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Abstract

The observational approach to cosmology is the endeavour to reconstruct the geometry of the Universe

using only data that is theoretically verifiable within the causal boundaries of a cosmological observer.

Using this approach, it was shown in [36] that given ideal cosmological observations, the only essential

assumption necessary to determine the geometry of the Universe is a theory of gravity. Assuming

General Relativity, the full set of Einstein field equations (EFEs) can be used to reconstruct the

geometry of the Universe using direct observations on the past null cone (PNC) as initial conditions.

Observationally and theoretically this is a very ambitious task and therefore, current developments

have been restricted to spherically symmetric dust models while only relaxing the usual assumption

of homogeneity in the radial direction. These restricted models are important for the development of

theoretical foundations and also useful as verification models since they avoid the circularity of verifying

what has already been assumed.

The work presented in this thesis is the development of such a model where numerical relativity

(NR) is used to simulate the observable universe. Similar to the work of Ellis and co-workers [36], a

reference frame based on the PNC is used. The reference frame used here, however, is based on that of

the characteristic formalism of NR, which was developed for calculating the propagation of gravitational

waves. This provides a formalism that is well established in NR, making the use of existing algorithms

possible. The Bondi-Sachs coordinates of the characteristic formalism is, however, not suitable for

calculations beyond the observer apparent horizon (AH) since the diameter distance used as radial

coordinate becomes multi-valued when the cosmological PNC reconverges in the history of a universe,

smaller in the past. With this taken into consideration, the Bondi-Sachs characteristic formalism is

implemented for cosmology and the problem approaching the AH is investigated.

Further developments address the limitations approaching the AH by introducing a metric based

on the Bondi-Sachs metric where the radial coordinate is replaced with an affine parameter. The model

is derived with a cosmological constant Λ incorporated into the EFEs where Λ is taken as a parameter

of the theory of gravity rather than as a matter source term. Similar to the conventional characteristic

formalism, this model consists of a system of differential equations for numerically evolving the EFEs

as a characteristic initial value problem (CIVP). A numerical code implemented for the method has

been found to be second order convergent. This code enables simulations of different models given

identical data on the initial null cone and provides a method to investigate their physical consistency

within the causally connected region of our current PNC. These developments closely follow existing

3D schemes developed for gravitational wave simulations, which should make it natural to extend the

affine CIVP beyond spherical symmetric simulations.

The developments presented in this thesis is an extended version of two papers published earlier

[97, 98].
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Chapter 1

Introduction

Provided that General Relativity is valid up to the largest scales, under ideal circumstances, the

spacetime structure of the Universe can be determined by solving the full set of Einstein field

equations (EFEs) using observational data as the boundary conditions. Such an observational

approach makes use of minimal assumption and observations as the boundary conditions dictate

the outcome of the solution. Because of difficulties in obtaining and interpreting observational

data, the conventional approach to cosmology is rather based on parameterized models where

a model is assumed and then validated against different sets of observations and constraints.

Assuming a homogeneous universe with a non-zero cosmological constant and with suitable ad-

justments of parameters, predictions using the ΛCDM model show remarkable correlation with

observed cosmological parameters. The assumption of homogeneity, which is an integral part

of this approach, has the convenient property that conclusions derived from local observations

will also be valid for the rest of the Universe.

Developments under the assumption of homogeneity have been remarkably successful in

reproducing observed cosmological parameters. However, doing investigations such as quan-

tifying homogeneity on different scales, testing the verifiability of cosmology [36], validating

the Copernican principle [96] and determining the metric of the Universe [50], a more suitable

methodology is one where the EFEs are solved using a general metric and boundary condi-

tions derived from observations. Without the assumption of homogeneity, conclusions following

from the observational approach are necessarily limited to the causally connected region in

the interior of our current past null cone (PNC) on which observations are located. Since the

EFEs are solved in a general form, or at least more general than the ΛCDM model, there are

more degrees of freedom and also more required boundary conditions. Sufficiently accurate and

complete observations do not currently exist for full general solutions, however, in spherical

symmetry with some assumptions, the concept of solutions from direct observations can be ap-

plied using currently available data and can provide a useful ground for verification of proposed

cosmological models. The work presented in this thesis is the development of such a model

specifically designed for numerical modelling.

1



1.1 Cosmology and the PNC

1.1.1 The observable universe

Assuming that relativistic physics is governed by universal laws, the causality of information

is the fundamental limit of verification in cosmology. Since electromagnetic radiation (EMR),

which carries all information currently accessible to us, travels at the speed of light, we only

have access to observations that had time to reach us during the age of the Universe. Causality

limits our observations to three regions. Firstly, the boundary of observations is defined by

null geodesics connected to the observer. These geodesics trace out a PNC connected with an

observer at its vertex. Objects on the surface of the PNC are directly observable through some

form of radiation. Secondly, objects with mass, such as meteorites, will be within the PNC

and aspects such as their composition and age can provide historical information and indirectly

place constraints on cosmological parameters. Thirdly, indirect information from objects that

passed the PNC surface at some time in the past can be inferred by their influence on directly

observable objects. A detailed discussion relating the observable regions with observations is

presented in [36].

The PNC is, however, not fully accessible and there are physical and practical limitations

further restricting the directly observable part of the Universe. Since looking down the PNC

implies looking back in time, theoretically, an observer should be able to look back to the

beginning of time. However, events in the earlier Universe physically limit observers to probe

back to the origin. The most prominent restriction is in the early hot Universe where radiation

was coupled to matter. Before the Universe cooled down enough for matter and radiation to

decouple the Universe was opaque. This creates a visual boundary around the early Universe,

known as the last scattering surface (LSS) and is detectable as the cosmic microwave background

(CMB). Probes such as the COBE, WMAP and Planck satellites captured detailed images of

the LSS. Figure 1.1 illustrates the PNC in a homogeneous universe; this will be discussed in

more detail in Section 2.2.3.

Figure 1.1: The observable universe is defined as the PNC of an observer at the cone vertex.
As a result of expansion, the earlier Universe was smaller causing the PNC to contract and
refocus. The LSS is the visual boundary for observed EMR (based on Figure 2 in [33]).
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These restrictions limit the observable universe to a finite sub-region of the Universe. From

an observational point of view there are many other practical challenges, such as the Malmquist

bias, K-corrections and intergalactic absorption amongst others [72]. In addition, at the vertex

of the cone, we view the Universe at one location and effectively only one point in time. In

contrast to laboratory experiments, we cannot manipulate the object of investigation or repeat

the experiment. Furthermore, our most consistent theory of large scale gravity, General Rel-

ativity, is governed by a theoretical complicated set of equations, the Einstein field equations

(EFEs), which regardless of its physical representation, can be extremely difficult to analyse.

For these reasons, it is common in cosmology to construct models where degrees of freedom

are restricted by assumptions and then attempt to fit remaining free parameters to the obser-

vations they represent. Currently this is limited to models where the Universe is assumed to

be homogeneous and the limits of causality do not restrict the region of investigation since the

observations at one location represent all other locations at the same epoch.

1.1.2 Parameterized versus observational models

The conventional approach to cosmology is based on parameterized models, which are used

to search for the simplest model that reproduces observable phenomena. Priority is given to

simplicity and it is thereby assumed that local physics is universal and the Universe is homoge-

neous. The Friedman-Lemâıtre-Roberson-Walker (FLRW) class of models is the mathematical

representation under these assumptions. Surprisingly, with very little knowledge of the restric-

tion and complications already discussed, these models, which were derived in the 1920s and

1930s, are consistent with data from the most recent advances in observational technology. It

seems remarkable that assumptions, initially made to simplify theory, hold enough physical sig-

nificance to capture the most important properties of the Universe. Conveniently, these models

can easily be written in terms of a few free parameters and the objective is to find the best fit-

ting parameter values from observations. Currently, the ΛCDM model, the FLRW model with

a non-zero cosmological constant, is the simplest model for which the required parameters can

be substantiated by observations. Only three parameters are required to describe this model:

the Hubble constant, the deceleration parameter and the cosmological constant.

In the future, if it turns out that the ΛCDM model is not adequate to represent some new ob-

servations, it will be necessary to adapt to a more suitable model; this might require that a more

complicated class of models has to be investigated. For instance, instead of assuming a FLRW

geometry, the spherically symmetric radial inhomogeneous Lemâıtre-Tolman-Bondi (LTB) ge-

ometry can be assumed. However, when assuming a specific model, there can always be a more

general model that can provide an interpretation of observations which seems plausible, espe-

cially if the interpretation of observations is related to the assumption of the specific model.

Instead of trying to match observations using parameterized models an alternative approach is

to derive the properties of the Universe directly from observations. This approach uses obser-

vational models and follows a strategy of fixing boundary conditions to values obtained from

observations and let these determine the degrees of freedom of a more general model, restricted

by fewer assumptions. This approach is referred to as the direct observational approach since

it attempts to use only data causally connected to the observer without narrow assumptions of

specific cosmologies. As an example, the LTB model contains homogenous models as subclasses

and with certain boundary conditions degenerate to the FLRW models. Therefore, if boundary
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conditions restrict an assumed LTB geometry to the simpler case of a FLRW geometry, it can

be said with more certainty that the the assumption of a FLRW geometry is correct. However,

if this is not the case, it might be that certain effects are the result of radial inhomogeneity; a

result that would have been difficult to predict from the assumption of a FLRW geometry.

The process of restricting a general model with boundary conditions is common in Newtonian

astrophysics and other classical field theories, especially in numerical modelling. It might

therefore appear curious that cosmology rather follows an approach of model assumption with

parameter verification. In particular, there is no guarantee that the assumed model is the only

model that reproduces observations within acceptable limits. In fact, the ΛCDM model is only

the simplest model of a larger class which reproduce current observations. In addition, its

simplicity is contained in the assumed geometry while it introduces unknown phenomena to

justify the properties of resulting parameter values. While this is a disadvantage it is also a

benefit, since we do not understand observations well enough to derive unambiguous boundary

conditions, which might contain completely unknown phenomena. The parameterized approach

has the freedom to introduce aspects such as dark energy to explain unexpected observations.

Using fluid approximation for the Universe and assuming isotropy, for instance, we require

initial data of velocity and density profiles for the LTB model. These are not what we observe.

Our source of information is EMR and from radiative flux, spectral shifts, number counts and

the properties of objects inaccessible by other means we have to derive the fluid properties.

That is assuming the observable objects are representative of all contributions to the cosmic

fluid.

Using the model approach, the current interpretation of observations strongly suggest that

the energy-density content of the Universe is significantly dictated by dark matter and dark en-

ergy which are only detectable by their gravitational interaction with observable objects. Since

these are not directly observable, a pure observational approach seems to be a distant prospect.

To incorporate mostly unobservable part of the Universe into the observational approach, some

assumption have to be made (see [35]):

i. The ratio of dark matter to baryonic matter can be derived from observational data such

as the CMB.

ii. The 4-velocity of dark matter is aligned with that of baryonic matter.

iii. Knowledge of dark energy has to be assumed.

Without these, if we should try to implement the observational approach using only direct

observations, alternative models where the effects of dark energy and dark matter are explained

with observable matter will have to be considered. This might require an alternative theory to

General Relativity.

Both the approaches of parameterized and observational models have their limitations and

advantages. Parameterized models are not unique but have the freedom to introduce unex-

pected phenomena while observational models are dependent on only the observable content

of the Universe but provide unique results. Parameterized models are predominantly used in

cosmology with only a few groups advocating observational models. We make the point here

that, although not in its purest form, the observational approach can provide an important tool

for cosmology. In particular, it is a very useful ground for the verification of proposed models

since it can avoid some of the circularity of proving what has already been assumed. This can
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be done by calculating a reversed initial value problem using observations, with some interpre-

tation, on the PNC as initial conditions. This type of model verification is demonstrated in

Chapter 5 where the histories of the ΛCDM model is compared with that of an LTB model

without a cosmological constant.

1.1.3 Observational cosmological models

Much of the developments on observational models were inspired by the seminal paper of Kris-

tian & Sachs [56] published in the 1966. Their work was based on earlier investigations by

McCrea and collaborators [64, 65, 43] which were developments to derive the properties of

direct observations under the assumption of a FLRW geometry. The approach of Kristian &

Sachs was, however, unique in that they systematically restricted a general metric to a specific

geometry using observations. Moreover, an important aspect is their treatment of observations,

using the properties of geometric optics without assuming a specific theory of gravity. In their

derivations they made use of series expansions, so their study was necessarily restricted to a

region close to the observer. The ideas introduced by Kristian & Sachs were the starting point

of further developments by Ellis, Stoeger, Maartens and others in their Observational Cosmol-

ogy programme with its initial publication in 1985 [36]. In these developments, observational

coordinates, based on the concept introduced by Temple in 1938 [94], were implemented to

extend the region investigated by Kristian & Sachs to higher redshifts. Observational coor-

dinates are based on null geodesics on the PNC and are therefore the natural framework on

which EMR reaches an observer. Solving the EFEs for cosmology in this framework consists of

two problems: firstly, astronomical observations are used to determine the metric on the local

PNC and secondly these form the final values of a reversed characteristic initial value problem

(CIVP), which determines the historical evolution of the region causally connected to the PNC

(i.e. the interior of the PNC). The causally connected region is of fundamental importance since

it defines the limits on which cosmological models can be validated from direct observations.

In developments towards exact solutions in observational cosmology, spherically symmetric

solutions are taken as a first step to refine the methods (see for instance [91, 89, 92, 93, 3,

4, 5, 6, 7]). Spherical symmetry by itself is not necessarily unrealistic since the Universe

does appear to be highly isotropic. The spherically symmetric inhomogeneous LTB model in

observational coordinates is therefore an important tool for verifying these developments. The

LTB model in its standard form also provides a useful framework to investigate solutions from

direct observations. In this approach, observations on the PNC are transformed to cosmological

coordinates and then related to the coefficients of the LTB metric (e.g. see [71]). These

transformations require numerical solutions to handle observational data and recent work by

Lu & Hellaby [51] and McClure & Hellaby [63] developed and refined methods for setting up

the local PNC from data based on realistic observations with the intention to be implemented

on data obtainable in the next generation of astronomical surveys. It should be noted that the

emphasis in observational models lies in the fact that the initial (final) conditions are provided

by direct observations on the PNC and that the EFEs are implemented in a general form with

minimal assumptions.
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1.1.4 Characteristic numerical relativity

In numerical relativity (NR), methods to implement general solutions of the EFEs have been

well established for strong gravitational scenarios where gravitational waves (GWs) are expected

to be formed. Similar to EMR, gravitational radiation also propagates along null geodesics and

null cones also provide a natural frame of reference. In this case, however, it is the future null

cone that is of interest in the form of a future directed CIVP. The characteristic formalism in NR

is based on the theoretical developments of Bondi, van der Burg & Metzer [18] and Sachs [85]

which were part of the Gravitational Waves in General Relativity programme initiated by Bondi

in the late 1950s. These developments were of fundamental importance to the understanding of

gravitational waves and with the advancement of computational technology, it was recognised

that the characteristic formalism holds several computational benefits. Among these are: the

fact that the EFEs simplify to ordinary differential equations along characteristics, which are

less expensive to compute, and the conformal method, developed by Penrose [76], which can be

used to represent infinity on a finite grid, making modelling asymptotical behaviour possible in

full non-linearity. The one major drawback of null cone coordinate systems is the vulnerability

to non-uniqueness and singularities in the presence of caustics. In astrophysical problems, this

is usually treated by combining the characteristic formalism with the Cauchy formalism where

the latter is used to solve regions where caustics are expected while the former is used to extract

the solution to the far field [9]. Treating caustics directly on the null cone has been investigated

[46] but this approach has not been implemented numerically. A comprehensive overview of

characteristic numerical relativity can be found in [101].

Although the propagation of radiations of cosmological observations and gravitational waves

both occur on null cones, the characteristic formalism has rarely been employed for investigating

cosmological problems. The most probable reasons for this are that noncomoving coordinates

are not popular in cosmology and the cosmological PNC converge at the apparent horizon (AH),

which causes the radial coodinate (diameter distance) to become multi-valued. Nevertheless,

some research has been done. In 1976 and 1981, Chellone used the Bondi-Sachs metric to

investigate the FLRW model and found it advantageous for investigating inhomogeneities in

the early universe using perturbation methods [26, 27]. In 1985, Ellis et al [36] proposed

the Bondi-Sachs CIVP as a method for evolving from an initial PNC setup using the Newman

Penrose formalism. This was never implemented and subsequent work was done using the fluid-

ray tetrad formalism, which was specifically designed for their research. More recently in 2004,

Ishak [53] used the Bondi-Sachs metric to investigate the observational cosmology problem with

emphasis on advantages of noncomoving coordinates. In 1996, Bishop & Haines [12] published

a axi-symmetrical implementation for the Einstein-de Sitter model. The work presented in this

thesis is a continuation of their work and has been published in [97] and [98]. Here, we develop

a model for spherical symmetric, inhomogeneous, dust universes with a cosmological constant

and, using an affine parameter as radial coordinate, we do calculations beyond the AH.

1.2 Chapter outline

A general overview of cosmological models, observations and their relation to the PNC is given

in Chapter 2. Of particular importance is the distinction between the parameterized and obser-

vational models which forms the basic argument towards the developments in this thesis. As an
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illustration of a parameterized model, an overview of the ΛCDM model, which is relevant to the

current understanding of the Universe, is given and the observational evidence for the model is

discussed. The LTB model is then described as a parameterized model with inhomogeneities.

This is followed by an introduction to observable models by the description of observable quan-

tities on the PNC followed by a review of two existing observational models. The requirements

of the model presented in the later chapters concludes this chapter.

Chapter 3 presents the theoretical developments towards a null cone model of the observable

universe intended for calculations using NR. Based on the Bondi-Sachs CIVP, geometric (hy-

persurface) and energy-momentum (evolution) equations are derived for spherically symmetric

dust cosmologies, which is the requirement for the cosmological models that will be investigated

in this work. The diameter distance, which is the radial coordinate of the Bondi-Sachs model, is

however only suitable for calculations prior to the PNC converging and approaching this region

the method becomes inaccurate. To address this problem, a new model is derived where the

radial coordinate is replaced by an affine parameter on the PNC. This model is suitable for

calculations up to redshifts well beyond the AH with the inclusion of a cosmological constant.

A code was developed for calculations and simulations on these CIVP models and this is

the topic of Chapter 4. For this, an explicit second order algorithm, previously developed in

[10, 11] for modelling gravitational waves, was adapted for the cosmological problem. The

original codes did not consider the region at and in the vicinity of the cone vertex, which is not

of importance in gravitational wave modelling. In the observable universe, this is the position

of the observer and special considerations are required since the GW model contains coordinate

singularities here. These are treated by using series expansions around the observer position.

Chapter 5 presents the results obtained for various runs of the code where both homogeneous

and inhomogeneous models are modelled. Exact and numerical calculations derived in the

previous chapters for known solutions are used to measure the codes accuracy and stability

and these are presented here. After showing that the code is sufficiently accurate and stable,

two numerical experiments are presented, which demonstrate an interesting application of the

model where it can be used to verify the physical consistency of different models given similar

initial values.

Finally the synthesis of the work is presented in Chapter 6. In summary the code developed

was able to simulate the required models adequately. Furthermore, some possibilities for future

research with the developments done here as basis are mentioned.

1.3 Conventions and units

This thesis combines developments in cosmology with developments in NR where different

notations are preferred and some clashes in symbols occur. Instead of inventing new notation

or converting the notation of one field to the other’s, the notation of recent developments in the

particular fields are used. Moreover, Chapter 2, which is exclusively a review of existing work

in cosmology, uses notation used in texts in cosmology such as [100, 35] while Chapter 3, which

presents developments based on NR, preference is given to the notation of NR used in [10, 11].

Changes in symbols that might cause confusion are clearly pointed out in the text and

Appendix A is included as a summary of the symbols in their specific contexts. Clashes in the

use of symbols are mostly limited to the use of r as the radial coordinate. In Chapter 2, r will
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be used as the comoving radial distance which clashes with the use in the remaining text where

r will be used as the diameter distance in null coordinates. In places where both symbols are

required, r will be the diameter distance and r̃ the comoving distance. It is clearly pointed

out in the text where the use of r changes. The use of different notation is mostly limited to

the presentation of differentiation symbols. For differentiation, partial derivative are denoted

by ∂ or a comma “,” and covariant derivatives by ∇ or a semi-colon “;”. Spatial derivative are

indicated as A′ = A,r and temporal derivatives Ȧ = A,t. The choice of convention used is based

on the prominence in literature e.g. the comma notation is more prominent in NR while the Ȧ

and A′ notations are more common in cosmological references.

Geometrised units: G = c = 1, where G is the gravitational constant and c is the speed of

light are mostly used. The few cases where the values of these constants have significance are

pointed out at the places where they are used. The signature (−,+,+,+) for the metric gab is

exclusively used. Following the convention of abstract index notation used in [100, 35], apart

from the standard rules for tensor indices, Latin indices (a, b, c . . .) are used in expressions where

no choice of coordinate are made while expressions in terms of coordinates are made make use

of the Greek alphabet (α, β, δ . . .). The summation rule for tensors is followed where the Σ

symbol is implied when superscript and subscript indices are repeated.
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Chapter 2

Cosmology and the PNC

The distinction between parameterized and observational models was made in Chapter 1 and

this chapter explores the theoretical aspects of these two approaches in more detail. After

introducing some general concepts, the ΛCDM model is described as a parameterized model

with a summary of the observational requirements and evidence for substantiating this model.

The inhomogeneous Lemâıtre-Tolman-Bondi model is then introduced as a more complicated

class using the parameterized approach. The topic which forms the basis of the developments

in this thesis, the observational approach to cosmology, follows by introducing the observable

quantities from observations on the PNC. A brief summary of two existing observational models

is then given as a conceptual illustration of the observational approach. The descriptions that

follow give mathematical summaries of the theoretical aspects by repeating the most relevant

formulae to substantiate concepts; none of these are newly derived. Further, it should be borne

in mind that most the topics in this chapter are riddled with subtleties that are beyond the

scope of this thesis and can be found in the references given.

2.1 Modelling the Universe

2.1.1 Relativistic cosmology

In relativistic cosmology, the theoretical basis for modelling the large scale Universe is Gen-

eral Relativity and its mathematical foundation, Riemannian geometry. Together with these,

assumptions and choices of reference frames have to be made to relate observations in a man-

ageable way to our theoretical expectations. Accordingly, these topics are treated in detail

in standard texts such as [35], [72], [100], [48], [44] and many others. In this section, a few

highlights are given on the most relevant of these for the current work. Besides providing the

foundations for development later in this thesis, this will also be used to fix terminology and

notation.

Assumptions

In Section 1.1, limitations of our ability to observe the Universe were discussed. The most

fundamental of these is the fact that, light travels at a finite speed and therefore, the observable
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universe is restricted to the region where light could have reached us within the age of the

Universe. In addition, we view the Universe from inside, at one location and effectively only

one point in time. In contrast to laboratory experiments, we cannot manipulate the object of

investigation or repeat the experiment. Regardless of theoretical and technical complications,

making simplifying assumptions is an inevitable part of the way that we interpret theory and

observations in cosmology.

The cosmological principle is the cornerstone assumption of cosmology. This is a simplifying

postulate proposing that on a sufficiently large scale, there is uniformity in the properties of

the Universe i.e. the Universe looks the same to all observers. Firstly, the uniformity refers

to the physical laws of nature as we perceive them locally. This has the implication that,

similar to an experiment repeated in different Earth based laboratories, there is repeatability

in observations of the Universe irrespective of the location of the observer (see [17] for a more

elaborate argument pp. 11–15). While this is a very bold extrapolation of our understanding of

nature, which cannot be verified from only one spacetime location, without it we can say very

little about the Universe.

The second aspect of the cosmological principle is the assumption of uniformity in kinematic

and dynamic properties i.e.: the expansion rate and the distribution of matter. This can be

substantiated through the Copernican principle that states that we are not in a privileged loca-

tion in the Universe: a local observer is a fundamental observer representing any other observer

in the Universe. Together with the observational evidence indicating a high level of isotropy, it

is then concluded that the distribution of matter and spatial expansion is homogeneous. This

part of the assumption is not essential for understanding the Universe and with more precise

observations than currently available it is a testable hypothesis.

A further assumption that simplifies the description of the Universe is the smooth-fluid

approximation whereby the matter content of the Universe is represented by a continuous fluid.

Accordingly, the largest structures in the Universe, galaxy super clusters, are regarded to be

small enough compared to the overall size to be considered particles of the cosmological fluid.

It is further assumed that the fluid is well behaved: the fluid particles move along well defined

laminar stream lines (world lines) and is only affected by gravity. For a fluid to behave in this

well-ordered way, it has to consist of Newtonian dust, i.e. a pressureless fluid.

Riemannian geometry

In General Relativity, spacetime is described by a four dimensional pseudo-Riemannian manifold

(M ; g) with M a differential manifold and g a non-degenerate, smooth, symmetric metric tensor

which is not positive definite. On the manifold a vector space Tp(M) can be formed at each

point p, which consists of the set of all tangent vectors, T ε Tp, at the arbitrary point p. Tp is

an important structure for evaluating curves on the manifold and also intrinsically related to

the way that coordinates are defined on M .

In tensor index notation on a coordinate system (e.g. xµ), the metric can be represented as

a line element related to infinitesimal coordinate displacement as

ds2 := gµνdx
µdxν . (2.1)

In order to relate the relate the connection between vectors in tangent spaces on M , an affine
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connection, the Christoffel symbols, is formed from gab

Γdbc :=
1

2
gda(gab,c + gac,b − gbc,a). (2.2)

Without Γ it is not possible to determine if two vectors are distinct or the same at two points,

p and q in vector spaces Tp and Tq, on M [100]. Γ provides a utility to define covariant

differentiation on M , for instance for a vector in curved spacetime

va;b := va,b + Γacbv
c. (2.3)

The concept of curvature in Riemannian geometry is related to the non-commutativity of the

second order covariant derivatives of a vector. This can be written in terms of Γ and its

derivatives as the Riemann curvature tensor

Rdabc := Γdac,b − Γdab,c + ΓdecΓ
e
ab − ΓdebΓ

e
ac. (2.4)

For flat space-time Rdabc = 0. By the contraction of Rdabc, the Ricci tensor is formed

Rab := Rcabc, (2.5)

which is also Rab = 0 for flat spacetime and further contraction defines the Ricci scalar

R := gabRab. (2.6)

gab, Γdbc, R
d
abc, Rab and R are the geometric components required by the Einstein field equa-

tions.

A geodesic is defined as the curve whose tangent is parallel propagated along itself, giving

the intuitive notion of the shortest path in a curved geometry [100]. For a curve with a tangent

T a to be a geodesic it has to satisfy

T a∇aT b = αT b (2.7)

with α an arbitrary function on the curve. It can further be shown that there exists a class of pa-

rameters such that the tangent vector has constant magnitude for which the reparameterization

of (2.7) follows as

T a∇aT b = 0. (2.8)

These parameters are called affine parameters (υ) and have the property that all affine param-

eters of a curve are linearly related. By choosing a specific coordinate system, e.g. xµ, (2.8)

can be written as

d2xµ

dυ2
+ Γµνσ

dxν

dυ

dxσ

dυ
= 0. (2.9)

A crucial point follows from the theory of ordinary differential equations. This is formalised

as the local existence and uniqueness theorem for geodesics [73] (p. 216).
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Theorem 1 (Existence and uniqueness of geodesics) Let (M ; g) be a Rieman-

nian manifold. If p ∈M and v ∈ Tp(M) then there exists an open interval I = (−ε; ε)
and a unique geodesic α : I →M such that α(0) = p and α̇(0) = v.

The local existence and uniqueness properties of geodesics together with affine parametrization

make them particularly useful as coordinates. This is a key facet in the developments followed

in this thesis.

General Relativity

General Relativity describes the interaction of geometry and matter through the Einstein field

equations (EFEs),

Rab −
1

2
R gab + Λgab = κTab (2.10)

where Rab is the Ricci tensor, R the Ricci scalar, Tab the stress tensor, Λ the cosmological

constant and κ = 8πG/c2. The left hand side of the equations are the geometric terms while

the righthand side the energy-matter term.

For the models considered in this work, matter is taken to be Newtonian dust for which

the stress tensor is Tab = ρuaub. Since the stress tensor is particularly simple, the form of the

EFEs mostly used in this work is

Rab = κ

(
Tab −

1

2
Tgab

)
+ Λgab (2.11)

where T = −ρ, the contraction of Tab. In addition to its role in the EFEs, the stress tensor also

determines the relativistic conservation equations through ∇aTab = 0.

In General Relativity, the sign of gµνx
µxν is related to the causal connection to a spacetime

event according to

gµνx
µxν


< 0 time-like

= 0 null

> 0 space-like

. (2.12)

where xσ ε Tp. Time-like curves define the paths of objects with mass while null curves define

the paths of particles without mass (e.g. photons). Space-like curves define paths between

points which are not causally connected [44].

Kinematics

As a problem in relativistic fluid dynamics, there is a well defined 4-velocity following the path

of world lines, defined as

uµ :=
dxµ

dτ
(2.13)
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with τ the proper time. ua defines the paths of objects with mass moving under the influence

of gravity alone. A direct implication of (2.13) is the normalisation of ua:

uaua = −1, (2.14)

which in turn implies

u̇aua = 0. (2.15)

In summary, the fundamental 4-velocity (ua) is defined as the tangent vector to a time-like

geodesic world line, affinely parameterized by the proper time (τ).

Coordinates

In terms of the the cosmological fluid, the most convenient frame of reference is comoving

synchronous (CS) coordinates. Accordingly, the time coordinate, t, is an affine parameter

defined on the cosmic fluid’s particle world lines, which are time-like geodesics. Under certain

conditions (see [35] p.84), the time parameter on the world lines can be synchronised such

that simultaneous events on different world lines can be represented by a unique cosmic time,

connecting hypersurfaces where t = constant [35, 68]. Under the cosmological principle, space-

like homogeneous hypersurfaces connect the corresponding time intervals on neighbouring world

lines i.e. homogeneity is defined on t = constant surfaces and a radial coordinate (usually r)

measures instantaneous distance on these surfaces. Furthermore, the coordinates are to expand

with the Universe and all galaxies remain stationary relative to each other in CS coordinates.

CS coordinates are, however, not aligned with observations since r is defined on space-like

hypersurfaces. To incorporate direct observations, transformations are required to obtain events

on the PNC corresponding to t = constant surfaces. Alternatively, the coordinate system can

be adapted to correspond to null hypersurfaces, which are intrinsically not synchronous. Such

a null coordinate system will be developed in this thesis.

2.1.2 Model dependence in cosmology

The purpose of cosmology is to search for the cosmological model that has the best agreement

with observed phenomena. It has already been pointed out that we have to rely on assumptions

to make cosmology a manageable endeavour. However, from a scientific point of view, there

should be as few assumptions as possible. In cosmology, this will require that the interpretation

of the observations should be independent of the model it substantiates. For reasons already

mentioned in Section 1.1.2, this is not the standard procedure in cosmological developments.

Nevertheless, models following the concept of idealised observational cosmology have been de-

veloped (see [36]) and a comparison between assumptions and model independence provides

useful insight into the study of cosmology. Much of the structure of this chapter is based on

this argument and a brief outline of how it will be presented is given here.
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Standard model

Assuming the the cosmological principle, the Universe is modelled as a FLRW model and current

observations favour a hot Big Bang universe. Besides direct observations, indirect evidence also

plays an important role in substantiating this model. For instance, in the early hot universe

processes such as baryogenesis and nucleosynthesis substantiate the observed ratios of matter

and elements while in the very early universe, cosmic inflation accounts for almost exact flatness

beyond causal horizons, which is observed in the CMB and its anisotropies. More recently,

direct observations of Type Ia supernovae (SNIa) added justification for the presence of a

cosmological constant in these models and the ΛCDM model, which will be described in Section

2.2.1, is currently the standard model in cosmology. Effectively, the assumed universe with

some adjustments provides remarkable correspondence to observations and since the Universe

is assumed to be homogeneous, local effects can be extrapolated to the rest of the Universe.

However, much of the interpretation of observations is dependent on the assumed geometry of

the model.

Inhomogeneous cosmologies

Instead of assuming homogeneity, we can assume a more general model such as the LTB model,

which makes provision for radial inhomogeneities. This model has more freedom in parameters

and can be made to fit a larger set of observations than the FLRW models. Through the

adjustment of parameters, this model can also account for observed phenomena but requires

the observer to be very close to the centre of a region where the conditions are suitable to fit

isotropic observations. There are possibly many models that can fit observations and deciding

which of them are real and which are contrived is not a trivial matter, if it can be determined

at all. More general models also encounter these problems. The LTB model, which represents

these type of models will be the topic of Section 2.2.2.

Observational models with symmetries

Since cosmologies such as the LTB model assume specific surroundings around the observer,

the observer’s point of view can, strictly, not be extrapolated beyond the observable universe.

An observational representation, where observations determine the metric, of the LTB model

is required to make the model more specific. This mostly makes use of model independent

observations. It will, however, be difficult to ignore the predictions of dark matter and dark

energy following from the standard model and these will have to be assumed or alternative

explanations for their apparent presence should be introduced. Observational models do not

attempt to explain the Universe prior to the CMB. The models described in Sections 2.3.2 and

2.3.3 and the model developed in Chapters 3 and 4 are examples of such models.

Ideal observational cosmology

Model selection using the observational approach can be generalised to the point where only

a theory of gravity is assumed and no unobservable matter or symmetries are assumed. This

will, however, require a very precise map of the Universe, which is unlikely to be obtained

in the near future, and assumes that observable objects are representative of unobservable
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objects. This type of approach, assuming ideal observational data, is of importance to explore

the fundamental theoretical limits of determining the geometry of the observable universe and

was used in [36] to prove Theorems 4 and 5 (Section 2.3.3 on page 41).

Cosmography

Cosmography attempts to only use observations to determine the geometry of spacetime (e.g.

see [99]). Here, it is assumed that our understanding of geometric optics is valid in the rest

of the Universe but no theory of gravity is assumed. It was shown in [36] that this approach

is fundamentally restricted (see Theorem 4, Section 2.3.3 on page 41) and cannot be used

to determine the spacetime structure of the observable universe. On the other hand, if the

EFEs with evolution equations are combined with the cosmographical data, the past Cauchy

development of the PNC can be determined uniquely. Therefore, cosmography measured over

a long enough period to determine d/dt of any observable quantity, can be used to test the

dynamics of the EFEs and evolution equations.

2.2 Parameterized models

2.2.1 Standard model - ΛCDM

The ΛCDM is used as an example of a parameterized model. This model is currently accepted

as the standard model in cosmology and is, therefore, the most relevant homogeneous cosmology

to consider. Mathematically, the geometry of a homogeneous universe in CS coordinates is fully

described by the Robertson-Walker (RW) line element

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
. (2.16)

The coordinates are synchronous in time with t the proper time on an observer’s world line.

All observers were synchronised at a(0) = 0 and spatial co-moving hypersurfaces are defined by

corresponding t = constant instances on all world lines. On these hypersurfaces, r is the radial

coordinate with θ and ϕ the spherical latitude and longitude angles. a(t) is a scale factor of

spatial expansion. k, is a curvature index representing closed, open or flat spatial section by

taking on the values 1,−1 or 0 respectively. By adjusting a(t) and k, all possible homogeneous

geometries can be described by this metric.

The EFEs (2.10) relate the geometry to the energy-matter content where Tab, because of

the imposed isotropy, takes the form of a perfect fluid

Tab = (ρ+ p)uaub + pgab (2.17)

where ρ is the energy-density, p the pressure and ua, the covariant velocity.

Substituting the metric, (2.16), and the energy-density tensor, (2.17), into the EFEs (2.10),

two important equations follow. The Friedman equation,(
ȧ

a

)2

=
κρ

3
+

Λ

3
− k

a2
, (2.18)
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and the Raychaudhuri equation

ä

a
= −1

6
κ(ρ+ 3p) +

Λ

3
. (2.19)

These describe the expansion and acceleration in expansion of the Universe for a specific energy-

density distribution, curvature and cosmological constant.

By differentiating (2.18) and eliminating ä, using (2.19), the energy-density conservation

equation is obtained as

ρ̇ = −3
ȧ

a
(ρ+ p). (2.20)

This can also be derived by substituting (2.17) into the relativistic conservation equation

∇aTab = 0.

To solve the system (2.18), (2.19) and (2.20), one additional equation is required. The

equation of state defined as p(ρ) = w ρ, provides the necessary closure. Relevant values for w

are: w = 0 for matter (as Newtonian dust) and w = 1/3 for radiation and w = −1. 1

Cosmological parameters

The FLRW model can be solved analytically for the three cases of curvature, k = −1, 0 or 1,

and since the spatial curvature is constant, it is only necessary to determine k at one instant in

time. By definition, Λ is also constant and therefore also a single value parameter, which has

to be determined at a single epoch. The required solution, a(t) and ρ(t) can be obtained from

(2.18) and (2.20) while (2.19) can be used to constrain the values of k and Λ.

The procedure towards a solution introduces cosmological parameters, which can be deter-

mined from their values at t0, the current time. The Hubble rate is defined as

H(t) =
ȧ(t)

a(t)
(2.21)

and the Hubble constant, H0, the value at t0, which can be determined from redshift-distance

relations.

The density parameter is introduced as the ratio of the density against the critical density

(ρc = 3H0/κ) required for the Universe to be spatially flat (i.e. k = 0). This provides a value

for each density component. With

Ωm0 =
κρm0

3H2
0

, ΩΛ0 = ΩΛ =
Λ

3H2
0

, Ωk0 = Ωk = − k

a2
0H

2
0

. (2.22)

Since Ωk and ΩΛ are constants, it is only necessary to determine their value at t0 while Ωm0

will provide the initial value for (2.20). Rewriting (2.18) in terms of the density parameters

gives

H2 = H2
0

(
Ωm0

a3
+ ΩΛ + Ωk

)
, (2.23)

1As an alternative to an explicit cosmological constant, a fluid with w = −1 can be introduced, which provides
a form of equations (2.18) and (2.19) in terms of a vacuum energy ρΛ, with Λ = κρΛ.
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and for the current time t0

Ωk =
Ωm0

(a0)3
+ ΩΛ − 1. (2.24)

From this equation, knowing two of the density parameters and a0 will determine the other

one.

Another parameter in terms of t0 that can be obtained from (2.18) and (2.19) is the decel-

eration parameter

q0 =

(
−aä
ȧ2

)
0

=
1

2
Ωm0 − ΩΛ. (2.25)

An important aspect of this equation is that the expansion of the Universe cannot accelerate

without the presence of a form of vacuum energy.

Observations and concordance

Since the discovery of the recession of galaxies in the 1920s, measuring H0 has been the most

important endeavour in cosmological observations. It is evident from the previous section that

H0, is required for determining all the other cosmological parameters. Its importance is of such

significance that it was one of the design objectives of the Hubble Space Telescope (HST). 2

As a Hubble Key Project, the objective was to determine H0 within an error margin of 10%.

Since the recession of galaxies can directly be determined from z, measuring H0 comes down

to accurately measuring distance in space. Towards this goal, Cepheid variable stars were used

as measure for low redshifts and primary measure to calibrate secondary measures such as the

Tully-Fischer relation and Type Ia supernovae (SNIa) for high redshifts. The end result was

H0 = 72± 8 km s−1 Mpc−1 (see [45] for more details).

In the 1960s, together with the evidence of expansion, three other observations provided

support for the idea that the Universe evolved from an initial hot dense state. Radio galax-

ies were observed to be more prevalent at higher redshifts, which supports the idea that the

Universe is evolving. The CMB was detected and its existence and the temperature it repre-

sents corresponded to the predictions of the Big Bang theory. It was also found that observed

abundances of light elements (hydrogen, helium-4, deuterium and lithium), closely followed the

predictions of the Big Bang theory at the observed temperature of the CMB. The history of

these developments is described in [58] (pp. 319–335).

As detailed observations became available in the 1990s, the structure of the CMB provided

further refinement to support a FLRW model. The isotropy of the CMB is a strong argument

for homogeneity in the Universe and assuming then that the fluctuations in the CMB are the

result of structural fluctuations in the very early Universe, the acoustic peaks in the spectrum

can be used a standard ruler of distance on the last scattering surface. Comparing CMB

fluctuations with the expected values for closed, flat and open spatial geometries, evaluation of

the first acoustic peaks of both the COBE and WMAP data strongly favours the flat geometry

i.e. Ω0 ≈ 1⇒ Ωk ≈ 0. In addition, combining the CMB data with data of galaxy surveys give

further evidence for this. This provides a very useful simplification of equation (2.24).

2The size of the HST mirror was determined by the requirement of observing faint Cepheids in the Virgo
cluster.
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Observations of the gravitational effect of matter gives an estimation of Ωm0. The rotation

of galaxies in clusters, rotation of stars in galaxies, the temperature of galaxies through X-ray

observations and the effect of gravitational lensing all point to a value of Ωm0 ≈ 0.3. However,

the quantity of baryonic matter inferred from deuterium abundance and differences in the

fluctuation peaks in the CMB corresponds to only ΩB ≈ 0.05. The deficit to obtain Ωm0 ≈ 0.3

is made up of cold dark matter (ΩCDM ), of which only the gravitational evidence is detected.

Simulations of structure formation is taken as further evidence for this.

Having Ωm0 ≈ 0.3, from equation (2.24) the vacuum energy or cosmological constant com-

ponent is expected to be ΩΛ ≈ 0.7. Otherwise, our understanding of the Universe through

a number of assumption is seriously flawed, which is not an entirely remote possibility since

accounting for missing energy by introducing a cosmological constant is not sufficient evidence

for claiming that 70% of the energy-density content of the Universe is of an unknown type.

This should also be viewed from the fact that theoretical predictions from quantum mechanics

favours a value 10120 time larger. Equation (2.25) comes into play here since a positive ΩΛ

component will be observable from a negative value of q0. SNIa observations from the High-Z

Supernova Search Team and Supernova Cosmology Project provided substantiating evidence

for an accelerating Universe and the value ΩΛ ≈ 0.7 fits the observations very well [77, 83] .

The parameter values {H0,Ωk,Ωm0,ΩΛ} = {72, 0, 0.3, 0.7} describes the simplest cosmo-

logical model that is in agreement with all observational evidence. This is known as the Con-

cordance, Standard or ΛCDM model. Observational evidence, for this model, follows from

measurements designed to determine the parameters separately and also measurements where

combined values of the parameters are determined. Considerable evidence for the model comes

from CMB, SNIa and HST data. Theoretical hypotheses of the Universe earlier than the LSS,

such as cosmic inflation and baryogenesis, are also in agreement with the processes expected in

the hot dense early stages of the ΛCDM model. Therefore, the majority of modern cosmological

research centres around refining and further substantiating this model.

ΛCDM solution

Having Ωk = 0, then ΩΛ = 1 − Ωm0 and equation (2.23) can be written in terms of the

cosmological parameters as:

H2 = H2
0

(
Ωm0

a3
+ 1− Ωm0

)
(2.26)

With a variable substitution h = ((1−Ωm0)/(Ωm0))1/2a3/2, equation (2.26) becomes a standard

integral with the solution:

a(t) =

(
Ωm0

1− Ωm0

)1/3(
sinh

[
3

2
H0(1− Ωm0)1/2t

])2/3

. (2.27)
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With some rearrangement and scaling to a(t0) = 1, the age of the Universe is obtained as: 3

t0 =
2

3
H−1

0 (1− Ωm0)−1/2 sinh−1
[
(1/Ωm0 − 1)1/2

]
. (2.28)

The density distribution in terms of H0 and Ωm0 is:

ρm =
3H2

0

κ

Ωm0

a3
. (2.29)

2.2.2 Lemâıtre-Tolman-Bondi model

Inhomogeneous universes

The largest galaxy surveys show that inhomogeneities are prevalent as gravity causes matter

to clump together resulting in a web of walls separated by large voids. However, it is assumed

that on some even larger scale, inhomogeneities average out and their effects are negligible.

Mathematically, relaxing the assumption of homogeneity provides a larger class of models of

which the FLRW universes are three specific cases to which more complicated models can

degenerate. Inhomogeneous models can therefore be used to model the Universe on the scales

where inhomogeneities are not negligible and models can be constructed that degenerate to the

FLRW cases on the scales where homogeneity is expected. On the other hand, inhomogeneous

models can also be constructed that are significantly different to the standard model and provide

alternatives where questions can be asked such as: What if the effects of inhomogeneities are

not negligible? Can the apparent cosmic acceleration be explained using only inhomogeneities?

Research on these questions has provided interesting alternatives for dark energy as the cause of

the appearance redshift dimming of SNIa. The essence of these investigations was put forward

in [71] where it was shown that any set of isotropic observations for a spherical symmetric

geometry can be matched by some selection of source evolution functions (this is discussed in

more detail in Section 2.3.2).

The most commonly used inhomogeneous models for investigating SNIa dimming are: lumpy

universe, backreaction and local void or hump models. Lumpy universe models are models

where inhomogeneities between the observer and observed object affects observations. The

Swiss-Cheese model, where spherical regions are repeatedly cut from an otherwise FLRW uni-

verse and then filled with another spherical model is an example which has been shown in [54]

to have a significant effect on the distance-redshift relation of SNIa. Another lumpy universe

model, the Roeder & Dyer model, has been demonstrated in [62] to account for apparent dark

energy. Backreaction models work on the principle that averaging the EFEs over nonlinear per-

turbations will induce an effective energy-momentum tensor with a nearly constant magnitude

which will have the appearance of a cosmological constant [34]. Local void models make use

of the observation that there exist nearly empty regions in the Observable Universe where the

expansion is faster than that of the greater Universe and then suppose that we are located near

the centre of such a bubble. This model has been used in [40], [47], [69], [55], [42] and many

others as alternatives to cosmic acceleration. These models are, however, mostly illustrations of

the fact that scenarios containing inhomogeneities can account for the dimming of SNIas with

3This scaling affects the value of k, since the model was already normalised to have k = −1, k = 0 or k = 1
from the general case k < 0, k = 0 or k > 0. However, since k = 0 for the ΛCDM mode, it does not affect the
particular solution.
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redshift.

The simplest inhomogeneous model is the the Lemâıtre-Tolman-Bondi (LTB) model, which

represents an isotropic, dust filled, inhomogeneous universe. This is on appearance a minor

variation of the FLRW model with a relaxation of the homogeneity assumption on the radial

coordinate. Mathematically, the LTB metric can be presented as a generalisation of the RW

metric by replacing products with (r) of the scale factor (a(t)) and the curvature index k by

more general functions: {a(t)r, kr} → {R(r, t), k(r)} [40]. Alternatively, the FLRW model is

a specific case of the LTB model. The LTB model has exact analytical solutions which makes

it a useful tool to investigate the mathematical significance inhomogeneities in the Universe.

This model is also useful to investigate homogeneous universe models on the scales where

inhomogeneities are not averaged out as well as more complex inhomogeneous models which

are made up of superimposed symmetrical inhomogeneous regions.

On a physical and philosophical level the addition of inhomogeneities has more fundamental

consequences and the LTB model, in its basic form, is not popular as a physically realistic

model. Opposition mostly comes from the fact that it is in conflict with the Cosmological and

Copernican principles where isotropy implies homogeneity. Conversely, an isotropic inhomo-

geneous universe implies that the observer is in a special location, in particular, very close to

the centre of the Universe. Although homogeneity cannot, in principle, be verified because

it requires observational access to the entire Universe, the coincidence of the Earth being in

the centre of the Universe is not a philosophically appealing idea. Observationally, however,

bearing in mind that our view of the Universe is restricted to our PNC, an observer placed

at the centre of the observable region can correspond to an observed LTB region. The LTB

model can also be used in Swiss-Cheese models where it is used to fill the regions cut out in an

otherwise FLRW universe.

LTB model

In the LTB model, the assumption of universal homogeneity is relaxed on the radial coordinate

and the general form of the metric in CS coordinates for an irrotational cosmic fluid is defined

as (see for instance [15], [38] and [78])

ds2 = −dt2 + U2(t, r)dr2 +R2(t, r){dθ2 + sin2 θdϕ2} . (2.30)

Where U and R are scaling functions related to the expansion of the Universe. When substi-

tuting (2.30) into the EFEs for dust (p = 0), U can be written in terms of R and the metric

becomes

ds2 = −dt2 +
[R′(t, r)]2

1 + 2E(r)
dr2 +R2(t, r){dθ2 + sin2 θdϕ2}. (2.31)

Here, R(t, r) is the called the areal radius and 4πR2 defines the proper surface area of a sphere

with coordinate radius r at a constant time slice [38]. E(r) is an arbitrary function of integration

related to the local geometry of space-time. According to the sign of E, the geometry is classified

into three categories with E > 0 being hyperbolic, E = 0 parabolic and E < 0 elliptic.

With further manipulation of the EFEs, a Friedman equation can be derived as (see [78]
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pp. 296–300)

Ṙ2 =
2M(r)

R
+ 2E(r)− 1

3
ΛR2, (2.32)

the Raychaudhuri equation is

2

3

R̈

R
+

1

3

R̈′

R′
= −1

6
κ(ρ+ 3p) +

Λ

3
, (2.33)

and the density equation

4πG

c4
ρ(t, r) =

M ′

R2R′
. (2.34)

M(r) is also an arbitrary integration function and corresponds to the active gravitational mass,

i.e. the mass contributing to the gravitational field; defined by rewriting (2.34) as

c2M(r)

G
= 4π

∫ r

0

ρ(t, r)

c2
R2(t, r)R′(t, r) dr (2.35)

Using geometrised units, G = c = 1, M(r) is written as

M(r) = 4π

∫ r

0

ρ(t, r)R2(t, r)R′(t, r) dr. (2.36)

Solving (2.32) for Λ = 0 it follows that for E < 0:

R(t, r) = −M
2E

(1− cos η) with: η − sin η =
(−2E)3/2

M
(t− tB(r)) (2.37)

for E > 0:

R(t, r) =
M

2E
(cosh η − 1) with: sin η − η =

(2E)3/2

M
(t− tB(r)) (2.38)

and for E = 0:

R(t, r) =

[
9

2
M(r)(t− tB(r))2

]1/3

(2.39)

with η(t, r) a parameter function. The function tB(r) is called the bang-time function; the

local time when R(t, r) = 0, which forms a non-simultaneous singular surface [71]. Considering

equation (2.34), ρ becomes singular and defines the big bang singularity, which might be a

singular surface, not necessarily a singular point.

The functions E(r), M(r) and tB(r) determine R(t, r) and correspondingly the metric which

then fully determines the model. These functions describe all radial inhomogeneous dust models

and for specific choices, the FLRW models. For instance the values

M(r) = M0r
3, E(r) = 0 and tB(r) = constant, (2.40)

correspond to the k = 0 (Einstein-de Sitter) model. Obtaining solutions with a non-zero
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cosmological constant is not as general and might require the initial data on more than one

instance in time. For instance, density profiles at two instances or an initial velocity and later

density profile for models with Λ > 0 (see [13] p. 33).

A different notation used in [40] by Enqvist provides a form of the metric where the analogy

with the RW geometry is directly recognisable

ds2 = −dt2 +
[A′(t, r)]2

1− k(r)
dr2 +A2(t, r){dθ2 + sin2 θdϕ2}. (2.41)

Using this notation, analogous parameters H0(r), Ωk(r), Ωm(r) and ΩΛ were derived. This

view of the model makes it more convenient to compare the LTB model to the FLRW models

in Section 2.2.1 and some interesting physical implications will be pointed out in Section 2.2.2.

LTB physical considerations

Although the FLRW models are a subclass of the LTB models, in general, radial inhomo-

geneity can lead to significant differences in the physical properties which cause observational

ambiguities in cosmological models. Some considerations to take note of are:

i. The function E(r) can change between hyperbolic, parabolic and elliptic solutions in the

same universe and equations (2.37–2.39) are not necessarily different universes as is the

case in the FLRW geometries where k measured at one spacetime event determines the

curvature of the model completely.

ii. In (2.34), ρ(t, r) can become singular at R(t, r) = 0 which corresponds to the Big Bang

but also when R′ = 0 which is called a shell crossing, a coordinate singularity probably

without physical significance.

iii. The implication of tB(r), the time of R(t, r) = 0, being a function of r, is that the

age of the Universe is not necessarily a singular event but can be a singular surface if

tB(r) 6= constant. Nevertheless, it should be remembered that in the early Universe, a

radiation model is more appropriate than the LTB model and there is no real physical

significance to this surface [21].

iv. The point where r = 0 is the centre on symmetry and requires specific conditions to insure

that the model is mathematically well-posed (see [78]). The models that will be used for

simulations in this study have E(r) = 0 and are all well-posed, which is a requirement for

convergence in numerical modelling [57]. In homogeneous models the concept of a centre

does not exist.

v. In the FLRW models, surfaces of constant expansion rate and density correspond with

surfaces of constant time. This is not the case with the LTB model where expansion rate

and density are functions of both space and time and although symmetrical around the

observer’s world line, it can be irregular (see figure 2.1). The cosmological parameters are

therefore functions of both t and r: H(t, r), q(t, r) and Ω(t, r).

vi. The initial conditions are functions of r i.e.: R0(r) = R(t0, r) which can be derived

from measurements of H0(r) and Ω0(r). Since r is defined on space-like surfaces, these
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quantities will have to be determined from observations on the PNC through coordinate

transformations (see Section 2.3.2).

vii. From the presentation of Enqvist [40], an ambiguity in the concept of acceleration becomes

apparent by comparing the Raychaudhuri equations (2.19) and (2.33). It is evident that

in a homogeneous universe, ä(t) is only related to the matter density and the cosmological

constant. In the LTB model, R̈(t, r), is also dependent on spatial derivatives of R. This

illustrates the fact that spatial inhomogeneities can account for cosmic acceleration.

viii. The redshift in the LTB model is also dependent on both t and r, however it is measured

on the PNC where t can be written as t(r). It can then be determined with an integral

towards r as

ln (1 + z) =

∫ r

0

Ṙ(r∗)′√
1 + 2E(r∗)

dr∗,

with all functions of t rewritten as functions of t(r). z is therefore not necessarily a clear

indication of the age or distance. Without knowledge on how inhomogeneity is distributed,

a statement such as: ‘a gamma ray burst at z=8 was detected’ will not necessarily indicate

an early Universe event.

Figure 2.1: In comparison to Figure 1.1 on page 2, in an inhomogeneous isotropic universe
surfaces of constant time is irregular (based on Figure 3 in [33]).

Bang-time models

Numerous LTB models exist which include the FLRW models as a subclass, other physical

realistic models and also many models with uncertain physical relevance. Investigations with the

code, that will be described in Chapter 4, will be limited to a simple class of LTB models referred

to as bang-time models, which makes use of the bang time function, tB , as a mechanism to induce

inhomogeneities into a universe. By selecting simple functions for tB , it has been demonstrated

that inhomogeneities can mimic the effect of inflation (solving the horizon problem) [25, 22],
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describe the CMB dipole anisotropy [87], and demonstrate how inhomogeneities can reproduce

the effect of SNIa redshift dimming without the requirement of dark energy [21].

The bang-time models are based on the class of parabolic LTB models, where the metric

becomes

ds2 = −dt2 + [R′(t, r)]2dr2 +R2(t, r){dθ2 + sin2 θdϕ2}. (2.42)

The solution is then simplified by setting, M(r) = M0r
3 as a coordinate condition where M0 is

a constant which for illustrative purposes is set to 2/9. Equation (2.39) then reduce to

R(t, r) = r(t− tB(r))2/3 (2.43)

with

R′(t, r) =
t− tB(r)− 2/3 r t′B(r)

(t− tB(r))1/3
(2.44)

and (2.36) can be simplified to

ρ(t, r) =
1

2π(t− tB(r))(3t− 3tB(r)− 2rt′B(r))
. (2.45)

By selecting tB(r) = 0, equation (2.45) becomes the Einstein-de Sitter model (see Section

2.2.3). If tB(r) 6= 0 and tB,r(r) = 0, the time of the initial singularity is adjusted and the

age of the Universe changes. For non-constant functions, the initial singularity becomes a non-

simultaneous singular surface, which depends on r. Thus, a variety of models can be generated

for testing the code on parabolic spatial sections.

2.2.3 The cosmological PNC

Before proceeding to a discussion on observational models, a brief overview of some of the

properties of the PNC of an expanding universe, using CS coordinates, is presented in this

section. The PNC is the past directed region causally connected to a cosmological observer and

its shape determines the paths that radiation follows to reach the observer. What follows can

be considered as a more formal explanation of the PNC illustrated in Figures 1.1 and 2.1. A

more detailed description can be found in [37].

For this purpose, the Einstein-de Sitter (EdS) model provides a useful mechanism to con-

ceptualise an expanding universe. This is the simplest solution of the FLRW models, the case

where k = 0 and Λ = 0 and for the purposes of the discussion, geometrised units with time

scaled such that t0 = 1 is used. Solving equations (2.18) and (2.20) gives

a(t) = t2/3 and ρ =
1

6πt2
(2.46)

and when substituting a(t) into the metric it follows that

ds2 = −dt2 + t4/3dr2 + t4/3r2{dθ2 + sin2 θdϕ2}. (2.47)
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To determine the surface of the the PNC, a null trace can be calculated from the observer

position by setting ds = dθ = dϕ = 0. The null ray, in a spherically symmetric universe, traces

out the PNC when rotated. Applied to (2.47) it follows that

ds2 = 0 ⇒
∫ r0

re

dr =

∫ t0

t1

dt

t2/3
. (2.48)

This relation determines the shape of a PNC in a homogeneous expanding universe with a flat

spatial section. If we consider a signal emitted from a source at a time, te, in the past, this will

be observed at a redshift

1 + z =
a(t0)

a(te)
= t−2/3

e . (2.49)

The proper distance rD of a locus on the PNC follows by a redshift scaling of the coordinate

distance from (2.48) for a signal emitted at time te with r0 = 0 i.e.

rD =
1

(1 + z)

∫ r0

re

dr ⇒ rD = 3(t2/3e t
1/3
0 − te). (2.50)

This distance corresponds to the proper angular diameter distance (rD = dD), discussed in

Section 2.3.1. This result becomes a point of interest in observational models since (2.50) is not

monotonically increasing and setting d/dt(rD) = 0 shows that dD reaches a maximum at some

time in the past, which is referred to as the apparent horizon (AH)

dD (AH) =
4

9
t0 at te (AH) =

8

27
t0. (2.51)

In terms of redshift, this is also the case (see Figure 2.2) and the maximum is reached at

z = 1.25 when (2.51) is substituted into (2.49). Since the proper distance starts to decrease

from this point onwards, angular sizes will be perceived to increase with redshift. The observable

universe is, therefore, by itself, a gravitational lens and angular sizes of remote galaxies are not

necessarily an indication of their radial distance without taking the redshift into account.

Conceptually, signals received by an observer will travel on the surface of the PNC but since

the Universe was smaller in the past, the PNC reconverges into the initial singularity. There-

fore, while an expanding homogeneous Universe evenly enlarges in all direction, the observable

universe forms an expanding teardrop. Figure 2.3 shows this result and also includes the path

of the oldest signal connected to the PNC; the particle horizon, following from

h(t0) = a(t0)

∫ t0

0

cdt

a(t)
(2.52)

when incorporating c. It is interesting to note that the oldest signal is currently a distance of

3ct0 from the observer for the EdS model.
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Figure 2.2: The diameter distance (dD) against redshift (z) of the Einstein-de Sitter model
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Figure 2.3: Past null cone of the Einstein-de Sitter model

2.3 Observational models

The work by Kristian & Sachs [56] is generally considered as the seminal work in direct obser-

vational cosmology. Besides the results they obtained, which placed some fundamental limits

on observable quantities, their methodology is of general interest (the significance or their work

is described in [32]). In summary, they assumed the Universe is describable using Riemannian

geometry and then derived observable quantities from the properties of geometric optics and

radiation without assuming a theory of gravity. These results were then used in cosmological

models to evaluate how observations restrict relativistic cosmology. This paradigm was followed

by the developments of Ellis and collaborators [36] as well as Dautcourt [31, 30] in the 1980s.

This section will follow the pattern of Kristian & Sachs as a guideline by introducing observable

quantities and pointing out what their dependence on a theory of gravity and also on specific

cosmological models are. Then a summary of two observational models where these quantities
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serve as the initial conditions will follow. In addition, since the resolution of current observa-

tions is not sufficient to practically implement the method, some comments will be made on

the status and challenges of obtaining the required observational quantities. The observational

quantities considered here are those required as the input to spherical symmetric models i.e.:

redshift, redshift-drift, distance measures and number counts. In [36], more general models are

considered, which can be referred to for further details.

2.3.1 Observable quantities

Following [36], observational quantities, or direct observations, are observations on the PNC

which do not require the assumption of a specific cosmological model for interpretation as

cosmological data. Interpretation of observations on cosmological scales is practically a very

ambitious task and therefore, quantities considered to be direct observations follow this defini-

tion under idealised circumstances. For instance, using number counts from discrete sources are

considered to be a direct observation even though current developments make use of assumed

models to develop the understanding of number density through luminosity functions. It is the

eventual goal that the understanding of number densities will be sufficient to interpret number

counts without assumptions dictating a specific cosmology (see [52]). From a mathematical

point of view, direct observations can be used as initial conditions on the current PNC to

calculate a reversed initial value problem to determine the historical evolution of the Universe.

Observational models, attempt to reconstruct the geometry of the Universe using only direct

observations. Parameterized models, on the other hand, makes use of observations in the context

of an assumed model. For instance, assuming a RW geometry, the redshift-magnitude dimming

represents a cosmological constant. Observations that require such heuristic interpretation,

usually within the framework of an assumed model, are referred to as indirect observations

because under different assumptions, their interpretation could have been different. Although

it might be considered unlikely that certain observations can be the result of anything other

than their assumed interpretations, a level of circularity is unavoidable because assumptions

are not independent of conclusions. From a theoretical point of view indirect observations can

be used as constraints to validate the physical consistency of a particular cosmological model.

Geometric optics

The geometry of null geodesics in curved spacetime is an essential aspect when interpreting

observations. This follows from the geometric optics approximation which states that obser-

vations received by electromagnetic radiation can be represented by a solution of Maxwell’s

equations in a charge and current free region [39, 28, 35]. Accordingly, the paths of photons

are represented as null geodesics in curved spacetime. This is a well accepted principle in rela-

tivity, however, the point made here is that the fact that photons travel on null geodesics, can

be derived from the properties of radiation (Maxwell’s equations) without assuming a specific

theory of gravity. As a consequence, the properties of observations derived from the geometric

optics approximation are independent of a theory of gravity.

Following the geometric optics approximation, the ray 4-vector (kµ = dxµ/dυ), tangent to

photon paths, satisfies equation (2.8) and is therefore an affinely parameterized null geodesic.

The affine parameter on a null geodesic is not a directly observable quantity but plays an
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important role in interpreting both distance and time in curved spacetime. Since any two

affine parameters are linearly related, the affine parameter can be scaled to investigate different

physical properties. Moreover, the fundamental 4-velocity (ua) can be combined with the ray

4-vector to represent the wave frequency (−uaka = ν). This combined with the affine parameter

can also be used to represent small intervals in space and time

|δt| = |δl| = −(uaka)dυ, (2.53)

which can be used to evaluate differential radial distances, times, volumes etc. In the devel-

opments in Chapter 3, the affine parameter will be used as a radial coordinate to extend the

Bondi-Sachs model beyond the AH.

Redshift

The redshift or blueshift of a wave is the tendency of wavelengths to appear longer or shorter,

as a result of the movement or environment of a radiating source relative to an observer.

In astronomical observations, the shift of wavelengths is observed as a shift of absorption lines

compared to those detected in laboratory experiments 4. The redshift (z) in terms of wavelength

(λ) is defined as (e.g. see [72])

z :=
λo − λe
λe

⇒ z + 1 =
λo
λe

(2.54)

where λe is the wavelength measured at the emitter and λo the wavelength at the observer.

Therefore, essentially a comparison of the emitted wavelength to the wavelength measured by

an observer. In terms of the inverse of the wavelength (λ = c/ν), the redshift can also be

expressed as the fractional shift in the frequencies

z + 1 =
νe
νo

=
δto
δte

, (2.55)

which also reveals the redshift as a time dilation effect when incorporating (2.53). These

definitions do not impose any cosmological ideas on the detection of shifting effects, they are

derived on the basis that physical consistency is expected between well established laboratory

results and astrophysical observations.

Incorporating our understanding of cosmology, the observed redshift is the combined effect

of three known mechanisms for the shifting wavelengths: the local Doppler effect (zD) of the

specific movement of an object, the shifting of wavelengths due to gravitational effects (zG) and

the shifting due to the expansion of the Universe. The later is known as the cosmological redshift

(zC) due the fact that the expansion of the Universe causes a lengthening of wavelengths, which

is towards the red spectrum for visible radiation. The combined effect is a multiplication of the

respective redshift terms (see [35] p. 158)

(1 + ztot) = (1 + zC)(1 + zeD)(1 + zeG)(1 + zoD)(1 + zoG). (2.56)

4Redshifts are also measured using photometric techniques but these rely on understanding of the charac-
teristics of specific objects. Although these techniques are more practical for large-scale surveys, measuring the
shift in emission lines are more reliable [14].
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It is expected that local effects at the emitter will be cancelled out by averaging and the ob-

server Doppler effect can be compensated for by taking the CMB anisotropy into consideration.

Effectively, the observed redshift then becomes a measure of the expansion of the Universe.

Using the geometric optics approximation and observational coordinates (see Section 2.3.3),

the product of the fundamental 4-velocity (ua) and ray 4-vector (ka), uaka can be adjusted

to correspond to the wave frequency by rescaling the affine parameter (−uaka = ν, see [35]),

which applied to (2.55) gives

1 + z =
(uak

a)e
(ubkb)o

(2.57)

as the cosmological redshift. When using coordinates aligned with the PNC, such as observer

coordinates, (ubk
b)o = 1, which the redshift is a direct measurement of the zeroth component

of the emitter 4-velocity, i.e. [36]

1 + z = (u0)e. (2.58)

This relation provides an initial value of the velocity on the observer PNC, which will be used

in the current developments to solve a reversed CIVP.

Redshift drift

The redshift drift (ż) or in the context of (2.55), the time drift, is the rate of change of z over

time. Measuring the redshift drift is one of the the design objectives of the CODEX spectrograph

planned for the European Extremely Large Telescope (E-ELT) [75]. For this, redshift-distance

relations will be measured over a number of years to detect variations in redshift with time.

Another approach is to make use of cosmic chronometers where similar sources (e.g. massive

elliptic red galaxies) at different redshifts are compared to indicate how the expansion of the

Universe has progressed through different epochs. A recent study on cosmic chronometers is

presented in [70] under the assumption of a homogeneous universe.

In [79, 102, 67, 24], the redshift-drift was investigated as a mechanism for validation of

inhomogeneous models. It was pointed out that for certain classes of models, the sign of the

redshift drift will be positive up to certain redshifts while for the ΛCDM model, it is expected

to be negative. Since initial measurements of ż will probably not be a detailed map but might

indicate the sign of the value, it will be a clear indication that some models can be ruled out

as representing the Universe.

In [86, 66] the concept of redshift-drift was introduced and it was shown that for FLRW

models as

dz

dt
= (1 + z)H0 +H(z). (2.59)

In [96] the redshift-drift was proposed as a method to test the Copernican principle. This was

done using spherically symmetric observer coordinates {w, y, θ, ϕ} where w is the proper time,

y, the radial distance along the PNC and θ, ϕ the same as in spherical polar coordinates. In
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this framework the following expression was derived

dz

dw
= (1 + z)H0 −H(w0, y) +

1√
3
σ(w0, y) (2.60)

where w0 is the time at the observer and σ(w0, y) the shear of image distortion. These coordi-

nates will be discussed in Section 2.3.3.

From the above relations, it is apparent that ż is related to the Hubble rate (H). H and

z is also closely related to the affine parameter υ, it is therefore also evident that ż should be

related to υ. In [35], this relation is pointed out at the observer positions as

dz

dυ

∣∣∣
υ=0

= Hobs, (2.61)

using null cone based coordinates, and in [82], it was derived for the EdS model that

dυ

dz
=

1

H0(1 + z)7/2
. (2.62)

Determining dz/dυ or dυ/dz is however fundamentally restricted without the assumption of a

theory of gravity as will be discussed in Section 2.3.3, Theorem 5.

A more general relation between υ and ż will be a significant advantage for the affine CIVP

model presented in Chapter 3 but will be investigated in future research. In Chapter 3, the

redshift-drift will be used as a direct observation of the cosmological constant.

Distance

The distance between a source and observer on cosmological scales is a particularly difficult

measure since it requires knowledge of the type of source as it was in the past and also the

path that light has travelled from the source to the observer in curved spacetime. In order to

relate distant objects in the younger Universe to similar nearby objects in the older Universe,

the standardisation of intrinsic properties of astrophysical objects through their brightness and

size provides standard candles and rulers.

Measuring radiative flux of a discrete object and considering the geometric optics approxi-

mation, two measures of distance can independently be obtained from direct observations. Both

these measurements, however, required knowledge of the intrinsic properties of the object being

observed.

The luminosity distance (dL) is defined as

dL :=

√
L

4πF
(2.63)

where L is the absolute luminosity and F the measured radiative flux. In terms of the distance

modulus (µ) it can be written as

µ := m−M = 5(log10(dL)− 1), dL = 10(µ/5+1) [parsec] (2.64)

with m and M the apparent and absolute magnitudes. A more general formula is given in
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[56]. The benefit of working with magnitudes is that the dL can be obtained from single source

observations such as type Ia supernovae.

The definition of the area distance or angular diameter distance (dD) is

(dD)2 :=
dS

dΩ
(2.65)

with dS the intrinsic (actual) surface area of the object and dΩ the solid angle it subtends at the

observer (see Figure 2.4). Observations of dD are based on complex sources such as galaxies.

This is in general more difficult to interpret than single sources, however, the acoustic peaks on

the CMB can be taken as very accurate dD measures on the last scattering surface. It is common

for dD to appear directly in cosmological models as a metric coefficient or coordinate. dD is

however not a monotonic increasing distance when the PNC refocusses (see Section 2.2.3), which

is the motivation in Chapter 3 for adapting the Bondi-Sachs CIVP to have an affine parameter

as the radial coordinate instead of the diameter distance.

A useful property of these two measures is that they can be measured independently but

also through geometric optics relations, dL can be expressed as a redshift product of dD. This

property is known as the reciprocity theorem (see [41, 39])

dL = (1 + z)2dD. (2.66)

dD can thereby be determined from magnitudes using (2.64) and (2.66). Independent measures

of dL and dD are important since (2.66) is model independent and can be used to verify the

validity of proposed models. For instance, by comparing SNIa redshift observations of dL and

dD with calculations using (2.66), the axion-photon mixing effect was discarded as an alternative

explanation to cosmic acceleration [8].

Density distribution

The classical test to determine the mass distribution in the Universe is to count the number of

discrete sources emitting radiation at their redshifts. Such observations have been in operation

since the 1930s. However, they are still the most difficult to interpret as model independent

measures in cosmology. Nevertheless, the principle behind number counts is relatively simple

and comes down to counting the number of galaxies in a given volume and then through the

understanding of how these sources contribute to the density, the density distribution of a region

can be determined.

A model independent formula for cosmological number counts was derived in [39]. With

reference to Figure 2.4, the number of galaxies in a proper volume dV , formed by a differential

displacement δl of a surface dS is counted. dS is connected to the observer (O) by null geodesics

intersecting at O and subtended by the solid angle dΩ0. The proper number density n is then

defined as

n :=
dN

dV
⇒ dN = n δldS. (2.67)
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With δl = (uaka)dυ from (2.53), where the sign is changed to represent the PNC, (2.67) becomes

dN = (dD)2dΩ0[n(−kaua)]Adυ. (2.68)

with ua the 4-velocity, ka the tangent vector along the null geodesics and υ the affine parameter

distance along null geodesics. This is in terms of the number counts and the proper volume at

the emitter (marked as A in Figure 2.4). In terms of the observer rest frame at the vertex O,

kaua = 1. Substituting this into (2.57), (2.68) can be written as

dN = (dD)2dΩ0 n (1 + z) dυ. (2.69)

dΩdD odS=
2

dΩo

dD

Observer world line

υ+dυ

υ
dl=-k u dυ

a
a

u a

k a

O

A

Figure 2.4: Cosmological number counts N .

Equation (2.69) is set in idealised circumstances where all galaxies are being counted. This is

not practically possible and there has to be some probabilistic provision for galaxies not counted.

To incorporate counting uncertainties, a completeness parameter J is included in equation

(2.69), which has to make provision for selection problems without the a priori assumption of

a specific cosmology

dN = Jn(dD)2dΩ0(1 + z)dυ. (2.70)

Having number counts on different scales, it then has to be derived how this represents the

mass-energy density of the Universe. To this effect, a mass per galaxy function is introduced

(Mg). However, this is not a direct conversion since galaxies are complex objects and their age,

environment, interaction and morphology affects how different galaxies in different epochs can

be compared and contribute to density. In addition, the presence of observable objects also has

to be used to extrapolate the presence of dark matter. A simple conversion follows as

ρ(υ) = n(υ)Mg (2.71)
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although it is recognised that the process of obtainingMg is practically very challenging espe-

cially without making cosmological assumptions.

In practice, N will be measured in terms of z since υ is not directly observable. This requires

knowledge of a relation between υ and z, which cannot be determined from geometric optics

only; a theory of gravity has to be assumed. This is in fact a crucial point which formally limits

the applicability of cosmography from ideal observations [36]. With a one-to-one (up to some

point) relation between υ and z, (2.70) can then be written as

ρ(z) =
Mg

(1 + z)J(dD)2dΩ0

(
dN

dz

dz

dυ

)
. (2.72)

Studies towards the understanding of these aspects are currently in process but still under

the assumption of specific cosmological models (see [82, 1, 52]). Recent developments in [52]

using the FORS survey on high redshifts (0.5 ≤ z ≤ 5.0 for blue bands and 0.75 ≤ z ≤ 3.0

for the red bands) are the latest advances towards the cosmological interpretation of galaxy

number counts as a measure of density. Although these are still based on the assumption of

a FLRW model, it is envisaged that further work will be done where radial homogeneity will

relaxed in the near future.

2.3.2 The LTB observer approach

The model

This approach is based on the LTB model transformed to align with the PNC and written in

terms of observable quantities. The formalism described in this section is based on a series of

papers where this method was developed up to the point where numerical algorithms were used

for calculations using input data that represents realistic observations. In [71], the model was

initially presented and by proving two theorems (see Theorems 2 and 3), it was shown that

source evolution and radial inhomogeneities are intrinsically ambiguous. This is a fundamental

observational limitation, which is employed by others to mimic dark energy using LTB models

(e.g. [23]). In [51, 63] a numerical code was developed to solve general cases, with Λ = 0 and

the behaviour of these calculations were tested using realistic observational data. An important

relation between the active gravitational mass M , diameter distance R and the cosmological

constant Λ was derived in [49]. The highlight of these developments will now follow in this

section.

For direct reference, the LTB metric, Friedman and density equations are rewritten here,

using geometric units

ds2 = −dt2 +
[R′(t, r)]2

1 + 2E(r)
dr2 +R2(t, r){dθ2 + sin2 θdϕ2}, (2.73)

Ṙ(t, r) = ±

√
2M(r)

R(t, r)
+ 2E(r) +

ΛR2(t, r)

3
(2.74)

4πρ(t, r) =
M ′(r)

R2(t, r)R′(t, r)
. (2.75)
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As pointed out in Section 2.2.2, the LTB model is fully determined by the three arbitrary

functions: M(r), E(r) and tB(r). However, only two of them have to be solved while the other

can be fixed by a gauge choice.

Following an observational approach, these will have to be determined from observations

on the local PNC. However, CS coordinates are not causally aligned with observations and

a transformation is required to project the metric onto the PNC. This alignment is done by

considering a radial null geodesic in spherical symmetry (ds2 = 0 = dθ2 = dϕ2), which when

introduced into (2.73) gives

dt̂ = − R̂′√
1 + 2E

dr. (2.76)

In this equation, the ‘ˆ’ refers to expressions where t is written in terms of r i.e. t̂ = t(r).

The righthand side of the equation is completely in terms of r and can be integrated, if t(r) is

known. This is facilitated by rescaling r such that dr̂/dt = 1 and taking the current time at

position r = 0 as t0. Then

R̂′√
1 + 2E

= 1 and t̂(r) = t0 − r (2.77)

for an incoming null geodesic. The important aspect, here, is that on the null cone, all quantities

required for the LTB model can be written in terms of r alone. The Friedman equation and

density equations on the PNC are then written as 5:

̂̇R =

√
2M

R̂
+ 2E +

ΛR̂2

3
(2.78)

4πρ̂R̂2 =
M ′√

1 + 2E
(2.79)

Observable quantities

Redshift distance observations can directly be related to the model since the areal radius (R̂)

on the null cone, is the angular diameter distance (dD) and using equations (2.63) and (2.66),

related to the luminosity distance (dL), magnitudes and luminosities e.g.:

R̂(z) =
dL

(1 + z)2
. (2.80)

For the density distribution from number counts, a volume element is considered for a small

radial increment

d̂V 3 = 4πR̂2 R̂′√
1 + 2E

dr. (2.81)

The differential mass in terms of the mean mass per source (µ̂), the number density of sources

5The plus sign is taken for the square root since it represents the PNC.
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(n(z)) and a small increment in redshift (δz) is

4πµ̂nδz = ρ̂d̂V 3. (2.82)

Combining these with equation (2.77) then gives an equation for the mass in a volume element

in terms of z as

R̂2ρ̂ = µ̂n
dz

dr
. (2.83)

A relation derived in [49] provides an expression for the cosmological constant Λ, with some

restrictions, in terms of the values of the diameter distance and the active gravitational mass

at the AH as

ΛR̂3
m − 3R̂m + 6Mm = 0, (2.84)

where the m subscript refers to the values corresponding to the maximum value of R̂. This

is particularly interesting since having values for R̂ and M , Λ can be determined without

additional observations. It also provides a method for testing current estimations of Λ, provided

that precise enough observations are available to determine R and M at the AH.

Observational model

Since r is not a measurable quantity, in order to relate (2.79) to observations, the redshift (z) is

introduced as a radial coordinate. Writing the Friedman equation (2.78) (with Λ = 0) in terms

of z and some rearrangement an equation relating r and z is obtained as

dR̂

dz

d2z

dr2
(1 + z) +

[
d2R̂

dz2
(1 + z) +

dR̂

dz

](
dz

dr

)2

= −4πρ̂R̂(1 + z) . (2.85)

This equation is the Raychaudhury equation on the null cone in terms of z. It is important to

note that this equations is only in terms of radial derivatives compared to (2.33), which is in

terms of time derivatives. This is an example of the duality of space and time on the PNC. By

further manipulation and incorporating the observable quantities, the following set of ODEs,

which can be solved numerically is obtained:

d2r

dz2
=

{
1

1 + z
+
d2R̂/dz2 + 4πµ̂n (dr/dz)/R̂

dR̂/dz

}
dr

dz
(2.86)

√
1 + 2E =

dR̂/dz

2 (dr/dz)
+

(1− 2M/R̂) (dr/dz)

2dR̂/dz
(2.87)

dM

dz
= 4πµ̂n

√
1 + 2E. (2.88)

From these equations, r(z), M(z) and E(z) can be calculated and then using the exact solutions

of the LTB model, tB(z). It should be noted that in order to determine Λ from (2.84), M(z)

has to be known, but, M is implicitly related to Λ in the other relations. Therefore, (2.84),

will have to make use of an iterative scheme when solving the observational model. Having the

values for r(z), M(z), E(z) and Λ, the state of the Universe at any time can be determined,
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regardless if it is within the observer PNC, i.e. causally connected to the observer.

In their numerical calculations, [51] and [63] made use of binning techniques for discrete data,

representing realistic observations, as input values. Also, provision had to be made for R̂ being

zero at the origin and dR̂/dz being zero at the AH, which cause singularities in the observable

model’s equations. These were treated using series solutions around these regions. The model

presented in Chapter 3 has similar limitations around these regions and series solutions also

provides a method for integrating through the singularities.

Fundamental limitations

In [71] a formal investigation into the ability to distinguish inhomogeneities from source evolu-

tion in isotropic observations was done. The formulation that will be used here is taken from

[38] with the notation adapted to the current context. This relates number counts (n(z)) and

the apparent luminosity (l(z)) with their evolution functions, the mass per source (M(z)) and

the absolute bolometric luminosity (L(z)). In [71], it was formally proved that 6:

Theorem 2 (Isotropic Observations Theorem 1) Any given isotropic set of

source observations l(z) and n(z), together with any given source luminosity and mass

evolution functions L(z) and M(z), can be fitted by a spherically symmetric dust cos-

mology – a LTB model – in which observations are spherically symmetric about us

because we are located near the central world line.

The converse followed as:

Theorem 3 (Isotropic Observations Theorem 2) Given any spherically sym-

metric geometry and any spherically symmetric set of observations, we can find evolu-

tion functions that will make the model compatible with the observations. This applies

in particular if we want to fit observations to a FLRW model.

These theorems place fundamental limits on the ability to interpret isotropic observations. Ef-

fectively, any observational scenario can be interpreted as either inhomogeneous or homogeneous

with some source evolution function. Since source evolution requires the prior assumption of

a cosmological model, using isotropic observations to distinguish between homogeneous and

inhomogeneous models is fundamentally obscured.

Even though these results were derived without using a cosmological constant, they provide

the formal foundation for investigations where the interpretation of redshift-dimming is taken

to be inhomogeneities instead of dark energy.

2.3.3 The observer coordinate approach

The model

Instead of transforming spherical coordinates to align with observations, a coordinate system

can be chosen to be aligned with the causal structure connected to the observer. Effectively,

6This theorem is related to an earlier result in [61], which in turn cited [59] as the primary reference.
The emphasis in the formulation, here, is on source evolution functions, while in [61], it was shown that the
assumption of isotropic observations imposes isotropy on the geometry of the EFEs.
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these coordinates trace out the observer’s PNC and are naturally aligned with the propagation

of EMR. This is an idea proposed by Temple in 1938 [94] but, as a cosmological formalism,

developments only started in the 1980s with the Observational Cosmology (OC) programme

of Ellis and others and separate work of Dautcourt [31, 30]. The OC programme published

a series of papers and is still active through the work of Stoeger and others [36, 91, 89, 92,

93, 90, 60, 88, 3, 4, 5, 6, 7]. In these, the fluid-ray tetrad approach was developed, which is

particularly favourable for exact solutions of the model 7. Separate developments towards a

numerical solution, using a coordinate approach, were done in [50] where many of the results

of the tetrad approach were reproduced 8. Parallel to the theoretical work, research is also in

progress where galaxy survey data is prepared for observable quantities closely related to the

requirements of these model [82, 1, 52]. The discussion in this section is mostly based on [7],

which is a detailed summary of the latest developments of this approach. Some of the notation

was adapted to be in line with other sections in this text.

A general null cone metric in spherical symmetry, with reference to Figure 2.5, is written as

ds2 = −A2(w, y)dw2 + 2A(w, y)B(w, y)dwdy + C2(w, y){dθ2 + sin2 θdϕ2}. (2.89)

The coordinates xµ = {w, y, θ, ϕ} are defined as (see [7]): w, the proper time coordinate on

an observer’s world line (C), which is a time-like geodesic. Hypersurfaces with w = constant

are PNCs and the PNC of an observer at the current time is indicated as w0. y represents a

general radial parameter increasing along a PNC with y = 0 the position at the cone vertex. θ

and ϕ are the latitude and longitude angles, respectively, and remain constant on light rays.

Figure 2.5: Observational coordinates (based on Figure 1 in [36])

Some constraints are required to make the model more specific and also to simplify the

solution. The metric as defined in equation (2.89) is that of a general PNC and in order to

restrict the model to the PNC of a local observer, w can be scaled such that C represents the

observer’s world line, which is done by specifying A(w0, 0) = 1. The properties of the 4-velocity

7The fluid-ray tetrad approach is discussed in more detail on page 40.
8A very useful comparison of differences in notation of the OC programme and related research is given in

[50].
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in this setting are

uµ =
1

A
δµw, uµ = (−A,B, 0, 0), uaua = −1 (2.90)

and that of the null ray 4-vector [50]

kµ = δwµ , kµ =
dxµ

dυ
=

(
0,

1

AB
, 0, 0

)
, kaka = 0. (2.91)

For later reference, it is worth noting that if the affine parameter is used as radial coordinate

(y = υ), then, AB = 1. There are some freedom in the selection of y, as required, it can be

implemented as a specific measure of distance e.g. the redshift (z), an affine parameter (υ), the

diameter distance (dD) or alternatively as a coordinate comoving with the fluid flow (uµ∂µy = 0)

[36]. It is usually chosen as an observable distance, such as z or dD, to determine the initial

PNC and then a comoving coordinate to determine spacetime off the PNC. The relationship

between the covariant and contravariant forms of ua and the normalisation condition (2.14)

require as an integration condition that [7]

A′ = −Ḃ, (2.92)

which also follows from the geodesic equations for ua [50]. Additional freedom in the coordinates

and the choice of y being comoving allow for setting 9

A0(y) = B0(y). (2.93)

Furthermore, to ensure that the behaviour of the model is regular around the cone vertex, the

following central conditions are specified for the model:

as y → 0 : A(w, y)→ A(w, 0) 6= 0, (2.94)

B(w, y)→ B(w, 0) 6= 0, (2.95)

C(w, y)→ B(w, 0) y = 0, (2.96)

C ′(w, y)→ B(w, 0). (2.97)

As with other cosmological models the energy-matter content used in the model is taken

as dust. The objective is then to determine the metric coefficients, which is done by deriving

the values on the current PNC of A0, B0, and C0 from observations. These are then used as

initial values to be evolved off the PNC to obtain A(w, y), B(w, y) and C(w, y) in the region

causally connected to the observer. The model is therefore only concerned with the region

fundamentally observable to the observer, i.e. the observable universe.

9The quantities in this discussion on the current PNC will be indicated with a subscript 0, i.e.: A(w0, y) :=
A0(y).
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Observable quantities

In comoving coordinates, the g00 component of the metric (2.89) is directly related to the

redshift (z) using (2.58) and (2.90) as

1 + z =
dw

dτ
= u0 =

1

A0(y)
with u0|y=0 = 1 (2.98)

when w is scaled such that w0 is the age of the Universe as observed at the current epoch.

Through redshift magnitude relations, using (2.63), the luminosity distance (dL) can be

expressed as a function of z and then using the reciprocity theorem (see [39]), the diameter

distance is

C0(z) = dD = dL(1 + z)2. (2.99)

All radial derivatives of C0(z) on the initial null cone are also known through this relation.

Galaxy number counts can be used as a measure of mass-energy distribution along the radial

coordinate. The form of equation (2.72) in these coordinates for the number of galaxies counted

up to a distance z the mass-energy density (notated here as µ) is

µ0(y) =
Mg

(1 + z)J(C0)2dΩ0A0B0

(
dN

dz

dz

dy

)
=

Mg

J(C0)2dΩ0B0

(
dN

dz

dz

dy

)
(2.100)

Analogous to M(r) in the LTB model, the quantity M(y), which is related to the total mass

measured by a central observer up to a distance y, is introduced as

M(y) =
1

8π

∫ y

0

mN ′(y∗)F (y∗)dy∗ with F (y) =

(
Ċ

A
+
C ′

B

)
. (2.101)

When C is known, an expression of M(y) from where C reaches a maximum can be used in

6Mmax + µΛC
3
max − 3Cmax = 0 (2.102)

to determine µΛ, the energy due to Λ. This is the observer coordinate version of equation (2.84)

in the LTB model and was independently derived in [4] and [50].

Since observations are measured against z, the relation between y and z is a key property

in the model. This can be determined from the Raychaudhuri equation (which will follow later

in this section (2.109)) as

dy

dz
=

1

A0
(1 + z)2 dr0

dz

{
1− 1

2

∫ z

0

(1 + z∗)r0(z∗)M0(z∗)dz∗
}−1

(2.103)

or alternatively from the redshift drift (ż(z)) using

ż(w0, y) = (1 + z)

{
Ȧ0(0)

A0(0)
− Ȧ0(y)

A0(y)

}
. (2.104)

The redshift drift also provides an alternative method to determine µ, which is an advantageous
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property of this model since some of the uncertainties of number counts can be avoided (see

[6, 7]).

Formalism and model

Initially in [36], the Newman-Penrose (NP) formalism was used to setup the model on the

current PNC. Since the values on the initial PNC originate from null geodesics, the null tetrad

of the NP formalism was useful for determining the metric coefficients originating from EMR

data. The NP formalism is not well adapted to handle matter flow, required to integrate off the

PNC, and it was proposed to use the Bondi-Sachs CIVP for matter evolution. The Bondi-Sachs

CIVP was, however, not implemented and in subsequent work the fluid-ray (FR) formalism was

developed, which was suitable for both determining the geometry of the current PNC and the

solution off the PNC [91]. The FR formalism is similar to the NP formalism but where the NP

tetrad only consists of null vectors and conjugates of orthogonal surfaces, the FR formalism

makes use of the fluid 4-velocity, a time-like vector, in the place of one of the null vectors which

makes it suitable to model both radiation and matter flow.

The FR tetrad formalism produces two matter equations

µ̇m = −2µm

(
Ḃ

2B
+
Ċ

C

)
, (2.105)

ω̇ = −3
Ċ

C

(
ω +

µΛ

6

)
, (2.106)

with µm the relativistic mass-energy of dust with dark matter and ω defined as

ω := − 1

2C2
+

Ċ

AC

C ′

BC
+

1

2

(
C ′

BC

)2

. (2.107)

Also, the following equations with (2.92) for radial derivatives

A′ = −Ḃ, (2.108)

C ′′

C
=
C ′

C

{
A′

A
+
B′

B

}
− 1

2
B2µm, (2.109)

[(
ω0(y) +

µΛ

6

)
C 3

0

]′
= −1

2
µm0B0C

2
0

(
Ċ

A
+
C ′

B

)
, (2.110)

Ċ ′

C
=
Ḃ

B

C ′

C
−
(
ω +

µΛ

2

)
AB, (2.111)

and two separate equations for the time derivatives

C̈

C
=
Ċ

C

Ȧ

A
+
(
ω +

µΛ

2

)
A2, (2.112)

B̈

B
=
Ḃ

B

Ȧ

A
− 2ωA2 − 1

2
µmA

2. (2.113)

A detailed description of the solution is presented in [6, 7] and only some cursory remarks

will be made here. Firstly, as already mentioned, an expression to relate z and y is obtained
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from (2.109), the Raychaudhury equation. In this case the Raychaudhury plays a similar role

as it did with the LTB approach. Remembering that C0 is known and that it was chosen that

A0 = B0, the only unknowns on the initial PNC are Ċ0 and either A0 or B0. By solving (2.111)

for ω0, an expression is obtained for Ċ0 with µΛ still unknown. This result can be used to find

an expression for M(y) also with µΛ unknown and this can then be used to find M at zmax.

Having M(zmax), (2.102) can be used to find µΛ, which in turn can be used to find Ċ.

From these equations, together with the observable quantities and coordinate conditions,

exact solutions can be found for the metric coefficients on the current PNC. Since the solution is

exact, time derivatives can be taken of the initial solutions and these can be repeated to obtain

higher derivatives. Having as multiple time derivatives, the evolution off the current PNC can

be determined using Taylor series expansions. It was demonstrated in [7] that the equations

are stable under observational uncertainties and suitable for continuous initial functions derived

from observational data.

In [7], a comparison between the OC and the LTB observer approaches was presented and

it was pointed out that the PNC based coordinates of the OC approach is in principle more

natural since it aligns with the PNC of the observer. Also, the OC approach do not require

transformations to observations to the PNC, which introduce difficulties such as the singularity

at the maximum diameter distance.

Fundamental limitations

Observer coordinates is a particularly useful framework to investigate the theoretical limitations

of deducing information from observations. The question of decidability in cosmology was

investigated in [36] and it was concluded that we have to assume a theory of gravity in order

to determine the geometry of the observable universe. The discussion here is based on that in

[35] but simplified for spherical symmetry. It is then formalised as:

Theorem 4 (Limits of cosmography) Even with perfect observations, cosmogra-

phy (no gravitational field equations) cannot determine the spacetime geometry on our

PNC.

The reason for this is that the necessary data for the cosmography problem cannot fully be

determined from observations. In the case of spherical symmetry, the limitation is that dυ/dz

and ρ cannot be separated without assuming a theory of gravity. This has been mentioned in

discussing redshift-drift and number counts where dυ/dz is required to interpret these quantities.

Having established the limits of cosmography, it was further investigated what can be attained

assuming a theory of gravity. Assuming General Relativity it then follows that:

Theorem 5 (EFEs determine the PNC) Given the data set {uµ, dυ/dz ρ} –

based on idealised observations of luminous sources and the assumptions on dark

matter and dark energy – (Section 1.1.2 (i), (ii) and (iii)) the EFEs on the PNC

(i.e. those equations without derivatives transverse to C−(w0)), uniquely determine

the matter distribution (ρm, u
µ) and geometry (gµν) of the observable part of C−(w0).

Together these two theorems form the foundation of observational models: we cannot determine

the geometry of spacetime from observations alone but assuming General Relativity, it can be
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determined uniquely.

2.4 Conclusion

The concepts of parameterized and observational models were described in this chapter by

providing summaries of the theoretical aspects required for the developments in this thesis.

These included, the ΛCDM and LTB cosmologies, representative parameterized models, and

the LTB observer and observer coordinate approaches, representative of observational models.

With this as background, the requirements of a numerical observational model, which is the

core development of this thesis, can now be summarised as:

i. The model should be based on direct observations. This implies that coordinates should

be transformed or aligned with the PNC or coordinates should be used that follow this

alignment naturally.

ii. The model should solve two subproblems. Firstly to determine initial values from direct

observations and secondly to evolve the EFEs from the initial values off the current PNC

into the past.

iii. The model should be based on a general geometry (at least more than the FRLW models)

and initial values from observable quantities should be the restriction of the geometry.

iv. The model should include the aspects considered relevant to the ΛCDM model. In partic-

ular, even though not directly observable, the cosmological constant (Λ) and dark matter

should be included in the model.

v. The numerical scheme for solving the model should be stable and convergent.

In the remainder of this thesis, an observable universe model will be developed based on the

material described in this chapter. With reference to the list of requirements this will proceed

by: (i) adapting Bondi-Sachs null coordinates for cosmology; (ii) setting up this model as a

reverse CIVP thereby facilitating calculations into the interior of the PNC initiated from values

on an initial PNC, which were derived from observable quantities; (iii) the model is effectively

an LTB model on null coordinates and therefore more general than the FLRW geometry; and

(iv) the model is derived with Λ and also incorporating the assumption regarding Λ and dark

matter in Section 1.1. In Chapter 4, a numerical scheme is developed for solving this model

and Chapter 5 addresses point (v) by testing the stability and convergence of the model.

Other topics described in this chapter that are of general interest to the developments that

follow are:

– According to Theorems 4 and 5, fundamentally, cosmography alone cannot determine the

spacetime geometry of the observable universe, but assuming General Relativity, it can

be determined uniquely.

– Further, of interest to the application of the code in Chapter 5, according to Theorems

2 and 3, any isotropic observational scenario can be interpreted as either inhomogeneous

or homogeneous with some source evolution function. Since source evolution requires
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the prior assumption of a cosmological model, using isotropic observations to distinguish

between homogeneous and inhomogeneous models is fundamentally obscured.

– A complication that will arise in the developments, follows from Sections 2.2.3 and 2.3.1

where it was shown that the diameter distance (dD), even though it is directly observable,

is not unique measure of distance beyond the AH. On the other hand, an affine parameter

on a null geodesic is uniquely defined (see Theorem 1) up to significantly larger distances,

providing a useful radial coordinate but it is not directly observable.

These three topics will be recurring themes in the rest of the thesis.
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Chapter 3

Characteristic formalism

The characteristic formalism is the formulation of the Einstein field equations (EFEs) as a

characteristic initial value problem (CIVP). The characteristics in relativity are null geodesics,

which form the frame of reference for this formalism. The topic of this chapter is the application

of the characteristic formalism to study problems in observational cosmology. The basis of this

development is recognising that the null geodesic frame of reference of the CIVP corresponds to

the causally connected region of a cosmological observer: i.e. when considering the cosmological

history, the past null cone (PNC). Initially, the CIVP as derived by Bondi and Sachs, which

uses the diameter distance as radial coordinate, is adapted for cosmology. This implementation

is, however, limited to the region where the diameter distance is a unique coordinate i.e. prior

to the apparent horizon (AH). A new model more suitable for modelling the cosmological PNC

is introduced in this chapter. The development of this model is the core of the work of this

thesis. The models presented in this chapter are spherically symmetric and thereby avoid some

complexities, such as the development and presence of caustics, associated with more general

CIVP models. The majority of the work presented in this chapter was published in [97, 98].

3.1 Bondi-Sachs CIVP

3.1.1 Mathematical model

The essence of the characteristic formalism in NR is a frame of reference based on outgoing

null cones that evolve from values on an initial null cone. The idea is conceptualised in Figure

3.1. G is a timelike geodesic, and u is the proper time on G. (In practice, in NR simulations

the inner boundary of the null cone is usually a time-like worldtube rather than a geodesic, see

[101] pp. 13–15, but the problem can be formulated with a geodesic). The gauge freedom of

u is limited to its scaling as a specific time parameter. Null geodesics emanating from G have

constant (u, θ, ϕ), and near G the angular coordinates θ and ϕ have the same meaning as in

spherical polar coordinates. The coordinate r is the diameter, or area, distance defined by the

condition that the surface area of a shell of constant r is 4πr2. 1

1The use of notation here of u and r is different from that in Chapter 2.
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Figure 3.1: Null cone coordinates of the CIVP

A spherically symmetric null cone metric based on the Bondi-Sachs metric is: 2

ds2 = −e2β(u,r)

(
1 +

W (u, r)

r

)
du2 − 2e2β(u,r)dudr + r2{dθ2 + sin2 θdϕ2}. (3.1)

This is a generalization of the well-known Eddington-Finkelstein form of the exterior Schwarzschild

metric, obtained by setting β = 0,W = −2M where M is the mass of the source. The coordi-

nate system is defined such that β and W vanish at the vertex of each null cone, i.e. at r = 0

equation (3.1) reduces to a Minkowskian metric.

Substituting (3.1) into the EFEs, using the form Rab = κ(Tab− 1
2Tgab), with the stress-tensor

for a dust-like fluid (Tab = ρvavb and T = −ρ)3, leads to expressions for β and W

β,r =
1

4
κrρ(v1)2 (3.2)

W,r = e2β − 1− 1

2
κe2βρr2 (3.3)

with the initial conditions inherent to the coordinate definition as β(0) = W (0) = 0. Further,

substituting the dust stress tensor and (3.1) into the conservation equation, ∇bT ab = 0, it

follows that

v1,u =

(
2v0 −

(
1 +

W

r

)
v1

)
β,r +

1

2
v1

(
W,r

r
− W

r2

)
+

((
1 +

W

r

)
− v0

v1

)
v1,r (3.4)

ρ,u =
1

v1

{
ρ

[(
1 +

W

r

)(
2v1

r
+ v1,r

)
−
(

2v0

r
+ v0,r

)
+

(
W,r

r
− W

r2

)
v1

]
+

((
1 +

W

r

)
v1 − v0

)
ρ,r − ρv1,u

}
(3.5)

An equation for v0,u is also obtained from this but making use of the normalisation condition

(equation 2.14), gabvavb = −1, a direct expression for v0 in terms of v1, β and W can be written

2The notation used here is based on that of [10] and substituting W = V − r will give the original notation
of Bondi in [16].

3In this chapter the velocity is notated as va.
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as

v0 =
1

2
v1

(
1 +

W

r

)
+

1

2
e2βv−1

1 . (3.6)

Without any cosmological considerations, having the values on the initial null cone for ρ

and v1, equations (3.2) to (3.6) forms a hierarchical system that can be solved in the order

(3.2), (3.3) and (3.6), then solving equations (3.4) and (3.5) evolves the system to the next null

cone where the process can be repeated until the domain of calculation has been covered. Since

these equations are all interdependent an iterative scheme is required for a numerical solution.

3.1.2 Cosmological considerations

While equations (3.1–3.6) are based on an outgoing family of null hypersurfaces (future null

cones), observational models are concerned with the PNC, which requires that the sign of the

dudr coefficient in the metric be negated i.e.

ds2 = −e2β

(
1 +

W

r

)
du2 + 2e2βdudr + r2dθ2 + r2 sin2 θdϕ2. (3.7)

This leads to a similar set of equations with sign changes at various places. Alternatively,

changing the order of integration, will also have the same effect, following from evaluating a

null ray (i.e. on a radial null geodesic ds = dθ = dϕ = 0 in equation 3.1) on the null cone:

− e2β

(
1 +

W

r

)
du2 − 2e2βdudr = 0 (3.8)

du 6= 0⇒ r − r1 = −1

2

∫ u2

u1

(
1 +

W

r

)
du =

1

2

∫ u1

u2

(
1 +

W

r

)
du. (3.9)

This approach will be preferred since it makes comparison with previous CIVP developments

done for astrophysical scenarios more convenient.

Furthermore, the Bondi-Sachs CIVP is restricted in the radial coordinate r which is chosen

to be the diameter distance (r = dD in Section 2.3.1). This choice of coordinate is not suitable

for high cosmological redshifts since r becomes multi-valued when the PNC refocusses at the

AH (e.g. see Figure 2.3). In terms of extending the radial distance past the AH, the uniqueness

of geodesics (refer to Theorem 1) facilitates a more suitable mechanism. In particular, an

affine parameter on a null geodesic through the PNC vertex (see [36]), leads to a system of

equations that is regular at the AH. It should be noted, however, that in an application based

on real data rather than on data from a model, the issue of transforming measured distance

data as luminosity or diameter distance to the affine parameter without assuming a model,

remains problematic. Alternatively, it has been argued in [49] that the position of the AH is

an observable property by itself and knowing this, the model can be adapted to compensate

for refocussing, possibly using a similar approach to [51] where the AH was crossed in redshift

space making use of series expansions (see Section 2.3.2). A final aspect to take note of is that

r is not comoving viz. v1 6= 0. In regards to model independent observations, in noncomoving

coordinates, z is interpreted as a recession of matter without the cosmological interpretation of

it being the expansion of the Universe. Noncomoving coordinates also preserve the choice of
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measure (e.g. z, dD or υ ), as a coordinate, made on the initial PNC in the evolution equations

as opposed to observer coordinates, where a change in the radial coordinate (y) is made when

evolving off the initial PNC (see Section 2.3.3).

As an observational cosmology problem, where the geometry is determined from direct

observations, there are two subproblems to be solved:

i. Reconstruct the geometry of the local PNC from directly observable quantities, such as

redshift-distance and galaxy number counts.

ii. Evolve the model as a reverse CIVP to determine the interior of the PNC using the values

determined in (i) as initial conditions.

Although the accumulation of cosmological data in recent years has been astounding, these are

not yet sufficiently complete for a practical implementation of the first problem, which will have

to incorporate aspects such as data reduction and the sensitivity of the model to observational

errors. These aspects are not considered in this work and only a conceptual description of the

relations between observable quantities and the required input for the model will be presented in

the next section. The second subproblem will be treated in detail in the remainder of this thesis

through the development of a numerical code for the Bondi-Sachs CIVP and a CIVP based on

an affine radial coordinate. By itself, this provides a mechanism for testing hypothesised models

by evaluating the behaviour of their PNCs under given initial values. The PNC behaviours of

different models given similar initial values are particularly interesting cases to investigate.

3.1.3 Reconstructing the metric

As initial data for the model, v1(r) and ρ(r) have to be determined from observations on

the PNC, which require measures of the radial distribution of expansion and density. These

properties were derived by Bishop and Haines [12] and is presented here in a modified form

where the redshift z and the diameter distance r0 are separated.

As a measure of expansion, redshift in terms of the luminosity distance (dL) can be deter-

mined from redshift-magnitude observations (e.g. SNIa observations). The reciprocity theorem

is used to find a relation between z and r0 (see Section 2.3.1 and the references therein) where

the zero subscript refers to value on the current PNC. Accordingly, observable quantities in

terms of z can be written in terms of r0 through

z(dL) and dL = (1 + z)2r0 ⇒ z = z(r0). (3.10)

It should be taken into account that, since r0 will become multi-valued as the PNC refocusses,

the AH will be the observational limit using the diameter distance as radial coordinate. Un-

fortunately, there is not a simple expression for z at the AH. In the special case of the EdS

model [12], the AH is at z = 1.25, but this does not apply in general. As with observational

coordinates, through (2.58), the redshift is directly related to the time component of the con-

travariant velocity:

1 + z =
du

dτ
= v0 (3.11)
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where τ is the proper time along general galactic world lines (see [36]). This can be used to

determine the covariant velocity v1 on the observer PNC as

v1(r0) = −e2βv0 = −e2β(1 + z(r0)). (3.12)

The observed number density (no) is a directly measurable function of z which can be used

as a measure of density if it can be related to the proper density ρ. It was shown in [12] that

the proper number density (np) is

np =
no

(1 + z)
e−2β . (3.13)

The proper density is then related to the proper number count:

ρ(r0) = f(np(r0)). (3.14)

For the discussion in this section it is sufficient to point out that the observed number density

(no) is related through the model variables to the proper number density, which is in turn

related to the proper density (ρ), required for the stress tensor in the EFEs. As pointed out in

Section 2.3.1, this is in fact a more complicated relation but it will not be discussed in detail

here. Therefore, also, the details of the relation f(np) will not be considered at this stage but in

principle it must take into account aspects such as dark matter and source evolution, preferably

with factors independent of an already assumed cosmological model. A more detailed discussion

of density derivation will be given in Section 3.2.3.

Solving the CIVP from observational quantities, as with the observer coordinate method,

requires that the values on the initial null cone be determined from observational quantities.

These values will then be used as the initial values for the evolution into the local PNC. The

solution on the initial null cone follows from equations (3.12) and (3.14) but they are dependent

on β which is still unknown. Using equations (3.2), (3.12) and (3.14), a differential equation for

β which is only dependent on observational quantities for the initial null cone can be set up as:

β,r0 = 2πr0f(np(r0))(−e2β(1 + z(r0)))2. (3.15)

This equation can be solved numerically with standard ODE techniques provided that f(np) is

well behaved.

3.1.4 Coordinate transformations

The relationship between CIVP coordinates and CS coordinates is important for evaluating the

model’s suitability for cosmological modelling. Since the model is effectively the LTB model on

the PNC, the most general metric it has to be transformed to is the standard LTB metric. For

the purposes of model testing, the parabolic geometry will be used. As shown in Section 2.2.2

(equation (2.42)), the metric then becomes

ds2 = −dt2 + [R,r̃(t, r̃)]
2dr̃2 +R2(t, r̃){dθ2 + sin2 θdϕ2} (3.16)
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and its coefficients have to be related to the Bondi-Sachs coefficients of (3.1)4. For simplicity,

the Bondi-Sachs metric (3.1) will be written in the form

ds2 = −hudu2 − 2hrdudr + r2{dθ2 + sin2 θdϕ2} (3.17)

and the coefficients will be rewritten in terms of W and β afterwards. In the transformations

that follow, the contravariant forms of (3.16) and (3.17) are required at places. These are

g̃ab =


−1 0 0 0

0 [R,r̃(t, r̃)]
−2 0 0

0 0 [R(t, r̃)]−2 0

0 0 0 [R(t, r̃) sin θ]−2

 (3.18)

and

gab =


0 −1/hr 0 0

−1/hr hu/h
2
r 0 0

0 0 r−2 0

0 0 0 [r sin θ]−2

 (3.19)

for (2.31) and (3.17), respectively.

For numerical calculations, (u, r) will be known from the grid definition. Therefore, the most

important aspect of the transformations is to relate the (u, r) coordinates to corresponding (t, r̃)

values. Since θ and ϕ have the same meanings in both coordinate systems, an expression for r

in terms of r̃ and t can be obtained by comparing the coefficient of {dθ2 + sin2 θdϕ} giving

R(t, r̃) = r. (3.20)

A second expression containing u, r̃ and t can be found by doing a contravariant transformation

from LTB coordinates for the g00 terms, which is equal to zero, using tensor transformation

rules. A first order partial differential equation follows

∂u

∂r̃
− [R,r̃(t, r̃)]

∂u

∂t
= 0 with u(t, 0) = t (3.21)

and, using the method of characteristics, this is written as5

dt

dr̃
= −[R,r̃(t, r̃)]. (3.22)

Depending on the complexity of the R,r̃ term, either numerical or analytic methods can be used

to solve this equation.

Expressions containing partial derivatives for the other null cone terms can be obtained

4LTB variables that have the same symbols as the null cone variables will be notated using a tilde e.g.
rLTB = r̃, v1 LTB = ṽ1, gLTB = g̃ etc.

5This also follows by calculating a null trace on the metric (3.16), i.e. setting ds = dθ = dϕ = 0.
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from covariant tensor transformations. For hr and hu these are:

hr =
∂t

∂u

∂t

∂r
− [R,r̃(t, r̃)]

2 ∂r̃

∂u

∂r̃

∂r
(3.23)

hu =

(
∂t

∂u

)2

− [R,r̃(t, r̃)]
2

(
∂r̃

∂u

)2

. (3.24)

Having values for hu and hr, the Bondi-Sachs coefficients can be obtained from:

β =
1

2
ln | hr | and W = r(huhr − 1). (3.25)

In order to write v1 in null coordinates, transformation of the comoving velocity (ṽa =

(1, 0, 0, 0) and ṽa = (−1, 0, 0, 0)) into null coordinates is required. Using vector transformation

laws, it follows that

v0 =
∂u

∂t
, v1 =

∂r

∂t
, v0 = − ∂t

∂u
and v1 = − ∂t

∂r
. (3.26)

For numerical differentiation a five point difference scheme, such as defined in [19] can be used

to determine the grid values of equations (3.23) and (3.24); v1 from (3.26) together with ρ from

(2.45) are used as the input data on the initial null cone.

The results of the transformation of the EdS model to null coordinates were previously

published in [12]. This provides a good illustration of the transformation process and is repeated

here in more detail. With reference to the metric (2.47), which is normalised to t0 = 1,

R(t, r̃) = t2/3r̃ = r in (3.20) and R,r̃(t, r̃) = t2/3 in (3.22). Since R,r̃(t, r̃) only depends on t,

the righthand and lefthand sides of (3.22) can be separated for r̃ and t and the integral can be

solved analytically:

dt

dr̃
= −[R,r̃(t, r̃)] = −t2/3

⇒
∫ r̃

0

dr̃∗ = −
∫ t

t0

t
−2/3
∗ dt∗

⇒ r̃ = −1

3
(t1/3 + t

1/3
0 )

⇒ t0 =

(
t1/3 +

1

3
r̃

)3

(3.27)

On the lines on which u is constant, u is a function of t0 i.e. u = F (t0) and it then follows from

the knowledge that u = t at r̃ = 0 that

u1/3 =
1

3
r̃ + t1/3 (3.28)

and from (3.20)

r̃ = rt−2/3. (3.29)
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Substituting (3.29) into (3.28) gives an explicit expression for t in terms of u and r 6

t =

[
1

6

(
−36r + 8u+ 12

√
9r2 − 4ru

)1/3

+
2

3

u2/3(
−36r + 8u+ 12

√
9r2 − 4ru

)1/3 +
1

3
u1/3

]3

. (3.30)

Equations (3.29) and (3.30) completely determine the (r̃, t) → (u, r) relation. For comparison

with the numerical solutions, (r̃, t) can be calculated from a grid defined in terms of (u, r).

Equations (3.23) and (3.24) can be used to determine hu and hr by implicitly differentiating

(3.28) and (3.29) towards u and r. For this particular case, however, analytical expressions

can be obtained by derivatives towards t and r̃ using the implicit function theorem (e.g. see

[84] p.224). It is therefore, more convenient to work with contravariant transformations here.

Transforming the g01 and g11 terms of (3.19) then gives:

g01 =
∂u

∂t

∂r

∂t
g̃00 +

∂u

∂r̃

∂r

∂r̃
g̃11 ⇒ hr =

[
∂u

∂t

∂r

∂t
− [R,r̃(t, r̃)]

−2 ∂u

∂r̃

∂r

∂r̃

]−1

(3.31)

and

g11 =

(
∂r

∂t

)2

g̃00 +

(
∂r

∂r̃

)2

g̃11 ⇒ hu = h2
r

[
−
(
∂r

∂t

)2

+ [R,r̃(t, r̃)]
−2

(
∂r

∂r̃

)2
]
. (3.32)

Implicitly differentiating toward t and r̃ gives:

∂u

∂t
=
u2/3

t2/3
,
∂u

∂r̃
= u2/3 ,

∂r

∂t
=

2

3

r̃

t1/3
and

∂r

∂r̃
= t2/3.

By substituting into (3.31) and (3.32) it then follows that:

hr = − t4/3u−2/3

t2/3 − 2
3rt
−1/3

(3.33)

hu =
t4/3

u4/3
+

4

3

(
rtu−4/3

t2/3 − 2
3rt
−1/3

)
. (3.34)

The equations in (3.25) can then be used to get the values for β and W .

From the comoving velocity (ṽa = (1, 0, 0, 0)), using a contravariant transformation and

implicit differentiation, the null contravariant time components are

v0 = −u
2/3

t2/3
, v1 = −2

3

r

t
.

By lowering the indices, in their covariant forms, the velocity components become

v0 = vag0a ⇔ v0 =
u2/3

t2/3
hu +

2

3

r

t
hr

6This was obtained using the computer algebra system Maple.
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and

v1 = vag1a ⇔ v1 =
u2/3

t2/3
hr.

Since t is known in terms of (u, r) from (3.30), ρ on the null cone is calculated directly using

equation (2.46)

ρ =
1

6π[t(u, r)]2
. (3.35)

It is interesting to point out here that as t varies with u and r on each null cone, ρ also varies

i.e. even though the EdS model is homogeneous in conventional cosmological coordinates, null

cones are not hypersurfaces of radial homogeneity and the model becomes inhomogeneous in

null coordinates (see [81]).

3.2 Affine CIVP

3.2.1 Mathematical model

The main problem with the Bondi-Sachs CIVP, described in Section 3.1, is the fact that the di-

ameter distance (r) is not monotonically increasing and therefore not a unique coordinate. The

uniqueness of geodesics (Theorem 1) facilitates a suitable mechanism to address this problem.

In particular, an affine parameter on radial null geodesics provides a coordinate that is mono-

tonically increasing for all distances on the PNC. For this, an affine characteristic formalism can

be derived by doing a coordinate transformation from the Bondi-Sachs coordinates. Starting

with the metric (3.1), an affinely parameterized geodesic in these coordinates is determined

applying equation (2.9) to the radial coordinate as

d2r

dλ2
+ Γ1

11

(
dr

dλ

)2

= 0⇒ d2r

dλ2
+ 2β,r

(
dr

dλ

)2

= 0. (3.36)

Setting λ = r at the origin provides the initial conditions r(0) = λ(0) = 0 and dr/dλ|λ=0 = 1

then solving gives

dr

dλ
= e−2β . (3.37)

Applying tensor transformation laws and substituting (3.37) for all ∂r/∂λ terms it follows that

ĝ10 = 2
∂xa

∂x1

∂xb

∂x0
gab = −2

∂r

∂λ

∂u

∂u
e2β = −2e−2βe2β = −2, (3.38)
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which is in agreement with observer coordinates when y = υ, see (2.91) on page 38. The ĝ00

term is determined through a tensor transformation as

ĝ00 =
∂xa

∂x0

∂xb

∂x0
gab =

∂u

∂u

∂u

∂u
g00 + 2

∂u

∂u

∂r

∂u
g01

= −e2β

(
1 +

W

r

)
− 2 r,ue

2β .

The physical significance of β as a separate variable is not of interest here and for simplicity, a

new variable7 Ŵ (u, λ), which implicitly absorbs β and r,u, is introduced to form a metric term

as ĝ00 := −(1 + Ŵ/r). The new variable should, however, have same behaviour at r = 0 as W

in the Bondi-Sachs CIVP and this follows from

−

(
1 +

Ŵ

r

)
= −e2β

(
1 +

W

r

)
− 2 r,ue

2β

⇒ Ŵ = r

(
e2β

(
1 +

W

r

)
− 2 r,ue

2β

)
− r

⇒ Ŵ = e2β (r +W − 2r r,u)− r
with r = 0⇒ Ŵ = W = 0.

Then, a new metric with the radial coordinate λ follows as

ds2 = −

(
1 +

Ŵ (u, λ)

r̂(u, λ)

)
du2 − 2dudλ+ r̂(u, λ)2{dθ2 + sin2 θdϕ2}. (3.39)

Substituting (3.39) into the EFEs, using the form Rab = κ(Tab − 1
2Tgab) + Λgab, with the

stress-tensor for a dust-like fluid (Tab = ρvavb and T = −ρ) gives 8

r̂,λλ = −1

2
κr̂ρ(v1)2 (3.40)

r̂,uλ =
1

2

{
Ŵ,λr̂,λ + r̂r̂,λλ + Ŵ r̂,λλ − 2r̂,ur̂,λ − 1 + (r̂,λ)2 +

1

2
κρr̂2 + Λr̂2

}/
r̂ (3.41)

Ŵ,λλ =
Ŵ

r̂
r̂,λλ + 4r̂,uλ + 2κ

(
v0v1ρ−

1

2
ρ

)
r̂ − 2Λr̂ (3.42)

with: r̂(0) = Ŵ (0) = Ŵ,λ(0) = r̂,u(0) = 0 and r̂,λ(0) = 1.

Further, substituting the dust stress-tensor and (3.39) into the continuity equation, ∇bT ab =

7Quantities in terms of λ will be written with a caret (“ˆ”). It should also be noted that the definition

Ŵ := W/r2 is sometimes used in NR which is different to its use here (e.g. equation 17 in [80]).
8To make provision for a larger set of cosmological models, the cosmological constant (Λ) is introduced here

as part of the model.
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0, the energy-momentum equations follow

v1,u =
1

v1

{((
1 +

Ŵ

r̂

)
v1 − v0

)
v1,λ +

1

2
(v1)2

(
Ŵ,λ

r̂
− Ŵ r̂,λ

r̂2

)}
(3.43)

ρ,u =
1

v1

{
ρ

[(
1 +

Ŵ

r̂

)(
2v1

r̂
r̂,λ + v1,λ

)
−
(

2v0

r̂
r̂,λ + v0,λ

)
+

(
Ŵ,λ

r̂
− Ŵ r̂,λ

r̂2

)
v1 −

(
2r̂,u
r̂

)
v1

]

+ ρ,λ

((
1 +

Ŵ

r̂

)
v1 − v0

)
− ρv1,u

}
. (3.44)

Making use of the normalisation condition, gabvavb = −1, v0 can be written in terms of v1 as

v0 =
1

2

(
1 +

Ŵ

r̂

)
v1 +

1

2
v−1

1 . (3.45)

Similar to the Bondi-Sachs CIVP, having the values on the initial null cone for ρ and v1,

equations (3.40) to (3.45) form a hierarchical system that can be solved in the order (3.40),

(3.41), (3.42) and (3.45), then solving equations (3.43) and (3.44) evolves the system to the next

null cone where the process can be repeated until the domain of calculation has been covered.

These equations are all interdependent and require an iterative scheme for a numerical solution.

3.2.2 Cosmological considerations

The model introduced in section 3.2.1 is essentially a null cone formalism which makes provision

for a null cone that can reconverge at some distance from the cone vertex. Taking G to be

the world line of an observer located at the cone vertex and integrating into the past, these

coordinates can be naturally aligned with a cosmological PNC. Further, it being spherically

symmetric and radially inhomogeneous, classifies it as a LTB model in null coordinates. Using

this model, the simulations done in [12] and [97] can be extended beyond the AH. Comparing

Figures 3.1 and 3.2 illustrates the differences between conventional characteristic coordinates

and the affine coordinates. Besides being not comoving, the affine coordinates closely resemble

the observer coordinates as described in Section 2.3.3 and the references therein.

3.2.3 Reconstructing the metric

As with the Bondi-Sachs CIVP but in terms of λ, initial data for the model, v1(λ) and ρ(λ)

have to be determined from observations on the PNC. Measures of the radial distribution of

expansion and density are again required but since λ is not an observable quantity the process

is somewhat different. For the density distribution some additional complications are involved

around the AH.

The procedure followed here is to write the observable quantities in terms of r and then find

a relation between r and λ to get quantities in terms of λ. Since equations (3.10) and (3.11)

are model independent the reciprocity theorem

z(dL) and dL = (1 + z)2r0 ⇒ z = z(r0) (3.46)

54



Present space 
and time

Past light-cone
surface

Observer's 
world line    

Event on
observer's PNC

World line
of another

galaxy

Event at space-time 
coordinates 

0(u , λ, θ, φ)

Event on
a PNC in 
the past

(G)

Apparent 
horizon (AH)

Figure 3.2: The affine CIVP coordinates for cosmology.

and redshift relation

1 + z =
du

dτ
= v0 (3.47)

are exactly the same as that in Section 3.1.3 (also see Section 2.3.1 and the references therein).

The covariant velocity v1 then follows in a slightly simpler form:

v1(r0) = −v0 = −(1 + z(r0)). (3.48)

As a measure of proper density, observed galaxy number counts (N) in terms of z can be

used to determine ρ(r0). Writing the formula for ρ(z) from number counts (2.72) in terms of r

it follows that

ρ(r0) =
Mg

(1 + z(r0))J(r0)2dΩ0

(
dN

dr

dr

dλ

)
(3.49)

and by rearranging for brevity it can be written as

ρ(r0) =
%obs

(1 + z)(r0)2

(
dr

dλ

)
with %obs =

Mg

JdΩ0

(
dN

dr

)
(3.50)

where %obs consists of quantities determined from observations.

From (3.48) and (3.50) the required values of ρ and v1 are obtainable in terms of the diameter

distance (r). Since these are required in terms of λ, interchanging the independent variable in

(3.40) provides a method to express λ in terms of r. Starting then with (3.40), rewritten as a

system of ODEs, introducing Ŝ,

r̂,λ = Ŝ (3.51)

Ŝ,λ = r̂,λλ = −1

2
κr̂ρ(v1)2 (3.52)

with: r̂(0) = 0 and Ŝ(0) = 1,
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then interchanging the roles of λ and r, simplifying, rearranging and introducing Û = Ŝ−1

provides ODE expressions for λ,r̂r̂

λ,r̂ = Û (3.53)

Û,r̂ = λ,r̂r̂ =

(
1

2
κr̂ρ(r0)(v1)2

)
Û3 (3.54)

with: λ(0) = 0 and Û(0) = 1.

Furthermore, substituting equations (3.48) and (3.49) into (3.54) gives a relation in terms of

observational quantities

λ,r̂r̂ =
1

2
κ
%obs
r̂

(1 + z)(λ,r̂)
2 (3.55)

with: λ(0) = 0 and λ,r̂(0) = 1.

Although these equations will not be solved at this stage, there are some complications

that will require special consideration. These arise from the fact that the diameter distance in

an expanding universe is not necessarily monotonically increasing and therefore, not a unique

independent variable. In these cases, r̂ reaches a maximum and then decreases. At the maxi-

mum diameter distance, the AH, r̂,λ = 0 and λ,r̂ is singular. In general, this can be overcome

by separating the solution into regions prior, around and succeeding the AH where the region

around the AH is solved using series expansions. The r̂ denominator in (3.55) will also require

special consideration with series expansions around r̂ = 0. Such considerations were previously

implemented in [51] to handle singularities around the AH and the origin for LTB models. The

uniqueness of r around the AH is a recurring theme in this thesis and since it was the reason

for modifying the Bondi-Sachs CIVP to the affine CIVP, it should be emphasised that this

problem is only present on the initial PNC here; the evolution procedure is completely free of

singularities at the AH.

Under the assumption that the Universe can be generalised as a LTB cosmology, [49] followed

by [4] and [50], derived a relationship for the cosmological constant Λ involving the maximum

value of r̂ and matter data within the PNC. In order to test the theory of gravity more generally,

a measurement involving a rate of change over time is required. Redshift drift ∂z/∂u(z) [96],

which is one of the design objectives of the CODEX spectrograph planned for the European

Extremely Large Telescope (E-ELT) [75], can be used for this purpose. Supposing ∂z/∂u(z)

data is available and can be written in terms of λ, then from the definition of v1

v1 =
∂λ

∂u
=
dλ

dz

∂z

∂u
, (3.56)

lowering the index of v0

v0 = −

(
1 +

Ŵ

r̂

)
v0 + (−1)v1 (3.57)
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and substituting (3.56) and (3.48) into (3.57)

v0 =

(
1 +

Ŵ

r̂

)
v1 −

dλ

dz

∂z

∂u
. (3.58)

Further, substituting (3.58) into (3.45) gives

Ŵ = r̂

(
1

(v1)2
+

2

v1

dλ

dz

∂z

∂u
− 1

)
(3.59)

and using (3.48), W can be written in terms of z and through z(λ) in terms of λ

Ŵ = r̂

(
1

(1 + z)2
− 2

(1 + z)

dλ

dz

∂z

∂u
− 1

)
. (3.60)

Since r̂, Ŵ and r̂,u = (dr̂/dz)(∂z/∂u) as well as, through numerically differentiation, their

derivatives towards λ are known, the cosmological constant can now be obtained by rearranging

(3.42) as

Λ =
1

2

(
Ŵ

r̂
r̂,λλ + 4r̂,uλ + 2κ

(
v0v1ρ−

1

2
ρ

)
r̂ − Ŵ,λλ

)/
r̂. (3.61)

Since Λ is expected to be constant, this equation only needs to be used on one point where

all the values are known while on the other hand, testing the formula at different points can

provide insight into Λ’s constancy.

The derivations in this section assumes that data is already available as smooth functions of

the observable quantities. Actual observations, however, require data reduction and smoothing

techniques, which is a challenging endeavour by itself. In the LTB models investigated in

[51] and [63], data reduction methods were investigated which provide valuable insight into

the methodology of converting realistic data into useful initial data. In combination with the

methods introduced in this section, all options will have to be considered when data of sufficient

completeness becomes available for observational models.

3.2.4 Coordinate transformations

In order to measure the model’s applicability to cosmology, the model will be compared to

known solutions in Chapter 5. For this, coordinate transformations from CS coordinates to

affine null coordinates are described in this section. These transformations follow directly from

calculating the geodesic paths in space and time. The general form, equation (2.9), is repeated

here as reference

d2xµ

dλ2
+ Γµνσ

dxν

dλ

dxσ

dλ
= 0. (3.62)

The parabolic LTB metric (2.31) will again be used as a general transformation metric.
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Using (3.62), the geodesic equations for the LTB model becomes

d2t

dλ2
+ Γ0

11

(
dr̃

dλ

)2

= 0 (3.63)

d2r̃

dλ2
+ 2 Γ1

01

dt

dλ

dr̃

dλ
+ Γ1

11

(
dr̃

dλ

)2

= 0. (3.64)

When scaled to some maximum time, t0, as the current age of a universe, the conditions at

λ = 0 are t = t0 and r̃ = 0 with the initial directions constrained to be null by dt/dλ = 1

and dr̃/dλ = R(t0, 0). As comparative values on a null cone grid, the covariant velocity follows

directly from v1 = dt/dλ, the diameter distance from r̂(λ) = R(t, r̃(λ)), while ρ is determined

from the coordinate expression for the specific model using (t(λ), r̃(λ)) as the coordinates for t

and r on a null cone.

The normalised EdS model will now be used to demonstrate the process of comoving to

affine transformations. When substituting the metric (equation (2.47)) into equations (3.63)

and (3.64), a system of equations for t(λ) and r(λ) is obtained9

d2t

dλ2
+

2

3
t1/3

(
dr̃

dλ

)2

= 0 (3.65)

d2r̃

dλ2
+

4

3
t−1 dt

dλ

dr̃

dλ
= 0. (3.66)

At λ = 0: t = 1, r̃ = 0, dt/dλ = −1 and dr̃/dλ = t−2/3.

Solving these equations numerically provides a useful example of the motivation for working

with an affinely parameterized radial coordinate as opposed to the diameter distance. This is

illustrated in Figure 3.3 where the diameter distance and affine parameter is plotted against

the redshift. In terms of observations, with the emphasis on the AH at z = 1.25, the diameter

distance reaches its maximum and then desreases while λ keeps on increasing and provides a

unique coordinate for higher redshifts.
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Figure 3.3: The radial distance coordinates dD = r(z) and λ related to z, which is a common
observational measure.

9r̃ in this section again refers to its definition in Chapter 2 i.e. as the comoving radial coordinate.
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Substituting t(λ) into equation (2.46) provides the density profile on a specific null cone

ρ =
1

6π[t(λ)]2
. (3.67)

As previously mentioned, it is apparent that as t varies with λ on each null cone, ρ also varies,

pointing out the fact that null cones are not hypersurfaces of radial homogeneity and the model

becomes inhomogeneous in null coordinates (see [81]).

3.3 Conclusion

In this chapter, it was shown how to implement the characteristic formalism, which is usually

associated with gravitational waves, as a model that represents the observable universe. For

this, the CIVP in Bondi-Sachs coordinates was presented in spherical symmetry with the matter

content being a dust-like fluid. This represents the LTB model in null coordinates. Since the

model was originally developed to study gravitational waves, some cosmological considerations

have to be taken into account. Firstly, the cosmological observer is concerned with the PNC

while the model was developed for a future null cone. This has been accounted for by changing

the direction of integration on the null cone. Secondly, the Bondi-Sachs coordinates are not

comoving and velocity components are present, which are not usually present in cosmological

models. The third aspect, which constitutes a major part of this thesis, is the behaviour of the

diameter distance as radial coordinate. In particular, (r = dD) becomes multi-valued around

the AH.

To address the limitation of the radial coordinate of the Bondi-Sachs CIVP, a model was de-

rived where the diameter distance (r) was replaced by an affine parameter (λ) on null geodesics,

tracing out the surface of the PNC of a cosmological observer. The resulting affine CIVP, is well

behaved well beyond the AH. In addition, the cosmological constant is included in the model,

making it suitable to investigate the PNC behaviour of models where both inhomogeneities and

the cosmological constant play a role. The model is particularly suitable for investigating the

past evolution of the Universe where the current PNC is used as the initial values of a reversed

CIVP. In order to do this, however, the initial values have to be determined from direct obser-

vations on the PNC. In Sections 3.1.3 and 3.2.3 is it shown how the required initial values can

be obtained from the observable quantities, described in Section 2.3.1.

With these models at hand, Chapter 4 will present numerical codes for calculations in null

coordinates of the past evolution of a cosmological PNC. In order to measure the accuracy of

this code, comparisons with known models are required. For this purpose, in this chapter, it

was shown how transformations for some known cosmologies are done from comoving to null

coordinates. These transformations are used in Chapter 5 where the accuracy of the numerical

code will be tested. This will also be used to generate initial values for comparisons between

LTB and ΛCDM models.
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Chapter 4

Numerical code

The CIVP equations in the Bondi-Sachs and affine representations, form a hierarchical system of

differential equations that can be solved if the values of ρ and v1 are known on some initial null

cone. As already demonstrated, the PNC of a cosmological observer can be the initial null cone

for the CIVP by deriving the values of ρ and v1 from astronomical observations. This chapter

is concerned with a numerical scheme to solve the CIVP equations assuming that ρ and v1 have

already been derived from observations. This not only involves the development of a code to

solve the CIVP equations but, to obtain second order convergence, special considerations at

the domain boundaries. These considerations are described in detail in this chapter.

4.1 Bondi-Sachs CIVP

4.1.1 Mathematical algorithm

The CIVP equations can be arranged in a convenient hierarchy where the solution of each

equation provides a value to an unknown variable of the next equation. Starting from ρ and v1

values on the initial null cone, the hypersurface equations (4.1 and 4.2), which are ODEs of r on

characteristic curves calculated on one time step, provide the input to the evolution equations

(4.4 and 4.5), which are partial differential equations (PDEs) of r and u evolving the solution

to the next time step. A solution is then obtained by iterating through the hierarchy, until all

values converge.

Repeated here in the order in which they will be solved, the CIVP equations are

β,r = 2πrρ(v1)2 (4.1)

W,r = e2β − 1− 4πe2βρr2 (4.2)
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with β = W = 0 at r = 0.

v0 =
1

2
v1

(
1 +

W

r

)
+

1

2

e2β

v1
(4.3)

v1,u =

(
2v0 −

(
1 +

W

r

)
v1

)
β,r +

1

2
v1

(
W,r

r
− W

r2

)
+

((
1 +

W

r

)
− v0

v1

)
v1,r (4.4)

ρ,u =
1

v1

{
ρ

[(
1 +

W

r

)(
2v1

r
+ v1,r

)
−
(

2v0

r
+ v0,r

)
+

(
W,r

r
− W

r2

)
v1

]
+

((
1 +

W

r

)
v1 − v0

)
ρ,r − ρv1,u

}
(4.5)

The hierarchy of the CIVP is followed by repeating the steps below until the calculation has

sufficiently converged.

i. Calculate β using the initial values of ρ and v1 with (4.1).

ii. Calculate W using β and ρ with (4.2).

iii. Calculate v0 using v1, β and W with (4.3).

vi. Calculate v1 for the next time step using β, W and v0 with (4.4).

v. Calculate ρ for the next time step using ρ, v0, v1, β and W with (4.5).

By incorporating practical and theoretical aspects of the grid definition and conditions at the

r-boundaries, the development of a second order convergent scheme is the objective in this

chapter.

4.1.2 The grid and domain of calculation

The domain of calculation is the interior region of the PNC starting from the present spacetime

location up to a region approaching the point where the null cone starts to refocus at the AH.

As pointed out earlier, at the AH, the PNC reaches its maximum diameter and then starts to

contract, which causes the null cone coordinate system to become multi-valued. The calcula-

tions presented in this work will be restricted to the well-behaved region before refocussing by

introducing a characteristic line at the radial extent as a causal cut-off limit. This is required

because the grid definition is not causally aligned and can include values that are theoretically

not in causal contact with the past or future of the initial values. In principle, these values are

artificial and solutions beyond the cut-off limit will be discarded.

A rectangular grid is used to represent the PNC as illustrated in Figure 4.1. The radial

limit will initially be taken to be halfway to the theoretical refocussing point and will then

be increased gradually to find the maximum region of stability for a specific model. Since

the refocussing location is known analytically for the EdS model it will be used as a simple

illustration of the grid generation. Normalised to a current age of t0 = u0 = 1, from equation

(2.51), the domain of calculation for the EdS model is:

0 ≤ r ≤ Br
4

9
and 1 ≥ u ≥ Bu

8

27
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Figure 4.1: The past null cone calculated on a rectangular grid.

with Br and Bu initially 0.5 and then increased gradually until the maximum region of sta-

bility is reached. This domain is then reduced to a domain of interest by making use of the

characteristic cut-off line, which is described in more detail in Section 4.1.4.

The interior grid points for u and r are generated using

rj+1 = rj + ∆r for j = 1, 2, . . . , NJ

ui+1 = ui −∆u for i = 1, 2, . . . , NI

where

∆r =
rmax − r1

NJ − 1
and ∆u =

umax − u1

NI − 1
.

Here, NJ is the number of spatial grid points, NI the number of time steps and a convention

is followed where spatial indices are notated using a subscript and time indices superscripts.

The values of NJ and NI are chosen to provide a grid spacing that will be well within the

stability expectation of the Courant-Friedrichs-Lewy (CFL) condition for simpler similar first-

order PDEs (e.g. the Burgers’ equation)∣∣∣∣∆u∆r
v1max

∣∣∣∣ ≤ 1.

This is, however, only used as a guideline since the stability conditions were not derived specif-

ically for the CIVP. It was found that second order stable solutions were obtainable by using

reasonable Courant numbers (|(∆u/∆r) v1max| ≤ 0.5) without needing to modify the grid gen-

eration method. This was done by taking into consideration that the number of grid point, on

the regular grid, reduces at each time step as the PNC in the past becomes smaller (see Figure

4.1). The CFL should, therefore, at least apply to the youngest (smallest) PNC.
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4.1.3 Numerical scheme

The code described in this section is based on the 3D code developed in [10] and [11] but sim-

plified for dust and spherical symmetry. The overall numerical scheme is an explicit predictor-

corrector method based on steps halfway between the r and u grid points. A combination of

second and higher order finite difference methods on a regular grid are used in the implemen-

tation of the scheme in this section. The objective has been to obtain overall second order

convergence in both space and time up to a distance reasonably close to the restriction imposed

by the AH. With reference to Figure 4.2, the algorithm is described referring to equations (4.1)

and (4.2) as the hypersurface equations and equations (4.4) and (4.5) as the evolution equations.

i,j

j+1/2j-1/2

i=1,j=1

i+1,j line (p) 
approaching (i+1)

i,j+1i,j-1

i+1/2
ip,jp+1ip,jp-1 ip,jp

i+1

i+3/2

Figure 4.2: Stencil for numeric solution: points indicated with shaded squares are used to
calculate the point indicated by the solid dot.

Hypersurface equations

Solving the hypersurface equations is done with a central difference method on half steps be-

tween the r-grid points, using

gij = gij−1 +
∆r

2

[
(g,r)

i
j + (g,r)

i
j−1

]
(4.6)

where g represents β or W and g,r the left-hand sides of equations (4.1) or (4.2) respectively.

Further, i is notated as the discrete time step and j the discrete radial step. (g,r)
i
j is then

calculated by substituting the values of v1 and ρ of the most recent iteration into equations

(4.1) and (4.2), starting with the known initial values.
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Evolution equations

In order to calculate the evolution equations, the general form of equations (4.4) and (4.5) can

be written as

v1,u = Fv1 and ρ,u = Fρ (4.7)

with

Fv =

(
2v0 −

(
1 +

W

r

)
v1

)
β,r +

1

2
v1

(
W,r

r
− W

r2

)
+

((
1 +

W

r

)
− v0

v1

)
v1,r

Fρ =
1

v1

{
ρ

[(
1 +

W

r

)(
2v1

r
+ v1,r

)
−
(

2v0

r
+ v0,r

)
+

(
W,r

r
− W

r2

)
v1

]
+

((
1 +

W

r

)
v1 − v0

)
ρ,r − ρv1,u

}
.

Second order difference equations for v1 and ρ can then be written as:

v n+1
1 j = v n1 j + ∆uF

n+1/2
v j = v n1 j +

∆u

2
(F n
v j + F n+1

v j ) (4.8)

ρ n+1
j = ρ nj + ∆uF

n+1/2
ρ j = ρ nj +

∆u

2
(F n
ρ j + F n+1

ρ j ). (4.9)

Here, n is a time iterator that will approach i+1. In these equations, the hypersurface derivatives

are obtained by substituting the values of the most recent iteration at point (i, j) in Figure 4.2

directly into the numerical form of equations (4.1) and (4.2):

β n
,r j = 2πr jρ

n
j (v n1 j)

2

W n
,r j = e2β n

j − 1− 4πe2β n
j ρ nj r

2
j .

Radial matter derivatives are calculated making use of standard central difference formulae

(see for instance [19] page 160-161):

f,r j =
1

2∆r
[fj+1 − fj−1] +O(h2).

The region where these derivatives are calculated can allow for more accurate difference ap-

proximations; the five-point formulae given in [19] can also be used here:

f,r j =
1

12∆r
[fj−2 − 8fj−1 + 8fj+1 − fj+2] +O(h4).

This will then modify Figure 4.2 with one additional shaded square on each side of the calculated

grid point. Near the boundaries the one-sided versions of these formulae can be used. These

are:

f,r j =
1

2∆r
[−3fj + 4fj+1 − fj+2] +O(h2) and

f,r j =
1

12∆r
[−25fj + 48fj+1 − 36fj+2 + 16fj+3 − 3fj+4] +O(h4)
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for the three-point and five point formulae respectively.

Algorithm

The mathematical algorithm of Section 4.1.1 can now be implemented for the explicit scheme

as follows:

i. Set the ρ and v1 initial values on to the initial grid points. These values will, in principle,

be obtained from observations.

ii. From the initial values of ρ and v1, calculate β and W from (4.1) and (4.2) using (4.6)

and v0 from (4.3).

iii. Calculate F 1
j , using (4.7) the from the initial values of v1, ρ and the values calculated for

β, W and v0 in (ii).

iv. Set F
n+1/2
j = F 1

j and calculate v1 and ρ, using (4.8) and (4.9), as an initial approximation

that will approach the actual values with subsequent iterations.

v. Use the new values of v1 and ρ to calculate β, W and v0 and their radial derivatives, as

was done in step (ii).

vi. Calculate F
n+1/2
j from values in (v) and again v1 and ρ.

vii. Test the calculations in (vi) for accuracy and convergence. If they are sufficiently accurate,

move to the next time step, otherwise repeat steps (v) and (vi) with the new values of v1

and ρ.

4.1.4 Boundary regions

Inner region r ≈ 0

Evaluating the CIVP equations, it is evident that the terms with r and r2 denominators are

not mathematically suitable at r = 0 and numerically problematic to calculate around r ≈
0, especially with finite difference methods. The r ≈ 0 region will therefore require special

treatment by making use of series expansions instead of the previously described numerical

scheme.

In order to do this, all the variables in the CIVP equations are replaced by power series

expressions from which the unknown terms can then be calculated by comparing coefficients in

the resulting expressions. In principle, these would be infinite series but for practical reasons

only the terms required to produce second order accuracy will be used i.e.:

v1,u = v1u0 + v1u1r + v1u2r
2 +O(r3) (4.10)

ρ,u = ρu0 + ρu1r + ρu2r
2 +O(r3) (4.11)

The method for solving these equations can be summarised in the following steps:

i. Write the functions β(r), W (r), v1(r) and ρ(r) as series expansions. It should be taken

into account that second order expansions of β and W do not produce second order results
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in v1(r) and ρ(r). Therefore, initially six terms are used to evaluate how many terms are

required to produce second order truncations of equations (4.10) and (4.11).

ii. Substitute the values calculated in (i) into equations (4.1 – 4.5) using (4.10) and (4.11)

as the left hand sides of (4.4) and (4.5).

iii. Simplify the resulting equations by comparing coefficients until all expansions are expres-

sions in terms of:

v0 = v00 + v01r + v02r
2 + v03r

3

v1 = v10 + v11r + v12r
2 + v13r

3

ρ = ρ0 + ρ1r + ρ2r
2.

Taking into account that the expansions are effectively Taylor series expansions, some of

the hypersurface coefficients can be eliminated by determining the higher derivatives of

equations (4.1) and (4.2).

iv. The coefficients in step (iii) will provide all the required terms for the left hand sides of

the series evolution equations.

The series functions are then be used as the Fρ and Fv1 terms in equations in (4.7). The

resulting equations were determined using the computer algebra system, Maple, and are quite

long and therefore only their general form is given here:

v00 = v10 v01 = 0

v02 = f(ρ0, v11) v03 = f(ρ0, ρ1, v11, v12)

v1u0 = 0 v1u1 = f(ρ0, v11)

v1u2 = f(ρ0, ρ1, v11, v12) ρu0 = f(ρ0, v11)

ρu1 = f(ρ0, ρ1, v11, v12) ρu2 = f(ρ0, ρ1, ρ2, v11, v12, v13).

The terms that cannot be eliminated by any previous results are: ρ0, ρ1, ρ2, v11, v12 and v13.

These values can then be obtained by implementing an interpolation scheme which replaces

the full evolution equations around the origin. Since there are three ρ unknowns and three v1

unknowns, three interpolations points can be used on two equations, which provide six equations

for the six unknowns. The region where series expansions is required is therefore calculated

three grid points at a time.

For the region where the series solution meets with the CIVP solution, smooth transitions

are required and this also requires special consideration to avoid artificial instabilities. A

procedure is then followed where the merger region is blended smoothly by using weighted

average functions between the two solutions. Both a sine

bl(r) =
1

2
+

1

2
sin

(
π

[
r − rblmin

rblmax − rblmin

]
− π

2

)
(4.12)

and a hyperbolic tangent function

bl(r) =
1

2
+

1

2
tanh

(
10

[
r − rblmin

rblmax − rblmin

]
− 5

)
. (4.13)
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were found to be adequate for the required calculations. In these functions, rblmin and rblmax
are the locations where the merger function is started and ended. In the merger region Fv1 and

Fρ are then calculated as

Fv1 = [1− bl(r)]Fv1 series + [bl(r)]Fv1 civp

Fρ = [1− bl(r)]Fρ series + [bl(r)]Fρ civp.

The exact size of the merger region is different for different models and the different blending

functions were also more favourable for different models.

Outer region

Since the purpose of the code is to solve the CIVP equations in a region that can, in principle,

be validated against direct observations, the extent of the interior null cone must be limited

by some causally connected boundary. This causal outer boundary does not correspond to the

radial outer limit of the grid definition. For verification runs where known results are available,

it can easily be identified when calculations correspond to expected values even beyond the

causal boundary. However, when calculating from initial data where no known data is available,

results cannot be assumed to be correct on grid points which are not causally connected.

To restrict the calculations to the causally connected region, the outer boundary is formed

by connecting the radial limit of the initial null cone to the youngest null cone using an incoming

null ray (i.e. on a radial null geodesic ds = dθ = dϕ = 0)). Applied to (3.1), it follows that

− e2β

(
1 +

W

r

)
du2 − 2e2βdudr = 0 (4.14)

du 6= 0⇒ r − r1 = −1

2

∫ u

u1

(
1 +

W

r

)
du∗. (4.15)

Numerically this can be solved by using an iterative scheme which starts at rNJ on the observer

PNC, and predicting the solution as

ri = ri−1 −
1

2
∆u, (4.16)

from which W (ri) can be estimated to calculate

ri = ri−1 −
1

2

(
1 +

W (ri)

ri

)
∆u. (4.17)

This is repeated until the value of ri converges. Since the value of ri does not necessarily fall

directly on grid points, W (ri) is determined by linearly interpolating between the closest grid

points and a specific ui grid line.
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4.2 Affine CIVP code

4.2.1 Mathematical algorithm

The numerical scheme described here is in structure similar to the finite difference scheme

described in Section 4.1, which in turn was based on the general 3D code developed in in [10]

and [11]. Since the CIVP scheme is based on first order ODEs, the second order hypersurface

equations (3.40)-(3.42) are rewritten by introducing R̂(u, λ) = r̂,u, Ŝ(u, λ) and T̂ (u, λ), which

then gives:

r̂,λ = Ŝ (4.18)

Ŝ,λ = r̂,λλ = −1

2
κr̂ρ(v1)2 (4.19)

R̂,λ = r̂,uλ =
1

2

{
T̂ Ŝ + r̂Ŝ,λ + Ŵ Ŝ,λ − 2R̂Ŝ − 1 + Ŝ2 +

1

2
κρr̂2 + Λr̂2

}/
r̂ (4.20)

Ŵ,λ = T̂ (4.21)

T̂,λ = Ŵ,λλ =
Ŵ

r̂
Ŝ,λ + 4 R̂,λ + 2κ

(
v0v1ρ−

1

2
ρ

)
r̂ − 2Λr̂ (4.22)

with: r̂(0) = Ŵ (0) = R̂(0) = T̂ (0) = 0 and Ŝ(0) = 1.

These equations can be solved using standard ODE methods for systems of equations where

(4.18) and (4.19) are solved as one system and (4.20), (4.21) and (4.22) are solved as a separate

system. The evolution of the system follows from the energy-momentum equations (3.45), (3.43)

and (3.44), repeated here in the order in which they will be solved as

v0 =
1

2

(
1 +

Ŵ

r̂

)
v1 +

1

2
v−1

1 (4.23)

v1,u =
1

v1

{((
1 +

Ŵ

r̂

)
v1 − v0

)
v1,λ +

1

2
(v1)2

(
Ŵ,λ

r̂
− Ŵ r̂,λ

r̂2

)}
(4.24)

ρ,u =
1

v1

{
ρ

[(
1 +

Ŵ

r̂

)(
2v1

r̂
r̂,λ + v1,λ

)
−
(

2v0

r̂
r̂,λ + v0,λ

)
+

(
Ŵ,λ

r̂
− Ŵ r̂,λ

r̂2

)
v1 −

(
2r̂,u
r̂

)
v1

]

+ ρ,λ

((
1 +

Ŵ

r̂

)
v1 − v0

)
− ρv1,u

}
. (4.25)

Treating the solution of equations (4.18 and 4.19) and (4.20 - 4.22) conceptually as a single

steps, the system forms a hierarchy, which can be solved using the following procedure:

i. Calculate rλ using the initial values of r, ρ and v1 with (4.18) and (4.19).

ii. Calculate W and r,u using r, v0 (from (4.23)), v1 , ρ and Λ with (4.18-4.22). This step

requires iteration between these equations.

iii. Calculate v0 using v1, and W with (4.23).

vi. Calculate v1 for the next time step using W and v0 with (4.24).

v. Calculate ρ for the next time step using ρ, v0, v1, r,u and W with (4.25).
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This procedure applied to the above equations provides a system that can be solved with the

scheme described in Section 4.1. The practical and theoretical aspects of the grid definition

and conditions at the λ-boundaries also follow a pattern very similar to that of the Bondi-Sachs

CIVP.

4.2.2 Domain of calculation

The discretisation strategy followed is based on a rectangular grid similar to the one used in

Section 4.1 but using λ as the radial coordinate. As illustrated in Figure 4.3, λ does not reach

a maximum and the AH does not affect the calculation. Apart from not needing to take the

λmax

λmax

λ - affine parameter

u - proper time

characteristic 
line

λ = 0

λ = r = 0

domain of 
calculation: 

u = t0

rmax

u max

u max

u = t0

Figure 4.3: The past null cone calculated on a rectangular grid with an affine parameter (λ) as
the radial coordinate.

AH into consideration with λ, the limits and grid resolution are determined in the same way

as the standard CIVP with λ replacing r.

4.2.3 Numerical scheme

Hypersurface equations

Equation (4.6) is again implemented with the adaption to involve λ-grid points as

gij = gij−1 +
∆λ

2

[
(g,r)

i
j + (g,r)

i
j−1

]
. (4.26)

Here, g represents r̂, Ŝ, R̂, Ŵ or T̂ and g,r the left-hand sides of equations (4.18) to (4.22). As

with the Bondi-Sachs CIVP, i is notated as the discrete time step and j the discrete radial step.

(g,r)
i
j is calculated by substituting the values of the calculated hypersurface variables, v1 and

ρ of the most recent iteration into equations (4.18) and (4.21), starting with the known initial

values.
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Evolution equations

In order to solve the evolution equations, (4.24) and (4.25), their general form is the same as

(4.7)

v1,u = Fv1 and ρ,u = Fρ (4.27)

with

Fv1 =
1

v1

{((
1 +

Ŵ

r̂

)
v1 − v0

)
v1,λ +

1

2
(v1)2

(
Ŵ,λ

r̂
− Ŵ r̂,λ

r̂2

)}
(4.28)

Fρ =
1

v1

{
ρ

[(
1 +

Ŵ

r̂

)(
2v1

r̂
r̂,λ + v1,λ

)
−
(

2v0

r̂
r̂,λ + v0,λ

)
+

(
Ŵ,λ

r̂
− Ŵ r̂,λ

r̂2

)
v1 −

(
2r̂,u
r̂

)
v1

]

+ ρ,λ

((
1 +

Ŵ

r̂

)
v1 − v0

)
− ρv1,u

}
(4.29)

and as explicit finite differences on a time half step they are written as

v n+1
1j = v n1 j + ∆uF

n+1/2
v1 j and ρ n+1

j = ρ nj + ∆uF
n+1/2
ρ j . (4.30)

With, n a time iterator that will approach i. In these equations, the numerical values at the

point (i, j) are used to evaluate the matter terms and hypersurface derivatives. The procedures

described in Section 4.1.3 can then be applied to calculate the evolution of the affine CIVP.

Algorithm

With some adaption for more hypersurface equations, the algorithm for the affine CIVP is

essentially the same as that of the Bondi-Sachs CIVP. Again, after setting up a suitable grid,

the numerical algorithm, based on Figure 4.2, iterates through the following steps:

i. Set the ρ and v1 initial values on to the initial grid points. These values will, in principle,

be obtained from observations.

ii. Calculate r̂, r̂,u, Ŵ and v0 from ρ and v1 on the initial null cone using (4.18-4.22).

iii. Calculate Fnj , with n = 1 for the initial step, from the values of v1, ρ , r̂, r̂,u, Ŵ and v0

using (4.27).

iv. Set F
n+1/2
j = Fnj , again n = 1 for the initial step, and calculate v1 and ρ as an ini-

tial approximation that will approach the actual values with subsequent iterations using

(4.30).

v. Use the new values of v1 and ρ to calculate r̂, r̂,u, Ŵ and v0 and their radial derivatives

similar to (ii).

vi. Calculate F
n+1/2
j = 1/2 (Fnj +Fn+1

j ) from values in (v) and again v1 and ρ for Fn+1
j and

the values in (iii) for Fnj .
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vii. Test the calculations in (vi) for accuracy and convergence. If they are sufficiently accurate,

move to the next time step, otherwise repeat steps v. and vi. with the new values of v1

and ρ.

4.2.4 Boundary regions

As with the Bondi-Sachs CIVP, described in Section 4.1, calculations in the regions around

λ = 0 require special consideration because of r̂ denominators in equations (4.24) and (4.25),

causing coordinate singularities. The mechanisms used in Section 4.1.4 for these regions was

directly adapted for the affine CIVP model. Thereby, the region λ ≈ 0 is calculated using

second order series expansions and the region where the series solution merges with the CIVP

solution, blending functions (4.12 and 4.13) were used to obtain a stable merger region.

4.3 Conclusion

This chapter described the development of a numerical scheme for solving the Bondi-Sachs

and affine CIVP models. The scheme is an adaption for cosmology of the developments for

3D modelling of gravitational waves in [10] and [11]. The numerical representation of the

CIVP models is a second order explicit scheme, where the hypersurface equations are solved

on the surface of a particular PNC. The resulting values are then substituted into the energy-

momentum equations, which are then used to propagate the solution to a PNC in the history

of the model’s evolution.

The energy-momentum equations, however, contain coordinate singularities at the null cone

vertices, a region excluded from calculations for gravitational wave modelling. For cosmology,

the cone vertices are of particular interest since they represent the positions of observers. Since

the model is not directly suitable in this region, series expansions of the CIVP equations have

to be used for the region at and around the observer.

The outer radial boundary of the model is evolved without constraints but since the purpose

of the model is to represent the verifiable region of a cosmological observer, the region is

restricted by an incoming characteristic connected to the outer radial limit of the observer’s

PNC. Strictly speaking, then, the domain of calculation (Figures 4.1 and 4.3) only represents

the causally connected region of a local observer.

The numerical scheme, as illustrated in Figure 4.2, is conceptually the same for the Bondi-

Sachs and affine CIVPs using their respective sets of hypersurface and evolution equations.

This can be summarised in following steps: 1

i. Set the initial values of v1 and ρ on the initial null cone.

ii. Calculate the hypersurface equations, (4.1&4.2;4.18-4.22), using (4.6).

iii. Calculate v0 using (4.3;4.23).

iv. Calculate the inner region of v1 using the series expansion of (4.8;4.24).

1The equations in brackets refer to the standard CIVP equations followed by a semi-colon and the affine
CIVP equations i.e. (standard eq.; affine eq.)
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v. Solve the rest of v1 with (4.8;4.24).

vi. Solve the inner region of ρ using the series expansion of (4.9;4.25).

vii. Solve the rest of ρ with (4.9;4.25).

viii. Repeat steps ii to vii until sufficiently accurate and then proceed to the next time step.

ix. Calculate the outer boundary cut-off line using (4.17) and then discard the calculations

beyond this line.

In Chapter 5, accuracy and stability of the code will be evaluated using known solutions

transformed to null coordinates. Having established that the code is sufficiently accurate and

stable, the model will then be used to perform numerical experiments to compare the evolution

of different models given initial values from identical observations. In particular, the ambiguity

of LTB universes against observations that seem to favour the ΛCDM model is used to compare

the historical behaviour of different models.
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Chapter 5

Numerical calculations

The objective of this chapter is to demonstrate that the CIVP code, described in Chapter 4,

is second order convergent and stable. In order to do this, a verification framework is defined,

which will be used for various verification cases. The coordinate transformations, described

in Chapter 3, will be used here to provide known solutions in null coordinates for the test

cases. Having shown that the models are stable and convergent, two numerical experiments

are performed with the code where the LTB model is evolved from the initial data of a ΛCDM

model. This represents the effect where observations are regarded as model independent and

different models are evaluated against the same observations. This is a particularly interesting

application of the code.

5.1 Verification framework

The objective of the developments in this thesis is to produce a mathematical model of the

observable universe which is well suited for numerical modelling. For the numerical model, it

has further been the intention that the model should be second order convergent. A verification

framework is defined here to systematically explore the code’s ability of realising these require-

ments. The fundamental properties of numerical convergence for initial value PDEs are related

to: the well-posedness of the mathematical model and the consistency and stability of the finite

difference approximation. The definitions of these properties are [2] (pp. 46–49):

- Well-posedness: an initial value problem is well-posed if the solution exists, is unique and

is stable subjected to small perturbations.

- Consistency condition: a finite difference representation is consistent if it can be shown

that the difference between the PDE and its difference representation vanish as the grid

is refined. Effectively this means that the truncation error becomes zero as the grid size

approaches zero.

- Stability : a stable numerical scheme is one for which any source of errors (truncation

errors, round-off errors or incorrect data) are not permitted to grow exponentially in

the sequence of numerical calculations from one time step to another. In practice, the
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bounds of error amplification will be determined by the precision required for a particular

calculation.

- Convergence: the solution of the finite difference scheme approaches the solution of the

PDE when the grid is refined.

For linear initial value PDEs the relation between these properties is formal and stated as [57]:

Theorem 6 (Lax’s equivalence theorem) Given a properly posed1initial value

problem and a finite-difference approximation to it that satisfies the consistency con-

dition, stability is the necessary and sufficient condition for convergence.

For nonlinear PDEs, no formal proof of this theorem has been established and exact analyses

of the properties for non-trivial problems, such as the CIVPs considered here, are well beyond

the scope of the current work. Even so, while convergence for the CIVPs does not strictly

follow from Theorem 6, it is unlikely to follow if these conditions are not met by the model

or its constituent parts. With this in mind, the elements of the theorem are considered in the

selection of verification models while the dynamic behaviour of the code is explored through

test runs where the stability and convergence are analysed. The consistency condition will

not be considered explicitly and therefore no attempt will be made to distinguish the effects

of truncation errors in the difference formulae from other errors and effects in the numerical

scheme.

5.1.1 Verification models

In Theorem 6, the first prerequisite is that the initial value problem should be well-posed. The

well-posedness of CIVPs in General Relativity is, however, a difficult unresolved problem and

it is therefore conducive to restrict verification cases to simple models that are easy to anal-

yse. The models that were chosen are the simplest of the classes they represent, they are well

represented in literature and they are simple enough that if doubts should arise about their

well-posedness, problems should be detectable without exact analyses. Three cosmologies rep-

resenting homogeneous, inhomogeneous and the presence of a cosmological constant have been

chosen as verification models: the EdS model as a homogeneous model, bang-time LTB model

as an inhomogeneous model and the ΛCDM model, to investigate the effect of a cosmological

constant. The introduction of these models in Sections 2.2.3, 2.2.2 and 2.2.1, and the coor-

dinates transformations, presented in Sections 3.1.4 and 3.2.4 will be applied here to provide

known solutions against which the numerical calculations can be compared. The process of

comparing calculated against transformed results is to use the transformed values on the initial

null cone as input to the code. The code is then evolved from these values and compared against

the corresponding transformed results. All calculations were done on a regularly spaced grid as

described in Sections 4.1.2 and 4.3.

Einstein-de Sitter model

The EdS model is the simplest expanding universe model and its solution and null cone trans-

formations are analytically known for the Bondi-Sachs CIVP (see Sections 2.2.3 and 3.1.4 and

1The terms properly posed and well-posed will be used interchangeably in the discussions that follow.
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references [37] and [12]) while for the affine CIVP, the transformation requires a simple numer-

ical solution (Section 3.2.4). As further reference, the EdS model as a Bondi-Sachs CIVP has

also been studied numerically in [12] using an axisymmetric code without rotation. A further

benefit is that the LTB and ΛCDM models reduce to the EdS model with the selection of

certain parameter values and it is, therefore, also a useful baseline to measure the accuracy of

the transformation methods (described in Chapter 3) when the transformed solutions of LTB

and ΛCDM models are calculated.

LTB model

For inhomogeneous verification, LTB models of the bang-time type, as described in Section

2.2.2, are implemented using a linear bang-time function on which the slope of the line can be

adjusted to represent specific universes. The function is

tB(r) = br, (5.1)

with b being a constant on a specific universe. This simplifies equations (2.43), (2.44) and (2.45)

to

R(t, r) = r(t− br)2/3 , R,r(t, r) = −1

3

(−3t+ 5br)

(t− br)1/3
and

ρ(t, r) =
1

2π(t− br)(3t− 5br))
. (5.2)

These equations are substituted into the parabolic LTB metric (2.31) and transformed using

equations (3.22) and (3.26) for the Bondi-Sachs CIVP and equations (3.63) and (3.64) for the

affine CIVP to obtain null cone transformed data.

ΛCDM model

The ΛCDM is used to test the code on models with a non-zero cosmological constant (Λ). Since

the Bondi-Sachs model does not include Λ, these tests are only relevant for the affine CIVP.

Equations (2.27–2.29) in Section 2.2.1 describe the model. These equations are transformed to

null coordinates with the method described in Section 3.2.4 using LTB transformations with

R(t, r) = a(t)r. As discussed in Section 2.2.1, values representative of the actual Universe

are {H0,Ωk,Ωm0,ΩΛ} = {72 Mpc s−1 km−1, 0, 0.3, 0.7}. However, for the purpose of code

verification the model is simplified by using geometric units (G = 1 and c = 1) and time is

scaled to t0 = 1 using a value of H0 = 0.964.

5.1.2 General comments on models

The specific models that were taken as verification cases are models that are simple to analyse

but also physically realistic. For verification purposes, the time coordinate has been scaled to

t0 = 1 for all models. Although this obscures the differences in the ages of the models, which

is crucial in interpreting the actual Universe, the emphasis here is on comparing calculation

errors not in realistic modelling. The models with their parameter values are summarised in

Table 5.1.
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Model b Λ Description
EdS 0 0 Baseline model
LTB −0.5 0 Representing the shape of the ΛCDM
ΛCDM 0 0.7 The accepted standard cosmological model

Table 5.1: Summary of verification models for evaluating accuracy and stability.

The effect of different values of the bang-time constant (b) of the LTB model on the shape

of the PNC is shown in Figure 5.1 where different models have been scaled and transposed

relative to an observer located at the vertex of the PNC of a normalised EdS universe. The

value b = 0 is exactly the EdS model and b > 0 shifts the age of a universe to a younger age as r

increases while b < 0 provides the opposite effect where a universe is shifted to an older age as

r increases. The latter case is particularly interesting since it provides a mechanism to mimic

a cosmological constant [21]. In Figure 5.1 a reasonable match on the shape of the ΛCDM

(ΩΛ = 0.7) PNC is shown by a b = −0.5 bang time model before the PNC refocusses. This is

however not an exact physical match but provides a useful verification model since the shape of

the null cone is a critical aspect on the stability of a CIVP code. For the ΛCDM model, setting

Λ = 0 will also correspond to the EdS model and therefore also to the LTB (b = 0).
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Figure 5.1: The past null cone of the bang time models compared to the Einstein-de Sitter
model and the ΛCDM model.

It should also be noted that although the LTB model was specifically selected to represent

the effects of inhomogeneities, in general, null cones are not hypersurfaces of homogeneity (see

[81]) even for homogeneous spacetimes such as the EdS and ΛCDM models.
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5.1.3 Methodology

The framework for evaluating the test cases will take as guideline the stability and convergence

properties of Lax’s theorem. This will be evaluated under the following topics:

i. Model comparison

The initial test is to explore how well the numerical solution follows the known values for

the test models and to determine the extent of the region where the code is apparently

stable by:

– Evaluating ρ, v1 and r on historical PNCs back to the youngest stable PNC. This is

of interest to evaluate the physical consistency of the model.

– The stability limits of model variables (ρ, v1 and r) for both u and the radial dis-

tance2(r or λ). This is done by starting from the position half way to the AH and

then gradually increasing u and r or λ until the code becomes unstable.

These tests are presented for all the test models for both the Bondi-Sachs and affine

CIVPs.

ii. Convergence

The details of the propagation of errors and how it is affected by increasing the grid

resolution is considered in this test by:

– Evaluating the error distribution of the calculated density (ρ) compared to that of

known solutions. The density is a useful measure for this since it was found that

errors in the other variables become amplified in the density calculation.

– Evaluating the convergence of the calculations when the grid resolution is refined to

measure a code’s order of convergence.

These tests are presented for all the test models for both the Bondi-Sachs and affine

CIVPs.

iii. Sensitivity to errors

Here, it will be explored how input errors affect the error propagations of the calculations

by:

– Inducing constant, cyclic and random errors into the input data and then comparing

the initial error sizes to those in the output variables.

– For the cyclic errors, it is presented how input errors in each input variable affect

the individual output variables3. This is to determine the most sensitive input and

output variables.

These tests are presented for calculations with the affine CIVP on the EdS model.

2In further discussions, the term radial distance (r or λ) will refer to r for the Bondi-Sachs CIVP or λ for
the affine CIVP.

3Although cyclic errors are not realistic input errors, their output effects were more pronounced than with
the constant or random errors. Therefore, it provides a good test case to demonstrate.
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5.2 Model comparison

The results of numerical calculations for the models described in Section 5.1 follow in this

section. The historical evolutions from data on an initial PNC of the covariant velocity (v1)

and the density (ρ) are presented against the radial distance (r or λ) for both CIVP models. In

addition, the evolutions of the diameter distance (r̂) against the affine parameter (λ) and the

redshift (z) are also shown for the affine CIVP. The latter shows the relation r̂(z) which is of

particular interest for observations since it provides an illustration of an observer’s perception

of distance from a particular PNC vertex.

In the results, the initial PNC values are indicated with u0, the youngest PNC with umax

and an intermediate PNC is shown at the midpoint age in between. As already mentioned,

the purpose of the calculations is to test the behaviour of the numerical models and not the

physics of the specific cosmologies, hence, time is scaled to u0 = 1 and geometrised units are

used. Table 5.2 gives a summary of the test cases. The stability limits mentioned in point (i)

of Section 5.1.3 is shown here as zmax and umax. In all cases the numerical results (points in

the figures) closely follow the transformed results (lines in the figures); an illustration of the

model consistency, also related to point (i) in Section 5.1.3. In the figures, r will refer to the

diameter distance in all cases and the distinction between r and r̂ is irrelevant.

Model z at rmax zmax u0 umax Figures
CIVP EdS 1.25 0.47 1 0.24 5.2
Affine EdS 1.25 4.5 1 0.35 5.4, 5.3
CIVP LTB (b = −0.5) 1.02 0.48 1 0.15 5.5
Affine LTB (b = −0.5) 1.02 1.2 1 0.2 5.7, 5.6
Affine ΛCDM (ΩΛ = 0.7) 4 1.61 6 1 0.4 5.9, 5.8

Table 5.2: Affine CIVP test cases.

4This result is in agreement with that of [5].
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5.2.1 Einstein-de Sitter: Bondi-Sachs CIVP
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Figure 5.2: Density distribution (A) and covariant velocity (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 0.47.
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5.2.2 Einstein-de Sitter: Affine CIVP
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Figure 5.3: Density distribution (A) and covariant velocity (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 4.5.
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Figure 5.4: Diameter distance against λ (A) and against of z (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 4.5.
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5.2.3 LTB model: Bondi-Sachs CIVP
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Figure 5.5: Density distribution (A) and covariant velocity (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 0.47.

5.2.4 LTB model: Affine CIVP
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Figure 5.6: Density distribution (A) and covariant velocity (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 1.2.
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Figure 5.7: Diameter distance against λ (A) and against of z (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 1.2.

5.2.5 ΛCDM with ΩΛ = 0.7
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Figure 5.8: Density distribution (A) and covariant velocity (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 5.
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Figure 5.9: Diameter distance against λ (A) and against of z (B) on PNCs at different proper
times (u) evolved from a local PNC up to z = 5.

5.3 Convergence

This section presents the results related to point (ii) in Section 5.1.3 by comparing the error

propagation for refinements on a regular grid. In the refinements, the spatial and temporal

resolution were retained to a ratio of nu = 5nr where nr and nu are the number of radial

and time grid points respectively. In Figure 5.10 (A and B) and Figure 5.11 (A, B and C),

the relative errors for ρ on the oldest PNCs calculated is shown for the grid resolutions as

indicated. In Figure 5.10 (C) and Figure 5.11 (D), the size in error against the grid spacing

is shown on a log− log plot. The slopes of these lines indicate the order of convergence of the

respective models. The objective was to obtain second order convergence and the respective

values attained are indicated on the figures.
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5.3.1 Bondi-Sachs CIVP
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5.3.2 Affine CIVP
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5.4 Sensitivity to errors

The tests that follow address point (iii) in Section 5.1.3 by investigating the behaviour of the

affine CIVP model when there are errors in the input data. This involves the introduction of

known and also random errors into the initial data, which are then evaluated at the youngest

PNC after the calculation. The introduction of constant errors can roughly be interpreted as

systematic errors and the random errors as input noise or random observational errors although

it is not the intention to model realistic data. The general concern here is to determine if input

errors create artificial instabilities or damping effects in the numerical calculations and if an

error band in input data can be interpreted as error bands in other variables from calculated

data. A more specific concern is also to determine which are the most sensitive input and

output variables. In the results that follow, the affine CIVP is used on the EdS model i.e. the

calculations of Section 5.2.2 but with errors in the initial data.

5.4.1 Combined input errors

Combined constant errors

The combined effects of constant input errors in r̂, ρ and z at a relative value of 10% (Figure

5.13 (A)) are shown in Figures 5.13 (B), (C) and (D) after it was propagated over 500 time

steps to the youngest PNC at umax = 0.35 for the EdS model.
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Figure 5.12: Error propagation of relative constant input errors in z, r̂ and ρ with a value of
10% shown in (A). In (B), the output error on ρ, (C) the output error on r̂ and in (D) the
output error on z.
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Combined cyclic errors

The combined effects of cyclic input errors in r̂ and ρ that have relative peaks of 10% and z

with 1% (Figure 5.13 (A)) are shown in Figures 5.13 (B), (C) and (D) after it was propagated

over 500 time steps to the youngest PNC at umax = 0.35 for the EdS model. The cyclic error

is generated using g = gexact(1 + (peak%/100) sin(20π(j/NJ))) where g represents r̂, ρ or z; j

is the radial grid index and NJ the number of grid points.
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Figure 5.13: Error propagation of relative cyclic input errors in z with 1%, r̂ with 10% and ρ
with 10% shown in (A). In (B), the output error on ρ, (C) the output error on r̂ and in (D) the
output error on z.
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Random errors on ρ, z and r̂

In this section, random errors, which follow a normal distributions, are induced into the input

data. This is a more realistic representation of typical errors since it does not have cycles that

repeat on the same frequency for all the variables, such as present in the sine input function.

The sizes of the errors have relative peaks at ρ ≈ 10%, z ≈ 2% and r ≈ 10%. Figure 5.14

(A) shows the input error and (B), (C) and (D), the output error after 500 time steps to the

youngest PNC at umax = 0.35 for the EdS model.
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Figure 5.14: Error propagation of relative random input errors in z with peaks at 2% and r̂
and ρ with peaks at 10% shown in (A). In (B), the output error on ρ, (C) the output error on
r̂ and in (D) the output error on z.
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5.4.2 Individual input errors

In this section, the objective is to demonstrate the sensitivity of input errors in each individual

input variable on each of the model variables. The intention is to determine the most sensitive

input and output variables. From the cases that follow, it is identified that ρ is the most

sensitive output variable and is particularly vulnerable to input errors in z (or v1). The results

of the cyclic tests will be shown as a demonstration case since the effects of input errors were

more prominent in these.

Cyclic errors on r with r = rexact(1 + 0.1 sin(20π(j/NJ)))

The effects of a cyclic input error in r̂ that has a relative peak of 10% (Figure 5.15 (A)) are

shown in Figures 5.15 (B), (C) and (D) after it was propagated over 500 time steps to the

youngest PNC at umax = 0.35 for the EdS model.
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Figure 5.15: Error propagation of a 10% relative cyclic input error in r̂ shown in (A). In (B),
the output error on r̂, (C) the output error on z and in (D) the output error on ρ.
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Cyclic errors on ρ with ρ = ρexact(1 + 0.1 sin(20π(j/NJ)))

The effects of a cyclic input error in ρ that has a relative peak of 10% (Figure 5.16 (A)) are

shown in Figures 5.16 (B), (C) and (D) after it was propagated over 500 time steps to the

youngest PNC at umax = 0.35 for the EdS model.
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Figure 5.16: Error propagation of a 10% relative cyclic input error in ρ shown in (A). In (B),
the output error on ρ, (C) the output error on r and in (D) the output error on z.
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Cyclic errors on z with z = zexact(1 + 0.01 sin(20π(j/NJ)))

The effects of a cyclic input error in z that has a relative peak of 1% (Figure 5.17 (A)) are

shown in Figures 5.17 (B), (C) and (D) after it was propagated over 500 time steps to the

youngest PNC at umax = 0.35 for the EdS model.
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Figure 5.17: Error propagation of a 1% relative cyclic input error in z shown in (A). In (B),
the output error on z, (C) the output error on r̂ and in (D) the output error on ρ.
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Cyclic errors on z with z = zexact(1 + 0.03 sin(20π(j/NJ)))

In the previous calculation, the output errors distribution of ρ is significantly higher than the

output errors in the other variables. This effect is further demonstrated by repeating the

calculation but adjusting the error in z to a relative peak of 3% (Figure 5.18 (A)). Figures 5.18

(B), (C) and (D) again show the output after it was propagated over 500 time steps to the

youngest PNC at umax = 0.35 for the EdS model.
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Figure 5.18: Error propagation of a 3% relative cyclic input error in z shown in (A). In (B),
the output error on z, (C) the output error on r̂ and in (D) the output error on ρ.
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Random errors on z with zmax ≈ (1± 0.1)z

To investigate the effect of z on ρ further, the calculation is repeated but using a random error

in z with relative peaks around 10% (Figure 5.19 (A)). Figures 5.19 (B), (C) and (D) again show

the output after it was propagated over 500 time steps to the youngest PNC at umax = 0.35

for the EdS model.
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Figure 5.19: Error propagation of a relative random input error in z that peaks around 10%
shown in (A). In (B), the output error on z, (C) the output error on r̂ and in (D) the output
error on ρ.
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5.5 Code verification: Discussion

5.5.1 Model comparison

Bondi-Sachs CIVP

Since the AH is the theoretical limitation using the diameter distance as radial coordinate for

this model, it is relevant to evaluate the model’s stability in terms of the time and distance

relative to the AH. The EdS case was stable up to 0.82 uAH and 0.82 rAH and the LTB

(bang-time with b = −0.5) case up to 0.75 uAH and 0.8 rAH with uAH and rAH the time and

distance values at the AH. The limits chosen are the maximum values where stable solutions

were achieved on a regular grid. Extending these limits further causes the code to break

down rapidly, which is the expected behaviour close to the AH. The radial outer limits of the

initial PNCs correspond to observations at z = 0.47 and z = 0.48 in the EdS and LTB cases

respectively. By reducing the extent of u limit, the radial extent can be increased and conversely

reducing the radial limit allows the u limit to be increased, for instance values of 0.2 umax and

0.99 rmax (z = 1.02) also produce stable results for the EdS model. The stability in terms of the

radial and evolution limits is dependent on the input data and the simulations in Section 5.6.2

were stable up to z ≈ 1, which is a significant region for SNIa redshift-distance observations.

Affine CIVP

As before, the radial extent of the results are the maximum values for which the calculations were

found to be stable on a regular grid. The region most interesting for the current investigation

is that around the AH, which is well within the domain of calculation and therefore, special

techniques to extend the radial boundaries were not considered. In comparison with the Bondi-

Sachs calculations, significant improvements in the region covered were obtained. In terms of

the redshift z, the extent of stable calculations was increased to z = 4.5 and z = 1.2 for EdS

and LTB respectively, which are in both cases well beyond the AH (i.e. z at rmax in Table 5.2).

Figure 5.7 B provides a particularly interesting illustration of an observer’s perception of

distance in an inhomogeneous universe. Here, the (r̂, z) behaviour on earlier PNCs includes

loops, which will completely obscure the perception of diameter distance and redshift as mea-

sures of distance. This type of behaviour provides insight into the physical nature of a model

by investigating its past behaviour. Although the initial PNC of the specific LTB model is not

significantly out of line compared to more accepted models, especially on low redshifts, its past

behaviour is rather unusual. This does not make it unrealistic, but does say that an observer

at u = umax would have found the interpretation of cosmological data particularly difficult.
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5.5.2 Convergence

The accuracy of the code is overall very good, however, the regions where calculations were

done using series expansions have visibly larger errors on all the error plots (Figures 5.10 A and

B and Figures 5.11 A, B and C). For the investigations, here, accurate behaviour around the

AH were of more interest and errors around r ≈ 0 were not handled with special techniques.

While improvements are likely to be made using refinement methods, the unmodified results

are presented since it illustrates that local errors were not significantly propagated radially and

remained local. The errors around r ≈ 0 also reduced significantly when the code was refined.

The order of convergence of the different models were around second order for all the models.

The calculated values are summarised in Table 5.3.

Model Order of convergence
Bondi-Sachs EdS 2.28
Bondi-Sachs LTB (b = −0.5) 1.64
Affine EdS 2.22
Affine LTB (b = −0.5) 1.71
Affine ΛCDM 2.19

Table 5.3: Summary of convergence results.

5.5.3 Sensitivity to errors

In both the constant and random cases, the model values evolved to the oldest PNCs, propa-

gated the errors proportional to their initial values. While these are somewhat higher at the

oldest PNC, they were still of the same order of magnitude when errors in corresponding input

and output variables are compared. For corresponding input and output variables, the conclu-

sion from this investigation, is that the code does not introduce significant artificial dispersion

when the input data is not idealised. Conversely, Figure 5.13, which uses a sine input function,

illustrates that input errors are not artificially diffused through the calculation.

By evaluating the errors on each input variable compared to all output variables, however,

it was shown that ρ is the most sensitive output variable and particularly vulnerable to errors

in z (see Figures 5.17 and 5.18). This issue was further investigated by introducing a random

error on the input data of z and it was found that the effect on ρ is less severe: a random

error with relative peaks around 10%, compared with a cyclic error with a relative amplitude

of 3% (compare Figures 5.18 and 5.19). Nevertheless, the effect of z on ρ does not follow the

stability trend of the other input variables and will require further investigation. This will form

part of a more detailed analysis, which will explore the model’s sensitivity with realistic data

as input. This will give insight into the behaviour of the code when observational data becomes

sufficiently complete for actual simulations.

5.6 Numerical experiments

Following from the Isotropic Observations Theorems (Theorems 2 and 3 in Section 2.3.2), any

reasonable set of spherical symmetrical observations can be accommodated by some distribution
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of inhomogeneities in a LTB model. After the discovery of dark energy from SNIa observations

in 1998 [77, 83], using this principle, it was demonstrated by Célérier [21] that the observational

effects perceived as dark energy can be caused by radial inhomogeneities 5. In this section, two

numerical experiments are presented that are related to the observational ambiguity that exists

between ΛCDM and LTB models.

5.6.1 ΛCDM versus LTB — evolution

The concept of inhomogeneities mimicking dark energy has been investigated many times since

the publication of the SNIa observations, mostly as toy models demonstrating the ambigui-

ties that exist in the interpretation of observations. The philosophical argument against LTB

universes is that they place the observer in the centre of the Universe which, although not

impossible is not a philosophically appealing idea. Even so, with a CIVP code at hand, an

interesting numerical experiment is to test the historical evolution of an LTB model, with a

zero cosmological constant, when observational data representing that of the ΛCDM model is

interpreted as being caused by inhomogeneities.

A simple simulation set up for this experiment is done by calculating the density ρ and

covariant velocity v1 profiles on the observer PNC by transforming exact solutions for a flat

ΛCDM model to null coordinates. These are then used as input to the code, calculated with

ΩΛ = 0, and compared to the transformed model where ΩΛ 6= 0. Parameter values are used

to represent the actual Universe as {H0,Ωk,Ωm0,ΩΛ} = {72 Mpc s−1 km−1, 0, 0.3, 0.7} in the

setup described in Section 5.1.1. It is, however, important to be aware that ρm in the ΛCDM

model is determined by parameters related to the expansion and the density content and not

by an independent measure of matter distribution such as number counts (see equation (2.29)).

The additional degree of freedom introduced in the LTB model is therefore not purely satisfied

by an additional boundary condition which is a limitation that should be borne in mind when

interpreting redshift dimming as an LTB model.

Figure 5.20 shows the resulting LTB vs. ΛCDM evolutions back in time. While it might

currently not be possible to distinguish these models from one another based on observations on

the PNC, in the past, these universes are distinctly different. In particular, the LTB universe

seems to be heading towards a singularity much faster than the ΛCDM universe and would

therefore be significantly younger, if the trend is to continue beyond the calculations.

5.6.2 LTB versus ΛCDM — matching

A question arising from the results presented in Figure 5.20 is: if the LTB null cones in the past

would also represent ΛCDM flat space null cones? In this section an attempt is made to find a

matching ΛCDM model for the t0 − 6Gyrs LTB null cone. The procedure followed here is to

firstly find a null cone in the past of a selected ΛCDM model for which the density corresponds

to the LTB density at r = 0. This gives a density curve which has the same starting point but

the slope of the curve differs to that of the LTB model. The slope of the curve is then matched

by adjusting the Hubble rate (H0) until it approximately corresponds to the LTB curve. The

covariant velocities (v1 as a function of r) are then compared to see, qualitatively, if the models

5 The idea of using inhomogeneities to mimic cosmic acceleration was also independently demonstrated by
[95, 29, 74] but not directly based on this concept (also see [23]).
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Figure 5.20: Density distribution (A) and covariant velocity (B) on past null cones at different
proper times (u)

can be regarded as the same.

The models investigated are summarised in Table 5.4 and detailed results are shown in the

Figures 5.21 to 5.24. From Table 5.4 it can be seen that the matching instances are from

universes with different ages and matching takes place at different times in their evolutions.

From the detailed results, it becomes apparent that matching both the radial matter distribution

and expansion through ρ and v1 is an unlikely proposition. Applying the matching procedure

to ρ causes v1 to move away from the ΛCDM data while ρ moves away when v1 is matched.

This then suggests that the PNCs do not represent a ΛCDM model. This is an illustration of

similar conclusions found by Yoo, Kai & Nakao [20].

ΩΛ H0 Age (t0) Density matching time Figure
(Mpc s−1 km−1) (Gyrs) (tmatch) (Gyrs)

0 59 12.37 7.85 5.21
0.5 68 13.28 7.70 5.22
0.7 72 14.46 7.66 5.23
0.9 64 21.48 7.52 5.24

Table 5.4: ΛCDM models used to match the LTB density profile.
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Figure 5.22: Density distribution and covariant velocity on the past null cones: LTB with
ΩΛ = 0 and FLRW with ΩΛ = 0.7 at t0 − 6Gyrs and the best fit FLRW ΩΛ = 0.5 instance.
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Figure 5.23: Density distribution and covariant velocity on the past null cones: LTB with
ΩΛ = 0 and FLRW with ΩΛ = 0.7 at t0 − 6Gyrs and the best fit FLRW ΩΛ = 0.7 instance.
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5.7 Conclusion

In this chapter the accuracy and stability of the code was evaluated by comparing the code

evolution against known solutions of the EdS, LTB and ΛCDM models. The Bondi-Sachs CIVP

was found to be second order accurate and convergent in the region approaching to the AH

for models where Λ = 0. The affine CIVP, developed specifically for the cosmological PNC,

produced the same level of accuracy up to regions well beyond the AH for models without the

restriction of Λ = 0.

It was also demonstrated that errors in initial conditions propagate without being excessively

amplified through the code evolution; i.e. the size of the error remains of the same order for

input errors in ρ and r. It was further found that ρ is the most sensitive output variable, in

particular, when cyclic input errors are introduced in z. However, without special consideration

to this issue, the code remains stable within reasonable limits when subjected to random errors

in all variables. These results were mostly illustrative but will be the starting point of further

investigation into the model’s behaviour when subjected to real observations.

In an illustration of a typical application of the code, it was shown how an LTB model will

behave if evolved from ΛCDM initial data. This is an investigation concerning the ambiguities

in observations that exist between inhomogeneities and dark energy. It was found that the

density of the LTB model rises significantly more quickly indicating a much younger universe,

possibly too young if this trend continues.

Further investigation on the oldest PNC calculated, demonstrated that density and redshift

distributions cannot be matched by any flat ΛCDM model. This has an important implica-

tion: Although the initial values of the two models can correspond on the current PNC, the

histories of the two models are distinctly different. Conversely, a universe that was distinctly

inhomogeneous in the past can evolve to density and redshift distributions identical to that of

the ΛCDM model

A more fundamental statement of this result is that while in our current epoch the LTB vs.

ΛCDM ambiguity is difficult to disentangle, this is a feature of the Universe’s current state and

not its past. In other words, if the Universe is inhomogeneous without a cosmological constant,

not only is the observer in a privileged position (near a central point), he also lives in a specific

time where the Universe can appear to be either LTB or ΛCDM.
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Chapter 6

Conclusion

This work is a presentation of developments towards a numerical model of the observable

universe. For this purpose the characteristic formalism, used in gravitational wave simulations,

was adapted for modelling the cosmological past null cone.

6.1 Summary

The distinction between parameterized and observational cosmological models is the basic ar-

gument towards the developments described in this thesis. While it is common practice in

cosmology to explore the theoretical aspects of the Universe by the fitting of parameters on an

assumed cosmology, this approach is effectively an existence argument, showing that there is a

model that can reproduce observed cosmological parameters. On the other hand, uniqueness

can be obtained by observational models where boundary conditions are derived from quantities

observed on a past null cone (PNC). This idea is based on the concept of restricting a gen-

eral cosmology to a more specific one using boundary conditions. Under ideal circumstances,

this approach proves the fundamental limits of theoretical deductions from observations. In

practice, a very precise map of the Universe is required for observational models and if the

predictions of the unobservable energy-matter content by parameterized models are correct; a

distant prospect that might not be practically attainable. These aspects are described in some

detail in Chapter 2 with the conclusion that an observational model with some of the assump-

tions from parameterized models can be a valuable testing ground for proposed parameterized

cosmologies.

A model of the observable universe, based on the characteristic formalism used in numerical

relativity, was developed for this purpose. The characteristic formalism presents the EFEs as a

characteristic initial value problem (CIVP) on a coordinate system aligned with outgoing null

cones. This frame of reference was initially developed to model gravitational waves. With some

minor adjustments to the original model, it was described in Chapter 3 how this model can be

used to model a cosmological PNC. This involved a derivation from the EFEs, using the Bondi-

Sachs metric, in spherical symmetry for a dust-like fluid. Effectively, this is the LTB model in

Bondi-Sachs coordinates. An important consideration with the Bondi-Sachs coordinates is that

the diameter distance (dD) is used as a radial coordinate. Since the diameter distance increases
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with distance until a maximum and then decreases as the PNC in an expanding universe

refocusses, dD is not a unique coordinate and becomes multi-valued after the apparent horizon

(AH). To address the limited radial extent of the Bondi-Sachs CIVP, a model was derived where

the diameter distance was replaced by an affine parameter (λ) defined on a past directed null

geodesic connected to the observer (i.e. on the observer’s PNC). Moreover, the model was

then derived using EFEs with a cosmological constant, making it suitable to investigate the

PNC behaviour of cosmologies where both inhomogeneities and the cosmological constant can

be modelled. Since a null geodesic originating from the observer has a known position with a

coordinate condition stating the tangent, the radial coordinate is uniquely defined. This model

is expected to be suitable for simulating the PNC well beyond the AH.

A numerical implementation of this concept is described in Chapter 4. The numerical scheme

used is an adaption for cosmology of the developments for 3D modelling of gravitational waves

in [10] and [11]. This is a second order explicit scheme where a set of hierarchical equations

are separated between geometrical (hypersurface) equations and energy-momentum (evolution)

equations. The hypersurface equations are solved on a specific PNC and the resulting values

are then substituted in the energy-momentum equations, which are to perform a reverse time

step to a PNC in the model’s historical evolution. The energy-momentum equations, however,

contain coordinate singularities at the null cone vertices, a region excluded of calculations for

gravitational wave modelling. For cosmology, the cone vertices are of particular interest since

they represent the positions of observers. Since the model is not directly suitable in this region,

series expansions of the CIVP equations have to be used in the vicinity of the observer. The

outer radial boundary of the model is evolved without constraints but since the purpose of the

model is to represent the verifiable region of a cosmological observer, the region is restricted

by a incoming characteristic connected to the outer limit on the observer’s PNC surface. In

principle, then, the domain of calculation (Figures 4.1 and 4.3) only represents the causally

connected region of a local observer.

The success of the implementation is the measure convergence, which by design is expected

to be second order, and stability. For this purpose, the code was evaluated in Chapter 5 by

comparing the evolution against known solutions of the EdS, LTB and ΛCDM models. The

Bondi-Sachs CIVP was found to be second order convergent in the region approaching the AH

for models with Λ = 0. In the vicinity of the AH the code broke down as expected. The

affine CIVP produced the same level of accuracy up to regions well beyond the AH for the

same models and also for models with Λ 6= 0. It was also demonstrated that errors in initial

conditions propagate without being excessively amplified through the code evolution; i.e. the

size of the error remains of the same order. These results are intended to be the starting point

of further investigation into the model’s behaviour when subjected to realistic observations.

As an illustration of a typical application of the code, it was shown how an LTB model will

behave if evolved from ΛCDM initial data. This is an investigation concerning the observational

ambiguity between inhomogeneities and dark energy. Comparing the historical PNCs, it was

found that the density of the LTB model rises more rapidly than the ΛCDM’s, suggesting

a much younger universe, possibly too young if the trend continues. Further investigation

on the oldest PNCs, demonstrated that density and redshift distributions cannot be matched

by any flat ΛCDM model. This has an important implication: Although the initial values

of the two models can correspond on the current PNC, the histories of the two models are

distinctly different. Therefore, an inhomogeneous early universe can evolve to density and
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redshift observations identical to that of the ΛCDM model. A more fundamental statement

of this result is that while in our current epoch the LTB vs. ΛCDM ambiguity is difficult to

disentangle, this is a feature of the Universe’s current state and not its past. In other words,

if the Universe is inhomogeneous without a cosmological constant, not only is the observer in

a privileged position (near a central point), he also lives at a specific time where the Universe

can appear to be either LTB or ΛCDM.

6.2 Future developments

As demonstrated in this thesis, the development of the affine CIVP model and code provides

a model where parameterized investigations of the evolution of the observable universe can

be done by providing some interpretation of current observations. Future developments are

planned to make provision for the incorporation of actual observations. Measurement of the

redshift-drift planned for the next generation of telescopes, such as the E-ELT looks particularly

promising to provide such input. Data from the E-ELT is, however, still a future prospect. Until

then, data from cosmic chronometers can provide interesting insight on observational models.

In addition, the code can also be expanded to incorporate more general models than the

spherical symmetric dust models investigated in the work presented here. This can provide a

ground for modelling inhomogeneities where the effects of nonlinearity is not fully represented

when suppressing degrees of freedom. Investigating the accumulation of inhomogeneities in

backreaction models would be an interesting example to model in more degrees of freedom than

the typical spherical symmetric models.
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Appendix A

Summary of symbols

A.1 Symbols in cosmology – Chapter 2

A.1.1 Coordinates

Symbol Description Equation
t Cosmic time on the observer world line 2.16
r Comoving radial distance 2.16
θ Comoving spherical latitude angle 2.16
ϕ Comoving spherical longitude angle 2.16
ua 4-velocity (contravariant form) 2.13
ka Ray 4-vector (contravariant form) 2.53
υ Affine parameter 2.9

A.1.2 Observable quantities

Symbol Description Equation
λ Wavelength of EM radiation 2.54
ν Wave frequency of EM radiation 2.55
z Redshift 2.54
n Proper number density 2.67
N Cosmological number count 2.67
dL Luminosity distance 2.63
dD Diameter distance 2.65
m Apparent magnitude 2.64
M Absolute magnitude 2.64
L Absolute luminosity 2.63
F Radiative flux 2.63
dS Intrinsic surface area 2.65
dΩ Solid angle dS subtends to 2.65
J Completeness parameter 2.70
Mg Mass per galaxy 2.71
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A.1.3 Physical quantities

Symbol Description Equation
ρ Density 2.20
p Pressure 2.20
Λ Cosmological constant 2.10
H Hubble rate 2.21
H0 Hubble constant H(t = 0) 2.21
q0 Deceleration parameter 2.25
Ωi Density parameter 2.24
a(t) FLRW scale factor 2.16
k FLRW curvature index 2.16

E(r) LTB curvature function 2.31
M(r) LTB mass function 2.31
tB(r) LTB bang time function 2.37-2.39
R(t, r) LTB scale factor 2.31
c Speed of light
G Gravitational constant
κ Gravitational coefficient

A.2 Symbols in NR – Chapters 3 and 4

Symbol Description Equation
u Proper time on a time-like geodesic 3.1
r Diameter distance 3.1
θ Spherical latitude angle 3.1
ϕ Spherical longitude angle 3.1
β Bondi-Sachs cross term coefficient 3.1
W Bondi-Sachs time coefficient term 3.1
λ Affine parameter 3.36
va 4-velocity (contravariant form) 3.11
r̂ r(λ) 3.39

Ŵ Affine metric time coefficient term 3.39

R̂ Affine CIVP auxiliary variable 4.20

Ŝ Affine CIVP auxiliary variable 4.19

T̂ Affine CIVP auxiliary variable 4.22

Û Affine CIVP auxiliary variable 3.54
r̃ Comoving radial distance 3.16
g̃ab Metric in comoving coordinates 3.18
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A.3 Relativistic symbols

Symbol Description Equation
gab Metric tensor 2.1
Γabc Christoffel symbols 2.2
Rdabc Riemann tensor 2.4
Rab Ricci tensor 2.5
R Ricci scalar 2.6
Tab Stress tensor 2.17

A.4 Abbreviations
˜

The following table refers to abbreviations used in the text. The reference will point to the
definition of the term if it was explicitly defined, otherwise, to its first usage.

Abbreviation Description Reference
AH Apparent horizon Section 2.2.3
CIVP Characteristic initial value problem Chapter 3 (p. 44)
CMB Cosmic microwave background Section 1.1.2
CS Comoving synchronous Section 2.1.1
EFEs Einstein field equations Section 2.1.1
EMR Electromagnetic radiation Section 1.1
FLRW Friedman Lemâıtre Robertson Walker Section 1.1.2
FR Fluid-ray Section 2.3.3
HST Hubble space telescope Section 2.2.1
ΛCDM Λ cold dark matter Section 2.2.1
LSS Last scattering surface Section 1.1
LTB Lemâıtre Tolman Bondi Section 2.2.2
NR Numerical relativity Section 2.17
OC Observational cosmology Section 1.1.3
PNC Past null cone Section 2.2.3
SNIa Type Ia supernovae Section 2.1.2
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Appendix B

Maple code

B.1 Affine CIVP

#==============================================================================

#

# Determine the hypersurface and evolution equations for the Affine CIVP

#

#==============================================================================

restart;

#Setup coordinates

x := array(1 .. 4);

x[1] := u;

x[2] := lambda;

x[3] := theta;

x[4] := varphi;

#Setup metric

g := array(1 .. 4, 1 .. 4);

for a to 4 do

for b to 4 do

g[a, b] := 0

end do

end do;

g[1, 1] := -1-W(u, lambda)/r(u, lambda);

g[1, 2] := -1;

g[2, 1] := -1;

g[3, 3] := r(u, lambda)^2;

g[4, 4] := r(u, lambda)^2*sin(theta)^2;

#Setup contravariant metric

with(linalg);

ginv := inverse(g);

#Determine Christoffel symbols

for a to 4 do

for b to 4 do
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for c to 4 do

christoffel[a, b, c] := 0;

for d to 4 do

christoffel[a, b, c] := christoffel[a, b, c]

+(1/2)*ginv[a, d]*(diff(g[d, b], x[c])+diff(g[c, d], x[b])

-(diff(g[b, c], x[d])))

end do

end do

end do

end do;

#Determine Riemann tensor

for a to 4 do

for b to 4 do

for c to 4 do

for d to 4 do

Riemann[a, b, c, d] := diff(christoffel[a, b, d], x[c])

-(diff(christoffel[a, b, c], x[d]));

for e to 4 do

Riemann[a, b, c, d] := simplify(Riemann[a, b, c, d]

+christoffel[a, e, c]*christoffel[e, b, d]

-christoffel[a, e, d]*christoffel[e, b, c])

end do

end do

end do

end do

end do;

#Determine Ricci tensor

Ricci := array(1 .. 4, 1 .. 4);

for a to 4 do

for b to 4 do

Ricci[a, b] := 0;

for c to 4 do

Ricci[a, b] := simplify(Ricci[a, b]+Riemann[c, a, c, b])

end do

end do

end do;

#Setup covariant velocity

v := array(1 .. 4);

v[1] := v0(u, lambda);

v[2] := v1(u, lambda);

v[3] := 0; v[4] := 0;

#Setup stess tensor

for a to 4 do

for b to 4 do

T[a, b] := simplify(v[a]*v[b]*rho(u, lambda))

end do

end do;

#Stress scalar

Tscalar := -rho(u, lambda);

#Determine the EFEs
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for a to 4 do

for b to 4 do

Einstein[a, b] := simplify(Ricci[a, b]

-kappa(T[a, b]-(1/2)*Tscalar*g[a, b])-Lambda*g[a, b] = 0)

end do

end do;

#Determine the matter conservation equation

convmat := 0;

for a to 4 do

for b to 4 do

convmat := convmat+(diff(rho(u, lambda), x[a]))*v[b]*ginv[a, b]

+rho(u, lambda)*(diff(v[a], x[b]))*ginv[a, b];

for c to 4 do

convmat := convmat-rho(u, lambda)*christoffel[c, a, b]*v[c]*ginv[a, b]

end do

end do

end do;

matter := simplify(isolate(convmat = 0, diff(rho(u, lambda), u)));

#Determine the momentum conservation equations

convmom := array(1 .. 4);

for i to 4 do

convmom[i] := 0

end do;

for a to 4 do

for b to 4 do

for c to 4 do

convmom[a] := convmom[a]+rho(u, lambda)*(diff(v[a], x[b]))*v[c]*ginv[b, c];

for d to 4 do

convmom[a] := convmom[a]

-rho(u, lambda)*christoffel[d, a, b]*v[d]*v[c]*ginv[b, c]

end do

end do

end do

end do;

momentum := simplify(isolate(convmom[2] = 0, diff(v1(u, lambda), u)));

#Display hypersurface equations

eval(sort(simplify(isolate(Einstein[1, 2], diff(diff(W(u, lambda), lambda), lambda))), desc));

eval(isolate(Einstein[2, 2], diff(r(u, lambda), lambda)));

eval(sort(simplify(isolate(Einstein[3, 3], diff(diff(r(u, lambda), u), lambda))), desc));

#Display evolution equations

eval(momentum);

eval(matter);
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Appendix C

Fortran code

The Fortran code for the affine CIVP model is listed in this appendix. As supporting docu-
mentation to the code, a conceptual flowchart, a call graph and a list of the routines in the
program is also presented.
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C.1 Code layout

C.1.1 Flowchart

Calculate CIVP (B)

Process data (C)

Initialise program variables (A)

Start

Read program 
parameters and 

input data
(A.1)

Initialise program and 
set initial values

(A.2)

Calculate hypersurface 
equations on time step i

λ=0...λmax

(B.1)

Calculate evolution equations on 
time step i and i+1

(B.2)

Last time 
step

STOP

Write program 
output

(C.1)

Advance to time step (i+1) 
values of v1 and ρ.

(B.3)

Figure C.1: Conceptual flowchart for the affine CIVP Fortran code.
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C.1.2 Call graph
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Figure C.2: Call graph for the affine CIVP Fortran code.



C.1.3 Program routines

With reference to Figures C.2 and C.1, Table C.2 summarises the modules of the code.

Procedure File Description Flowchart label
civp affine.civp.for Main program entry point.
readConfig affine.io.for Read the grid resolution and Λ-value. A.1

cosmological constant from the ‘grid.in’ file.
run affine.civp.for Control procedure for program execution.
init affine.civp.for Initialise program variables A
readBlendRange affine.io.for Read the radial region where transition between A.1

the CIVP and series solutions will be done.
readInData affine.io.for Read initial and comparative data from the A.1

‘affine.init.in’ file.
solve affine.civp.for Entry point for calculation procedures. B
calcCIVP affine.calc.evol.for Control procedure for main calculations. B
calcS affine.calc.hyp.for Calculate the variable S. B.1 & 2
calcSr affine.calc.hyp.for Calculate the variables S and r. B.1 & 2
calcRRTW affine.calc.hyp.for Calculate the variables R, W and T . B.1 & 2
dSdl affine.model.for Calculate equation (4.19). B.1 & 2
dRdl affine.model.for Calculate equation (4.20). B.1 & 2
dWdl affine.model.for Calculate equation (4.21). B.1 & 2
dTdl affine.model.for Calculate equation (4.22). B.1 & 2
calcv0 affine.calc.evol.for Calculate v0 using (4.23). B.2
dv1du affine.model.for Calculate equation (4.24). B.2
drhodu affine.model.for Calculate equation (4.25). B.2
calcFdu affine.calc.evol.for Calculate ρ,u and v1,u. B.2
calcFduser affine.model.for Calculate ρ,u and v1,u using a series expansion. B.2
calclmax affine.calc.hyp.for Calculate the radial maximum as an incoming. B.2

characteristic line.
dfdr5 affine.support.for Support procedure to calculate a 5-point radial derivative. B.2

Table C.1: Affine CIVP code modules.



Table C.2 continue.

Procedure File Description Flowchart label
process affine.civp.for Entry point for post processing of the data i.e. C

writing to output files etc.
writeResults affine.io.for Control procedure for writing results. C.1
writeResultsData affine.io.for Write the results in the ‘.dat’ files. C.1

Table C.2: Affine CIVP code modules.



C.2 Code

c =================================================================

c PROGRAM TO SOLVE THE CHARACTERISTIC INITIAL VALUE PROBLEM

c ==================================================================

program civp

implicit none

integer :: NI, NJ

real*8 :: Llambda

character(8) :: date

character(10) :: time

call readConfig(NI, NJ, Llambda)

call date_and_time(DATE=date, TIME=time)

call system(’cls’)

write(*,*) ’=================================================’

write(*,*) ’AFFINE CIVP CODE CALCULATION ’, ’ ’,date, ’ ’,time

write(*,*) ’=================================================’

write(*,*) ’Input report’

write(*,*) ’-------------------------------------------------’

write(*,*) ’R-grid : ’, NJ

write(*,*) ’U-grid : ’, NI

write(*,*) ’-------------------------------------------------’

write(*,*) ’Progress report’

write(*,*) ’-------------------------------------------------’

call run(NI,NJ,Llambda)

call date_and_time(DATE=date, TIME=time)

write(*,*) ’-------------------------------------------------’

write(*,*) ’Calculation completed ’, ’ ’,date, ’ ’,time

write(*,*) ’=================================================’

stop

end program

include ’affine.support.for’

include ’affine.model.for’

include ’affine.calc.hyp.for’

include ’affine.calc.evol.for’

include ’affine.io.for’

include ’affine.units.for’

c ------------------------------------------------------------------

c Driver routine

c ------------------------------------------------------------------

subroutine run(NI,NJ,Llambda)
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implicit none

!Parameters

integer, intent(in) :: NI, NJ

real*8, intent(in) :: Llambda

!Grid

real*8 :: lambda(NJ), u(NI,NJ)

!Values to calculate

real*8 :: r(NI,NJ), W(NI,NJ), Ru(NI,NJ)

real*8 :: v1(NI,NJ), v0(NI,NJ), rho(NI,NJ)

real*8 :: v1u(NI,NJ)

!Support variables

real*8 :: dell, delu

real*8 :: lbmin, lbmax

integer :: ljmax(NI), uimax

real*8 :: lmax(NI)

write(*,*) ’Reading input data...’

call init(lambda, u, dell, delu

& , r, W, v0, v1, rho

& , NI, NJ, ljmax, uimax

& , lbmin, lbmax, Llambda)

write(*,*) ’Solving CIVP equations...’

call solve(lambda, u, delu, dell

& , r, W, v0, v1, rho, v1u

& , NI, NJ, ljmax, uimax, lmax

& , lbmin, lbmax, Llambda)

write(*,*) ’’

write(*,*) ’Processing data...’

call process(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , NI, NJ

& , ljmax, lmax)

end subroutine

c ------------------------------------------------------------------

c Set initial values.

c ------------------------------------------------------------------

subroutine init(lambda, u, dell, delu

& , r, W, v0, v1, rho

& , NI, NJ, ljmax, uimax

& , lbmin, lbmax, Llambda)

implicit none
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!Subroutine parameters

integer, intent(in) :: NI, NJ

real*8, intent(inout) :: lambda(NJ), u(NI,NJ), dell, delu

real*8, intent(inout) :: r(NI,NJ), W(NI,NJ)

real*8, intent(inout) :: v0(NI,NJ), v1(NI,NJ), rho(NI,NJ)

integer, intent(inout) :: ljmax(NI)

integer, intent(inout) :: uimax

real*8, intent(inout) :: lbmin, lbmax

real*8, intent(in) :: Llambda

!Local variables

integer :: i,j

real*8 :: rI(NJ), v1I(NJ), rhoI(NJ)

real*8 :: lmax, umax

!Setup grid

call readGridData(lambda, u

& , NI, NJ)

!Read initial data

call readInitData(rI, v1I, rhoI

& , NJ)

call readBlendRange(lbmin, lbmax)

umax = u(1,1) - u(NI,1)

lmax = lambda(NJ)

delu = umax / (NI-1)

dell = lmax / (NJ-1)

!Display parameters

write(*,*) ’Uo-Umin : ’, umax

write(*,*) ’U-min : ’, u(NI, NJ)

write(*,*) ’lambda-max : ’, lmax

write(*,*) ’Del-U : ’, delu

write(*,*) ’Del-lambda : ’, dell

write(*,*) ’l-bmin : ’, lbmin

write(*,*) ’l-bmax : ’, lbmax

write(*,*) ’Lambda : ’, Llambda

write(*,*) ’CFL : ’, abs(delu/dell)

write(*,*) ’-------------------------------------------------’

write(*,*) ’’

!Find uimax

uimax = NI

!Initialise r, W, v0, v1 & rho

do i=1,NI

do j=1,NJ

r(i,j) = 0.D0

W(i,j) = 0.D0

v0(i,j) = 0.D0

v1(i,j) = 0.D0

rho(i,j) = 0.D0
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end do

end do

!Set boundary conditions on the current PNC

do j=1,NJ

r(1,j) = rI(j)

rho(1,j) = rhoI(j)

v1(1,j) = v1I(j)

end do

call readRadialMax(ljmax, NI)

end subroutine

c ------------------------------------------------------------------

c Solve the CIVP

c ------------------------------------------------------------------

subroutine solve(lambda, u, delu, dell

& , r, W, v0, v1, rho, v1u

& , NI, NJ, ljmax, uimax, lmax

& , lbmin, lbmax, Llambda)

implicit none

!Subroutine parameters

integer, intent(in) :: NI, NJ

real*8, intent(in) :: lambda(NJ), u(NI,NJ), dell, delu

real*8, intent(inout) :: r(NI,NJ), W(NI,NJ)

real*8, intent(inout) :: v0(NI,NJ), v1(NI,NJ), rho(NI,NJ)

real*8, intent(inout) :: v1u(NI,NJ)

real*8, intent(inout) :: lmax(NI)

integer, intent(inout) :: ljmax(NI)

integer, intent(in) :: uimax

real*8, intent(in) :: lbmin, lbmax, Llambda

!Local variables

integer :: i, j, report, p

report = NI/10

do i=1,uimax-1

if(mod(i,report) == 0 .or. i==uimax-1) then

write(*,*) ’ time step=’, i

end if

call calcCIVP(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , NI, NJ, i, ljmax(i)

& , lbmin, lbmax, Llambda)

end do

write(*,*) ’’

write(*,*) ’Calculating incoming geodesic cut-off...’
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write(*,*) ’ lmax 1: ’, lmax(1)

write(*,*) ’ lmax NI: ’, lmax(NI)

end subroutine

c ------------------------------------------------------------------

c Process data and store in a file.

c ------------------------------------------------------------------

subroutine process(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , NI, NJ

& , ljmax, lmax)

implicit none

!Parameters

integer, intent(in) :: NI, NJ, ljmax(NI)

real*8, intent(in) :: lambda(NI,NJ), u(NI,NJ)

real*8, intent(in) :: r(NI,NJ), W(NI,NJ)

real*8, intent(in) :: v0(NI,NJ), v1(NI,NJ), rho(NI,NJ)

real*8, intent(in) :: v1u(NI,NJ)

real*8, intent(in) :: delu, dell

real*8, intent(in) :: lmax(NI)

write(*,*) ’-------------------------------------------------’

call writeResults(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , NI, NJ

& , ljmax, lmax)

end subroutine

c ------------------------------------------------------------------

c Calculate dSdl

c ------------------------------------------------------------------

real*8 function dSdl(S, lambda, par)

implicit none

!Parameters

real*8, intent(in) :: lambda !Required for general ODE function

real*8, intent(in) :: S !Required for general ODE function

real*8, intent(in) :: par(7)

!Local variables

real*8, parameter :: PI = 3.141592653589793

real*8 :: r, v1, rho

real*8 :: kappa, Llambda, G, c

c = 2.999e8
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G = 6.667e-11

kappa = 8.D0*PI !*G !/c**4.D0

!Extract parameters

r = par(1)

v1 = par(2)

rho = par(3)

!Calculate dSdl

dSdl = -0.5D0*kappa*r*rho*v1**2.D0

end function

c ------------------------------------------------------------------

c Calculate drdl

c ------------------------------------------------------------------

real*8 function drdl(r, lambda, par)

implicit none

!Parameters

real*8, intent(in) :: lambda !Required for general ODE function

real*8, intent(in) :: r !Required for general ODE function

real*8, intent(in) :: par(7)

!Local variables

real*8, parameter :: PI = 3.141592653589793

real*8 :: S

!Extract parameters

S = par(1)

!Calculate drdl

drdl = S

end function

c ------------------------------------------------------------------

c Calculate dRdl

c ------------------------------------------------------------------

real*8 function dRRdl(RR, lambda, par)

implicit none

!Parameters

real*8, intent(in) :: lambda !Required for general ODE function

real*8, intent(in) :: RR !Required for general ODE function

real*8, intent(in) :: par(7)

!Local variables

real*8, parameter :: PI = 3.141592653589793

real*8 :: r, S, T, W, v1, rho, dSdl

real*8 :: kappa, Llambda, G, c
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c = 2.999e8

G = 6.667e-11

kappa = 8.D0*PI !*G !/c**4.D0

!Llambda = -1.25e-2

!Extract parameters

r = par(1)

S = par(2)

T = par(3)

W = par(4)

v1 = par(5)

rho = par(6)

Llambda = par(7)

dSdl = -0.5D0*kappa*r*rho*v1**2.D0

!Calculate drdl

if (r == 0) then

dRRdl = 0.D0

else

dRRdl = 0.5D0*(T*S

& + r*dSdl

& + W*dSdl

& - 2.D0*RR*S

& - 1.D0

& + S**2.D0

& + 0.5D0*kappa*rho*r**2.D0

& - Llambda*r**2.D0)/r

endif

!write(*,*) dRRdl

end function

c ------------------------------------------------------------------

c Calculate dTdl

c ------------------------------------------------------------------

real*8 function dTdl(T, lambda, par)

implicit none

!Parameters

real*8, intent(in) :: lambda !Required for general ODE function

real*8, intent(inout) :: T !Required for general ODE function

real*8, intent(in) :: par(8)

!Local variables

real*8, parameter :: PI = 3.141592653589793

real*8 :: r, RR, S, W, v0, v1, rho, dSdl, dRRdl

real*8 :: kappa, Llambda, G, c

c = 2.999e8

G = 6.667e-11

kappa = 8.D0*PI !*G !/c**4.D0

!Llambda = -1.25e-2
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!Extract parameters

r = par(1)

RR = par(2)

S = par(3)

T = par(4)

W = par(5)

v1 = par(6)

rho = par(7)

Llambda = par(8)

v0 = 0.5D0*((1.D0+W/r)*v1 + 1.D0/v1)

dSdl = -0.5D0*kappa*r*rho*v1**2.D0

dRRdl = 0.5D0*(T*S

& + r*dSdl

& + W*dSdl

& - 2.D0*RR*S

& - 1.D0

& + S**2.D0

& + 0.5D0*kappa*rho*r**2.D0

& - Llambda*r**2.D0)/r

!Calculate dTdl

if( r==0) then

dTdl = 0.D0

else

dTdl = W/r*dSdl

& + 4.D0*dRRdl

& + 2.D0*kappa*(v0*v1*rho*r

& - 0.5D0*rho*r)

& + 2.D0*Llambda*r

endif

end function

c ------------------------------------------------------------------

c Calculate dWdl

c ------------------------------------------------------------------

real*8 function dWdl(W, lambda, par)

implicit none

!Parameters

real*8, intent(in) :: lambda !Required for general ODE function

real*8, intent(in) :: W !Required for general ODE function

real*8, intent(in) :: par(7)

!Local variables

real*8 :: T

!Extract parameters

T = par(1)
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!Calculate drdl

dWdl = T

end function

c ------------------------------------------------------------------

c Calculate the value of v0

c ------------------------------------------------------------------

real*8 function v0eq(Vw, v1)

implicit none

!Parameters

real*8, intent(in) :: Vw, v1

!Calculate v1 time derivative

v0eq = 1.D0/2.D0*Vw*v1

& + 1.D0/2.D0*1.D0/v1

end function

c ------------------------------------------------------------------

c Calculate dv1du

c ------------------------------------------------------------------

real*8 function dv1du(Vw, dVwdl, v0, v1 ,dv1dl)

implicit none

!Parameters

real*8, intent(in) :: Vw, dVwdl

real*8, intent(in) :: v0, v1 ,dv1dl

!write(*,*) Vw, dVwdl, v0, v1 ,dv1dl

!Calculate v1 time derivative

dv1du = 1.D0/v1*((Vw*v1 - v0)*dv1dl

& + 0.5D0*(v1**2.D0)*dVwdl)

end function

c ------------------------------------------------------------------

c Calculate drhodu

c ------------------------------------------------------------------

real*8 function drhodu(Vw, dVwdl, r, drdl, RR, v0, dv0dl

& ,v1 ,dv1dl, rho, drhodl, dv1du)

implicit none

!Parameters

real*8, intent(in) :: Vw, dVwdl, r, drdl, RR

real*8, intent(in) :: v0, dv0dl,v1 ,dv1dl, rho, drhodl

123



real*8, intent(in) :: dv1du

!Calculate rho time derivative

drhodu = 1.D0/v1*(rho*(

& Vw*(2.D0*v1/r*drdl + dv1dl)

& - (2.D0*v0/r*drdl + dv0dl)

& + dVwdl*v1

& - (2.D0*RR/r)*v1)

& + (Vw*v1 - v0)*drhodl

& - rho*dv1du)

end function

c ------------------------------------------------------------------

c Calculate dFdu using a series solution

c - the functions were generated with Maple

c ------------------------------------------------------------------

subroutine dFduser(r1, r2, r3, r4

& , rhor1, rhor2, rhor3, rhor4

& , v1r1, v1r2, v1r3, v1r4

& , rho0u, rho1u, rho2u, rho3u

& , v10u, v11u, v12u, v13u

& , Llambda)

implicit none

real*8, intent(in) :: r1, r2, r3, r4

real*8, intent(in) :: rhor1, rhor2, rhor3, rhor4

real*8, intent(in) :: v1r1, v1r2, v1r3, v1r4

real*8, intent(inout) :: rho0u, rho1u, rho2u, rho3u

real*8, intent(inout) :: v10u, v11u, v12u, v13u

real*8, intent(in) :: Llambda

real*8 :: rho0, rho1, rho2, rho3

real*8 :: v10, v11, v12, v13

real*8 :: v00, v01, v02, v03

!Local variables

real*8, parameter :: PI = 3.141592653589793

real*8 :: kappa

kappa = 8.D0*PI

rho0=rhor1

rho1=-(-r2**2*rhor3+r2**2*rho0+rhor2*r3**2-rho

#0*r3**2)/r2/r3/(-r3+r2)

rho2=(rhor2*r3-rho0*r3-r2*rhor3+r2*rho0)/r2/r3

#/(-r3+r2)

v10=v1r1

v11=-(-r2**3*r3**2*v1r4+r3**2*v1r1*r2**3-v1r
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#1*r4**2*r2**3+v1r3*r4**2*r2**3-r3**3*v1r1

#*r2**2+r2**2*r3**3*v1r4-v1r3*r4**3*r2**2+

#v1r1*r4**3*r2**2+r3**3*v1r1*r4**2-r3**3*v1

#r2*r4**2-r4**3*r3**2*v1r1+r4**3*r3**2*v1r2

#)/r2/r3/r4/(r2*r4**2-r2**2*r4+r3*r2**2-r

#3*r4**2+r3**2*r4-r3**2*r2)

v12=(-r4*r3**3*v1r2+r4*r3**3*v1r1+r3**3*r2*

#v1r4-r3**3*v1r1*r2+r3*v1r1*r2**3+r3*r4**3*

#v1r2-v1r1*r4**3*r3-r3*r2**3*v1r4-v1r3*r4**3

#*r2+v1r3*r4*r2**3-v1r1*r4*r2**3+v1r1*r4**3

#*r2)/(-r4+r3)/r4/r3/(r3*r4-r3*r2+r2**2-r4

#*r2)/r2

v13=-(-v1r3*r4**2*r2+v1r1*r4**2*r2+v1r3*r4*r

#2**2-v1r1*r4*r2**2-r2**2*r3*v1r4+r3*v1r1*r

#2**2+r3*v1r2*r4**2-r3**2*v1r2*r4-r3*v1r1*r

#4**2+r3**2*v1r1*r4+r2*r3**2*v1r4-r3**2*v1r

#1*r2)/r2/r3/r4/(r2*r4**2-r2**2*r4+r3*r2**

#2-r3*r4**2+r3**2*r4-r3**2*r2)

v10u = 0.D0

v11u=-v11**2-kappa*rho0/0.6D1-Llambda/0.3D1

v12u=-rho1*kappa/0.8D1+0.3D1/0.8D1*kappa*v11*rho0

#+0.10D2/0.3D1*0.3141592654D1*rho0*v11+v11u*v11-v11

#**3/0.2D1-0.3D1*v11*v12+v11*Llambda

v13u=0.D0

rho0u=-3*rho0*v11

rho1u=-dble(6*rho0*v11**2)+dble(rho0**2*kappa)/0.2

#D1+dble(rho0*Llambda)-dble(4*rho0*v12)-0.8D1/0.3D1*

#dble(rho0**2)*0.3141592654D1-dble(4*rho1*v11)

rho2u=-0.7D1*0.3141592654D1*v11*rho0**2-0.5D1*v13*

#rho0+0.23D2/0.24D2*rho1*kappa*rho0-0.3D1/0.8D1*rho

#0**2*v11*kappa-0.15D2*v11*v12*rho0+0.4D1/0.3D1*

#rho1*Llambda-0.15D2/0.2D1*v11**2*rho1-0.10D2*v11*

#*3*rho0-rho0*Llambda*v11-0.5D1*0.3141592654D1*rho0*

#rho1-0.5D1*v11*rho2-0.5D1*v12*rho1

rho3u=0.D0

end subroutine

c ================================================================= =

c ROUTINES TO SOLVE THE HYPERSURFACE EQUATIONS OF THE AFFINE CIVP

c ==================================================================

c ==================================================================

c ------------------------------------------------------------------
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c Solve the differential equation for S using a centrel step

c method.

c ------------------------------------------------------------------

subroutine calcS(lambda, S, r, v1, rho, dell, NI, NJ, i)

implicit none

!Parameters

integer, intent(in) :: NI, NJ, i

real*8, intent(in) :: lambda(NJ), r(NI,NJ)

real*8, intent(in) :: rho(NI,NJ), v1(NI,NJ)

real*8, intent(in) :: dell

real*8, intent(inout) :: S(NI,NJ)

!Local variables

real*8, parameter :: PI = 3.141592653589793

integer :: j, p

real*8 :: dSdl, dSdl1, dSdl2

real*8 :: yp, par(7)

!Initialise par

do p=1,7

par(p) = 0.D0

end do

!Calculate S

S(i,1) = 1.D0

do j=2,NJ

par(1) = r(i,j-1)

par(2) = v1(i,j-1)

par(3) = rho(i,j-1)

dSdl1 = dSdl(S(i,j-1), lambda(j-1), par)

par(1) = r(i,j)

par(2) = v1(i,j)

par(3) = rho(i,j)

dSdl2 = dSdl(S(i,j), lambda(j), par)

S(i,j) = S(i,j-1) + 0.5D0*dell*(dSdl1+dSdl2)

end do

end subroutine

c ------------------------------------------------------------------

c Solve the differential equation for S and r alternating using

c a centrel step method.

c ------------------------------------------------------------------

subroutine calcSr(lambda, S, r, v1, rho, dell, NI, NJ, i)

implicit none
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!Parameters

integer, intent(in) :: NI, NJ, i

real*8, intent(in) :: lambda(NJ)

real*8, intent(in) :: rho(NI,NJ), v1(NI,NJ)

real*8, intent(in) :: dell

real*8, intent(inout) :: S(NI,NJ), r(NI,NJ)

!External routines

!external dSdl

!Local variables

real*8, parameter :: PI = 3.141592653589793

integer :: j, p, m

real*8 :: dSdl, dSdl1, dSdl2

real*8 :: drdl, drdl1, drdl2

real*8 :: yp, par1(7), par2(7), Sp, delS

!Initialise par

do p=1,7

par1(p) = 0.D0

par2(p) = 0.D0

end do

!Calculate S

S(i,1) = 1.D0

do j=2,NJ

par1(1) = r(i,j-1)

par1(2) = v1(i,j-1)

par1(3) = rho(i,j-1)

dSdl1 = dSdl(S(i,j-1), lambda(j-1), par1)

par2(1) = S(i,j-1)

drdl1 = drdl(r(i,j-1), lambda(j-1), par2)

do m=1,5

par1(1) = r(i,j)

par1(2) = v1(i,j)

par1(3) = rho(i,j)

dSdl2 = dSdl(S(i,j), lambda(j), par1)

S(i,j) = S(i,j-1) + 0.5D0*dell*(dSdl1+dSdl2)

par2(1) = S(i,j)

drdl2 = drdl(r(i,j), lambda(j), par2)

r(i,j) = r(i,j-1) + 0.5D0*dell*(drdl1+drdl2)

end do

end do

end subroutine
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c ==================================================================

c ------------------------------------------------------------------

c Solve the differential equation for r using a central step

c method

c ------------------------------------------------------------------

subroutine calcr(lambda, r, S, dell, NI, NJ, i)

implicit none

!Parameters

integer, intent(in) :: NI, NJ, i

real*8, intent(in) :: lambda(NJ), S(NI,NJ)

real*8, intent(in) :: dell

real*8, intent(inout) :: r(NI,NJ)

!External routines

!external drdl

!Local variables

integer :: j, p

real*8 :: drdl, drdl1, drdl2

real*8 :: par(7)

!Initialise par

do p=1,7

par(p) = 0.D0

end do

!Calculate r

r(i,1) = 0.D0

do j=2,NJ

par(1) = S(i,j-1)

drdl1 = drdl(r(i,j-1), lambda(j-1), par)

par(1) = S(i,j)

drdl2 = drdl(r(i,j), lambda(j), par)

r(i,j) = r(i,j-1) + 0.5D0*dell*(drdl1+drdl2)

end do

end subroutine

c ==================================================================

c ------------------------------------------------------------------

c Solve the differential equations for R, T, W using a central step

c method

c ------------------------------------------------------------------

subroutine calcRRTW(lambda, RR, T, W, r, S, v1, rho, dell

& , NI, NJ, i, Llambda)
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implicit none

!Parameters

integer, intent(in) :: NI, NJ, i

real*8, intent(in) :: lambda(NJ), r(NI,NJ)

real*8, intent(in) :: S(NI,NJ)

real*8, intent(in) :: v1(NI,NJ), rho(NI,NJ)

real*8, intent(in) :: dell

real*8, intent(inout) :: T(NI,NJ), RR(NI,NJ), W(NI,NJ)

real*8, intent(in) :: Llambda

!External routines

!external dTdl

!Local variables

real*8, parameter :: PI = 3.141592653589793

integer :: j, p, m

real*8 :: dRRdl, dRRdl1, dRRdl2

real*8 :: dTdl, dTdl1, dTdl2

real*8 :: dWdl, dWdl1, dWdl2

real*8 :: par1(7), par2(8), par3(7)

real*8 :: rho0, rho1, v11, dfdr5

!Initialise par

do p=1,7

par1(p) = 0.D0

par2(p) = 0.D0

par3(p) = 0.D0

end do

par2(8) = 0.D0

!Calculate T

RR(i,1) = 0.D0

T(i,1) = 0.D0

W(i,1) = 0.D0

do j=2,NJ

do m=1,5

par1(1) = r(i,j-1)

par1(2) = S(i,j-1)

par1(3) = T(i,j-1)

par1(4) = W(i,j-1)

par1(5) = v1(i,j-1)

par1(6) = rho(i,j-1)

par1(7) = Llambda

dRRdl1 = dRRdl(RR(i,j-1), lambda(j-1), par1)

par1(1) = r(i,j)

par1(2) = S(i,j)

par1(3) = T(i,j)

par1(4) = W(i,j)

par1(5) = v1(i,j)
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par1(6) = rho(i,j)

par1(7) = Llambda

dRRdl2 = dRRdl(RR(i,j), lambda(j), par1)

if (j < 1) then

RR(i,j)=-0.7073637596D-1*0.3141592654D1*lambda(j)**3

else

RR(i,j) = RR(i,j-1) + 0.5D0*dell*(dRRdl1+dRRdl2)

endif

par2(1) = r(i,j-1)

par2(2) = RR(i,j-1)

par2(3) = S(i,j-1)

par2(4) = T(i,j-1)

par2(5) = W(i,j-1)

par2(6) = v1(i,j-1)

par2(7) = rho(i,j-1)

par2(8) = Llambda

dTdl1 = dTdl(T(i,j-1), lambda(j-1), par2)

par2(1) = r(i,j)

par2(2) = RR(i,j)

par2(3) = S(i,j)

par2(4) = T(i,j)

par2(5) = W(i,j)

par2(6) = v1(i,j)

par2(7) = rho(i,j)

par2(8) = Llambda

dTdl2 = dTdl(T(i,j), lambda(j), par2)

T(i,j) = T(i,j-1) + 0.5D0*dell*(dTdl1+dTdl2)

par3(1) = T(i,j-1)

dWdl1 = dWdl(W(i,j-1), lambda(j-1), par3)

par3(1) = T(i,j)

dWdl2 = dWdl(W(i,j), lambda(j), par3)

if(j<1) then

W(i,j)=0.7073552906D

# -1*0.3141592654D1*lambda(j)**3+0.4715641081D

# -1*0.3141592654D1*lambda(j)**4

else

W(i,j) = W(i,j-1) + 0.5D0*dell*(dWdl1+dWdl2)

endif

end do

end do

end subroutine

c ------------------------------------------------------------------

c Calculate the incoming characteristic cut-off line.

c ------------------------------------------------------------------
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subroutine calclmax(ljmax, lambda, delu, dell

& , W, ni, nj, lmax)

implicit none

integer, intent(in) :: ni, nj

integer, intent(inout) :: ljmax(ni)

real*8, intent(in) :: lambda(nj), delu, dell, W(ni,nj)

real*8, intent(inout) :: lmax(ni)

real*8 :: lp, lprev, tol, Wp

integer :: i, jmax

tol = 1.0e-7

lp = lambda(nj)

lmax(1) = lambda(nj)

ljmax(1) = nj

do i=2,ni

!predict the lambda value

lp = lmax(i-1) - 0.5D0*delu

lprev = 0.D0

do while(abs(lp - lprev) > tol)

!store previous value

lprev = lp

!interpolate to the closest W value

jmax = lp/dell

if (jmax < 2) then

jmax = 2

endif

Wp = W(i,jmax)

& + (lp-lambda(jmax))*(W(i,jmax-1)

& - W(i,jmax))/dell

!correct the lambda value

lp = lmax(i-1) - 0.5D0*(1+Wp/lp)*delu

end do

lmax(i) = lp

ljmax(i) = jmax

end do

end subroutine

c ------------------------------------------------------------------

c Calculate the next step for the velocity and density using

c a finite difference iteration to the half step
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c ------------------------------------------------------------------

subroutine calcCIVP(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , NI, NJ, i, jmax

& , lbmin, lbmax

& , Llambda)

implicit none

!Subroutine parameters

real*8, intent(in) :: lambda(NJ), u(NI,NJ)

real*8, intent(inout) :: r(NI,NJ), W(NI,NJ)

real*8, intent(inout) :: v0(NI,NJ), v1(NI,NJ), rho(NI,NJ)

real*8, intent(inout) :: v1u(NI,NJ)

real*8, intent(in) :: dell, delu

integer, intent(in) :: NI, NJ, i, jmax

real*8, intent(in) :: lbmin, lbmax, Llambda

!Local variables

integer :: j, m

real*8 :: Frho, Fv1, Frhop, Fv1p

real*8 :: rp(NI,NJ), Wp(NI,NJ)

real*8 :: S(NI,NJ), RR(NI,NJ), T(NI,NJ)

real*8 :: Sp(NI,NJ), RRp(NI,NJ), Tp(NI,NJ)

real*8 :: v0p(NI,NJ), v1p(NI,NJ), rhop(NI,NJ)

real*8, parameter :: PI = 3.141592653589793D0

!Initialise local matter variables

do j=1,jmax

rp(i,j) = r(i,j)

rhop(i,j) = rho(i,j)

v1p(i,j) = v1(i,j)

RR(i,j) = 0.D0

T(i,j) = 0.D0

S(i,j) = 0.D0

W(i,j) = 0.D0

end do

!Calculate hypersurface variables on previous step

do m=1,5

call calcS(lambda, S, r, v1, rho, dell, NI, NJ, i)

call calcRRTW(lambda, RR, T, W, r, S, v1, rho, dell

& , NI, NJ, i, Llambda)

call calcv0(r, v0, v1, W

& , NI, NJ, i, jmax, 1)

end do

do j=1,jmax

rp(i,j) = r(i,j)
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Sp(i,j) = S(i,j)

RRp(i,j) = RR(i,j)

Wp(i,j) = W(i,j)

Tp(i,j) = T(i,j)

v1p(i,j) = v1(i,j)

v0p(i,j) = v0(i,j)

end do

!Iterative loop

do m=1,5

call calcSr(lambda, Sp, rp, v1p, rhop, dell, NI, NJ, i)

call calcRRTW(lambda, RRp, Tp, Wp, rp, Sp, v1p, rhop, dell

& , NI, NJ, i, Llambda)

call calcv0(rp, v0p, v1p, Wp

& , NI, NJ, i, jmax, 1)

do j=1,jmax

!Calculate previous step’s time derivatives

call dFdu(Frho, Fv1, dell

& , lambda, r, W, S(i,j), RR(i,j), v0, v1, rho

& , NI, NJ, j, i, jmax

& , lbmin, lbmax, Llambda)

!Calculate predictor time derivatives

call dFdu(Frhop, Fv1p, dell

& , lambda, rp, Wp, Sp(i,j), RRp(i,j), v0p, v1p, rhop

& , NI, NJ, j, i, jmax

& , lbmin, lbmax, Llambda)

!Calculate rho

rhop(i,j) = rho(i,j) + delu*0.5D0*(Frho + Frhop)

!Calculate v1

v1p(i,j) = v1(i,j) + delu*0.5D0*(Fv1 + Fv1p)

v1u(i,j) = Fv1p

!Calculate r

rp(i,j) = r(i,j) + delu*0.5D0*(RR(i,j) + RRp(i,j))

end do

!stop

end do

!Update to the calculated time step

do j=1,jmax

if (isnan(rhop(i,j))) then
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rho(i+1,j) = rho(i,j)

v1(i+1,j) = v1(i,j)

r(i+1,j) = r(i,j)

else

rho(i+1,j) = rhop(i,j)

v1(i+1,j) = v1p(i,j)

r(i+1,j) = rp(i,j)

endif

end do

end subroutine

c ------------------------------------------------------------------

c Calculate the values of the velocity and density time derivatives

c ------------------------------------------------------------------

subroutine dFdu(Frho, Fv1, dell

& , lambdaa, ra, Wa, S, RR, v0a, v1a, rhoa

& , NI, NJ, j, i, jmax

& , lbmin, lbmax, Llambda)

implicit none

!Subroutine parameters

real*8, intent(inout) :: Frho, Fv1

real*8, intent(in) :: dell, lambdaa(NJ)

real*8, intent(in) :: ra(NI,NJ), Wa(NI,NJ), RR, S

real*8, intent(in) :: v0a(NI,NJ), v1a(NI,NJ), rhoa(NI,NJ)

integer, intent(in) :: NI, NJ, j, i, jmax

real*8, intent(in) :: lbmin, lbmax, Llambda

!Local variables

real*8 :: lambda, r, W, v0, v1, rho

real*8 :: dv0dl, dv1dl, drhodl, dv1du, drhodu

real*8 :: Vw, dVwdl, drdl, dWdl

real*8 :: dfdr5

real*8 :: rho0u, rho1u, rho2u, rho3u

real*8 :: v10u, v11u, v12u, v13u

real*8 :: bf

real*8, parameter :: PI = 3.141592653589793D0

integer :: ser

!Current point values

lambda = lambdaa(j)

r = ra(i,j)

drdl = S

W = Wa(i,j)

v0 = v0a(i,j)

v1 = v1a(i,j)

rho = rhoa(i,j)

!Matter derivatives from five-point formulae

dWdl = dfdr5(Wa, dell, i, j, NI, NJ, jmax)

dv1dl = dfdr5(v1a, dell, i, j, NI, NJ, jmax)

drhodl = dfdr5(rhoa, dell, i, j, NI, NJ, jmax)
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!Calculate dVwdr

Vw = 1.D0 + W/r

!Calculate dVwdr

dVwdl = dWdl/r - W*drdl/(r**2.D0)

!dv0dr from derivative of the normiliased v0 equation

dv0dl = 0.5D0*dv1dl*Vw + 0.5D0*v1*dVwdl

& - 0.5D0*dv1dl/(v1**2.D0)

!Series solution

if( lambda < lbmin ) then

call dFduser(lambdaa(1), lambdaa(2)

& , lambdaa(3), lambdaa(4)

& , rhoa(i,1), rhoa(i,2), rhoa(i,3), rhoa(i,4)

& , v1a(i,1), v1a(i,2), v1a(i,3), v1a(i,4)

& , rho0u, rho1u, rho2u, rho3u

& , v10u, v11u, v12u, v13u, Llambda)

Fv1 = v10u + v11u*lambda + v12u*lambda**(2.D0)

Frho = rho0u + rho1u*lambda + rho2u*lambda**(2.D0)

ser = 0

endif

!Blended series solution

if (lambda>=lbmin .and. lambda<=lbmax) then

call dFduser(lambdaa(1), lambdaa(2)

& , lambdaa(3), lambdaa(4)

& , rhoa(i,1), rhoa(i,2), rhoa(i,3), rhoa(i,4)

& , v1a(i,1), v1a(i,2), v1a(i,3), v1a(i,4)

& , rho0u, rho1u, rho2u, rho3u

& , v10u, v11u, v12u, v13u, Llambda)

!Calculate blend function

bf = 0.5D0

& + 0.5D0*tanh(

& -5.D0+(lambda-lbmin)/(lbmax-lbmin)*10.D0)

!Calculate v1 time derivative

Fv1 = (1.D0-bf)

& *(v10u + v11u*lambda + v12u*lambda**(2.D0))

& + (bf)

& *dv1du(Vw, dVwdl, v0, v1 ,dv1dl)

!Calculate rho time derivative

Frho = (1.D0-bf)

& *(rho0u + rho1u*lambda + rho2u*lambda**(2.D0))

& + (bf)

& *drhodu(Vw, dVwdl, r, drdl, RR, v0, dv0dl

& ,v1 ,dv1dl, rho, drhodl, Fv1)
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ser = 1

endif

!CIVP solution

if (lambda>lbmax) then

!Calculate v1 time derivative

Fv1 = dv1du(Vw, dVwdl, v0, v1 ,dv1dl)

!Calculate rho time derivative

Frho = drhodu(Vw, dVwdl, r, drdl, RR, v0, dv0dl

& ,v1 ,dv1dl, rho, drhodl, Fv1)

ser = 2

endif

end subroutine

c ------------------------------------------------------------------

c Calculate v0

c ------------------------------------------------------------------

subroutine calcv0(r, v0, v1, W

& , NI, NJ, i, jmax, jser)

implicit none

!Parameters

integer, intent(in) :: NI, NJ, i, jmax, jser

real*8, intent(in) :: v1(NI,NJ), W(NI,NJ), r(NI,NJ)

real*8, intent(inout) :: v0(NI,NJ)

!Local variables

integer :: j

real*8 :: Vw, v0eq

do j=1,jmax

if (r(i,j)==0) then

v0(i,j) = -1.D0

else

Vw = 1.D0 + W(i,j)/r(i,j)

v0(i,j) = v0eq(Vw, v1(i,j))

endif

end do

end subroutine

c =================================================================

c GENERAL SUPPORT ROUTINES FOR AFFINE CIVP

c =================================================================
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c ------------------------------------------------------------------

c Calculate radial derivatives using a 5-point stencil

c ------------------------------------------------------------------

real*8 function dfdr5(f, h, i, j, NI, NJ, jmax)

implicit none

real*8, intent(in) :: f(NI,NJ), h

integer, intent(in) :: i, j, NI, NJ, jmax

character :: method

if (j < 3) then

method = ’l’

endif

if (j >= 3 .and. j < jmax-2) then

method = ’m’

endif

if (j >= jmax-2) then

method = ’r’

endif

if (method == ’l’) then

dfdr5 = (-25.D0*f(i,j) + 48.D0*f(i,j+1)

& - 36.D0*f(i,j+2) + 16.D0*f(i,j+3)

& - 3.D0*f(i,j+4))

& /(12.D0*h)

endif

if (method == ’m’) then

dfdr5 = (f(i,j-2) - 8.D0*f(i,j-1)

& + 8.D0*f(i,j+1) - f(i,j+2))

& /(12.D0*h)

endif

if (method == ’r’) then

dfdr5 = -(-25.D0*f(i,j) + 48.D0*f(i,j-1)

& - 36.D0*f(i,j-2) + 16.D0*f(i,j-3)

& - 3.D0*f(i,j-4))

& /(12.D0*h)

endif

end function

c =================================================================

c ROUTINES TO READ CONFIG AND INITIAL DATE AND WRITE RESULTS

c =================================================================

c ------------------------------------------------------------------
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c Read config data file

c ------------------------------------------------------------------

subroutine readConfig(NI, NJ, LLambda)

implicit none

!Subroutine parameters

integer, intent(inout) :: NI, NJ

real*8, intent(inout) :: Llambda

!Local variables

integer :: i,j

open(1,file=’data\grid.in’)

read(1,*) NI, NJ

read(1,*) Llambda

close(1)

end subroutine

c ------------------------------------------------------------------

c Read input data file

c ------------------------------------------------------------------

subroutine readInitData(rI, v1I, rhoI

& , NJ)

implicit none

!Subroutine parameters

integer, intent(in) :: NJ

real*8, intent(inout) :: rI(NJ), v1I(NJ), rhoI(NJ)

!Local variables

integer :: i,j,k

k = 1

open(1,file=’data\affine.init.in’)

do j=1,NJ

read(1,"(E23.16,2E25.16)")

& rI(j), v1I(j), rhoI(j)

end do

close(1)

end subroutine

c ------------------------------------------------------------------

c Read known data file

c ------------------------------------------------------------------
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subroutine readGridData(lambda, u

& , NI, NJ)

implicit none

!Subroutine parameters

integer, intent(in) :: NI, NJ

real*8, intent(inout) :: lambda(NJ), u(NI,NJ)

!Local variables

integer :: i,j,k

k = 1

open(1,file=’data\affine.grid.in’)

do i=1,NI

do j=1,NJ

read(1,"(E23.16,E25.16)")

& lambda(j), u(i,j)

end do

end do

close(1)

end subroutine

c ------------------------------------------------------------------

c Read known data file

c ------------------------------------------------------------------

subroutine readRadialMax(ljmax, NI)

implicit none

!Subroutine parameters

integer, intent(in) :: NI

integer, intent(inout) :: ljmax(NI)

!Local variables

integer :: i, io, ri

real :: r

open(1,file=’data\affine.lmax.in’)

do i=1,NI

read(1,*,iostat=io) ljmax(i)

end do

close(1)

end subroutine

c ------------------------------------------------------------------

c Read known data file
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c ------------------------------------------------------------------

subroutine readKnownData(rE, WE, v0E, v1E, rhoE

& , NI, NJ)

implicit none

!Subroutine parameters

integer, intent(in) :: NI, NJ

!real*8, intent(inout) :: lambda(NJ), u(NI,NJ)

real*8, intent(inout) :: rE(NI,NJ), WE(ni,nj)

real*8, intent(inout) :: V0E(NI,NJ), v1E(NI,NJ), rhoE(NI,NJ)

!Local variables

integer :: i,j,k

real*8 :: lambda, u

k = 1

open(1,file=’data\affine.known.in’)

do i=1,NI

do j=1,NJ

read(1,"(E23.16,2E24.16,3E25.16)")

& lambda, u, rE(i,j)

& , v0E(i,j), v1E(i,j), rhoE(i,j)

end do

end do

close(1)

end subroutine

c ------------------------------------------------------------------

c Read blend range

c ------------------------------------------------------------------

subroutine readBlendRange(lbmin, lbmax)

implicit none

real*8, intent(inout) :: lbmin, lbmax

open(10,file=’data\blend.in’)

read(10,*) lbmin, lbmax

close(10)

end subroutine

c ------------------------------------------------------------------

c Write the results in an output file

c ------------------------------------------------------------------

subroutine writeResults(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u
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& , NI, NJ

& , ljmax, lmax)

implicit none

!Parameters

integer, intent(in) :: NI, NJ, ljmax(NI)

real*8, intent(in) :: lambda(NJ), u(NI,NJ)

real*8, intent(in) :: r(NI,NJ), W(NI,NJ)

real*8, intent(in) :: v0(NI,NJ), v1(NI,NJ), rho(NI,NJ)

real*8, intent(in) :: v1u(NI,NJ)

real*8 :: rE(NI,NJ), WE(NI,NJ)

real*8 :: v0E(NI,NJ), v1E(NI,NJ), rhoE(NI,NJ)

real*8, intent(in) :: delu, dell

real*8, intent(in) :: lmax(NI)

!Local variables

integer :: p1, p2, p3, writefreq

!Read the known data to compare results with

call readKnownData(rE, WE, v0E, v1E, rhoE

& , NI, NJ)

!Trend data parameters

p1 = 2 !NI/100

p2 = NI/2

p3 = NI-1

!Write every NJ/100th value

if (NJ>=51) then

writefreq = 1 !NJ/51

else

writefreq = 1

endif

!Trend data .dat

call writeResultsDAT(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , rE, WE, v0E, v1E, rhoE

& , NI, NJ

& , ljmax, lmax

& , p1, p2, p3, writefreq)

end subroutine

c ------------------------------------------------------------------

c Routines for output formats

c ------------------------------------------------------------------

subroutine writeResultsDAT(lambda, u, dell, delu

& , r, W, v0, v1, rho, v1u

& , rE, WE, v0E, v1E, rhoE
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& , NI, NJ

& , ljmax, lmax

& , p1, p2, p3, writefreq)

implicit none

!Parameters

integer, intent(in) :: NI, NJ, ljmax(NI)

real*8, intent(in) :: lambda(NJ), u(NI,NJ)

real*8, intent(in) :: r(NI,NJ), W(NI,NJ)

real*8, intent(in) :: v0(NI,NJ), v1(NI,NJ), rho(NI,NJ)

real*8, intent(in) :: v1u(NI,NJ)

real*8, intent(in) :: rE(NI,NJ), WE(NI,NJ)

real*8, intent(in) :: v0E(NI,NJ), v1E(NI,NJ), rhoE(NI,NJ)

real*8, intent(in) :: delu, dell

integer, intent(in) :: p1, p2, p3, writefreq

real*8, intent(in) :: lmax(NI)

!Local variables

integer :: i,j, ep

real*8 :: zero, rmax, umax, rhomax, rhoav, error

real*8 :: mu, muE, dL, dLE, z, zE

zero = 0.0

!Beta Trend data

write(*,*) ’ + 1. Writing r-trend data...’

open(1,file=’data\plot\a.r1.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(rE(p1,j)) > 0.D0) then

write(1,*) lambda(j), r(p1,j), rE(p1,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\a.r2.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(rE(p2,j)) > 0.D0) then

write(1,*) lambda(j), r(p2,j), rE(p2,j)

end if

end if

end do

close(1)
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open(1,file=’data\plot\a.r3.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(rE(p3,j)) > 0.D0) then

write(1,*) lambda(j), r(p3,j), rE(p3,j)

end if

end if

end do

close(1)

!Write rho data

write(*,*) ’ + 3. Writing rho trend data...’

open(1,file=’data\plot\c.rho1.dat’)

do j=1,NJ-1 !ljmax(p1)

if(mod(j,writefreq) == 0) then

if (abs(rho(p1,j)) < 5.D0) then

write(1,*) lambda(j), rho(p1,j), rhoE(p1,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\c.rho2.dat’)

do j=1,NJ !ljmax(p2)

if(mod(j,writefreq) == 0) then

if (abs(rho(p2,j)) < 5.D0 .and. rhoE(p2,j).NE.0.D0) then

write(1,*) lambda(j), rho(p2,j), rhoE(p2,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\c.rho3.dat’)

do j=1,NJ !ljmax(p3)

if(mod(j,writefreq) == 0) then

if (abs(rho(p3,j)) < 5.D0 .and. rhoE(p3,j).NE.0.D0) then

write(1,*) lambda(j), rho(p3,j), rhoE(p3,j)

end if

end if

end do

close(1)

!v1 Trend data
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write(*,*) ’ + 4. Writing v1 dat trend data’

open(1,file=’data\plot\d.v11.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(v1E(p1,j)) > 0.D0) then

write(1,*) lambda(j), v1(p1,j), v1E(p1,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\d.v12.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(v1E(p2,j)) > 0.D0) then

write(1,*) lambda(j), v1(p2,j), v1E(p2,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\d.v13.dat’)

do j=1, NJ

if(mod(j,writefreq) == 0) then

if (abs(v1E(p3,j)) > 0.D0) then

write(1,*) lambda(j), v1(p3,j), v1E(p3,j)

end if

end if

end do

close(1)

!Write rho error

write(*,*) ’ + 5. Writing error trend data...’

open(1,file=’data\plot\e.err3.rho.dat’)

do j=1,NJ !ljmax(p3)

if (abs(rho(p3,j)) < 5.D0 .and. rhoE(p3,j).NE.0.D0) then

write(1,*) lambda(j)

& , 100*abs(rho(p3,j) - rhoE(p3,j))/rho(p3,j)

end if

end do

close(1)

open(1,file=’data\plot\e.err3.rho.csv’)
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do j=1,NJ !ljmax(p3)

if (abs(rho(p3,j)) < 5.D0 .and. rhoE(p3,j).NE.0.D0) then

write(1,*) lambda(j), ’,’

& , 100*abs(rho(p3,j) - rhoE(p3,j))/rho(p3,j)

end if

end do

close(1)

! v1 error

open(1,file=’data\plot\e.err3.v1.dat’)

do j=1,NJ !ljmax(p3)

if (abs(v1(p3,j)) < 8.D0 .and. v1E(p3,j).NE.0.D0) then

write(1,*) lambda(j)

& , 100*abs(v1(p3,j) - v1E(p3,j))/abs(v1(p3,j))

end if

end do

close(1)

! z error

open(1,file=’data\plot\e.err3.z.dat’)

do j=1,NJ !ljmax(p3)

if (abs(v1(p3,j)) < 8.D0 .and. v1E(p3,j).NE.0.D0) then

z = abs(1.D0+v1(p3,j))

zE = abs(1.D0+v1E(p3,j))

write(1,*) lambda(j)

& , 100*abs(z - zE)/abs(z)

end if

end do

close(1)

! r error

open(1,file=’data\plot\e.err3.r.dat’)

do j=1,NJ !ljmax(p3)

if ((rE(p1,j)) > 0.D0) then

write(1,*) lambda(j)

& , 100*abs(r(p3,j) - rE(p3,j))/abs(r(p3,j))

end if

end do

close(1)

open(1,file=’data\plot\f.rz1.dat’)
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do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(rE(p1,j)) > 0.D0) then

write(1,*) abs(1.D0+v1(p1,j))

& , abs(1.D0+v1E(p1,j))

& , r(p1,j)

& , rE(p1,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\f.rz2.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(rE(p2,j)) > 0.D0) then

write(1,*) abs(1.D0+v1(p2,j))

& , abs(1.D0+v1E(p2,j))

& , r(p2,j)

& , rE(p2,j)

end if

end if

end do

close(1)

open(1,file=’data\plot\f.rz3.dat’)

do j=1,NJ

if(mod(j,writefreq) == 0) then

if (abs(rE(p3,j)) > 0.D0) then

write(1,*) abs(1.D0+v1(p3,j))

& , abs(1.D0+v1E(p3,j))

& , r(p3,j)

& , rE(p3,j)

end if

end if

end do

close(1)

end subroutine
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Appendix D

Scilab code

The Scilab code is used to generate the input data for the Fortran code. This includes the grid
definition, the initial values and the known solutions. The code listed here is the routines to
generate EdS, bang-time LTB and ΛCDM data using numerical solutions of the transformations
described in Section 3.2.4.

D.1 Einstein-de Sitter transformation

clear();

lines(0);

warning(’off’)

format(’v’,20);

//Caclulate geodesic curve

function dydl = F(lambda,y)

dydl(1) = y(3);

dydl(2) = y(4);

dydl(3) = -2/3*y(1)^(1/3)*y(4)^2;

dydl(4) = -4/3*y(1)^(-1)*y(3)*y(4);

endfunction

//Setup grid resolution

NI = 500;

NJ = 100;

localdir = ’data/’;

//Setup physical region

umin = 1;

lmin = 0;

umax = 0.35;

lmax = 0.597;

//Determine grid size

delu = abs(umin-umax)/(NI-1);

dell = abs(lmax-lmin)/(NJ-1);

u = umin:-delu:umax;

lambda = lmin:dell:lmax;
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//Write to file 1

fd_w1 = mopen(localdir + ’affine.init.in’,’wt’);

format1 = ’%6.16e %6.16e %6.16e\n’

//Write to file 2

fd_w2 = mopen(localdir + ’affine.grid.in’,’wt’);

format2 = ’%6.16e %6.16e\n’

//Write to file 3

fd_w3 = mopen(localdir + ’affine.known.in’,’wt’);

format3 = ’%6.16e %6.16e %6.16e %6.16e %6.16e %6.16e\n’

//Write to file 4

fd_w4 = mopen(localdir + ’affine.lmax.in’,’wt’);

format4 = ’%i\n’

//Write to file 5

fd_w5 = mopen(localdir + ’affine.init.err.in’,’wt’);

format5 = ’%6.16e %6.16e %6.16e %6.16e\n’

printf(’Solving system ...\n’);

printf(’------------------------------------------\n’);

t1 = clock();

for i=1:NI

//Initial data

t0 = u(i);

y0(1) = t0; //t(0_=1

y0(2) = 0; //r(0) = 0

y0(3) = -1; //dt/dlambda = -1

y0(4) = t0^(-2/3); //dr/dlambda = t(0)^(-2/3)

lambda0 = 0;

//Solve ODEs

y = ode(y0, lambda0, lambda, F);

//Calculate r

t = y(1,:); //t (comoving)

x = y(2,:); //x (r-comoving)

rv = x.*t.^(2/3); //Diameter distance

v1v = y(3,:); //dt/dlambda = v1

rlv = y(4,:); //dr/dlambda (not used)

rhov = 1 ./(6*%pi*t.^2);

//Pad v1 data with 0 to get consistent vector sizes

v1n = size(v1v);

if (v1n(2) < NJ) then

n = NJ-v1n(2);

v1z = linspace(0,0,n);

v1 = [v1v,v1z];

else
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v1 = v1v;

end

//Pad rho data with 0 to get consistent vector sizes

rhon = size(rhov);

if (rhon(2) < NJ) then

n = NJ-rhon(2);

rhoz = linspace(0,0,n);

rho = [rhov,rhoz];

else

rho = rhov;

end

//Pad r data with 0 to get consistent vector sizes

rn = size(rv);

if (rn(2) < NJ) then

n = NJ-rn(2);

rz = linspace(0,0,n);

r = [rv,rz];

else

r = rv;

end

//Replace large rho and v1 values with 0

//Not necessary but was relevant for some

//simulations

for j=1:NJ

if (rho(j)>9) then

rho(j) = 0;

end

if (v1(j)<-9) then

v1(j) = 0;

end

end

ljmax = NJ;

//Determine the index of the extent of rho

for j=1:NJ

if (rho(j) == 0) then

ljmax = j;

break;

end

end

//Generate random error

//Write initial data to file

if (i == 1) then

//Generate random errors

rerrz = grand(NJ,1,"nor",0,0.05)+1;

rerrr = grand(NJ,1,"nor",0,0.05)+1;
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rerrrho = grand(NJ,1,"nor",0,0.05)+1;

for j=1:NJ

z = -v1(j)-1;

//v1err = -(1.0 + 1.2*z)

v1err = -(1.0 + rerrz(j)*z)

// mfprintf(fd_w1,format1, 1.2*r(j), v1err, 1.2*rho(j));

mfprintf(fd_w1,format1, rerrr(j)*r(j), v1err, rerrrho(j)*rho(j));

mfprintf(fd_w5,format5, lambda(j), rerrr(j), rerrz(j), rerrrho(j));

end

end

//Write grid data to file

for j=1:NJ

mfprintf(fd_w2,format2,lambda(j),u(i));

end

//Write known data to file

for j=1:NJ

mfprintf(fd_w3,format3,lambda(j),u(i),r(j),v1(j),v1(j),rho(j));

end

//Write known data to file

mfprintf(fd_w4,format4,ljmax);

end

mclose(fd_w1);

mclose(fd_w2);

mclose(fd_w3);

mclose(fd_w4);

mclose(fd_w5);

t2 = clock();

e = etime(t2,t1);

//Report on computation parameters

printf(’\n==========================================\n’);

printf(’ Solution parameters \n’);

printf(’------------------------------------------\n’);

printf(’Elapsed time (min): %2.3f\n’, e/60);

printf(’------------------------------------------\n’);

printf(’NI = %2.f\n’, NI);

printf(’NJ = %2.f\n’, NJ);

printf(’umin = %2.16f\n’, umin);

printf(’umax = %2.16f\n’, umax);

printf(’lmin = %2.16f\n’, lmin);

printf(’lmax = %2.16f\n’, lmax);

printf(’dellambda/delu = %2.16f\n’, dell/delu);

printf(’==========================================’);
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D.2 LTB transformation

clear();

lines(0);

warning(’off’)

format(’v’,20);

function dydl = F(lambda,y)

t = y(1);

r = y(2);

f = y(3);

g = y(4);

dydl(1) = f;

dydl(2) = g;

dydl(3) = -2/27*(-3*t+5*b*r)*(-3*t+2*b*r) ..

/((t-b*r)^(5/3)) *g^2;

dydl(4) = -2/3*b*(5*b*r-6*t) ..

/((-t+b*r)*(-3*t+5*b*r)) *g^2..

+ 4/3*(2*b*r-3*t) ..

/((-t+b*r)*(-3*t+5*b*r)) *f*g;

endfunction

//Setup grid resolution

NI = 500;

NJ = 100;

b = -0.5;

localdir = ’E:/a.civp/code/affine/scilab/a.ltb/data/’;

//Setup physical region

umin = 1;

lmin = 0;

umax = 0.2;

lmax = 0.98;

//Determine grid size

delu = abs(umin-umax)/(NI-1);

dell = abs(lmax-lmin)/(NJ-1);

u = umin:-delu:umax;

lambda = linspace(lmin,lmax,NJ);

//Write to file 1

fd_w1 = mopen(localdir + ’affine.init.in’,’wt’);

format1 = ’%6.16e %6.16e %6.16e\n’

//Write to file 2

fd_w2 = mopen(localdir + ’affine.grid.in’,’wt’);

format2 = ’%6.16e %6.16e\n’

//Write to file 3
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fd_w3 = mopen(localdir + ’affine.known.in’,’wt’);

format3 = ’%6.16e %6.16e %6.16e %6.16e %6.16e %6.16e\n’

//Write to file 4

fd_w4 = mopen(localdir + ’affine.lmax.in’,’wt’);

format4 = ’%i\n’

printf(’Solving system ...\n’);

printf(’------------------------------------------\n’);

t1 = clock();

for i=1:NI

t0 = u(i);

y0(1) = t0;

y0(2) = 0;

y0(3) = -1;

y0(4) = t0^(-2/3);

lambda0 = 0;

y = ode(y0, lambda0, lambda, F);

t = y(1,:);

x = y(2,:);

rv = x.*(t-b*x).^(2/3);

v1v = y(3,:);

rhov = 1 ./(2*%pi*(t-b*x).*(3*t-5*b*x));

v1n = size(v1v);

if (v1n(2) < NJ) then

n = NJ-v1n(2);

v1z = linspace(0,0,n);

v1 = [v1v,v1z];

else

v1 = v1v;

end

rhon = size(rhov);

if (rhon(2) < NJ) then

n = NJ-rhon(2);

rhoz = linspace(0,0,n);

rho = [rhov,rhoz];

else

rho = rhov;

end

rn = size(rv);

if (rn(2) < NJ) then

n = NJ-rn(2);

rz = linspace(0,0,n);

r = [rv,rz];
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else

r = rv;

end

tn = size(t);

if (tn(2) < NJ) then

n = NJ-tn(2);

tz = linspace(0,0,n);

tt = [t,tz];

else

tt = t;

end

xn = size(x);

if (xn(2) < NJ) then

n = NJ-xn(2);

xz = linspace(0,0,n);

xx = [x,xz];

else

xx = x;

end

//z = t.^(-2/3)-1;

for j=1:NJ

if (rho(j)>9) then

rho(j) = 0;

end

if (v1(j)<-9) then

v1(j) = 0;

end

end

ljmax = NJ;

//Determine the index of the extent of rho

for j=1:NJ

if (rho(j) == 0) then

ljmax = j;

break;

end

end

//Write initial data to file

if (i == 1) then

for j=1:NJ

z = -v1(j)-1;

v1err = -(1.0 + 1.2*z)

mfprintf(fd_w1,format1, r(j), v1(j), rho(j));

end
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end

//Write grid data to file

for j=1:NJ

mfprintf(fd_w2,format2,lambda(j),u(i));

end

//Write known data to file

for j=1:NJ

mfprintf(fd_w3,format3,lambda(j),u(i),r(j),v1(j),v1(j),rho(j));

end

//Write known data to file

mfprintf(fd_w4,format4,ljmax);

end

mclose(fd_w1);

mclose(fd_w2);

mclose(fd_w3);

mclose(fd_w4);

t2 = clock();

e = etime(t2,t1);

//Report on computation parameters

printf(’\n==========================================\n’);

printf(’ Solution parameters \n’);

printf(’------------------------------------------\n’);

printf(’Elapsed time (min): %2.3f\n’, e/60);

printf(’------------------------------------------\n’);

printf(’NI = %2.f\n’, NI);

printf(’NJ = %2.f\n’, NJ);

printf(’umin = %2.16f\n’, umin);

printf(’umax = %2.16f\n’, umax);

printf(’lmin = %2.16f\n’, lmin);

printf(’lmax = %2.16f\n’, lmax);

printf(’delr/delu = %2.16f\n’, dell/delu);

printf(’==========================================’);
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D.3 ΛCDM transformation

clear();

lines(0);

warning(’off’)

format(’v’,20);

//Function to solve the coordinates of a affine geodesic

// for the LCDM model

function dydl = F(lambda,y)

t = y(1);

r = y(2);

f = y(3);

g = y(4);

dydl(1) = f;

dydl(2) = g;

dydl(3) = -(Om/Ol)^(2/3)*(sinh(3/2*Ho*sqrt(Ol)*t))^(1/3) ..

* cosh(3/2*Ho*sqrt(Ol)*t)*(Ho)*sqrt(Ol) ..

*g^2;

dydl(4) = -2*cosh(3/2*Ho*sqrt(Ol)*t)*(Ho)*sqrt(Ol)..

/ sinh(3/2*Ho*sqrt(Ol)*t) ..

*f*g;

endfunction

//Setup grid resolution

NI = 50;

NJ = 10;

//Set the physical parameters

Ol = 0.7;

Om = 0.3;

Ho = 72

//Ho = 2/3*(sqrt(Ol))^(-1)*asinh((Ol/Om)^(1/2));

t00 = 2/3*(Ho*sqrt(Ol))^(-1)*asinh((Ol/Om)^(1/2));

G = 6.667e-11;

c = 2.999e8;

rhom = 3*Ho^2*Om/(8*%pi*G);

rhoc = rhom/Om;

rhol = Ol/Om*rhom;

kappa = 8*%pi*G/c^4;

Lambda = rhol*kappa;

//Set boundaries

umin = 1;

lmin = 0;

umax = //0.4; //0.4*umin;

lmax = 0.549;

//Determine grid size
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delu = abs(umin-umax)/(NI-1);

dell = abs(lmax-lmin)/(NJ-1);

printf(’Solving system ...\n’);

printf(’------------------------------------------\n’);

t1 = clock();

//Calculate grid

u = umin:-delu:umax;

lambda = linspace(lmin,lmax,NJ); //lmin:dell:lmax;

//Setup file parameters

localdir = ’data/’;

//Write to file 1

fd_w1 = mopen(localdir + ’affine.init.in’,’wt’);

format1 = ’%6.16f %6.16f %6.16f\n’

//Write to file 2

fd_w2 = mopen(localdir + ’affine.grid.in’,’wt’);

format2 = ’%6.16f %6.16f\n’

//Write to file 3

fd_w3 = mopen(localdir + ’affine.known.in’,’wt’);

format3 = ’%6.16f %6.16f %6.16f %6.16f %6.16f %6.16f\n’

//Write to file 4

fd_w4 = mopen(localdir + ’affine.lmax.in’,’wt’);

format4 = ’%i\n’

size(u)

for i=1:NI

//Set initial values

t0 = u(i);

lambda0 = 0;

y0(1) = t0;

y0(2) = 0;

y0(3) = -1;

y0(4) = 1/((Om/Ol)^(1/3)*(sinh(3/2*Ho*sqrt(Ol)*t0))^(2/3));

//Solve ODE

y = ode(’stiff’, y0, lambda0, lambda, F);

//Extract values from results

t = y(1,:);

x = y(2,:);

v1v = y(3,:);

//Calculate the expansion function

S = (Om/Ol)^(1/3)*(sinh(3/2*Ho*sqrt(Ol)*t))^(2/3);

//Calculate the diameter distance

rv = x.*S;
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//Calculate the density

rhov = 3*Ho^2/(8*%pi*G)*Om ./(S.^3);

//Pad v1 data with 0 to get consistent vector sizes

v1n = size(v1v);

if (v1n(2) < NJ) then

n = NJ-v1n(2);

v1z = linspace(0,0,n);

v1 = [v1v,v1z];

else

v1 = v1v;

end

//Pad rho data with 0 to get consistent vector sizes

rhon = size(rhov);

if (rhon(2) < NJ) then

n = NJ-rhon(2);

rhoz = linspace(0,0,n);

rho = [rhov,rhoz];

else

rho = rhov;

end

//Pad r data with 0 to get consistent vector sizes

rn = size(rv);

if (rn(2) < NJ) then

n = NJ-rn(2);

rz = linspace(0,0,n);

r = [rv,rz];

else

r = rv;

end

//Replace large rho and v1 values with 0

//Not necessary but was relevant for some

//simulations

for j=1:NJ

if (rho(j)>9) then

rho(j) = 0;

end

if (v1(j)<-9) then

v1(j) = 0;

end

end

ljmax = NJ;

//Determine the index of the extent of rho

for j=1:NJ

if (rho(j) == 0) then

ljmax = j;

break;

end

end
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//Write initial data to file

if (i == 1) then

for j=1:NJ

mfprintf(fd_w1,format1, r(j), v1(j), rho(j));

end

end

//Write grid data to file

for j=1:NJ

mfprintf(fd_w2,format2,lambda(j),u(i));

end

//Write known data to file

for j=1:NJ

mfprintf(fd_w3,format3,lambda(j),u(i),r(j),v1(j),v1(j),rho(j));

end

//Write known data to file

mfprintf(fd_w4,format4,ljmax);

end

mclose(fd_w1);

mclose(fd_w2);

mclose(fd_w3);

mclose(fd_w4);

t2 = clock();

e = etime(t2,t1);

disp((Om/Ol)^(1/3)*(sinh(3/2*Ho*sqrt(Ol)))^(2/3))

//Report on computation parameters

printf(’\n==========================================\n’);

printf(’ Solution parameters \n’);

printf(’------------------------------------------\n’);

printf(’Elapsed time (min): %2.3f\n’, e/60);

printf(’------------------------------------------\n’);

printf(’NI = %2.f\n’, NI);

printf(’NJ = %2.f\n’, NJ);

printf(’Ho = %2.16f\n’, Ho);

printf(’rhoc = %2.16e\n’, rhoc);

printf(’rhol = %2.16e\n’, rhol);

printf(’rhom = %2.16e\n’, rhom);

printf(’Lambda = %2.16f\n’, Lambda);

printf(’umin = %2.16f\n’, umin);

printf(’umax = %2.16f\n’, umax);

printf(’lmin = %2.16f\n’, lmin);

printf(’lmax = %2.16f\n’, lmax);

printf(’delr/delu = %2.16f\n’, dell/delu);

printf(’==========================================’);
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SED fitting procedures. A&A, 363:476–492, 2000.

159



[15] H. Bondi. Spherically symmetrical models in general relativity. Mon. Not. Roy. Astr.
Soc., 107:410–+, 1947.

[16] H. Bondi. Gravitational waves in general relativity. Nature, 186:535–535, 1960.

[17] H. Bondi. Cosmology. Cambridge University Press, second edition, 1961.

[18] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner. Gravitational Waves in General
Relativity. VII. Waves from Axi-Symmetric Isolated Systems. Proc. Roy. Soc. London A,
269:21–52, 1962.

[19] R. L. Burden and J.D. Faires. Numerical Analysis. PWS Publishing Company Boston,
fifth edition, 1993.

[20] K. Nakao C-M. Yoo, T. Kai. Solving the Inverse Problem with Inhomogeneous Universes.
Prog. Theor. Phys., 120:937–960, 2008.
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