controls, which are as follows.

• Record Select allows a user to set the recording state for a selected track.
Only one track may be recorded by the user at a time. The track that is
currently selected for recording will have a red circle at the top right of
its control. Figure 6 shows TRACK1 as the track that has been selected
for recording.

• Mute / Unmute Selected allows a user to change the muting state of
the currently selected track. The muting state of a track is shown at the
top left of the control, this will either be UNMUTED shown in green, or
MUTED shown in red. Muted tracks will not be played when the user is
recording or playing the audio piece back. However, if a muted track gets
selected for recording, it will have its muting state changed to unmuted.

• Proceed will navigate the user to the Record\Playback Interface.

• Home will return the user to the Home Interface.

7

Record\Playback Interface

The Recording Interface allows the user to record the sound location of a track,
as well as play the track back. A layout of the recording interface is shown in
Figure 7.

Figure 7: The controls shown on the Recording Interface

The Recording Interface contains 3 command controls for controlling the playback
of the audio piece. This interface also contains a listing of the current tracks as
well as a time. The track listing shows the user which tracks are muted/unmuted
as well as which track is being recorded. The muting state is shown by a green
UM or a red MU for unmuted and muted respectively. The track that has REC
shown in red next to its name is the track which is in the recording state. The
REC shown next to the rest of the tracks will appear in grey.
The interface controls do the following:

• Record will put the system into a recording state, where the user is able
to record the sound locations for a single track. All the tracks that have
had their muting state set to unmuted will be played back whilst the user
is recording.

• Playback will put the system into a playback state. This will play any
tracks that have had their muting state set to unmuted

• Stop will put the system back into an idle state. The user may select this
option to indicate that they are done recording or playing the audio piece.

• Home returns the user back to the home interface.

Any tracks that are unmuted will be played using their recorded co-ordinates
when the system is recording or playing. If a track has not been recorded yet

8

and is not muted, it will be played as if its sound location is in the center of
the speaker configuration. When the user selects either the Record or Playback
option, the system will give a 5 second countdown before the system starts
recording or playing.
The user uses their right hand to move the sound location of a track around.
The position of the users right hand is shown in 3 different places

1. The Kinect Interface - the interface shows a red cross hair over the user’s
right hand.

2. A Windows Dialog Box - this shows the 3D co-ordinates of the users right
hand as X, Y, and Z co-ordinates.

3. Sketchup - Sketchup shows a crosshair of where the system has determined
the position of the sound source in the 3D environment.

Sketchup

Sketchup is a 3D modelling program which is used in this system to display the
3D position of the sound source. This enables the user to have a much better
understanding of the location of the sound source in relation to the speakers
during recording. Shown in Figure 8 is the layout of the Sketchup interface,
showing the crosshair, speakers, Kinect, and user’s head.

Figure 8: The Sketchup interface showing the crosshair at the origin

9

The position of the sound source is described using the 3D axes with X showing
horizontal displacement from the center, Y showing vertical displacement, and Z
as the perpendicular displacement from the eye of the Kinect. A grey translucent
plane has been added where Y is equal to the ideal listening height. Figure 9
displays the Kinect interface, the dialog, and Sketchup while the system is in
the recording state.

Figure 9: The system interfaces - Kinect interface, dialog with 3D co-ordinates,
and Sketchup with the crosshair position

10

