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ABSTRACT 

 

Chrysoblephus puniceus is an over-exploited linefish species, endemic to the coastlines off 

southern Mozambique and eastern South Africa. Over-exploitation and habitat loss are two of 

the biggest threats to the sustainability of fisheries globally. Assessing the genetic stock 

structure (a prerequisite for effective management) and predicting climate related range 

changes will provide a better understanding of these threats to C. puniceus which can be used 

to improve the sustainability of the fishery. 

 

Two hundred and eighty four genetic samples were collected from eight sampling sites between 

Ponta da Barra in Mozambique and Coffee Bay in South Africa. The mitochondrial control 

region and ten microsatellite loci were amplified to analyse the stock structure of C. puniceus. 

The majority of microsatellite and mtDNA pairwise population comparisons were not significant 

(P > 0.05) although Xai Xai and Inhaca populations had some significant population 

comparisons for mtDNA (P < 0.05). AMOVA did not explain any significant variation at the 

between groups hierarchical level for any pre-defined groupings except for a mtDNA grouping 

which separated out Xai Xai and Inhaca from other sampling sites. SAMOVA, isolation by 

distance tests, structure analysis, principle component analysis and spatial autocorrelation 

analysis all indicated a single population of C. puniceus as being most likely. The migrate-n 

analysis provided evidence of current driven larval transport, with net migration rates influenced 

by current dynamics. 

 

Two hundred and thirty six unique presence points of C. puniceus were correlated with seasonal 

maximum and minimum temperature data and bathymetry to model the current distribution and 

predict future distribution changes of the species up until 2030. Eight individual species 

distribution models were developed and combined into a mean ensemble model using the 

Biomod2 package. Winter minimum temperature was the most important variable in determining 

models outputs. Overall the ensemble model was accurate with a true skills statistic score of 

0.962. Binary transformed mean ensemble models predicted a northern and southern range 

contraction of C. puniceus‟ distribution of 15% by 2030. The mean ensemble probability of 

occurrence models indicated that C. puniceus‟ abundance is likely to decrease off the southern 

Mozambique coastline but remain high off KwaZulu-Natal. 
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The results of the genetic analysis support the theory of external recruitment sustaining the 

KwaZulu Natal fishery for C. puniceus. While the high genetic diversity and connectivity may 

make C. puniceus more resilient to disturbances, the loss of 15% distribution and 11% genetic 

diversity by 2030 will increase the species vulnerability. The decrease in abundance of C. 

puniceus off southern Mozambique together with current widespread exploitation levels could 

result in the collapse of the fishery. A single transboundary stock of C. puniceus highlights the 

need for co-management of the species. A combined stock assessment between South Africa 

and Mozambique and the development of further Marine Protected Areas off southern 

Mozambique are suggested as management options to minimise the vulnerability of this 

species. 
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CHAPTER ONE 

 

GENERAL INTRODUCTION 

 

 

Chrysoblephus puniceus (Gilchrist and Thompson, 1908) is a sea bream from the family 

Sparidae. The species is endemic to the south west Indian Ocean, where its range extends from 

southern Mozambique to the former Transkei region in South Africa (Garratt 1993), although it 

has also been reported to occur off southern Madagascar (Heemstra and Heemstra 2004). In 

both countries it is valued as a food fish and is commercially harvested. 

 

Sparids are the most important family targeted in the KwaZulu-Natal (KZN) commercial boat-

based linefishery, off the east coast of South Africa, contributing 91.9% and 85.3% of the catch 

by number and weight respectively from 2009 to 2010 (Dunlop 2011). Similarly, in southern 

Mozambique, sparids dominate the semi-industrial linefish landings contributing 63% of the 

catch by number from 2007 – 2009 (Fennessy et al. 2012). In both fisheries, C. puniceus is the 

most important species caught comprising up to 65% (Dunlop 2011) and 38% (Fennessy et al. 

2012) by number of total commercial boat-based linefish landings in KZN and Mozambique 

respectively. 

 

In Mozambique, C. puniceus is targeted by the semi-industrial linefishery; characterised by 

freezer vessels (10 – 20 m) and crews of between 10 – 15 (Fennessy et al. 2012). Harvesting 

pressure on Mozambique‟s linefish stocks increased steadily following the end of the civil war in 

1989 (Lichucha 1999), with C. puniceus the most important semi-industrial linefish species 

caught (Dengo and David 1993, van der Elst and Lichucha 2000a). Decreases in catch per unit 

effort (CPUE) and a decreased contribution of C. puniceus to the total catch composition were 

reported up to 2000 in Mozambique (Lichucha 1999, van der Elst and Lichucha 2000b). This 

trend continued up to 2010, when C. puniceus contributed < 40% to the semi-industrial linefish 

catch (Fennessy et al. 2012). Although participation in the Mozambique semi-industrial 

linefishery is controlled by license issue, it is essentially an open access fishery as few limits are 

placed on total effort and licenses are easily attainable (van der Elst et al. 2000). Despite 

previous stock assessments indicating that C. puniceus is over-exploited in Mozambique 

(Lichucha 2001) and that fishing effort should be capped (Torres and Jokobsen 2007) the 
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number of licences issued in the semi-industrial fishery increased from 2007 to 2009 (Fennessy 

et al. 2012). 

 

In South Africa, the traditional commercial linefishery is divided into the Cape region, 

responsible for 95% of the catch, and the KZN region, responsible for the remaining 5% of the 

catch (Sauer et al. 2003). Although C. puniceus is only caught in the KZN linefishery, it is still 

commercially important with annual catch valued at R7.82 million (Lamberth et al. 2009). The 

commercial linefishery in KZN consists of a large number of 4 – 6 m long ski boats, powered by 

outboard engines which fish along the majority of the KZN coast (Sauer et al. 2003). 

Chrysoblephus puniceus became the most important KZN commercial boat-based linefish 

species in the mid 1980‟s, following the commercial extinction of the sparid; Polysteganus 

undulosus (Penney et al. 1999), contributing between 31 – 35% of the commercial catch from 

1985 – 2001 (Lamberth et al. 2009). The KZN linefishery is managed by controlling the total 

allowable effort through limiting the number of fishing licenses and species specific bag limits 

(Griffiths et al. 1999). A stock assessment conducted by Punt et al. (1993) indicated that C. 

puniceus was over-exploited at 14 – 16% of pristine spawner biomass per recruit levels, despite 

catches seeming relatively resilient to high exploitation levels. This assessment, amongst 

others, helped contribute to the declaration of the linefish emergency in South Africa in 2000 

(Government gazette notice 4727 of 29 December 2000) and resulted in reductions in 

commercial linefishing effort (Griffiths 2000). In KZN these reductions resulted in an effective cut 

in fishing effort of the order of 70% and this was implemented with the allocation of long term 

rights in 2006 (Dunlop 2011). 

 

Like most species from the family Sparidae, C. puniceus has a complex life history and 

biological characteristics that make it susceptible to fishing pressure (Buxton 1993). 

Chrysoblephus puniceus is a protogynous hermaphrodite (Garratt 1986), changing sex from 

female to male at 240 mm FL (Garratt 1985a), relatively slow growing, attaining a weight of 3 kg 

in 10 – 12 years (Garratt 1993) and considered fairly resident based on limited tagging studies 

(Garratt 1993, Maggs 2011). Because fishing is size selective (Yemane et al. 2008), localised 

fishing pressure has resulted in a reduction in mean size (Garratt et al. 1993) and exploited 

populations having female biased sex ratios (Garratt 1985b). Spawning occurs along the 

southern Mozambique to northern KZN coastlines between August and October, with no 

reproductively active adults occurring along the southern KZN and Transkei coasts (Garratt 

1985a). Despite its fisheries importance, little is known about the eggs and larvae of C. 
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puniceus (Govender et al. 2000a). Small juveniles, less than 50 mm FL, are uncommonly 

caught (Garratt 1993) and have only recently been observed in large numbers during a diving 

survey along the Pondoland coast from 2002 – 2003 (Mann et al. 2006). 

 

Early work on C. puniceus suggested the southward dispersal of larvae, with the southward 

moving Mozambique Channel eddies and the southward flowing Agulhas Current, and a return 

migration of fish back north to spawn (Garratt 1993, Punt et al. 1993). Later work on C. 

puniceus and other reef-associated sparid species suggested that inshore currents were 

responsible for larval dispersal (Beckley 1993, Hutchings et al. 2002). Punt et al. (1993) 

suggested the relative lack of commercial fishing effort in Mozambique in the 1980‟s and early 

1990‟s may have masked the effects of overfishing for C. puniceus in South Africa. 

Furthermore, Penney et al. (1999) suggested that subsequent increases in semi-industrial 

linefishing effort in Mozambique are likely to be detected through reductions in CPUE in 

northern KZN. These hypotheses lack any empirical evidence and remain speculative. 

 

Two of the biggest threats to capture fisheries in the world are over-exploitation through 

inadequate management and the effects of climate change (Brander 2007, Seaman 2007, 

Sumaila et al. 2011). As the rates of climate change and species exploitation increase, the 

combined effects are becoming more important to the sustainability of marine fisheries (Harley 

and Rogers-Bennett 2004). Climate change and fishing interact in ways that are either additive, 

where climate change and fishing reduce stock abundance independently or synergistically, 

where effects of climate change and fishing on stock declines are greater than the sum of their 

parts (Harley and Rogers-Bennett 2004). The key to successful fisheries management of marine 

species is developing an understanding of the interactions between climate change and fishing 

pressure and their effects on population and ecosystem dynamics (Harley and Rogers-Bennett 

2004). 

 

The Earth‟s climate has warmed by approximately 0.6°C over the past 100 years (Walther et al. 

2002). The rate of warming from 1976 onwards is greater than the rate of warming at any other 

time period in the previous 1000 years (Walther et al. 2002). Climate variability is expected to be 

different in magnitude and direction at regional scales (IPCC 2007). Species responses to 

climate change are not related to global averages but rather to smaller scale regional changes 

(Walther et al. 2002). Climate change is expected to result in the poleward intensification of 

westerly winds (Biastoch et al. 2009) and thus the intensification of the Agulhas Current features 
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(Rouault et al. 2010). Most parts of the Agulhas Current have shown increases in sea surface 

temperature (SST) of up to 0.55°C per decade during all months of the year from 1982 to 2009 

(Rouault et al. 2010). However, localised areas of coastal cooling have also been observed 

inshore (Rouault et al. 2009). 

 

Because C. puniceus is a range restricted endemic species under intense exploitation the 

response of this species to climate change is predicted to be greater than species without 

specific habitat requirements and those experiencing low fishing pressure (Rijnsdorp et al. 

2009). Marine ectotherms more fully occupy the latitudes of their thermal range limits than 

terrestrial species making them more sensitive to climate changes at the edges of their ranges 

(Sunday et al. 2012). Part of C. puniceus’ distribution occurs in the tropics where species often 

occur at temperatures close to their thermal limits and therefore are more likely to be affected by 

increases in SST than temperate species (Munday et al 2008). 

 

The most commonly reported ecological response to climate change among fish stocks is 

distributional shifts (Sumaila et al. 2011). A number of studies have demonstrated that changes 

in the distribution of fish species can be ascribed with a high level of confidence to climate 

variability (Perry et al. 2005, Hiddink and ter Hoftede 2008, Booth et al. 2009, Last et al. 2011, 

Lloyd et al. 2012). Areas of cooling and warming in the greater Agulhas system are therefore 

expected to result in distributional changes of C. puniceus in the future. Range shifts will affect 

the distribution and composition of fisheries resources thus affecting operations, the allocation 

of catch shares and the effectiveness of fisheries management (Sumaila et al. 2011). 

 

Species distribution models (SDM) have become a common tool to predict distributional 

changes of species as a result of changing climates and to improve adaptive management (e.g. 

Thomas et al. 2004, Lasram et al. 2010, Taubmann et al. 2011). Should the distribution of C. 

puniceus change in the future, management measures may need to be adjusted to take these 

effects into account and thus mitigate the potential future impacts climate change has on fish 

resources already under pressure from commercial harvesting (Brander 2007, Wernberg et al. 

2011). The extent to which C. puniceus’ distribution is likely to shift due to a changing climate 

therefore needs to be investigated. 

 

The ability of species to adapt to changes in climate is influenced by the amount of gene flow 

between populations (Kennington et al. 2003) and the genetic diversity of traits responsible for 
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evolutionary change and adaption (Davis and Shaw 2001). The effects of climate change such 

as habitat loss or fragmentation may cause more isolated populations, changing levels of gene 

flow and genetic drift, resulting in reduced genetic diversity (Bridle and Vines 2007). Fishing 

causes changes in the distribution, demography, and stock structure of individual species 

resulting in populations with greater recruitment variability (Hsieh et al. 2006). Ultimately, 

overfishing results in a loss of genetic diversity (Hauser et al. 2002) and decreases in the 

abundance of fish stocks, increasing their probability of extinction (Hutchings 2000). 

Understanding the levels of regional connectivity and stock structuring through C. puniceus‟ 

distribution is important to understand the effects of climate change on the species and how it 

may respond. 

 

For management to be effective, the number of management units that respond independently 

to fishing pressure also need to be ascertained (Begg and Waldman 1999). The central idea of 

stock delimitation for fisheries management is that each stock has a sustainable harvest that 

requires individual management (Carvalho and Hauser 1994). The term “stock” has been 

loosely used in fisheries (Booke 1999), with definitions ranging from any group of fish species 

available for exploitation in a given area (Milton and Shaklee 1987), to a group of interbreeding 

individuals of a species that exist together in time and space (Hedrick 2000). For this study the 

term stock will be defined as genetically and geographically distinct populations of a species 

that can be sustainably managed as separate units. 

 

Genetic stock structure studies have been carried out in South Africa on other exploited, 

endemic sparid species; Cape stumpnose, Rhabdosargus holubi, (mtDNA and microsatellites) 

(Oosthuizen 2006), red roman, Chrysoblephus laticeps, (mtDNA and microsatellites) (Teske et 

al. 2010), black mussel cracker, Cymatoceps nasutus, (mtDNA) (Murray 2012) and white 

steenbras, Lithognathus lithognathus, (mtDNA and microsatellites) (Bennett 2012). These 

studies found a lack of geographic genetic structuring suggesting that these species exist as 

single, well-mixed stocks, throughout their distributional ranges. These studies all identified 

ocean-current driven larval transport as one of the primary mechanisms of stock mixing but did 

not investigate stock structure through a similar distributional range as C. puniceus. However, 

genetic stock structure studies on two invertebrates, the deep water lobster Palinurus delagoae 

(Gopal et al. 2006) and the cauliflower coral Pocillopora verrucosa (Ridgway et al. 2008), that 

have pelagic larvae and extend throughout C. puniceus‟ distributional range, have found genetic 
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partitioning resulting in a northern and southern population. The extent to which stocks of C. 

puniceus are regionally shared therefore needs to be investigated. 

 

1.1 Aims and objectives 

 

Despite C. puniceus’ importance as a commercial species there is a paucity of information on 

the population genetics of this species and its potential response to climate change. Species 

distribution models were used to assess the extent to which C. puniceus might shift its range as 

a response to climate change and a population genetic analysis was done to assess regional 

levels of connectivity and diversity. To achieve this aim the thesis was broken down into two 

main research chapters. 

 

Chapter three looked at the genetic stock structure throughout C. puniceus distribution using 

two different types of markers; the mtDNA control region and 10 microsatellite loci. The aim of 

this chapter was to determine regional genetic connectivity of C. puniceus, determine the levels 

of regional genetic diversity and to determine the appropriate number of management units for 

sustainable harvesting. 

 

Chapter four involved modelling the current distribution of C. puniceus, and projecting that 

through time using eight different SDMs. The aim of this chapter was to map the current 

distribution of C. puniceus‟ and to predict likely changes in distribution as a result of climate 

change up to the year 2030. 

 

The thesis is concluded in Chapter five. This chapter discussed the general findings of the study 

and provided management recommendations. 
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CHAPTER TWO 

 

STUDY SITE 

 

 

The study area was the known distribution of C. puniceus in the south west Indian Ocean 

between Vilanculos in Mozambique and the southern Transkei in South Africa. The physical 

oceanography along the east coast of southern Africa where C. puniceus occurs is variable 

(Figure 2.1). The Mozambique channel is dominated by three anti-cyclonic eddies and a mean 

southward current flowing along the continental slope (Schouten et al. 2003). The Delagoa 

Bight, where C. puniceus is most abundant in Mozambique, is a shallow shelf centred on 34°E, 

26°S where a cyclonic eddy and upwelling are present (Quartly and Srokosz 2004). There is a 

northward flow up the western edge of the bight (Lutjeharms and Da Silva 1988). 

Figure 2.1: Major oceanographic features through C. puniceus‟ known distribution (red). Hatched areas 

denote upwelling and bold arrows denote major current direction. Biogeographic province boundaries 

(Teske et al. 2009) are indicated by dashed lines. 

Tropical 

Subtropical 

Warm temperate 
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Along the east coast of South Africa the dominant current feature is the fast, warm, southward-

flowing Agulhas Current (Roberts et al. 2010). Around the northern part of the Natal Bight, an 

unusually wide part of the continental shelf, there is a persistent upwelling cell (Meyer et al. 

2002). The circulation around the southern part of the Natal Bight is thought to consist of a 

cyclonic eddy in the lee of the broader shelf of the bight (Malan and Schumann 1979), with 

currents off Durban showing a north-eastward component (Lutjeharms 2006). Further south 

around Port St Johns there is a coastal offset which may be the cause of a high frequency of 

counter-currents (Lutjeharms 2006). 

 

Climatologically, the southern African coastline can be divided into four biogeographic regions, 

namely cool-temperate, warm temperate, subtropical and tropical regions (Figure 2.1) (Teske et 

al. 2009). Chrysoblephus puniceus occurs in both the tropical and subtropical regions, but not in 

the temperate regions (Figure 2.1). Temperature patterns are variable throughout the greater 

Agulhas Current system (Harris et al. 1978). The Agulhas Current is a warm current but 

localised areas of upwelling inshore of the current can result in temperature decreases 

(Lutjeharms et al. 2000). Throughout and adjacent to C. puniceus’ distribution there are a suite 

of different upwelling cells at Port Alfred, Port St Johns and the Natal Bight in South Africa 

(Lutjeharms et al 2000) and at the Delagoa Bight in Mozambique (Lutjeharms 2006). The 

coldest sea surface temperatures (SST) are found around the upwelling cell off Port Alfred and 

can be up to 11 °C colder than surrounding areas (Lutjeharms et al. 2000). 
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CHAPTER THREE 

 

GENETIC STOCK STRUCTURE OF CHRYSOBLEPHUS PUNICEUS 

 

 

3.1 Introduction 

 

Population genetic studies can provide essential information for effective fisheries management 

through the estimation of the genetic variation of a species over time, changes in stock 

structure, population size, annual recruitment success as well as the patterns of dispersal and 

connectivity of larvae and adults among areas (Shaklee et al. 1999, Chow et al. 2000, Sunnucks 

2000, von der Heyden et al. 2007). Population genetic analyses use models that draw 

inferences from the amounts and distribution of genetic variation among natural populations 

(Allendorf 1983). The approach is based on the presumption that genetic differences among 

individuals underlie population differentiation and can thus be used to determine population 

structures of species (Shaklee and Currens 2003). This is because genetic variation will 

accumulate randomly among populations that are connected but will be non-randomly 

distributed if populations are isolated (Shaklee and Currens 2003). 

 

Knowing the stock structure of an exploited species therefore provides a better understanding of 

how fishing effort and mortality are distributed among populations; the key to effective fisheries 

management (Grimes et al. 1987). Thus all stock assessment management methods require 

that stocks/populations are defined geographically and genetically (Waples et al. 2008). 

Therefore, discerning the number of isolated stocks throughout C. puniceus’ distribution range 

would be the first step towards an improved sustainable management strategy for the exploited, 

endemic species that is currently managed as two stocks between South Africa and 

Mozambique. A better understanding of C. puniceus‟ stock structure is important as the species 

is heavily exploited with increasing pressure in some areas of its distribution. There is currently 

no information on the levels of regional connectivity and stock structuring of C. puniceus as well 

as the factors and processes that influence this. A population genetic analysis through C. 

puniceus‟ entire geographic range was done to improve knowledge with that regard. 

Understanding regional levels of connectivity and diversity is not only important to inform current 

stock management but can also be used to help predict the potential effects of climate change 

on this species (Hughes et al. 2003). 
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The mitochondrial genome (mtDNA) has been the marker of choice since the late 1970‟s for 

population genetic studies on fisheries (Ferguson et al. 1995). The mtDNA genome is a small 

(15-26 kb) circular molecule composed of about 35 genes (Moritz et al. 1987). Maternal 

inheritance and the absence of recombination make mtDNA a particularly appropriate marker 

for tracing recent evolutionary history, migrations and population bottlenecks (Moritz et al. 1987, 

Harrison 1989). Therefore, mtDNA markers are effective in the estimations of population 

structure and patterns of intraspecific geographic variation (Harrison 1989). The control region 

of the mtDNA is the primary non-coding region exhibiting the most sequence variation and has 

thus been a popular marker for population genetic studies in the marine environment and for 

sparid fishes (Shedlock et al. 1992, Bargelloni et al. 2005, Xia et al. 2008, Teske et al. 2010). 

 

Population studies on marine fishes, including sparid species, have increasingly begun to rely 

on microsatellites to investigate genetic structuring of populations (Balloux and Lugon-Moulin 

2002, Stockley et al. 2005, Ball et al. 2007). This is because studies using microsatellite 

markers have begun to uncover regional population genetic structuring within marine fish 

previously thought to be homogenous (Shaw et al. 1999a). For example, microsatellite analyses 

of the Atlantic herring, Clupea harangus, revealed significant levels of genetic structuring (Shaw 

et al. 1999b) not detected by restriction endonuclease of mtDNA (Dahle and Eriksen 1990). 

Microsatellites are more informative in population genetic studies as they are diploid co-

dominant markers that can conform to Hardy-Weinberg expectations giving added information 

about population structures (Wright and Bentzen 1994). Microsatellites occur as short tandem 

repeats of variable sequence units, usually less than five base pairs (bp) in length (Bruford and 

Wayne 1993). There is a large variation in the lengths of microsatellites due to the high rate of 

mutation in the number of repeats at microsatellite loci, occurring through slippage, during DNA 

replication (Wright and Bentzen 1994). This results in extensive allelic variation (inter- and intra-

specific polymorphism) and high levels of heterozygosity that make microsatellites a powerful 

tool for population genetic studies (Wright and Bentzen 1994, Perez-Enriques et al. 1999). 

 

However, microsatellites are so variable that small differences between groups that do not 

reflect a biologically meaningful difference may be detected as significant (Hedrick 1999). Highly 

polymorphic markers such as microsatellites can also underestimate genetic divergence 

between populations when gene flow is low (Hedrick 1999, Balloux et al. 2000). Reductions in 

population sizes or bottlenecks can lead to large genetic distances in a short period of time for 

microsatellites that can over exaggerate population genetic divergences (Hedrick 1999). In such 
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cases a slower evolving genetic marker may be more appropriate for population structure 

studies. Therefore, both the mtDNA control region and microsatellite markers were considered 

for this study  

 

Recent population genetic studies on endemic southern African sparids including; 

Chrysoblephus laticeps (Teske et al. 2010) and Lithognathus lithognathus (Bennett 2012), using 

both the mtDNA control region and microsatellite markers, have found a lack of genetic 

structuring. The species‟ studied, however, had warm-temperate/cool-temperate core 

distributions and did not extend through C. puniceus‟ tropical/subtropical core distribution in 

southern Mozambique and South Africa. This subtropical/tropical phylogeographic boundary 

has been identified by a number of studies on marine phylogeography in south eastern Africa 

(Bolton et al. 2004, Gopal et al. 2006, Ridgway et al. 2008, Teske et al. 2009). The dispersal 

barriers in the marine environment that have been identified to limit genetic exchange in the 

region include upwelling cells, river discharge, coastal currents and eddies (Teske et al. 2011). 

Furthermore population genetic theory predicts that sequential hermaphrodites, with skewed 

sex ratios, will have reduced effective population sizes resulting in more spatially structured 

populations (Chopelet et al. 2009). Given that C. puniceus is a protogynous hermaphrodite and 

there are a number of upwelling cells and variable current features through its distribution 

(Chapter 2) it was hypothesised that C. puniceus may be genetically structured into two discrete 

stocks separated at the tropical/subtropical boundary. The aim of this study was therefore to 

assess the levels of genetic connectivity and stock structuring of C. puniceus throughout its 

distribution. 

  



                                                                                                                                                        Chapter 3 
                                                                                                                                   Genetic stock structure 

12 
 

3.2 Materials and methods 

 

3.2.1 Sampling 

 

A number of approaches were used for collecting genetic samples of C. puniceus at locations 

through the species‟ distribution range. Samples were collected from commercial fishing vessels 

on their return to port, from small-scale fisherman when they returned to their launch site or 

through active sampling aboard fishing vessels. GPS co-ordinates of catches were obtained as 

accurately as possible from fishing vessels or precisely when active sampling was done and the 

fork length of each specimen was recorded. 

 

3.2.2 Mitochondrial DNA sequencing 

 

Genomic DNA was extracted from samples (preserved in 90% ethanol) using the commercially 

available Wizard® genomic DNA purification kit as per the manufacturer‟s instructions (Promega, 

USA). A 944 base pair (bp) fragment of the mitochondrial control region was amplified by PCR 

using primers developed by Teske et al. (2010) for a closely related South African sparid; 

Chrysoblephus laticeps (forward primer: ChrysoCytbF 5‟-GCA GCA GCA YTA GCA GAG AAC-

3‟ and reverse primer: Sparid12SR1 5‟-TGC TSR CGG RGC TTT TTA GGG-3‟). Reactions 

were performed in 25 μl volumes containing 2.5 μl PCR buffer, 2.5 mM MgCl2, 0.2 mM of 

dNTP‟s, 0.2 mM of each primer, 0.2 μl of DNA Super-Therm Taq Polymerase (Southern Cross 

Biotechnology, South Africa), 1-3 μl of template DNA and topped up with ultrapure PCR water. 

Cycling parameters were initially denatured at 94°C for 4 min; followed by 35 cycles of 94°C for 

30 sec, 60°C for 45 sec, and 72°C for 45 sec; and a final elongation at 72°C for 10 min following 

Teske et al. (2010). PCR product purification and forward sequencing were done at Macrogen 

inc (South Korea). Sequences were cleaned in Chromas lite v2.01 (Technelysium Pty Ltd) and 

aligned by eye using Seqman pro™ (DnaStar®). 

 

3.2.3 Microsatellite genotyping 

 

Ten microsatellite loci (SL1, SL7, SL17, SL25, SL26, SL27, SL29, SL33, SL34, SL35), 

developed by Chopelet et al. (2009a) for C. puniceus, were selected. Reactions were performed 

in 25 μl volumes containing 12.5 μl of 2 × Multiplex PCR Master Mix (QIAGEN), 0.2 μM of each 

primer, 6 μl of ultrapure PCR water and 4 μl of template DNA. PCR reactions were grouped into 
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two multiplexes with similar fragment length allele peaks were dyed differently according to 

Chopelet et al. (2009a). Group A consisted of six loci (SL1, SL17, SL26, SL29, SL33, and SL35) 

while Group B had four (SL7, SL25, SL27, and SL34). Cycling parameters were 95°C for 15 

min; followed by 30 cycles of 94°C for 45 sec, 60°C for 45 sec, and 72°C for 45 sec; and a final 

elongation at 72°C for 45 min. PCR product purification and genotyping was also done at 

Macrogen inc. Electropherograms of allele peaks were manually scored in the programme 

GeneMarker v2.2.0 (Softgenetics® LLC) and exported as a matrix of paired allele sizes. 

 

3.2.4 Mitochondrial DNA analyses 

 

Diversity indices including the number of haplotypes and private haplotypes were calculated in 

Arlequin v3.5.1.2 (Excoffier and Lischer 2010a) for each sampling site. These also included 

estimates of nucleotide diversity (π), the proportion of different nucleotides between two 

randomly chosen haplotypes (Nei and Tajima 1981), and haplotype diversity (h), the probability 

that two randomly chosen haplotypes are different (Nei 1973). The model that best fitted the 

data was estimated through Modeltest v3.6 (Posada and Crandall 1998) and used where 

appropriate. 

 

Although the mtDNA control region is considered to be non-coding and hence neutral, selection 

may still occur if it is linked to a locus under selection pressure; termed genetic hitchhiking 

(Ballard and Kreitman 1995). Using a gene in a population genetic study under selection can 

lead to biased results with regards to demography and phylogeography (Luikart et al. 2003). 

Therefore, departures from equilibrium between mutation and genetic drift were verified using 

Fu‟s FS statistic, which estimates the probability that a random sample of alleles are equal or 

smaller to the observed number of alleles (Fu 1997), and Tajima‟s D statistic, which calculates 

the difference between the number of segregating sites and the number of nucleotide 

differences between paired samples (Tajima 1989), in Arlequin.  

 

Pairwise population comparisons using FST (Weir and Cockerham 1984) as a measure of 

genetic distance and pairwise exact tests for population differentiation (Raymond and Rousset 

1995) were carried out to assess the genetic differences between all pairs of sampling sites. FST 

is the ratio between a measure of inter-population gene differences and the expected 

heterozygosity of the total population (Nei 1986). Pairwise FST comparisons were run with 100 

000 permutations to test for significance in Arlequin. For population differentiation, the estimated 
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probability of observing a contingency table (different haplotypes × populations) less or equally 

likely to the observed sample configuration, under the null hypothesis of panmixia, was 

estimated by performing a random walk between different states of the Markov chain (Excoffier 

and Lischer 2010b). Population differentiation was run using the estimated model from 

Modeltest with 10 000 demonstration steps in Arlequin. 

 

An analysis of molecular variance (AMOVA) was used to test for significance of population 

genetic structure among pre-defined groups of sampling sites/populations. Pre-defined groups 

were based on population pairwise comparisons (FST) and ocean current dynamics (sampling 

sites exposed to the southward flowing Agulhas Current were separated from sampling sites 

exposed to the Mozambique Channel eddies). AMOVA incorporates DNA haplotype divergence 

into an analysis of variance format derived from a matrix of squared distances between all 

haplotype pairs (Excoffier et al. 1992). The significance is tested using a non-parametric 

permutation approach consisting of permuting haplotypes, individuals or populations among 

individuals, within populations or among groups of populations (Excoffier and Lischer 2010b). A 

spatial analysis of molecular variance (SAMOVA) (Dupanloup et al. 2002) was also 

implemented to identify combinations of population/sampling sites that are geographically 

homogeneous but maximally differentiated from each other based on F statistics. The method is 

based on a simulated annealing procedure to find the composition of K groups (user-defined) 

and to maximise the FCT index (the proportion of total genetic variance due to differences 

between groups of populations) (Dupanloup et al. 2002). The SAMOVA analysis was run for K = 

2 – 5 with a pairwise genetic difference and 100 initial conditions. 

 

A median joining haplotype network was constructed using Network v4.6.1.0 (Fluxus 

Technology Ltd.) to represent the associations between sequences. Haplotype networks 

represent these relationships more clearly than tree-formats because they do not limit the 

connections to linear, bifurcating modes and show the number of base pair changes between 

sequences (Teacher and Griffiths 2011). Population structure can be examined when one 

considers the geographic source of haplotype sequences arranged in a network (Posada and 

Crandall 2001). 

 

A mismatch distribution of the observed number of differences between pairs of haplotypes was 

calculated in Arlequin (Excoffier and Lischer 2010b). The shape of the distribution is an indicator 

of population history with unimodal shapes indicating population expansion, while L-shaped 
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distributions are indicative of population contractions (Rogers and Harpending 1992). 

Parameters of the population expansion model were estimated by a generalised non-linear least 

square method (Schneider and Excoffier 1999). The sum of squares deviations (SSD) and its 

associated P value were calculated to test the validity of the stepwise expansion model 

(Excoffier and Lischer 2010b). Harpending‟s raggedness index (r) (Harpending 1994) and its 

associated P value were calculated as index of the goodness of fit of the model and the 

smoothness of the distribution. 

 

For continuously distributed populations, isolation by distance (IBD) patterns can be detected by 

regression analysis techniques (Manel et al. 2003) and used as an indirect measure of 

assessing gene flow and larval dispersal (Hulsmans et al. 2007). A Mantel test (Mantel 1967) 

was used to test IBD patterns with the online IBD web (IBDW) service program (Jensen et al. 

2005) with 10 000 randomisations. Input data consisted of pairwise linearized FST 

transformations (Slatkin 1995) and geographic distance between sampling sites (metres), which 

was calculated using a website service (http://recheronline.de/geo-coordinates). 

 

To assess associations between genetic relatedness of pairs of individuals and geographic 

distance an analysis of spatial autocorrelation was conducted in GenAlEx v6.41 (Peakall and 

Smouse 2006). Genetic and geographic distance matrices were used to calculate the 

autocorrelation coefficient (r) which is a measure of genetic similarity between pairs of 

individuals whose geographic separation falls within the user defined distance class of 100 km 

(Peakall and Smouse 2005a). The autocorrelation coefficient was then calculated for 9999 

permutations and the 95% confidence interval around r for each distance class found.  

 

3.2.5 Microsatellite analyses 

 

The mean number of Alleles (NA) averaged across all sampling sites, the observed (HO) and 

expected (HE) heterozygosities and Hardy-Weinberg equilibrium (HWE) deviations were 

calculated in Arlequin for each locus. Allelic richness (AR), which corrects allele diversity with a 

standardised sample size (Kalinowski 2004) was also calculated for each locus in Fstat v2.9.3.2 

(Goudet 1995). NA, AR, HO and HE were also calculated for each sampling site together with FIS, 

used to estimate deviations from HWE, in Fstat. 
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An exact test of linkage disequilibrium was conducted in Arlequin between all pairs of loci with 

10 000 steps in the Markov chain and 10 000 demonstration steps. Linkage disequilibrium is the 

non-random occurrence of alleles in haplotypes (Nordborg et al. 2002) and is important in the 

identification of loci that have been targets of selection (Hamblin et al. 2004). 

 

Pairwise population comparisons were conducted in Arlequin but with RST (Slatkin 1995) used 

as the measure of genetic difference. This is because RST assumes the stepwise mutation 

model and is considered more appropriate for microsatellite loci (Rousset 1996). Pairwise 

comparisons were also done for the harmonic mean of Jost‟s D statistic (Jost 2008) and these 

were calculated in SMOGD v1.2.5 (Crawford 2010). Jost‟s D statistic has also been considered 

as a more appropriate measure for assessing differentiation among populations with highly 

variable markers such as microsatellites (Meirmans and Hedrick 2011). The AMOVA, SAMOVA, 

IBD and spatial autocorrelation analyses followed mtDNA analysis. However, the sum of 

squared molecular distance was used for SAMOVA whilst pairwise RST values were used as the 

genetic distance for IBD analysis. 

 

To estimate the number of discrete populations of C. puniceus, a model-based clustering 

method was implemented in Structure v2.3.2 (Pritchard et al. 2000). This program works by 

estimating the probability of assigning individuals to a hypothetical number (K) of specified 

populations. The analyses used 20 iterations per value of K (ranging from 1 to 9) with 100 000 

burnin steps and 100 000 Monte Carlo Markov Chain repeats using an admixture model with 

(presented) and without location information as prior (not presented). The value of K that 

maximised the log-likelihood (Falush et al. 2003) and the highest rate of change in the log 

probability of data between successive K values (Evanno et al. 2005) were two methods used to 

detect the number of populations with the online web service; structure harvester (Dent and 

vonHoldt 2012). A principle coordinate analysis (PCA) was also used to explore geographic 

patterns of genetic relatedness among individuals from all populations (Bartish et al. 1999). 

Principle coordinate analysis is a multivariate technique where major axes are located within the 

data set and plotted on two axes (Peakall and Smouse 2005b). A covariance standardised PCA 

was run in GenAlEx with a genetic distance matrix. 

 

Estimates of directional gene flow are important to understand the effect ocean circulation 

dynamics have on gene flow patterns and population structuring of marine species (von der 

Heyden et al. 2008). A stepping stone model was therefore created to estimate asymmetrical 
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gene flow between sampling locations using Migrate-n v3.2.16 (Beerli and Felsenstein 1999, 

2001) with maximum likelihood estimation. Twenty short chains were used with 1000 recorded 

steps and a sampling increment of 20 generations as well as five long chains with 10 000 

recorded steps and a sampling increment of 20 generations. A total of 10 000 genealogies were 

discarded (Burnin) and FST was used to estimate the starting value of theta and the migration 

rate. Comparing the magnitude of migration rates can further support inferences of ocean 

currents facilitating gene flow (Gonzalez et al. 2008). A northerly directed island model was 

therefore run to compare migration probability values between adjacent sites in migrate-n with 

the same parameter settings. For mtDNA and microsatellites sequential Bonferroni corrections 

were used to adjust the P-value when multiple statistical tests were done (Rice 1989). 

 

3.3 Results 

 

3.3.1 Sampling 

 

In total 284 viable fin clips or tissue samples of approximately 1 cm2 were collected from 

individual C. puniceus specimens from 13 localities through the core distribution of the species 

(Table 3.1). The localities were grouped into eight broad sampling sites of adjacent localities 

because of the close proximity of some fishing grounds.  

 

Table 3.1: Summary of sampling localities, geographic position and number of samples (N) per marker 

type. Sites that were later merged are indicated as sampling sites. 

Site  Sampling Site Locality Co-ordinates N   

    
mtDNA Microsatellites 

1 Ponta da Barra Ponta da Barra 23°45'41"S, 35°35'21"E 35 34 

2 Southern Inhambane Ponta Zavora 24°43'49"S, 35°06'24"E 29 28 

  
Quissico 24°59'18"S, 35°00'32"E 14 14 

3 Gaza  Xai Xai 25°20'54"S, 33°21'55"E 28 26 

  
Bilene 25°29'30"S, 33°20'09"E 5 5 

4 Inhaca Inhaca 26°10'12"S, 33°05'15"E 29 30 

5 Ponta do Ouro Ponta do Ouro 26°49'52"S, 32°54'34"E 30 30 

6 Richards Bay Richards Bay 28°49'44"S, 32°08'58"E 32 33 

7 Southern KZN Rocky Bay 30°21'06"S, 30°47'01"E 13 15 

  
Shelly Beach 30°48'57"S, 30°28'01"E 29 30 

8 Transkei Pondoland MPA 31°23'46"S, 29°59'20"E 31 31 

  
Mdumbi 31°56'20"S, 29°14'10"E 3 4 

  
Hole in the Wall 32°02'00"S, 29°07'36"E 4 4 

    282 284 
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Figure 3.1: Locations of broad sampling sites throughout the core distribution of C. puniceus, ranging 

from Ponta da Barra to the southern Transkei. 

 

3.3.2 Mitochondrial DNA diversity 

 

The reverse and forward sequences of 131 samples were sequenced for the mtDNA control 

region. These sequences were combined for each sample due to slippage occurring when 

forward sequencing. The haplotype diversity (h = 0.99) of the 944 bp control region sequences 

was very high as has been observed by other studies using the complete mtDNA control region 

(Bradman et al. 2011). Because high haplotype diversity can obscure the genetic relationships 

between sites a more conserved region may be more appropriate to detect population structure 

(Rosel and Block 1996, Bradman et al. 2011). The first 300bp of the control region was chosen 

for analysis as this region was less variable overall and contained the cleanest sequence 

section. The Tamura and Nei model with gamma correction of 0.547 (Tamura and Nei 1993) 

was estimated as the best model fit for the data in Modeltest and was specified where 

appropriate. 
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A total of 101 different haplotypes (H) were observed from the 300 bp sequences, ranging from 

19 (Inhaca) to 31 (Southern KZN) for the sampling sites (Table 3.2). There were 64 private 

haplotypes (p) that were distributed relatively evenly between sampling sites, with a high of 11 

being restricted to Ponta da Barra and a low of four to Gaza. The overall haplotype diversity (h = 

0.97) was high and similar among sites ranging from 0.95 (Inhaca) to 0.98 (Ponta da Barra, 

southern Inhambane and southern KZN). Nucleotide diversity was 0.011 overall, with a high of 

0.012 (Ponta da Barra, Inhaca, Southern KZN and Transkei) and low of 0.010 (Gaza). 

 

Table 3.2: Summary statistics for the eight sampling sites and the overall dataset for the number of 

samples (n), number of haplotypes (H), number of private haplotypes (p), haplotype diversity (h) and 

nucleotide diversity (π) estimates. 

Site n H p h π 

1-Ponta da Barra 35 28 11 0.98 0.012 

2-Southern Inhambane 43 30 9 0.98 0.011 

3-Gaza 33 20 4 0.96 0.010 

4-Inhaca 29 19 8 0.95 0.012 

5-Ponta do Ouro 30 21 6 0.97 0.011 

6-Richards Bay 32 20 8 0.96 0.011 

7-Southern KZN 42 31 9 0.98 0.012 

8-Transkei 38 25 9 0.97 0.012 

Overall 282 101 64 0.97 0.011 

 

The median joining haplotype network (Figure 3.2) indicated no discernible geographic pattern 

among the haplotype connections, with numerous private haplotypes from all sampling sites 

branching off from most of the high frequency haplotypes in a star-like pattern. There were a 

few branches of private haplotypes that only exhibited haplotypes from a single sampling site, 

but these were also not related to any pattern. 



 

 
 

2
0

 

 

Figure 3.2: Median joining haplotype network for mtDNA control region. The size of the circle is proportional to the frequency of the haplotype 

occurring in the total sample and sampling sites are represented by different colours. Short branches indicate one mutational step and long 

branches indicate two mutational steps. 
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The mismatch distribution (Figure 3.3), calculated under the demographic expansion model, 

was unimodal, indicative of a population expansion. Harpending‟s r statistic and the sum of 

squares deviation were not significant (P = 0.29) indicating a good fit of the data to the null 

hypothesis of a model of population expansion. All tests suggested that there was no 

difference between the population and demographic expansion models. 

 

 

Figure 3.3: Frequency distribution of observed and expected pairwise nucleotide differences between 

haplotypes. 

 

Tajima‟s D statistic was negative for each sampling site ranging from -0.72 (Gaza) to -1.29 

(Ponta da Barra) and was not significant (P > 0.05) at any sampling site but was significant 

overall (D = -1.6, P = 0.02) (Table 3.3). Fu‟s FS statistic was also negative for each sampling 

site, ranging from -4.96 (Inhaca) to -8.42 (Southern KZN). Significance (at α = 0.02) was 

observed at five (Ponta da Barra, Southern Inhambane, Ponta do Ouro, Southern KZN and 

Transkei) of the eight sampling sites and for the overall Fu‟s FS statistic. 
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Table 3.3: Tests for selective neutrality using Tajima‟s statistic (D), Fu‟s statistic FS and associated P 

values. Significance at α = 0.05 is indicated by a *and at α = 0.02 by **. 

Site D P FS P 

1-Ponta da Barra -1.29 0.08 -15.68 0.00** 

2-Southern Inhambane -1.4 0.07 -15.84 0.00** 

3-Gaza -0.72 0.27 -5.93 0.02 

4-Inhaca -0.81 0.24 -4.96 0.03 

5-Ponta do Ouro -1.02 0.17 -7.87 0.00** 

6-Richards Bay -1.26 0.09 -5.36 0.03 

7-Southern KZN -1.05 0.16 -18.42 0.00** 

8-Transkei -1.19 0.11 -10.04 0.00** 

Overall -1.6 0.02* -24.44 0.00** 

 

3.3.3 Mitochondrial DNA population differentiation 

 

Pairwise FST comparisons between sampling sites ranged from 0 (Ponta do Ouro versus 

Inhaca and Richards Bay) to 0.071 (between Gaza and Inhaca) (Table 3.4, below diagonal). 

Significant FST comparisons at α = 0.05 were observed around the Delagoa Bight area in 

Mozambique between Inhaca versus four sites (Ponta da Barra, southern Inhambane, Gaza 

and Richards Bay), Gaza and two sites (Ponta do Ouro and Transkei) and between Transkei 

and Ponta da Barra. After Bonferroni corrections none of the pairwise FST comparisons 

remained significant (α = 0.001). Pairwise exact tests of population differentiation had similar 

patterns of significance. The comparisons between Richards Bay and Ponta da Barra, Gaza 

and Inhaca as well as Gaza and Ponta do Ouro remained significant at α = 0.05 (Table 3.4, 

above diagonal). However, only the comparison between Richards Bay and Inhaca 

remained significant (α = 0.001) after Bonferroni corrections. 

 

Analysis of molecular variance analyses (Table 3.5) for two groups (a) assigned more than 

98% of the variance to the individuals within populations hierarchical level which was 

significant (P < 0.05). The between groups hierarchical level was not significant explaining 

0.05% of the variance. The AMOVA grouping (b), based on population pairwise 

comparisons, was significant (P < 0.05) at both the between groups hierarchical level where 

1.73% of the variance was explained, and the individuals within populations hierarchical 

level (P < 0.05) where 98.4% of the variance was explained. 
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Table 3.4: Pairwise population comparisons (FST) below diagonal and P values for exact tests of 

population differentiation above diagonal. Significance at α = 0.05 is indicated by * and significance at 

α = 0.001, after Bonferroni corrections, is indicated by **. 

Site 1 2 3 4 5 6 7 8 

1-Ponta da Barra - 0.722 0.342 0.160 0.761 0.033* 0.496 0.488 

2-Southern Inhambane -0.012 - 0.737 0.228 0.659 0.106 0.574 0.656 

3-Gaza -0.002 0.01 - 0.077 0.006* 0.005* 0.397 0.170 

4-Inhaca 0.043* 0.029* 0.071* - 0.076 0.001** 0.113 0.362 

5-Ponta do Ouro 0.002 -0.01 0.043* 0.000 - 0.095 0.603 0.188 

6-Richards Bay -0.002 -0.003 0.023 0.041* 0.000 - 0.170 0.069 

7-Southern KZN 0.009 0.001 0.013 0.012 -0.007 0.006 - 0.820 

8-Transkei 0.028* 0.014 0.032* -0.002 0.001 0.022 -0.006 - 

 

Table 3.5: AMOVA results of the genetic variation among two groupings that were specified based 

on: (a) oceanographic features and (b) significant mtDNA FST pairwise comparisons. Estimates of the 

degrees of freedom (df), the percentage of variation explained among each hierarchical level (% var), 

the associated fixation index (F ind) and the P values (P) as well as their significance at α = 0.05 (*) 

are indicated. 

Site Groupings 
 

Source of variation mtDNA 

 
(a) (b)  

  
df % var F ind. P  

Ponta da Barra 1 1 
 

groups 1 0.050 0.001 0.360 

S. Inhambane 1 1 (a) populations within groups 6 1.120 0.011 0.037 

Gaza 1 2 
 

individuals within pops. 274 98.830 0.012 0.022* 

Inhaca 1 3 
      

Ponta do Ouro 2 4 
 

groups 3 1.730 0.017 0.017* 

Richards Bay 2 4 (b)  populations within groups 4 -0.140 -0.001 0.550 

Southern KZN 2 4 
 

individuals within pops. 274 98.400 0.016 0.022* 

Transkei 2 4 
      

 

The SAMOVA analyses maximised the variance and revealed significant FCT values 

(between groups variability) when the sampling sites were grouped into K = 3 to 5 (P < 0.05) 

and not for K = 2 (P = 0.12) (Table 3.6). However, the FCT was low for all runs of SAMOVA 

ranging from 0.016 (K = 2) to 0.017 (K = 3, 4 & 5) indicating little genetic difference among 

groups. Among the groups generated by SAMOVA, Gaza (3) for K at 2, 3 and 5 groups and 

Richards Bay (6) for K at 3, 4, and 5 were separated from the rest of the sample groups as 

unique geographic groups.  
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Table 3.6: Results of the SAMOVA analysis of mtDNA for groupings of K = 2-5. The variance 

between groups (FCT) is indicated along with an associated P value. Significance at α = 0.05 is 

indicated by *. 

K Group 1 Group 2 Group 3 Group 4 Group 5 % variation FCT P value 

2 3 1,2,4,5,6,7,8 - - - 1.49 0.016 0.12 

3 1,2,4,5,7,8 3 6 - - 1.74 0.017 0.03* 

4 6 1,3 4,8 2,5,7 - 1.68 0.017 0.00* 

5 2,5,7 6 1 4,8 3 1.69 0.017 0.00* 

 

Isolation by distance Mantel tests showed no significant relationship between genetic 

distance and geographic distance (P = 0.69) (Figure 3.4). A large number of linearised FST 

comparisons were 0 and the relationship was weak with an R2 value of 0.019. Similarly, the 

spatial autocorrelation revealed no obvious trend with distance as the samples that were 

geographically closer were not more genetically similar. Significant positive spatial 

autocorrelations were only observed at the 300 km and 600 km distance classes (P < 0.05) 

(Figure 3.5).  

 

 

Figure 3.4: Scatterplot of the regression between Slatkins linearised genetic distance (FST) and 

geographic distance (km) for the isolation by distance test. 
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Figure 3.5: Spatial autocorrelation correlogram of coefficient r (± SD) (solid line) over the end point of 

100 km geographic distances for mtDNA. Dashed lines represent the 95% confidence interval around 

r. 
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3.3.4 Microsatellite diversity 

 

The genetic diversity at all loci was different, as the mean number of microsatellite alleles 

per locus ranged from 5.8 (SL1) to 32.5 (SL27) (Table 3.7). Allelic richness per locus 

showed a similar trend among loci ranging from 5.6 (SL1) to 29.3 (SL27). Observed 

heterozygosities (HO) were close to expected heterozygosities (HE) for all loci except for loci 

SL35 which had a HO of 0.50 and a HE of 0.86 and SL27 with a HO of 0.87 and HE of 0.97. 

This significant departure from Hardy-Weinberg equilibrium (HWE) was still observed at 

these two loci (SL35 and SL27) (P < 0.005) after Bonferroni corrections (Table 3.7). SL35 

exhibited departure from HWE at all sampling sites except Inhaca while SL27 exhibited 

departure from HWE only at southern KZN. 

 

Table 3.7: Summary statistics for 10 microsatellite loci showing the average number of alleles (NA), 

allelic richness (AR), observed (HO) and expected (HE) heterozygosity and deviations from Hardy-

Weinberg equilibrium (HWE). Significance at α = 0.005 after Bonferroni corrections is indicated by **. 

Locus NA AR HO HE HWE 

SL1 5.8 ± 0.7 5.6 0.52 0.53 0.038 

SL7 25.0 ± 2.8 23.1 0.95 0.96 0.381 

SL17 32.1 ± 2.6 29.0 0.97 0.97 0.188 

SL25 12.8 ± 2.1 12.0 0.90 0.84 0.290 

SL26 10.5 ± 2.1 9.4 0.71 0.71 0.271 

SL27 32.5 ± 5.1 29.3 0.87 0.97 0.002** 

SL29 6.0 ± 0.5 5.6 0.63 0.61 0.020 

SL33 20.0 ± 1.9 18.1 0.86 0.92 0.019 

SL34 15.9 ± 0.8 15.1 0.90 0.91 0.494 

SL35 13.0 ± 2.1 12.5 0.50 0.86 0.000** 

 

The average number of alleles across all loci among sampling sites ranged from 15.8 

(Inhaca) to 19.4 (Southern Inhambane) (Table 3.8). Allelic richness was consistent between 

all sampling sites ranging from 15.3 (Inhaca) to 16.6 (Southern Inhambane). The HO was 

similar between sampling sites but lower than HE for each sampling site mainly due to the 

heterozygote deficiency observed at locus SL35. However, FIS, an indicator of departure 

from HWE, was significant at Ponta do Ouro, Richards Bay and southern KZN (P value < 

0.0006) after Bonferroni correction. Ponta do Ouro, Richards Bay and southern KZN showed 

departure from HWE at locus SL35, with southern KZN also showing departure from HWE at 

locus SL27. 
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Table 3.8: Summary statistics for eight sampling sites showing number of samples (n), mean number 

of alleles per locus (NA) ± SD, mean allelic richness (AR) ± SD, observed heterozygosity (HO) ± SD, 

expected heterozygosity (HE) ± SD, inbreeding co-efficient across all loci (FIS). Significance at α = 

0.0006 after Bonferroni corrections is indicated by **. 

Site n NA AR HO HE FIS 

1-Ponta da Barra 34 17.4 ± 11.0 16.1 ± 9.8 0.78 ± 0.2 0.83 ± 0.2 0.053 

2-Southern Inhambane 42 19.4 ± 11.4 16.6 ± 9.2 0.79 ± 0.2 0.83 ± 0.2 0.046 

3-Gaza 31 16.7 ± 10.4 16.0 ± 9.8 0.78 ± 0.2 0.84 ± 0.1 0.060 

4-Inhaca 30 15.8 ± 8.7 15.3 ± 8.3 0.79 ± 0.2 0.81 ± 0.2 0.017 

5-Ponta do Ouro 30 16.1 ± 9.0 15.6 ± 8.6 0.75 ± 0.2 0.82 ± 0.2 0.080** 

6-Richards Bay 33 16.4 ± 8.0 15.7 ± 7.9 0.76 ± 0.2 0.83 ± 0.2 0.072** 

7-Southern KZN 45 19.3 ± 9.8 16.2 ± 8.0 0.77 ± 0.2 0.84 ± 0.2 0.082** 

8-Transkei 39 17.7 ± 11.1 15.7 ± 9.3 0.78 ± 0.2 0.82 ± 0.2 0.054 

 

Linkage disequilibrium for the 360 loci pairs (45 pairs for each sampling site) was observed 

only between 35 pairs (P < 0.05). However, none of these pairs remained significant after 

Bonferroni corrections (P > 0.001). Although pairwise linkage disequilibrium was observed 

between 11 pairs of loci (P < 0.05) when all samples were tested together, none of these 

remained significant after Bonferroni corrections (P < 0.001) (Table 3.9). 

 

Table 3.9: Pairwise linkage disequilibrium test P values for loci with all samples. Significance at α = 

0.05 is indicated by *. 

 

SL1 SL7 SL17 SL25 SL26 SL27 SL29 SL33 SL34 SL35 

SL1 - 

         SL7 0.89 - 

        SL17 0.28 0.11 - 

       SL25 0.01* 0.64 0.89 - 

      SL26 0.02* 0.09 0.22 0.02* - 

     SL27 0.32 0.02* 0.26 0.40 0.09 - 

    SL29 0.00* 0.60 0.12 0.01* 0.12 0.05* - 

   SL33 0.59 0.55 0.39 0.02* 0.16 0.03* 0.58 - 

  SL34 0.08 0.56 0.27 0.36 0.99 0.30 0.07 0.12 - 

 SL35 0.05* 0.68 0.42 0.60 0.15 0.08 0.02* 0.31 0.19 - 
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3.3.5 Microsatellite population differentiation 

 

Pairwise population comparisons (RST) (Table 3.10, below diagonal) were low and not 

significant (P > 0.05) ranging from -0.015 between Ponta da Barra and Ponta do Ouro as 

well as between Richards Bay and Transkei to 0.018 between Ponta do Ouro and southern 

KZN. Pairwise comparisons of the harmonic mean of Josts‟ D statistic (Table 3.10, above 

diagonal) were all close to zero also indicating little genetic differentiation between sampling 

sites. 

 

Table 3.10: Pairwise comparison of microsatellite genetic differentiation. Pairwise RST below diagonal 

and the harmonic mean of Jost‟s D statistic above diagonal. * indicates significance at α = 0.05. 

Site 1 2 3 4 5 6 7 8 

1 - Ponta da Barra - 0.000 -0.003 0.005 0.020 -0.001 0.000 0.000 

2 - S. Inhambane 0.009 - -0.012 0.000 0.000 -0.006 -0.002 0.000 

3 - Gaza -0.003 0.000 - -0.012 -0.001 -0.002 -0.008 -0.012 

4 - Inhaca -0.008 -0.013 -0.004 - 0.010 0.000 0.002 0.000 

5 - Ponta do Ouro -0.015 0.012 0.000 -0.007 - 0.000 0.004 0.000 

6 - Richards Bay -0.009 -0.007 -0.004 -0.008 -0.007 - -0.001 -0.002 

7 - Southern KZN 0.012 -0.007 -0.002 -0.002 0.018 -0.003 - 0.000 

8 - Transkei -0.008 -0.001 0.002 -0.011 -0.004 -0.015 0.004 - 

 

Both groupings of AMOVA assigned close to 100% of the variance to be among the 

individuals hierarchical level (Table 3.11). The amount of variance explained at the between 

groups hierarchical level was -0.17% for group (a) and -0.66% for group (b). P for both these 

groupings was not significant (P > 0.05) indicating a lack of genetic structuring among these 

pre-defined groups. SAMOVA analysis had significant support among group variation when 

K was tested for three to five groups only (P < 0.05) (Table 3.12). For all runs of SAMOVA 

FCT was low at 0.01 with less than 1.5% of the variance being explained at the among 

groups hierarchical level.  
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Table 3.11: AMOVA results for the two groupings that were specified based on: (a) oceanographic 

features and (b) significant mtDNA FST pairwise comparisons. Estimates of the degrees of freedom 

(df), the percentage of variation explained among each hierarchical level (% var), the associated 

fixation index (F ind) and the P values (P) as well as their significance at α = 0.05 (*) are indicated. 

Site Groupings 
 

Source of variation Microsatellites 

 
(a) (b)  

  
df % var F ind. P 

Ponta da Barra 1 1 
 

among groups 1 -0.170 -0.002 0.793 

S. Inhambane 1 1 (a) pops within groups 6 -0.130 -0.001 0.548 

Gaza 1 2 
 

individuals within pops. 176 -0.410 -0.004 0.535 

Inhaca 1 3 
 

among individuals 284 100.710 -0.007 0.567 

Ponta do Ouro 2 4 
      

Richards Bay 2 4 
 

among groups 3 -0.660 -0.007 0.958 

Southern KZN 2 4 (b)  pops. within groups 4 0.250 0.003 0.311 

Transkei 2 4 
 

individuals within pops. 276 -0.410 -0.004 0.491 

    
among individuals 284 100.820 -0.008 0.562 

 

Table 3.12: Results of the SAMOVA analysis of mtDNA for groupings of K = 2-5. The variance 

between groups (FCT) is indicated along with an associated P value. Significance at α = 0.05 is 

indicated by *. 

K Group 1 Group 2 Group 3 Group 4 Group 5 % variation ΦCT/FCT P value 

2 1,5 2,3,4,6,7,8 - - - 0.97 0.01 0.05 

3 1,4,5,6,8 2,7 3 - - 0.98 0.01 0.01* 

4 4,6,8 3 1,5 2,7 - 1.04 0.01 0.00* 

5 4 3,5,6,8 2 7 1 0.36 0.00 0.01* 

 

The principle coordinate analysis (PCA) conducted on all the samples found no clusters of 

geographically and genetically similar samples (Figure 3.6). Axis one explained 20.81% of 

the variance while 19.11% of the variance was explained by axis two. The first three axes 

explained 57.6% of the variance. 
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Figure 3.6: Principle coordinate analysis (PCA) for all samples. Individual samples are colour coded 

by sampling site. 

 

The most likely number populations identified by the structure analysis was one based on 

the negative ln likelihood estimate (Figure 3.7) and three based on delta K (Table 3.13). The 

probabilities of coming from each of the K populations for each individual were similar based 

on the individual admixture output graphs (for K = 2 – 5 presented) indicating no genetic 

structuring (Figure 3.8). Results were similar when prior location information was included 

(not presented). 

 

 

Figure 3.7: Mean –ln likelihood for the number of suggested populations (K) ± SD based on 20 

iterations for each value of K. 
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Figure 3.8: Individual admixture proportions (q) for K = 2 – 5. The colours represent each of the 

populations defined by the value of K. Vertical bars representing an individual sample are grouped by 

locality. 
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Table 3.13: Change in K (Delta K) for each number of K following Evanno et al. (2005). Delta K = 

mean (lL”(K)l/sd(L(K)) 

K Delta K 

1 - 

2 0.05 

3 1.5 

4 0.2 

5 0.8 

6 0 

7 0.2 

8 0 

9 - 

 

Isolation by distance Mantel tests found no significant relationship between genetic distance 

and geographic distance (P > 0.05) (Figure 3.9). A large number of RST values were zero 

and there was a very weak fit to the data with an R2 of 0.003. There were no positive spatial 

autocorrelations at the 100 km distance classes (P > 0.05) (Figure 3.10). Thus samples that 

were geographically closer did not seem to be more related than samples further apart.  

 

 

Figure 3.9: Scatterplot of Slatkins linearised genetic distance (RST) and geographic distance (km) to 

test isolation by distance. 
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Figure 3.10: Spatial autocorrelation correlogram of coefficient r (± SD) (solid line) over the end point 

of 100 km geographic distances for 10 microsatellite loci. Dashed lines represent the 95% confidence 

interval around r. 

 

The results of the stepping stone model implemented in migrate-n revealed asymmetrical 

migration between adjacent sampling sites. The highest migration rates were between 

southern KZN (7) and Richards Bay (6) as well as the Transkei (8) (Figure 3.11). The net 

migration between adjacent sites was generally in the direction of the prevailing 

oceanographic feature of the region. There was a net northerly migration between Inhaca (4) 

and Ponta da Barra (1) that is likely influenced by the cyclonic eddy in the Mozambique 

Channel and a net southerly migration between Inhaca (4) and the Transkei (8) likely 

influenced by the southward-flowing Agulhas Current (Figure 3.11). The northerly directed 

island model showed differneces in migration rates between adjacent sites. The highest 

migration rate was 679 between Southern Inhambane (2) and Ponta da Barra (1) and the 

lowest migration rate was 47 between Southern KZN (7) and Richards Bay (6) (figure 3.12). 

Higher northerly migration rates were observed between adjacent sites off the Mozambican 

coast compared to the South African coast (figure 3.12). 

 

 

Figure 3.11: A graphic of the results of the stepping stone model with asymmetrical gene flow 

(arrows) between sampling sites 1 – 8 (circles). The arrows show the direction and values indicate 

magnitude of gene flow (mutation scaled migration rate). Bold arrows indicate the net direction of 

gene flow between adjacent sites. 
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Table 3.14: Relative migration rate between each population pair from the stepping stone model 

implemented in migrate-n with 95% confidence interval in brackets 

Population Direction Relative migration rate 

1 (Ponta da Barra) 2 (S. Inhambane) 37.3 (31.8 - 43.5) 

2 (S. Inhambane) 1 (Ponta da Barra) 80.0 (71.9 - 88.7) 

2 (S. Inhambane) 3 (Gaza) 54.7 (51.3 - 58.2) 

3 (Gaza) 2 (S. Inhambane) 76.1 (71.9 - 80.4) 

3 (Gaza) 4 (Inhaca) 22.2 (19.9 - 24.8) 

4 (Inhaca) 3 (Gaza) 35.0 (31.9 - 38.3) 

4 (Inhaca) 5 (Ponta do Ouro) 36.5 (33.0 - 40.4) 

5 (Ponta do Ouro) 4 (Inhaca) 20.7 (18.5 - 23.0) 

5 (Ponta do Ouro) 6 (Richards Bay) 100.1 (91.2 - 109.7) 

6 (Richards Bay) 5 (Ponta do Ouro) 88.1 (78.2 - 98.9) 

6 (Richards Bay) 7 (Southern KZN) 222.0 (203.45 - 241.64) 

7 (Southern KZN) 6 (Richards Bay) 18.5 (14.8 - 22.7) 

7 (Southern KZN) 8 (Transkei) 262.3 (241.0 - 285.1) 

8 (Transkei) 7 (Southern KZN) 77.9 (68.7 - 87.9) 

 

 

Figure 3.12: Northerly migration rate between adjacent sites with 95% confidence intervals from the 

unidirectional island modal implemented in migrate-n. 
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the dynamics of fish populations, energy flows and sustainable yields in fisheries 

(Kenchington et al. 2003). The loss of genetic diversity in natural populations of fishes is 

usually associated with reductions in population sizes through historical bottlenecks or 

intense fishing pressure on a species (Smith et al. 1991). The fact that the effective 

population size of C. puniceus is orders of magnitude lower than census population size 

(Chopelet 2010) indicates that migration between populations may be the driving force 

maintaining this high diversity (Hauser and Carvalho 2008). 

 

The extreme variability of the mitochondrial control region (944 bp) could mask genetic 

structuring suggesting that this gene may not be a suitable marker for population genetic 

studies on C. puniceus and probably other sparids. Similar variability, with high haplotype 

diversity, was also observed in swordfish, Xiphius gladius, population genetic studies 

(Alvarado Bremer et al. 1996, Rosel and Block 1996), such that a less variable, shorter 

segment of the gene was considered and analysed. Bradman et al. (2011) later compared 

the control region to NADH dehydrogenase subunit 2 (ND2) for X. gladius population studies 

and found that the slower-evolving protein coding ND2 region defined more genetic structure 

for the swordfish. These results and the findings of the current study also suggest that the 

control region should not be used in isolation when doing population genetic studies when it 

is hypervariable in a species. 

 

A problem with population genetic studies for stock delineation and management of marine 

fishes with high migration rates is the difficulty in distinguishing between levels of 

connectivity that either are or are not consistent with the need for separate stock 

management (Waples et al. 2008). This is due to the inverse parametric relationship 

between the measure of genetic distance (FST) and gene flow (Nem) that is typically 

expressed as the effective number of migrants per generation. Gene flow and its value are 

estimated by the product of the effective population size (Ne) and the migration rate (m) 

(Chopelet et al. 2009b). When effective migration rates are even slightly increased among 

different populations, FST values between populations drop sharply (Waples et al. 2008). The 

resulting level of connectivity is such that populations may not require separate stock 

management. It is also difficult to use genetic data to distinguish between rates of migration 

that may lead to demographic independence when the effective population size of a species 

is large (Waples et al. 2008). It has been observed that the ability of genetic models to 

distinguish between different migration rates is poor when Ne is higher than 103. In a 

simulation study, Hastings (1993) found a threshold for m of 0.1 above which migration rates 

are high enough to cause genetic homogeneity and a single population. However, for the 

yellowtail flounder Limanda ferruginea, it was found that stocks reacted independently to 
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exploitation despite an estimated migration rate of around 10% between populations (Brown 

et al. 1987). Despite recent studies finding that effective population sizes of marine fish are 

sometimes an order of magnitude smaller than previously thought (Hauser and Carvalho 

2008), the effective population size of C. puniceus estimated from mtDNA is in the order of 

104 (Chopelet 2010). The results of the migrate-n analysis indicate asymmetrical migration 

rates between areas. The analysis of C. puniceus population structure is therefore obscured 

by a large effective population size and migration between sampling sites. Any conclusions 

based on the apparent lack of population structure must be made with caution as there is a 

chance that there is a disconnect between statistical and biological significance, i.e. stocks 

that appear to be genetically homogenous may react to fishing pressure independently 

(Waples 1998). 

 

The observed high levels of connectivity between sampling sites was in accordance with 

other studies on sparid species in South Arica. The red roman, Chrysoblephus laticeps, 

which exhibits residential adult behaviour (Kerwath et al. 2007) displayed high levels of 

genetic connectivity (Teske et al. 2010) indicating larval transport as the mechanism causing 

genetic homogeneity. The long planktonic phase of fish larvae is thought to be responsible 

for the lack of genetic structure in many marine fish species (Grant and Bowen 1998). 

Information on the larvae of C. puniceus is absent although it is considered to have a similar 

larval development as the santer, Cheimerius nufar, another sparid (Connell et al. 1999). 

The flexion stage of larval development for C. nufar is long and completed after 21 days 

(Connell et al. 1999) providing enough time for widespread current-driven larval dispersal. 

There is a high likelihood that C. puniceus larvae have a similar duration in the plankton 

phase allowing ocean circulation such as the Agulhas Current and its associated eddies to 

facilitate the high connectivity among populations throughout its distribution. This assumption 

was supported by the results of the stepping stone model that indicated net migration 

between sites that may have been influenced by oceanographic features, with net 

southward-directed migration in the Agulhas Current and net northward migration between 

sites influenced by Mozambique channel cyclonic eddies. This was further supported by the 

unidirectional island model which showed higher northern migration rates off the 

Mozambique coast compared to the South African coast The lack of isolation by distance 

patterns for microsatellite and mtDNA data suggest that there must also be some form of 

active migration at some point in C. puniceus‟ life history. The asymmetrical migration rates 

between adjacent locations in the migrate-n analysis would also support this argument. 

 

Despite the migrate-n analysis indicating that the net direction of dispersal is separated in 

opposite directions around a possible subtropical/tropical boundary at Inhaca, the majority of 
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analyses found no population structuring. This result is in contrast with other population 

genetic studies in the same area (Gopal et al. 2006, Ridgway et al. 2008). Not all species 

that occur across more than one biogeographic province exhibit genetic structure and ones 

that do may not exhibit breaks in the same location (Teske et al. 2011). There was little 

evidence to support a subtropical/tropical biogeographic break in the distribution of C. 

puniceus. 

 

While the mtDNA AMOVA analysis found significant structure between groups for grouping 

(b), significance was also observed at the between individuals hierarchical level. 

Furthermore the microsatellite AMOVA analysis for the same groupings found no significant 

structuring at any hierarchical level. While SAMOVA found significance at K = 3, 4 and 5 for 

both mtDNA and microsatellite data the groupings made did not contain geographically 

similar sites indicating no regional clusters of haplotypes (Teske et al. 2010). When gene 

flow between sites is similar to gene flow within sites the accuracy of the SAMOVA algorithm 

decreases sharply (Dupanloup et al. 2002). Despite the condition that groupings must be 

genetically homogenous the SAMOVA algorithm can sometimes result in the partition of two 

distinct sets of geographically adjacent populations belonging to the same group (Dupanloup 

et al. 2002). SAMOVA was therefore unable to identify biologically meaningful groups with a 

greater variability than that observed in the overall sample. Despite positive spatial 

autocorrelation for mtDNA at 600 km the correlation coefficient (r) did not fall outside the 

95% confidence interval indicating no departure from the null hypothesis of no spatial 

autocorrelation. The positive spatial autocorrelation at 300km for mtDNA is likely due to the 

pairwise genetic distance among Inhaca and Gaza with some other sites. The lack of 

positive spatial autocorrelation in the microsatellite dataset and the lack of positive spatial 

autocorrelation at distances less and greater than 300 km for the mtDNA indicate no pattern 

between geographic distance and genetic relatedness in both datasets. The structure 

analysis, based on the change in K following the methods of Evanno et al. (2005), indicated 

the number of real populations was three. However, based on the methods of Falush et al. 

(2003), the number of real populations identified was one. A drawback of the Evanno et al. 

(2005) method is that it is not able to detect the correct structure when the actual number of 

populations is one because the statistic is based on the change in K (Evanno et al. 2005). 

Furthermore the individual admixture plots from the structure analysis did not show any 

pattern of structure for any value of K indicating that the actual number of populations is 

likely one. 

 

Despite the mtDNA pairwise comparisons and AMOVA analyses revealing some level of 

genetic sub-structuring around Gaza and Inhaca, possibly due to the persistent upwelling 
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cell in the area, the majority of other analyses indicated high levels of connectivity among all 

sampling sites. The mtDNA analyses also indicated that localities either side of Gaza and 

Inhaca are connected through gene flow. The indication that C. puniceus exists as a single 

transboundary stock with migration between sampling sites in Mozambique and South Africa 

is a cause for concern if the management strategies of the two countries are not aligned. 

This is because trends of increasing fishing effort in one area are likely to be detected 

throughout the species distribution due to the levels of connectivity between sites. Thus 

management strategies in either South Africa or Mozambique will be compromised over time 

if they are not aligned to protect the fishery. 

 

The uneven spatial distribution of linefishing effort that the species has been exposed to 

historically coupled with the high levels of connectivity among all areas through its 

distribution likely enabled the stock to be resilient to localised fishing pressure. The stock of 

another sparid species, Polysteganus undulosus, subjected to high levels of fishing pressure 

by the South African linefishery has collapsed as this pressure was across this species 

entire distribution and fishers targeted spawning aggregations of adults (Chale-Matsau et al. 

2001). The need for co-management to ensure sustainable harvesting of C. puniceus in 

South Africa and Mozambique is heightened in light of the results of this study, which has 

shown it to be a transboundary stock, currently subjected to substantial fishing effort across 

virtually its entire distribution (excluding the Ponto do Ouro, Maputaland, St Lucia and 

Pondoland Marine protected areas). 

 

3.5 Conclusion 

 

The results of this study did not provide enough evidence to suggest that C. puniceus is 

genetically structured into different stocks. Although the mtDNA control region analyses 

revealed some genetic structuring separating Gaza and Inhaca from other sampling sites, 

there was no consistent pattern between analyses. The findings of the study indicate little to 

no spatial genetic variation with asymmetrical migration through C. puniceus‟ distribution. 
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CHAPTER FOUR 

 

PREDICTING CURRENT AND FUTURE DISTRIBUTIONS OF C. PUNICEUS UNDER 

CLIMATE CHANGE 

 

 

4.1 Introduction 

 

There is increasing evidence of observed distributional changes of fishes being closely 

associated with observed changes in climatic variables such as ocean temperatures (e.g. 

Perry et al. 2005, Fodrie et al. 2010, Last et al. 2011). Climate regimes influence species 

distributions through species-specific physiological thresholds of temperature tolerance 

(Walther et al. 2002). A mismatch between the demand for oxygen and oxygen availability to 

marine fishes is the first mechanism to restrict species tolerance to thermal extremes 

(Portner and Knust 2007). Together with physiological responses; behavioural responses, 

population dynamic changes and ecosystem changes in productivity are four interlinked 

mechanisms that can be responsible for climate-driven changes in fish populations 

(Rijnsdorp et al. 2009). Because marine species fill more of their potential latitudinal ranges 

than terrestrial species, as predicted from their thermal tolerance limits, they are thought to 

be more affected by changes in temperatures around their thermal limits (Sunday et al. 

2012). 

 

Understanding how species will respond to changes in climate is of vital importance for 

effective management of biodiversity (Hijmans and Graham 2006, Kearny et al. 2010). The 

need for adaptive management is urgent given predictions of further and accelerated climate 

changes coupled with anthropogenic stressors (Wernberg et al. 2011). The uncertainty 

regarding the extent of climate change impacts on organisms makes management and 

policy decisions difficult (Webster et al. 2003). Furthermore, understanding how a species‟ 

range is likely to shift will affect commercial harvesting strategies. A country is more likely to 

set effective regulations and plan for long-term sustainable yields if the harvest species‟ 

distribution is not predicted to shift away from the country‟s exclusive harvesting zone in the 

future (Gucinski et al. 1990). Understanding the distribution patterns of a species will aid 

stock structure identification, and predicting changes into the future can explore the 

possibility of range shifts or habitat fragmentation resulting in multiple stocks (Lasram et al. 

2010). 
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Species distribution models (SDMs) have been increasingly used by ecologists and 

managers to estimate patterns of species distribution (e.g. Olden et al. 2002), prioritise areas 

for biodiversity conservation (e.g. Loiselle et al. 2003) and to evaluate the impact of climate 

change on species distributions (e.g. Allouche et al. 2006, Lasram et al. 2010). Improving 

predictive power is imperative to manage and conserve marine species in the face of climate 

change (Harley et al. 2006) and as such SDMs are a powerful tool to improve management 

decisions. To date SDMs have not been used to predict the effects of climate change on 

marine fish distributions in the South West Indian Ocean. 

 

Correlative species distribution models explore mechanisms governing species distribution 

(Araújo and Guisan 2006) and are based on associations of observed species occurrence 

records and a set of predictor variables (such as climate variables). Climatic models can 

predict the probability of occurrence for a species based on the association between climate 

variables (Araújo and Guisan 2006). Predicted distributions can then be projected through 

space and time to predict future species distributions taking into account events like climate 

change (Elith and Leathwick 2009). Species distribution models base their ability to predict 

distributions on the idea that the best indicator of climatic requirements for a species is its 

current distribution (Pearson and Dawson 2003). Species distributions in reality are 

constrained by non-climatic and climatic factors (Pearson and Dawson 2003). However, in 

the marine environment temperature is considered the primary limiting factor shaping fish 

species ranges (Lasram et al. 2010, Sunday et al. 2012). 

 

Chrysoblephus puniceus is likely to be particularly vulnerable to the effects of climate 

change as anthropogenic effects such as fishing pressure reduce the age, size, abundance 

and genetic diversity of populations making them more susceptible to disturbances (Brander 

2007, Wernberg et al. 2011). Part of C. puniceus’ distribution occurs in the sub-

tropics/tropics where species are at temperatures close to their thermal limits and therefore 

likely to be more sensitive to changes in sea surface temperature (SST) (Munday et al. 

2008). Furthermore, Chrysoblephus puniceus has the potential to react to changes in SST 

by shifting its distribution as the species is well connected through dispersal throughout its 

distribution (Chapter 2). 

 

It has been hypothesised and generally agreed that climate change will drive species ranges 

towards the poles as temperatures at their lower latitude range limits increase and 

temperatures at their higher latitude range limits become more favourable (Parmesan 2006, 

Thomas et al. 2008). In addition to range shifts climate change may induce habitat 

fragmentation (Lasram et al. 2010) which, coupled with further climate change, may 
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exacerbate the effects of habitat fragmentation resulting in accelerated population declines 

(Mora et al. 2007). Range restricted endemic species may be more vulnerable to climate 

change as their specialisation to a certain habitat may result in distribution contractions due 

to habitat loss rather than distributional shifts (Thuiller et al. 2005, Brook et al. 2008). 

 

Because of C. puniceus‟ predicted vulnerability to climate change and the variability in 

changes in SST through its distribution (Chapter 3) it was hypothesised that C. puniceus will 

alter its distribution in response to changing SST in the future. Therefore, the potential 

impacts of climate change on the distribution of C. puniceus were assessed using SDMs, 

specifically to predict whether the distribution of C. puniceus is likely to shift, expand, fracture 

or contract with SST changes predicted to occur up to 2030. 

 

4.2 Materials and methods 

 

4.2.1 Presence data 

 

The co-ordinates of commercial and recreational catches of C. puniceus were obtained from 

a number of sources and combined into a database. In South Africa, the Oceanographic 

Research Institute (ORI) provided data from the ORI/ World Wildlife Fund (WWF) tagging 

programme from 1984 to 2011. The National Marine Linefish System (NMLS), a large 

database on South African linefishing housed at the Department of Agriculture, Forestry and 

Fisheries (DAFF), provided locality code data from catch returns, fishing competitions and 

observer inspections from 1986 to 2010 (Mann-Lang 1996). In Mozambique, commercial 

catch returns of C. puniceus from 2007 to 2010 were obtained from the national fisheries 

research institute, Instituto de Investigação Pesqueira (IIP). When no distance from the 

shore was reported for a particular catch, co-ordinates five kilometres offshore from the 

available coastal catch locality were used. Occurrence points were visualised in a 

Geographical Information Software package; ArcMap v10 (ESRI). Occurrence points were 

resampled and assigned to a 0.05° grid and duplicate records per grid cell were removed 

using the data management package in ArcMap. All available occurrence points were used 

as C. puniceus exists as a single mixed stock (Chapter 3). 
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4.2.2 Current environmental layers 

 

Bathymetry, as C. puniceus is a rocky reef associated species, and SST, as SST is the 

major driver of fish distribution (e.g. Dulvy et al. 2008, Hiddink and ter Hofstede 2008) were 

included in this study as environmental layers. Bathymetry data used were a blend of the 

Smith and Sandwell (1997) and the General Bathymetric Chart of the Oceans (GEBCO) 

bathymetries. Bathymetry data were downloaded from the African Marine Atlas 

(http://omap.africanmarineatlas.org/index.htm, accessed in October 2012). Monthly mean 

optimally interpolated (OI) SST (Reynolds SST, Reynolds et al. 2002) data from 1971-2000 

on a 1° grid were obtained from the Physical Sciences Division (PSD) of the Earth System 

Research Laboratory (ESRL) of the United States National Oceanic and Atmospheric 

Administration (NOAA): (http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.htm, 

accessed in October 2012). Reynolds SST is produced weekly on a 1°grid cell from in situ 

and satellite SST. Monthly fields are computed by linearly interpolating the weekly fields to 

produce daily fields and then averaging to obtain monthly averages (Reynolds et al. 2002). 

Long-term monthly means are constructed from two intermediate climatologies: a 2° SST 

climatology from in situ data from 1950-79, and a 1° SST climatology derived from the OI 

SST analysis (Smith and Reynolds 1998). Reynolds SST were preferred to other satellite 

derived SSTs owing to the long temporal coverage available and the absence of data gaps 

from cloud cover. 

 

Maximum and minimum raster layers were generated in ArcMap from the average monthly 

climatologies. Maximums and minimums were used instead of means or medians as it is 

hypothesized that species‟ ranges reflect their thermal tolerance, such that their tolerance to 

heat corresponds to the maximum summer temperature of their range and their tolerance to 

cold corresponds to the coldest winter temperature (Stevens 1989, Martinez-Meyer 2005). 

Months were grouped into four austral meteorological seasons: summer (January, February, 

and March), autumn (April, May, June), winter (July, August, September) and spring 

(October, November, December) and seasonal maximum and minimum rasters were 

generated. 

 

Raster cells temperature data were extended towards the shoreline using focal statistics in 

ArcMap. This was necessary because some near-shore species points fell into areas not 

covered by the temperature data. All environmental raster layers were then resampled to 

0.05° grid cells using a distance weighted average between points. Finally, all environmental 

layers were clipped to the area from the shore to the 1000 m depth contour because coastal 
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species don‟t occur beyond this depth. A scatterplot matrix was generated in ArcMap to 

remove covarying SST data from the analysis. 

 

4.2.3 Future temperature layers 

 

Although future SST values are often obtained from the Intergovernmental Panel on Climate 

Change (IPCC) scenarios (e.g. Araújo et al. 2004, Lasram et al. 2010, Bond et al. 2011) this 

method was inappropriate for this study as these scenarios have resolutions that are too 

coarse (250-1000 km) (IPCC-TGICA 2007) and have regional temperature biases in 

oceanographic features such as upwelling regions (Stock et al. 2011). A “persistence is the 

best forecast” approach was used to forecast future SST values by extending the linear 

trend in time from observed SST data. 

 

Monthly Reynolds SSTs were used to calculate linear trends of SST (°C per decade) over 

the period January 1982 to December 2010, after which seasonal trends were calculated in 

the IDRISI Selva v17 software package (Clark Labs, Clark University). These layers were 

then used to prepare predicted SST layers for 20 and 30 years into the future by adding 

them to current temperature layers using raster calculator in ArcMap. SST layers were not 

generated beyond 30 years as errors may become too large if predicted further into the 

future. Future SST layers were interpolated, resampled and clipped following the same 

methods as the current SST layers. 

 

4.2.4 Species distribution models 

 

Modelling was run in the BIOMOD2 package (Thuiller and Georges 2012). This package 

was selected as it offers the greatest choice of models and provides tools to explore the 

range of model results, project into future climate scenarios and assess the importance of 

environmental variables to each model. All models available were considered except surface 

range envelopes (or BIOCLIM) as a study by Elith et al. (2006) found that purely presence 

only models performed poorly compared to other models offered in the BIOCLIM package 

and artificial neural networks (ANN) as a study by Lawler et al. (2006) found that ANN 

consistently over predicted current presences. 

 

Three regression models were used; generalised linear models (GLM), generalised additive 

models (GAM) and multiple adaptive regression splines (MARS). Generalised linear models 

have skewed response curves fitted with a third order cubic polynomial and are therefore 

able to fit more complex functions than regular regression techniques (Thuiller et al. 2003). 
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Generalised additive models are a nonparametric extension of GLMs that use smoothing 

functions enabling more complex relationships between variables to be explored (Yee and 

Mitchell 1991). Multiple adaptive regression splines are flexible nonparametric models that 

use recursive partitioning and spline fitting, allowing one to model relationships that involve 

few variables (Friedman 1991). 

 

Four classification based models were used; classification tree analysis (CTA), boosted 

regression trees (BRT), random forest (RF) and flexible discriminant analysis (FDA). 

Classification tree analysis explains variation of a single response variable by repeatedly 

splitting data into more comparable groups using different combinations of explanatory 

variables (De‟ath and Fabricius 2000). Each group is then characterised by a value of the 

response variable, the number of observations in the group and the values of the 

explanatory variables that define it (De‟ath and Fabricius 2000). Boosted regression trees 

are a form of ensemble learning where many classifiers are generated and their results 

aggregated (Liaw and Wiener 2002). With BRTs successive trees give extra weight to points 

incorrectly identified in previous predictions and a weighted vote is taken at the end (Liaw 

and Wiener 2002). Random forests differ from BRTs in that successive trees do not depend 

on earlier trees but rather values of random vectors sampled independently and with the 

same distribution for all trees adding more randomness to the model (Breiman 2001). 

Flexible discriminate analysis is an extension of linear discriminate analysis where the linear 

regression is replaced by any nonparametric regression method (Reynes et al. 2006). 

 

One machine-learning technique was used; maximum entropy (MAXENT). The theory 

behind MAXENT is to estimate a target probability distribution by finding the probability of 

maximum entropy subject to a set of constraints that represent information about the target 

distribution (Phillips et al. 2006).  

 

4.2.5 Ensemble modelling 

 

Predictions of changes to a species distribution due to climate change can vary greatly 

between models and reduce their effectiveness (e.g. Thuiller 2004, Araújo et al. 2005a, 

Hijmans and Graham 2006, Araújo and New 2007). Good model performance for current 

predictions does not translate into good performance when predicting into the future 

(Pearson et al. 2006, Randin et al. 2006). One method to mitigate against these problems is 

to develop a range of models and assume that collectively they define a range of 

uncertainties with regard to projecting a species distribution into the future (Araújo et al. 

2005b). An idea similar to the central limit theorem in statistics can then be applied by 
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assigning some form of majority vote criteria such as a mean or median giving higher 

probabilities to the most consensual models (Clemen 1989). This method of combining 

multiple model projections into one consensual forecast is a form of ensemble modelling and 

is based on the theory that combined forecasts yield a lower mean error than any of the 

individual forecasts (Anderson et al. 2003, Araújo and New 2007). There are a number of 

different techniques to explore central tendencies in model projections but simple model 

averaging is often thought to be the most sensible approach (Araújo et al. 2006). A mean 

ensemble model was developed from the eight individual models for current, 2020 and 2030 

distributions as a recent study found this method improved predictive accuracy of all single 

models (Marmion et al. 2009). 

 

4.2.6 Generating pseudo-absence data 

 

Gathering absence data is often difficult for mobile species, requires higher effort and 

expense and may be of questionable value in many cases (Mackenzie and Royle 2005, 

Phillips et al. 2006). When reliable absence data is unavailable, pseudo-absence data can 

be generated for models that require presence and absence data (Thuiller et al. 2010). The 

accuracy of pseudo-absence data, the number of pseudo-absence data points, the 

prevalence (the weighting of presences and pseudo-absences in the model), the number of 

model runs and the method of generating pseudo-absence data can affect the performance 

of models (Barbet-Massin et al. 2012). In order to generate pseudo-absence data that 

maximises model performance but still allows the combining of individual models to form an 

ensemble the guidelines of Barbet-Massin et al. (2012) where followed. A random 

generation of 1000 pseudo-absences was chosen as nearly all models performed well under 

these conditions (Barbet-Massin et al. 2012). Equal prevalence between presence and 

pseudo-absence data were used for all the models. 

 

4.2.7 Model building and evaluation 

 

For each individual model, presence data were split, with 80% of the data used for model 

calibration and the remaining 20% used for model evaluation (Lawler et al. 2006, Georges 

and Thuiller 2012). Each model was evaluated by comparing predictions with the evaluation 

data using three statistics: Cohen‟s Kappa (Cohen 1960), the area under curve (AUC) of the 

receiver operating characteristic (ROC) and the true skills statistic (TSS). A confusion matrix 

is first generated that gives the number of true positive (a), false positive (b), false negative 

(c) and true negative (d) cases predicted by the model (Table 4.1). 
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Table 4.1: Example of a confusion matrix generated through model outputs and observed results 

(validation data). Taken from Allouche et al. (2006). 

Model   Validation data 

  

Presence Absence 

Presence   a b 

Absence   c d 

 

Two measures derived from the confusion matrix are sensitivity and specificity. Sensitivity is 

the number of true positives divided by the sum of true positives and false negatives (
 

   
) 

and specificity is the number of true negatives divided by the sum of false positives and true 

negatives (
 

   
) (Erasmus et al. 2002). Kappa is a measure of the accuracy of presence-

absence predictions and corrects the overall accuracy of model predictions by the accuracy 

expected to occur by chance, taking into account both commission and omission errors 

(Allouche et al. 2006). The ROC curve is a plot of sensitivity against the corresponding 

proportion of false positives (equal to 1-specificity). Taking the AUC of the ROC at every 

given probability of occurrence is a threshold independent measure of model performance 

(Allouche et al. 2006). Both Kappa and ROC have been severely criticised primarily because 

of the effect of prevalence (
   

 
  on the statistics (Allouche et al. 2006, Lobo et al. 2008). 

Despite these criticisms, ROC and Kappa are still commonly used to assess model accuracy 

(Lawler et al. 2006) and were therefore used in this study together with the true skill statistic 

(TSS). The TSS is the sum of sensitivity + (specificity – 1) and corrects for the dependence 

of Kappa on prevalence, has a high correlation with the ROC (Allouche et al. 2006). 

 

Model outputs are a continuous gridded dataset ranging from 0 (not predicted to occur) to 1 

(predicted to occur). In order to convert outputs into binary species occurrences, a threshold 

needs to be set above which a model output is considered to be a prediction of presence 

(Pearson et al. 2004). The threshold that maximised TSS was chosen as this statistic 

accounts for commission and omission errors, is not affected by prevalence and has been 

used as a threshold in more recent studies (La Morgia et al. 2008, Lasram et al. 2010). 

 

To assess the relative importance of environmental variables to each model, environmental 

variables were randomised three times and model outputs correlated with the standard 

prediction (Thuiller et al. 2010).  
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4.2.8 Projecting into the future 

 

The Landis and Koch (1977) classification scheme for the accuracy of models according to 

the Kappa statistic was applied to the TSS in accordance with Lasram et al. (2010). A TSS > 

0.8 is excellent, 0.6 < TSS > 0.8 is good, 0.4 < TSS > 0.6 is fair, 0.2 < TSS > 0.4 is poor and 

a TSS < 0.2 is considered to have no predictive value (Lasram et al. 2010). All models with 

TSS scores > 0.80 (excellent) for current modelled distributions were then projected into the 

future, with the environmental variables generated for the year 2020 and 2030. The trends in 

distributional changes at the edges of C. puniceus modelled distributions were recorded as 

well as the percentage change in suitable habitat (grid cells) predicted for future 

distributions. Future projected distributions for each model type were then combined into a 

means ensemble model following the methods used for the current distribution projection. 

 

4.3 Results 

 

4.3.1 Present and future climates 

 

Summer minimum and winter maximum temperature layers were removed from the analysis 

as they were highly correlated. Seasonal change in SST (°C per decade) was variable along 

the east coast of southern Africa and Madagascar (Figure 4.1a - d). In South Africa, warming 

was observed for all seasons off the Transkei coastline with a maximum rate of 0.52 °C per 

decade in summer. Warming was observed for all seasons except winter along the KZN 

coastline with a summer maximum rate of 0.35 °C per decade. In Mozambique, there was 

warming along the entire southern coastline in summer and off the Inhambane coastline in 

spring, with the highest rate of 0.21 °C per decade occurring off Ponta da Barra in summer. 

In Madagascar, warming was observed off the southern coastline in spring and summer with 

the highest rate of 0.46 °C per decade occurring in spring off the south western coast. There 

was cooling in South Africa around the Port Alfred upwelling cell in autumn and winter. The 

highest rate of cooling around Port Alfred was -0.16 °C per decade occurring in winter. In 

Mozambique, there was cooling around the Delagoa Bight upwelling cell in spring and winter 

with a highest rate of -0.21 °C per decade recorded in winter. Cooling was observed in 

winter around Vilanculos with a highest rate of -0.1 °C per decade. No cooling was observed 

off southern Madagascar. 



 

 

4
8 

 

Figure 4.1: Decadal trend of Reynolds SST (°C) for summer (a), autumn (b), winter (c) and spring (d) from 1982 - 2010. 

(a) (b) 

(c) (d) 
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4.3.2 Occurrence records 

 

Overall, a total of 463 occurrence records were obtained and visualised in ArcMap. Replicate 

records from the same grid cell were removed resulting in a total of 236 presence points (Figure 

4.2). No catch records were obtained for Madagascar. 

 

 

Figure 4.2: Chrysoblephus puniceus presence points used for all SDMs. 

 

4.3.3 Individual models 

 

4.3.3.1 Model accuracy 

 

All models performed well according to the three model performance statistics used (Table 4.2). 

Kappa ranged from 0.851 (GLM) to 0.974 (RF), ROC from 0.919 (GLM) to 0.999 (RF) and TSS 

from 0.837 (GLM) to 0.983 (RF). No models were excluded from the ensemble model or from 

projections into the future because of poor model performance.  
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Table 4.2: Kappa statistic (Kappa), the area under the curve of the receiver operating characteristic 

(ROC) and true skills statistic (TSS) as indicators of model performance. 

 

KAPPA ROC TSS 

GLM 0.851 0.919 0.837 

BRT 0.920 0.996 0.957 

GAM 0.886 0.987 0.927 

CTA 0.930 0.994 0.964 

FDA 0.881 0.986 0.932 

MARS 0.886 0.986 0.935 

RF 0.974 0.999 0.983 

MAXENT 0.909 0.992 0.945 

 

4.3.3.2 Variable importance 

 

Winter minimum temperature was the most important environmental variable in five of the 

models, bathymetry in two models and summer maximum temperature in one model (Table 

4.3). Autumn maximum temperature was never the most important environmental variable but 

was relatively important in all models except FDA and RF. Autumn minimum temperature and 

spring maximum and minimum temperatures contributed the least of the environmental 

variables to model results. 

 

Table 4.3: Percentage importance of each environmental variable to each individual model. The most 

important variable for each model is highlighted in bold and shaded. 

 

GLM GBM GAM CTA FDA RF MAXENT MARS 

Winter min 0.42 0.43 0.26 0.42 0.26 0.33 0.24 0.00 

Bathymetry 0.24 0.29 0.08 0.25 0.13 0.43 0.32 0.17 

Summer max 0.00 0.02 0.00 0.01 0.19 0.06 0.14 0.27 

Autumn max 0.34 0.24 0.23 0.31 0.00 0.07 0.30 0.20 

Autumn min 0.00 0.01 0.22 0.00 0.18 0.03 0.01 0.12 

Spring max 0.00 0.01 0.20 0.01 0.08 0.03 0.00 0.01 

Spring min 0.00 0.01 0.00 0.00 0.16 0.05 0.00 0.23 
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4.3.3.3 Current and future distributions 

 

The size of C. puniceus predicted current distribution ranged from 53 667 km2 (GLM) to 131 168 

km2 (FDA) (Table 4.4). Five of the individual models predicted a decrease in distribution by 

2020, which decreased further by 2030 for three of them. Three models predicted an increase in 

distribution by 2020 which further increased by 2030 for two of them (Table 4.4). The 

percentage change in C. puniceus’ distribution was variable between models ranging between a 

-55.2% decrease in distribution size by 2030 (GAM) to a 72.3% increase in distribution by 2030 

(GLM).  

 

Table 4.4: Modelled current and future C. puniceus range sizes (km
2
) for each binary transformed 

individual model and the percentage change in distribution size for 2020 and 2030. 

Model Current 2020 2030 

 

2020 2030 

 

km
2
 

 

% 

GLM 53667 66334 92445 

 

23.6 72.3 

GBM 105945 94390 95445 

 

-10.9 -9.9 

GAM 103334 62223 46278 

 

-39.8 -55.2 

CTA 73834 66167 86223 

 

-10.4 16.8 

FDA 131168 111056 99945 

 

-15.3 -23.8 

MARS 106556 112056 120501 

 

5.2 13.1 

RF 70056 76223 72445 

 

8.8 3.4 

MAXENT 105445 99556 92723 

 

-5.6 -12.1 

 

4.3.4 Ensemble models 

 

4.3.4.1 Current distribution 

 

The mean ensemble model was accurate based on the test statistics used, with a Kappa score 

of 0.934, a ROC score of 0.996 and a TSS score of 0.962. A very high probability of occurrence 

(> 0.8) was predicted throughout the core of C. puniceus‟ distribution along the South African 

and Mozambican coastlines, with decreasing probability of occurrence around the range 

margins (Figure 4.3a). The binary transformed mean ensemble model indicated that C 

puniceus’ range extends from Ponta da Barra in Mozambique to slightly past East London in 

South Africa and off the southern Madagascar coastline (Figure 4.4a). 
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Figure 4.3: Mean ensemble model probability of C. puniceus occurrence for current (a), 2020 (b) and 

2030 (c) distributions. 

(a) 

(b) 

(c) 
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Figure 4.4: Binary transformed mean ensemble models of C. puniceus’ distribution for current (a), 2020 

(b) and 2030 (c) distributions. 

(a) 

(b) 

(c) 
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4.3.4.2 Future distributions 

 

The further into the future predictions were made the more contracted the area of very high 

probability of occurrence became (Figure 4.3b and c). By 2030, the majority of C. puniceus’ very 

high probability of occurrence was centred off the South African coastline, with a medium to 

high probability occurrence (0.4 – 0.6) off the majority of the southern Mozambican coastline. 

There was a medium to high probability of occurrence around the southern Madagascan 

coastline which persists until 2030. 

 

The binary transformed mean ensemble models showed contraction of the northern 

(Mozambique) and southern (South Africa) range margin (Figure 4.5). There is also a 

contraction of C. puniceus’ distribution around the southern Madagascan coastline. These range 

contractions occur by 2020 and increase very slightly by 2030. The binary transformed mean 

ensemble model predicted overall an 11% decrease in distribution by 2020 (103 501 km2 to 92 

167 km2) which persisted untill 2030 (92 612 km2). If modelling results around Madagascar are 

excluded C. puniceus‟ distribution is predicted to decrease by 14% (61 112 km2 to 53 056 km2) 

by 2020 and 15% (51 723 km2) by 2030 along the South African and Mozambican coastlines. 

 

 

Figure 4.5: Change in C. puniceus modelled distribution until 2030. 

  

C. puniceus distribution 

Current 

2030 
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4.4 Discussion 

 

Bioclimatic modelling suggests that climate change may have an adverse effect on the range of 

Chrysoblephus puniceus up until 2030 at least. Around the southern Mozambique coastline the 

probability of occurrence decreases from very high (current) to between medium and high 

(2030), but remains very high off the South African coastline. The binary transformed ensemble 

model predicts that rather than showing a marked range shift from north to south, the northern 

range margin will shift poleward and the southern range margin will contract resulting in a range 

contraction of 15%.  

 

Temperature dependant processes vary over a species‟ latitudinal gradient, with populations at 

range margins being more influenced by environmental conditions (Martinho et al. 2012). Rises 

in SST in tropical/subtropical areas are predicted to stress many species that already occur at 

temperatures close to their thermal maximum (Munday et al., 2008) and drive species ranges 

towards the poles (Parmesan and Yohe 2003, Parmesan 2006). Upwelling adjacent C. 

puniceus‟ southern range margin at Port Alfred appears to be a factor constraining the poleward 

shift of the southern range margin. The predicted intensification of upwelling assumes that 

historical trends in the Agulhas system (Rouault et al. 2009) will persist. Increases in wind stress 

in the South Indian Ocean from the 1980‟s have resulted in an intensification of the Agulhas 

Current and cooling of SSTs in areas of increased upwelling around Port Alfred and Port 

Elizabeth between January and August (Rouault et al. 2009, 2010). Global climate models 

predict that the observed intensification of these winds will continue into the future (Davis 2011) 

resulting in further strengthening of the Agulhas Current and increased upwelling. 

 

Chrysoblephus puniceus is a range restricted species endemic to southern Africa. Recent SDM 

work on Mediterranean endemic fish species also indicates habitat reduction and future 

extinctions as a result of habitat loss (Lasram et al. 2010). The study highlighted that extinction 

risk is more pronounced for narrow ranged endemic species as opposed to wide ranged 

endemics. Thomas et al. (2004) modelled distributional changes for a number of endemic 

species and also found a relationship between extinction risk and geographical range size. 

Habitat specialisation of endemics is thought to promote species risk of extinction through 

reducing the capacity of species to shift distributions (Davies et al. 2004, Hsieh et al. 2008). In 

the individual models used in this study bathymetry was an important environmental variable in 
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all of the models except the GAM. This indicates that the depth requirements of C. puniceus 

may restrict the species ability to seek new habitat as a response to local changes in SST. 

 

Observed range changes in fish species have indicated that species have responded to 

changes in SST by shifting their range (Booth et al. 2009). In south east Australia 23 species of 

reef dwelling fishes have recently shifted their southward range limit as a response to climate 

change resulting in expanded ranges (Last et al. 2011). The area is considered a climate 

change hot spot with increasing temperatures extending southward (Last et al. 2011). Similarly, 

in the northern Hemisphere (North Sea) a number of fish species have shifted their northern 

limit as a result of warming seas as previously unsuitable habitat becomes more suitable (Perry 

et al. 2005). These studies, however, draw inferences from species that are widely distributed 

(Last et al. 2010) or from higher latitude distributions (Perry et al. 2005). Thomas et al. (2008) 

indicate that the failure to record species range retractions may be from failures to survey 

distributions at fine enough scales or from failure to attribute range contractions to climate 

change. At a finer scale and in an area covered by this study (KwaZulu-Natal), Lloyd et al. 

(2012) recorded an increase in tropical reef-dwelling species off the coast around Durban from 

1989 to 2007. This trend appears to be mirrored in the predicted very high probability of 

occurrence of C. puniceus around KwaZulu-Natal up to 2030, with tropical waters in 

Mozambique becoming less favourable.  

 

The northern range margin of C. puniceus is predicted to contract by approximately 60 km in 20 

years at a rate of 3.0 km/year and its southern range margin by approximately 80 km at a rate of 

4.0 km/year. This is faster than the average rate of change for northern Hemisphere North Sea 

species, which shifted their distribution at a rate of 2.2 km/year over 25 years (Perry et al. 2005).  

With range losses occurring at the margins of C. puniceus‟ range the species is still predicted to 

occur in the areas where it is exploited up until 2030. If the northern range margin continues to 

contract into the future then fisheries management may need to be adjusted as a large 

proportion of commercial fishing effort is located off the Quissico coast, where C. puniceus may 

disappear. The decrease in probability of occurrence from very high to high and medium off the 

southern Mozambique coastline is also a concern for the management of C. puniceus as it 

indicates that while C. puniceus still occurs in these areas in the future its abundance may 

decrease. 
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Understanding the synergistic effects of climate change and fishing pressure on fish populations 

is important for ecosystem conservation and management (Brander 2007). However, a 

fundamental understanding of the effects of fishing pressure in context of environmental change 

is difficult (Hsieh et al. 2006). Correlative SDMs assume abiotic factors (e.g. climate) are the 

sole drivers of a species distribution and as such predictions of fish species range changes into 

the future using SDMs do not consider fishing pressure. It is well documented that fishing 

pressure makes species more vulnerable to the effects of changing climate (e.g. Brander 2007, 

Wernberg et al. 2011). Hsieh et al. (2008) found that exploited species showed greater climate 

related range changes than unexploited species over 50 years off the California coast. Fishing 

pressure increases population variability by changing the age structure of the population, such 

that population abundance is closely related to recruitment variability, thereby reducing the 

capacity of the population to safeguard against environmental effects (Hsieh et al. 2006). It is 

likely that the SDMs used in this study underestimate the effects of climate change on C. 

puniceus as the species is heavily exploited commercially. The decrease in abundance of C. 

puniceus along the southern Mozambique coastline is of particular concern for this important 

commercial linefishery species as decreases in habitat suitability will affect the species 

abundance even in the absence of fishing pressure. The likely synergistic effects of climate 

change and fishing pressure need to be considered for the management of this species. 

Although the trend of decreasing abundance of C. puniceus looks likely to continue into the 

future, projections become more uncertain the further into the future they are made (Dormann 

2007). The results of this study further highlight the need for a precautionary approach to 

fisheries management. 

 

The accuracy of the individual models and the mean ensemble models was high based on the 

three statistics used to evaluate model performance. Although this could be a result of selecting 

pseudo-absences from too large an area leading to artificially inflated test statistics (van der Wal 

et al. 2009), all models except RF projected that C. puniceus occurs in southern Madagascar, 

despite an absence of occurrence records from southern Madagascar. There are a number of 

reports and field guides that list C. puniceus from southern Madagascar (e.g. Smith and 

Heemstra 1988, Heemstra and Heemstra 2004), although a type specimen from the area does 

not exist. A study by Tsoar et al. (2007) comparing SDMs found that the distributions of species‟ 

with restricted ranges were modelled with a higher accuracy than generalist species. The fact 

that all but one model predicted that C. puniceus occurs in southern Madagascar, when no 

occurrence points were included from that area and that C. puniceus is a range restricted 
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species endemic to southern Africa indicates that the good model performance results based on 

the three statistics used are plausible. 

 

The contrasting outputs between individual models were consistent with other studies 

comparing SDMs (Araújo et al. 2005a, Lawler et al. 2006). Pearson et al. (2006) modelled the 

potential distribution of four species of Proteaceae under current and future environments using 

nine common SDMs and found results differing from a 92% loss to a 322% gain. Modelling 

results differ because each model makes different assumptions about relationships between 

species and their environment (Guisan and Zimmerman 2000). Extrapolations into future 

climate scenarios differ because of the way in which functions are/ are not constrained at the 

edges of the environmental response variable (Elith and Graham 2009). Species distribution 

models projected into the future lack any data to test model performance and therefore the best 

model projection is unable to be selected (Araújo et al. 2005a, Hijmans and Graham 2006). 

Araújo et al. (2005a, 2005b) conducted one of the few studies able to validate SDM projections 

into the future with observed range shifts in 116 breeding birds. The study showed variability in 

the magnitude and direction of projected range shifts between modelling methods but found that 

consensus ensemble forecasts outperformed individual model predictions. The observed model 

variability and accuracy, and the findings of other studies (e.g. Marmion et al. 2009) have 

justified the use of a mean ensemble model as the final model of this study. 

 

Very few studies have used independent datasets or methods other than data re-substitution or 

splitting to validate SDM performance (Nogues-Bravo 2009). Martinez-Meyer et al. (2004) hind-

casted current modelled distributions of 48 mammal species into the Pleistocene period using 

SDMs. Model predictive performance was validated with observed fossil records from the 

Pleistocene period and good SDM predictive performance was reported. The accuracy reported 

with SDMs under climate change scenarios through studies able to validate results without 

using re-substituting or data splitting techniques indicate that SDMs are an accurate tool to 

predict species distribution changes in future climatic environments. 

 

The environmental conditions that are suitable for a species can be modelled using either a 

correlative or mechanistic approach. Mechanistic models incorporate the physiological tolerance 

of a species to environmental conditions. Mechanistic models are considered a more robust 

modelling approach than correlative models but suffer from exhaustive data requirements 

(Hijmans and Graham 2006) and require a detailed understanding of the physiological response 
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of species to environmental factors (Pearson and Dawson 2003). Correlative models associate 

known species occurrence records with suites of environmental variables that are expected to 

affect the species physiology and distribution to estimate the environmental conditions that are 

suitable for a species (Pearson et al. 2006). Hijmans and Graham (2006) and Kearny et al. 

(2010) compared correlative SDMs and mechanistic models for projecting into the future and 

found high levels of agreement between correlative and mechanistic model predictions.  

 

A number of assumptions underlie the correlative modelling approach. These include 

equilibrium and habitat saturation, dispersal potential, evolutionary change and negating biotic 

interactions (Wiens et al. 2009). Using species current occurrence records to estimate the 

distribution of a species and to project into the future assumes that the species current ranges 

are in equilibrium with their environment (i.e. the species occurs in all suitable areas and is 

absent from all unsuitable areas) and that there are no time lags on the influence of past climate 

on current distributions (Loarie et al. 2008). By relying on observed distributions which are rarely 

in equilibrium, SDMs are likely to underestimate the true range of climate variables a species is 

able to tolerate (Araújo and Pearson 2005). The degree of equilibrium depends on biotic 

interactions and dispersal ability (Wiens et al. 2009). Organisms with higher dispersal ability are 

expected to be closer to equilibrium than species with lower dispersal ability (Araújo and 

Pearson 2005). Marine species have been shown to occupy more of their potential niche than 

terrestrial species (Sunday et al. 2012) and the current study has shown that Chrysoblephus 

puniceus exists as a single mixed population characterised by high dispersal between sites 

(Chapter 3) and as such suitable locations are likely to be occupied. However, the potential for 

underestimating current ranges must be kept in mind.  

 

Species interactions are not considered in SDMs even though the effects of biotic interactions 

may override climate in determining a species‟ niche (Suttle et al. 2007). Marine species, 

however, are believed to be more influenced by environmental variables than species 

interactions (Sunday et al. 2012). At the large scale of this study (roughly 1700 km of coastline), 

climate is believed to be the dominant factor shaping species‟ niches (Figure 4.6) (Pearson and 

Dawson 2003). Because occurrence records are used for model calibration they assume that 

these records correctly represent a sample of the environmental space occupied by C. 

puniceus. By using a relatively long term set of occurrences (1984 – 2011) from a number of 

sources a more realistic sample of C. puniceus‟ distribution was obtained. 
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Figure 4.6: Factors affecting species distributions at different spatial scales. Taken from Pearson and 

Dawson (2003). 

 

When projecting into the future it is assumed that evolutionary change occurs on very long time 

scales so that the tolerance range of a species remains the same as it shifts its geographical 

range (Pearson and Dawson 2003). However, recent studies have indicated that the rate of 

evolutionary change may be a lot faster than previously thought (Wiens et al. 2009). Sparids are 

considered an evolutionary plastic family with high rates of evolutionary change (Chiba et al. 

2009). Chrysoblephus puniceus has high levels of genetic diversity which is the raw material for 

adaptation to a changing environment (Chapter 2). Future range changes may be overestimated 

for species experiencing rapid adaption. 

 

Because occurrence records are from fishing expeditions, only individuals large enough to be 

caught are included as presence points in the modelling procedure. The effect of changing 

temperatures on larvae, which cannot actively avoid non-preferential temperatures, is not 

considered as part of the modelling process. Incorporating larval samples of C puniceus into the 

SDMs will be difficult as a long term fish larvae monitoring project off the KZN coast has yielded 

very few C. puniceus larvae (Connell 2012). The distribution of sparids may be limited by a low 

tolerance to high water temperatures at early life history stages (Sheaves 2006). Hatching rates 

and temperature showed a strong relationship in the sparid, Sparus sarba (Mihelakakis and 

Kitajima 1994), while the timing of sparid spawning is believed to be closely linked to SST 

(Sheaves 2006). Mechanistic models may prove important in future studies to assess the 

relationship between changing SST and larval success. 
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4.5 Conclusion 

 

In summary, the results of the modelling study indicate that climate change may have an 

adverse effect on the distribution of C. puniceus through a range contraction and a decrease in 

habitat suitability off the southern Mozambique coastline. However, models make a number of 

assumptions which may result in the current distribution being underestimated. Furthermore, 

dispersal potential, C. puniceus‟ narrow latitudinal range and fishing pressure may exacerbate 

the impact of climate change on the distribution of C. puniceus such that the results from the 

SDM may be conservative.  
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CHAPTER FIVE 

 

GENERAL DISCUSSION AND MANAGEMENT RECOMMENDATIONS 

 

 

Marine fisheries throughout the world are subjected to a number of threats with over-exploitation 

and habitat loss being some of the biggest (Dulvy et al. 2003, Kappel 2005, Reynolds et al. 

2005). Climate change is predicted to accelerate habitat loss (Travis 2003) and decrease 

fisheries production in low latitude areas (Brander 2007). An understanding of the pattern and 

process of vulnerability to overfishing and climate change will improve the predictive accuracy of 

species assessments (Reynolds et al. 2005) and is imperative for adaptive management 

(Wernberg et al. 2011). Predicting changes in habitat suitability and assessing the levels of 

genetic connectivity are important to draw inferences on the vulnerability/resilience of species to 

disturbances. 

 

5.1 Life history and behavioural characteristics 

 

The degree to which species are able to tolerate mortality in a fishery depends on life history 

traits (Reynolds et al. 2005). Life histories establish demography and population dynamics and 

therefore determine a species vulnerability to decline and extinction and also their ability to 

recover (Dulvy et al. 2004). The fecundity of marine species has not been linked to their 

resilience to human activities, possibly due to the high natural mortality rates of larvae (Dulvy et 

al. 2003, Reynolds et al. 2005). However, relative body size as an indicator of growth rate and 

age at sexual maturity are good predictors of population trend (Dulvy et al. 2003). Therefore, the 

characteristic slow growth, late maturity and longevity of sparids make them particularly 

susceptible to overfishing as this selectively targets the larger individuals. Chrysoblephus 

puniceus is relatively slow growing and attains a maximum age of 11 years (Garratt et al. 1993). 

The species reaches 50% sexual maturity at three years and undergoes a protogynous sex 

change (Garratt et al. 1993) resulting in female biased sex ratios that are heavily influenced by 

fishing pressure and size selection. Although little is known about the eggs and larvae of C. 

puniceus, the stepping stone model developed using migrate-n (Chapter 3) supports the 

assumption that dispersal is influenced by oceanographic current dynamics with Mozambique 

populations reseeding South Africa (Punt et al. 1993, Hutchings et al. 2002). 
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Behavioural characteristics of a species may also exacerbate human impacts on a population. 

The high catchability of C. puniceus due its shoaling nature and its demand as a food fish are 

characteristics that make the species vulnerable to over-fishing (Reynolds et al. 2002). The KZN 

commercial linefishery has continually switched between target species of sparids (e.g. the 

switch from the larger sparid Polystaganus undulosus to the smaller sparid C. puniceus) as 

catchability of target species decreased (Penney et al. 1999, Sauer et al. 2003). 

 

5.2 Stock structure and geographic range 

 

Maintaining the genetic diversity of a species will preserve the fitness and adaptability of a 

population making it less vulnerable to disturbances (Bridle et al. 2010). This is important for 

species, such as C. puniceus, that are continuously facing harvesting pressure and potential 

climate change impacts throughout their distribution (Booy et al. 2000). The ability of species to 

adapt to changing environments is influenced by the amount of genetic diversity maintained 

within populations and the heritability of responses to selection (McCarty 2001). The inverse 

parametric relationship between genetic distance and the effective number of migrants means 

that a small number of migrants may maintain a single population, such that even low levels of 

migration between sampling sites are important for maintaining genetic diversity (Lacy 1987). 

Gene flow therefore makes the population more resilient to disturbances by maintaining genetic 

diversity (Ayre and Hughes 2004).  

 

The assessed local levels of C. puniceus genetic diversity and modelled future range changes 

can be used to predict the change in genetic diversity as result of climate change (e.g. Alsos et 

al. 2009). Thus the expected northern range contraction of C. puniceus would result in an 11% 

reduction in the number of haplotypes through the loss of unique haplotypes to Ponta da Barra 

by 2030 (Figure 5.1). The projected contraction of C. puniceus‟ southern range margin will result 

in a decrease in habitat availability in an area where a number of juvenile C. puniceus occur. 

The decreasing abundance of C. puniceus projected off the southern Mozambican coastline 

from Inhaca to Ponta da Barra is a concern as this may further decrease genetic diversity. 

Because C. puniceus exists as a single well connected population the projected decrease in 

abundance and genetic diversity from Inhaca to Ponta da Barra will affect the entire population. 

Punt et al. (1993) caution that if the resource in KZN is sustained through immigration of 0+ year 

olds from the iSimangaliso Wetland Park, Ponta do Ouro Partial Marine Reserve and 

Mozambique, substantial increases in fishing effort in St Lucia or off Mozambique could lead to 
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the collapse of the fishery in KZN. Punt et al. (1993) did not consider the additional threat of 

climate induced decreases in abundance and genetic diversity.  

 

 

Figure 5.1: Change in C. puniceus distribution until 2030 and the percentage of mtDNA haplotypes 
unique to each sampling site in brackets. 

 

Connectivity between sites through gene flow is believed to be a function of dispersal potential 

and the distribution of suitable habitat resulting in a realised dispersal (Jones et al. 2007). 

Where suitable habitat is continuous, realised dispersal will match potential dispersal, but will be 

reduced if the habitat is fragmented (Jones et al. 2007). Small, isolated populations are at 

greater risk due to genetic drift, the loss of heterozygosity and inbreeding (Almany et al. 2009). 

The results of the distribution modelling indicate a single continuous stretch of suitable habitat, 

with regard to SST (suitable reef habitat is patchy in reality), for C. puniceus along the coast of 

South Africa and Mozambique, indicating no temperature barriers to larval dispersal. Larval 

dispersal may therefore be one of the primary mechanisms for maintaining connectivity between 

sites and the genetic diversity among populations. The predicted decreasing probability of 

occurrence off the Mozambican coastline is likely to result in habitat fragmentation in the 

species range and a decrease in the abundance of C. puniceus. Fragmented populations, 

through loss of genetic connectivity among local populations, will result in reduced genetic 

variability (Lasram et al. 2010) further emphasising the vulnerability of C. puniceus to 

disturbances off the Mozambican coastline. 

C. puniceus distribution 

Current 
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Restricted range species are also more vulnerable to disturbances than wide ranging species as 

local impacts would affect the global sample of these species (Roberts and Hawkins 1999, 

Hawkins et al. 2000). Habitat loss results in a reduction of carrying capacity whose impacts will 

be greatest on species with limited dispersal or small ranges (Reynolds et al. 2005). Should the 

modelled projections of C. puniceus‟ range contraction continue into the future beyond 2030, the 

vulnerability of this already range restricted species will continue to increase. With predicted 

decreases in abundance of C. puniceus‟ due to climate change off the currently productive 

grounds around southern Mozambique, fishing effort will likely follow this trend putting more 

pressure on remaining productive grounds. 

 

5.3 Vulnerability 

 

To assess the vulnerability of marine fish the IUCN red listing and Convention on the 

International Trade in Endangered Species of Wild Flora and Fauna (CITES) have been used in 

the past (Dulvy et al. 2004). These methods have been criticised for use with marine fish 

populations under management; for example, maintaining a population at the maximum 

sustainable yield would categorise the species as endangered under IUCN criteria (Dulvy et al. 

2003). A set of categories that will render a species vulnerable to exploitation, more suitable for 

marine fish, has been drawn up and presented in Table 5.1. 
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Table 5.1: Vulnerability characteristics for four sparids; slinger (Chrysoblephus puniceus) (taken from this 

study and Govender et al. 2000a), seventy four (Polysteganus undulosus) (taken from Govender et al. 

2000b), santer (Cheimerius nufar) (taken from Mann et al. 2000) and red roman (Chrysoblephus laticeps) 

(taken from Booth and Smale 2000). The growth rate of the von Bertalanffy growth equation is indicated 

by K. 

 Chrysoblephus 
puniceus 

Polysteganus 
undulosus 

Cheimerius nufar Chrysoblephus 
laticeps 

Age at 50% 
maturity 

3 years (female) 7.7 years (female) 3-4 years 2.5 years (female) 

Growth rate slow (K = 0.187) slow (K = 0.27) slow [K = 0.17 
(Mozambique) 
and 0.065 (South 
Africa)] 

slow (K = 0.15) 

Catchability high (shoaling) high (spawning 
aggregations) 

high (loose 
shoals) 

moderate 
(territorial) 

Market 
demand 

high (table fish) high (table fish) high (table fish) high (table fish) 

Geographic 
range 

restricted, endemic 
and decreasing from 
climate change 

Restricted, endemic large restricted, 
endemic 

Genetic 
connectivity 

high assumed high from 
spawning 
aggregations 

? high 

Habitat 
specialisation 

rocky reef deep water reefs rocky reef rocky reef 

Current status overexploited collapsed 
(recovering 
following ban) 

overexploited in 
Mozambique 

overexploited 

Vulnerability moderate but 
increasing due to 
habitat loss and 
decreased genetic 
diversity 

high moderate to low moderate 

 

The four species of sparids presented in Table 5.1 are relatively slow growing, late maturing, 

easily catchable, reef associated and have a high market demand; characteristics that make a 

species vulnerable to over-exploitation. Despite the added resilience of high levels of gene flow, 

the stock of P. undulosus collapsed from fishing pressure likely because of the species late 

sexual maturity and the targeting of spawning aggregations in KZN and the Transkei (Garratt 

1996). Despite C. puniceus’ comparatively early sexual maturity compared to P. undulosus, the 

species is still considered as late maturing and has added complexities due to its protogynous 

hermaphroditism resulting skewed sex ratios among exploited populations. Chrysoblephus 

laticeps and C. nufar are likely less vulnerable than C. puniceus due to a lower catchability 
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(Griffiths 2000) and bigger geographic ranges respectively. For C. puniceus the predicted 

decreasing range size of this already range restricted species coupled with other vulnerability 

characteristics make this species vulnerable to over-exploitation despite resilience associated 

with a well-connected diverse single population. 

 

The threat of climate change and over-exploitation on C. puniceus coupled with other climate 

related threats such as decreased reproductive success and life history changes (Pankhurst 

and Munday 2011), changes in ocean productivity (Hays et al. 2005) and changes in larval 

recruitment (Munday et al. 2008) highlight the need for a more precautionary management 

approach. The effects of potential future range contractions and decreases in habitat suitability 

(as determined by probability of occurrence) are of particular concern for management as these 

projections did not consider increasing fishing pressure, which is likely to be an additional 

aggravating factor over the projected time period. 

 

5.4 Management recommendations 

 

5.4.1 Effort control based on combined stock assessment 

 

Identifying the stock structure of a population is a prerequisite for accurate stock assessments 

(Cadrin and Secor 2009) which are required to make informed management decisions 

(Rijnsdorp et al. 2007). In South Africa, species-specific stock assessments are done to 

determine exploitation levels and adjust effort accordingly (Griffiths et al. 1999), while in 

Mozambique stock assessments are done every five years to provide management with 

recommendations (Fennessy et al. 2012). A first step towards more appropriate management 

would be to conduct a single stock assessment on C. puniceus as the results of this study 

indicate a single stock characterised by high levels of genetic connectivity. 

 

Both South Africa and Mozambique have a vested interest in joint management in order to 

benefit from the resource (e.g. Carvalho and Hauser 1994). The predicted decrease in the 

probability of occurrence of C. puniceus off the Mozambican shoreline is a cause for concern 

particularly as predictions do not include the synergistic effects of fishing pressure as previously 

stated. A combined stock assessment incorporating catch data from Mozambique and South 

Africa would provide a more holistic view of the C. puniceus linefishery. With fishing effort 
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increasingly high in both countries the need for the co-management of this shared species is 

even more important in light of the climate change predictions of this study. 

 

A considerable amount of resources are wasted if management of a transboundary fish stock is 

not co-ordinated. Unilateral management by individual states can eventually lead to stock 

collapses (Hayashi 1993). A situation like that of the Norwegian spring-spawning herring, 

Clupea harengus, in which one country has a strong incentive to overharvest the stock before it 

migrates to an adjacent country may also occur (Sissener and Bjorndal 2005). 

 

Any measures taken by states towards the sustainable development of shared resources must 

be within the principles and rules of The United Nations Convention on the Law of the Sea 

which has been universally accepted (Hayashi 1993). Article 63, paragraph 1 of the Law of the 

Sea convention states: “Where the same stock or stocks of associated species occur within the 

exclusive economic zones of two or more coastal States, these States shall seek, either directly 

or through appropriate sub regional or regional organisations, to agree upon the measures 

necessary to coordinate and ensure the conservation and development of such stocks without 

prejudice to other provisions of this Part”. There is therefore an international framework for the 

management of shared resources and a first step would be to conduct a joint stock assessment 

to investigate the current stock status. 

 

This would require the relevant research institutes tasked with conducting stock assessments in 

South Africa and Mozambique to pool their resources. Catch data collection and analyses will 

need to be standardised in order to combine stock assessment outputs and make management 

recommendations. The management of C. puniceus would, however, need to be considered in 

light of the complexity of the multi-species fisheries management approach in each country. 

Further stock structure assessments on other species that could be shared between the two 

countries could further emphasise the need for joint management of linefish resources. 

 

5.4.2 Marine Protected Areas 

 

The high levels of genetic connectivity that were identified between sites throughout C. 

puniceus‟ distribution indicates that marine protected areas (MPAs) are likely to be a successful 

tool in the management of the fishery (Palumbi 2003, von der Heyden 2009). Management of 

linefish resources through MPAs has seen an increase in importance recently in South Africa 
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and Mozambique. Advantages of MPAs for linefishes such as C. puniceus include the 

maintenance of spawner biomass, improvement of yield, simplified enforcement, insurance 

against stock collapse and the maintenance of intraspecific genetic diversity (Attwood et al. 

1997). The use of MPAs has seen a major shift in focus towards fisheries management, with the 

number and length of coastline covered by MPA‟s in South Africa increasing from 1997 – 2004 

(Branch and Clark 2006). Similarly, Mozambique has committed to increase its percentage of 

coastline protected by MPAs (Guerreiro et al. 2010). A transboundary MPA was declared in 

2009, stretching 300 km from Maputo in Mozambique to the southern boundary of the 

iSimangaliso Wetland Park (Guerreiro et al. 2011). 

 

Marine protected areas have traditionally been used as a management tool to help in achieving 

more sustainable fisheries and to protect biodiversity on a spatial scale (Hastings and Botsford 

2003). However, MPA‟s and areas of fishing pressure need to be connected through dispersal 

in order to be an effective management tool (Almany et al. 2007, Planes et al. 2009, von der 

Heyden 2009). This is because MPAs are seldom large enough to be self-sustaining and 

therefore require recruitment from outside areas for biodiversity conservation (Gaines et al. 

2010) and they will have little benefit to areas outside their boundaries as a fisheries 

management tool if dispersal distance is not long enough to repopulate areas of exploitation 

(Jones et al. 2007). For reef fishes, larval dispersal is considered an important mechanism by 

which MPA‟s replenish connected areas, with the direction and magnitude of dispersal being 

critical to the effectiveness of the MPA (Botsford et al. 2001, Hilborn et al. 2004). Although there 

were high levels of genetic connectivity throughout C. puniceus‟ distribution, MPAs will only be 

an appropriate management tool if they provide a spatial refuge throughout the species‟ 

distribution (Roessig et al. 2004). 

 

The spatial refuge provided by MPAs that occur throughout C. puniceus’ core range has 

become increasingly important because of the current wide-spread distribution in fishing effort. 

The high levels of connectivity between sampling sites indicates that MPAs could aid fisheries 

management as they are likely to provide refuge and be an effective source of recruitment to 

areas of high fishing pressure of C. puniceus. Globally numerous studies (Roberts et al. 2001, 

Russ et al. 2004) have demonstrated increases in CPUE of reef fishes adjacent to MPAs. 

Locally, catches of the congeneric sparid, Chrysoblephus laticeps, showed steady increases 

after the implementation of the Goukamma MPA and additional increases after the time lag 

expected for larval spill-over effects (Kerwath et al. 2013). 
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The majority of MPA protection for C. puniceus‟ is provided by the Pondoland MPA and 

iSimangaliso Wetland Park in South Africa and the Ponta do Ouro Partial Marine Reserve in 

Mozambique that covers areas of high abundance (Figure 5.2). The findings of the migrate-n 

analysis indicate a net southward dispersal of slinger into the KZN linefishing grounds from the 

iSimangaliso Wetland Park and Ponta do Ouro Partial Marine Reserve. There is a lack of MPAs 

in the main commercial harvesting area of C. puniceus in Mozambique, the Delagoa Bight, 

where there is a net northward dispersal of larvae. The modelled current distribution of C. 

puniceus also indicates that the tropical Bazaruto Archipelago and the Vilanculos Wildlife 

Sanctuary provide no protection to C. puniceus, as its distribution does not stretch that far north 

(Figure 5.2), further highlighting the need for MPAs north of Maputo. While the abundance of C. 

puniceus is predicted to decrease off the Mozambican coastline, MPA establishment will help to 

maintain genetic diversity and reseed adjacent fished areas ultimately making the species more 

resilient to the effects of climate change in the area. Based on previous theory and the results of 

migrate-n analysis, C. puniceus is provided MPA protection at two stages of its life history in 

South Africa. The iSimangaliso Wetland Park and Ponta do Oura Partial Marine Reserve likely 

provide protection to a large number of spawning adults that reseed the South African 

linefishery and juveniles are protected by a number of MPAs in their southern distribution. This 

may not be the case for Mozambique. 

 

 

Figure 5.2: MPA location and size (km
2
)
 
through C. puniceus‟ current modelled distribution (red) (Adapted 

from Solano-Fernandez et al. 2012 and Wells et al. 2007).  
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A first step with regards to transboundary management would be to establish an MPA in the 

Delagoa Bight in Mozambique, with the aim of increasing the reseeding of adjacent fished areas 

and increasing the network of MPAs through C. puniceus‟ distribution. There are currently good 

global, regional and bilateral legal frameworks that can facilitate the creation of MPAs in 

Mozambique (Guerreiro et al. 2011). As Mozambique is a state party to the Convention of 

Biological Diversity (CBD) which adopted the Jakarta Mandate in 1995, the country is committed 

to achieve 10% protection of its marine ecoregions by 2012 (Guerreiro et al. 2010). Current 

levels of MPA coverage are at around 4% of Mozambique‟s continental shelf indicating that an 

increase in MPAs is needed to meet the requirements of their international agreements (Chircop 

et al. 2010). Mozambique also has a range of policies and legal frameworks that support the 

establishment of MPAs including the fisheries law which provides for the adoption of 

conservation and management measures including fish sanctuaries (Chircop et al. 2010). The 

process for the establishment of MPAs in Mozambique is outlined by Chircop et al. (2010), in 

which a proposal is developed and subjected to approval from council members. The proposal 

is then sent to council ministries, where upon approval, a management team is appointed and a 

management plan developed. Marine Protected Areas also require enforcement of the law as 

stakeholder compliance is seldom to be relied upon (Chircop et al. 2010). In Mozambique 

existing protected areas fall under the Ministry of Tourism and it does not appear that local 

tourism services participate in law enforcement, making the already understaffed park 

manager‟s jobs more difficult (Chircop et al. 2010). It is important to get MPA enforcement 

improved before any further MPAs are established as this will further stress the management 

resources. However, management of Mozambique‟s MPAs have shown improvement with time 

(Wells et al. 2007). 

 

A number of factors need to be incorporated into the design of MPAs for them to be an effective 

network and fisheries management tool, including the size, spacing and location of reserves in a 

network, and the proportion of protection in a bioregion (Shanks et al. 2003, Gaines et al. 2010). 

The development of a MPA network in Mozambique requires a consideration of current MPAs in 

both South Africa and Mozambique in order to form an effective transboundary MPA network. 

Mozambique has declared its intention to develop transboundary reserves with South Africa 

(which currently already exists) and Tanzania (Guerreiro et al. 2011). More attention should 

focus on transboundary networks of reserves, rather than single reserves that span a political 

border, in order to optimise MPAs as fisheries management tools. 
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5.5 Future research 

 

While the population genetic analysis and species distribution modelling studies provide 

valuable scientific information, they are not without their problems. Incorporating other 

techniques can consolidate and support the findings of this study and provide new information 

for management. Otolith microchemistry can be used to detect biological tags in fishes and 

provide further valuable information with regard to fish populations and movement patterns that 

can complement genetic studies (Campana and Thorrold 2001). A better understanding of the 

active movement of C. puniceus is required, as a genetic analysis struggles to determine the 

actual level of migration between adjacent sites. The Ocean Tracking Network (O‟Dor et al. 

2009) is a tool that should be used in the future to monitor the movement of individual C. 

puniceus in the South West Indian Ocean, coupled with conventional tag and recapture 

techniques. A better understanding of the larval dynamics and recruitment is needed to better 

understand the stock structure analysis and improve stock assessments. Regarding the 

potential effects of climate change, while the SDMs used in this study have provided insight into 

the potential range changes of C. puniceus into the future, they ignore some important 

processes such as larval mortality and life history changes. Mechanistic models should be 

developed which will give a clearer picture of the likely effects of climate change when 

combined with existing SDMs. An investigation into the possibility of a C. puniceus population 

off ssouthern Madagascar is recommended. 

 

5.6 Conclusion 

 

A schematic of the research approach of this study is shown (Figure 5.3) with the goal of 

assessing risks of climate change through species distribution modelling and a genetic stock 

structure analysis. Hopefully, this study has shed some light on issues regarding C. puniceus 

management and will contribute to an improved management plan, facilitate the formal stages 

of co-management between South Africa and Mozambique and at the very least provide some 

direction for future research. 
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Appendix I 

Individual SDMs 

 

 

Figure A1: Binary transformed classification tree analysis for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A2: Binary transformed flexible discriminant analysis for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A3: Binary transformed generalised additive models for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A4: Binary transformed boosted regression trees for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A5: Binary transformed generalised linear models for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A6: Binary transformed multiple adaptive regression splines for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A7: Binary transformed maximum entropy models for current (a), 2020 (b) and 2030 (c) 

distributions. 

(a) 

(b) 

(c) 
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Figure A8: Binary transformed random forest models for current (a), 2020 (b) and 2030 (c) distributions. 

(a) 

(b) 

(c) 
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Appendix II 

Species distribution modelling code for Biomod2 

 

library(biomod2) 

setwd("C:/Users/Murray/Desktop/Biomod/test3") 

 

#####################   DATA ENTRY   ############################## 

################################################################# 

 

MurrayData <- read.csv("Masma.csv", h=T, sep=",") 

SlingerName <- 'Chryso' 

MurrayExpl <-stack( 

"current img/sumax.img", 

"current img/wmin.img", 

"current img/bath.img", 

"current img/amax.img", 

"current img/amin.img", 

"current img/spmax.img", 

"current img/spmin.img") 

 

MurrayExpl20 <-stack( 

"20year img/sumax.img", 

"20year img/wmin.img", 

"20year img/bath.img", 

"20year img/amax.img", 

"20year img/amin.img", 

"20year img/spmax.img", 

"20year img/spmin.img") 

 

MurrayExpl30 <-stack( 

"30year img/sumax.img", 

"30year img/wmin.img", 

"30year img/bath.img", 

"30year img/amax.img", 

"30year img/amin.img", 

"30year img/spmax.img", 

"30year img/spmin.img") 

 

MurrayResp <-(MurrayData[13])  

MurrayXY <- (MurrayData[2:3]) 
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#####################   PSEUDOABSENCES   ####################### 

################################################################# 

 

MurrayBiomodData <- BIOMOD_FormatingData( 

resp.var = MurrayResp, 

expl.var = MurrayExpl, 

resp.xy = MurrayXY, 

resp.name = SlingerName, 

PA.nb.rep = 1, 

PA.nb.absences = 1000, 

PA.strategy = 'random', 

PA.dist.min = 1, 

PA.dist.max = NULL) 

 

MurrayBiomodData 

plot(MurrayBiomodData) 

 

#####################   MODEL CONSTRUCTION    ################### 

################################################################# 

 

MurrayBiomodOption <- BIOMOD_ModelingOptions (GLM= list(type = 'polynomial', 

interaction.level = 1)) 

MurrayModelOut <- BIOMOD_Modeling( 

MurrayBiomodData, 

models = c('GLM','GBM','GAM','CTA','FDA','MARS','RF','MAXENT'), 

models.options = MurrayBiomodOption, 

NbRunEval = 10, 

DataSplit = 80, 

Yweights = NULL, 

VarImport =3,  

models.eval.meth = c('TSS','ROC', 'KAPPA'), 

SaveObj = TRUE, 

rescal.all.models = TRUE) 

MurrayModelOut 

 

MurrayVariableImportances <- getModelsVarImport(MurrayModelOut) 

MurrayVariableImportances 

MurrayModelEval <- getModelsEvaluations(MurrayModelOut) 

MurrayModelEval[,"Testing.data",,"Full",] 

 

#####################   PROJECTION   ############################# 

################################################################# 

 

MurrayModelOut@models.computed 
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MurrayProjection <-BIOMOD_Projection( 

modeling.output=MurrayModelOut, 

new.env= MurrayExpl, 

proj.name='GGM', 

xy.new.env = MurrayXY, 

selected.models = MurrayModelOut@models.computed [81:88], 

Bin.trans=TRUE, 

slot = MurrayModelOut@models.computed, 

binary.meth ='TSS', 

compress = 'xz', 

clamping.mask = F, 

SaveObj=TRUE) 

 

#plot(MurrayProjection) 

 

load("Chryso/proj_GGM/GGM_Chryso_bin_TSS_RasterStack") 

CurrentGAMbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GAM.bin") 

CurrentGLMbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GLM.bin") 

CurrentMAXENTbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_MAXENT.bin") 

CurrentGBMbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GBM.bin") 

CurrentMARSbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_MARS.bin") 

CurrentCTAbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_CTA.bin") 

CurrentRFbin <- raster(GGM_Chryso_bin_TSS_RasterStack, layer="Chryso_PA1_Full_RF.bin") 

CurrentFDAbin <- raster(GGM_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_FDA.bin") 

 

load("Chryso/proj_GGM/GGM_Chryso_RasterStack") 

CurrentGAM <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_GAM") 

CurrentGLM <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_GLM") 

CurrentMAXENT <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_MAXENT") 

CurrentGBM <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_GBM") 

CurrentMARS <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_MARS") 

CurrentCTA <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_CTA") 

CurrentRF <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_RF") 

CurrentFDA <- raster(GGM_Chryso_RasterStack, layer="Chryso_PA1_Full_FDA") 

 

writeRaster(CurrentGAMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GAMbin.asc', 
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format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentGLMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GLMbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentMAXENTbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MAXENTbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentGBMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GBMbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentMARSbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MARSbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentCTAbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/CTAbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentRFbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/RFbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentFDAbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/FDAbin.asc', 

format="ascii",  

overwrite=TRUE ) 

 

writeRaster(CurrentGAM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GAM.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentGLM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GLM.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentMAXENT, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MAXENT.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentGBM, 
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filename= 'C:/Users/Murray/Desktop/Biomod/Test/GBM.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentMARS, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MARS.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentCTA, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/CTA.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentRF, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/RF.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentFDA, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/FDA.asc', 

format="ascii",  

overwrite=TRUE ) 

 

###########################   20 years    ########################## 

################################################################ 

 

MurrayProjection20 <-BIOMOD_Projection( 

modeling.output=MurrayModelOut, 

new.env= MurrayExpl20, 

proj.name='GGM20', 

xy.new.env = MurrayXY, 

selected.models = MurrayModelOut@models.computed [81:88], 

Bin.trans=TRUE, 

slot = MurrayModelOut@models.computed, 

binary.meth ='TSS', 

compress = 'xz', 

clamping.mask = F, 

SaveObj=TRUE) 

 

#plot(MurrayFutureProjection) 

load("Chryso/proj_GGM20/GGM20_Chryso_bin_TSS_RasterStack") 

load("Chryso/proj_GGM20/GGM20_Chryso_RasterStack") 

#plot(GGM20_Chryso_bin_TSS_RasterStack) 

 

Future20GAMbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GAM.bin") 
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Future20GLMbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GLM.bin") 

Future20MAXENTbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_MAXENT.bin") 

Future20GBMbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GBM.bin") 

Future20MARSbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_MARS.bin") 

Future20CTAbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_CTA.bin") 

Future20RFbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_RF.bin") 

Future20FDAbin <- raster(GGM20_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_FDA.bin") 

 

Future20GAM <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_GAM") 

Future20GLM <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_GLM") 

Future20MAXENT <- raster(GGM20_Chryso_RasterStack, 

layer="Chryso_PA1_Full_MAXENT") 

Future20GBM <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_GBM") 

Future20MARS <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_MARS") 

Future20CTA <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_CTA") 

Future20RF <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_RF") 

Future20FDA <- raster(GGM20_Chryso_RasterStack, layer="Chryso_PA1_Full_FDA") 

 

writeRaster(Future20GAM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GAM20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20GLM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GLM20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20MAXENT, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MAXENT20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20GBM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GBM20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20MARS, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MARS20.asc', 

format="ascii",  
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overwrite=TRUE ) 

writeRaster(Future20CTA, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/CTA20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20RF, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/RF20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20FDA, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/FDA20.asc', 

format="ascii",  

overwrite=TRUE ) 

 

writeRaster(Future20GAMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GAM20bin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20GLMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GLM20bin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20MAXENTbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MAXENT20bin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20GBMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GBMbin20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20MARSbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MARSbin20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20CTAbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/CTAbin20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20RFbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/RFbin20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20FDAbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/FDA20bin.asc', 
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format="ascii",  

overwrite=TRUE ) 

 

###########################   30 years   ############################ 

################################################################# 

 

MurrayProjection30 <-BIOMOD_Projection( 

modeling.output=MurrayModelOut, 

new.env= MurrayExpl30, 

proj.name='GGM30', 

xy.new.env = MurrayXY, 

selected.models = MurrayModelOut@models.computed [81:88], 

Bin.trans=TRUE, 

slot = MurrayModelOut@models.computed, 

binary.meth ='TSS', 

compress = 'xz', 

clamping.mask = F, 

SaveObj=TRUE) 

 

#plot(MurrayProjection30) 

load("Chryso/proj_GGM30/GGM30_Chryso_bin_TSS_RasterStack") 

load("Chryso/proj_GGM30/GGM30_Chryso_RasterStack") 

#plot(GGM30_Chryso_bin_TSS_RasterStack) 

 

FutureGAMbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GAM.bin") 

FutureGLMbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GLM.bin") 

FutureMAXENTbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_MAXENT.bin") 

FutureGBMbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_GBM.bin") 

FutureMARSbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_MARS.bin") 

FutureCTAbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_CTA.bin") 

FutureRFbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_RF.bin") 

FutureFDAbin <- raster(GGM30_Chryso_bin_TSS_RasterStack, 

layer="Chryso_PA1_Full_FDA.bin") 

 

FutureGAM <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_GAM") 

FutureGLM <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_GLM") 

FutureMAXENT <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_MAXENT") 
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FutureGBM <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_GBM") 

FutureMARS <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_MARS") 

FutureCTA <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_CTA") 

FutureRF <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_RF") 

FutureFDA <- raster(GGM30_Chryso_RasterStack, layer="Chryso_PA1_Full_FDA") 

 

writeRaster(FutureGAM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GAM30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureGLM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GLM30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureMAXENT, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MAXENT30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureGBM, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GBM30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureMARS, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MARS30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureCTA, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/CTA30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureRF, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/RF30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureFDA, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/FDA30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureGAMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GAM30bin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureGLMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GLM30bin.asc', 
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format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureMAXENTbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MAXENT30bin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureGBMbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/GBMbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureMARSbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/MARSbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureCTAbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/CTAbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureRFbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/RFbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(FutureFDAbin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/FDA30bin.asc', 

format="ascii",  

overwrite=TRUE ) 

 

##################   ENSAMBLE MODELLING   ####################### 

################################################################# 

 

MurrayEM <- BIOMOD_EnsembleModeling (modeling.output=MurrayModelOut, 

chosen.models= MurrayModelOut@models.computed [81:88], 

eval.metric =c('TSS'), 

eval.metric.quality.threshold=c(0.85), 

prob.mean =T, prob.cv =T, 

prob.ci=T,  

prob.ci.alpha = 0.05, 

prob.median = T, 

committee.averaging =T, 

prob.mean.weight=T, 

prob.mean.weight.decay='proportional') 

 

getEMeval(MurrayEM) 
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MurrayEnsambleForecast <-BIOMOD_EnsembleForecasting ( 

projection.output = MurrayProjection, 

EM.output=MurrayEM, 

binary.meth ='TSS') 

 

load("Chryso/proj_GGM/Chryso_PA1_AllRun_EM.TSS.bin.TSS") 

load("Chryso/proj_GGM/Chryso_PA1_AllRun_EM.TSS") 

Chryso_PA1_AllRun_EM.TSS.bin.TSS 

Chryso_PA1_AllRun_EM.TSS 

 

plot(Chryso_PA1_AllRun_EM.TSS.bin.TSS) 

plot(Chryso_PA1_AllRun_EM.TSS) 

 

CurrentEMmedian.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.median.bin") 

CurrentEMmean.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.mean.bin") 

CurrentEMpmw.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.pmw.bin") 

CurrentEMmedian <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.median") 

CurrentEMcv <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.cv") 

CurrentEMpmw <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.pmw") 

CurrentEMmean <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.mean") 

CurrentEMca <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.ca") 

 

writeRaster(CurrentEMmedian.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMedianbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMmean.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMeanbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMpmw.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMpmwbin.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMmedian, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMedian.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMcv, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMcv.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMpmw, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMpmw.asc', 
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format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMmean, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMean.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(CurrentEMca, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMca.asc', 

format="ascii",  

overwrite=TRUE ) 

 

##################   ENSAMBLE MODELLING 20 years   ################ 

################################################################# 

 

MurrayEnsambleForecast20 <-BIOMOD_EnsembleForecasting ( 

projection.output = MurrayProjection20, 

EM.output=MurrayEM, 

binary.meth ='TSS')  

 

load("Chryso/proj_GGM20/Chryso_PA1_AllRun_EM.TSS") 

Chryso_PA1_AllRun_EM.TSS 

load("Chryso/proj_GGM20/Chryso_PA1_AllRun_EM.TSS.bin.TSS") 

Chryso_PA1_AllRun_EM.TSS.bin.TSS 

# 

plot(Chryso_PA1_AllRun_EM.TSS) 

plot(Chryso_PA1_AllRun_EM.TSS.bin.TSS) 

#andsave 

Future20EMmedian.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.median.bin") 

Future20EMmean.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.mean.bin") 

Future20EMpmw.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.pmw.bin") 

Future20EMmedian <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.median") 

Future20EMmean <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.mean") 

Future20EMpmw <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.pmw") 

Future20EMcv <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.cv") 

Future20EMca <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.ca") 

 

writeRaster(Future20EMmedian.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMedianbin20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20EMmean.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMeanbin20.asc', 

format="ascii",  

overwrite=TRUE ) 
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writeRaster(Future20EMpmw.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMpmwbin20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20EMmedian, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMedian20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20EMmean, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMean20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20EMpmw, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMpmw20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20EMcv, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMcv20.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future20EMca, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMca20.asc', 

format="ascii",  

overwrite=TRUE ) 

 

##################   ENSAMBLE MODELLING 30 years   ################ 

################################################################# 

 

MurrayEnsambleForecast30 <-BIOMOD_EnsembleForecasting ( 

projection.output = MurrayProjection30, 

EM.output=MurrayEM, 

binary.meth ='TSS')  

 

load("Chryso/proj_GGM30/Chryso_PA1_AllRun_EM.TSS") 

Chryso_PA1_AllRun_EM.TSS 

load("Chryso/proj_GGM30/Chryso_PA1_AllRun_EM.TSS.bin.TSS") 

Chryso_PA1_AllRun_EM.TSS.bin.TSS 

 

plot(Chryso_PA1_AllRun_EM.TSS) 

plot(Chryso_PA1_AllRun_EM.TSS.bin.TSS) 

Future30EMmedian.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.median.bin") 

Future30EMmean.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.mean.bin") 

Future30EMpmw.bin <- raster(Chryso_PA1_AllRun_EM.TSS.bin.TSS, layer="ef.pmw.bin") 

Future30EMmedian <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.median") 
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Future30EMmean <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.mean") 

Future30EMpmw <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.pmw") 

Future30EMcv <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.cv") 

Future30EMca <- raster(Chryso_PA1_AllRun_EM.TSS, layer="ef.ca") 

 

writeRaster(Future30EMmedian.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMedianbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMmean.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMeanbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMpmw.bin, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMpmwbin30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMmedian, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMedian30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMmean, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMMean30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMpmw, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMpmw30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMcv, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMcv30.asc', 

format="ascii",  

overwrite=TRUE ) 

writeRaster(Future30EMca, 

filename= 'C:/Users/Murray/Desktop/Biomod/Test/EMca30.asc', 

format="ascii",  

overwrite=TRUE ) 

 


