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Abstract

We determine the number and nature of distinct equivalence classes of fuzzy sub-

groups of finite Abelian p-group G of rank two under a natural equivalence relation

on fuzzy subgroups. Our discussions embrace the necessary theory from groups

with special emphasis on finite p-groups as a step towards the classification of crisp

subgroups as well as maximal chains of subgroups. Unique naming of subgroup

generators as discussed in this work facilitates counting of subgroups and chains of

subgroups from subgroup lattices of the groups. We cover aspects of fuzzy theory

including fuzzy (homo-) isomorphism together with operations on fuzzy subgroups.

The equivalence characterization as discussed here is finer than isomorphism. We

introduce the theory of keychains with a view towards the enumeration of maximal

chains as well as fuzzy subgroups under the equivalence relation mentioned above.

We discuss a strategy to develop subgroup lattices of the groups used in the dis-

cussion, and give examples for specific cases of prime p and positive integers n,m.

We derive formulas for both the number of maximal chains as well as the number

of distinct equivalence classes of fuzzy subgroups. The results are in the form of

polynomials in p (known in the literature as Hall polynomials) with combinatorial

coefficients. Finally we give a brief investigation of the results from a graph-theoretic

point of view. We view the subgroup lattices of these groups as simple, connected,

symmetric graphs.
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no more than one edge.

Complete graph A graph in which each vertex is connected to each of the others

by one edge.

Connected graph A graph G in which there is a path between every pair of dis-

tinct vertices.

Valency the number of edges incident to a vertex.

Subgraph a smaller graph remaining after the removal of edges and vertices from

the original graph without the removal of endpoints of any remaining edges. Thus

H = (W,F ) is a subgraph of G = (V,E) if and only if W ⊆ V and F ⊆ E.

Regular graph a simple graph in which every vertex has the same valency.

viii



To my Family

This work is dedicated extendedly to my sons.

‘Boys’ it wasn’t easy feeling lonely.

ix



ACKNOWLEDGEMENTS

My sincere gratitude goes to my supervisor, Professor Venkat Murali. I am grateful

for his patience and support, reading through endless alterations, making the best

out of this project. Over the years he has always gone beyond his call of duty to

encourage, advise and boost my personal development. Thank you for all your effort

on my behalf.

I wish to thank Professor Sizwe Mabizela, the Head of Department of Mathematics,

for providing me with a favourable environment and quality machinery during my

research years at the university. He took his time, effort and all the patience in

making sure that the final version of this thesis is the best it should be.

I thank all the members of staff at Rhodes University for all their support and kind

wishes for me.

My sincere thanks go to the head of Mathematics department at Fort Hare Uni-

versity, Professor B.B. Makamba, for his valuable criticisms, comments and input

during the output of the research results.

To my parents, sisters and brothers who have been behind me since the beginning

of my studies. Thank you all for not giving up on me. I am very grateful for your

love and support. Little guys and girls, you have been an inspiration to me. My

friends you have been wonderful during my studies.

My tertiary studies would not have been possible without the kind support of:

• the Armaments Corporation of South Africa (ARMSCOR)

• the National Research Foundation (NRF)

• Andrew Mellon Foundation Scholarship

Overall, I am indebted to God for giving me strength to overcome hardships and

hurdles; He was always there every time I called.

x



PREFACE

“The important thing in science is not so much to obtain new facts as to discover

new ways of thinking about them.” Sir William Bragg.

This work is a product of the analysis of our project from three broad angles of

mathematics, namely the crisp group theory, the fuzzy group theory and finally

the graph theory. Some ideas that were previously investigated by other authors

were too strong in our view not to be included in this thesis. As a tradition, we

felt that it would be worthwhile to bring together a collection of surveys by other

distinguished authors, hoping it would prove useful to the professionals, experts

as well as newcomers. We acknowledge the input whenever it is necessary. The

influence of the studies by Murali and Makamba, in particular, in the compilation

of this thesis cannot be understated.

We aim at presenting the results in a manner that is accessible to all in the algebra

discipline. We start by giving the background and fundamentals of group theory,

with special emphasis on terminology necessary for the flow of the subject. We

include solvability for the reason that Abelian groups are solvable, as well as in fact

any group of prime-power order. This is evident from a well-known hierarchy of

classes of groups:

Cyclic ⊂ Abelian ⊂ Nilpotent ⊂ Supersolvable ⊂ Solvable ⊂ Group.

In chapter 3 we count the number of crisp subgroups of finite Abelian p-groups from

the developed subgroup lattices of finite Abelian p−groups of a specified rank. We

describe the process of the development of tree diagrams for the subgroup genera-

tors. We explain how we label the generators in a unique fashion. The references

[15], [29], [30], [59], and [63] were very helpful in the preparation of this section.

In chapter 4 we give an account background on the theory of fuzzy subgroups. We

give a carry over of the group theoretic terms to the fuzzy case. We touch briefly

on the theory of t-norms as a special case of the min and mention some few re-

sults based on the observation. We cite the important study of the operations on

xi



fuzzy subgroups in the form of sum, union, intersection, and quotient. We close

the chapter by studying the mappings on fuzzy subgroups especially with regard to

equivalent fuzzy subgroups.

The references [1], [2], [3], [4], [5], [6], [8], [9], [11], [17], [21], [23], [24], [34], [43], [44],

[51], [57], [61], [62], [63], [65], [66], [68], [73], [75], [77], [78], and [90] were consulted

during the preparation of this section.

In chapter 5 we start the business of maximal chain and keychain enumeration. We

enumerate maximal chains based on the developed subgroup lattices, to be used

later in chapter 6. We describe a process of conversion from a subgroup lattice into

a binary tree diagram and vice versa. We describe a transition from what is com-

monly known as a series in group theory to the new terminology of flags. We treat

pinned flags in connection with an equivalence relation discussed in chapter 4.

We referred to the references [29], [59], [60], [62], [63], and [79] to prepare this section.

In chapter 6 we count the number of distinct equivalence classes of fuzzy subgroups

of finite Abelian groups of rank two under the stated equivalence relation. The

general problem of classification of fuzzy subgroups of a finite Abelian group of any

given order is both important and interesting; but is complicated and enormous.

We illustrate how the keychains can be applied to a lattice of maximal chains of G

to obtain the number of fuzzy subgroups of G. We demonstrate the process for spe-

cific values of prime p and positive integers n and m. We prove by induction some

results for a specified m and any n and p. We demonstrate the induction process

for a general case. We also give a general formula for a general number of fuzzy

subgroups of finite Abelian groups of rank two, and state the result as a conjecture.

The discovery of the coefficients of the first term of the combinatorial formula for

the number of fuzzy subgroups of these groups is explained in this chapter.

The references [59], [64], [71], [79] were useful during the preparation of this section.

From chapter 7 we devote our attention to looking at lattice diagrams in a graph

theoretic point of view. In chapter 7 we introduce the graph terminology as widely

xii



used in graph theory. We identify specific kinds of graphs as encountered in graph

theory literature. We realize that the lattices we have developed share special fea-

tures with widely known graphs.

In chapter 8 we introduce the theory of generators and relations. We aim at using

the terminology and the results obtained on trees to characterize our tree diagrams.

We touch briefly on the theory of digraphs and some applications.

For chapters 7 and 8 the references [30], [12], [38], [72], [85] were used.

We would like to extend a word of appreciation to Professor Shaun Bangay of the

Department of Computer Sciences at Rhodes University who checked the validity

of computations of maximal chains and fuzzy subgroups by means of a computer

program.
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Chapter 1

Fundamentals of Group Theory

1.1 Introduction

We owe the term group to E. Galois who together with C. Jordan and F. Klein,

however though, used only the closure axiom to define a group in the nineteenth

century. The other axioms we see nowadays are in no doubt inherent in their work

since the authors merely considered finite sets of permutations.

The need for the associative law and for the existence of an identity arose in a paper

by A. Cayley, where he defined a group using abstract symbols coupled with either

a multiplication table or a set of defining relations. In fact the modern axioms for

a group as encountered were published by W.Dyck and H.Weber in 1882, and not

until the publication of Weber’s textbook in 1886 did the axioms become widely

used thereafter. [14]

1.2 Finite Groups

1.2.1 Preliminaries

In this section we discuss basic group theory terminology that will be required in

this thesis. We first introduce finite groups in general, finite Abelian p-groups in

particular. Some details are left out either because they are easy to understand or

1



they can be found in literature. The references [36], [26], [42], [49], to name but

a few, contain the details. Although we are dealing with Abelian groups, we will

sometimes use multiplicative notation whenever it is convenient and whenever the

context is clear.

If a group G has only a finite number k of elements, it is called a finite group and

k is known as the order of the group, denoted |G|.

A.L Cauchy defined the order of an element of a group in 1815. Today we have

various versions of the concept.

For h ∈ G, if n is the smallest number for which hn = e, then n is called the order

of h, and the sequence e, h, h2, . . . , hn−1 is called the period of h.

The order k of a subgroup H is a whole number divisor of the order g of the whole

group, whereby the quotient g/k = ` is referred to as the index of the subgroup H

in the group G.

Two groups are said to be isomorphic if the elements A of the one can be made

to correspond to the elements A′ of the other uniquely and reciprocally in such a

way that AB = C implies that (AB)′ = A′B′ = C ′. In fact isomorphic groups are

essentially identical with the individual elements just labelled differently. The need

for such a notation as isomorphism is innate in C.F Gauss′s article, Disquistiones

Arithmeticae (1801), where he considered the many types of Abelian groups. In

fact the notion of isomorphism appears under various names in the work of most

19th-century group theorists.

Any group in which every element has a finite order is called a torsion group. A

torsion-free group is the opposite.

Important result emanating from the concepts of torsion and factor groups is stated

below:

Theorem 1.2.1 The set T of all elements of finite order in a group G is the torsion

subgroup of G and the factor group G/T is torsion-free.
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1.2.2 Conjugate Elements and Classes

Every equivalence is a method of extraction of a particular kind of identicalness.

For instance, in the symmetric group the identicalness of conjugacy is that of per-

mutations with the same cycle structure.

For a, x ∈ G, the element xax−1 is said to be an element conjugate to a. Two

elements a and b that are conjugate to a third element c are also conjugate to each

other, as can easily be checked, that is, conjugacy is transitive in nature. In fact,

we say that conjugacy is an equivalence relation. Now those elements which are

conjugate to each other form a class. The identity of the group forms a class by

itself, since it is not conjugate to any other element except itself.

In an Abelian group, each class consists of just one element, since xax−1 = a, for all

x in G. All the elements of a class have the same order. In any group G, the

relation of conjugacy partitions the elements into disjoint classes called conjugacy

classes. Thus a, b ∈ G lie in the same conjugacy class if and only if g−1ag = b for

some g ∈ G.

Definition 1.2.2 A centralizer of a subset H of a group is the set of all elements

of G that commute with H, the set {g ∈ G : g−1hg = h, for all h ∈ H}.

The center of a group G is the set of all elements of G whose centralizer is G itself.

We next define the concept of commutator in the group sense.

Definition 1.2.3 (Commutator and Commutator subgroup) Suppose G is a

group and a, b ∈ G. Then the commutator of a and b is the element a−1b−1ab.

The commutator subgroup of G is the subgroup G of G generated by all the com-

mutators in G.

Note 1.2.4 The set of commutators need not form a subgroup of G. Also G as

defined in Definition 1.2.3 is a normal subgroup of G. The factor group G/G is

Abelian for the following reason:
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For any a, b ∈ G, let aG, bG be elements of G/G. Then

(aG)(bG) = abG = ba(a−1b−1ab)G

= baG (because a−1b−1ab ∈ G)

= (bG)(aG).

G is a group and thus has its commutator subgroup, which is the subgroup of G

generated by all elements of the form (a)−1(b)−1ab where a, b ∈ G.

1.2.3 Invariant Subgroups

A subgroup which consists entirely of the whole class of the original group is called

an invariant subgroup.

Let H = {e, h2, . . . , hn} be an invariant subgroup. Now since H is a group, H must

contain together with hi and hj their product hihj . Further, H contains ahia
−1

where a is an element of the big group. This is the case since an invariant subgroup

contains all the elements ahia
−1 of a class if and only if it contains one element hi

of the class.

Note 1.2.5 Every subgroup of an Abelian group is an invariant subgroup. Every

element is a class in itself; hence every subgroup must consist entirely of whole

classes.

Groups which have no invariant subgroups are called simple groups.

The factor-group of the invariant subgroup H

The elements eU = U, h2U, . . . , hnU form a (right) coset of the invariant subgroup

H denoted as HU . Now if all the elements of HU are multiplied by all the elements

of another coset HV , then

hjUh`V = hjUh`U
−1UV = hkUV (1.1)

since both hj and Uh`U
−1 and hence their product are in <. Thus the multiplica-

tion gives rise to the elements of a single coset HUV . In this context, the cosets

themselves form a subgroup called the factor-group of the invariant subgroup.
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Note 1.2.6 It is easy to confuse the factor group with a subgroup. The elements of

a subgroup are elements of the group whereas the elements of the factor group are

cosets.

The cardinality of the different cosets mod H is called the index of H in G, generally

denoted as [G : H ]. If G is a finite group, then [G : H ] =| G |:| H |.

We next define the concept of a solvable group in general. By a group is meant a

group G which has a normal series with Abelian group factors. (What we call a

series here will bear a new name when we tackle fuzzy subgroups.).

Definition 1.2.7 A group G is said to be solvable if G has a series of subgroups

{0} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gm = G

where Gi is normal in Gi+1 and every factor group Gi+1/Gi for each 0 ≤ i < m, is

Abelian.

From definition (1.2.7) we observe that Abelian groups are solvable, in fact any

group of prime-power order is solvable.

Example 1.2.8 S3, the symmetric group of order 3, is solvable. Take

H1 = {e, (1, 2, 3), (1, 3, 2)} and observe that H1 is a normal subgroup of S3, and that

the factor groups S3/H1 and H1/{e} are both Abelian groups with | S3/H1 |= 2

and | H1/{e} |= 3. ∆

The same cannot be said about Sn when n ≥ 5.

The following result is a consequence of definition (1.2.7):

Theorem 1.2.9 A factor group of a solvable group is solvable.

Proof. Let G be a group. Let {0} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G be a solvable

series, and let H be a normal subgroup of G. Now {0} ⊂ H ⊂ G is a normal

series. Hence the two series have equivalent refinements (see Theorem 2.5.6). Now

any refinement of a solvable series is also a solvable series. Hence there exists a

solvable series {0} ⊂ . . .⊂ H ⊂ . . . ⊂ Kn−1 ⊂ Kn = G. We then consider the series

1 = H/H ⊂ . . . ⊂ Kn−1/H ⊂ G/H and use the third isomorphism theorem to show
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that this series is normal with Abelian natural isomorphism . Thus G/H is solvable.

�

William Burnside was the first to conjecture that a group of odd order is solvable.

This conjecture was finally proved more than fifty years later by (Feit and Thomson,

1963) in their lengthy paper [25].

1.3 Isomorphism and Homomorphism

From the way isomorphism has been defined, it is obvious that isomorphic groups

must be of the same order.

A not so sharp correspondence between two groups is that of simple homomorphism,

which resembles isomorphism in every respect with the exception that the correspon-

dence need not be one-to-one.

The correspondence must be such that the product of a and b of G corresponds to

the product a′b′ of the corresponding elements of G′.

The following points are worth noting as regards isomorphism and homomorphism:

• In a homomorphism, one element A of G′ may correspond to several different

elements of G, hence homomorphism is not a reciprocal property.

• If G is homomorphic to G′, then G′ is not necessarily homomorphic to G.

• every group is isomorphic to itself. Every group is also homomorphic onto the

group which consists only of the identity element e.

The set of all x ∈ G mapped by a homomorphism, say f , onto the zero of G′ is

called the kernel of f . It is a subgroup K of G and the inverse image of x′ ∈ G′ in

G is a coset x+K of G. Thus f induces an isomorphism

G′ ≈ G/K which maps x′ → x+K (1.2)

The consequence is the birth of the following isomorphism theorems [Noether]:

1. 〈H,K〉/K ≈ H/(H ∩K) for all H,K ≤ G,

2. G/H ≈ (G/K)/(H/K) if H,K ≤ G such that K ⊆ H ⊆ G.
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1.4 Direct Sums

This is the most important concept in the theory of Abelian groups for the following

reasons:

• If a group can be decomposed into a direct sum of subgroups, then in most

cases the study of the given group can be reduced to the consideration of

groups which are in general of a simple structure;

• New groups can be constructed as direct sums of known groups.

Let A,B be two subgroups of G satisfying:

1. 〈A,B〉 = G, (implying that g ∈ G may be written in the form g = a+b, where

a ∈ A and b ∈ B); and

2. A ∩ B = 0 (from the fact that if g = a + b = a′ + b′ with a′ ∈ A and b′ ∈ B

then a − a′ = b− b′ ∈ A ∩ B = 0)

Then G is called the direct sum of its subgroups A,B denoted as G = A+ B.

A subgroup A of G is called a direct summand of G if there exists a subgroup B of

G such that G = A+B, in which case B is called a complementary direct summand

of A in G.

1.5 p-Groups

The term primary group or a p-group refers to a group in which the orders of the

elements are powers of one and the same prime p, in which case p is sometimes called

a relevant prime for G. As a consequence, we have the following result

Theorem 1.5.1 [29]. A finite group G is a p-group if and only if | G | is a power

of p.

A cyclic p-group is of the form Zpn for n ∈ Z+. It is well known that in a cyclic group,

any subgroup is determined uniquely by its order. Hence we state the following

theorem.
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Theorem 1.5.2 If G is a finite Abelian p-group and G has a unique subgroup H of

order p, then G is cyclic.

From group theory we know that Zpn ×Zpm is non-cyclic for any positive integers n

and m. For instance a direct product Zp× Zp has order p2 but is not cyclic because

it has no element of order p2; each of its non identity elements has order p. These

p-groups are the ones that will be characterized in this thesis.

If two finite Abelian p-groups do not have the same invariants (see Definition 2.2.11),

they are not isomorphic.
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Chapter 2

Finite Abelian Groups

2.1 Introduction

We address a very important topic in Group theory, the Finite Abelian groups. For

flow of content we browse over some topics that enrich the subject. We deliberate

on the fundamentals of finite Abelian groups and why is there such a study in the

first place. The equivalence relations and partitions are given special attention in

their crisp form. We also brush through the class of groups called Basic groups while

heading towards a component of algebra called Composition series. Earlier in the

literature, Birkhoff posed a problem which was later called the Birkhoff problem:

How to classify subgroups of finite Abelian groups. All this and more coming up in

this chapter.

2.2 Fundamentals of Finite Abelian Groups

We open this section by stating the so called first main theorem for finite Abelian

groups. It has been known since at least the 1870’s. Finite Abelian groups are

almost completely understood due to the fact that there is a simple structure which

describes all of them. Subgroups of finite Abelian groups, however, can be very

complicated.
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Theorem 2.2.1 [29], [30]. Every finite Abelian group is a direct product of cyclic

groups of prime-power order. The factorization is unique except for the rearrange-

ment of factors.

This theorem shows that every finite Abelian group G is isomorphic to a group of

the form Zp
n1
1
× Zp

n2
2
× · · · × Zp

nk
k

, where the pi’s need not be distinct primes and

the prime-powers are uniquely determined by G. This process of writing a group

in this form is called ‘determining the isomorphism class of G’. Moreover, there is

one group of order pk for each set of positive integers whose sum is k. That is, if

k = n1 +n2 + · · ·+ns where each ni ∈ Z+, then Zpn1 ×Zpn2 ×· · ·×Zpns is an Abelian

group of order pk.

For any g ∈ G, let

Gp = {g : |g| = pk}.

We note that the decomposition of G given in the theorem is unique. Hence the

subgroup Gp is uniquely identified for any given p. Imagine that Gp has been

expressed as a product of cyclic groups in two ways

Gp = H1 × . . .×Hm

and as

Gp = K1 × . . .×Kn

with the property that |Hi| ≥ |Hj| and |Ki| ≥ |Kj | whenever i < j. Then it can be

concluded that the two decompositions are indeed the same.

Definition 2.2.2 Suppose H and K are groups. The direct product of H and K is

the set of all ordered pairs (h, k). Thus if we denote the direct product as H × K

then

H ×K = {(h, k) : h ∈ H, k ∈ K} (2.1)

under the binary operation

(h1, k1)(h2, k2) = (h1h2, k1k2). (2.2)
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Note: The direct product operation is commutative as well as associative.

Thus H×K is a group containing H×{1} and {1}×K called the isomorphic copies

of H and K, which are also normal to each other.

Definition 2.2.2 shows how to multiply two groups together. How can the reverse

be done? That is, given a group how can it be factored? The following theorem

suggests a way of factoring a given group. For convenience we include a proof of the

result.

Theorem 2.2.3 [74]. Suppose G is a given group whose normal subgroups are H

and K. If H ∩K = {e} and HK = G, then G ≈ H ×K.

Proof. Let x ∈ G. By hypothesis, we have that HK = G, and so there exist some

h ∈ H and k ∈ K such that x = hk. This is a unique representation of an element

x ∈ G. For if x = hk and x = h1k1, we have that hk = h1k1 =⇒ h−1h1 = kk−1
1 ∈

H ∩K. This means that h = h1 and k = k1.

We proceed to show that G ≈ H × K. To do this, let φ : G → H × K be a map

defined by φ(x) = (h, k). We show that φ is a homomorphism that is one-to-one

and onto. We first show that φ(xx1) = φ(x)φ(x1). This is true if kh1 = h1k which

can be shown to be. For any h ∈ H and k ∈ K, the equality kh = hk can be shown

to hold by showing the commutator h−1k−1hk to be in H ∩K. Since H and K are

normal, then h−1(k−1hk) ∈ H and (h−1k−1h)k ∈ K which proves the commutator

is in H ∩K. Hence kh = hk.

Next assume that φ(x) = φ(x1). This means that (h, k) = (h1, k1) and so

h = h1, k = k1, hence hk = h1k1. Lastly for any (h, k) ∈ H ×K there is an x ∈ G

such that φ(x) = (h, k). This completes the proof. �

We give the consequent results of Definition 2.2.2 and theorem 2.2.3.

Theorem 2.2.4 Let G = H ×K, and let H1 / H and K1 / K. Then H1 ×K1 / G

and

G/(H1 ×K1) ≈ (H/H1)× (K/K1). (2.3)
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Definition 2.2.5 A group G is said to be cyclic if there is an element a in G such

that

G = {na : n ∈ Z}.

Such an element is called a generator of G, and we write G = 〈a〉 to indicate that

G is a cyclic group generated by a.

It is instructive to notice that if group multiplication is understood to be the usual

numerical multiplication, the cyclic groups are all Abelian.

Theorem 2.2.6 [29]. Let G be a cyclic group with n elements and generated by a.

Let b ∈ G and let b = sa. Then b generates a cyclic subgroup H of G containing

n/d elements, where d = gcd(n, s).

Theorem 2.2.7 [30]. If a is a generator of a finite cyclic group G of order n, then

the other generators of G are elements of the form ra, where gcd(r, n) = 1.

Example 2.2.8 Suppose that 〈a〉, 〈b〉 and 〈c〉 are cyclic groups of orders 6, 8 and

20 respectively. To find all generators of 〈a〉, 〈b〉 and 〈c〉 we use the fact that

U(6) = {1, 5}, U(8) = {1, 3, 5, 7} and U(20) = {1, 3, 7, 9, 11, 13, 17, 19}.

U(n) = {x ∈ N : gcd(x, n) = 1}

Thus,

〈a〉 = 〈5a〉

〈b〉 = 〈3b〉 = 〈5b〉 = 〈7b〉

〈c〉 = 〈3c〉 = · · · = 〈19c〉

∆

The following result appears, with its proof, in [30]:

Theorem 2.2.9 For each divisor k of n, the group 〈a〉 has exactly one subgroup of

order k which is 〈nka〉.

Proof. Let k be any divisor of n. Now k(n
ka) = na = e and t(n

ka) 6= e.

claim: 〈(n
ka)〉 is a unique subgroup of order k.
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To verify our claim, we let H be any subgroup of order k. Now H = 〈ma〉 for

any least positive integer m such that ma ∈ H . By the division algorithm, there

exist integers q and r such that n = mq + r where 0 ≤ r < m. Then we have

na = (mq + r)a so that ra = −q(ma) ∈ H . This implies that r = 0 and so n = mq.

So k =| H |=| 〈ma〉 |= n/m. It follows that m = n/k and so H = 〈ma〉 = 〈nka〉. �

In general, a generating element of a cyclic group is called a primitive element of

this group. Thus G = 〈a〉 implies that a is the primitive element of G.

Suppose a cyclic group of order m is given as follows

Zm = {α} so that | α |= m > 0. (2.4)

In this case α is a primitive element of Zm(m > 0). Now for the finite cyclic group

Zm we have that

kα = `α if and only if k ≡ `(modm), (2.5)

for which

kα = e if and only if m | k. (2.6)

is a special case, where e is the identity element.

Now, αk is a primitive element of Zm if and only if gcd(k,m) = 1.

Note 2.2.10 Note that according to (2.5) the number of primitive elements of Zm

is given by Euler’s function.

Whereas other cyclic groups of finite order are decomposable, the cyclic groups of

prime-power order are indecomposable.

Definition 2.2.11 Suppose G is an Abelian group of order pn where p is a prime

number. If G = H1 × H2 × · · · × Hk where each Hi is cyclic of order pni with

n1 ≥ n2 ≥ · · · ≥ nk > 0, the integers n1, n2, · · · , nk are then called the invariants of

a group G.

Suppose we have

G = Z1 × Z2 × · · · × Zs. (2.7)
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Since these Z′
is are indecomposable, we call them the invariants of the finite Abelian

group G since their orders | Z1 |, . . . , | Zs | are defined in one and the only one way.

Now (2.7) can be written in the form G = {α1} × {α2} × · · · × {αs} in which a

primitive element α1, αs describes each of the direct factors, hence α1, αs is called a

prime-power basis of the finite Abelian group G.

([Redei, 1967]) Let G be a finite Abelian p-group with n equal invariants pk . If

α1, αn is a basis of G, then all its bases ω1, . . . , ωn are given by ωi = αai1
1 . . .αain

n

(i = 1, . . . , n) where aij are such that their determinant det(aij) is not divisible by

p.

For any prime p, (Zp,+) is a finite Abelian group whose only subgroups {0} and Zp

itself form a chain {0} ⊂ Zp with only two components.

A chain is said to be maximal if it cannot be refined anymore.

Every finite Abelian group can be expressed as a direct product of cyclic groups of

orders n1, n2, . . . , nr where ni+1 | ni, i = 1, 2, . . . , r − 1. Also, every finite Abelian

group is isomorphic to some direct product of cyclic groups of prime-power order.

This can be shown by choosing, for each distinct prime, the largest factor of that

prime-power and forming one factor of some order,n1 say, from all of these. Re-

peating the process (until all the factors have been considered) with the remaining

original factors to obtain a factor of some other order,n2 say, and using the fact that

each prime divisor of n2 also divides n1 implying n2 | n1, gives the result.

Example 2.2.12 If

G ≈ Z27 × Z3 × Z125 × Z25 × Z4 × Z2 × Z2 (2.8)

then

G ≈ Z335322 × Z3522 × Z2.

∆

The following are some of the important results pertaining to the study of finite

Abelian groups:

Lemma 2.2.13 If G is a finite Abelian group whose order is divisible by a prime p,

then G contains an element of order p.
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Theorem 2.2.14 (Cauchy’s) Suppose G is a finite group whose order is divisible

by a prime p. Then G contains at least one element of order p.

Theorem 2.2.15 [29], [74]. If G is a group of order p2 where p is a prime number,

then G is Abelian.

Theorem 2.2.16 [74]. A finite Abelian group H is cyclic if and only if its invariants

are pairwise relatively prime.

Another way of looking at a finite Abelian group is to notice the following descrip-

tion:

For each finite Abelian group G 6= 0 there is a unique list of integers m1, . . . , mk,

where each mi > 1 and each is a multiple of the next, satisfying the isomorphism

G ≈ Zm1 × · · · × Zmk
. The product m1m2 · · ·mk is the order of G.

The list m1, . . . , mk is called the list of invariant factors of the Abelian group G.

Note 2.2.17 The above description implies that two finite Abelian groups are iso-

morphic if and only if their invariant factors are the same.

For, let G and G′ be Abelian groups of order pn defined as follows:

G = H1 ×H2 × · · · ×Hr where each Hi is cyclic of order pni with

n1 ≥ n2 ≥ · · · ≥ nr > 0

and

G′ = K1 ×K2 × · · · ×Ks where each Ki is cyclic of order pmi with

m1 ≥ m2 ≥ · · · ≥ ms > 0.

Define a map φ : G → G′ by φ(hα1
1 hα2

2 · · ·hαr
r ) = (k1)α1(k2)α2 · · ·(kr)αr . Then φ is

an isomorphism , thus, r = s and for each i, ni = mi.

The other way round is to show that groups G and G′ that have the same invariants

are isomorphic.
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2.3 Basic Subgroups

The notion of basic subgroups and its importance for the general theory of Abelian

p-groups was introduced by Kulikov. The driving factor in this section is the ob-

servation that a p- group cannot always be decomposed into a direct sum of cyclic

groups.

Definition 2.3.1 A subgroup H of a p-group G is called a basic subgroup if it sat-

isfies the following conditions:

1. H is a direct sum of cyclic groups

2. H is pure1 in G

3. G/H is divisible.

On this note we give the following result:

Theorem 2.3.2 (Kulikov) Every torsion group G contains a basic subgroup.

Proof. By showing that every p-primary group has a basic subgroup, it follows from

the primary decomposition that every torsion group contains a basic subgroup. �

We define what is meant by a height of an element of a p-group G.

Definition 2.3.3 The equation pk
nx = a in which pn is fixed, k ∈ Z+ and a is an

arbitrary nonzero element of a group G, may or may not have solutions in G. The

greatest nonnegative integer k for which the equation is solvable is called the height

of a at the prime pn.

Before we deal with basic subgroups, it is important to be reminded in passing

about important results concerning cyclic groups. The relevance of the theory of

cyclic groups to the study of Abelian groups cannot be underemphasized. “Although

cyclic groups constitute a very narrow class of finite groups, they play the role of

building blocks for all finite Abelian groups in much the same way that primes are
1A subgroup H of G is said to be pure in G in case, for every integer n, nG ∩ H = nH.
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the building blocks for the integers and that chemical elements are the building blocks

for the chemical compounds”, Gallian [30].

Many results stated hereunder are due by Kulikov himself. Let G be a direct sum

of cyclic p-groups. The following result gives a criterion for a p-group to be a direct

sum of cyclic groups.

Theorem 2.3.4 (Kulikov) A p- group G is a direct sum of cyclic groups provided

it is the union of an ascending chain of subgroups Gn(n = 1, 2, . . .) in such a way

that the heights of the nonzero elements in Gn remain under some finite bound kn.

In his study, Kulikov further came up with the following results:

Theorem 2.3.5 The subgroups of direct sums of cyclic groups are themselves direct

sums of cyclic groups.

Theorem 2.3.6 Any two direct decompositions of a group which is a direct sum of

cyclic groups have isomorphic refinements.

Closer to the results above, we have the following consequence:

Corollary 2.3.7 Let G be a group. Then G is a union of a sequence of subgroups

G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · ·

arranged in ascending order, where each Gi is a direct sum of cyclic groups.

More results in this topic can be found in [26].

2.4 Equivalence Relations and Partitions

Things that are considered different in one context may be viewed as equivalent in

another context.

We investigate the relationship between partition and equivalence relation.

A relation < on a set A is an equivalence relation if it is reflexive, symmetric, and

transitive.

17



Definition 2.4.1 Given a set A and an index set I, let ∅ 6= Ai ⊆ A for each i ∈ I.

Then {Ai}i∈I is a partition of A if:

1. A = ∪i∈IAi

2. Ai ∩ Aj = ∅, i, j ∈ I, i 6= j,

where each set Ai is called a block of the partition.

Definition 2.4.2 Let < be an equivalence relation on a set A. For any x ∈ A, the

equivalence class of x denoted by [x] is defined by

[x] = {y ∈ A | y < x}. (2.9)

Consequently, we have the following result which is not difficult to show:

Theorem 2.4.3 If < is an equivalence relation on a set A, and x, y ∈ A, then

1. x ∈ [x],

2. x < y if and only if [x] = [y],

3. [x] = [y] or [x]∩ [y] = ∅.

Note 2.4.4 If < is an equivalence relation on A, then by 1 and 3 above, the distinct

equivalence classes determined by < form a partition of A.

The theory of partitions is widely applicable as the following discussion illustrates.

Let S(n, k) denote the number of partitions of an n-set A into k parts, where

1 ≤ k ≤ n. (S(n, k) are popularly known as Stirling numbers of the second kind).

Then the following are true:

1. S(n, 1) = 1,

2. S(n, n) = 1,

3. S(n, k) = S(n− 1, k− 1) + kS(n− 1, k), (2 ≤ k ≤ n− 1)

The Stirling numbers of the second kind can be computed from the sum

S(n, k) =
1
k!

k−1∑

i=0

(−1)i

(
k

i

)
(k − 1)n, (2.10)
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or the generating function

xn =
n∑

m=0

S(n,m)(x)m =
n∑

m=0

S(n,m)x(x− 1) · · ·(x−m+ 1), (2.11)

and various other forms.

The above properties can be used to show that

S(n, 2) = 2n−1 − 1, and S(n, n) =
(
n

2

)
. (2.12)

Suppose also that a partition of an n-set A is given, A = A1 ∪A2 ∪ · · · ∪ An, there

exists a corresponding equation n = n1 + n2 + · · · + nk , where ni is the size of

Ai, (1 ≤ i ≤ k) referred to as a partition of the integer n into k parts, ni 6= 0.

The standard notation for partitions of a positive integer n, to be followed through-

out this work involves counting the number of blocks of each size. In this context, for

instance, if there are αi parts of size i then the partition is written as 1α12α2 · · ·nαn .

The calculation of the number p(n) of partitions of n is not a simple matter. Some

techniques involve the use of generating functions. It is often useful to use a dia-

grammatic representation of partitions popularly called a Young diagram which is

very handy in proving theorems about partitions.

Using diagrammatic representation, it is possible to transform one partition, say λ

into another,say λ′, by simply switching the rows and columns. Such λ
′s are said

to be conjugate. In essence, we say, pairs of partitions for a single number whose

Young diagrams transform into one another when flipped about the line y = −x

while fixing the upper left box are called conjugate partitions. It is possible that

this process results in no change in the original partition as observed in the diagrams

below. We thus say that λ is self-conjugate if λ = λ′.

λ = (5, 3, 3, 2, 1) λ′ = (5, 4, 3, 1, 1)
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λ = λ′ = (4, 3, 2, 1)

(self-conjugate)

The partitions on a number n correspond to the set of solutions (j1, j2, . . . , jn) to

the Diophantine equation 1j1 + 2j2 + 3j3 + · · ·+ njn.

Example 2.4.5 The partitions of five are given by

{(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}.

It corresponds to the solutions

(j1, j2, j3, j4, j5) = (0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (2, 0, 1, 0, 0),

(1, 2, 0, 0, 0), (3, 1, 0, 0, 0), (5, 0, 0, 0, 0).

∆

2.5 Composition Series

Before we venture into the discussion about composition series, we begin by explain-

ing the critical terms necessary in the proper definition of the composite series.

The first term we define is what is meant by a simple group.

A group is simple if it has no proper normal subgroups. The only simple Abelian

groups are the Zp, where p is a prime.

A group is said to be solvable if it contains a normal series with commutative factors.

Next we need to know what is meant by a subnormal series.

Definition 2.5.1 A subnormal series of a group G is a chain of subgroups

{0} = G0 < G1 < · · · < Gn such that Gi / Gi+1, 0 ≤ i ≤ n. The factors of the
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series are the quotient groups Gi+1 | Gi. The length of the series is the number of

non identity factors.

Note: A subnormal series such that Gi / G, for all i, is said to be normal.

Definition 2.5.2 By a refinement of a series S is meant a series obtained from

S by successive insertions of an additional subgroup properly between two successive

subgroups of the series.

With all this in hand we are ready to discuss the composition series.

Definition 2.5.3 A composition series for a group G is a subnormal series in

which all the factors are simple or equal to 1. In fact it can be said that a composition

series is a subnormal series with no refinements except itself.

Alternatively, a normal series {0} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = G of the group

G is called a composition series if each Gi is maximal subject to being normal in

Gi−1, in which case the composition factors Gi/Gi−1, 1 ≤ i ≤ n − 1 are simple.

In this regard we are reminded of the two important theorems concerning composi-

tion series. The first is due to Schreier:

Theorem 2.5.4 Every normal series with distinct members can be refined to a com-

position series.

The second is a well-known Jordan-Holder theorem:

Theorem 2.5.5 Any two composition series of G have the same length and the

corresponding composition factors are pairwise isomorphic up to permutation.

Schreier also proved the following result:

Theorem 2.5.6 [26], [35]. Any two normal series of an arbitrary group G have

equivalent refinements.

Proof. Assume

{0} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = G (2.13)

{0} = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hm = G (2.14)
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are normal series. We insert the groups Gi+1(Gi ∩ Hj) and Hj+1(Hj ∩ Gi) in first

and second equations respectively to obtain normal series with mn inclusions, where

0 ≤ i ≤ n and 0 ≤ j ≤ m. Hence we have

· · · ⊂ Gi+1(Gi ∩Hj) ⊂ Gi+1(Gi ∩Hj+1) ⊂ · · · (2.15)

· · · ⊂ Hi+1(Hj ∩Gi) ⊂ Hj+1(Hj ∩ Gi+1) ⊂ · · · (2.16)

These can be seen to be the refinements of (2.13) and (2.14) above in the following

way: (2.15) is a refinement of (2.13) by taking j = m, and also since given any j

there exists an index i with Gi ⊂ Hj ⊂ Gi+1 such that Hj = Gi+1(Gi∩Hj) to refine

(2.14).

The same can be said about (2.16). By isomorphism, the result follows.(see Zassen-

haus Lemma in Appendix I). �
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Chapter 3

Finite Abelian p-Groups of

Rank Two

3.1 Introduction

The process of drawing the subgroup lattice of a given finite Abelian p-group, or

finding the number of subgroups of a finite Abelian group is a difficult task. Similar

works on this problem were carried out by authors such as [70], [81], [83], to name

a few, and even earlier.

In this chapter we try to describe a simpler method that addresses this task. In our

first problem we will develop the tree diagrams of subgroups of a finite Abelian p-

group in question which will be followed by stating the procedure which accomplishes

this. In our second problem we will describe which outstanding subgroups are to be

added to the tree to form a subgroup lattice. Finally we will count the number of

subgroups of a finite Abelian p-group of rank two.

3.2 The Structure of the Group

We open this section by giving the following illustrative result found in group theory.

If a is a generator of a finite cyclic group G of order n, then the other

generators of G are the elements of the form ra, where r is relatively

prime to n.
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Example 3.2.1 Consider the problem of finding all the subgroups of Z20 and giving

their lattice diagram.

All subgroups of Z20 are cyclic, and 1, 3, 7, 9, 11, 13, 17, 19 are all generators of Z20.

The subgroup generated by 2,

〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}

is of order 10 and has as generators elements of the form k2, where k is relatively

prime to 10, namely, k = 1, 3, 7, 9, so k2 = 2, 6, 14, 18. The element 4 of 〈2〉 generates

{0, 4, 8, 12, 16} and 8,12,16 also are generators of this group.

So far we have found all subgroups generated by

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19.

We are just left with 5, 10, 15 to consider.

〈5〉 = {0, 5, 10, 15}

and 15 also generates this group of order 4, since 15 = 3.5 and (3, 4) = 1. Lastly

〈10〉 = {0, 10}. We have exhausted the number of subgroups. Therefore the diagram

for Z20 is

b
b
b

b
b
b

〈0〉

〈5〉

〈4〉

Z20

〈10〉 〈2〉

A finite Abelian group of rank two is a finite group G of the form Zpn×Zqm where p

and q are prime numbers, while m and n are any natural numbers. The subgroups

of any cyclic group of prime-power order form a chain. The cyclic nature of G

determines the nature of the primes under consideration thus,

G is cyclic, if and only if p 6= q (3.1)

otherwise,

p = q, whenever G is non-cyclic. (3.2)
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The latter case indicates that G = Zpn × Zpm which is a p-group, and is the one to

be discussed in this work.

3.2.1 Tree diagrams of Subgroups

We describe the tree diagrams for selected examples of groups (consistent with exist-

ing literature), including the well-known groups like, for instance, the Klein group.

Conventionally, a line segment between two subgroups will mean that the subgroup

generated on the left is entirely contained in the subgroup generated on the right,

while the generators on the same level mean that the generated subgroups have the

same order and are disjoint.

3.2.2 General Procedure

We write ab to mean (a, b) ∈ Zpn × Zpm , where p is prime, and n,m ∈ Z+. We

develop the cyclic subgroups of Zpn × Zpm with the property that

h(a, b) = (hamod pn, hbmodpm), h ∈ N, and |(a, b)| = lcm (|a|, |b|), (see example

3.3.4). Some elements will generate the same subgroups. As in group theory require-

ments, we choose representative subgroup generators and arrange them in the form

of a tree diagram according to the order of subgroups they generate. All subgroup

generated in this process are cyclic. Lemma 3.3.5 can be used to count the number

of subgroups that should be there for each order.

3.2.3 Observations

In all cases, the identity is contained in p + 1 subgroups of order p, which in turn

are contained in subgroups of order p2. After this each subgroup is contained in p

subgroups of the next higher order, and the procedure repeats up to the index of

pm.

We choose to name the bottom branch of the tree the characteristic branch, while

the upper branch we call the top branch. The process of splitting explained above

happens for m times. The difference between the values of n and m tells how many
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times the characteristic branch has to proceed after m times. After this the process

terminates and in this way the tree diagram of cyclic subgroups has been generated.

For illustration of the process, see the diagram below for the case Z24 × Z22 .

b����
b
b
bb

b
b
b
bb

���
��

XXXXX

�
�
�
��

(((((PPPPP

   
  

hhhhh
b
b
b

b
bb
bb
b

b
bb
b
````̀
    

 

(((((hhhhh

bbbb
Now that the tree diagram has been generated, we are in the process of naming the

maximal chains occurring in the lattice diagrams of p-groups. Before we explain the

process of the formation of lattice diagrams, we do almost half the job by giving

names to the cyclic subgroup generators found in tree diagram.

3.2.4 Labeling of the Tree Diagram

We describe a unique method of naming the subgroup generators. (This is the

author’s description). The generators are given labels in order from the right most

node, bottom of the characteristic branch in the following way:

10, p0, p20, . . . , pn−10, 00. Next all the nodes, except those on the top branch, whose

roots are those named above are obtained in the following manner: For each root

find the label of one of its nodes by dividing the root by p. Then find the rest

by fixing the first coordinate of the determined node label for all while adding a

factor of the form αpm−1 to the second coordinate of the determined label, where

α = 0, . . . , p− 1.

Finally we label the top branch in this way: 00, 0pm−1 and divide 0pm−1 by p to

get the rest along the main branch of the top branch. Now with these roots, find

the label of one of its nodes as described above (but add a factor αp for the second

coordinate of the rest). To illustrate this process we give the following example:
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Example 3.2.2 Consider the group G = Z24 × Z22 .

`00 `�
�
�

Z
Z
Z

02

82

80
Q
Q
QQ 40

42

(((((````̀

�
�
�
��

��
�

PPP

((((PPPP

20

21
23

22

41

43

81

01

b
b
b

b
b bb

b
b

bb
bb

b
````̀
   

  

(((((hhhhh

bbbb
13
11
12
10

We give a version of labelling as found in group presentations. This labelling agrees

with ours in every sense.

Examples 3.2.3 1. Consider the Klein group

G = Z2 × Z2 = {e, f, g, f + g : 2f = 0 = 2g}. All the elements of this group,

except the identity, generate subgroups of the same order that are disjoint.

Hence G has a tree diagram

ae a�
�
�
��

Z
Z
Z
ZZ

f

f+g

gd
d
d

d

2. The group

G = Z3 × Z3 = {e, f, g, 2f, f + g, 2f + g, 2g, f + 2g, 2f + 2g : 3f = 0 = 3g} has

some of its members generating identical subgroups, as can be easily checked

algebraically (see example 2.2.8). Hence G has the diagram

aXXXXX���
��

e

a
a
a
a

�
�
�
��

Z
Z
Z
ZZ

XXXXX
���

��

f

2f+g

f+g

gd
d
d
d

d

As we get closer to the algorithm, we give some more examples
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3. The group G = Z4 × Z2 = {e, f, g, f + g, 2g, f + 2g, 3g, f + 3g : 2f = 0 = 4g}

has the diagram

ae a�
�
�
��

Z
Z
Z
ZZ

f

f+2g

2g ���
��

PPPPP g

f+gd
d
d

d
d

d

4. The group G = Z8 × Z4 = 〈f, g : 4f = 0 = 8g〉 has the diagram

ae a�
�
��

Z
Z
ZZ

2f

2f+4g

4g
Q
Q
Q
QQ 2g

2f+2g

��
��

PPPP

�
�
�
�
��

��
��

PPPP

���PPP

g

f+g

3f+g

2f+g

f+2g

3f+2g

f+4g

f

b
b
b

b
b b

b
b
b

b
b bb

b

Note 3.2.4 All the subgroups generated at this stage are cyclic. The number of

cyclic groups at each level can be verified by the check illustrated in example 3.3.4.

Theorem 3.2.5 The number of subgroups of order pβ in a group of order

pα ≡ 1(mod p).

Example 3.2.6 The number of subgroups of order 25 in a group of order

125 ≡ 1(mod5). If the group is Z25 × Z5 and x is the number of subgroups, then

x ≡ 1(mod5), that is x− 1 = 5t for some t. Hence x = 6 is the required number of

subgroups of order 5 in the given group. ∆

We proceed to the development of lattice diagrams.
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3.3 Subgroup Lattices

Definition 3.3.1 A subgroup lattice is a diagrammatic illustration which de-

scribes the relationship between the various subgroups of a group. All the subgroups

of a group are included in a lattice diagram with the property that a subgroup H at

one level is connected to a subgroup K at a higher level by means of a sequence of

line segments, provided H is properly contained in K.

Consequently there are more than one ways to draw a subgroup lattice, but the

fundamental thing is that the connection between the subgroups must be the same.

3.3.1 Primary Decomposition

As mentioned in the introduction above, the process of determining the subgroup

lattice of a given finite Abelian group is a difficult task. However, the method of

breaking down the group into its components (or factors) and working from the

properties of the latter reduces the burden. This process is called decomposition.

To illustrate this fact, consider a finite Abelian group G. Let n be the order of G,

where n = pr1
1 p

r2
2 · · ·p

rk
k . We call |G| = n = pr1

1 p
r2
2 · · ·p

rk
k the decomposition of the

order of G into prime power factors.

Suppose G = Gp1 × Gp2 × · · · × Gpk
is the corresponding primary decomposition.

Then there is a one-one correspondence between the subgroup lattice of G and the

direct product of the corresponding subgroup lattices.

Definition 3.3.2 (Product of Subgroup Lattices) Suppose L and M are the

two subgroup lattices with ` ∈ L and m ∈M . By the product of L and M we mean

L×M = {(`,m) | ` ∈ L,m ∈M}

with the property that

(`1, m1) ≤ (`2, m2) if and only if

`1 ≤ `2 and

m1 ≤ m2
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If L(G) denotes the subgroup lattice of G, then

L(G) ≈ L(Gp1)× L(Gp2)× · · · × L(Gpk
), (3.3)

(see Suzuki, 1951). This process reduces the problem to p-groups and works both

ways. That is, given the subgroup lattices of the primary components, then the

direct product of such lattices can be constructed from which the subgroup lattice

L(G) can be inferred.

3.3.2 Number of Subgroups

The counting of subgroups of Abelian groups was started as early as in the 1930’s

by G. Birkhoff. People became interested in this kind of work and the contributions

began to flow.

We explain how we use the tree diagrams of subgroups to arrive at the total number

of subgroups for the specific cases. Before we do so, we make the following note:

Note 3.3.3 (Butler, 1991) A finite Abelian p-group is said to be of type

λ = (λ1, . . . , λk) if it is isomorphic to the direct product of cyclic groups

Zpλ1 × · · · × Zpλk , where λ1 ≥ · · · ≥ λk and λ is a partition of n.

3.3.3 Hall Polynomial

Hall started his process of subgroup counting. He studied the subgroups H of type µ

of a finite Abelian p-group G of type λ which have the property that G/K is of type

ν. He proved that the number of such subgroups was a polynomial in p with integral

coefficients. The polynomial is called a Hall polynomial and is denoted by gλ
µν . Hall

also found the degree of this polynomial together with its leading coefficient, and

further showed that gλ
µν = gλ

νµ.

The following example will be useful in illustrating the counting of vertices and edges

in any graph of Zpn × Zpm form.

Example 3.3.4 The number of cyclic subgroups of order p in Zp2×Zp can be found

by counting the number of elements using the fact that | (a, b) |= p = lcm(| a |, | b |).
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This requires that both | a | and | b | be p or | a |= p and | b |= 1, p and vice versa.

The first case yields (p−1)2 elements, while the second case yields 2(p−1) elements

of order p. But each cyclic subgroup of order p has p − 1 elements of order p no

two of which have an element of order p in common. Thus Zp2 × Zp has p+ 1 cyclic

subgroups of order p.

By similar argument, Zp2 × Zp has p cyclic subgroups of order p2. ∆

For the following case of m, we note the following

Lemma 3.3.5 The number of cyclic subgroups of order p2 in Zp2 × Zp2 is p2 + p.

Proof. For (a, b) ∈ Zp2×Zp2 we have | a |= p2 =| b | implying p2−p choices for a and

b resulting in (p2−p)2 elements of order p2. Also when | a |= p2, | b |= 1, p we have

(p2−p)(p−1)+(p2−p) choices for a and b accordingly. Similarly | a |= 1, p, | b |= p2

yields (p2 − p) + (p2 − p)(p− 1) elements of order p2.

But each cyclic subgroup of order p2 has p2−p elements of order p2. Thus Zp2×Zp2

has
2[(p2 − p)(p− 1) + (p2 − p)] + (p2 − p)

(p2 − p) = (p2 + p)

cyclic subgroups of order p2. �

3.3.4 Tree Orientation

The finite Abelian group in question, i.e G = Zpn × Zpm , is noncyclic, hence, apart

from cyclic subgroups, it contains noncyclic subgroups as well. To recover some of

the outstanding noncyclic subgroups once a cyclic subgroup tree-diagram is known,

our method involves the orientation of the discovered tree-diagram about 1800 to

create symmetry. Most noncyclic subgroups are recovered in this way with the ex-

ception of a few as will be illustrated.

In a lattice, the subgroups of the same order are said to be on the same level.

Thus each lattice of G has n +m + 1 levels, with the identity on the first and the

whole group on the n + m + 1-th level. The number of subgroups at each order is

observed to grow from 1 in monic polynomial order up to the degree of m, levels
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up for n −m + 1 times then decreases in monic polynomials again. In fact all the

terms of the polynomials have coefficients of 1. This process is best illustrated by

the figure below.

c c

c c

c

c
J
J
J
J
J
J
JJ J

J
J
J
J
J
JJ

︷ ︸︸ ︷
n−m+ 1

︷︸︸︷
m

m︸︷︷︸

The non-cyclic subgroups appear in every level except the first two. The non-cyclic

subgroups too occur in increasing polynomial order with effect from the level after

the first two up to a polynomial of degree m− 1, repeat the number at degree m− 1

for n−m+ 1 times before decreasing.

This description makes it easy to count the number of subgroups in each lattice

diagram. We use this description together with the knowledge of example 3.3.4 to

count the number of ordinary subgroups of a group G.

We next account for the missing edges as well as some subgroup generators. To do

so we need to consider the groups for various cases of positive integers n and m.

Case 1: Let m = 1 and let n be any positive integer. We are dealing with groups

of the form Zpn × Zp. Generally for these groups all the generators at this stage

have been accounted for by the tree inversion. We need only account for the missing

edges. When n = 1, nothing is missing, that is all the edges and generators are

there. When n = 2, only one edge is needed, and can be denoted by {p0, 〈01, p0〉}.

When n = 3, two edges are missing. They are given by

{p20, 〈01, p20〉} and {p0, 〈01, p0〉}.

In general, in Zpn × Zp for n > 1, there are {pi0, 〈01, pi0〉}n−1
i=1 missing edges to be

accounted for after tree inversion.
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Case 2: Let m = 2 and let n be any positive integer, such that n ≥ m. For

these groups and the higher, some generators as well as some edges are missing.

We describe one set, and the corresponding follow by reflection about symmetry.

When n = 2, only one generator is missing, this is 〈0p, p0〉. The missing edge set

is given by {[pαp; 0p], 〈0p, p0〉} for α = 0, . . . , p− 1. By reflection about symmetry

we discover a corresponding set of edges. When n = 3, the following set of edges

is missing: {[p2αp; 0p], 〈0p, p20〉} and {[pαp; 〈0p, p20〉], 〈0p, p0〉} together with their

reflections.

The following trend is followed for n > 3. The missing edges are given by set:

{[p3αp; 0p], p30}; {[p2αp, 〈0p, p30〉], 〈0p, p20〉};

and {[pαp; 〈0p, p20〉], 〈0p, p0〉} for α = 0, . . . , p − 1 together with their reflections

about symmetry.

On the other hand the missing generators are all given by 〈0p, pi0〉 for

i = 1, . . . , n− 1.

In general for groups of the form Zpn × Zp2 , the missing edges are given by the

following sets, together with their reflections about symmetry:

{[pn−1αp; 0p], 〈0p, pn−10〉}; {[piαp; 〈0p, pi+1〉], 〈0p, pi0}n−1
i=1 ,

and for α = 0, . . . , p− 1.

The process carries on until all possible cases have been considered.

Example 3.3.6 Consider the reflection of the tree diagram for Z33×Z3. The missing

edges are {320, 〈01, 320〉}; and {30, 〈01, 30〉}, while there are no missing generators.
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Example 3.3.7 The reflection of a tree diagram for Z4×Z4 has the following miss-

ing generators and edges: one generator 〈02, 20〉, and the edges
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{20, 〈02, 20〉}; {22, 〈02, 20〉}.

b���
@
@
@

b
b

b

�
�
�

��
�

HHH

@
@
@b

bb
b
b
b ←→

b���
��

�
�
�
��

�
�
�
��

�
�
�
��

b b
b b
��
��

�
�
��

�
�
����
�

b b
b b b
b b b

b
b

�
�
�
��

The other cases can be explained similarly. ∆

We next give a concise overview of Fuzzy Set Theory, and lay out some material

necessary for the discussion of the topic of this thesis.
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Chapter 4

Fuzzy Group Theory

4.1 Introduction

Let X be a non-empty set. Crisp subsets of X are characterized by a function

χA ∈ {0, 1}X, for A ⊆ X , which is defined as follows:

χA(x) =





1 if x ∈ A

0 if x 6∈ A

(4.1)

where the relation ∈ has the property that for each x ∈ X , either x ∈ A or x 6∈ A.

However, if the set X is a representation of some collection of objects in the real

world whereby A has no definitive condition on elements belonging to A, then the

statement x ∈ A cannot be declared to be either true or false with absolute certainty.

This is what prompted the development of a fuzzy set, a concept introduced by Zadeh

in [89]. In his definition, a fuzzy set is simply an element of IX where I = [0, 1], and

where if µ ∈ IX then we can think of the real number µ(x) as being the degree of

membership of x to µ.
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4.2 Fuzzy Set Theory

4.2.1 Preliminaries

In this section we give an account background to fuzzy theory and a list of concepts

that will be useful in future discussions.

We will use the following notation interchangeably:

x ∧ y = min(x, y) x ∨ y = max(x, y), x, y ∈ I (4.2)
∨

x∈S

x = sup{S} and S ⊆ [0, 1]. (4.3)

Let X be the universe of discourse.

A fuzzy set µ on X is defined as a function µ : X → [0, 1]. The interval [0, 1] is used

as a chain with the usual ordering in which ∧ stands for infimum (or intersection)

and ∨ stands for supremum (or union).

The support of µ, denoted as supp (µ), is defined to be the crisp subset of X given

by

supp(µ) = {x ∈ X : µ(x) > 0}. (4.4)

A fuzzy binary relation R on µ is defined as a fuzzy subset of the direct product

X ×X with values in the unit interval [0, 1].

Let α ∈ [0, 1]. By an α-cut of a fuzzy set µ, denoted as µα, is meant a subset of X

defined by µα = {x ∈ X : µ(x) ≥ α}. An α-cut Rα of a fuzzy binary relation R on

X is a crisp binary relation on X defined by xRαy if and only if R(x, y)≥ α.

A composition of fuzzy binary relations R and R′ is defined as

(R◦R′)(x, y) = supz∈X{R(x, z)∧ R(z, y)}. (4.5)

The α-cut of the composition of two fuzzy binary relations is the crisp composition

of their α-cuts, that is (R◦R′)α = Rα ◦ R′
α.

A fuzzy binary relation R on a set X is said to be

• reflexive if R(x, x) = 1 for every x ∈ X ,

• symmetric if R(x, y) = R(y, x) for all x, y ∈ X ,
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• transitive if R ◦R ⊆ R

[equally said R(x, y)∧R(y, z) ≤ R(x, z) for all x, y, z ∈ X ].

A fuzzy binary relation R on X is said to be a similarity relation on X if it is

reflexive, symmetric and transitive.

Note 4.2.1 By virtue of the reflexivity of R, the transitive property is equivalent

to

∨

z∈X

{R(x, z)∧R(z, y)}= R(x, y) for all x, y ∈ X. (4.6)

4.3 Fuzzy Subgroups

The concept of a fuzzy group was first proposed by Rosenfeld in 1971. Within a

short space of time his paper caught the interests of algebraist worldwide and ever

since there has been an explosion of beautiful results out of that enthusiasm.

Let G be a group, and let µ : G→ I be a mapping, where I is a unit interval [0, 1].

Throughout our discussion, unless otherwise stated, G is a finite Abelian group.

4.4 t-norm

A fuzzy subgroup is mostly defined in terms of a t-norm (as t-norms are more general

than max and min). We hereby give a brief description of a t-norm.

Definition 4.4.1 A t-norm is a function T : [0, 1] × [0, 1] → [0, 1] satisfying for

each x, y, z ∈ [0, 1] :

• T (0, x) = 0

• T (1, x) = x

• T (x, y) = T (y, x)

• if y ≤ z, then T (x, y) ≤ T (x, z)

• T (x, T (y, z)) = T (T (x, y), z)
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The frequently encountered t-norm, T (x, y) = min(x, y), was used by Rosenfeld in

his original definition of fuzzy subgroup, and will be used in this thesis.

min(x, y) =





x if x ≤ y,

y if y < x

(4.7)

Another frequently used t-norm is

T (x, y) = prod(x, y) = xy.

A t-norm T1 is said to be stronger than a t-norm T2 if and only if

T1(x, y) ≥ T2(x, y) for all x, y ∈ [0, 1]. (4.8)

Definition 4.4.2 Let G be a group. A function µ : G → [0, 1] is a fuzzy subgroup

of G with respect to a t-norm T if and only if for each x, y ∈ G

• µ(x, y) ≥ T (µ(x), µ(y))

• µ(−x) = µ(x)

• µ(0) = 1,where 0 is the identity in G

Consequently the following results hold:

Theorem 4.4.3 Let G be a group. A function µ : G→ [0, 1] is a fuzzy subgroup of

G with respect to a t-norm T if and only if µ(0) = 1 and

µ(x− y) ≥ T (µ(x), µ(y)), for all x, y ∈ G.

Proof. [Osman].

Theorem 4.4.4 Let G1, G2 be groups and G = G1×G2 be the direct product group

of G1 and G2. Let µ1 be a fuzzy subgroup of G1 with respect to T, and µ2 a fuzzy

subgroup of G2 with respect to T. Then µ = µ1 × µ2 is a fuzzy subgroup of G with

respect to T defined by

µ(x1, x2) = (µ1 × µ2)(x1, x2) = T(µ(x1), µ(x2)) (4.9)
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Proof. [Osman].

Since min is the strongest of all t-norms, any fuzzy subgroup with respect to

min is a fuzzy subgroup with respect to any other t-norm as well.

(Schweizer and Sklar).

Therefore, consistent with group theory notation, we have the following restatement

of a fuzzy subgroup:

Definition 4.4.5 Let x, y ∈ G. µ is said to be a fuzzy subgroup of G if

1. µ(x+ y) ≥ µ(x)∧ µ(y),

2. µ(−x) = µ(x), for all x, y ∈ G.

In their definition of arbitrary t-norms, Anthony and Sherwood did not include

condition (3) as appearing in the following proposition. However, they realized later

through their “experience of constructing example” the necessity for its inclusion.

The following proposition, they claim, provides additional justification for its inclu-

sion.

Proposition 4.4.6 (Anthony and Sherwood) Let G be a group and suppose µ :

G→ [0, 1] satisfies

1. µ(x+ y) ≥ min(µ(x), µ(y)),

2. µ(−x) = µ(x),

3. µ(0) > 0

Then the function θ defined for each x ∈ G, by θ(x) = µ(x)/µ(0) is a fuzzy subgroup

of G with respect to min such that θ(0) = 1.

Proof. For any x ∈ G,

We first show that 1 = θ(0) ≥ θ(x).

θ(0) = µ(0)/µ(0) = µ(x− x)/µ(0) ≥ min(µ(x), µ(−x))/µ(0) (4.10)

= min(µ(x), µ(x))/µ(0) = µ(x)/µ(0) = θ(x) (4.11)
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Thus θ(0) = 1 and 0 ≤ θ(x) ≤ 1 for any x ∈ G.

We next show that θ(x+ y) ≥ min(θ(x), θ(y)). Now,

θ(x+ y) = µ(x+ y)/µ(0) ≥ min(µ(x), µ(y))/µ(0) (4.12)

= min(µ(x)/µ(0), µ(y)/µ(0)) (4.13)

= min(θ(x), θ(y)) (4.14)

Finally,

θ(−x) = µ(−x)/µ(0) = µ(x)/µ(0) = θ(x) (4.15)

Therefore θ is a fuzzy subgroup of G with respect to min. �

Definition 4.4.7 Let µ be a fuzzy subset of S. For t ∈ [0, 1], the set

µt = {x ∈ S : µ(x) ≥ t} (4.16)

is called a level set subset of the fuzzy subset µ.

The following results pertaining to level sets hold:

Theorem 4.4.8 [5]. Let G be a group and µ be a fuzzy subgroup of G. Then the

level subset µt, t ∈ [0, 1], t ≤ µ(0), is a subgroup of G, where 0 is the identity of G.

Theorem 4.4.9 Any subgroup H of G can be realized as a level subgroup of some

fuzzy subgroup G.

In their paper [23], Dixit et al give a corrected version of theorem of Das [21] in the

following way:

Theorem 4.4.10 Let G be a group, and let µ be a fuzzy subgroup of G. Two level

subgroups µt1 and µt2 of µ (with t1 < t2) are equal if and only if there is no x ∈ G

such that t1 ≤ µ(x) < t2.

If µ is a fuzzy subgroup of G and Im µ = {t0, t1, . . . , tn} with t0 > t1 > · · ·> tn,

then the family of level subgroups forms a chain

µt0 ⊆ µt1 ⊆ · · · ⊆ µtn , where µ(0) = t0. (4.17)

40



Sebastian and Sundar [77] studied the level sets in detail and produced the following:

Let µ be a fuzzy subgroup of G with Im µ = {tj : j ∈ J}, and let U = {µtj : j ∈ J},

where J is an arbitrary index set. Then

1. ∃ a unique j0 ∈ J such that tj0 ≥ tj for every j ∈ J

2. µtj0
= ∧j∈Jµtj

3. G = ∪j∈Jµtj

4. the members of U form a chain.

The following proposition also forms part of the discussion:

Proposition 4.4.11 [23], [77]. Let ν be a fuzzy subgroup of G′ and let {νtj : j ∈ J}

be a collection of all level subgroups of ν, then {f−1(νtj) : j ∈ J} is the collection of

all level subgroups of f−1(ν).

Proof. Let µ = f−1(ν) and t ∈ [0, 1]. We show that µt = f−1(νt) for all t ∈ [0, 1].

Now

x ∈ µt ⇐⇒ f−1(ν)(x) ≥ t

⇐⇒ ν(f(x)) ≥ t

⇐⇒ f(x) ∈ νt

⇐⇒ x ∈ f−1(νt)

Thus, in particular, we have µtj = f−1(νtj) for all j ∈ J. We proceed by contradic-

tion method, to establish the result. Suppose µ has a level subgroup

µt 6∈ {f−1(νtj ) : j ∈ J}. This means that ν must have a level subgroup νt which

does not belong to {νtj ) : j ∈ J} such that µt = f−1(νt), t ∈ [0, 1] holds. (Contra-

diction)

Thus {f−1(νtj ) : j ∈ J} is the collection of all level subgroups of f−1(ν). �

Note 4.4.12 Some of the f−1(νtj) may be equal.

In this event, Thm 3.3 (Sebastian and Sundar, [77]) gives a necessary and sufficient

condition for all f−1(νtj) to be distinct.
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For completeness we state the result and refer the reader to the article for the proof.

Theorem 4.4.13 [77]. Let ν be a fuzzy subgroup of G′ with Im ν = {tj : j ∈ J},

where J is a countable set. Then f−1(νtj) are all distinct if and only if

f(G) ∩ ν∗(tj) 6= ∅, for all j ∈ J, where ν∗(t) = {x ∈ G : ν(x) = t}.

4.5 Operations on Fuzzy Subgroups

In this section we define the operations of intersection, union, quotient, sum and

product of fuzzy subgroups of G under an equivalence relation. It is evident that

equality of fuzzy subgroups implies equivalence of fuzzy subgroups, but the converse

need not be true. Not even fuzzy isomorphic fuzzy subgroups need be fuzzy equiva-

lent. (see example 3.8 [59]). Also, inclusion and equivalence of fuzzy subgroups need

not imply one another. In [62], Murali and Makamba introduced the study of these

operations in detail. For consistency and convenience, we will state their results in

the discussion below.

Definition 4.5.1 Two fuzzy subgroups µ and ν of a group G are said to be equiv-

alent if they have the same family of level subgroups. Otherwise the fuzzy subgroups

are non-equivalent.

4.5.1 Intersection of Fuzzy Subgroups

We define the analog of crisp intersection in the context of fuzzy subgroups and

prove a proposition based on the intersection.

Definition 4.5.2 Let µ and ν be two fuzzy subgroups of a group G. Then by their

intersection µ ∧ ν is meant:

(µ ∧ ν)(x) = min(µ(x), ν(x)) for allx ∈ G. (4.18)

We now state the following proposition involving intersection:

Proposition 4.5.3 If µ and ν are fuzzy subgroups of a group G, then their inter-

section (µ ∧ ν) is a fuzzy subgroup.
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Proof. Suppose µ and ν are fuzzy subgroups of a group G. Let x, y ∈ G. We want

to show that

(µ ∧ ν)(x+ y) ≥ min((µ ∧ ν)(x), (µ∧ ν)(y)

and

(µ ∧ ν)(−x) = (µ ∧ ν)(x)

Now

(µ ∧ ν)(x+ y) = min(µ(x+ y), ν(x+ y))

≥ min(min(µ(x), µ(y)),min(ν(x), ν(y))

≥ min(min(µ(x), ν(x)),min(µ(y), ν(y)

= min((µ ∧ ν)(x), (µ∧ ν)(y))

Also,

(µ ∧ ν)(−x) = min(µ(−x), ν(−x))

= min(µ(x), ν(x))

= (µ ∧ ν)(x).

�

With regards to equivalence, if two fuzzy subgroups are equivalent to each other

then their intersection is equivalent to either of the fuzzy subgroups as the following

proposition states:

Proposition 4.5.4 [62]. Let µ and ν be two fuzzy subgroups. If µ ∼ ν then

µ ∧ ν ∼ µ. As a consequence, µ ∧ ν ∼ ν.

4.5.2 Union of Fuzzy Subgroups

In connection with union of fuzzy subgroups, Rosenfeld gave the following statement.

We state it as a proposition:

Proposition 4.5.5 A group cannot be the union of two proper fuzzy subgroups.
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In fact by a group he meant the characteristic function of G which is not a proper

fuzzy subgroup.

The above statement was generalized by V. N Dixit et al [23] who gave the following

formulation: Is it possible for a proper fuzzy subgroup to be realized as a union of

two proper fuzzy subgroups such that none is contained in the other?*

We begin by first stating what is meant by a proper fuzzy subgroup.

Definition 4.5.6 Let G be a group. A fuzzy subgroup µ of G is said to be proper

if Im µ has at least two elements (i.e µ is not constant).

In preparation for the answer to the question * above, we note the following result

due to Dixit et al :

Lemma 4.5.7 Let G be a group and µ a fuzzy subgroup of G. If for x, y ∈ G,

µ(x) < µ(y), then

µ(x+ y) = µ(x) = µ(y + x). (4.19)

Proof. Given that µ is a fuzzy subgroup, we need to show that µ(x+y) = µ(x) and

µ(y + x) = µ(x).

Now, µ is a fuzzy subgroup implies that

µ(x+ y) ≥ min(µ(x), µ(y)) = µ(x) (by assumption).

Also

µ(x) = µ(x+ y − y) ≥ min(µ(x+ y), µ(y)) ≥ µ(x+ y), since µ(x) < µ(y).

Hence we have that µ(x+y) = µ(x). Similarly, it can be shown that µ(y+x) = µ(x),

which completes the proof . �

The union of two fuzzy subgroups need not be a fuzzy subgroup as illustrated in the

following example, courtesy of Dixit et al, [24]:

Example 4.5.8 Let G be a Klein’s four group.

G = {e, f, g, fg}, where f2 = e = g2 and fg = gf
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For 0 ≤ i ≤ 5, let ti ∈ [0, 1] such that 1 = t0 > t1 > · · · > t5.

Define fuzzy subsets µ and ν : G→ [0, 1] as follows:

µ(e) = t1, µ(f) = t3 and µ(g) = µ(fg) = t4 (4.20)

ν(e) = t0, ν(f) = t5, ν(g) = t2 and ν(fg) = t5 (4.21)

It can be seen that µ, and ν are fuzzy subgroups of G. Furthermore, (µ∨ν)(0) = t0,

(µ∨ν)(fg) = t4, (µ∨ν)(f) = t3, (µ∨ν)(g) = t2 but µ∨ν is not a fuzzy subgroup

of G. ∆

In fact, the union of two equivalent fuzzy subgroups is a fuzzy subgroup.

Proposition 4.5.9 [62], [24]. If µ ∼ ν then µ ∨ ν ∼ µ. By consequence µ ∨ ν ∼ ν.

We conclude this section with this statement: With their carefully chosen examples,

the authors in [23] demonstrated that a proper fuzzy subgroup can be realized as

a union of two proper fuzzy subgroups (such that none is contained in the other)

depending on the image set of the fuzzy subgroup under consideration.

4.5.3 Sum of Fuzzy Subgroups

We define what is meant by the sum of two fuzzy subgroups µ and ν.

Definition 4.5.10 Let µ and ν be the two fuzzy subgroups. By the sum of µ and ν

over G is meant

(µ+ ν)(x) = sup{µ(x1) ∧ ν(x2) | x1 + x2 = x, wherex ∈ G}, (4.22)

and this sum is defined using the extension principle.

In terms of equivalence, we state the following proposition:

Proposition 4.5.11 [62]. If µ ∼ ν then µ+ ν ∼ µ. By consequence µ + ν ∼ ν.
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4.6 Group Theoretic Terms in the Fuzzy Sense

4.6.1 Conjugacy

We first define what is meant by a fuzzy conjugate. Even though we are dealing with

additive groups, we will continue to adopt a multiplicative notation whenever it is

convenient to do so.

Definition 4.6.1 (Mukherjee and Bhattacharya) Let G be a group and µ1, µ2

two fuzzy subgroups of G. µ1 is said to be conjugate to µ2 if for some x ∈ G we

have that

µ1(g) = µ2(−x+ g + x), for all g ∈ G. (4.23)

Hence if µ is a fuzzy subgroup of a group G and g ∈ G, then

µ∗g(x) = µ(−g + x+ g) for all x ∈ G (4.24)

denotes the fuzzy subgroup called the fuzzy conjugate subgroup of G determined by µ

and g in G.

The following is a criterion for a p-group to be cyclic:

Theorem 4.6.2 (M. Asaad) Let G be a group of prime-power order. Then G is

cyclic if and only if there exists a fuzzy subgroup µ of G such that for x, y ∈ G

1. if µ(x) = µ(y) then 〈x〉 = 〈y〉

2. if µ(x) > µ(y) then 〈x〉 ⊂ 〈y〉

What can be said about the fuzzy subgroups of a cyclic group of prime order? The

following result provides the answer.

Theorem 4.6.3 (M. Asaad and others) Let G be a cyclic group of prime order.

Then there exists a fuzzy subgroup µ of G such that µ(0) = t0 and µ(x) = t1, for all

x 6= 0 in G and t0 > t1.
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4.6.2 Normal Fuzzy Subgroups

Definition 4.6.4 A fuzzy subgroup µ of a group G is said to be normal in G if

µ(x+ y) = µ(y + x) for all x, y ∈ G.

It is appropriate in this context to define another important concept in group

theory, the concept of a normalizer 1. In fuzzy subgroups it translates as follows:

Definition 4.6.5 Let µ be a fuzzy subgroup of a group G. Then the set given by

N(µ) = {g ∈ G : µg = µ}

is called the normalizer of µ.

As a consequence, we have the following propositions:

Proposition 4.6.6 If µ is a fuzzy subgroup of a group G, then N(µ) is a subgroup

of G.

Proof. For any x, y ∈ N(µ), we want to show that xy ∈ N(µ) and x−1 ∈ N(µ).

Let x, y ∈ N(µ), then

µxy = µyx = µy = µ. (4.25)

Hence x, y ∈ N(µ) implies xy ∈ N(µ).

Next, let u = x−1, then for any g ∈ G

µu(g) = µ(u−1gu)

= µ(xgx−1) = µ((x−1g−1x)−1)

= µ(x−1g−1x) = µx(g−1)

= µ(g−1) = µ(g)

so that x−1 ∈ N(µ), that is µx−1
= µ. Thus N(µ) is a subgroup of G. �

Proposition 4.6.7 [57]. Let µ be a fuzzy subgroup of a finite group G. Let

H = {a ∈ G : µ(a) = µ(e)}, where e denotes the identity of G. Then H is a subgroup.
1Let G be a group and let H be a subgroup of G. Then N(H) = {x ∈ G : xHx−1 = H} is called

the normalizer of H.
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4.6.3 Commutator

We next explore the concept of commutator in the fuzzy sense. In their paper,

[Gupta and Sarma, 1996], which was later strengthened by [Sarma, 1999] in terms

of more results, the authors studied commutator in the fuzzy sense and its impact

on group terms like solvability and others. For convenience, we give a summary of

their version below.

Definition 4.6.8 Suppose µ, ν are fuzzy subsets of a group G. A commutator of

µ, ν is a fuzzy subgroup [µ, ν] of G which is generated by the fuzzy subset (µ, ν) of G

defined in the following manner:

(µ, ν)(x) =





∨
x=[a,b]

{µ(a) ∧ ν(b)} if x is a commutator of G

0 otherwise

(4.26)

We mention the following consequence of the definition, the details of which can be

found in [Gupta and Sarma, 1996]:

1. Let µ, ν be the fuzzy subsets of G. If supp (µ) = K and supp (ν) = L, then

supp ([µ, ν]) = [K,L],

2. If µ, ν are normal fuzzy subgroups of G, then [µ, ν] is a normal fuzzy subgroup

of G,

3. [µ, ν] = [ν, µ] for any two fuzzy subsets µ, ν of G.

We hereby state the result based on the definition of commutator and give a proof

by induction.

Theorem 4.6.9 Let µ be a fuzzy subgroup of a given group G. Suppose we define

µ(0) = µ and µ(n) = [µ(n−1), µ(n−1)] for n ≥ 1. Then µ(n) ⊆ µ(n−1).

Proof. Let a ∈ G. We consider two cases, if a is or is not a commutator.

Case 1: (not a commutator) For any a ∈ G we have (µ, µ)(a) = 0 ≤ µ(a).

Case 2. (commutator) For any a ∈ G, by definition of a commutator, we have that

(µ, µ)(a) =
∨

a=[x,y]

{µ(x), µ(y)}
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=
∨

a=[x,y]

∧{µ(x−1, µ(y−1, µ(x), µ(y)}

≤
∨

a=[x,y]

µ(x−1y−1xy)

= µ(x)

Therefore, (µ, µ) ≤ µ, and because µ is a fuzzy subgroup we have

µ(1) = [µ, µ] = [(µ, µ)] ⊆ µ = µ(0). (4.27)

Thus the statement is true for n = 1.

Assume the statement is true for n = k, that is assume µ(k) ⊆ µ(k−1) for some

k ≥ 1. First we must note that if µ, ν are fuzzy subsets of G such that µ ⊆ ν, then

[µ, β] ⊆ [ν, β] for every fuzzy subset β of G.

We need to show that the statement is true for n = k + 1. Now

µ(k+1) = [µ(k), µ(k)] ⊆ [µ(k−1), µ(k−1)] = µ(k) (4.28)

Therefore the statement is true for n = k + 1. Thus, by mathematical induction

principle, the statement is true for all n ≥ 1. �

4.6.4 Solvability

Definition 4.6.10 Let G be a group. A fuzzy subgroup µ of G is said to be solvable

if there exists a finite chain {µi} of fuzzy subgroups of G

{0} = µ0 < µ1 < µ2 < · · · < µk = µ (4.29)

such that µi−1 / µi and µi+1/µi is Abelian, 0 ≤ i ≤ k − 1. Such a finite chain is

called a solvable series for µ.

Consequently we have the following results due to [Ray, 1993]. For continuity

and convenience, we provide the original proof as well.

Theorem 4.6.11 Suppose H is a subgroup of a group G. The characteristic func-

tion χH is solvable if and only if H is solvable.

49



Proof. (=⇒) Assume ϕH is solvable. By definition (4.6.10) there exists a solvable

series

{0} = µ0 < µ1 < µ2 < · · · < µk = χH (4.30)

such that µi−1/µi. Now consider the supp (µi), Ni, 0 ≤ i ≤ k−1. Then the resulting

series

{0} = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nk = H, where Ni−1 / Ni (4.31)

is a solvable series for H . Hence H is solvable.

(⇐=) Assume H is solvable. Similarly,

{0} = χN0 < χN1 < χN2 < · · ·< χNk
= χH (4.32)

is a solvable series for χH . Thus χH is solvable. �

Theorem 4.6.12 (Ray) Suppose µ and ν are fuzzy subgroups of a group G satis-

fying the following

• supp(µ) = supp(ν) = M

• µ ≤ ν

• µ / µ.

If µ is solvable, so is ν.

4.7 Fuzzy Homomorphism and Fuzzy Isomorphism

In this section we describe fuzzy homomorphism in general, and give some results

pertaining to the study.

In view of Chakraborty and Khare [17], before we define what a fuzzy homomorphism

is, we need a few concepts to understand, namely, fuzzy map, characteristic map.2

For sets X and Y , and a map µθ : X × Y → [0, 1],
2A fuzzy subgroup µ on a group G is called a characteristic fuzzy subgroup of G if µ ◦ θ = µ.
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Definition 4.7.1 A fuzzy map θ : X → Y is an ordinary map from X to a set

of all fuzzy subsets of Y , denoted as F(Y ), in such a way that the following are

satisfied:

1. µθ(x, y1) = µθ(x, y2) 6= 0 =⇒ y1 = y2,

2. for all x ∈ X, ∃ unique yx ∈ Y with µθ(x, yx) = 1.

Such a µθ is termed the map characterizing fuzzy map.

Now with this information we are ready to define what is meant by a fuzzy homo-

morphism.

Definition 4.7.2 (Fuzzy homomorphism) A fuzzy map f : G → G′ that maps

a group G to a group G′ is said to be a fuzzy homomorphism if for every g1, g2 ∈ G

and g′ ∈ G′,

µf (g1g2, g′) = supg′=g′1g′2
([µf (g1, g′1)µ̇f (g2, g′2)])

Definition 4.7.3 Let f be a homomorphism from a group G to a group G′, and let

µ, ν be fuzzy sets in G and G′ respectively. Then the homomorphic image (direct

image) f(µ) and the preimage (inverse image) f−1(ν) are fuzzy sets in G′ and G

respectively, defined by

1.

f(µ)(y) =





sup{µ(x) : x ∈ f−1(y)} if f−1(y) 6= ∅,

0 if f−1(y) = ∅

2. f−1(ν)(x) = ν(f(x)) for each x ∈ G.

If for every S ⊆ X, ∃ s0 ∈ S such that

µ(s0) = sup{µ(s) : s ∈ S},

then µ is said to have a sup-property.

We hereby state the following proposition found in fuzzy literature:
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Proposition 4.7.4 Suppose f : X → X ′ is a map, and let Ui and Vi be the families

of fuzzy subsets of X and X ′. Then for µi ∈ Ui and νi ∈ Vi, and indexing set I, the

following are true:

1. f(
∨

i∈I µi) =
∨

i∈I f(µi)

2. f−1(
∨

i∈I νi) =
∨

i∈I f
−1(νi)

3. ff−1(νi) = νi if f is surjective

4. ff−1(µi) = µi if µ is f -invariant

4.7.1 Fuzzy Homomorphism

The study of the effect of group homomorphisms on fuzzy groups was carried by

Rosenfeld [73], Anthony and Sherwood [5], Sidky and Mishref [78], and Akgul [3].

Rosenfeld [73], for instance, proved that if f is a homomorphism on a group G and

µ is a fuzzy subgroup of G, then f(µ) is a fuzzy subgroup of f(G) if and only if µ

has a sup-property, and that f−1(ν) is a fuzzy subgroup of G whenever ν is a fuzzy

subgroup of f(G).

This idea was later challenged by Anthony and Sherwood when they proved that µ

need not have a sup-property in order for f(µ) to be a fuzzy subgroup.

Sidky and Mishref [78] proved that if f : G→ G′ is a group homomorphism, and µ

is a fuzzy subgroup of G, then f(µ) is a fuzzy subgroup of G′.

Akgul proved that f−1(ν) is a fuzzy subgroup of G whenever ν is a fuzzy subgroup

of G′. The above information is provided by S. Sebastian et al [77].

The homomorphic image of a fuzzy subgroup is always a fuzzy subgroup, as the

following result states:

Theorem 4.7.5 (Sidky, Mishref) Let f be a homomorphism from a group G to

a group G′. If µ is a fuzzy subgroup of G, then f(µ) is a fuzzy subgroup of G′.

The preimage of a fuzzy subgroup is a fuzzy subgroup:
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Theorem 4.7.6 (Akgul) Let ν be a fuzzy subgroup of a group G′. Then f−1(ν) is

a fuzzy subgroup of G.

Dixit, Kumar and Ajmal [23], have proved that if µ is a fuzzy subgroup of G with

Im µ = {tj : j = 1, . . . , n} such that t1 > t2 > · · · > tn and if F : G → G′ is a

surjective group homomorphism, then the chain

f(µt1) ⊆ f(µt2) ⊆ · · ·f(µtn)

contains all level subgroups of f(µ).

Sebastian and Sundar [77] removed the restriction on finiteness of | f(µ) | and

proposed in the following way:

Proposition 4.7.7 If f is a surjection, µ has a sup-property and {µtj : j ∈ J} is

the collection of all level subgroups of µ, then {f(µtj) : j ∈ J} is the collection of all

level subgroups of f(µ).

It was also obvious that ontoness of f did not guarantee that all f(µtj ) would be

distinct, hence they proposed a necessary and sufficient condition for the distinctness

of all f(µtj). (µ must be f -invariant) [Thm. 4.5].

Proposition 4.7.4 helps simplify significantly the results by M.E. Eroglu [33(1989)].

The author illustrates the application of the proposition to the following cases “[23]

(Theorem 2.9, Theorem 2.10)”:

Theorem 4.7.8 Suppose f : G→ G′ is a homomorphism of a group G onto a group

G′, and let Ui be a family of fuzzy subgroups of G. Then the following hold:

1. If
∨
i
(µi) is a fuzzy subgroup of G, then

∨
i
f(µi) is a fuzzy subgroup of G′

2. If
∨
i
f(µi) is a fuzzy subgroup of G′, then

∨
i
(µi) is a fuzzy subgroup of G only

if µi are f -invariant.

Proof.

1. Assume
∨
i
(µi) is a fuzzy subgroup of G. By theorem 4.7.5 and Proposition

4.7.4(1), the result follows.
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2. Assume
∨
i
f(µi) is a fuzzy subgroup of G′. Then f−1(

∨
i
f(µi)) is a fuzzy

subgroup of G′. By Proposition 4.7.4(2), the result follows.

Theorem 4.7.9 If f is a homomorphism of a group G onto a group G′, and Vi is

a family of fuzzy subgroups of G, then the following are equivalent:

1.
∨
i
νi is a fuzzy subgroup of G′

2.
∨
i
f−1(νi) is a fuzzy subgroup of G

Proof. (1)=⇒ (2) Use the fact that the homomorphic preimage of a fuzzy subgroup

is a fuzzy subgroup, together with Proposition 4.7.4(2).

(2)=⇒ (1) Since the homomorphic image of a fuzzy subgroup is a fuzzy subgroup

and by Proposition 4.7.4(1), f(
∨
i
f−1(νi)) =

∨
i
ff−1(νi) =

∨
i
νi, the result follows.

�

Whilst on fuzzy homomorphism, we state the following result:

Definition 4.7.10 Let G and G′ be groups, and let f : G→ G′ be a homomorphism.

Let µ be a fuzzy subgroup of G. By the image of µ under f , f(µ), we mean a fuzzy

subset of f(G) defined by

f(µ)(f(x)) = sup{µ(y) : f(y) = f(x)}. (4.33)

Define f(µ)(y) = 0 if y /∈ f(G). Then, f(µ) becomes a fuzzy subgroup of G′.

For proof of the claim, see [50], [51].

4.7.2 Homomorphism and Equivalence

Suppose f : G → G′ is a homomorphism of a group G to G′. Under this homo-

morphism, if the fuzzy subgroups of G are equivalent, what can be said about their

images in G′? The following result addresses this question:

Proposition 4.7.11 If f : G→ G′, and if µ ∼ ν in G, then f(µ) ∼ f(ν) in G′.
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Proof. Let f : G→ G′ be a homomorphism. Suppose also that µ ∼ ν in G. Hence

µ(x) > µ(y) if and only if ν(x) > ν(y) and µ(x) = 0 if and only if ν(x) = 0 for all

x, y ∈ G. The second part implies that the supports of µ and ν are equal.

Now f(suppµ) = f(supp ν), since f is a homomorphism. Hence

supp f(µ) = supp f(ν). We end this by showing that f satisfies the equivalence part.

To do this we choose any elements x′, y′ ∈ G′ in such a way that f(µ)(x) > f(µ)(y).

We show that f(ν)(x) > f(ν)(y). Now for all y ∈ G such that f(y) = y′ there exists

an x ∈ G such that f(x) = x′ and µ(x) > µ(y). But µ ∼ ν hence ν(x) > ν(y). From

this it follows that f(ν)(x) > f(ν)(y). Thus f(µ) ∼ f(ν) in G′. �

It is interesting to consider the behaviour of the preimages as well.

Proposition 4.7.12 If f : G → G′, and if µ ∼ ν in G′, then f−1(µ) ∼ f−1(ν) in

G.

Proof. Let f : G→ G′ be a homomorphism. Assume that µ ∼ ν in G′. Then

suppµ = supp ν in G′. From this we have that, since f is a homomorphism,

f−1(suppµ) = f−1(supp ν) in G. We next show that f−1 satisfies the equivalence.

For this we pick x1, x2 ∈ G such that f−1(µ)(x1) > f−1(µ)(x2). Then we have that

µ(f(x1)) > µ(f(x2)). Since µ ∼ ν we have ν(f(x1)) > ν(f(x2)). It follows that

f−1(ν)(x1) > f−1(ν)(x2). Thus f−1(µ) ∼ f−1(µ) in G. �

We close this chapter by looking at the concept of fuzzy isomorphism.

4.7.3 Fuzzy Isomorphism

The version of fuzzy isomorphism as defined below appeared as a remark in [59].

Definition 4.7.13 Let G be a group and µ and ν be fuzzy subgroups of G. Then µ is

said to be fuzzy isomorphic to ν if there exists an isomorphism f : suppµ→ supp ν

such that

µ(x) > µ(y)⇐⇒ ν(f(x)) > ν(f(y))

for any x, y ∈ suppµ, and is denoted as µ ≈ ν.
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Subsequently there was the following comment:

The notion of equivalence can be viewed as a special case of the notion of fuzzy

isomorphism as per the definition above. In comparison with the equivalence to be

used in this work, the latter is finer than the usual fuzzy isomorphism as defined

above. Thus fuzzy equivalence implies fuzzy isomorphism and not the other way

round. (See example 3.8 in [59]).

Consider G = Z2 × Z2, and let µ and ν be fuzzy subgroups of G such that

µ(x) =





1 x = {e}

λ x ∈ Z2 × {0} \ {e}

β elsewhere

ν(x) =





1 x = {e}

λ x ∈ {0} × Z2 \ {e}

β otherwise

If there is a function f in G given by f : (x, y)→ (y, x) then f is an isomorphism.

Thus µ and ν are not equivalent even though they are isomorphic.
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Chapter 5

Maximal Chains, Flags and

Keychains

5.1 Introduction

In chapter 2 we described what is called in group theory a series of subgroups. In

this chapter we introduce a new term synonymous to a series, namely a flag.

We, amongst other things, fix some terminology which will be used later in the

classification of fuzzy subgroups. This terminology includes flags, pins, keychains,

pinned flag, padidity, index and various other terms as will be described in progress.

We will explain how a pinned flag determines a fuzzy subgroup or alternatively how

a fuzzy subgroup can be associated with a pinned flag. Finally we will enumerate

maximal chains based on the labelling of subgroup generators and ideas of the num-

ber of cyclic subgroups of each order. We will brush on the results based on the

number of k-pad keychains as will be illustrated.

To begin this work, we give the following definitions that will be followed in the

entire description of the topic.

Definition 5.1.1 A flag is a maximal chain of subgroups of the form

G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn in which G0 = {0} and Gn = G, and all the Gi’s are

called the components of the flag.
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We will interchangeably refer to G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn as a flag or a maximal

chain.

Definition 5.1.2 Consider a set of real numbers λi, with i = 0, . . . , n in the unit

interval I, where the λi’s are not all necessarily distinct. We call a chain of these

real numbers

1 = λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 (5.1)

a keychain, and all the λi’s are called pins. A keychain always contains λ0.

Notice that 1 occupies the first position, and λi occupies the (i+ 1)-th position, for

i = 1, 2, . . . , n. Hence the length of a keychain is n+ 1, and so the n-chain has n+ 1

available positions. These positions will play a crucial role in further discussion.

(see Definition 5.3.1).

Identical keychains, as can be anticipated, have the same length and contain identical

pins. For this reason, two keychains are said to be distinct whenever they are either

of different lengths or there is a pin which is found in one keychain but not in the

other. (The keychains will be treated more promptly in the sections to follow. For

now let us be using them in the context they are given in.)

The combination of these two terms leads us to what we refer as a pinned flag.

By a pinned flag on G we mean a flag on G together with a keychain on I. We denote

such a pinned flag suggestively as

{0}1 ⊂ Gλ1
1 ⊂ G

λ2
2 · · · ⊂ G

λn
n (5.2)

A fuzzy subset µ associated with a pinned flag in 5.2 is denoted as follows

µ(x) =





1 if x = 0

λ1 if x ∈ G1 \ {0}

λ2 if x ∈ G2 \G1

...

λn if x ∈ Gn \Gn−1

(5.3)
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Proposition 5.1.3 µ defined by 5.3 is a fuzzy subgroup.

Proof. For any a, b ∈ G there exist indices i, j with the property 1 ≤ i ≤ j ≤ n such

that a ∈ Gi \Gi−1 and b ∈ Gj \Gj−1. Now a, b are elements of Gj , and hence their

sum a+ b is also in Gj so that µ(a+ b) ≥ λj . But λj ≥ λi ∧ λj, and by the way i, j

have been defined we have that µ(a+ b) ≥ µ(a)∧µ(b). It is easy to show the second

part, for if a ∈ G there is an index i such that a ∈ Gi \Gi−1. Now since −a ∈ Gi,

we have that µ(a) = λi ≥ µ(−a) for some i. Also µ(0) ≥ µ(a) for all a ∈ G. This

completes the proof that µ is a fuzzy subgroup. �

The converse to Proposition 5.1.3 also holds. That is given any fuzzy subgroup µ of

G, then µ can be decomposed into a pinned-flag representing µ as in 5.3.

Proposition 5.1.4 [61]. Let µ be a fuzzy subgroup of G. Then µ can be decomposed

into a pinned flag {0}1 ⊂ Gλ1
1 ⊂ G

λ2
2 · · · ⊂ Gλn

n such that 5.3 holds.

Since λn may or may not be equal to 0, it follows that the support of µ is strictly

contained in G or is equal to G respectively.

The equivalence relation that will be used in this work for the purpose of enumeration

is the one appearing in [59].

Definition 5.1.5 Let µ and ν be any fuzzy sets on IX. An equivalence relation on

IX is defined as follows:

µ ∼ ν if and only if for all x, y ∈ X, µ(x) > µ(y) if and only if ν(x) > ν(y) and

µ(x) = 0 if and only if ν(x) = 0. The second condition, namely, µ(x) = 0 if and

only if ν(x) = 0 implies that the supports of µ and ν are equal.

If fuzzy subgroups are equivalent what can be said about their pinned flags? Nor-

mally, one would expect that their pinned flags have the same length and that their

corresponding components are identical. Indeed this is the case as stated in the

following Proposition [61]:

Proposition 5.1.6 Let µ and ν be two fuzzy subgroups. Suppose

X1
0 ⊂ Xλ1

1 ⊂ Xλ2
2 · · · ⊂ Xλm

m and Y 1
0 ⊂ Y β1

1 ⊂ Y β2
2 · · · ⊂ Y βn

n are the corresponding
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pinned flags to µ and ν respectively. Then µ ∼ ν on G if and only if the following

are true

1. n = m

2. Xi = Yi, for i = 0, 1, . . . , n and for distinct λis and distinct βjs.

3. λi > λj if and only if βi > βj, for 1 ≤ i, j ≤ n.

Proof. (=⇒) Suppose µ ∼ ν.

1. Define a function f : µ(X) → ν(X) by f(µ(x)) = ν(x) for x ∈ X , where

µ(X), ν(X) are subsets of I . We need to show that f is well defined and

bijective. To do this let x, y ∈ X . Now µ(x) > µ(y) if and only if

ν(x) > ν(y), since µ ∼ ν. Similarly, µ(x) < µ(y) if and only if ν(x) < ν(y).

Thus µ(x) = µ(y) if and only if ν(x) = ν(y), that is f(µ(x)) = f(µ(y)). Hence

f is well defined and is one-to-one. Lastly, by the way f has been defined,

there exists a ν(x) ∈ ν(X) such that f(µ(x)) = ν(x) for all µ(x) ∈ µ(X) and

for all x ∈ X . Hence f surjective. Now f is well defined and bijective. Thus

|µ(X)| = |ν(X)|. Therefore, n = m.

2. We prove by induction on n. Let n = 0, then Y0 = X0 as each set is the

empty subgroup. Assume that Yk = Xk for k ≥ 0. We need to show that

Yk+1 = Xk+1. To do this we show that Yk+1 ⊂ Xk+1 and Xk+1 ⊂ Yk+1. To

show the first inclusion, we pick an element g ∈ Yk+1 and show that g ∈ Xk+1.

Let g ∈ Yk+1. By assumption, if g ∈ Yk then g ∈ Xk a subset of Xk+1. If

not, that is if g /∈ Yk , then there is a βk+1 such that ν(g) = βk+1. Such a g

must be an element of Xk+1. To verify our claim, suppose not, that is suppose

g /∈ Xk+1. Then we have that µ(g) < λk+1. Now select a x ∈ Xk+1 such

that x /∈ Xk = Yk . Then we have that µ(g) < µ(x) which by equivalence

implies that ν(g) < ν(x). This means that βk+1 = ν(g) < ν(x) = α, say,

where βk > α > βk+1. From this we learn that x is in the α-cut of ν, that is

x ∈ να ⊇ Yk = Xk. This is a contradiction. Hence Yk+1 ⊂ Xk+1. The reverse

inclusion can be shown in a similar manner. Therefore, by the principle of

mathematical induction, (2) holds.
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3. By equivalence, supp µ = supp ν. Now since µ(x) > µ(y) if and only if

ν(x) > ν(y), and since Xi = Yi, for i = 0, 1, . . . , n and for distinct λis and

distinct βjs by 2, then 3 follows.

(⇐=) Let µ and ν be two fuzzy subgroups satisfying 1, 2 and 3. We need to show

that µ ∼ ν. From 1 and 3, we have supp µ = supp ν (since λk = 0 if and only if

βk = 0 for 1 ≤ k ≤ n, andm = n). Let x, y ∈ suppµ, and suppose that µ(x) > µ(y).

Then there exist λi, λj for some 1 ≤ i, j ≤ n for which µ(x) = λi and µ(y) = λj .

According to 1, we have that n = m and condition 3 says that λi > λj if and only if

βi > βj , for 1 ≤ i, j ≤ n. From these two conditions we conclude that ν(x) > ν(y).

We have shown that µ(x) > µ(y) if and only if ν(x) > ν(y). Thus µ ∼ ν. �

The following example illustrates how we classify the fuzzy subgroups of a given

group.

Example 5.1.7 Let G = Z16. Define µ : G→ I as follows:

µ(x) =





1 if x = 0

1
2 if x ∈ Z2 \ {0}

1
4 if x ∈ Z4 \ Z2

1
8 if x ∈ Z8 \ Z4

1
16 if x ∈ Z16 \ Z8

(5.4)

µ can be represented by

{0}1 ⊂ Z
1
2
2 ⊂ Z

1
4
4 ⊂ Z

1
8
8 ⊂ Z

1
16
16 , (5.5)

where 1, 1
2 , etc are the weights in each subgroup.

All fuzzy subgroups ν that are equivalent to µ can be represented by

ν : {0}1 ⊂ Zλ
2 ⊂ Zβ

4 ⊂ Zγ
8 ⊂ Zδ

16 (5.6)
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such that

1 > λ > β > γ > δ > 0. (5.7)

∆

We simply denote the keychain defined in 5.1 by 1λ1λ2 . . .λn−1λn in the descend-

ing order, where the last entry may or may not be zero.

Consider the pinned flag

{0}1 ⊂ Gλ1
1 ⊂ G

λ2
2 ⊂ G

λ3
3 , with 1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0. (5.8)

Corresponding to the flag there are 15 = 24 − 1 distinct equivalent classes of fuzzy

subgroups. The keychains for such fuzzy subgroups arise from all the possibilities in

(5.8) and can be written out thus 1111, 111λ1, 1110, 11λ1λ1, 11λ1λ2, · · · , 1000. We

choose to denote the number of fuzzy subgroups in the form 15 = 24 − 1 =
3∑

r=0
2r,

and make an assumption that 1 > λ1 > λ2 > λ3 ≥ 0.

We note that the number of fuzzy subgroups whose support is strictly G3 is one

more than the number of fuzzy subgroups whose support is properly contained in

G3. Hence we can write the number of fuzzy subgroups as

15 = 24 − 1 =
3∑

r=0

2r = 24/2 + 24/2− 1. (5.9)

The number of fuzzy subgroups whose support is Gi, for i = 0, 1, 2, 3, correspond to

the components (8, 4, 2, 1) of the partition of 15.

If a flag is extended by one component, the effect on the resulting number of dis-

tinct equivalent classes of fuzzy subgroups can be explained in the following way:

Each fuzzy subgroup of Gi−1 whose pins are all different from zero yields three fuzzy

subgroups of Gi. Each of the remaining keychains gives rise to one fuzzy subgroup

of Gn by simply attaching 0 to the keychain. This process will be explored fully

in chapter 6 when we enumerate fuzzy subgroups of finite Abelian groups of rank two.
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5.2 Enumeration of Maximal Chains

5.2.1 The Number of Maximal Chains

The process of enumeration of maximal chains of a lattice diagram is facilitated by

the knowledge of subgroups of each order, as explained in chapter 3. In the follow-

ing, we count the number of maximal chains on the lattice diagram of Zpn × Zpm

for specific values of n,m ∈ Z+. Firstly, we illustrate with the case when n = m = 1:

Consider the case n = m = 1.

Lemma 5.2.1 The group G = Zp × Zp has p+ 1 maximal chains.

Proof. The group Zp × Zp is a noncyclic group of order p2 and is Abelian. The

group has subgroups of order 1, p, p2, where the subgroup of order 1 is the trivial

subgroup while that of order p2 is the whole group. A group of order p cannot have a

proper subgroup hence it be a cyclic group whose generator is any element different

from the identity. The subgroups of order p are all cyclic and disjoint, with their

generators being (1, 0), (1, 1), . . . , (1, p− 1), (0, 1). The whole group is described by

the linear combination of the subgroups of order p. Hence the group Zp × Zp has

maximal chains of the form 0 ⊂ 〈a〉 ⊂ G. From this it follows that Zp×Zp has p+1

maximal chains of subgroups. �

Secondly, for other values of n,m ∈ Z+, we state the following propositions and

prove them.

Lemma 5.2.2 There are 2p2 + 3p + 1 maximal chains in the subgroup lattice of

G = Zp2 × Zp2

Proof. Since Zp2 × Zp2 is a non-cyclic group of order p4, it has subgroups of order

k, where k is a divisor of p4. Hence each maximal chain of Zp2 × Zp2 is a chain of

the form

{0} ⊂ 〈a〉 ⊂ 〈b〉 ⊂ 〈c〉 ⊂ G,

where a, b, c are cyclic of order p, p2, p3 respectively. Now 〈a〉 is representative of the
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subgroup generators of the form 0p; p(ip), for i = 0, 1, . . . , p− 1 whose intersection

contains the identity alone. It is easy to see that there are only p+1 such generators.

The subgroup generators of the form 〈b〉 fall into different slots as shown on the

table below. Again it is not difficult to see that there are p + 1 such slots each

with a membership of p + 1. It should be noted that in this count one group,

namely one generated by 〈0p, p0〉, has been counted more than once. The equation

(p+1)(p+1)− p= p2 + p+1 fixes the over count. This means that 〈b〉 is comprised

of p2 + p cyclic and one non-cyclic subgroups. The intersection,

∩〈b〉j \ 〈0p, p0〉, j = 0, 1, . . . , p, is empty. With the exception of the non-cyclic

〈0p, p0〉 which contains all the subgroups 〈a〉 and is itself contained in all 〈c〉, the

rest of the subgroups in each slot are each contained in only one subgroup of 〈c〉

respectively. By counting, there are p+1 subgroup generators comprising 〈c〉 which

is itself contained in G. Collectively, the result is (p + 1)(p + 1(p + 1)) maximal

chains of subgroups as claimed in the proposition.

Alternatively, the maximal chains of the group G can be viewed as extensions of the

maximal chains of the previous groups in this manner. The maximal chains of G are

extensions of Zp2 × Zp or Zp × Zp or Zp. Now Zp2 × Zp contributes 2p+ 1 maximal

chains to G. These are the chains that go through 〈0p, 10〉. Next we consider the

chains that go through 〈0p, p0〉 as such chains are the extensions Zp×Zp. In this effect

we obtain p ways to do this, with the path through 〈0p, 10〉 having been considered.

Hence we have p(p+1) such extensions. Finally Zp contributes p(p) maximal chains

not having been considered before, as can be checked. Thus the total number of

maximal chains of G is

(2p+ 1) + p(p+ 1) + p(p) = 2p2 + 3p+ 1,

as required. This completes the proof. �
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level subgroups range

0 1

〈a〉 ≡ 0p; p(αp) p+ 1 α = 0, 1, . . . , p− 1

〈b〉 ≡ 01; 〈0p, p0〉; pβ β = 1, . . . , p− 1

〈b〉 ≡ 〈0p, p0〉; 1 (0 + αp)

〈b〉 ≡ 〈0p, p0〉; 1 (1 + αp)
... p2 + p+ 1 α = 0, 1, . . . , p− 1

〈b〉 ≡ 〈0p, p0〉; 1 ((p− 1) + αp)

〈c〉 ≡ 〈01, p0〉; 〈0p, p0〉; 〈1δ, 1(δ + p)〉 p+ 1 δ = 1, . . . , p− 1

Subgroups of Zp2 × Zp2

Proposition 5.2.3 Let G = Zpn ×Zp. Then the number of maximal chains of G is

np+ 1.

Proof. We prove by induction on n. When n = 1 the result resembles Lemma 5.2.1.

Assume that Zpk × Zp has kp+ 1 maximal chains. Now Zpk+1 × Zp has two sets of

maximal subgroups, they are Zpk × Zp and Zpk+1 × Zp ⊂ 〈b〉 ⊂ Zpk+1 × Zp, where

〈b〉 has subgroup generators of the form (10), (1, 1), . . . , (1, p− 1) as illustrated in

the diagram. Hence Zpk+1 × Zp ⊂ 〈b〉 ⊂ Zpk+1 × Zp contributes p maximal chains.

Thus Zpk+1 × Zp has kp+ 1 + p = (k + 1) + p maximal chains. This completes the

induction.
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B

C

A D
E

F

...
...

...

〈00〉 〈pn−10〉 〈pn−20〉 〈p0〉 〈10〉

〈01〉 〈01, pn−10〉 〈01, pn−20〉 〈01, pn−10〉 G

11
12

1, p− 1

where A = 〈pn−1, p− 1〉; B = 〈pn−12〉; C = 〈pn−11〉;

D = 〈pn−2, p− 1〉E = 〈pn−22〉;F = 〈pn−21〉.
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Proposition 5.2.4 G = Zpn × Zp2 has [C(n, 2) + C(n − 1, 1)]p2 + C(n+ 1, 1)p+ 1

maximal chains.

Proof. We prove by induction on n. Let C(a, b) = 0 for a < b.

For n = 2, G has 2p2 + 3p + 1 maximal chains, in agreement with Lemma 5.2.2.

These maximal chains are of the form

0 ⊂ 〈a〉 ⊂ 〈b〉 ⊂ 〈c〉 ⊂ G,

where 〈a〉, 〈b〉, 〈c〉 have the form explained in Table 2.

Assume that G = Zpk ×Zp2 has [C(k, 2)+C(k− 1, 1)]p2 +C(k+ 1, 1)p+ 1 maximal

chains, where k ≥ 2. We need to show that the result is true for n = k + 1. Every

maximal chain of Zpk+1 × Zp2 can be considered as an extension of maximal chains

of Zpk ×Zp2 or Zpk ×Zp or Zpk as shown in Dig. 1 below. (We have used double lines

to mark the diagram that has been extended). We first determine the number of

maximal chains of Zpk+1×Zp2 which are extensions of G = Zpk×Zp2 . By assumption

there are [C(k, 2) + C(k − 1, 1)]p2 + C(k + 1, 1)p + 1 such maximal chains. Such

chains only go through the generator 1. (For ease of reference we only use digits to

represent the nodes in question). We next consider those which are extensions of

Zpk × Zp. Clearly these are the chains that pass through generator 2. Such chains

give rise to p chains Zpk+1 × Zp2 as the path trough 1 has already been counted.

Thus the number of this extension is p(kp+ 1). Finally we consider the extensions

of Zpk . The extensions through the nodes 3, 4, 5 have not been considered, and they

constitute the extensions of Zpk . Each of these p nodes gives rise to pmaximal chains

of Zpk+1 × Zp2 with those paths through 1 and 2 having been accounted for already.

This exhausts all the possible extensions. Thus the total number of maximal chains

of Zpk+1 × Zp2 is

[C(k, 2) + C(k − 1, 1)]p2 + C(k + 1, 1)p+ 1 + p(kp+ 1) + p(p) (5.10)

= [C(k, 2) + C(k − 1, 1) + k + 1]p2 + [C(k + 1, 1) + 1]p+ 1

= [C(k + 1, 2) + C(k, 1)]p2 + C(k + 2, 1)p+ 1, as required.

This completes the induction. �
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Note that the number of maximal chains in Proposition 5.2.4 can also be counted

using the formula
n∑

γ=2
p(γp+ 1) + (2p+ 1). The two formulas are identical as shown

below:

[C(n, 2)+C(n− 1, 1)]p2 +C(n+ 1, 1)p+ 1 =
n∑

γ=2
p(γp+ 1) + (2p+ 1) for all natural

numbers n such that n ≥ 2. To prove this, let n = 2. Then

[C(2, 2) + C(1, 1)]p2 + C(3, 1)p+ 1 =
2∑

γ=2

p(γp+ 1) + (2p+ 1).

We next assume that the statement is true for n = k > 2, i.e

[C(k, 2) + C(k − 1, 1)]p2 + C(k + 1, 1)p+ 1 =
k∑

γ=2

p(γp+ 1) + (2p+ 1).

We show that the statement is true for n = k + 1. Now,

k+1∑

γ=2

p(γp+ 1) + (2p+ 1) =
k∑

γ=2

p(γp+ 1) + (2p+ 1) + p[(k+ 1)p+ 1]

= [C(k, 2) + C(k − 1, 1)]p2 + C(k + 1, 1)p+ 1 + (k+ 1)p2 + p

= [C(k + 1, 2) + C(k, 1)]p2 + C(k + 2, 1)p+ 1.

By the Principle of Mathematical induction, the statement holds for all n ∈ N.

We state this result as a corollary:

Corollary 5.2.5 G = Zpn×Zp2 has
n∑

γ=2
p(γp+1)+(2p+1) maximal chains, γ ∈ N.

This can be proved by similar argument as in Proposition 5.2.4.
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For m = 3 and any n, we have:

Proposition 5.2.6 Let G = Zpn × Zp3 where p is a prime . Then the number of

maximal chains of G is [C(n, 3) + 2C(n − 1, 2) + 2C(n − 2, 1)]p3 + [C(n + 1, 2) +

C(n, 1)]p2 + C(n + 2, 1)p+ 1.

Proof. The proof follows by the same argument given in Propositions 5.2.3 and

5.2.4 above.

In fact the results appear in the following sequence, with the +1 term in all expres-

sions on the right column not shown

Group Number of Maximal Chains

pnp C(n, 1)p

pnp2 [C(n, 2) + C(n − 1, 1)]p2 + p(n+ 1)p

pnp3 [C(n, 3) + 2C(n− 1, 2) + 2C(n− 2, 1)]p3 + p(n+ 1)p2
...

...

pnpm

{
m−1∑
j=0

[C(n − j,m− j)] · ∗ Tm

}
pm + p(n+ 1)p(m− 1)

with p(n+m− 1)p = (n+m− 1)p

Formulae for the number of maximal chains

(By pnpm we mean a group Zpn × Zpm .)

In the general expression for pnpm as written on the last line of the table, Tm is

the m−th row of a Catalan’s triangle, p(n + 1)p(m− 1) is the number of maximal

chains of Zpn+1 × Zpm−1 , and .∗ is the usual pointwise multiplication.

Example 5.2.7 To illustrate the general case, consider the case when m = 4. Ac-

cording to definition, n = 4, 5, 6, . . .while T4, in vector form, is [1 3 5 5]. We obtain

68



the following iteration:

p5p4 = {
3∑

j=0

[C(5− j, 4− j)] · ∗ T4}p4 + p(5 + 1)p(4− 1)

= {[C(5, 4) + C(4, 3) + C(3, 2) + C(2, 1)]. ∗ [1 3 5 5]} p4 + p6p3

= {[C(5, 4) + 3C(4, 3) + 5C(3, 2) + 5C(2, 1)]}p4 + p6p3

The process is repeated for p6p3 to get an expression involving p7p2 and so on,

to obtain the collective number 42p4 + 48p3 + 27p2 + 8p + 1 of maximal chains of

Zp5 × Zp4 as expected (See the table below, in which (n,m) is a short notation for

pnpm). ∆

(1, 1) [1 1] (2, 2) [2 3 1] (3, 3) [5 9 5 1] (4, 4) [14 28 20 7 1] . . .

(2, 1) [2 1] (3, 2) [5 4 1] (4, 3) [14 14 6 1] (5, 4) [42 48 27 8 1]

(3, 1) [3 1] (4, 2) [9 5 1] (5, 3) [28 20 7 1] (6, 4) [90 75 35 9 1] . . .

(4, 1) [4 1] (5,2) [14 6 1] (6, 3) [48 27 8 1] (7, 4) [165 110 44 10 1]

(5, 1) [5 1] (6,2) [20 7 1] (7, 3) [75 35 9 1] (8, 4) [275 154 54 11 1] . . .

(6, 1) [6 1] (7,2) [27 8 1] (8, 3) [110 44 10 1] (9, 4) [429 208 65 12 1]
...

...
...

... . . .

The number of maximal chains of pnpm, where (n,m) represents pnpm and

the vectors represent the polynomials anp
n + an−1p

n−1 + . . .+ a0.

From the Table (Formulae for the number of maximal chains) we infer the

following propositions which can be proved by mathematical induction as in Propo-

sition 5.2.4:

Proposition 5.2.8 There are

[C(n, 4)+3C(n−1, 3)+5C(n−2, 2)+5C(n−3, 1)]p4+[C(n+1, 3)+2C(n, 2)+2C(n−1, 1)]p3+

[C(n+ 2, 2) + C(n + 1, 1)]p2 + C(n+ 3, 1)p+ 1

maximal chains of G = Zpn × Zp4 .
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Proposition 5.2.9 G = Zpn × Zp5 has

[C(n, 5) + 4C(n− 1, 4) + 9C(n− 2, 3) + 14C(n− 3, 2) + 14C(n− 4, 1)]p5+

[C(n+1, 4)+3C(n, 3)+5C(n−1, 2)+5C(n−2, 1)]p4+[C(n+2, 3)+2C(n+1, 2)+2C(n, 1)]p3+

[C(n+ 3, 2) + C(n + 2, 1)]p2 + C(n+ 4, 1)p+ 1

maximal chains.

The expression for m = 6 and any positive integer n follows by rewriting the above

theorem with n replaced by n+ 1 and adding the result to

[C(n, 6)+5C(n−1, 5)+14C(n−2, 4)+28C(n−3, 3)+42C(n−4, 2)+42C(n−5, 1)]p6

to obtain the number of maximal chains of G = Zpn × Zp6 . The process continues

for the general case through the use of Catalan’s triangle.

Note 5.2.10 Consider the group G = Zpn ×Zp3 . By Proposition 5.2.6 the group G

has

[C(n, 3)+2C(n− 1, 2)+2C(n− 2, 1)]p3+[C(n+1, 2)+C(n, 1)]p2+C(n+2, 1)p+1

maximal chains. Now

C(n, 3) + 2C(n − 1, 2) + 2C(n− 2, 1) =
n(n− 1)(n− 2)

3!
+

2(n− 1)(n− 2)
2!

+ 2(n− 2)

=
(n− 2)[(n− 1)(n+ 6) + 12]

3!

=
(n− 2)(n+ 2)(n+ 3)

3!

Also,

C(n+ 1, 2) + C(n, 1) + C(n+ 2, 1) + 1 =
n(n+ 3)

2!
+ (n+ 3)

=
(n+ 2)(n+ 3)

2!

Adding the two results, we have

(n+ 1)(n+ 2)(n+ 3)
3!

= C(n + 3, 3).
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On the basis of this observation and many cases of n and m in Z+, we make the

following proposition which can be proved by mathematical induction:

Proposition 5.2.11 The sum of the coefficients of the polynomial representing the

number of maximal chains of a group G = Zpn × Zpm, where n,m ∈ Z+, is equal to

C(n +m,m).

Let M(G) represent the number of maximal chains of a group G. Then

M(G)m
n = Amp

m + Am−1p
m−1 + . . .+ A2p

2 + A1p+ A0, (5.11)

where A0 is always equal to 1, and Ai, i = 1, . . . , m is a sum of combinatorial

coefficients. In this expression, for instance, Am has the form

a1

(
n

m

)
+ a2

(
n − 1
m− 1

)
+ · · ·+ am

(
n−m+ 1

1

)
, ai ∈ Tm. (5.12)

The determination of the coefficient of the leading term in any polynomial represen-

tation of the number of maximal chains of the group G has been a tricky one. We

managed to get in control of the results by writing them in the combinatorial style

as suggested above. In so doing, we observed that the coefficients ai, i = 1, . . . , m

in Am, were entries in a Catalan triangle (read by rows) corresponding to the value

of m. For example, M(G)3n has the value given in note 5.2.10.

In the Catalan triangle each term is the sum of the entries above and to the left.

Thus mathematically (see [79]), a Catalan’s triangle T (n, k) is a triangular array

described by the equation

T (n, k) =
k∑

j=0

T (n− 1, j).

For the first few rows, the array looks like:

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14

1 5 14 28 42 42
...
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As suggested by the formulas, each row of the array corresponds to the value of m

and any positive integer n in Zpn × Zpm .

Using this array, we write

M(G)3n =

m=3︷ ︸︸ ︷
[C(n, 3) + 2C(n − 1, 2) + 2C(n− 2, 1)]p3 + [C(n+ 1, 2) + C(n, 1)]︸ ︷︷ ︸

n+1,m=2

p2+

C(n + 2, 1)p+ 1,

the result that appeared in Proposition 5.2.6.

There are various interpretations attached to this array and its versions. The most

dominant interpretation is that T (n, k) is the number of standard tableaux of shape

(n, k), where n ≥ 0 and 0 ≤ k ≤ n. The same array can be described as a sequence

a(n,m) with the same meaning, that is the number of standard tableaux of shape

(n,m), where n ≥ 0 and 0 ≤ m ≤ n.

Other sequences can be generated from this array. For instance a sequence formed

by the row sums of the array is called a sequence of Catalan Numbers.

In our subsequent work we shall investigate what is meant by the sequences generated

by other diagonals of this array to our lattices.

For now we can mention the resemblance of the conversion of each lattice to a

binary tree diagram to the triangle of Narayana Numbers. The interpretation of the

sequence a(n, k) of these numbers is that of the number of pairs (P,Q) of lattice

paths from (0, 0) to (k, n + 1 − k), each consisting of unit steps East or North, in

such a manner that P lies strictly above Q except at the endpoints. [79].

5.2.2 The Conversion of a Subgroup Lattice into a Binary Tree

In chapter three we laid down a method of conversion from a tree diagram to a

subgroup lattice diagram of a particular group G = Zpn × Zpm for any positive

integers n and m. Here we shall describe a method of conversion from a lattice

diagram to a binary tree diagram of any group G. Although the method is tedious

for bigger groups, but once a binary tree has been obtained it is much easier to count

the maximal chains and subchains. We will develop an algorithm to go about this

conversion.

72



Take a subgroup lattice diagram of any group G. We count the number of paths

from (0, 0) to G with movements to the left and downwards prohibited. There are

p+ 1 ways of traversing the diagram from (0, 0) to the next level in the lattice (see

Lemma 5.2.1 and example 3.3.4). We represent this by the following diagram

` `
`

��
�

HHH

1

1

p

Specifically for G = Zp2 × Zp2 , we see that from each of the p + 1 nodes there are

p+1 ways available to travel to the destinationG. This translates the above diagram

into the form

` `
`

��
�

HHH

��
�

HHH

1

1

p

1
p

1
p

Now of the p+ 1 each p takes us to the destination in only one way, whereas there

are p+1 ways available from the remaining 1, and we have reached G. The diagram

has the following look

` `
`

��
�

HHH

��
�

HHHHHH

��
�

1

1

p

1
p

1
p

1
p

1
p

Now the sum of the products of vertices in each path from the root to the leaves

gives the number of maximal chains of G as a polynomial in p.

We can obtain the binary tree diagram for the next higher group, in this case

G = Zp3 × Zp2 , from the previous tree diagram by certain attachments as will be

explained in the program below. For instance G = Zp3 × Zp2 has the looks of figure
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4 (at the back).

Definition 5.2.12 Let the symbol ∇ define the extension of a binary tree represen-

tation of a subgroup lattice for a smaller group to that of a higher group.

The height of a binary tree is the number of levels from a root of the tree to its

leaves.

The binary tree representation for a group Zpn × Zpm, hereby represented as (n,m)

is itself a result of the extension of a binary tree representation of a smaller group

in some way as explained below.

The following scheme can be used to produce graphs for G for any positive integers

n and m:

(n,m) =





(n,m− 1)∇(n,m− 1) if n = m

(n− 1, m)∇(n,m− 1) if n 6= m

(5.13)

(n, 0) = no extension , n ≥ m, n ∈ Z+

In this scheme (n,m) for n,m ∈ Z+, is a binary tree diagram of height n + m− 1.

This binary tree is a composition of a full binary tree of height m with extensions

of height n − 1. By extensions we mean the extension of the full binary tree by

attaching binary trees of height n − 1 to all but the upper node of the full binary

tree. The root of every (n,m) is always 1. In the process of extension the root is

dropped and its place is taken by a leaf of the extended binary tree diagram.

To construct a binary tree diagram (n,m) for G, we need the following information.

For a fixed m and n ∈ Z+ with n ≥ m, we call {(n,m)} a class of binary tree

diagrams of height n + m − 1. The members of this class are called nth members

depending on the value of n. The first member of each class occurs when n = m.

When m < 1, we have an empty class, that is there is no possible binary tree dia-

gram. We call (1, 1) a default member whose structure has the appearance
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a�����HHHHH

1

1

p

Every class member is an extension of the default member’s leaves. To construct

the first member of each class, we extend the default member by the second member

of the previous class. Thus (n,m) for n = m is the extension of (1, 1) by

(n,m− 1) ∈ {(n,m)}.

For each class we have the following array of members

(n, 1), (n, 2), (n, 3), . . .

(n+ 1, 1), (n+ 1, 2), (n+ 1, 3), . . .

(n+ 2, 1), (n+ 2, 2), (n+ 2, 3), . . .
...

(n+ j, i) 0 ≤ j ≤ i ≥ 1

(n,m), m = 1 is a special class in which only the lower node of a default member

is extended by (1, 1) to obtain (n+ 1, 1).

In terms of sequence and for this special class, for n = 1, m = 1 we have

(n,m) = (1, 1) as described above. Define an operation ∇ (an extension of a binary

tree diagram) between elements (n, 1) and (1, 1) for any positive integer n such that

(n, 1) ∇ (1, 1) = (n+ 1, 1).

Let a0 = (1, 1), the initial element (default member). Then a1 = (2, 1) = (1, 1) ∇ (1, 1),

an element representing a binary tree diagram formed as a result of the extension of

the default member at the lower node by a0. Similarly, a2 = (3, 1) = (2, 1) ∇ (1, 1),

an element representing a binary tree diagram formed by a1 and a0. Continuing we

have

an−1 = (n, 1) = (n− 1, 1) ∇ (1, 1),

and so on. Thus we have

an = (n+ 1, 1) = (n, 1) ∇ (1, 1)
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so that

an = an−1 ∇ a0

describes the sequence recursively.

Otherwise to construct (n + 1, m), where n + 1 > m, extend the lower node of the

default member by (n,m) and the upper node by (n+ 1, m− 1). In all these binary

tree diagrams, the upper node is always named p while the lower node is always

named 1. It is important to recall, as was described in chapter three, that every

nonidentity subgroup of G = Zpn × Zpm is contained in p+ 1 subgroups of G. This

fact was also evident in the counting of maximal chains of subgroups of G in Chapter

5. Hence we have the nodes p and 1 in the transformation of a subgroup lattice of

G into a binary tree diagram, and in the above figure.

If we let L(G) be the subgroup lattice of the group G, BL(G) be a binary tree

diagram of height n + m − 1, FBL(G) be a full binary tree of height m, then

BL(G) = FBL(G) ∪ ξ, where ξ is a family of binary tree extensions of height n − 1.

This binary tree diagram is constructed in the following way: Construct a full binary

tree diagram of height m and extend its leaves with binary trees of height n− 1. As

a function

(n,m) : L(G) −→ BL(G)

such that

` 7→ (FB, ξ),

where ξ is a family of extensions, and ` ∈ L(G). To carry out the program of con-

verting a lattice diagram of G into a binary tree diagram of G, we do it in two ways

depending on the values of n and m. But in each case we add an extension to the

root of the binary tree for (n,m− 1) or (n− 1, m) which has the form

�̀�
�

HHH

p
1
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The p in this extension takes the place of the root of the binary tree for (n,m− 1).

Example 5.2.13 Consider the problem of drawing a binary tree diagram for the

group (n,m) = (3, 2). Now n 6= m, so we first draw one for (2, 2). In this group

n = m, so we first draw a binary tree for a group (2, 1). In the latter, n 6= m, hence

a binary tree for a group (1, 1) shall be drawn first, and it looks like this:

�̀�
�

HHH

p
1

1

�̀�
�

HHH

p
1`

��
�

HHH

p
1

1

` `
`

��
�

HHH

��
�

HHHHHH

��
�

1

1

p

1
p

1
p

1
p

1
p

We apply the extension on it to obtain (2, 1), affix (2, 1) to be rooted at p of the

extension, thereby getting (2, 2). Finally to get (3, 2) we apply extension on (2, 2)

followed by affixing (3, 1) at p of the extension. The resulting diagram is figure 4.

∆

Equation 5.13 allows us to perform the following algebra (the coefficient implies

duplication):

(3, 3) = (3, 2)∇(3, 2)

= (2, 2)∇(3, 1)∇(3, 2)

= 2[(2, 1)∇(2, 1)∇(3, 1)]

= 2[2(2, 1)∇(3, 1)].

Note 5.2.14 On each binary tree diagram the number of subchains up to each level

corresponds to the partition λ = (k, 1, 1 . . . , 1) in G = Zpn × Zpm , where the sum
n+m−1∑

k=1

(k, 1, 1 . . . , 1) = n+m.

For instance, in figure 5 we have the following number of subchains:

p+ 1; p2 + 2p+ 1; 3p2 + 3p+ 1; 6p2 + 4p+ 1; . . . ; 14p2 + 6p+ 1

corresponding to

λ1 = (6, 1);λ2 = (5, 1, 1);λ3 = (4, 1, 1, 1);λ4 = (3, 1, 1, 1, 1); . . . ;λ6 = (1, 1, 1, 1, 1, 1, 1)
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of G = Zp5 × Zp2 .

In the same manner we can consider a problem of converting a binary tree diagram

into a subgroup lattice of a group G.

We next give a discussion of keychains. The details can be found in [61].

5.3 Keychains

We define some new concepts and find the cardinality of k-pad chains.

5.3.1 Definition of Key Concepts

Definition 5.3.1 1. A finite n-chain is a collection of numbers on [0, 1] of the

form

1 > λ1 > λ2 > . . . > λn−1 > λn

called pins.

2. An n-chain is called a keychain if 1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn.

3. Interlocked pins are called components, with the exception of a 1 standing alone

in the first position and not interlocked with any of the λ’s. (A consecutive

occurrence of equality signs is said to be in an interlocking position of pins).

4. A k-pad, for 1 ≤ k ≤ n, is a keychain containing k distinct components.

5. The number of pins found in the component formed by interlocked positions is

called the padidity of the component. So in example 5.3.2, the padidities are

respectively 1, 3, 1 for a 4-pad key chain, while they are 3, 2 for a 2-pad key

chain. Now the index of a k-pad keychain is the set of padidities of various

components of the keychain. In order to avoid unnecessary complications, the

padidities of singleton components are ignored.

Example 5.3.2 Consider the chain 1 > λ1 > λ2 = λ3 = λ4 > λ5. This is a 3-pad

keychain of a 6-chain.
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1 = λ1 = λ2 > λ3 = λ4 is a 2-pad keychain of a 5-chain. ∆

Note 5.3.3 For any n ≥ 2, there are only three 1-pad key chains, they are of the

form

1
n−1︷ ︸︸ ︷

111 · · ·1

1

n−1︷ ︸︸ ︷
λλλ · · ·λ

1
n−1︷ ︸︸ ︷

000 · · ·0

There are only four (n− 1)-pad keychains for any n ≥ 3. They are

1λ1λ2λ3 · · ·λn−1 > 0

11λ2λ3 · · ·λn−1 > 0

1λ1λ2λ3 · · ·λn−20

11λ2λ3 · · ·λn−20

The number of keychains of a chain of length n were determined with the use of

index as defined in Definition 5.3.1 from the paper by the authors in [60]. For

completeness, we give the following discussion:

5.3.2 Enumeration of Keychains

Following Note 5.3.3 above, in this section we determine the number of all keychains

of length n. We begin by illustrating the inductive steps necessary for the formal

proof of a general case. Detailed proofs of the following propositions can be found

by visiting [60].

The notation card[(n− k)− pad, n : k] in the following propositions shall mean the

number of (n− k)− pad keychains of length n with index k.

Proposition 5.3.4 The card[(n− k)− pad, n : k] keychains is 4(n− k).

Proposition 5.3.5 The card[(n− k1 − k2 + 1)− pad, n : (k1, k2)] keychains is

4(n− k1 − k2 + 1)!
(n − k1 − k2 − 1)!

if k1 6= k2,
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4(n− k1 − k2 + 1)!
2!(n− k1 − k2 − 1)!

if k1 = k2,

where ki > 1 for i = 1, 2.

Proposition 5.3.6 The card[(n− k1− k2− k3 + 2)− pad, n : (k1, k2, k3)] keychains

is
4(n− k1 − k2 − k3 + 2)!
(n− k1 − k2 − k3 − 1)!

if k1 6= k2 6= k3,

4(n− k1 − k2 − k3 + 2)!
3!(n− k1 − k2 − k3 − 1)!

if k1 = k2 = k3,

where ki > 1 for i = 1, 2, 3.
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Chapter 6

Counting of the Number of

Fuzzy Subgroups of Finite

Abelian p-Groups of Rank Two

6.1 Introduction

In this chapter we enumerate fuzzy subgroups of G using the technique for counting

that was introduced in [59]. We determine the number of fuzzy subgroups through

the actions of keychains on flags (or maximal chains). For this purpose, the infor-

mation in Section 5.2 as well as Definition 5.1.5 will be useful.

6.2 Preliminaries

The equivalence relation we shall use states that µ ∼ ν if and only if

(i) for allx, y ∈ G, µ(x) > µ(y) if and only if ν(x) > ν(y)

(ii) µ(x) = 0 if and only if ν(x) = 0

The theory of partitions dates back to the Middle Ages, but the discoveries of great

depth took place in the eighteenth century by L. Euler. Euler laid a foundation

when he proved many significant partition theorems. From then other great mathe-

maticians started contributing significantly into the development of the theory. The
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theory enjoys applications in vast mathematical sciences and statistics, especially

combinatorics.

There are many definitions of the term partition. For instance in computer sciences

the word refers to segments of memory, and so on. For our purpose, we shall view

the meaning of the term as described in the following definition.

Definition 6.2.1 A partition of a positive integer n is a finite non increasing se-

quence of non-negative integers λ1, λ2, . . . , λk with the property that
k∑

i=1
λi = n. We

call the λi the parts of the partition.

We denote the partition (λ1, λ2, . . . , λk) by λ, and some authors write λ 7→ n to

mean that λ is a partition of n.

Obviously there can be more than one way of writing n into its partitions, or put

differently there are various sets of partitions of a positive integer n. The term

partition function, as a result, comes into the picture.

Definition 6.2.2 The partition function, denoted as p(n), is the number of parti-

tions of n.

Note 6.2.3 Since the empty sequence forms the only partition of zero, it is appro-

priate to set p(0) = 1. Sometimes it is beneficial to represent λ = λ1, λ2, . . . , λs in the

form λ = (1α12α23α3 . . .), where strictly αi of λj are equal to i. Hence
∑
i≥1

iαi = n.

As noted by Montes et al, [54], the generalization of the concept of a crisp partition

to that of a fuzzy partition requires the choice of a family of fuzzy subsets which

preserves the conditions characterizing crisp partitions. However, “the usual con-

straints for the union and intersection of subsets are very limiting and seem to be far

from the ’fuzzy spirit’”. He further says that the union of subsets in the partition

is forced to be ‘close to’ the universe of discourse, and the intersection of any two

subsets in the partition is forced to be ‘close to’ the empty set.
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6.3 Fuzzy Subgroup Enumeration

In this section we enumerate fuzzy subgroups, up to isomorphism, of finite Abelian

p-groups of rank two, where p is any prime number. We use the results on maximal

chains of subgroups obtained in Section 5.2.1, and then count fuzzy subgroups using

inductive argument. We assume throughout our discussion that µ(0) = 1 for any

fuzzy subgroup µ of G.

In every keychain the first position is always occupied by 1, while the rest of the

pins occupy the remaining positions in partitions of n. Hence we can ignore the 1

in the first position, which always refers to the identity, and group together all the

resulting keychains given by a specific partition of n. We apply the keychains to

the maximal chains on the lattice diagram of G. We observe that all the keychains

with the same specific partition of n yield the same number of fuzzy subgroups of

G. For instance for n = 4, by a partition 2, 1, 1 we mean all the keychains of the

form 1λλβδ, 1λλβ0, 1λββδ, 1λβ00, etc. By counting there are 12 such keychains.

Suppose each of the keychains yields α(p) fuzzy subgroups, where α(p) is a poly-

nomial in p, then the collective number of distinct fuzzy subgroups given by all the

keychains with this partition will be 12α(p) as can be verified from the table below.

The following example illustrates how we obtain the distinct equivalence classes of

fuzzy subgroups of G under the equivalence relation stated in Section 6.2.

Example 6.3.1 Let G = Zp3×Zp3 . We model every maximal chain of G by a chain

of the form 0 ⊂ Zp ⊂ · · · ⊂ Zpn . For n = 6 there are 27−1 distinct equivalence classes

of fuzzy subgroups on Zp6 corresponding to the maximal chain 0 ⊂ Zp ⊂ · · · ⊂ Zpn .

These are given by the keychain 1 ≥ λ ≥ β ≥ δ ≥ γ ≥ η ≥ ψ ≥ 0.
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Fuzzy Subgroups of Zp3 × Zp3

p(n) α(p) keychains

(6) 1 3

(5, 1) p+ 1 8

(4, 2) p2 + p+ 1 8

(3, 3) p3 + p2 + p+ 1 4

(2, 2, 2) p3 + 3p2 + 2p+ 1 4

(3, 2, 1) p3 + 2p2 + 2p+ 1 24

(4, 1, 1) p2 + 2p+ 1 12

(2, 2, 1, 1) 2p3 + 4p2 + 3p+ 1 24

(3, 1, 1, 1) p3 + 3p2 + 3p+ 1 16

(2, 1, 1, 1, 1) 3p3 + 6p2 + 4p+ 1 20

(1, 1, 1, 1, 1, 1) 5p3 + 9p2 + 5p+ 1 4

The above table of results gives the number of subchains as a result of the applica-

tion of the keychains of a given partition to the lattice diagram of G = Zp3 × Zp3 .

The number of symbols in each keychain that determines the number of fuzzy sub-

groups of a group G corresponds to the sum n + m + 1. In this sum 1 refers to

the first symbol in each case which is always 1, while n + m is the number of the

remaining symbols that may or may not be equal. In this sense it becomes logical

to analyze only the n+m symbols according to their characteristics.

The n + m symbols partition the sum n + m in various permutations. We record

these symbols in braces according to their multiplicities. For instance (3, 2, 1) means

there are three distinct symbols occurring in multiplicities as recorded in the braces.

It is observed that all keychains of a particular partition yield the same number of

fuzzy subgroups of a group G. We use counting to find the number of keychains

corresponding to a certain partition for a given group G. By counting, the partition

(2, 2, 1, 1), for instance, yields the number
4!

2! 2!
. The First symbol may be smaller

or equal to 1, while the last symbol may be greater or equal to 0. This yields four

choices. Thus we have 4(
4!

2! 2!
) keychains of G determined by the partition of type
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(2, 2, 1, 1) as evidenced by 24 in the keychains column. A typical keychain with this

partition type is 1λλββδγ or 111λββ0 etc.

Now we flag all the chains of G with keychains of a specified partition and count

the resultant number of fuzzy subgroups. It can be noted that all keychains with a

partition determined by (5, 1) yield only p+ 1 fuzzy subgroups. Such keychains are

111111λ, 1λλλλλβ, 1100000, etc., eight of them.

For instance, all the keychains of the form 111λλββ; 111λλ00; 1λλββδδ; 1λλββ00

would yield p3 +3p2 +2p+1 chains of subgroups. It is not difficult to see that these

are the only distinct equivalence classes of fuzzy subgroups of this form on Zp3×Zp3 .

Other equivalence classes of fuzzy subgroups determined by each partition can be

read off from the table.

It should be noted that the sum of the entries in the column labelled keychains is

2n+1−1, in agreement with the results in Chapter 5. Also, the entries in the column

labelled p(n) and those of column keychains are related to each other in the following

way: The multiplication of the quotient of the sum of distinct pins, as indicated by

each partition, and the product of the factorials of the pins’ multiplicities by 4 gives

rise to the column named keychains.

Thus if n+m = k1 +k2 + . . .+kl for any positive integers ki with ki’s distinct, then

by (k1, k2, . . . , k`) is meant a keychain of the form λk1
1 λ

k2
2 . . .λk`

` , where λk1
1 has the

usual meaning

k1︷ ︸︸ ︷
λ1λ1 . . .λ1. Hence for any partition (k1, k2, . . . , k`) of n, there are

4{ ]λi!
k1! k2! . . .k`!

} i = 1, 2, . . . , ` (6.1)

corresponding equivalence classes of fuzzy subgroups. If, however, ki’s are repeated

say ai times, then the formula for the number of equivalence classes of fuzzy sub-

groups becomes

4
{

]λi!
a1! a2! . . . al!(k1!)a1 (k2!)a2 . . . (k`!)al

}
i = 1, 2, . . . , ` (6.2)

(We note that λ1 may be smaller or equal 1, and λ` may or may not be zero. This

gives us four choices of the keychains, which accounts for the 4 in the product in

equation 6.1).
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For instance, the partition (2, 2, 2) in the above table tells us there are

4p3 + 12p2 + 8p+ 4 corresponding fuzzy subgroups.

Procedure: (To explain the formulas in column 2 of the table, marked α(n))

All chains of G = Zp3 × Zp3 are of the form

{0} = G0 ⊂ G1 ⊂ G2 ⊂ . . .⊂ G5 ⊂ G6 = G

where {0} is a trivial subgroup; G is a whole group, whileGi, i = 1, 2, . . . , 5 comprise

p + 1, p2 + p + 1, p3 + p2 + p + 1, p2 + p + 1, p + 1 subgroup generators of G,

respectively. In counting the number of fuzzy subgroups of G, we apply keychains of

length 7 to the subgroup lattice of G. As has been explained earlier, there are 27−1

such keychains, with partitions as given by column 1 of the table. These keychains

are described by

1 = λ0 ≥ λ1 ≥ λ2 ≥ . . . ≥ λ5 ≥ λ6 ≥ 0

Let µ be a fuzzy subset and let x ∈ G. Now we say µ is a fuzzy subset associated

with the pinned flag

{0}1 ⊂ Gλ1
1 ⊂ G

λ2
2 ⊂ . . . ⊂ G

λ6

and is denoted in the manner shown in equation 5.3.

A partition of type (4, 1, 1) refers to keychains of the kind

11111λβ, 1λβδδδδ, 1λββββ0, etc. The result of the application of these keychains

is p2 + 2p+ 1 fuzzy subgroups of G for each keychain. Below is a representation of

these fuzzy subgroups of G:

µ1(x) =





1 x ∈ G4

λ x ∈ G5 \G4

β otherwise

µ2(x) =





1 x ∈ {0}

λ x ∈ G1 \ {0}

β x ∈ G2 \G1

δ elsewhere

µ3(x) =





1 x ∈ {0}

λ x ∈ G1 \ {0}

β x ∈ G5 \G1

0 otherwise

p2 + p+ 1(p+ 1) (p+ 1)(p+ 1) (p+ 1)(p+ 1)

It is clear that a keychain determined by a partition of type (1, 1, 1, 1, 1, 1) yields

fuzzy subgroups equal to the number of maximal chains of G, which is
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5p3 + 9p2 + 5p+ 1, and there are four such keychains.

Other fuzzy subgroups of G can be determined in a similar manner.

Thus the total number as described by the table gives the number of distinct

fuzzy subgroups of G = Zp3 × Zp3 , which is

176p3 + 384p2 + 320p+ 127

as will be proved later in this chapter. ∆

Note 6.3.2 All the groups with the property that n +m = k, where k ∈ Z+, are

related to each other. In fact the fuzzy subgroups of one can be used as a check

in the enumeration of fuzzy subgroups of a higher group. Thus if Zpn1 × Zpm1 and

Zpn2 × Zpm2 are the groups such that n1 > n2 and m1 < m2, then the polyno-

mial representation for the number of subgroups of Zpn2 × Zpm2 is nested in that of

Zpn1 ×Zpm1 . For instance, consider λ = (3, 2, 2, 1, 1, 1, ), for the groups Zp7×Zp3 and

Zp8 × Zp2 , we observe that the polynomial for the latter is nested in the polynomial

for the former as explained in the following:

In Zp7×Zp3 , the p3 +p2 +p+1 subgroups in level 3 give rise to the number of chains

in the following way:

p3

p2(4p+ 1)

p[p2 + p(3p+ 1) + 1{p2 + (p+ 1)(2p+ 1)}]

1[p2(3p+ 1) + (p+ 1){p2 + (p+ 1)(2p+ 1)}],

while in Zp8 × Zp2 , they yield the following number of chains:

p2

p[p+ 1(3p+ 1)]

1[p2 + p(3p+ 1) + 1(p2 + (p+ 1)(2p+ 1)]

as can be read from Table 5, row (32213), up to columns p7p3 and p8p2 respectively.

(By pnpm we mean Zpn × Zpm)

87



Table 5 illustrates this observation for the case n + m = 10, by giving coefficients

for the leading term in each case.

For instance, row 432 of Table 5 means there are the following number of fuzzy

subgroups for each group:

Zp9 × Zp has 2p+ 1

Zp8 × Zp2 has 3p2 + 2p+ 1

Zp7 × Zp3 has 4p3 + 3p2 + 2p+ 1

Zp6 × Zp4 has 3p4 + 4p3 + 3p2 + 2p+ 1

Zp5 × Zp5 has p5 + 3p4 + 4p3 + 3p2 + 2p+ 1

Example 6.3.3 If we let ki, for i = 1, . . . , 10 represent the number of parts in p(10),

then Table 5 shows that the group Zp7 × Zp3 has the following number of subgroups

for each ki:

i = 1→ 3

i = 2→ 20p3 + 28p2 + 36p+ 36

i = 3→ 300p3 + 336p2 + 288p+ 144

i = 4→ 1680p3 + 1568p2 + 1008p+ 336

i = 5→ 4900p3 + 3920p2 + 2016p+ 504

i = 6→ 8400p3 + 5880p2 + 2520p+ 504

i = 7→ 8820p3 + 5488p2 + 2016p+ 336

i = 8→ 5600p3 + 3136p2 + 1008p+ 144

i = 9→ 1980p3 + 1008p2 + 288p+ 36

i = 10→ 300p3 + 140p2 + 36p+ 4

This number is easily seen to be equal to

256(125)p3 + 512(42)p2 + 1024(9)p+ 2048− 1

as suggested by Theorem 6.4.1 below. ∆

We are now in a position to give formal proofs for the results on fuzzy subgroups

with the application of the theory learned in Chapter 5 .
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6.3.1 Fuzzy Subgroups of Zpn × Zp

Lemma 6.3.4 G = Zp × Zp has 4p+ 7 distinct fuzzy subgroups.

Proof. Each of the maximal chains of Zp × Zp has only three levels. By Lemma

5.2.1 and by example 6.3.1, the three symbols will give rise to 7 keychains. Of

the 7, three will yield identical fuzzy subgroups. These are keychains of the form

1 ≥ λ1 = λ2 ≥ 0. The remaining four will each give rise to different fuzzy subgroups.

Thus according to Lemma 5.2.1, there will be 4(p+1)+3 fuzzy subgroups as claimed

in the proposition. �

We notice that for n = 3, for instance, there are

4(3p+ 1) + 12(2p+ 1) + 12(p+ 1) + 3 = 48p+ 31

fuzzy subgroups of Zpn × Zp. Hence we make the following remark:

Remark: The number of fuzzy subgroups of G = Zpn × Zp for any positive integer

n can be read off from the following triangle. The triangle looks like that of Pascal’s

except that the last entry 1 is missing from all the rows. This triangle is called a

beheaded Pascal triangle read by beheaded rows “Wouter Meeussen” A074909.

Please note that naturally the initial 1 is missing from this triangle but was added

by Sloane [79] at the suggestion of Paul Barry.

1

1 2

1 3 3

1 4 6 4

1 5 10 10 5
...

For each row, let ai be the entry number and let r be the row number while n ∈ Z+.

Hence G = Zpn × Zp has
n∑

r=1,i=1

4ai(rp+ 1) + 3 fuzzy subgroups. (6.3)
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[It is important to note that the entries of the sequence A074909 forming the triangle

above, which happen to coincide with those of our work, were found in another

context different from ours.]

In terms of the notation involving triangles, an alternative formula for the number

of fuzzy subgroups of Zpn × Zp is:

pnp has 4

{
n∑

k=1

(kp+ 1). ∗ T ′
n

}
+ 3 fuzzy subgroups, (6.4)

where T ′
n is the reversed n-th row of a beheaded Pascal’s triangle.

We are interested in the combinatorial formula and the relation of fuzzy subgroups

with the maximal chains.

Hence we state the following result, and prove it by induction:

Theorem 6.3.5 There are 2n+1C(n, 1)p+2n+2−1 fuzzy subgroups of G = Zpn×Zp.

Proof. (By induction on n). When n = 1, the formula yields 4p+7 fuzzy subgroups

in agreement with Lemma 6.3.4. We assume that the result is valid for a positive

integer k, that is G = Zpk × Zp contains 2k+1C(k, 1)p + 2k+2 − 1 fuzzy subgroups.

Zpk ×Zp has k+2 levels with (k+2)-th level consisting of the whole group, whereas

Zpk+1 × Zp has p+ 1 subgroups in the (k + 2)-th level with whole group Zpk+1 × Zp

being in the (k + 3)-th level.

We first identify Zpk × {e} by Zpk , and consider Zpk+1 × Zp as an extension of

Zpk × Zp or Zpk . Next we determine the number of fuzzy subgroups of Zpk+1 × Zp

which are extensions of fuzzy subgroups of Zpk × Zp. By assumption, there are

2kC(k, 1)p + 2k+1 fuzzy subgroups whose support is exactly Zpk × Zp, and there

are 2kC(k, 1)p + 2k+1 − 1 fuzzy subgroups whose support is strictly contained in

Zpk × Zp. Let S1 and S2 denote the former and latter case respectively. Each fuzzy

subgroup in set S1 yields three fuzzy subgroups of Zpk+1 × Zp. The extensions of

their keychains are given by (λ0, λ1, . . . , λk+1, λk+1), (λ0, λ1, . . . , λk+1, λk+2), where

0 < λk+2 < λk+1 and (λ0, λ1, . . . , λk+1, 0). Each fuzzy subgroup in set S2 yields only

one fuzzy subgroup of Zpk+1 × Zp as can be easily seen. The number of extensions

is thus 4[2kC(k, 1)p+ 2k+1]− 1.

Lastly we consider the extensions of Zpk . The group Zpk has 2k+1−1 fuzzy subgroups.
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Let S3 denote the set of fuzzy subgroups whose support is exactly Zpk . The case of

those fuzzy subgroups whose support is strictly contained in Zpk has already been

accounted for in the previous case. The order of S3 is 2k. Each fuzzy subgroup in

set S3 yields four fuzzy subgroups of Zpk+1 ×Zp, with their keychains extended thus

(λ0, λ1, . . . , λk, λk+1, λk+2), where 0 ≤ λk+2 < λk+1 ≤ λk. Hence S3 results in 4(2kp)

number of extensions. Thus the total number of fuzzy subgroups of Zpk+1 × Zp is

4[2kC(k, 1)p+ 2k+1]− 1 + 4(2kp) = 2k+3 + p(k + 1)2k+2 − 1

= 2k+2C(k + 1, 1)p+ 2k+3 − 1.

This completes the induction. �

6.3.2 Fuzzy Subgroups of Zpn × Zp2

We next prove the result for the case m = 2, hereunder stated

Theorem 6.3.6 The group G = Zpn × Zp2 has

2n+1[C(n, 2) + 2C(n− 1, 1)]p2 + 2n+2C(n + 1, 1)p+ 2n+3 − 1 (6.5)

fuzzy subgroups.

Proof. (We prove by induction on n). For n = 1, the formula gives 16p + 15 in

agreement with the number obtained by taking n = 2 in Theorem 6.3.5. We next

assume that the formula holds for the case n = k > 1. We need to show that the

formula is valid for n = k + 1. To do this, we count all possible extensions of fuzzy

subgroups in disjoint sets S1, S2 and S3 which will exhaust all fuzzy subgroups of G

with n = k + 2.

Now, the number of S1-extensions from Zpk × Zp2 to Zpk+1 × Zp2 is

4(2k[C(k, 2) + 2C(k − 1, 1)]p2 + 2k+1C(k + 1, 1)p+ 2k+2)− 1 (6.6)

The number of S2-extensions from Zpk ×Zp to Zpk+1 × Zp2 are found by referring to

the previous theorem for the number of fuzzy subgroups of Zpk × Zp together with

four keychain extensions that end with pins of the form λλβ, λλ0, λβδ and λβ0,
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where 0 < δ < β < λ, yielding

4(2kC(k, 1)p+ 2k+1)p (6.7)

With the exception of the maximal chain through Zpk ×Zp2 which has already been

counted under S1, there are p flags which extend from Zpk ×Zp to Zpk+1×Zp2 , hence

the factor p in the above expression.

The set S3 yields p cases corresponding to level k + 1. Each of these cases yields

8(2k)p fuzzy subgroups. To justify this number, we pick only one of the p cases for

illustration, namely the number of all possible extensions from Zpk to Zpk+1 × Zp2 .

There are eight keychain extensions ending with

λλββ, λλ00, λλβδ, λλβ0, λββδ, λββ0, λβδγ, and λβδ0,

where 0 < γ < δ < β < λ, accounting for the 8 in the product. Only one maximal

chain connects {0} to Zpk and it yields 2k+1 − 1 fuzzy subgroups on that particular

flag. There are, however, only 2k keychains ending with non-zero pins that will

contribute to fuzzy subgroups, not counted already, of Zpk+1 × Zp2 . Finally, there

are p flags from Zpk to Zpk+1 × Zp2 which have not been counted before, hence the

factor p in the product. Thus S3 has p(8(2k)p) = 8(2k)p2 fuzzy subgroups. Therefore

the total number of fuzzy subgroups in all three cases S1, S2, S3 is

2k+2[C(k + 1, 2) + 2C(k, 1)]p2 + 2k+3C(k + 2, 1)p+ 2k+4 − 1 (6.8)

�

We next consider the effect of increment of m,and for any n.

6.4 Fuzzy Subgroups of Zpn × Zpm for 3 ≤ m ≤ 5

We state the following results that pertain to the value of any positive integer n and

3 ≤ m ≤ 5. The results can be proved with similar argument as in Theorem 6.3.6:

Theorem 6.4.1 There are

2n+1[C(n, 3) + 4C(n− 1, 2) + 6C(n− 2, 1)]p3 +

2n+2[C(n + 1, 2) + 2C(n, 1)]p2 + 2n+3C(n + 2, 1)p+ 2n+4 − 1
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fuzzy subgroups of group G = Zpn × Zp3.

Theorem 6.4.2 The group G = Zpn × Zp4 has

2n+1[C(n, 4) + 6C(n− 1, 3) + 16C(n− 2, 2) + 22C(n− 3, 1)]p4 +

2n+2[C(n+ 1, 3) + 4C(n, 2) + 6C(n− 1, 1)]p3 +

2n+3[C(n + 2, 2) + 2C(n + 1, 1)]p2 + 2n+4C(n + 3, 1)p+ 2n+5 − 1

fuzzy subgroups.

Theorem 6.4.3 G = Zpn × Zp5 has

2n+1[C(n, 5) + 8C(n − 1, 4) + 30C(n− 2, 3) + 68C(n − 3, 2) + 90C(n− 4, 1)]p5 +

2n+2[C(n + 1, 4) + 6C(n, 3) + 16C(n − 1, 2) + 22C(n− 2, 1)]p4 +

2n+3[C(n + 2, 3) + 4C(n + 1, 2) + 6C(n, 1)]p3 +

2n+4[C(n + 3, 2) + 2C(n+ 2, 1)]p2 + 2n+5C(n + 4, 1)p+ 2n+6 − 1

fuzzy subgroups.

Based on the observation of the results and on the amount of data pertaining to this

work, which has been checked by means of a computer program, we conjecture that

the general formula for the number of fuzzy subgroups of Zpn × Zpm should be




m−1∑

j=0

2n+1[C(n− j,m− j)] · ∗ Tm



 pm + p(n+ 1)p(m− 1),

with p(n+ 1)p(0− 1) = 2n+m+1 − 1 (6.9)

where Tm is the m−th row of a Schroeder’s triangle (see Sloane [79], A033877 ),

p(n + 1)p(m− 1) is the number of fuzzy subgroups of Zpn+1 × Zpm−1 , and .∗ is the

usual pointwise multiplication. The array (A033877) is described mathematically in

the following way:

T (n, k) =





0 if k < n

T (n, k− 1) + T (n− 1, k− 1) + T (n− 1, k) otherwise

(6.10)
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and

T (1, ∗) = 1.

For the first few rows, the array reads as follows:

1

1 2

1 4 6

1 6 16 22

1 8 30 68 90

1 10 48 146 304 394

1 12 70 264 714 1412 1806
...

This array is associated with several sequences, [79]. For instance a sequence ob-

tained by considering the last entry to the right in each row, namely 1, 2, 6, 22, 90, 394, . . .

is generally called the Large Schroeder Numbers. Also summing the entries in each

row (row sums) generates a sequence which grows rapidly in the values of its terms.

This sequence is commonly called Schroeder’s second problem (generalized paren-

thesis) or sometimes called Super-Catalan numbers or little Schroeder numbers.

There are various other interpretations of these types of numbers. H. Bottomley

gave a graphical illustration of the initial terms ([79], A033877). The other se-

quence associated with this array is called Royal paths in a lattice and consists of

the terms 1, 4, 16, 68, 304, 1412, . . .. Numerous works have been done around this

array by Schroeder himself and various other mathematicians. All this can be found

by visiting the site [79].

6.5 Conclusion

The subgroup lattices of finite Abelian groups of rank two are n×m 2-dimensional

diagrams with n + m + 1 levels of subgroups (see examples at the back). Each

subgroup lattice of a group G is a result of the 1800 orientation of a tree diagram of

cyclic subgroups of G and merging the two, which explains the point of symmetry.
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The number of subgroups at each level on the subgroup lattice occur in increasing

polynomials of p with coefficients of 1 up to the point of symmetry. The number

of maximal chains and fuzzy subgroups of G is a polynomial in prime p whose

coefficients are of the form Ai, i = 0, . . . , m, where Ai can be expressed as a sum of

the binomial coefficients. The coefficients of Am, the leading coefficient, for maximal

chains and subgroups of G come from the Catalan triangle and Schroeder triangle

read by rows respectively. The coefficients of the other Ai’s follow by recursion for

each group.

The subgroup lattices of G can be converted into binary tree diagrams which do not

depend on the value of p, thus facilitating counting of chains to a great extent.
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Chapter 7

Graphs, Generators and

Relations

7.1 Introduction

From its initiation, the theory of groups has provided an interesting and powerful

abstract approach to the study of the symmetries of various configurations. As a

result there is a prolific interaction between groups and graphs. The first paper

on graph theory is reported to have been written by Euler in 1736. Contrary to

being perceived as a dead field some centuries ago, graph theory has come out as a

powerful component of mathematics over the past decades.

It is the above stated interaction as well as the perception of our lattices as graphs

that led us to the consideration of the treatment as outlined in this and the following

chapter.

As has become a tradition, we introduce and lay out a collection of ground work

to the topic by a number of experts in the field. Most of the notation used in

this chapter, although it has become conventional, has been borrowed from various

authors including Harary [38], Rosen [72] to name a few.

96



7.2 Graph Terminology

The terminology introduced hereunder will be useful in solving many different prob-

lems. Problems that come to light include determining whether a graph is planar

(i.e can be drawn in the plane so that no two of its edges cross) or not, and deciding

whether there is a one-to-one correspondence between the vertices of two graphs

that produces an isomorphism between the edges of the graphs.

Definition 7.2.1 A graph G is generally an ordered pair (V,E), where V is a finite

set of vertices, and E is a set of unordered pairs of distinct elements of V called

edges.

In simple terms we view a graph G as a finite set of dots (called vertices) that are

connected by links (called edges).

In fact we will notice in the subsequent sections that a third item, namely a function,

is necessary in the definition of a graph. Hence we will write G = (V,E,α), where

α is a function on V,E.

Definition 7.2.2 Let G be an undirected graph. Two vertices v1 and v2 in G are

said to be adjacent if {v1, v2} is an edge of G. The edge {v1, v2} is said to be incident

with the vertices v1 and v2, and v1, v2 are called the endpoints of {v1, v2}.

It is often necessary to keep track of how many edges are incident to a vertex (valency

of a vertex). The valency of a vertex, δ(v), in an undirected graph is the number of

edges incident with it.

A vertex of valency 0 is called isolated. A vertex is pendant if and only if it has

valency 1.

When we add the valencies of all the vertices in G = (V,E), each edge contributes

2 to the sum; that is, if G = (V,E), then

Σδ(v) = 2|E|, v ∈ V. (Handshaking Theorem.)

Note 7.2.3 The number of odd valency in any undirected graph is always even.
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In directed graphs, when {v1, v2} is an edge of the graph G, v1 is said to be adjacent

to v2 while v2 is said to be adjacent from v1. Thus v1 and v2 are called the initial

and terminal vertex of (v1, v2) respectively. Hence we speak of the in-valency (or

out-valency) of a vertex v denoted by δ−(v) (respectively δ+(v)) to mean the number

of edges with v as their terminal (or initial) vertex.

Note 7.2.4 If G = (V,E) is a directed graph, then

Σδ−(v) = Σδ+(v) = | E |, v ∈ V.

Examples of simple graphs include complete graph, cycle, wheel, n-Cube.

Sometimes a graph has the property that its vertex set can be partitioned into two

disjoint nonempty subsets such that every edge in the graph connects a vertex in

one of these subsets to a vertex in the other. Such a simple graph is called bipartite.

km,n, for example, is a complete bipartite graph whose vertex set is partitioned into

two subsets of m and n respectively.

Sometimes only part of a graph is needed to solve a problem. When edges and

vertices are removed from a graph, without removing endpoints of any remaining

edges, a smaller graph called a subgraph of the original graph is obtained. Thus a

subgraph of a graph G = (V,E) is a graph H = (W,F ), where W ⊆ V and F ⊆ E.

Two or more graphs can be combined in various ways to form a new graph (the

union of the graphs) that contains all the edges and vertices of these graphs. Thus

if G1 = (V1, E1) and G2 = (V2, E2) then

G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2).

A simple graph is called regular if every vertex of the graph has the same valency.
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7.3 Isomorphic Graphs

There are several ways to represent graphs. Sometimes two graphs have exactly

the same form in the sense that there is a one-to-one correspondence between their

vertex sets that preserves edges. Such graphs are said to be isomorphic. The study

of whether graphs are isomorphic is an important problem in graph theory.

The useful representation of the graph and a tool to deciding isomorphism is the

adjacency matrix.

However, powerful as this tool is, we have found our graphs too complex for this

representation. Our graphs result in huge matrices that are not easy to manipulate.

The theory remains valid as we will discuss.

Definition 7.3.1 Suppose G = (V,E) is a simple graph with n vertices, and suppose

that vertices of G are listed as v1, v2, . . . , vn. Then the adjacency matrix A of G with

respect to this listing is the nxn zero-one matrix whose (i, j)-th entry, aij is

aij =





1 if {vi, vj} is an edge of G

0 otherwise

(7.1)

There is no unique adjacency matrix for any given graph. For instance, there are n!

different adjacency matrices for a graph with n vertices since there are n! different

orderings of n vertices.

Another common way to represent graphs is to use incidence matrix which is an

n × n matrix M = [mij ] with entries defined by

mij =





1 when ej is incident with vi

0 otherwise

(7.2)

Definition 7.3.2 The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are iso-

morphic if there is a one-to-one correspondence f from V1 to V2 with the prop-

erty that a and b are adjacent in G1 if and only if f(a) and f(b) are adjacent in

G2, for all a, b ∈ V1.
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Since there are n! possible one-to-one correspondences between the vertex sets of

two simple graphs with n vertices, it is often difficult to test whether two simple

graphs are isomorphic. There are three criteria, technically called invariants, for

deciding isomorphism. They are, same number of vertices, or same number

of edges, or same valencies of vertices. It is relatively simple to show that two

simple graphs are not isomorphic. This is done by showing that they do not share

a property called an invariant with respect to isomorphism.

Remark: If these invariants are not the same in two simple graphs, the graphs

cannot be isomorphic. We noticed this fact in group theory, where we said that

if two finite Abelian p-groups do not have the same invariants then they are not

isomorphic. However, when these invariants are the same, it does not necessarily

mean the two graphs are isomorphic.

7.4 Connectivity

Another important area of graph theory is the concept of connectivity. There is

an in depth study of the concept and many results discovered around this topic.

Perhaps the most outstanding result is a classical result of Menger which deals with

the number of disjoint paths connecting a given pair of vertices in a graph. Since

then there have been variations of this result, with several of them discovered in

areas of mathematics other than graph theory itself. We begin by defining what is

meant by a connected graph.

Definition 7.4.1 A graph G is said to be connected if every pair of vertices are

joined by a path.

7.5 Background of Generators and Relations

The idea of graphical representation of a group by a set of generators and relations

was invented by Cayley in the nineteenth century to provide a method to visualize

a graph. The idea connects two important branches of mathematics, groups and
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graphs.

The theory of generators and relations offers a convenient way to define a group

with certain prescribed properties.

The following is a procedure as set out in [30]:

• Start with a set of elements that should generate the group, as well as a set

of equations, the relations, that specify the conditions these generators should

satisfy;

• Select the largest of such possible groups. This will uniquely determine the

group up to isomorphism.

To illustrate the procedure we cite the following example:

Example 7.5.1 We say that Z22 × Z2 is generated by the elements f and g that

satisfy the conditions f4 = g2 = e and fg = gf . Any other relation between f and g

can be derived from these equations. This shows that Z22×Z2 is uniquely described.

∆

7.5.1 Definition

In his book, Gallian [30] defines the generators and relations in the following manner:

Definition 7.5.2 Suppose G is a group generated by a certain set A = {a1, a2, · · · , an}

and let F be the free group on A. Let W = {w1, w2, · · · , wr} be a subset of F and let

N be the smallest normal subgroup of F containing W . Then G is said to be given

by the generators a1, a2, . . . , an and the relations w1 = w2 = · · · = wr = e if there

exists an isomorphism, say α, defined by

α : F/N → G such that aiN → ai (7.3)

Some suggestive notation is

G = 〈a1, a2, · · · , an | w1 = w2 = · · ·= wr = e〉. (7.4)

Remark: The group of integers, Z, is the only nontrivial Abelian group that is free

(on one letter), (i.e Z ≈ 〈a〉).
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Gallian [30] goes further to illustrate the advantages and disadvantages of this pro-

cedure.

7.5.2 Advantages and Disadvantages

Every idea has its pros and cons. However, we concentrate on the positive.

The advantages of using generators and relations to define groups include among

other things the following:

• groups defined by the method of generators and relations come out in a natural

way;

• it is often convenient to construct examples as well as counterexamples.

Brilliant as the idea sounds, there are often disadvantages attached to it. The

method of generators and relations to describe a group has the following disadvan-

tages:

1. it is not always easy to decide whether the group so defined is finite or not,

and even whether a particular element is the identity or not.

2. the entirely different sets of generators and relations can define the same group,

hence making it difficult to decide whether two given generated groups are

isomorphic or not.

7.6 Cayley Digraphs

With much said about generators and relations, we move onto the graphs of groups

called the Cayley digraphs.

We recall that a directed graph, or shortly digraph, is a finite set of points called

vertices and a set of arrows (or directed edges) connecting some of the vertices.

But what exactly is meant by a Cayley digraph of a group? The following definition

is author’s perspective in [30], in addressing this question:
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Definition 7.6.1 Suppose G is a finite group and S is a set of generators of G. A

digraph Cay(S:G), pronounced as the Cayley digraph of G with generating set S, is

a graph satisfying the following properties:

1. Each element of G is a vertex of Cayley(S:G)

2. For a and b in G there is an arrow from a to b if and only if as = b for some

s ∈ S.

There are several proposals on how to tell from the graph which particular generator

connects two vertices. For instance Cayley proposed that a colour be assigned to

each generator and that the arrow from a to as be coloured with the same colour

assigned to s.

Instead of colours, most authors, including the author of this thesis, prefer the use

of different line styles.

7.7 Applications

The application of directed graphs is found in the study of Hamiltonian circuits and

paths, courtesy of the Irish mathematician Sir William Hamilton who invented a

puzzle called “Around the world” found in many books. For more information on

this puzzle one is referred to the literature on graph theory.

Briefly, the study addresses the problem of starting at some vertex on the graph and

moving along the arrows of the digraph in such a way that each vertex is visited

exactly once before returning to the starting vertex.

Our main concern is the application into the investigation of the existence of Hamil-

tonian circuits and paths in Cayley digraphs of groups of the form Zpn × Zpm for

some positive integers m and n. The application to the groups of the form Zm × Zn

for some positive integers m and n was carried out by Gallian [30].

The following results appear in his text.

Theorem 7.7.1 [30]. Cay({(1, 0), (0, 1)} : Zm × Zn) does not have a Hamiltonian

circuit when gcd(m,n) = 1.
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Theorem 7.7.2 [30]. Cay({1, 0), (0, 1)} : Zm×Zn) has a Hamiltonian circuit when

n divides m.

However, Abelian groups have Hamiltonian paths as stated by the following theorem:

Theorem 7.7.3 [30]. Let G be a finite Abelian group, and let S be a nonempty

generating set for G. Then Cay(S:G) has a Hamiltonian path.

Another sufficient condition for the existence of Hamilton circuits is stated in the

following theorem

Theorem 7.7.4 [72]. Suppose G is a connected simple graph with at least three

vertices. Then G has a Hamilton circuit if the valency of each vertex is at least 1
2n,

where n is the number of vertices in G.

Theorem 7.7.5 [72]. Suppose G is a simple graph containing n vertices and m

edges satisfying

m ≥ 1
2
(n− 1)(n− 2) + 2.

Then G has a Hamilton circuit.

The number of paths between two vertices in a graph can be determined using its

adjacency matrix. The following theorem explains how to get the number of different

paths of some length from the adjacency matrix of a graph.

Theorem 7.7.6 [72]. Suppose G is a graph (directed or undirected) whose adjacency

matrix A is given according to the ordering v1, v2, . . . , vn of its vertices. Then the

number of different paths of length r from a vertex vi to some vertex vj is the (i, j)th

entry of the matrix Ar.

7.8 Symmetric Graphs

[Harary [38]] The symmetry of graphs as a study was invented by Foster [Geometrical

circuits of electrical networks, 1932] where he computed a table of symmetric cubic

graphs.

In this section we highlight the terminology necessary for the understanding of the
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concept of symmetry. We begin by defining what is meant by similar vertices and

similar edges.

Definition 7.8.1 Let G be a graph. Two vertices u and v of G are said to be similar

if there exists an automorphism φ : G→ G such that φ(u) = v.

Similarly, two edges {u1, v1} and {u2, v2} are said to be similar if there exists an

automorphism φ of G such that φ({u1, v1}) = {u2, v2}.

The graphs in our consideration have no isolated vertices. In terms of symmetry, we

speak of the following:

Definition 7.8.2 A graph G in which every pair of vertices are similar is said to

be point-symmetric.

A graph in which every pair of edges are similar is said to be line-symmetric.

A graph G which is both point-symmetric and line-symmetric is said to be symmetric.

There are interesting results in connection with this study; we will mention some of

them.

Proposition 7.8.3 [38]. Let G be a graph, and let u and v be the vertices of G. If

φ is an automorphism of G, then G− u ≈ G− v.

The result is due to the fact that if φ is an automorphism of G, then it can be

shown that G−u is isomorphic to G−φ(u). The converse to the proposition above,

however, is not valid.

We next define what is meant by a line-regular graph.

Definition 7.8.4 The valency (δ) of an edge {u, v} is the unordered pair ω1, ω2,

where ω1 = δ(u) and ω2 = δ(v). Now a graph is said to be line-regular if all edges

have the same valency.

The following result combines bipartite, line-symmetric and point-symmetric graphs.

Theorem 7.8.5 [38]. Every line-symmetric graph with no isolated vertices is point-

symmetric or bipartite.
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Proof. Let there be a line-symmetric graph G without any isolated vertices. Note

that for any edge there are at least k automorphisms mapping the given edge onto

the edges of G. For the edge {u, v} and the automorphisms φ1, φ2, . . . , φk, consider

the sets V1 = {φ1(u), φ2(u), · · · , φk(u)} and V2 = {φ1(v), φ2(v), · · · , φk(v)}. Now

V1 ∪ V2 = V because G has no isolated points.

The proof is completed by showing that if V1 ∩ V2 = ∅, then G is bipartite; and if

V1 ∩ V2 6= ∅, then G is point-symmetric. �

We end this section by stating the results pertaining to the line-symmetric graphs

as given by the author, for continuity purposes.

Let G be a line-symmetric graph.

1. If the valency of every edge of G is (ω1, ω2) where ω1 6= ω2, then G is bipartite.

2. If G has an odd number of vertices, and the valency of every edge is (ω1, ω2)

where ω1 = ω2, then G is point-symmetric.

3. If G has an even number of vertices, and G is regular of valency ω ≥ v/2, then

G is point-symmetric. (v is the number of vertices).

7.9 Terminology for Trees

A graph G with no cycles is said to be acyclic. This allows us to define a tree in the

following manner:

Definition 7.9.1 A tree is a connected acyclic graph.

In numerous applications of trees a particular vertex of a tree is designated as the

root. A tree together with its root produces a directed graph called a rooted tree. For

a rooted tree T, the concepts of parent, child, siblings etc. have a natural meaning.

For instance, the parent of a vertex v other than the root is a unique vertex u such

that there is a directed edge from u to v. A vertex of a tree is called a leaf if it has

no children, while vertices that have children are called internal vertices. The leaves

are all those vertices in T that are pendant.
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Definition 7.9.2 A rooted tree is called an m-ary tree if every internal vertex has

no more than m children. The tree is called a full m-ary tree if every internal vertex

has exactly m children.

The following are the well-known properties of trees, and we hereby state them in

the form of theorems (without proof ), which they are.

The following Theorem 7.9.3 lists the properties of these graphs, all of which are

equivalent.

Theorem 7.9.3 [38]. Let H = (V,E) be a graph of order n > 2. The following

properties, each of which characterizes a tree, are equivalent.

1. H is connected and has no cycles

2. H has n− 1 edges and has no cycles

3. H is connected and contains exactly n− 1 edges

4. H is connected, and if any edge is removed, the remaining graph is not con-

nected

5. H has no cycles, and if an edge is added to H, exactly one cycle is created

6. Every pair of vertices of H is connected by a unique chain.

Theorem 7.9.4 [72]. A full m-ary tree with i internal vertices contains n = mi+1

vertices.

Theorem 7.9.5 [72]. A full m-ary tree with

1. n vertices has i = n−1
m internal vertices and ` = (m−1)n+1

m leaves.

2. i internal vertices has n = mi+ 1 vertices and l = (m− 1)i+ 1 leaves.

3. ` leaves has n = m`−1
m−1 vertices and i = `−1

m−1 internal vertices.

Whilst on the terminology for trees, it is important to define the following terms

that are met frequently in the discussion.
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Definition 7.9.6 The level of a vertex v in a rooted tree is the length of the unique

path from the root to the vertex v. The height of a rooted tree is length of the longest

path from the root to any vertex. A tree is called a labeled tree if each of its vertices

is assigned a label.

Theorem 7.9.7 [38]. In a tree, any pair of vertices is connected by a unique path.

Based on this information we analyze the graphs of finite Abelian groups of rank

two (in the next chapter).
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Chapter 8

Graph Theoretical Analysis of

Finite Abelian Groups of Rank

Two

8.1 Introduction

In this chapter we give a brief examination of the subgroup lattices of finite Abelian

groups of rank two from a graph theoretic point of view. We apply some graph de-

scription available in the literature and see how well they suit our subgroup lattices.

We notice that the description as explained in example 8.1.1 becomes too cumber-

some for our complex subgroup lattices. We count from the subgroup lattices some

practical structures including leaves, edges, valencies, and others. We do this in a

view to characterizing the subgroup lattices as graphs, that is, what type of graphs

they turn out to be.

8.1.1 Graph Description

As a build up, we go through some important terminology for graphs.

In Section 7.2 we should have described a graph G as an ordered triple (V,E,ϕ) in

which

• V = V (G) is a nonempty set of vertices of G,
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• E = E(G), with E(G)∩ V (G) = ∅, is a set of edges,

• ϕG is an incidence function which associates with each edge of G a not neces-

sarily distinct unordered pair of vertices of G.

Thus, if e is an edge and u and v are vertices such that ϕG(e) = uv, then e is said

to join u and v, whence u and v are called the endpoints of e.

When the context is clear, we shall drop the subscripts and also write for instance

V to mean V (G), and so on.

Example 8.1.1 Consider a graph G = (V,E,ϕ) where,

V = {vi ∈ G : i = 1, · · · , 15}, E = {ei ∈ G : i = 1, · · · , 24} (8.1)

and ϕG is defined by

ϕG(e1) = v1v2, ϕG(e2) = v1v3, ϕG(e3) = v1v4, ϕG(e4) = v2v5,

ϕG(e5) = v2v6, ϕG(e6) = v2v8, ϕG(e7) = v3v7, ϕG(e8) = v3v8,

ϕG(e9) = v3v9, ϕG(e10) = v4v8, ϕG(e11) = v4v10, ϕG(e12) = v4v11,

ϕG(e13) = v5v12, ϕG(e14) = v6v12, ϕG(e15) = v8v12, ϕG(e16) = v7v13,

ϕG(e17) = v8v13, ϕG(e18) = v9v13, ϕG(e19) = v8v14, ϕG(e20) = v10v14,

ϕG(e21) = v11v14, ϕG(e22) = v124v15, ϕG(e23) = v13v15,

ϕG(e24) = v14v15 (8.2)
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There is no unique way of drawing a graph. One is always interested in whether or

not two given points are joined by a line, so the manner of connection is immaterial.

As observed in Section 7.2, two edges in a diagram of a graph may intersect at a

point which is not a vertex, hence we discussed planarity.

It is interesting to note how many diagrams would be possible for the kind of de-

scription in equation 8.2. Example 8.1.1 is a typical group we call Z22 × Z22 , as the

figure shows.

(It can be noted that while this kind of description is suitable for small graphs, it

becomes tedious as complexity of graphs increases.)

The graphs of concern to us have both their vertex sets and edge sets finite, hence

they are called finite graphs. Two graphs G and H are said to be isomorphic if there

are bijections

θ : V (G)→ V (H) and φ : E(G)→ E(H) (8.3)

in such a way that

ϕG(e) = uv if and only if ϕH(θ(e)) = θ(u)θ(v), (8.4)

where the pair of maps (θ, φ) is referred to as isomorphism between G and H .

8.1.2 Labeling of Vertices

The vertices of the graphs are labeled following the order of the subgroups generated

by the points at each level. We achieve this by carefully identifying the generators

uniquely for each level.

The orders of subgroups in any level of G are of the form pi, i = 0, 1, 2, · · · , n+m,

yielding n+m+ 1 number of subgroups in any maximal chain of G.

As was noted in the previous chapters, in any lattice diagram the order of a generator

on the right is always greater than that of a generator on its left. But for the purpose

of the discussion in graph theory, we shall always regard the vertex on the right as a

child of the vertex on the left. The labelling of vertices of the graphs ofG = Zpn×Zpm

was discussed in detail in chapter 3.

We are next interested in the number of leaves, internal vertices and vertices of the

graphs of G.
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8.2 The Acyclic Graphs of G = Zpn × Zpm

All the acyclic graphs of G are p+1-ary with their rooted subgraphs full p-ary, where

p is a prime number. The structure of acyclic graphs for each of positive integers n

and m was described in chapter three. In each graph of G we note that if we cut out

the main branch, the resulting graph is a full p-ary acyclic graph of height m+ 1.

In this section we count the number of vertices of each graph from the knowledge of

the number of leaves and the number of internal vertices.

The number of leaves of an acyclic graph of G for values of m = 1, 2 were counted

and the following results were obtained. The formulas for the results can be proved

by mathematical induction. Specific values were counted and are given by Tables 9

and 10. We use Theorems 7.9.4 and 7.9.5 to count the number of vertices.

Proposition 8.2.1 The acyclic graph G = Zpn × Zp has n(p− 1) + 2 leaves.

Proof. Note that this number can be written in the form p + (n − 1)p − (n − 2),

where the first term of the expression refers to the number of leaves of G when the

main branch is cut. The corresponding number of vertices in each case is p+ 1 and
(n−1)p2−(n−2)p−1

p−1 , respectively. Therefore the total gives the number of vertices of

G. �

Proposition 8.2.2 The number of leaves of an acyclic graph G = Zpn × Zp2 is

(n− 1)p2 + (3− n)p.

Proof. Again this number can be written as p2 + (n− 2)p2− (n− 3)p with the first

term being the number of leaves when the main branch is cut. Correspondingly we

have p2 + p+ 1 and p2[(n−2)p−(n−3)]
p−1 vertices, the total of which gives the number of

vertices of G as can be checked. �

We are next interested in the number of vertices, edges and valencies of vertices in

the simple graphs of G.

112



8.3 The Simple Graphs of G = Zpn × Zpm

Beginning with an acyclic graph of G and performing the orientation as explained in

chapter three, we end up with a simple graph of G. In this section we are analyzing

the graphs of G in terms of valencies of vertices, the number of edges and the total

number of vertices. We begin by counting the number of valencies of vertices and

consequently the number of edges.

8.3.1 The Sum of Valencies of Vertices of G

Consider G = Zp2 × Zp2 . In chapters 5 and 6 we saw that the group has five levels.

Each level has the number of vertices as follows:

1; p+ 1; p2 + p+ 1; p+ 1; 1

respectively. Thus G has p2 + 3p + 5 vertices. Of these vertices two have valen-

cies of p + 1, and these are the trivial and the big group. The other p + 1 from

each part about symmetry each have p + 2 valency. Hence we have an additional

2[(p+ 1)(p+ 2)] valencies. Of the remaining p2 + p+ 1 vertices, one has a valency

of 2(p+ 1), while the rest each have a valency of 2. Adding up, we have that G has

4p2 + 12p+ 8 valencies of vertices.

Now by the Handshaking Theorem (p97), G has 2p2 + 6p+ 4 edges.

We next consider the case when n = 3 and m fixed at 2, (See figure 3). The graph of

G is a union of the graphs G1 and G2, where G2 is an extension of G1 to G. We give

an illustration of an extension from G1 = Zp2 × Zp2 to G = Zp3 × Zp2 , illustration

for the case p = 2.
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The group G now has six levels each with the number of vertices:

1; p+ 1; p2 + p+ 1; p2 + p+ 1; p+ 1; 1.

In this case, it is enough to count the valencies of the levels with 1; p+ 1; p2 + p+ 1

vertices and use symmetry to arrive at the result. Now 1 vertex has valency of p+1,

and the p + 1 each have valency of p + 2. Of the p2 + p + 1 remaining, p2 have

valencies of two each, p have valencies of p + 2 and the rest have 2(p + 1), one in

this case. Thus, by symmetry, G has a total of 8p2 + 16p + 10, an increment of

4p2 + 4p+ 2 from the number in the previous group.

Continuing in this manner, and by applying the necessary extension, the next case of

G for a fixed value of m suggests G has 12p2 +20p+12. Again, by the Handshaking

Theorem, the graphs have 4p2 + 8p+ 5 and 6p2 + 10p+ 6 edges respectively.

8.3.2 The Number of Vertices and Edges in the Graphs of G

We are interested in the number of vertices and edges of a simple graph of G. In

view of the above description, we state the following propositions without proof as

they can be verified from specific subgroup lattices for each case.

Proposition 8.3.1 Let V be the vertices, and E the edges of a graph of

G = Zpn × Zp. Then

|V | = n(p+ 1) + 2,

and

|E| = n(2(p+ 1)− 1) + 1.

Proposition 8.3.2 Let V be the vertices, and E the edges of a graph of

G = Zpn × Zp2 . Then

|V | = 2n(p+ 1) + (n− 1)[p(p− 1)− 1] + 2 = (n− 1)p2 + (n+ 1)p+ (n+ 3)

and

|E| = 4n(p+1)−(n−1)−(2n−1)+2(n−1)(p2−p) = 2(n−1)p2+2(n+1)p+(n+2).

114



8.3.3 The Number of Paths in G

Let the vertices u and v be represented by {0} and G in any graph of G. We want

to count the number of all distinct paths from u to v on the graph of G. Two paths

P1 and P2 are said to be distinct if and only if they do not contain the same set

of edges. In this counting we impose a restriction in the sense that movements to

the left and downwards are prohibited. Hence we only consider those steps that are

upwards and to the right. It is important to note that from this restriction there is

no shortest path, all paths have the same length.

The distinct paths from u to v are what were referred to in Chapter 5 as maximal

chains of G. The number of distinct paths are all described by the polynomials in

p, commonly referred to in the literature as Hall polynomials [28], [48].

8.4 Conclusion and Discussion

The process of drawing graphs for the group G = Zpn ×Zpm produces simple graphs

since there is a single edge between any two distinct vertices. The graphs of G are

generally undirected graphs, but they enjoy digraph properties during the counting

of paths. The description as explained in example 8.1.1 is too cumbersome for our

complex subgroup lattices. The number of distinct paths from u = {0} to v = G

in any graph of G, under the restriction that movements to the left and downwards

are prohibited, produces results coinciding with the number of maximal chains of

G. In every graph of G there is a path between every pair of distinct vertices hence

the graphs are connected. When m = 1 and for any positive integer n in G, all the

graphs are planar, otherwise the graphs are non-planar.

The graphs of G are not regular for any values of n and m as the graphs always

have vertices of different valencies. To our expectation and the nature of the group

G, the graphs of G are symmetric.

In view of the entire results, it is interesting to imagine, following this groundwork,

how the results for finite Abelian p-groups of rank three and above would look

like. The point of symmetry of rank-two finite Abelian p-groups was evident, which
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leaves to speculation where the symmetry would be for finite Abelian p-groups of

rank three. The question of the structure of the direct product of groups G1 and

G2, where G1 = Zpn × Zpm and G2 = Zqk × Zql for some positive integers k, l,m, n

and for some prime numbers p, q, where (p, q) = 1 is a matter of interest and would

be considered in subsequent works following this project.
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TABLES AND FIGURES

TABLES

Level Number of subgroups Generators

0 1 00

1 p+ [1] (p5αp2), α = 0, 1, . . . , p− 1

2 p2 + [p] (p4λp), λ = 0, 1, . . . , p2− 1

3 p3 + [p2] (p3j), j = 0, 1, . . . , p3 − 1

4 p3 (p2j)

5 p3 (p1j)

6 p3 (p0j)

Table 1

Labelling of a tree diagram for G = Zp6 × Zp3 .

Level Subgroups Range

0 1

〈a〉 ≡ 0p; p(αp) p+ 1 α = 0, 1, . . . , p− 1

〈b〉 ≡ 01; 〈0p, p0〉; pβ β = 1, · · · , p− 1

〈b〉 ≡ 〈0p, p0〉; 1 (0 + αp)

〈b〉 ≡ 〈0p, p0〉; 1 (1 + αp)
... p2 + p+ 1 α = 0, 1, . . . , p− 1

〈b〉 ≡ 〈0p, p0〉; 1 ((p− 1) + αp)

〈c〉 ≡ 〈01, p0〉; 〈0p, p0〉; [1δ, 1(δ + p)] p+ 1 δ = 1, . . . , p− 1

Table 2

Table showing labelling of vertices for the subgroup lattice of G = Zp2 × Zp2 .
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Group/p(n) (7, 1) (6, 2) (5, 3) (4, 4)

α8 1 1 1 1

α7 p+ 1 p+ 1 p+ 1 p+ 1

α6,2 p+ 1 p2 + p+ 1 p2 + p+ 1 p2 + p+ 1

α5,3 p+ 1 p2 + p+ 1 p3 + p2 + p+ 1 p3 + p2 + p+ 1

α4,4 p+ 1 p2 + p+ 1 p3 + p2 + p+ 1 p4 + p3 + p2 + p+ 1

α6 2p+ 1 p2 + 2p+ 1 p2 + 2p+ 1 p2 + 2p+ 1

α5,2 2p+ 1 2p2 + 2p+ 1 p3 + 2p2 + 2p+ 1 p3 + 2p2 + 2p+ 1

α4,3 2p+ 1 2p2 + 2p+ 1 2p3 + 2p2 + 2p+ 1 p4 + 2p3 + 2p2 + 2p+ 1

α4,2,2 2p+ 1 3p2 + 2p+ 1 2p3 + 3p2 + 2p+ 1 p4 + 2p3 + 3p2 + 2p+ 1

α3,3,2 2p+ 1 3p2 + 2p+ 1 3p3 + 3p2 + 2p+ 1 p4 + 3p3 + 3p2 + 2p+ 1

α5 3p+ 1 3p2 + 3p+ 1 p3 + 3p2 + 3p+ 1 p3 + 3p2 + 3p+ 1

α4,2 3p+ 1 4p2 + 3p+ 1 3p3 + 4p2 + 3p+ 1 p4 + 3p3 + 4p2 + 3p+ 1

α3,3 3p+ 1 4p2 + 3p+ 1 4p3 + 4p2 + 3p+ 1 2p4 + 4p3 + 4p2 + 3p+ 1

α3,2,2 3p+ 1 5p2 + 3p+ 1 5p3 + 5p2 + 3p+ 1 2p4 + 5p3 + 5p2 + 3p+ 1

α2,2,2,2 3p+ 1 6p2 + 3p+ 1 6p3 + 6p2 + 3p+ 1 3p4 + 6p3 + 6p2 + 3p+ 1

α4 4p+ 1 6p2 + 4p+ 1 4p3 + 6p2 + 4p+ 1 p4 + 4p3 + 6p2 + 4p+ 1

α3,2 4p+ 1 7p2 + 4p+ 1 7p3 + 7p2 + 4p+ 1 3p4 + 7p3 + 7p2 + 4p+ 1

α2,2,2 4p+ 1 8p2 + 4p+ 1 9p3 + 8p2 + 4p+ 1 4p4 + 9p3 + 8p2 + 4p+ 1

α3 5p+ 1 10p25 + 3p+ 1 10p3 + 10p2 + 5p+ 1 4p4 + 10p3 + 10p2 + 5p+ 1

α2,2 5p+ 1 11p2 + 5p+ 1 13p3 + 11p2 + 5p+ 1 6p4 + 13p3 + 11p2 + 5p+ 1

α2 6p+ 1 15p2 + 6p+ 1 19p3 + 15p2 + 6p+ 1 9p4 + 19p3 + 15p2 + 6p+ 1

α0 7p+ 1 20p2 + 7p+ 1 28p3 + 20p2 + 7p+ 1 14p4 + 28p3 + 20p2 + 7p+ 1

Table 3

Polynomial representation of fuzzy subgroups. Column 1 lists partition of type

λ = (λ1, λ2, . . . , λk), where λ1 + . . .+ λk = 8. (1’s have been dropped). Remaining

columns give the number of fuzzy subgroups of (n,m) for each λ, where

(n,m) ≡ Zpn × Zpm , and n+m = 8.
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Partition Number of fuzzy subgroups

α10 1

α9 p+ 1

α8,2 p2 + p+ 1

α8 p2 + 2p+ 1

α7,3 p3 + p2 + p+ 1

α7,2 p3 + p2 + (p+ 1)(p+ 1)

α7 p3 + p2 + (p+ 1)(2p+ 1)

α6,4 p4 + p3 + p2 + p+ 1

α6,3 p4 + p3 + (p2 + p+ 1)(p+ 1)

α6,2,2 p4 + p3 + (p2 + p)(p+ 1) + (p2 + p+ 1)

α6,2 p4 + p3 + (p2 + p)(2p+ 1) + (p2 + 2p+ 1)

α6 p4 + p3 + (p2 + p)(3p+ 1) + (p+ 1)(2p+ 1)

α5,5 p5 + p4 + p3 + p2 + p+ 1

α5,4 p5 + p4 + (p3 + p2 + p+ 1)(p+ 1)

α5,3,2 p5 + p4 + (p3 + p2)(p+ 1) + (p+ 1)(p2 + p+ 1)

α5,3 p5 + p4 + (p3 + p2)(2p+ 1) + (p+ 1)(p2 + 2p+ 1)

α5,2,2 p5 + p4 + (p3 + p2)(2p+ 1) + (p+ 1)[p2 + (p+ 1)(p+ 1)]

α5,2 p5 + p4 + (p3 + p2)(3p+ 1) + (p+ 1)[p2 + (p+ 1)(2p+ 1)]

α5 p5 + p4 + (p3 + p2)(4p+ 1) + (p+ 1)[p(3p+ 1) + (p+ 1)(2p+ 1)]
...

...

Table 4

Addresses the process of splitting of paths during the counting of fuzzy subgroups

as prescribed by each partition. Illustration for the case n+m = 10 for

(n,m) = (7, 3).
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p(10) p9p p8p2 p7p3 p6p4 p5p5

10 0 0 0 0 0

91 1 0 0 0 0

82 1 1 0 0 0

73 1 1 1 0 0

64 1 1 1 1 0

52 1 1 1 1 1

812 2 1 0 0 0

721 2 2 1 0 0

631 2 2 2 1 0

622 2 2 2 1 0

541 2 2 2 2 1

532 2 3 3 2 1

422 2 3 3 3 1

432 2 3 4 3 1

713 3 3 1 0 0

6212 3 4 3 1 0

5312 3 4 4 3 1

5221 3 5 5 3 1

4212 3 4 4 4 2

4321 3 5 6 4 2

423 3 6 7 6 2

331 3 5 7 6 2

3222 3 6 8 7 3

614 4 6 4 1 0

5213 4 7 7 4 1

4313 4 7 8 7 3

42212 4 8 10 8 3

Table 5
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p(10) p9p p8p2 p7p3 p6p4 p5p5

32212 4 8 11 10 4

3231 4 9 13 12 5

25 4 10 15 15 6

515 5 10 10 5 1

4214 5 11 14 11 4

3214 5 11 15 16 6

32213 5 12 18 17 7

2412 5 13 21 21 9

416 6 15 20 15 5

3215 6 16 25 24 10

2314 6 17 29 30 13

317 7 21 35 34 14

2216 7 22 40 43 19

218 8 28 55 62 28

110 9 35 75 90 42

Table 5 cont.

Table showing the coefficient of the leading term for each group such that

n +m = 10, and for each partition of type λ.
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Partition Number of fuzzy subgroups

[7, 3] p3 + p2 + p+ 1

[6, 4] p4 + p3 + p2 + p+ 1

[5, 5] p5 + p4 + p3 + p2 + p+ 1

[7, 2, 1] p3 + 2p2 + 2p+ 1

[6, 3, 1] p4 + 2p3 + 2p2 + 2p+ 1

[5, 4, 1] p5 + 2p4 + 2p3 + 2p2 + 2p+ 1

[7, 1, 1, 1] p3 + 3p2 + 3p+ 1

[6, 2, 2] p4 + 2p3 + 3p2 + 2p+ 1

[5, 3, 2] p5 + 2p4 + 3p3 + 3p2 + 2p+ 1

[4, 4, 2] p5 + 3p4 + 3p3 + 3p2 + 2p+ 1

[4, 3, 3] p5 + 3p4 + 4p3 + 3p2 + 2p+ 1

[6, 2, 1, 1] p4 + 3p3 + 4p2 + 3p+ 1

[5, 3, 1, 1] p5 + 4p4 + 4p3 + 4p2 + 3p+ 1

[4, 4, 1, 1] 2p5 + 4p4 + 4p3 + 4p2 + 3p+ 1

[5, 2, 2, 1] p5 + 3p4 + 5p3 + 5p2 + 3p+ 1

[4, 3, 2, 1] 2p5 + 5p4 + 6p3 + 5p2 + 3p+ 1

[3, 3, 3, 1] 2p5 + 5p4 + 6p3 + 5p2 + 3p+ 1

[6, 1, 1, 1, 1] p4 + 4p3 + 6p2 + 4p+ 1

[4, 2, 2, 2] 2p5 + 6p4 + 7p3 + 6p2 + 3p+ 1

[3, 3, 2, 2] 3p5 + 7p4 + 8p3 + 6p2 + 3p+ 1

[5, 2, 1, 1, 1] p5 + 4p4 + 7p3 + 7p2 + 4p+ 1

[4, 3, 1, 1, 1] 3p5 + 7p4 + 10p3 + 7p2 + 4p+ 1

[4, 2, 2, 1, 1] 3p5 + 8p4 + 10p3 + 8p2 + 4p+ 1

[3, 3, 2, 1, 1] 4p5 + 10p4 + 11p3 + 8p2 + 4p+ 1

Table 6

Polynomial representations of fuzzy subgroups, grouping together those with the

same coefficient of a power of p, p2 in this case.
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n vertices edges coefficients

2 8 + 5 + 2 11 + 9 + 4 = 24 [1,3,5]

3 11 + 7 + 4 16 + 13 + 8 = 37 [2,4,6]

4 14 + 9 + 6 21 + 17 + 12 = 50 [3,5,7]

5 17 + 11 + 8 26 + 21 + 16 [4,6,8]
...

...
...

...

n [n-1,n+1,n+3]

Table 7

Systematic counting of vertices and edges, illustration for the graph of

Zpn × Zp2 , p = 2

Zp × {0} Zp2 × Zp Zp3 × Zp2 Zp4 × Zp3 Zp5 × Zp4 . . .

1 1(Zp × Zp) 1(Zp2 × Zp2) 1(Zp3 × Zp3) 1(Zp4 × Zp4) . . .
... 1(Zp × {0}) p(Zp2 × Zp) p(Zp3 × Zp2) p(Zp4 × Zp3) . . .
...

... p(Zp2 × {0}) p(Zp3 × Zp) p(Zp4 × Zp2 . . .
...

...
... p2(Zp3 × {0}) p(Zp4 × Zp) . . .

...
...

...
... p3(Zp4 × {0} . . .

...
...

...
...

...
...

Table 8

Illustration of inductive reasoning during the counting of chains.
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Group/p 2 3 5 7 11 13 17 . . .

(1, 1) 3 4 6 8 12 14 18 . . .

(2, 1) 4 6 10 14 22 26 34 . . .

(3, 1) 5 8 14 20 32 38 50 . . .

(4, 1) 6 10 18 26 42 50 66 . . .

(5, 1) 7 12 22 32 52 62 82 . . .

(6, 1) 8 14 26 38 62 74 98 . . .
...

...

Table 9

Group/p 2 3 5 7 . . .

(2, 2) 6 12 30 56 . . .

(3, 2) 8 18 50 98 . . .

(4, 2) 10 24 70 140 . . .

(5, 2) 12 30 90 182 . . .

(6, 2) 14 36 110 224 . . .
...

...

Table 10

The number of leaves in an acyclic graph of (n,m) ≡ Zpn × Zpm .
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Cyclic tree diagram for G = Zpn × Zp
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Lattice diagram for G = Zp3 × Zp2 , illustration for p = 3
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Binary Tree representation for subgroup lattice of G = Zp3 × Zp2
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Binary Tree representing lattice diagram for G = Zpn × Zp
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Young diagram representation for partition of type λ and its conjugate, λ′

λ = λ′ = (4, 3, 2, 1)
figure 7

Illustration - by a Young diagram - of a partition of type λ which is self-conjugate.
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(In figure 10, all of the vertices, except A (valency 5) and B (valency 5) have

even valencies. Therefore, according to Euler’s theorem, the graph has no Euler

circuit. But the graph, however, has an Euler path.)
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G = Z33 × Z33
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G = Z26 × Z24
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G = Z34 × Z34
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G = Z25 × Z25
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APPENDIX I

A partition of a nonempty set X is a family of nonempty subsets {Si : i ∈ I}

satisfying the following:

1. if i 6= j, then Si ∩ Sj = ∅,

2. X = ∪Si.

Suppose G and H are groups with operations ∗ and • respectively. Then for all

a, b ∈ G, a mapping φ : G→ H is called a homomorphism if

φ(a ∗ b) = φ(a) • φ(b).

Proposition 8.4.1 [30]. Let G be an additive group whose subgroups are H1 and

H2, and suppose G satisfies the conditions

1. H1 ∩H2 = {0}

2. H1H2 = G, where H1H2 = {h1h2 : h1 ∈ H1, h2 ∈ H2}

then G is said to be isomorphic to the direct sum H1 ⊕H2. In fact G is said to be

the internal direct sum of H1 and H2 denoted as

G = H1 ⊕H2. (8.5)

To prove this proposition, let us state the 1st isomorphism theorem first.

Theorem 8.4.2 (1st Isomorphism Theorem ) If f : G → H is a homomor-

phism of groups, then f induces an isomorphism G/ker f ∼= im f .

We are now ready to prove the proposition.

Define the function

f : H1 ⊕H2 → G

by

f(h1, h2) = h1 + h2.
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Now f is a homomorphism, for if h1 and h∗1 are in H1, and if h2 and h∗2 are in H2,

then

f((h1, h2) + (h∗1, h
∗
2)) = f(h1 + h∗1, h2 + h∗2)

= h1 + h∗1 + h2 + h∗2

= (h1 + h2) + (h∗1 + h∗2)

= f(h1, h2) + f(h∗1, h
∗
2).

The other properties of a homomorphism follow immediately.

We proceed to show that the ker f = {0}. This follows from the definition of a

kernel

ker f = {(h1, h2) : f(h1, h2) = 0}

From this we deduce that h1 + h2 = 0 and so h1 = −h2 ∈ H1 ∩H2, hence kerf = 0.

Lastly we show that im f = G. By definition,

im f = {h1 + h2 : h1 ∈ H1, h2 ∈ H2} = H1 +H2 = G.

By the 1st isomorphism theorem, the result follows.

(Zassenhaus Lemma) Let A,A∗, B, B∗ be four subgroups of a group G with A

normal in A∗ and B normal in B∗. Then

A(A∗ ∩ B) / A(A∗ ∩B∗),

B(A ∩ B∗) / B(A∗ ∩ B∗),

and there is an isomorphism

A(A∗ ∩B∗)
A(A∗ ∩B)

≈ B(A∗ ∩ B∗)
B(A ∩B∗)

. (8.6)

The finite Abelian groups of rank two form a symmetric matrix as shown below:




(11) (12) (13) (14) (15) . . . (1m)

(21) (22) (23) (24) (25) . . . (2m)

(31) (32) (33) (34) (35) . . . (3m)

(41) (42) (43) (44) (45) . . . (4m)
...

...
...

(n1) (n2) (n3) (n4) (n5) . . . (nm)



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(n,m) is read Zpn × Zpm

It becomes logical to consider only either the lower or upper triangular matrix as

there is no distinction between Zpn × Zpm and Zpm × Zpn .

Every finite group has at least one composition series.

Since any finite Abelian group G of order n = pe1
1 p

e2
2 · · ·per

r is a product of cyclic

groups of prime-power orders, it follows that G has at least one composition series

in which all factors are cyclic of prime order.

All maximal chains in a finite Abelian group have the same length.

Thus one can say that a group G is solvable if and only if its composition factors

are all of prime order.

A group G is said to be nilpotent if G has a normal series G = G1 ≥ G2 ≥ · · · ≥

Gn = 1 in such a way that each Gi is normal in G and Gi−1/Gi is in the center

of the group G/Gi for 2 ≤ i ≤ n. It is instructive to note that a nilpotent group

is always solvable, whereas a solvable group need not be nilpotent. Thus it can be

said that G is nilpotent if G has prime-power order.
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APPENDIX II

In the crisp case, χA(x) gives the degree of membership of x to A. In the fuzzy

subset case, the degrees of membership range over the full unit interval [0, 1]. Thus

a fuzzy subset A, denoted by µA, is a function

µA : X → I,

with the number µA(x) in [0, 1], interpreted as the degree to which x belongs to A,

where µ(x) = 1 means that x belongs to A absolutely, and µA(x) = 0 means x does

not belong to A absolutely.

A fuzzy set µA is said to be normal if µA(x) = 1 for at least one x in X .

Union, intersection and complementation of fuzzy sets are defined by taking max,

min and ′ pointwise for the degree of membership. If A,B are two fuzzy subsets of

X , then A ∩B,A ∪B,A′ are given by

µA∩B(x) = µA(x)∧ µB(x)

µA∪B(x) = µA(x)∨ µB(x)

µA′(x) = 1− µA(x)

The set of all fuzzy sets of X is denoted by IX , so

IX = {µ : µ→ I}.

A fuzzy point is a fuzzy subset of the form xλ, where

xλ(y) =





λ if y = x

0 if y 6= x

and

0 < λ ≤ 1, x, y ∈ X.

For two fuzzy sets µ and ν of X ,

µ = ν ⇐⇒ µ(x) = ν(x) for all x ∈ X

µ ⊆ ν or µ ≤ ν ⇐⇒ µ(x) ≤ ν(x) for all x ∈ X
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µ < ν ⇐⇒ µ(x) ≤ ν(x) for all x ∈ X, and for at least one x ∈ X, µ(x) < ν(x).

In this sense, a fuzzy point xβ is strictly contained in another fuzzy point xλ provided

0 < β < λ = 1.

If {µj}j∈J is a collection of fuzzy sets of X then the union of µj ’ s is defined as

(
∨

j∈J

µj)(x) = supj∈J(µj(x)),

and the intersection is defined as

(
∧

j∈J

µj)(x) = infj∈J(µj(x)).

A fuzzy subset µ of a group G is a fuzzy subgroup of the group G if and only if

µ(xy−1) ≥ min{µ(x), µ(y)} for every x, y ∈ G.

Let µ be a fuzzy subset of a group G. Then µ is a fuzzy subgroup of G if and

only if Gµ
t is subgroup (called level subgroup) of the group G for every t ∈ [0, µ(e)],

where e is the identity element of the group G.

A fuzzy subgroup µ of a group G is said to be a fuzzy normal subgroup of G if

µ(xy) = µ(yx) for every x, y ∈ G.

Let µ be a fuzzy normal subgroup of a group G. For t ∈ [0, 1], the set

µt = {(x, y) ∈ G×G : µ(xy−1) ≥ t}

is called the t− level relation of µ. For the fuzzy normal subgroup µ of G and for

t ∈ [0, 1], µt is a congruence relation on the group G.

Let G be a cyclic group of prime order. Then there exists a fuzzy subgroup A

of G such that A(e) = t0 and A(x) = t1 for all x 6= e in G and t0 > t1.

Let µ be a fuzzy subgroup of a group G and ν be a fuzzy subset of the group.

If µ and ν are conjugate fuzzy subsets of the group G then µ is a fuzzy subgroup of

the group G.
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No. 1310 (2003), 169–177.

[89] Zadeh, L. A Fuzzy Sets. Information and Control 8 (1965), 338–353.

[90] Zhang, Y., Zou, K. , A note on an equivalence relation on fuzzy subgroups

(short communication) Fuzzy Sets and Systems 95 (1998), 243–247

145


