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Abstract

This thesis focuses on the non-arbitrage (fair) pricing of interest rate derivatives, in particular

caplets and swaptions using the LIBOR market model (LMM) developed by Brace, Gatarek,

and Musiela (1997) and Swap market model (SMM) developed Jamshidan (1997), respectively.

Today, in most �nancial markets, interest rate derivatives are priced using the renowned Black-

Scholes formula developed by Black and Scholes (1973). We present new pricing models for

caplets and swaptions, which can be implemented in the �nancial market other than the Black-

Scholes model. We theoretically construct these �new market models� and then test their prac-

tical aspects. We show that the dynamics of the LMM imply a pricing formula for caplets that

has the same structure as the Black-Scholes pricing formula for a caplet that is used by market

practitioners. For the SMM we also theoretically construct an arbitrage-free interest rate model

that implies a pricing formula for swaptions that has the same structure as the Black-Scholes

pricing formula for swaptions. We empirically compare the pricing performance of the LMM

against the Black-Scholes for pricing caplets using Monte Carlo methods.
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Chapter 1

Introduction

Financial derivatives securities are instruments whose value depends on the values of more basic

underlying assets, like the prices of other traded assets such as interest-rates, commodity prices

or stock indices. Interest-rate derivatives are securities whose underlying variables or assets

are interest-rates. The commonly traded derivative securities in the market today are forward

contracts, options and swaps. An option is a contract that gives the holder the right, but not

the obligation to buy or sell the underlying asset by a certain date called the maturity and for a

certain price called the strike price. A call option gives the holder the right to buy the underlying

security, whilst a put option gives the holder the right to sell the underlying asset. The option

is said to be exercised when the holder chooses to buy or sell the asset. If the option can only

be exercised at maturity, then the option is called a European option. Otherwise, if the option

can be exercised anytime prior the maturity date, then the option is called an American option.

Interest-rate Caps and Caplets

An interest-rate cap is a �nancial contract where the seller (issuer) of the contract promises to

pay a certain amount of cash �ow to the holder of the contract if the interest-rate exceeds a

certain predetermined level, called the cap rate (Bingham and Kiesel, [1] ). An interest-rate

cap can be viewed as a portfolio of caplets. A caplet is a call option written on the �oating

interest rate such as the London Inter-Bank O�ered Rate (LIBOR). A caplet guarantees that

the interest charged on the �oating rate loan at any given time will be the minimum of the

prevailing �oating rate, say the LIBOR rate and a preset cap rate. If the rate rises above the

cap rate, the holder receives cash �ow from the issuer which exactly compensates the additional

interest expense incurred beyond the cap rate; if otherwise, then no cash �ow results (Kwok,

[18]).
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Interest-rate Swaps and Swaptions

A swap is a �nancial agreement between two or more parties to exchange a sequence of cash

�ows over a period in the future (Kolb, [16]) . A well known type of swap is the �plain vanilla�

interest-rate swap, in which cash �ows equivalent to interest are exchanged between a �xed-rate

payer (�oating-rate receiver) and a �oating-rate payer (�xed-rate receiver), based on a notional

principal and over the same period of time until maturity. The reference �oating rate is usually

the LIBOR rate. The �xed rate that makes the present values of the two cash �ows equal is

called the swap rate (Kijima, [14]). Since the swap rate can be observed in the market as the

LIBOR rate changes, it can be treated as an underlying asset; hence an option written on the

swap rate is known as a swaption. A swaption gives the holder the right, but not the obligation

to enter into a speci�ed interest-rate swap.

1.1 Pricing caplets and swaptions.

The interest rate derivative market is the largest derivatives market, both in variety and com-

plexity in the world today. As a result a lot of research has been dedicated to the pricing models

of these derivatives, in a quest for more e�cient and robust pricing strategies. This thesis follows

guidelines on the work done by other researchers on the arbitrage-free pricing of interest-rate op-

tions, in particular caplets and swaptions, which are of �European� type. Under this framework

we construct pricing models for caplets and swaptions using the so called �new market models�.

These are the LIBOR Market Model (LMM) developed by Brace, Gatarek, and Musiela ([4]) and

the Swap Market Model developed by Jamshidan ([12]). From the discovery of the renowned

Black-Scholes model by Black and Scholes ([2]) in 1973, which was further developed by Robert

Merton, it has been considered the standard model for determining the fair price of an option.

The Black-Scholes model is a mathematical model based on the notion that prices of stock or

underlying assets of the option follow a stochastic process which is log-normally distributed.

The dynamics of the Black-Scholes model can be constructed using partial di�erential equations

which is mathematically demanding.

Other pricing models for valuing options such as the Heath-Jarrow-Morton (HJM) model of

Heath, Jarrow and Morton ([11]) where presented. The stochastic drivers for the HJM model are

the instantaneous forward rates. The HJM model was constructed using stochastic di�erential

equations. This model did not thrive that much in the global �nance markets, as traders

continued pricing caplets and swaptions using the Black-Scholes model. The major shortfall

of the HJM model was due to the fact that neither the instantaneous forward rates nor their

volatilities were observable in the market. This led to the development of the �new market

models�, the LMM and SMM. The dynamics of the LMM and SMM are constructed using

stochastic di�erential equations as in the HJM model. The major advantages of these models
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are that, �rstly they are constructed using the volatility structures of the forward rates e.g.

LIBOR and swap rates, which are observable or quoted in the market. Secondly the forward

rates are log-normally distributed. This implies that for the LMM, the forward LIBOR rates

follow log-normal processes such that the dynamics of the LMM will have similar structure to

the Black-Scholes pricing formula for caplets. Similarly for the SMM, the forward swap rates

follow log-normal processes such that the dynamics of the SMM are similar to the Black-Scholes

pricing formula for swaptions in structure. As a consequence the LMM and SMM can easily

be calibrated to match Black-Scholes option prices by directly inserting the quoted implied

Black-Scholes volatilities into these models. LMM and SMM construction will be done in the

continuous-time framework.

In chapter 2 we discuss the basic setup for the continuous-time securities model. We detail

the concept of arbitrage-free pricing of securities using martingale probability measures. We

discuss concepts of risk-neutral and forward-neutral martingale measures. Lastly we introduce

the setup of the Black-Scholes model. In chapter 3 we construct the LMM using the stochastic

tools discussed in chapter 2. We prove the existence of the LMM as set of stochastic di�erential

equations for the forward LIBOR rate under forward-neutral martingale measure. We use the

dynamics of the LMM to theoretically price caplets, and we show that the pricing formula is

similar in structure to the Black-Scholes pricing formula for caplets. In chapter 4 we construct

the SMM using similar techniques to those used in chapter 3. We prove the existence of the

SMM as a set of stochastic di�erential equations under the forward swap martingale measure. We

construct a pricing formula for swaptions within the SMM, and we show that it is structurally

similar to that of the Black-Scholes pricing formula for swaptions. In chapter 5 we look at

numerical pricing of caplets using the LMM. This will be done using Monte Carlo methods.

We transform the LMM from its continuous-time framework to its discrete counterpart, using

Euler's scheme, for simulation purposes. We show that Monte Carlo prices generated for caplets

within the LMM are similar to the exact prices of caplets generated using the Black-Scholes

formula for caplets.
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Chapter 2

Continuous-time model for derivative

securities.

In order for us to construct the LIBOR Market Model (LMM) and the Swap Market Model

(SMM) we require some background theory on pricing derivative securities in the continuous-

time framework . A derivative security is a security whose price has primary dependence on

the stochastic processes of the price of the underlying asset (Kwok, [18]). This means that the

value of the derivative changes over time in an uncertain manner. Firstly uncertainity of security

prices in the continuous-time framework is modelled using Brownian motions. In the discrete-

time framework, uncertainity in the market is modelled using random walks. It can be shown

that the random walk will converge by law to a Brownian motion using the generalized central

limit theorem (See [14]). We show that Brownian motion is not ideal for modelling security price

movements. Instead, we show that the time t price of a security can be modelled by geometric

Brownian motion, and that the ratio of the stock prices are log-normally distributed. This is an

assumption made for the famous Black-Scholes pricing model. Secondly the concept of quadratic

variation of Brownian motion is brie�y discussed. This will lead to the introduction of stochastic

calculus such as stochastic integrals and stochastic di�erential equations with respect to Brow-

nian motion, which are used to develop the continuous-time securities model. We also look at

some important stochastic calculus tools, such as Ito's formula and the division rule. Lastly

we give an outline of the general continuous-time model for the securities market. Concepts of

replicable contingent claims, self-�nancing, absence of arbitrage and risk neutral methods are

discussed. We note that the absence of arbitrage is equivalent to the existence of an equivalent

martingale measure. The reader can consult any textbooks of �nance such as Etheridge ([8]),

Ross ([25]), Neftci ([23]), Shreve ([28]), Kijima ([14]) and Kwok ([18]) for discussions that follow

on continuous-time model for derivative securities.
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2.1 Terminology and Notation

In general uncertainty in the �nancial market is modelled by stochastic processes. A stochastic

process is a family of random variables {X(t), t ∈ T} or {X(t)} in short, parameterized by time

t ∈ T . Let (Ω,F , P ) be a probability space under which X(t) is de�ned on. Suppose that the

time epochs consist of a closed interval [0, T ] where T <∞ and the current time is denoted by

t = 0. Let Si(t) denote the time t price of security i for i = 0, 1, 2, ..., n, where the initial price

Si(0) is known by all investors .The securities price process is denoted by {S(t); 0 ≤ t ≤ T} or
{S(t)} in short, where S(t) = (S0(t), S1(t), ..., Sn(t))>, 0 ≤ t ≤ T . Let θi(t) denote the number

of security i possessed at time t for 0 ≤ t ≤ T , and θ(t) = (θ0(t), θ1(t), ..., θn(t))> is the portfolio

at that time.

Assumptions of the securities market

1. There are n+ 1 securities in the market where S0(t) is a risk-free security, e.g the money

market account or the default-free discount bond and Si(t), i = 1, 2, . . . , n, being risky

securities, e.g stocks.

2. The securities pays no dividends.

3. The market is assumed to be frictionless i.e.

• No transactional costs or taxes.

• All securities are perfectly divisible.

• Short sales of securities are allowed without restriction.

• Borrowing and lending rates of the risk-free security are the same.

4. All investors in the market are price takers i.e. their trading actions do not a�ect the

probability distribution of the prices available.

Let Ft denote the information available on the securities in the market at time t. This includes

all the information available from time t = 0 up until current time t such that, F0 ⊂ F1 ⊂
. . . ⊂ Ft⊂ F . The sequence of information {Ft; t = 0, 1, ..., T} or {Ft} in short satisfying the

sequence F0 ⊂ F1 ⊂ . . . ⊂ Ft⊂ F , is called a �ltration. Ft must contain at least the smallest

sv-�eld generated from {S(u); u ≤ t}.

De�nition 2.1: A random variable X is said to be Ft-measurable, or measurable with respect

to Ft if the event, {x1 < X < x2} belongs to Ft for any x1 < x2.

Remark: In the securities market setting, the time t price Si(t) must be Ft-measurable for any

choice of t.
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De�nition 2.2: A stochastic process {X(t); t ∈ T} is said to be adapted to the �ltration {Ft}
if each X(t) is measurable with respect to Ft .

Remark: In the securities market setting the price process {Si(t)} is adapted to the �ltration{Ft}.

2.2 Brownian Motion.

Now that the assumptions of the securities market have been de�ned formally, we de�ne the

phenomenon of Brownian motion. Brownian motion is the stochastic driver for the continuous

time securities model. It models the price movements of securities {S(t)}. Brownian motion

is obtained as a limit of the discrete time random walk model. The risky securities {S(t)} are
modelled using geometric Brownian motion which is described later. Firstly we formally de�ne

standard Brownian motion (s.b.m.), then we extend the de�nition to Brownian motion.

De�nition 2.3: Standard Brownian Motion

Let {z(t); t ≥ 0} be a stochastic process de�ned on probability space (Ω,F , P ). The process

{z(t)} is called a standard Brownian motion (s.b.m.) if

1. It has independent increments.

2. The increment z(t + s) − z(t) for all non negative t and s , is normally distributed with

mean 0 and variance s, independently of time t.

3. It has continuous sample paths and z(0) = 0.

The s.b.m. is a special case of the Brownian motion. A stochastic process {X(t); t ≥ 0} de�ned
by X(t) = X(0) + µt + σz(t) is called a Brownian motion with drift µ, di�usion coe�cient σ.

We note that X(t) follows a normal distribution with mean µt and variance σ2t .
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2.3 Geometric Brownian Motion.

De�nition 2.4: Geometric Brownian Motion (see [25])

Let the present time be t = 0 and let S(t) denote the price of the security at time t. Then the

collection of prices, S(t), 0 ≤ t ≤ T, follows a geometric Brownian motion with drift parameter

µ and volatility parameter σ > 0 , if for all non-negative values of t and s, the random variable

S(t+ s)

S(t)
,

is independent of all prices up to time t and if in addition,

log

(
S(t+ s)

S(t)

)
,

is a normal random variable with mean µs and variance σ2s.

The above de�nition implies that the series of prices will follow a geometric Brownian motion

if the ratio of the price at time t in the future to the present price is independent of the past

history of prices. Thus this ratio of prices is said to be log-normally distributed with mean

µs and variance σ2s. A consequence of assuming that a security's prices follow a geometric

Brownian motion is that once µ and σ are determined , it is only the present value - and not

the history of past prices - that a�ects probabilities of future prices. Furthermore, for a given

initial price S(0), the expected value of the price at time t depends on both of the geometric

Brownian motion parameters, µ and σ, and is given by

E[S(t)] = S(0)e(µ+ 1
2
σ2)t.

Thus under geometric Brownian motion, the expected price grows at the rate µ + 1
2σ

2 . Geo-

metric Brownian motion is also appropriate for modelling security prices because , it allows for

non-negative security prices. The Black-Scholes model assumes that the dynamics of the time t

price of a security S(t) follows geometric Brownian motion .
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2.4 Martingales

An important assumption when implementing the LMM and SMM, is that we need to ensure

fair (no-arbitrage) pricing of swaptions and caplets. This can be achieved using the concept of

martingales. The term martingale has its origin in gambling . It refers to the gambling tactic of

doubling the stake when losing in order to recoup oneself (Kwok, [18]). In the studies of stochas-

tic processes , martingales are de�ned in relation to an adapted stochastic process1. Initially we

de�ne martingales in the discrete time setting to describe its basic structure and then we extend

it to the continuous-time setting.

De�nition 2.5: Martingale (Discrete)

An {Ft} − adapted stochastic process {X(t); t = 0, 1, ..., T}, de�ned on probability space

(Ω,F , P ) , is called a martingale if

E[X(t+ 1) | Ft] = X(t), t = 0, 1, ..., T − 1, (2.1)

where the conditional expectation E[X(t+ 1) | Ft] can be written in short as Et[X(t+ 1)].

Remark: For the time t price of a security S(t), de�nition 2.5 implies that Et[S(t+ 1)] = S(t).

This means given the information Ft, up to time t the expected future value, E[S(t+ 1)] is the

same as the current value S(t).

De�nition 2.6: Martingale (Continuous)

A continuous-time {Ft} − adapted stochastic process {X(t), t ∈ [0, T ]} is called a martingale

with respect to {Ft} if ,

1. E[|X(t)|] <∞, for each t ∈ T .

2. Et[X(s)] = X(t), for each t ∈ T and t < s ≤ T

Example: The standard Brownian motion z(t) is a martingale with respect to �ltration Ft =

σ(z(s), s ≤ t) . The conditional expectation is given by Et[z(t+s)] = Et[z(t+s)−z(t)+z(t)] =

Et[z(t + s) − z(t)] + Et[z(t)]. But the increments z(t + s) − z(t), s ≥ 0, are independent of

the information Ft, therefore Et[z(t+ s)] = Et[z(t)] = z(t), thus indeed the standard Brownian

motion is a martingale.

1See de�nition 2.2.
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2.5 Stochastic Calculus

In order to construct arbitrage-free �market models� i.e. LMM and SMM, it is necessary to

develop stochastic calculus tools that enable us to perform mathematical operations on functions

of stochastic processes modelled by Brownian motions. Stochastic calculus is important for

modelling the price process of securities because of the quadratic variation of a Brownian motion.

In this section we �rstly de�ne the concept of quadratic variation of a Brownian motion. Secondly

we discuss the necessary tools for stochastic calculus namely stochastic integrals, Ito's formula

and stochastic di�erential equations. We consider the general case for the above as we shall

apply them in the later chapters.

2.5.1 Quadratic variation of a Brownian motion.

De�nition 2.7: Quadratic variation

The quadratic variation of a stochastic process {X(t)} is de�ned, if the following limit exists,

[X,X](T ) = lim
N→∞

N∑
i=1

|X(tNi )−X(tNi−1)|2, a.s. (2.2)

where the limit is taken over all partitions such that for each N , 0 = tN0 < tN1 < ... < tNN−1 <

tNN = T and δN = max
i
{tNi − tNi−1} −→ 0 as N −→∞.

Proposition 2.1 Consider the standard Brownian motion {z(t)}. Then the quadratic variation

of {z(t)} is given by

[z, z](t) = t, t ≥ 0. (2.3)

Proof

Let N = 2n and de�ne

Wn(t) =

2n∑
i=1

∆2
ni,

where ∆ni = z( it2n )− z( (i−1)t
2n ), i = 1, ..., 2n.

Now in order to prove proposition 2.1 we will show that

E[|Wn(t)− t|2] −→ 0 as n −→∞.
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The increments of the Brownian motion {z(t)} are i.i.d and normally distributed, and

∆ni ∼ N
(

0,
t

2n

)
, i = 1, 2, ..., 2n.

Now

E[|Wn(t)− t|2] = E[(Wn(t))2]− 2tE[Wn(t)] + t2, (2.4)

where

E[Wn(t)] = E

[ 2n∑
i=1

∆2
ni

]
=

2n∑
i=1

E

[
∆2
ni

]
=

2n∑
i=1

V ar

[
∆ni

]
=

2n∑
i=1

t

2n
= (2n)

t

2n
= t,

and

E[(Wn(t))2] = E

[ 2n∑
i=1

∆2
ni

]2

=

2n∑
i=1

E

[
∆4
ni

]
+ E

[∑
j 6=k

∆2
nk∆

2
nj

]
.

But

2n∑
i=1

E

[
∆4
ni

]
=

2n∑
i=1

3(
t

2n
)2 = 3(2n)(

t

2n
)2 =

3t2

2n
,

where we have used the well known fact that if X ∼ N(µ, σ2), then its fourth order moment is

given by E(X − µ)4 = 3(σ2)2.

Moreover

E

[∑
j 6=k

∆2
nk∆

2
nj

]
=
∑
j 6=k

E

[
∆2
nj

]2

,

by the independence of the increments, therefore

E

[∑
j 6=k

∆2
nk∆

2
nj

]
=
∑
j 6=k

E

[
∆2
nj

]2

=
∑
j 6=k

V ar

[
∆nj

]2

=
∑
j 6=k

( t

2n

)2
=
∑
j 6=k

t2

22n
=

t2

22n
((2n)2 − 2n).

Now combining the results obtained, it follows that
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E[(Wn(t))2] =
3t2

2n
+

t2

22n
((2n)2 − 2n) =

3t2

2n
+ t2 − t2

2n
=

2t2

2n
+ t2.

Substituting the above results into equation (2.4) we get

E[|Wn(t)− t|2] = E[(Wn(t))2]− 2tE[Wn(t)] + t2,

=
2t2

2n
+ t2 − 2t(t) + t2

=
2t2

2n
.

Now E[|Wn(t) − t|2] = 2t2

2n −→ 0 as n −→ ∞, which implies that Wn(t) −→ t as n −→ ∞,
and this proves proposition 2.1 that the standard Brownian motion {z(t)}satis�es the quadratic
variation [z, z](t) = t, t ≥ 0. P

2.5.2 Stochastic Integrals

The Ito integral is a suitable mathematical tool for integrating a function that has non-zero

quadratic variation such as the Brownian motion. It is one way of de�ning sums of uncountable

and unpredictable random increments over time (Neftci, [23]). This section intuitively de�nes

the Ito integral and we outline its properties. Before proceeding it is important to note two

reasons leading to the practical relevance of the Ito integral. Firstly, security price dynamics

with respect to Brownian motion are constructed by stochastic di�erential equations, which

can be de�ned only in terms of the Ito integral. Secondly stochastic di�erential equations are

de�ned on in�nitesimal intervals and their use in �nite intervals requires approximations. Such

approximations will be de�ned by the use of the Ito integral.

De�nition 2.8: Predictable Process

An adapted process2 {ψ(t)} is predictable, if it is left-continuous in time t, a limit of left-

continuous processes, or a measurable function of a left-continuous process.

Remark: Any adapted and continuous process is predictable.

Now consider the closed time interval [0, T ]. Partitioning it into n sub-intervals such that,

0 = t0 < t1 < ... < tn = T, de�ne

2See de�nition 2.2.

11



In(t) =
n−1∑
i=0

ψ(ti){z(ti+1 ∧ t)− z(ti ∧ t)}, t ≤ T, (2.5)

where ti∧t = min(ti, t) i = 0, 1, ..., n. Such an expression is meaningful in �nancial engineering,

because it is directly related to martingales, one key notion in the theory of no-arbitrage pricing.

The proposition below de�nes the Ito integral.

Proposition 2.23 Let {ψ(t)} be a predictable stochastic process, which satis�es the �non-

explosive� condition, that is

E[

∫ T

0
ψ2(t)dt] <∞.

Then In(t) converges in mean square to the uniquely de�ned stochastic process I(t), that is for

t ≤ T ,

E

[
In(t)− I(t)

]2

−→ 0 as max
i

(ti+1 − ti) −→ 0.

The process {I(t) t ≥ 0} is called the Ito integral and the following intuitively appealing notation

is used

I(t) =

∫ t

0
ψ(s) dz(s), t ≥ 0.

Properties of the Ito integral4

1. I(t) is a martingale.

2. I(t) has continuous sample paths.

3. E[
∫ t

0 ψ(u) dz(u)] = 0.

4. Ito isometry, i.e. E[I2(t)] = E[{
∫ t

0 ψ(u) dz(u)}2] =
∫ t

0 E[ψ2(u) du].

5. The Ito integral is normally distributed the mean 0 and variance
∫ t

0 ψ
2(u) du, i.e. I(t) =∫ t

0 ψ(u) dz(u) ∼ N
(

0,
∫ t

0 ψ
2(u) du

)
.

3See [14],[23],[18]and [28].
4Refer to Shreve ([28]) for detailed proofs of the properties listed below.
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2.5.3 Stochastic Di�erential equations

In the literature of �nancial engineering, it is common to model a continuous-time price pro-

cesses in terms of stochastic di�erential equations (SDE). In particular for the LMM and SMM,

default-free discount bond prices, forward LIBOR rates and forward swap rates will be con-

structed using SDE's.

Consider the Brownian motion {z(t)} with �ltration {Ft, t ∈ [0, T ]}. Let µ(X(t), t) and

σ(X(t), t) be adapted to Ft with
∫ T

0 |µ(X, t)| dt < ∞ and
∫ T

0 σ2(X, t) dt < ∞ (almost surely)

for all T , then the process de�ned by

X(t) = X(0) +

∫ t

0
µ(X(u), u) du+

∫ t

0
σ(X(u), u) dz(u), (2.6)

is called an Ito process. The integral above can be written in its di�erential form,

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dz(t), 0 ≤ t ≤ T, (2.7)

or in short

dX = µ(X, t)dt+ σ(X, t)dz, 0 ≤ t ≤ T, (2.8)

where µ(X, t) is the drift function and σ(X, t) is the di�usion coe�cient and X(t) = X.

Remark: In �nancial engineering, to ensure arbitrage-free pricing, it is of fundamental im-

portance that the price process S(t) is a martingale. The next propositions (See [14]) provide

important results on the properties of the SDE of a process which is a martingale.

Proposition 2.3 Suppose that the process {X(t)} is a solution to the SDE

dX = µ(X, t)dt+ σ(X, t)dz, 0 ≤ t ≤ T,

where σ(x, t) is continuous and satis�es E[
∫ T

0 σ2(X, t) dt] <∞ . Then the process {X(t)} is a
martingale if and only if the drift is zero, i.e. µ(x, t) = 0.

Proposition 2.4 Suppose that the process {X(t)} is a solution to the SDE

dX

X
= σ(X, t)dz, 0 ≤ t ≤ T,

13



where σ(x, t) is continuous and satis�es E[exp{1
2

∫ T
0 σ2(X, t) dt}] < ∞ 5. Then the process

{X(t)} is a martingale and satis�es the equation

X(t) = X(0)exp

{∫ t

0
σ(X, s)dz(s)− 1

2

∫ t

0
σ2(X, s)ds

}
,

whence it is called an exponential martingale.

Now the theory of stochastic integrals and stochastic di�erential equations can be extended

to security price processes, {S(t)}. This is because in the continuous-time framework security

price processes are modelled using Brownian motion which is not di�erentiable, almost surely.

In �nancial theory it is common that we consider the rate of return of a security {S(t)}, rather
than its price process directly. The rate of return of a security, is just the ratio of pro�t or

loss on a security investment relative to the amount of money invested. Let R(t) denote the

time t instantaneous rate of return of a security S(t). Assuming that the security does not pay

dividends, then the rate of return of the security is given by

R(t)dt =
dS(t)

S(t)
, 0 ≤ t ≤ T.

Assuming that this rate of return {R(t)} is expressed in terms of a deterministic trend and

unanticipated �noise�6 then the rate of return of the security S(t) is given by

R(t)dt =
dS(t)

S(t)
= µ(S, t)dt+ σ(S, t)dz, 0 ≤ t ≤ T,

that is

dS(t) = µ(S, t)S(t)dt+ σ(S, t)S(t)dz,

or simply

dS = µ(S, t)Sdt+ σ(S, t)Sdz, (2.9)

where {z(t)} is a standard Brownian motion. The trend or drift function µ(S, t) is called the

mean rate of return and σ(S, t) is called the volatility of the security S(t). The �noise� is given

by σ(S, t)dz. In the sub-section that follows we look at an important mathematical tool for

�nancial modelling, known as Ito's formula.

5This condition is called the Novikov condition.
6We assume that the �noise� around the security prices is modelled using the standard Brownian motion.

14



2.5.4 Ito's formula.

Ito's formula which is also known as Ito's lemma can be viewed as an extension to the chain

rule in ordinary calculus. It plays an important role in stochastic calculus for �nancial engineer-

ing. For example consider the case where we have a stochastic process {Y (t)} obtained from

the process {X(t)}, which is a solution to the SDE (2.8), via a smooth function f(x, t). The

process {Y (t)} is given by Y (t) = f(X(t), t), 0 ≤ t ≤ T . Ito (1994) developed the follow-

ing theorem for determining the SDE for {Y (t)} and it is stated below, as cited by Kijima ([14]).

Theorem 2.1. Ito's formula

Let {X(t)} be a stochastic process that satis�es the SDE

dX = µ(X, t)dt+ σ(X, t)dz, 0 ≤ t ≤ T.

Then for a smooth function f(x, t) , Y (t) = f(X(t), t) satis�es the SDE

dY = µY (t)dt+ σY (t)dz, 0 ≤ t ≤ T,

where µY (t) = ft(X, t) + fx(X, t)µ(X, t) + 1
2fxx(X, t)σ2(X, t) and σY (t) = fx(X, t)σ(X, t) .

Remark: The functions ft(x, t), fx(x, t) and fxx(x, t) are partial derivatives of f(x, t) with

respect to t and x respectively.

Proposition 2.5 (Division rule) Consider the two SDE's

dX

X
= µX(t)dt+ σX(t)dz, t ≥ 0,

and
dY

Y
= µY (t)dt+ σY (t)dz, t ≥ 0.

Let D(t) = X(t)
Y (t) where Y (t) > 0 , then the process {D(t)}, if it exists, follows the SDE

dD

D
= µD(t)dt+ σD(t)dz, t ≥ 0,

where µD(t) = µX(t)− µY (t)− σY (t)(σX(t)− σY (t)) and σD(t) = σX(t)− σY (t).
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2.6 No-arbitrage Pricing and Risk Neutral evaluation method.

In order to fairly price contingent claims such as caplets and swaptions it is of fundamental

importance that there are no-arbitrage opportunities in the market i.e. a risk-free way of making

pro�t. In this section we introduce the fundamentals of no-arbitrage pricing of contingent claims.

A contingent claim is a random variable X representing a payo� at some future time T . In

particular for this thesis, the future payo� functions for swaptions and caplets can be viewed

as contingent claims. Firstly we de�ne the concepts of self-�nancing and replicating portfolio's.

An investment is said to be self �nancing if no extra funds are added or withdrawn from the

initial investment. The cost of acquiring more units of one security in the portfolio is completely

�nanced by the sale of some units of other securities within the same portfolio (Kwok, [18]).

Secondly we show that no-arbitrage pricing implies the existence of a probability measure that

makes the time t denominated price of a security a martingale. Such a probability measure

is known as the risk-neutral probability measure. A risk neutral investor is one who values

an investment solely through the expected value of the securities return (Ross, [25]). For the

de�nitions and explanations that follow, we assume that the securities market S(t) pays no

dividends7.

Now consider the portfolio process {θ(t)} de�ned in section 2.1. Then the value process {V (t)}
is de�ned by

V (t) =
n∑
i=0

θi(t)Si(t), 0 ≤ t ≤ T, (2.10)

which can be expressed in the di�erential form

dV (t) =
n∑
i=0

θi(t)dSi(t), 0 ≤ t ≤ T, (2.11)

or the integral form

V (t) = V (0) +
n∑
i=0

∫ t

0
θi(u)dSi(u), 0 ≤ t ≤ T. (2.12)

De�nition 2.9: Self-�nancing portfolio

A portfolio process {θ(t)} is said to be self-�nancing if the time t portfolio value V (t) is repre-

sented by (2.12).

7Refer to sub-section 2.1.1 for the other assumptions about the securities market.
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De�nition 2.10: Replicating portfolio

A contingent claim X is said to be attainable if there exists some self-�nancing trading strategy

{θ(t), t ∈ [0, T ]}, called a replicating portfolio, such that V (T ) = X, i.e.

X = V (0) +
n∑
i=0

∫ T

0
θi(t)dSi(t). (2.13)

De�nition 2.11: Arbitrage opportunity.

An arbitrage-opportunity is the existence of some self-�nancing trading strategy {θ(t), t ∈ [0, T ]},
such that

1. V (0) = 0.

2. V (T ) ≥ 0.

3. V (T ) > 0 with positive probability .

Remark: The above de�nition just implies that an arbitrage opportunity is a risk-free way of

making pro�t.

Theorem 2.2. No-arbitrage pricing.

For a given contingent claim X suppose that there exist a replication trading strategy {θ(t), t ∈
[0, T ]} as in (2.13). If there are no-arbitrage opportunities in the market, then V (0) is the correct

price for the contingent claim X.

Remark: Theorem 2.2 suggests that we determine the initial cost V (0) of the replicating port-

folio {θ(t)} given by (2.13) in order to price the contingent claim X under the assumption

of no-arbitrage opportunities. (See Shreve([28]), Kijima ([14]),Kwok ([18]), Etheridge ([8]) ,

Musiela et.al ([21]) , Ross ([25]) and Neftci ([23]) ).

2.6.1 Risk-Neutral probability measure.

Consider the denominated prices S̃i(t) with S0(t) being the numeraire i.e. S̃i(t) = Si(t)
S0(t) . A

numeraire by de�nition (See [1]), is any asset price process {X(t)} almost surely positive for

each t ∈ [0, T ] , that is X(t) > 0 for all times of t.

Now suppose there exists a probability measure P̃ under which {S̃i(t)} are martingales i.e.

Ẽt[S̃i(t)] = S̃i(t), 0 ≤ t ≤ T, (2.14)
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where Ẽt is the conditional expectation under the new probability measure P̃ . Such a measure

is known as martingale measure. Then the correct price V (0) for a contingent claim X is given

by

V (0) = Ẽt[Ṽ (T )] = Ẽt

[
X

S0(T )

]
, 0 ≤ t ≤ T, (2.15)

where Ẽ = Ẽ0 under some regularity condition.

De�nition 2.12: Risk-Neutral Probability Measure.

Given a probability space (Ω,F , P ) with �ltration {Ft, t ∈ [0, T ]}, a probability measure P ∗ is

said to be risk-neutral if

1. P ∗ is equivalent to P , i.e. P (A) > 0 if and only if P ∗(A) > 0, ∀ A ∈ F .

2. E∗t [S∗i (t)] = S∗i (t), 0 ≤ t ≤ T, holds for all i and t with S0(t) = B(t) , the money market

account.

Consider the time t price of a European contingent claim denoted C(t), written on stock S(t)

with payo� h(S(T )) at maturity time T . Suppose that the contingent claim is replicated through

a self-�nancing strategy, hence the denominated price process {C∗(t)} = {C(t)}
{B(t)} is always mar-

tingale under the risk-neutral probability measure. Hence the time t price C(t) of the contingent

claim is given by

C(t) = B(t)E∗t

[
h(S(T ))

B(T )

]
, 0 ≤ t ≤ T, (2.16)

that is

C∗(t) = E∗t

[h(S(T ))

B(T )

]
C(t)

B(t)
= E∗t

[h(S(T ))

B(T )

]
C(t) = B(t)E∗t

[
h(S(T ))

B(T )

]
, 0 ≤ t ≤ T.

For example a European call option with strike price K , will have the payo� function h(S(T )) =

{S(T )−K}+ .
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Theorem 2.3 Fundamental theorem of asset pricing8

There are no-arbitrage opportunities if an only if there exists a risk-neutral probability measure.

Thus the price of an attainable contingent claim X is given by (2.15) with S0(t) = B(t) for every

replicating portfolio strategy.

De�nition 2.13: Complete market.

A securities market is said to be complete if every contingent claim is attainable; otherwise, the

market is said to be incomplete.

Theorem 2.4. Fundamental theorem of asset pricing (stronger version)

A securities market is complete if and only if there exists a unique risk-neutral probability mea-

sure.

Now having outline the arbitrage-free pricing of contingent claims, it remains to calculate the

expectation given in equation (2.16). To achieve this we use an important result constructed by

(Kijima, [14]). This result can then be used to evaluate the expectation in the Black-Scholes

setting, which is used for pricing European contingent claims such as call options. Before we

state and prove this result, the lemma stated below will be useful in the proof of the proposition

that follows.

Lemma: Suppose the random variable X ∼ N(−1
2ψ

2, ψ2), and its density function is given by

fX(x). Let Y be a random variable de�ned by the following density

fY (x) = exfX(x), x ∈ R.

Then fY (x) de�nes the normal distribution function with mean 1
2ψ

2 and variance ψ2.

Proof

Note that

∫ ∞
−∞

fY (x)dy =

∫ ∞
−∞

exfX(x)dx = E[eX ] = MX(1) = e−
1
2
ψ2+ 1

2
ψ2

= 1,

which implies that fY (x) is a density.

Now, we show that the density fY (x) is normally distributed with mean 1
2ψ

2 and variance ψ2.

Using moment generating functions (mgf), it follows that

MY (t) =

∫ ∞
−∞

etyeyfX(y)dy =

∫ ∞
−∞

ey(t+1)fX(y)dy = MX(t+ 1).

8See [18],[23],[25],[14],[28].
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Therefore

MY (t) = MX(t+ 1)

= e−
1
2
ψ2(t+1)+ 1

2
ψ2(t+1)2

= e−
1
2
ψ2t− 1

2
ψ2+ 1

2
ψ2t2+ψ2t+ 1

2
ψ2

MY (t) = e
1
2
ψ2t+ 1

2
ψ2t2 ,

and thus indeed fY (x) ∼ N(1
2ψ

2, ψ2). P

Now we are in a position to state and prove the following result, which is the key to the evalu-

ation of the expectation in equation (2.16) and it is given in the following proposition.

Proposition 2.6 Let σ(t) be a deterministic function of time t such that
∫ T

0 σ2(t)dt < ∞.
Suppose that the price process {S(t)} follows the SDE

dS(t) = σ(t)S(t)dz, t ≥ 0,

where {z(t)} is a standard Brownian motion. Then

S(t) = S exp

{
−1

2
ψ2 +

∫ t

0
σ(u)dz(u)

}
,

where ψ2 =
∫ t

0 σ
2(u)du, and

E
[
{S(t)−K}+

]
= SΦ(d)−KΦ(d− ψ),

where S(0) = S , d =
log
(

S
K

)
+ 1

2
ψ2

ψ , ψ > 0 and Φ(z) is the distribution function of the standard

normal distribution.

Proof

The SDE dS(t) = σ(t)Sdz, is similar to that of the security price process given in equation

(2.9), but without the drift term. Applying Ito's formula (Theorem 2.1) , we construct the

log-price of S(t) as follows

dlog[S(t)] = [ft(x, t) + fx(x, t)µ(x, t) +
1

2
fxx(x, t)σ2(x, t)]dt+ [fx(x, t)σ(x, t)]dz.
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Substituting ft(x, t) = 0, fx(x, t) = 1
x = 1

S(t) , fxx(x, t) = − 1
x2

= − 1
S2(t)

, µ(x, t) =

0 and σ(x, t) = σ(t)S(t), when f(x) = log(x) with x = S(t) it follows that

dlog[S(t)] = [0 + (
1

S(t)
)(0) +

1

2
(− 1

S2(t)
)σ2(t)S2(t)]dt+ [(

1

S(t)
)σ(t)S(t)]dz

dlog[S(t)] = −1

2
σ2(t)dt+ σ(t)dz.

Integrating both sides, it follows that

log[S(t)]− log[S] = −1

2

∫ t

0
σ2(u)du+

∫ t

0
σ(u)dz(u)

log

[
S(t)

S

]
= −1

2

∫ t

0
σ2(u)du+

∫ t

0
σ(u)dz(u),

which implies that

S(t) = S exp

{
−1

2
ψ2 +

∫ t

0
σ(u)dz(u)

}
, where ψ2 =

∫ t

0
σ2(u)du,

with S(0) = S as required. Now let the process Y (t) be de�ned by Y (t) = −1
2ψ

2 +
∫ t

0 σ(u)dz(u) .

It follows that S(t) = SeY (t), which implies that the price process Y (t) = log
(
S(t)
S

)
, is normally

distributed.

Thus the mean of Y (t) = Y (for simplicity) is given by

E(Y ) = E

[
−1

2
ψ2 +

∫ t

0
σ(u)dz(u)

]
= −1

2
ψ2 + E

[∫
σ(u)dz(u)

]
= −1

2
ψ2.

This follows from property (3) and (5) of the Ito integral9.

The variance is given by

9See Section 2.5.2.
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V ar(Y ) = E[Y − E(Y )]2

= E

[
−1

2
ψ2 +

∫ t

0
σ(u)dz(u)− (−1

2
ψ2)

]2

= E[

∫ t

0
σ(u)dz(u)]2

= E[

∫ t

0
σ2(u)du]

=

∫ t

0
σ2(u)du

V ar(Y ) = ψ2.

In the above calculation of the variance we used property (4) (Ito isometry) of the Ito integral.10.

Thus Y ∼ N(−1
2ψ

2, ψ2) and the moment generating function of Y is given by

MY (t) = E[etY ] = exp[−1

2
ψ2t+ ψ2t2],

which implies that

E[eY ] = MY (1) = exp[−1

2
ψ2 + ψ2].

Now the next task is to prove that the expected value of the payo� is given by

E
[
{S(t)−K}+

]
= SΦ(d)−KΦ(d− ψ).

First we consider the probability S(t) ≥ K, that is exercising a European call option, then we

write the expectation as follows

E
[
{S(t)−K}+

]
= E

[
(SeY −K) 1{SeY ≥K}

]
,

where S(t) = SeY and 1{SeY ≥K} =

{
1 SeY ≥ K
0 elsewhere

, then

E
[
{S(t)−K}+

]
= E

[
SeY 1{SeY ≥K}

]
− E

[
K1{SeY ≥K}

]
E
[
{S(t)−K}+

]
= SE

[
eY 1{SeY ≥K}

]
−KE

[
1{SeY ≥K}

]
. (2.17)

Next we want to evaluate the right hand side (RHS) of equation (2.17). We start by evaluating

the second term on the RHS i.e.
10See Section 2.5.2.
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KE
[
1{SeY >K}

]
= KP

[
SeY ≥ K

]
= KP

[
eY ≥ K

S

]
= KP

[
Y ≥ log

(K
S

)]
,

but we know that Y ∼ N(−1
2ψ

2, ψ2) , thus standardizing yields

KE
[
1{SeY >K}

]
= KP

[
Y − (−1

2ψ
2)

ψ
≥
log
(
K
S

)
− (−1

2ψ
2)

ψ

]

= KP

[
Z ≥

log
(
K
S

)
+ 1

2ψ
2

ψ

]

= KΦ

[−log(KS )− 1
2ψ

2

ψ

]

= KΦ

[
log
(
S
K

)
− 1

2ψ
2

ψ

]
.

Therefore

KE
[
1{SeY >K}

]
= KΦ

[
log
(
S
K

)
− 1

2ψ
2

ψ

]
= KΦ(d− ψ), (2.18)

where d =
log
(

S
K

)
+ 1

2
ψ2

ψ , ψ > 0.

Next we solve the �rst term on the RHS of equation (2.17) i.e SE
[
eY 1{SeY ≥K}

]
. Now using

lemma 2.1, if we let Y ∼ N(−1
2ψ

2, ψ2), with density function fY (y), then the random variable

V , de�ned by the density function,

fV (y) = eyfY (y), y ∈ R,

is normally distributed with mean 1
2ψ

2 and variance ψ2 i.e. V ∼ N(1
2ψ

2, ψ2) and fY (y) =

e−yfV (y), therefore
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SE
[
eY 1{SeY ≥K}

]
= S

∫ ∞
−∞

ey1{Sey≥K}fY (y)dy

= S

∫ ∞
−∞

ey1{Sey≥K}e
−yfV (y)dy

= S

∫ ∞
−∞

1{Sey≥K}fV (y)dy

S

∫ ∞
−∞

1{Sev≥K}fV (v)dv

= SE
[
1{SeV ≥K}

]
.

It then follows that,

SE
[
eY 1{SeY ≥K}

]
= SE

[
1{SeV ≥K}

]
= SP

[
SeV ≥ K

]
= SP

[
V ≥ log

(K
S

)]
,

but V ∼ N(1
2ψ

2, ψ2) , thus standardizing yields

SE
[
eY 1{SeY ≥K}

]
= SP

[
V − 1

2ψ
2

ψ
≥
log
(
K
S

)
− 1

2ψ
2)

ψ

]

= SP

[
Z ≥

log
(
K
S

)
− 1

2ψ
2

ψ

]

= SΦ

[−log(KS )+ 1
2ψ

2

ψ

]

= SΦ

[
log
(
S
K

)
+ 1

2ψ
2

ψ

]
.

Therefore

SE
[
eY 1{SeY ≥K}

]
= SΦ

[
log
(
S
K

)
+ 1

2ψ
2

ψ

]
= SΦ(d),

where d =
log
(

S
K

)
+ 1

2
ψ2

ψ , ψ > 0.
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Combining the two expressions yields the desired result that

E
[
{S(t)−K}+

]
= SE

[
eY 1{SeY ≥K}

]
−KE

[
1{SeY ≥K}

]
= SΦ(d)−KΦ(d− ψ),

thus proving Proposition 2.6. P

2.6.2 Forward-Neutral probability measure.

Another type of martingale measure, which takes into account a stochastic interest-rate economy

is called the forward-neutral evaluation method. In particular for this thesis we use the forward-

neutral probability measure for the arbitrage-free pricing of swaptions and caplets. Forward-

neutral probability measure di�ers from the risk-neutral probability measure because of two

main reasons. Firstly, there is a di�erence in the choice of numeraire. For the risk-neutral

measure the choice of numeraire is the money market account B(t), and for the forward-neutral

measure the choice of numeraire is the time t default-free discount bond which matures at time

T , denoted by v(t, T ). It is important to note that we assume that at maturity time T , the value

of the discount bond is unity i.e. v(T, T ) = 1. Secondly the risk-neutral method requires the

joint distribution of the payo� function h(S(T )) and B(T ) in order to evaluate the expectation

(2.16), whereas the forward-neutral method only requires the marginal distribution of h(S(T )).

Now consider the denominated prices of Si(t) with v(t, T ) being the numeraire i.e. STi (t) =
Si(t)
v(t,T ) , t ∈ [0, T ]. Suppose there exists a probability measure P T under which {ST (t)} is a

martingale i.e.

ETt [STi (T )] = STi (t), 0 ≤ t ≤ T, (2.19)

where ETt is the conditional expectation under the new probability measure P T , called the

forward-neutral probability measure, given Ft. Then the correct price V (0) for a contingent

claim X is given by

V (0) = ET [V T (T )] = v(0, T )ET [X], 0 ≤ t ≤ T, (2.20)

where ET = ET0 under some regularity condition.

De�nition 2.13: Forward-Neutral Probability Measure.

Given a probability space (Ω,F , P ) with �ltration {Ft, t ∈ [0, T ]}, a probability measure P T is

said to be forward-neutral if

1. P T is equivalent to P , i.e. P (A) > 0 if and only if P T (A) > 0 ∀ A ∈ F .

2. ETt [STi (T )] = STi (t), 0 ≤ t ≤ T, holds ∀ i and t with S0(t) = v(t, T ) , the default-free

discount bond.
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Now consider a European contingent claim with time t price denoted by C(t). Then according to

the forward-neutral method the denominated price process {CT (t)} = {C(t)}
{v(t,T )} , is a martingale

under the forward-neutral probability measure. Hence the time t price of the contingent claim

is given by

C(t) = v(t, T )ETt

[
h(S(T ))

]
, (2.21)

that is

CT (t) = ETt

[h(S(T ))

v(T, T )

]
C(t)

v(t, T )
= ETt

[
h(S(T ))

]
, since v(T, T ) = 1.

C(t) = v(t, T )ETt
[
h(S(T ))

]
.

The expected value under the forward neutral measure, that is, ETt

[
h(S(T ))

]
, can be evaluated

using Proposition 2.6. Having discussed the risk-neutral and forward-neutral valuation meth-

ods, the following section discusses the change of measure method, which enables use to change

from one equivalent probability measure to another probability measure, for example from the

empirical probability P to the risk-neutral probability P ∗and from P ∗ to the forward neutral

probability measure P T in the continuous-time framework.

2.7 Change of measure and Girsanov's Theorem

In the discrete-time framework once we have found a martingale measure, contingent claim

pricing is reduced to calculating the expectations under that measure. In contrast, in the

continuous-time framework we can not �nd a martingale measure using linear algebra. The

e�ective evaluation of contingent claims in the continuous-time framework often requires the

transformation of the underlying price process with drift into a martingale, but under a new

probability measure, which we shall denote as P̃ 11. This transformation can be performed ef-

fectively using Girsanov's theorem, and the Radon-Nikodym derivative, which relates the trans-

formation between the two measures ([18]) . In this section we de�ne the the Radon-Nikodym

derivative as done by Shreve ([28]), and state without proof12 the Girsanov's theorem as stated

by Kwok ([18]).

11Note that P̃ is used to de�ne the general case of a new probability measure, which can be viewed as the risk
or forward neutral probability measure.

12Refer to Shreve ([28]) for the one dimensional proof of Girsanov's theorem.
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2.7.1 The Radon-Nikodym derivative

As mentioned earlier no-arbitrage valuation of �nancial derivatives can be done in the risk-

neutral and forward-neutral probability measure. This means that we can change probability

measures from the empirical probability measure P to an equivalent probability measure P̃ .

One then wonders what tools are required to change from one measure to another. Such a

tool is known as the Radon-Nikodym derivative. To illustrate this, consider a standard normal

random variable X de�ned on (Ω,F , P ) . Now consider another random variable Y such that

Y = X + β, where β is a positive constant i.e β > 0, then Y ∼ N(β, 1) under P . Now suppose

we want to change to a new probability measure P̃ on Ω under which Y is a standard normal

variable, without simply subtracting β from Y . This can be achieved by introducing a variable

ω ∈ Ω, such that we assign less probability to those values for which Y (ω) is su�ciently positive

and more to those ω for which Y (ω) is negative. Thus we want to change the distribution of Y

without changing the random variable Y (Shreve, [28]). Similarly in �nancial context, when we

can change from empirical probability P to the risk-neutral probability measure P ∗, by changing

the distribution of the security prices, without changing the security prices themselves. In order

to achieve this, we de�ne a random variable

η(ω) = e−βX(ω)− 1
2
β2
, for all ω ∈ Ω,

which serves as a Radon-Nikodym derivative, for changing from one probability measure to

another equivalent probability measure. This random variable has two important properties

listed below.

(i) η(ω) > 0, for all ω ∈ Ω.

(ii) E[η] = 1.

Here it is important to note that in context to the theory of security price processes discussed in

earlier sections, the standard normal random variable X is replaced with the standard Brownian

motion {z(t)} which is also standard normal. We can then use this random variable to create a

new probability measure P̃ by adjusting the probabilities of the events in Ω. This is summarized

in the theorem below.

Theorem 2.5 (Radon-Nikodym)

Let P and P̃ be equivalent probability measures de�ned on probability space (Ω,F). Then there

exists an almost surely positive random variable η such that E[η] = 1 and

P̃ (A) = E(η1A) =

∫
A
η(ω)dP (ω), for every A ∈ F and ω ∈ Ω, (2.22)

where 1A denotes the indicator function of event A.
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To simplify the expression of the Radon-Nikodym derivative shown above, we can rewrite it in

terms of the ratios of the probability measures and it is given in the de�nition below.

De�nition 2.14: Radon-Nikodym derivative

Let (Ω,F , P ) be a probability space, let P̃ be another probability measure on (Ω,F), that is

equivalent to P , and let η be an almost surely positive random variable that relates P to P̃ via

equation (2.22). Then η is called the Radon-Nikodym derivative of P̃ with respect to P , and

can be written as follows

η =
dP̃

dP
. (2.23)

Now in what follows, we show that choosing the random variable η(ω) = e−βX(ω)− 1
2
β2

leads to

Y = X + β ∼ N(0, 1) under the new probability measure P̃ as stated earlier.

Note that

P̃ (Y ≤ a) =

∫
{ω;Y (ω)≤a}

η(ω)dP (ω) =

∫
Ω

1{Y (ω)≤a}η(ω)dP (ω)

=

∫
Ω

1{X(ω)+β≤a}η(ω)dP (ω) =

∫
Ω

1{X(ω)≤a−β}η(ω)dP (ω)

=

∫ ∞
−∞

1{x≤a−β}e
−βx− 1

2
β2 1

2π
e−

1
2
x2dx where X ∼ N(0, 1) under P

=

∫ a−β

−∞

1

2π
e−βx−

1
2
β2− 1

2
x2dx =

∫ a−β

−∞

1

2π
e−

1
2

(x+β)2dx =

∫ a

−∞

1

2π
e−

1
2
y2dy.

Therefore Y is indeed a standard normal random variable under the new probability measure P̃

as claimed.

In order to price and hedge in the Black-Scholes framework we require two fundamental results.

The �rst will allow us to change probability measure so that the discounted securities prices are

martingales (Etheridge, [8]). This is the Radon Nikodym derivative which we have discussed in

the section above. The second fundamental result is known as Girsanov's theorem which is a

useful tool to determine an equivalent martingale measure. Girsanov's theorem is stated below

without proof.

28



Theorem 2.6. (Girsanov's Theorem)

Let {zP (t)} be a standard Brownian process under the probability measure P . Let {Ft, t ≥ 0},
be the �ltration generated by {zP (t)}. Consider a Ft-adapted stochastic process {β(t)} which

satis�es the Novikov condition13

E
[
exp{1

2

∫ t

0
β2(s) ds}

]
<∞,

and also consider the measure P̃ such that the Radon-Nikodym derivative is de�ned by

dP̃

dP
= η(t),

where

η(t) = exp
(∫ t

0
−β(s)dz − 1

2

∫ t

0
β2(s)ds

)
. (2.24)

Then under the probability measure P̃ , the Ito process

z
P̃

(t) = zP (t) +

∫ t

0
β(s) ds, (2.25)

is standard Brownian motion.

Having outlined the change of measure technique using the Radon-Nikodym derivation and

Girsanov's theorem, we are now in a position to discuss the application of these techniques for

changing from one numeraire to another.

2.7.2 Change of numeraire

The change of numeraire technique is seen to be a powerful tool for analytical pricing of �nancial

derivatives. For example suppose the contingent claim X is attainable as shown in equation

(2.13). Then comparing the risk-neutral and forward-neutral martingale measures, it then follows

from equations (2.15) with S0(t) = B(t) and (2.20) , that the correct price V (0) for a contingent

claim X is given by

V (0) = E∗

[
X

B(T )

]
= v(0, T )ET [X].

13This condition implies that β(t) cannot increase or decrease �too fast� over time.
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In order to see the link between these two measures, we take X = 1A for all A ∈ F , such that

V (0) = E∗

[
1A
B(T )

]
= v(0, T )ET [1A]

= E∗

[
1A
B(T )

]
= v(0, T )P T (A),

which implies that

P T (A) = E∗

[
1A

v(0, T )B(T )

]
,

but from the de�nition of the Radon-Nikodym derivative we know that P̃ (A) = E(η1A) and

η = dP̃
dP , thus in this example it implies that

P T (A) = E∗

[
η1A

]
, where η =

1

v(0, T )B(T )
=
dP T

dP ∗
,

and noting that v(T, T ) = 1 and B(0) = 1, therefore the Radon-Nikodym that e�ects change of

numeraire from the P ∗ to P T is given by

dP T

dP ∗
=
v(T, T )/v(0, T )

B(T )/B(0)
.

In general the Radon-Nikodym derivative that e�ects change of measure from the numeraire-

measure pair (N(t), PN ) to the other pair (M(t), PM ) is given by

dPN

dPM
|Ft =

N(t)/N(0)

M(t)/M(0)
, t ∈ [0, T ],

where dPN

dPM |Ft , means that the Radon-Nikodym derivative is a process depending on the infor-

mation Ft available on the ratio of numeraire-measure pairs (N(t), PN ) and (M(t), PM ) up to

time t ≤ T .

Now that we have discussed the basic tools for pricing �nancial derivatives, in the proceeding

section we shall outline the Black-Scholes model for pricing European contingent claims in par-

ticular call options.

30



2.8 The Black-Scholes Model.

Black and Scholes ([2]) tackled the problem of pricing and hedging a European call option on a

non-dividend paying stock. The model suggested by Black and Scholes describes the behavior

of prices in a continuous-time framework with one risky asset (a stock with price S1(t) = S(t) at

time t) and one risk-less asset (with price S0(t) at time t) (Lamberton and Lapeyre, [19]). In this

section we want to show that martingale pricing theory gives the fair price of a European call

option as the expectation of the discounted terminal payo� under equivalent martingale mea-

sure. Under the risk-neutral measure, the risk-free security is the money money market account,

B(t) and under the forward-neutral probability measure, it is the default-free discount bond,

v(t, T ). Using Proposition 2.6 we can determine the Black-Scholes formula for a call option.

First we need to determine the SDE of the risky stock price under the risk-neutral probability

measure P ∗, then we can apply Proposition 2.6 to evaluate the expected future payo�. Before

we proceed using the Black-Scholes model, it is required of us to make some basic assumptions

about the securities market so that it is mathematically viable to implement the model. These

assumptions have been summarized below with reference to Black and Scholes ([2]).

Assumptions: The Black-Scholes model

1. The option written on the security {S(t)} is of �European� type, i.e. it can only be

exercised at maturity.

2. Security price processes {S(t)} follow the geometric Brownian motion with drift µ(S, t)

and volatility σ(S, t).

3. The underlying security pays no dividends before the option matures.

4. There are no arbitrage opportunities in the market.

5. The risk-less interest rate r is known and constant over time.

6. Security trading is continuous, there are no transaction costs when buying or selling stock

and no penalties for short selling .

Before we proceed to state the Black-Scholes formula for pricing call options we �rst need to

show that there exists a probability measure equivalent to P under which the discounted stock

price S∗(t) = S(t)
S0(t) are martingales. Note that the risk free security S0(t) = B(t), is the money

market account. The following construction is based on the construction done by Lamberton

et.al ([19]) and Kijima ([14]). Let r(t) be the time t instantaneous spot rate, and assume that

{r(t)} is a non-negative process, adapted to �ltration {Ft}.
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Now if the interest rate is continuous compounding, then the time t money market account

B(t) is de�ned by

B(t) = e
∫ t
0 r(u)du,

which can be expressed in the di�erential form

dB(t) = r(t)B(t)dt.

On the other hand consider the risky security de�ned by equation (2.9) i.e.

dS = µ(S, t)Sdt+ σ(S, t)Sdz.

Then let us de�ne the process {z∗(t)} by

z∗(t) = z(t) +
µ(S, t)− r(t)

σ(S, t)
. (2.26)

Let P ∗ be the probability measure that makes {z∗(t)} a standard Brownian motion. The exis-

tence of such a probability measure is guaranteed by Girsanov's theorem (Theorem 2.6), where

β(t) = µ(S,t)−r(t)
σ(S,t) , is known as the market price of risk. Thus the SDE of the risky stock S(t)

under P ∗ is given by

dS(t) = µ(S, t)Sdt+ σ(S, t)S
[
dz∗ − µ(S, t)− r(t)

σ(S, t)
dt
]

= µ(S, t)Sdt+ σ(S, t)Sdz∗ − S[µ(S, t)− r(t)]dt

dS(t) = Sr(t)dt+ σ(S, t)Sdz∗, (2.27)

where {z∗(t)} a standard Brownian motion under P ∗. This means that the mean return of stock

S(t) under P ∗ is equal to that of the risk free security B(t), hence under P ∗ the two securities

have the same mean rate of return while volatilities are di�erent. Now in the Black-Scholes

settings, where the risk free interest rate r and the volatility σ are positive constants we obtain

from equation (2.27) that

dS(t) = Srdt+ σSdz∗.

It follows from Ito's formula that

dlogS(t) =
(
r − 1

2
σ2
)
dt+ σdz∗,
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which implies that

S(t) = S exp

[(
r − 1

2
σ2

)
t+ σz∗(t)

]
, 0 ≤ t ≤ T, (2.28)

with S(0) = S. Hence the stock price S(t) is log-normally distributed, with mean

(
r − 1

2σ
2

)
t

and variance σ2t, under P ∗. Next we show that in the Black-Scholes setting, the discounted

price process {S∗(t)} is martingale, that is the SDE for the discounted price has zero drift. To

achieve we use the division rule (Proposition 2.5) to determine the SDE for the discounted price

as follows .

Let

dX

X
=
dS(t)

S
= rdt+ σdz∗,

which implies that µX(t) = r and σX(t) = σ. Also we let

dY

Y
=
dB(t)

B(t)
= rdt,

which implies that µY (t) = r and σY (t) = 0. Therefore

dD

D
=

dS∗(t)

S∗
=
[
µX(t)− µY (t)− σY (t)(σX(t)− σY (t))

]
dt+ [σX(t)− σY (t)]dz∗

= [r − r − 0(σ − 0)]dt+ [σ − 0]dz∗

= σdz∗.

Therefore the discounted price process {S∗(t)} is a solution to the SDE

dS∗(t) = σS∗dz∗. (2.29)

Thus the price process {S∗(t)} is martingale under P ∗ since the drift term is equal to zero.

Given this SDE we are in a position to use Proposition 2.6 to derive the Black-Scholes formula

for a European call option.
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Theorem 2.7: Black-Scholes formula for a European call option.

Consider a European call option written on stock S(t) with payo� function {S(T )−K}+, where
K is the strike price and T is the maturity date. Then the time t value of the call option

(premium) ,under the risk neutral probability measure P ∗ is given by

c(S, t) = S(t)Φ(d)−Ke−r(T−t)Φ(d− σ
√
T − t), (2.30)

where

d =
log
(
S(t)
K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

, (2.31)

and σ denotes the implied volatility of the stock S(t) and Φ(z) is the distribution function of the

standard normal distribution i.e. Φ(z) =
∫ z
−∞

1√
2π
e−x2/2dx .

Proof

Given the SDE of the discounted price process {S∗(t)}, i.e. dS∗(t) = σS∗dz∗, it follows from

Proposition 2.6 that

S∗(T ) = S∗ exp

{
−1

2
ψ2 + σz∗(T )

}
, 0 ≤ t ≤ T,

where ψ2 = σ2T and S(0) = S∗. As before if we de�ne a random variable Y = −1
2ψ

2 + σz∗(T ),

it implies that S∗(T ) = S∗eY , such that Y = log

[
S∗(T )
S∗

]
∼ N(−1

2ψ
2, ψ2) .

Now assuming that the call option is replicated through some self-�nancing strategy, then the

time t = 0 price of the call option c(S, 0) with reference to equation(2.16) where h(S(T )) =

{S(T )−K}+ and B(t) = ert (risk-free money market account) is given by

c∗(S, 0) = E∗

[
{S(T )−K}+

B(T )

]
,

which implies that

c(S, 0) = E∗

[
{S∗(T )− e−rTK}+

]
.

Now it follows from Proposition 2.6 that
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c(S, 0) = E∗
[
(S∗eY − e−rTK) 1{S∗eY ≥K}

]

= S∗E
[
eY 1{S∗eY ≥K}

]
− e−rTKE

[
1{S∗eY ≥K}

]

= S∗Φ

[
log
(
S∗

K

)
+ 1

2ψ
2

ψ

]
−e−rTKΦ

[
log
(
S∗
K

)
− 1

2ψ
2

ψ

]
.

And we also know that under the Black-Scholes framework ψ2 = σ2T , therefore

c(S, 0) = S∗Φ

[
log
(
S∗

K

)
+ 1

2σ
2T

σ
√
T

]
−e−rTKΦ

[
log
(
S∗
K

)
− 1

2σ
2T

σ
√
T

]

= S∗Φ

[
log
(
S∗

K

)
+ 1

2σ
2T

σ
√
T

]
−e−rTKΦ

[
log
(
S∗
K

)
− 1

2σ
2T

σ
√
T

]
,

but from equation (2.28) it follows that the time t = 0 price of the call option is given

c(S, 0) = SΦ(d)− e−rTKΦ(d− σ
√
T ),

where

d =

[
log
(
S
K

)
+ (r + 1

2σ
2)T

σ
√
T

]
,

and therefore the time t value of the call option denoted c(S, t) is given by equation (2.30). P

Finally now that we have discussed the general outline of the continuous-time model for the

securities market, we are fully equipped to introduce the main focus of this thesis which is the

�market models� i.e. the LIBOR Market Model (LMM) and Swap Market Model (SMM) used

for arbitrage-free pricing of caplets and swaptions respectively.
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Chapter 3

LIBOR Market Model

In Chapter 3 we discuss the detailed construction of the LIBOR Market Model (LMM). The

idea behind the LMM is to construct an arbitrage-free interest rate model that implies a pricing

formula for caplets that has the same structure as the Black pricing formula for a caplet that

is used by market practitioners (De Jong, Driessen, & Pelsser, [7] ) . The pricing is achieved

by utilizing the forward LIBOR rates which are modelled using geometric Brownian motion ,

that is we assume a log-normal distribution for the forward LIBOR rate. The forward LIBOR

rates cannot be traded on the market, that is one cannot buy n units of the LIBOR rates, thus

the underlying asset for pricing interest-rate derivatives is the time t price of a family of zero-

coupon (default-free discount) bonds, that matures at time T ≤ τ denoted by v(t, T ). Musiela

and Rutkowski ([21]) de�ne a family of bond prices as an arbitrary family of strictly positive

real-valued adapted processes v(t, T ) t ∈ T with v(T, T ) = 1 for every T ∈ [0, τ ].

This paper focuses on the formulation of the LMM cited in De Jong et.al ([7]), following the

construction done by Musiela and Rutkowski ([22]) and Jamshidan ([12]). Musiela et.al ([22])

and Jamshidan ([12]) suggest that, in order to price and hedge caplets and swaptions it is not

necessary that a continuum of bond prices nor a money market account to exist explicitly. On

the other hand Brace, Gatarek and Musiela ([4]) construct the LMM based on a continuum of

bonds so that it �ts the framework of Heath, Jarrow and Morton ([11]) which Jamshidan ([12])

found complicated because of the fact that the LIBOR market model dynamics were speci�ed

in the risk-neutral measure and as such still relied on the continuously compounded spot rates.

Thus for this thesis the construction of the LMM and SMM - which lead to arbitrage-free pricing

of caplets and swaptions respectively - will be implemented under the forward-neutral probabil-

ity measure.
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3.1 Dynamics of the Forward LIBOR Process: LIBOR Market

Model

As introduced in Chapter 1, the LMM is used to model forward rate agreements under which the

reference forward interest rate used is the London Inter-Bank O�ered Rate (LIBOR). LIBOR

rates are commonly used in international �nancial markets and are o�ered by the commercial

banks in London, so that the LIBOR rates should re�ect credit risk . This section gives an out-

line and discusses the dynamics around the forward LIBOR rates which lead to the construction

of the LMM

De�nition 3.1: LIBOR rate

The LIBOR rate L(t, t+ δ) contracted at time t is the solution to the equation

1 + δL(t, t+ δ) =
1

v(t, t+ δ)
, (3.1)

where δ > 0 is the time length covered by the LIBOR interest rate.1

Consider a �xed set of increasing maturities also known as the tenor structure for the LIBOR

rate given by T1 < ... < Ti < Ti+1 < ... < TN . De�ne δi = Ti+1 − Ti, i = 1, 2, ..., N − 1, where

δi is the tenor and 1
δi

is the day count factor. Let vi(t) ≡ v(t, Ti) denote the time t price of a

default-free discount bond maturing at time Ti. Let Li(t) ≡ Li(t, Ti, Ti+1) denote the forward

LIBOR rate contracted at time t (where t ≤ Ti), for the period [Ti, Ti+1], that is Li(t) is reset

at dates Ti, i = 1, ..., N − 1 known as the reset dates and is valid for the period δi = Ti+1 − Ti.
It follows that equation (3.1) can be written as

1 + δiLi(t) =
v(t, Ti)

v(t, Ti+1)
=

vi(t)

vi+1(t)
, i = 1, 2, ..., N − 1, (3.2)

which implies that the Ti forward LIBOR rate at time t is given by

Li(t) =
1

δi

(
vi(t)

vi+1(t)
− 1

)
, i = 1, 2, ..., N − 1, t ≥ 0, (3.3)

with initial term structure Li(0).

The forward LIBOR rate in (3.3) is used in the construction of the log-normal LMM which

in turn is used to determine a pricing formula for caplets and swaptions, which are similar in

structure to that of the Black-Scholes formula . As shown in (3.3) associated with the forward

LIBOR rate is the time t price of bond prices with corresponding tenor date Ti, i = 1, 2, ..., N .

1The time length δ is mostly 3 months or 6 months i.e. δ = 0.25 and δ = 0, 5 respectively.
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Assuming that the bond prices follow Ito processes under the empirical probability measure P ,

the SDE for the bond prices is given by2

dvi(t)

vi(t)
= µi(t)dt+ σi(t)dz(t), (3.4)

where z(t) or z in short is a standard Brownian motion. The function µi(t) is the drift function

and σi(t) is the di�usion coe�cient or the volatility function for the bond prices.

Applying Ito's division rule (Proposition 2.5) to equation (3.3), the forward LIBOR rate satis�es

the following SDE under empirical probability, P ,

dLi(t) = µLi (t)dt+ γi(t)dz, i = 1, 2, ....N − 1, (3.5)

where

γi(t) =
vi(t)

δivi+1(t)
[σi(t)− σi+1(t)], (3.6)

and

µLi (t) =
vi(t)

δivi+1(t)
[µi(t)− µi+1(t)]− γi(t)σi+1(t). (3.7)

The function µLi (t) is the drift function and γi(t) is the volatility function of the forward LIBOR

rate Li(t).

Proof

From equation (3.4) it follows that

dvi+1(t)

vi+1(t)
= µi+1(t)dt+ σi+1(t)dz.

Now looking at Ito's division rule (Proposition 2.5) we let dX
X = dvi(t)

vi(t)
and , dYY = dvi+1(t)

vi+1(t) .

Then it follows that

dD

D
=
d(XY )
X
Y

=
d( vi(t)

vi+1(t))

vi(t)
vi+1(t)

=
d(1 + δiLi(t))

1 + δiLi(t)
=
δidLi(t)
vi(t)
vi+1(t)

= µD(t)dt+ σD(t)dz.

Therefore

δidLi(t)
vi(t)
vi+1(t)

= [µ(t)− µi+1(t)− σi+1(t)(σi(t)− σi+1(t))]dt+ [σi(t)− σi+1(t)]dz,

which implies that

2Refer to section 2.5.3 for the general de�nition of SDE's and Ito processes.
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dLi(t) =
vi(t)

δivi+1(t)

[
µ(t)− µi+1(t)− σi+1(t)(σi(t)− σi+1(t))

]
dt+

vi(t)

δivi+1(t)

[
σi(t)− σi+1(t)

]
dz

=
vi(t)

δivi+1(t)

[
µ(t)− µi+1(t)

]
−
[ vi(t)

δivi+1(t)
(σi(t)− σi+1(t))

]
σi+1(t)dt+

vi(t)

δivi+1(t)

[
σi(t)− σi+1(t)

]
dz

=
vi(t)

δivi+1(t)

[
µ(t)− µi+1(t)

]
− γi(t)σi+1(t)dt+ γi(t)dz.

Therefore

dLi(t) = µLi (t)dt+ γi(t)dz, i = 1, 2, ....N − 1, (3.8)

where γi(t) is de�ned by equation (3.6) and µLi (t) by equation (3.7) as required. P

Now under the no-arbitrage paradigm, we de�ne the forward-neutral probability measure3 as

P Ti+1 , such that the denominated bond price v
Ti+1

i (t) = vi(t)
vi+1(t) is a martingale under P Ti+1 . But

from equation (3.3) it can be noted that the forward LIBOR rate Li(t) is a linear function of the

denominated bond price, then it can be shown that the forward LIBOR rate is also a martingale

under P Ti+1 . The above is summed in the lemma below, with reference to Gumbo([10]).

Lemma 3.1- For every i = 1, 2, .....N − 1, the LIBOR process Li is a martingale under the

corresponding forward measure P Ti+1 on the interval [0, Ti].

Proof

If the forward LIBOR rate is a martingale under P Ti+1 , we need to show that E
Ti+1

t [Li(s)] =

Li(t), t < s ≤ Ti.

From equation(3.3) we have that

Li(t) =
1

δi

(
vi(t)

vi+1(t)
− 1

)
,

E
Ti+1

t [Li(s)] = E
Ti+1

t

[
1

δi

( vi(s)

vi+1(s)
− 1
)]

=
1

δi
E
Ti+1

t

[
vi(s)

vi+1(s)

]
− 1,

but v
Ti+1

i (t) = vi(t)
vi+1(t) is a martingale under P Ti+1 , therefore

3Refer to subsection 2.6.2, de�nition 2.13.
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E
Ti+1

t [Li(s)] =
1

δi

( vi(t)

vi+1(t)
− 1
)

= Li(t). P

Since the forward LIBOR Li(t) is a martingale under P Ti+1 , it may be plausible to assume that

the process {Li(t)} follows the SDE4

dLi(t)

Li(t)
= γi(t) dz

i+1, i = 1, 2, ....N − 1, (3.9)

where zi+1 ≡ {zi+1(t)} is a standard Brownian motion under P Ti+1 for some volatility γi(t) .

An important assumption we make for the log-normal LMM is that each of the forward rates

Li(t) are log-normally distributed. Under this assumption the pricing formula for caplets under

the LMM will have a structure similar to that of the Black-Scholes model. As a consequence

of the above assumption we use Ito's formula (Theorem 2.1) to determine the log-price for the

forward LIBOR rate. This is shown below.

Firstly we express equation (3.9) as dLi(t) = Li(t)γi(t) dz
i+1. Now with reference to Ito's

formula we obtain the log-price using the transformation Y (t) = log(Li(t)) which implies that

f(x, t) = log(x), if and only if , x = Li(t) therefore

ft(x, t) = 0, fx(x, t) = 1
x = 1

Li(t)
, fxx(x, t) = − 1

x2
= − 1

L2
i (t)

, µ(x, t) = 0 and σ(x, t) =

Li(t)γi(t).

Thus the SDE for the log-price is then given by

dlog(Li(t)) = [ft(x, t) + fx(x, t)µ(x, t) +
1

2
fxx(x, t)σ2(x, t)]dt+ [fx(x, t)σ(x, t)]dzi+1

= [0 + (
1

Li(t)
)0 +

1

2
(− 1

L2
i (t)

)L2
i (t)γ

2
i (t)]dt+ [(

1

Li(t)
)Li(t)γi(t)]dz

i+1

dlog(Li(t)) = −1

2
γ2
i (t)dt+ γi(t)dz

i+1.

Integrating yields

4Refer to Proposition 2.3 and Proposition 2.4 in Section 2.5.3.
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log(Li(Ti))− log(Li(t)) =

∫ Ti

t
−1

2
γ2
i (s)ds+

∫ Ti

t
γi(s)dz

i+1

log

[
Li(Ti)

Li(t)

]
=

∫ Ti

t
γi(s)dz

i+1 −
∫ Ti

t

1

2
γ2
i (s)ds, (3.10)

where the right hand side of equation (3.10) is a normal random variable with mean mi(t) =

−
∫ Ti
t

1
2γ

2
i (s)ds and variance ν2

i (t) =
∫ Ti
t γ2

i (s)ds5 . From the above results we can conclude that

the LIBOR rate Li(Ti) is log-normally distributed with mean mi(t) and variance ν2
i (t) under

the forward-neutral probability measure P Ti+1 . The mean and the variance stated above can

be determined as follows.

Given that the forward LIBOR rates are Ft-measurable, then the mean under P Ti+1 is given by

E
Ti+1

t

[
log
(Li(Ti)
Li(t)

)]
= E

Ti+1

t

[∫ Ti

t
γi(s)dz

i+1 −
∫ Ti

t

1

2
γ2
i (s)ds

]

= E
Ti+1

t

[∫ Ti

t
γi(s)dz

i+1

]
− ETi+1

t

[∫ Ti

t

1

2
γ2
i (s)ds

]

= 0−
∫ Ti

t

1

2
γ2
i (s)ds

= −
∫ Ti

t

1

2
γ2
i (s)ds,

where we used the property (3) of the Ito integral6 and the assumption that the volatility func-

tion γi(t) is a deterministic function of time.

Thus the mean is given by

mi(t) = −
∫ Ti

t

1

2
γ2
i (s)ds.

For the variance we proceed as follows. Using the de�nition of variance, we have that

V ar

[
log(

Li(Ti)

Li(t)
)

]
= ETi+1

[(∫ Ti

t
γi(s)dz

i+1−
∫ Ti

t

1

2
γ2
i (s)ds

)
−ETi+1

(∫ Ti

t
γi(s)dz

i+1−
∫ Ti

t

1

2
γ2
i (s)ds

)]2

.

5Note that mi(t) ≡ m(t, Ti) and νi(t) ≡ ν(t, Ti).
6Refer to the properties of the Ito integral outlined in section 2.5.2.
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But the mean is given by mi(t) = −
∫ Ti
t

1
2γ

2
i (s)ds, thus

V ar

[
log

(
Li(Ti)

Li(t)

)]
= ETi+1

[(∫ Ti

t
γi(s)dz

i+1 −
∫ Ti

t

1

2
γ2
i (s)ds

)
−
(
−
∫ Ti

t

1

2
γ2
i (s)ds

)]2

= ETi+1

[∫ Ti

t
γi(s)dz

i+1 − 1

2

∫ Ti

t
γ2
i (s)ds+

1

2

∫ Ti

t
γ2
i (s)ds)

]2

= ETi+1

[∫ Ti

t
γi(s)dz

i+1
]2

=

∫ Ti

t
ETi+1

[
γ2
i (s)

]
ds, by Ito isometry (see section 2.5.2).

Thus

V ar

[
log

(
Li(Ti)

Li(t)

)]
=

∫ Ti

t
γ2
i (s)ds, since the γi(t)'s are deterministic.

Therefore the variance of the log ratio of the forward LIBOR rates, V ar

[
log

(
Li(Ti)
Li(t)

)]
, denoted

by ν2
i (t) for simplicity is given by

ν2
i (t) =

∫ Ti

t
γ2
i (s)ds.

As a result equation (3.10) can be written as

Li(Ti) = Li(t)e
∫ Ti
t γi(s)dz

i+1−
∫ Ti
t

1
2
γ2i (s)ds, (3.11)

which is an explicit solution to equation (3.9). Also from the above equation we can conclude

that Li(t) is simply a geometric Brownian motion with drift function mi(t) = −
∫ Ti
t

1
2γ

2
i (s)ds

and volatility function νi(t) =
√∫ Ti

t γ2
i (s)ds.

In conclusion, the dynamics of the forward LIBOR Li(t) outlined above imply the existence of

the LMM, following some technical assumptions. This is summarized in the proposition below.
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Proposition 3.1 Suppose the process {Li(t)} is a solution to the SDE of forward LIBOR rates

Li(t), i = 1, ..., N − 1, de�ned by

dLi(t) = µLi (t)dt+ γi(t)dz, i = 1, .., N − 1,

where µLi (t) is the drift function , γi(t) is the volatility function and z = {z(t)} is a standard

Brownian motion under empirical probability P . Then the log-normal LIBOR Market Model

exists if and only if,

1. The forward LIBOR rate Li(t) is given by equation (3.3) and the initial term structure

Li(0) is known.

2. Li(t) is a martingale under forward probability measure P Ti+1 with SDE equivalent to

equation (3.9), for some volatility γi(t), where z
i+1 = {zi+1(t)} is a standard Brownian

motion under P Ti+1.

3. The volatility function γi(t), t ≤ Ti is a deterministic function of time t ≤ Ti, for each

settlement date i.e. the forward LIBOR rates Li(t), i = 1, .., N − 1, are log-normally dis-

tributed with mean, mi(t) = −
∫ Ti
t

1
2γ

2
i (s)ds and variance, ν2

i (t) =
∫ Ti
t γ2

i (s)ds.

Having stated the existence of the LMM in the above proposition, we are now in a position to

use it to price caplets in the market. Finally we summarise a list of inputs required for the LMM

and they are shown below following Pietersz ([24]).

Inputs:

• A set of default-free discount bond prices vi(t) with corresponding maturity dates Ti, i =

1, 2, ..., N .

• Time zero (t = 0) forward LIBOR rates L1(0), L2, ..., LN−1(0).

• Instantaneous volatilities of the forward LIBOR rates γi(.), i = 1, ....., N − 1.
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3.2 Terminal Measure dynamics for the forward LIBOR rates.

In the previous section we showed that the forward LIBOR process Li i = 1, .., N − 1 is a mar-

tingale under the corresponding forward measure P Ti+1 with respect to each forward time Ti+1.

We also stated without proof the existence of the LMM. This section shows how to price complex

derivatives that use more than just one forward LIBOR rate and generate payo�s at more than

one time interval , for example caplets with relevance to this thesis. This entails that we �nd

the dynamics of all our forward rates under a single measure, known as the terminal measure,

denoted by P TN . The idea behind the LMM is to model the forward LIBOR processes under

the terminal measure, where the choice of numeraire is the bond with the longest maturity, i.e.

v(t, TN ) ≡ vN (t) and zN (t) ≡ zN is the terminal measure standard Brownian motion. Under

the terminal measure, the terminal LIBOR LN−1(t) is a martingale (Kwok[18]). The construc-

tion of the SDE for forward LIBOR rates under terminal measure is outlined below.7 Such a

construction leads to restrictions on the drift term of the forward LIBOR rates. We show how

to apply Girsanov's theorem to �nd the successive standard Brownian motion under respective

measures P TN−1 , P TN−2 , ..., P T1 .

Now using equation (3.2), the Radon-Nikodym derivative8 that e�ects the change of measure

from P Ti to P Ti+1 , for the forward LIBOR rate is given by

dP Ti

dP Ti+1
=

vi(t)/vi(0)

vi+1(t)/vi+1(0)
=

vi(t)

vi+1(t)

vi+1(0)

vi(0)
,

which implies that

ηi(t) =
dP Ti

dP Ti+1
= c

(
vi(t)

vi+1(t)

)
= c(1 + δiLi(t)), (3.12)

where c = vi+1(0)
vi(0) is a normalizing constant.

Now using Girsanov's theorem9 it follows that

dzi = dzi+1 + βi(t)dt, (3.13)

where βi(t) satis�es

ηi(t) = exp
(∫ t

0
−βi(s)dzi+1 − 1

2

∫ t

0
β2(s)dt

)
. (3.14)

From equation (3.12) and (3.14) it follows that

7The construction below is based on the work done by Kwok ([18]) and Blackham ([3]).
8See de�nition 2.14 in subsection 2.7.1.
9See Theorem 2.6, section 2.7.
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ηi(t) = c(1 + δiLi(t)) = exp
(∫ t

0
−βi(s)dzi+1 − 1

2

∫ t

0
β2(s)dt

)
,

and in di�erential form

dηi(t) = cδidLi(t) = −ηi(t)βi(t)dzi+1.

Substituting equation (3.9) and (3.12) into the above equation implies that

cδiLi(t)γi(t)dz
i+1 = −c(1 + δiLi(t))βi(t)dz

i+1,

and therefore

βi(t) = −δiLi(t)γi(t)
1 + δiLi(t)

. (3.15)

Hence we can conclude from equation (3.13) and equation (3.15) that

dzi = dzi+1 − δiLi(t)γi(t)

1 + δiLi(t)
dt. (3.16)

Recall that the forward LIBOR rate LN−1(t) is a martingale under terminal measure P TN .

The example below shows that LN−2(t) is a martingale under P TN−1 but not a martingale

under P TN .

Using equation (3.16) it follows that

dLN−2(t) = LN−2(t)γN−2(t)dzN−1, which is a martingale.

= LN−2(t)γN−2(t)

[
dzN − δN−1LN−1(t)γN−1(t)

1 + δN−1LN−1(t)
dt

]

dLN−2(t) = LN−2(t)

[
−δN−1LN−1(t)γN−1(t)γN−2(t)

1 + δN−1LN−1(t)
dt

]
+ LN−2(t)γN−2(t)dzN .
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From the results shown above, Jamshidan ([12]) suggests that we can deductively obtain the for-

ward rates LN−2, ...., L1 and if the solution {Li(t)} exists then the ith-component of the forward

LIBOR rate follows the SDE

dLi(t) = Li(t)µ
term
i (t)dt+ Li(t)γi(t)dz

N , i = 1, .., N − 1, (3.17)

where

µtermi (t) =

{
−
∑N−1

j=i+1

δjLj(t)γ
′
j(t)γi(t)

1+δjLj(t) for i < N − 1

0 for i = N − 1
,

and zN ≡ zN (t) is a standard Brownian motion under the terminal measure P TN . Hence given

the P TN -processes of these N − 1 forward LIBOR rates, all numeraire denominated bond prices

can be determined (De Jong et.al, [7]).

Now that we have outlined the dynamics for the LMM for simple and complex interest rate

derivatives, we are now in a position to implement the LMM to pricing of caplets which will be

discussed in the following section.

3.3 Pricing of Caplets.

In this section we discuss the pricing of caplets using the LMM. We show that arbitrage-free

LMM pricing formula for caplets has a similar structure to that of the Black-Scholes pricing

formula for caplets. Assuming that the LMM exists (as developed in the earlier section), we �rst

derive the Black-Scholes formula for pricing caplets and then construct the LMM price of the

same caplet. Before proceeding we state the mathematical de�nition of a caplet with reference

to notation used by Kijima ([14]).

De�nition 3.2: Caplet

Let Li(t) ≡ L(t, Ti, Ti+1) denote the LIBOR rate, that covers the period [Ti, Ti+1], where Ti is

the time epoch that the ith payment is made. Then an interest derivative whose payo� at time

Ti+1 is given by

δi{Li(Ti)−K}+, δi = Ti+1 − Ti, (3.18)

where

{x}+ = max{x, 0} =

{
x, x ≥ 0

0, x < 0
(3.19)

is called a caplet, where K is called the cap rate.
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The forward LIBOR rate Li(t) is the reference �oating rate and the cap rate (K) is the �xed

rate for this forward rate agreement. From the de�nition above a caplet can be viewed as a call

option written on the forward LIBOR rate with cap rate K. A strip or a collection of caplets is

called a cap i.e. a cap is a sum of caplets.

Let Cpli(Ti+1) denote the payo� of the ith caplet received at time Ti+1 , then Cpli(Ti+1) =

δi{Li(Ti) − K}+. The caplet payo� is known at time Ti but received at time Ti+1. Thus for

forward LIBOR rates Li(.), i = 1, 2, ..., N − 1 we have the following vector of corresponding

caplet payo�s for i = 1, 2, ..., N − 1 shown below.

Cpl1(T2) = δ1{L1(T1)−K}+
Cpl2(T3) = δ2{L2(T2)−K}+

. . .

. . .

. . .

CplN−1(TN ) = δN−1{LN−1(TN−1)−K}+,

where CplN−1(TN ) denotes the payo� at maturity TN for a caplet contracted at time TN−1.

Now as discussed in section 2.6.2, we can determine the arbitrage-free price of a caplet un-

der the forward-neutral probability measure. Let Cpli(t) denote the time t price price of the ith

caplet. Then with reference to equation (2.21) we can determine the price of the caplet. Let

h(S(T )) = h(Cpli(Ti+1)) =
[
δi{Li(Ti)−K}+

]
denote the payo� function of the caplet at time

Ti+1, v(t, Ti+1) = vi+1(t) denote the time t price of a default-free discount bond maturing at

time Ti+1 and E
Ti+1

t denote the conditional expectation under the forward-neutral probability

measure P Ti+1 , given �ltration Ft. Then the time t price of the ith caplet is given by

Cpli(t) = v(t, Ti+1)E
Ti+1

t

[
h(Cpli(Ti+1))

]
.

Therefore

Cpli(t) = δivi+1(t)E
Ti+1

t

[
{Li(Ti)−K}+

]
, 0 ≤ t ≤ Ti. (3.20)

From equation (3.20) we can subsequently derive the Black-Scholes formula for a caplet. In the

next subsection we state the Black-Scholes pricing formula for caplets.
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3.3.1 Pricing caplets using Black- Scholes formula.

Using the general Black-Scholes formula discussed in Chapter 2, section 2.8 , we can construct

the Black-Scholes formula for caplets. The next proposition states the Black-Scholes formula for

pricing a single (ith) caplet.

Proposition 3.2 Black Scholes formula for caplets.

Let CplBLACKi (t) denote the time t price of a caplet. Then the Black-Scholes price of a caplet

written on the forward LIBOR rate Li(t) with maturity time Ti and cap rate K is given by

CplBLACKi (t) = δivi+1(t)
[
Li(t)Φ(di)−KΦ

(
di − σBLACK

√
Ti − t

)]
, (3.21)

where

di =
log
(
Li(t)
K

)
+ 1

2σ
2
BLACK(Ti − t)

σBLACK
√
Ti − t

,

σBLACK denotes the volatility of the forward LIBOR rate Li(t) and Φ(di) is the distribution

function of the standard normal distribution.

Remark: The above stated formula can be easily veri�ed using the Black-Scholes formula for call

options given in Theorem 2.7 in section 2.8. This is achieved by letting c(S, t) = CplBLACKi (t)

, S(t) = δiLi(t) , σ
√
T − t = σBLACK

√
Ti − t and B(t) = vi+1(t) .

3.3.2 Pricing caplets using the LIBOR Market Model (LMM).

Having outlined the Black-Scholes pricing formula for caplets in the previous section, this sec-

tion illustrates how to price caplets under the LIBOR Market Model (LMM). We show that the

resulting pricing formula coincides with that of the Black-Scholes model, in structure. Recall

that the payo� of the ith caplet received at time Ti+1 is given by Cpli(Ti+1) = δi{Li(Ti)−K}+.
Under the no-arbitrage paradigm the time t price of the ith caplet, under terminal measure P TN

is given by Cpli(t) = δivi+1(t)E
Ti+1

t

[
{Li(Ti) − K}+

]
. From this payo� function we are able

to construct the LMM price of the caplet using the properties of the LMM. The fair price of a

caplet derived using the LMM is given in the proposition below.
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Proposition 3.3 Consider the payo� function of the ith caplet accrued for the interval [Ti, Ti+1]

given by δi{Li(Ti)−K}+. Then using the LIBOR Market Model (LMM), the time t price of the

caplet denoted by CplLMM
i (t), written on the forward LIBOR rate Li(t) with maturity time Ti

and cap rate K is given by

CplLMM
i (t) = δivi+1(t)

[
Li(t)Φ(di)−KΦ(di − νi(t))

]
, (3.22)

where

di =
log
(
Li(t)
K

)
+ 1

2ν
2
i (t)

νi(t)
,

and νi(t) =
√∫ Ti

t γ2
i (s)ds denotes the volatility function of the forward LIBOR rate Li(t).

Proof

The time t price of the ithcaplet under terminal measure is given by

δivi+1(t)E
Ti+1

t

[
{Li(Ti)−K}+

]
.

Similarly the LMM price the same caplet can be written as

CplLMM
i (t) = δivi+1(t)E

Ti+1

t

[
{Li(Ti)−K}+

]
.

Now under the LMM, the forward LIBOR rate Li(Ti) can be explicitly solved as Li(Ti) =

Li(t)e
∫ Ti
t γi(s)dz

i+1−
∫ Ti
t

1
2
γ2i (s)ds as shown in equation (3.11) which implies that Li(Ti) is log-

normally distributed with mean mi(t) = −
∫ Ti
t

1
2γ

2
i (s)ds and variance ν2

i (t) =
∫ Ti
t γ2

i (s)ds. In

particular if we let νi ≡ νi(t) =
√∫ Ti

t γ2
i (s)ds for simplicity, then log

[
Li(Ti)
Li(t)

]
∼ N(−1

2ν
2
i , ν

2
i ).

Also under the LMM we assume that the volatility function γi(t) is deterministic function of

time, therefore we can conclude that
∫ Ti
t γi(s)dz

i+1 is normally distributed with mean 0 and

variance ν2
i (t), i.e.

∫ Ti

t
γi(s)dz

i+1 ∼ N
(

0 ,

∫ Ti

t
γ2
i (s)ds

)
,

which implies that

νiN(0, 1) ∼ N
(

0 ,

∫ Ti

t
γ2
i (s)ds

)
.
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Substituting the above results it follows that

CplLMM
i (t) = δivi+1(t)E

Ti+1

t

[
{Li(t)e

∫ Ti
t γi(s)dz

i+1−
∫ Ti
t

1
2
γ2i (s)ds −K}+

]

= δivi+1(t)E
Ti+1

t

[
{Li(t)e−

∫ Ti
t

1
2
γ2i (s)ds+νiY −K}+

]
,

where Y ∼ N(0, 1).

Therefore

CplLMM
i (t) = δivi+1(t)E

Ti+1

t

[
{Li(t)e−

1
2
ν2i +νiY −K}+

]

= δivi+1(t)
[∫ ∞
−∞
{Li(t)e−

1
2
ν2i +νiy −K}+

1√
2π
e−

y2

2 dy
]
.

At maturity of the ith caplet, a payo� of Li(Ti)−K is received if and only if Li(Ti) ≥ K which

implies that

Li(Ti) ≥ K

Li(t)e
− 1

2
ν2i +νiy ≥ K

e−
1
2
ν2i +νiy ≥ K

Li(t)

eνiy ≥ K

Li(t)
e

1
2
ν2i

νiy ≥ log

(
K

Li(t)

)
+

1

2
ν2
i

y ≥
log
(

K
Li(t)

)
+ 1

2ν
2
i

νi
,

and if we let ω1 =
log

(
K

Li(t)

)
+ 1

2
ν2i

νi
, then

50



CplLMM
i (t) = δivi+1(t)

[∫ ∞
ω1

(
Li(t)e

− 1
2
ν2i +νiy −K

) 1√
2π
e−

y2

2 dy

]

= δivi+1(t)

[
Li(t)

∫ ∞
ω1

1√
2π
e−

1
2
ν2i +νiy− y2

2 dy −K
∫ ∞
ω1

1√
2π
e−

y2

2 dy

]

= δivi+1(t)

[
Li(t)

∫ ∞
ω1

1√
2π
e−

1
2

(y2−2νiy+ν2i )dy −K(1− Φ(ω1))

]

= δivi+1(t)

[
Li(t)

∫ ∞
ω1

1√
2π
e−

1
2

(y−νi)2dy −K(1− Φ(ω1))

]
, by completing the square.

Let x = y − νi and ω2 = ω1 − νi, then it follows that

CplLMM
i (t) = δivi+1(t)

[
Li(t)

∫ ∞
ω2

1√
2π
e−

1
2
x2dx−K(1− Φ(ω1))

]

= δivi+1(t)
[
Li(t)(1− Φ(ω2))−K(1− Φ(ω1))

]

= δivi+1(t)
[
Li(t)(−ω2)−KΦ(−ω1)

]
, (3.23)

and

Φ(−ω2) = Φ

( log(Li(t)
K

)
+ 1

2ν
2
i

νi

)

Φ(−ω1) = Φ

(
log
(
Li(t)
K

)
+ 1

2ν
2
i

νi
− νi

)
.

Substituting back into equation (3.23) , it follows that the fair price of a caplet within the LMM

is given by

CplLMM
i (t) = δivi+1(t)

[
Li(t)Φ(di)−KΦ(di − νi)

]
,

where

di =
log
(
Li(t)
K

)
+ 1

2ν
2
i

νi
,

and νi ≡ νi(t) =
√∫ Ti

t γ2
i (s)ds . P
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Remarks: From the above we can easily observe that the LMM price of a caplet has a

similar structure to that of the Black-Scholes formula when σBLACK
√
Ti − t = νi(t), that is

σBLACK = 1√
Ti−t

√∫ Ti
t γ2

i (s)ds.

In conclusion one can e�ectively use the LMM to price caplets and this would lead to caplet

prices which are more or less the same as those computed using the Black-Scholes model. In

the next chapter we develop the Swap Market Model (SMM) which can be used to calculate

arbitrage-free prices of swaptions. We shall proceed in a similar fashion to what was done in this

chapter. We will show that the SMM pricing formula for swaptions will have the same structure

as that of the Black-Scholes pricing formula for swaptions.
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Chapter 4

Swap Market Model

In Chapter 4 we discuss the construction of the Swap Market Model (SMM) proposed by Jamshi-

dan ([12]). The SMM can be used to price interest rate derivatives such as swaps and swaptions.

De Jong et.al ([7]) suggests that the SMM can be constructed in a way that is quite similar

to the construction of the LMM. The idea behind the SMM is to construct an arbitrage-free

interest rate model that implies a pricing formula for swaptions that has the same structure as

the Black-Scholes pricing formula for swaptions. The underlying asset used in the construction

of the SMM is the forward swap rate. We show that the dynamics of the forward swap rate are

a martingale under some forward swap probability measure. We discuss the dynamics of the

forward swap rate under the co-terminal swap measure, but the algebra is more complicated

than the terminal measure dynamics of the forward LIBOR rate discussed in Chapter 3. As a

result we refer to Jamshidan ([12]) for a detailed discussion. Before we develop the SMM we

shade light on interest rate swaps which will lead to the de�nition of the forward swap rate. We

shall also de�ne a swaption via the de�nition of an interest rate swap and the forward swap rate.

An interest rate swap (or just a swap) is a �nancial contract between two parties who agree to

exchange cash �ows equivalent to a reference interest rate, based on some notional principal1 at

a future date T . An example of an interest rate swap is the �plain vanilla� swap in which one

party pays a �xed rate (�oating rate receiver) and the other party pays a �oating rate (�xed

rate receiver). The party that pays the �xed rate is called the payer and the other party paying

the �oating rate is called the receiver of the swap (Leung Lai and Xing, [20]). The interest rate

that makes the initial value of the contract equal to zero is called the swap rate. The �oating

rate is usually the LIBOR rate.

1Here we shall assume that the notional principal is unity i.e. 1.
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4.1 Dynamics of the forward swap process: Swap Market Model.

Consider the tenor structure 0 = T0 < T1 < ... < Ti < Ti+1 < ... < TN , with tenor

δi = Ti+1 − Ti, i = 1, 2, ..., N − 1, where {T0, T1, ..., TN−1} are the reset dates at which rel-

evant forward LIBOR rates, {L0, L1, ..., LN−1} are determined and their payment dates are

{T1, T2, ..., TN}. Let Li(t) de�ne the time t ≤ Ti value of the forward LIBOR rate contracted

for period [Ti, Ti+1], given in equation (3.3) . Now consider the preassigned payment dates of

an interest rate swap T1, T2, ..., TN , where the �oating rate interest payments are exchanged

for a �xed rate interest payments and TN is the maturity date of the swap. At time Ti, the

�xed rate receiver, receives a �xed interest payment δiK, where K is the �xed interest rate2.

At time Ti+1, the �oating rate receiver receives the �oating interest payment δiLi(Ti), where

Li(Ti) ≡ L(Ti, Ti+1) denotes the forward LIBOR rate contracted at time Ti for the period

[Ti, Ti+1]. As mentioned in Chapter 3, one cannot trade n units of the forward LIBOR rate

in the market, hence default-free discount bonds can be used as underlying assets for the

forward LIBOR rate. The time t price of the discount bond maturing at time Ti is given

by v(t, Ti) ≡ vi(t), i = 1, ..., N. At maturity, the bond pays an amount equal to unity i.e.

v(Ti, Ti) = vi(Ti) = 1. We assume that the N default-free discount bonds follow the Ito pro-

cesses under empirical probability P . Now to ensure that there is no arbitrage opportunities in

the market, the �xed rate K has to be chosen at time Ti such that the present (time t) value

of the swap is equal to zero. Such a choice of K is known as the swap rate. We determine the

present value of the �xed and �oating side under the forward-neutral probability measure P Ti+1 .

Consider the interest paid on the �xed side given by δiK. Now assuming there are no arbitrage

opportunities in the market, the present value (time t ≤ Ti) for the �xed side denoted by

V FIX(t, Ti) ≡ V FIX
i (t), is given by3

V FIX
i (t) = vi+1(t)E

Ti+1

t [
δiK

vi+1(Ti+1)
]

= vi+1(t)E
Ti+1

t [δiK], since vi+1(Ti+1) = 1.

Therefore the present value for the �xed side is given by

V FIX
i (t) = Kδivi+1(t). (4.1)

2The variable K is not the same as the variable K (strike price) discussed in the earlier chapters.
3This is in the same light of pricing contingent claims under the forward neutral probability measure discussed

in Chapter 2, subsection 2.6.2, where the payo� h(S(T )) = δiK.
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Similarly the present value (time t ≤ Ti+1) for the �oating side under P Ti+1 , denoted by

V FLOAT (t, Ti+1) ≡ V FL
i+1 (t) is given by

V FL
i+1 (t) = vi+1(t)E

Ti+1

t

[ δiLi(Ti)

vi+1(Ti+1)

]

= δivi+1(t)E
Ti+1

t

[
Li(Ti)

]
, since vi+1(Ti+1) = 1.

Therefore the present value for the �oating side is given by

V FL
i+1 (t) = δivi+1(t)Li(t),

since {Li(t)} is a martingale under P Ti+1 .

It then follows from equation (3.3), that

V FL
i+1 (t) = δivi+1(t)

[
1

δi

(
vi(t)

vi+1(t)
− 1

)]

= δivi+1(t)

(
vi(t)− vi+1(t)

δivi+1(t)

)
.

Therefore the time t value of the �oating side is given by

V FL
i+1 (t) = vi(t)− vi+1(t). (4.2)

De�nition 4.1: Value of a payer swap

Let V PS(t, Tn, TN ) ≡ V PS
n,N (t) denote the time t value of a payers swap, for t ≤ Tn, that starts

at time Tn, n = 1, 2, ..., N − 1, and ends at time TN . Then the present value of the payer swap

is given by

V PS
n,N (t) =

N−1∑
i=n

V FL
i+1 (t)−

N−1∑
i=n

V FIX
i (t), (4.3)

where the cash �ows are exchanged at dates Tn+1, ..., TN for the swap tenor period TN − Tn.

Remark: The holder of the payer swap pays a �xed a �xed rate and receives a �oating rate.

55



It follows from equations (4.1) and (4.2) that

V PS
n,N (t) =

N−1∑
i=n

(
vi(t)− vi+1(t)

)
−
N−1∑
i=n

Kδivi+1(t)

V PS
n,N (t) =

(
vn(t)− vN (t)

)
−K

N−1∑
i=n

δivi+1(t). (4.4)

De�nition 4.2: Value of a receiver swap

Let V RS(t, Tn, TN ) ≡ V RS
n,N (t) denote the time t value of a receiver swap that starts at time

Tn, n = 1, 2, ..., N − 1, and ends at time TN . Then the present value of the receiver swap is

given by

V RS
n,N (t) =

N−1∑
i=n

V FIX
i (t)−

N−1∑
i=n

V FL
i (t), (4.5)

where the cash �ows are exchanged at dates Tn+1, ..., TN for the swap tenor period TN − Tn.

Remark: The holder of a receiver swap pays a �oating rate and receives a �xed rate.

Similarly, it follows from equations (4.1) and (4.2) that

V RS
n,N (t) =

N−1∑
i=n

Kδivi+1(t)−
N−1∑
i=n

(
vi(t)− vi+1(t)

)

V RS
n,N (t) = K

N−1∑
i=n

δivi+1(t)−
(
vn(t)− vN (t)

)
. (4.6)

De�nition 4.3: Forward Swap rate

Let S(t, Tn, TN ) ≡ Sn,N (t) denote the time t forward swap rate or the par swap for the payer or

receiver swap. Then the forward swap rate is the �xed rate K, such that the present value of

the swap (payer or receiver) is equal to zero, that is V PS
n,N (t) = V RS

n,N (t) = 0, is given by

Sn,N (t) =
vn(t)− vN (t)∑N−1
i=n δivi+1(t)

,

with initial term structure Sn,N (0). The sum,
∑N−1

i=n δivi+1(t) ≡
∑N

i=n+1 δi−1vi(t) is commonly

called the present value of a basis point (PVBP) in the �nancial market (Kwok, [18]).
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Choudhry ([6]) de�nes the PVBP as the change in the bond price for one basis point change in

the bond's yield4. To simply things we denote the PVBP as Pn+1,N (t) and hence the forward

swap rate is given by

Sn,N (t) =
vn(t)− vN (t)

Pn+1,N (t)
. (4.7)

Remarks:

1. For a one period swap starting at time Ti and ends at time time Ti+1, the one period

forward swap rate, S(t, Ti, Ti+1) ≡ Si,i+1(t) is simply the forward LIBOR rate Li(t) given

by equation (3.3), i.e.

Si,i+1(t) =
vi(t)− vi+1(t)

Pi+1,i+1(t)

=
vi(t)− vi+1(t)∑i+1
k=i+1 δk−1vk(t)

=
vi(t)− vi+1(t)

δivi+1(t)

=
1

δi

(
vi(t)

vi+1(t)
− 1

)

= Li(t).

2. From equations (4.4) and (4.7), it follows that the present value of the payers swap, for

the di�erent �xed rates K, is given by

V PS
n,N (t) =

(
vn(t)− vN (t)

)
−K

N−1∑
i=n

δivi+1(t)

=
(
vn(t)− vN (t)

)
−KPn+1,N (t)

= Sn,N (t)Pn+1,N (t)−KPn+1,N (t)

V PS
n,N (t) = Pn+1,N (t)

(
Sn,N (t)−K

)
. (4.8)

3. In a similar fashion to the above, from equations (4.6) and (4.7) it follows that the present

value of the receivers swap for the di�erent �xed rates K, is given by

V RS
n,N (t) = Pn+1,N (t)

(
K − Sn,N (t)

)
. (4.9)

The forward swap rate Sn,N (t) is the underlying asset in the construction of the log-normal

4Here we note that one basis point change in the bond's yield implies a 0.01% change in the bond's yield.
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SMM, which will be used to determine the non-arbitrage price of swaptions. We note that

the forward swap rate is a function of the time t default-free discount bonds with maturities

Ti, i = 1, 2, ..., N . We shall assume that the discount bonds follow Ito processes under empirical

probability P , with stochastic di�erential equation (SDE)5

dvi(t)

vi(t)
= µi(t)dt+ σi(t)dz, (4.10)

where µi(t) denotes the drift function and σi(t) the volatility function. We also assume under

empirical probability that the set of forward swap rates Sn,N (t) , starting at times Tn, n =

1, ..., N − 1 and with same maturity date TN follows the SDE

dSn,N (t) = µn,N (t)dt+ γn,N (t)dz, n = 1, 2, ....N − 1, (4.11)

where µn,N (t) and γn,N (t) denotes the drift and volatility function of the forward swap rate,

respectively.

Now under the no-arbitrage paradigm, we de�ne a forward swap probability measure such that

the forward swap rates Sn,N (t) are martingale. For the forward swap rate, the most convenient

choice of numeraire is the PVBP, Pn+1,N (t). The PVBP is a portfolio of traded assets that has a

strictly positive value, therefore we can use it as a numeraire6. Let P Tn+1,TN denote the forward

swap measure associated with the numeraire Pn+1,N (t). Then the denominated price processes,

{Sn,N (t)} =

{
vn(t)−vN (t)
Pn+1,N (t)

}
are martingales under P Tn+1,TN . This is summarised in the lemma

below.

Lemma 4.1- Let Sn,N (t) denote the time t value of the forward swap rate that starts at time

Tn, n = 1, 2, ..., N−1, and ends at time TN , where TN −Tn is the swap tenor. Then the forward

swap rate is a martingale under the forward swap measure P Tn+1,TN .

Proof

From the lemma above we need to show that En+1,N

t [Sn,N (s)] = Sn,N (t) t < s ≤ TN , where

the choice of numeraire is the PVBP, Pn+1,N (t). Now

En+1,N

t [Sn,N (s)] = En+1,N

t

[
vn(s)− vN (s)

Pn+1,N (s)

]
.

5Note this is the same SDE for bonds discussed in Chapter 3 given by equation (3.4).
6Refer to Chapter 2, subsection 2.6.1 where we de�ne a numeraire and its properties.
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But the process

{
vn(t)−vN (t)
Pn+1,N (t)

}
is martingale under P Tn+1,TN , therefore

En+1,N

t [Sn,N (s)] =
vn(t)− vN (t)

Pn+1,N (t)
= Sn,N (t),

which implies that the forward swap rate Sn,N (t) is a martingale under the forward swap measure,

P Tn+1,TN .

Thus it may be plausible to assume that the process {Sn,N (t)} follows the SDE7

dSn,N (t)

Sn,N (t)
= γn,N (t)dzn+1,N , n = 1, 2, ....N − 1, (4.12)

where zn+1,N ≡ {zn+1,N (t)} is a standard Brownian motion under P Tn+1,TN for some volatility

γn,N (t) .

In order to complete the construction of the log-normal SMM, we have to ensure that the forward

swap rate Sn,N (t) follow a log-normal process. This is the assumption made for the Black-Scholes

formula for swaptions. This transformation can be achieved by using Ito's formula (Theorem

2.1) by determining the log-price of the forward swap rate. This is shown below.

Using Ito's formula we want to determine the SDE of the process Y (t) = log
(
Sn,N (t)

)
, where

the process {Sn,N (t)} is a solution to equation (4.12). From the Ito's formula we note that

f(x, t) = log(x), if and only if , x = Sn,N (t) , thus

ft(x, t) = 0, fx(x, t) = 1
x = 1

Sn,N (t) , fxx(x, t) = − 1
x2

= − 1
S2
n,N (t)

, µ(x, t) = 0 and σ(x, t) =

Sn,N (t)γn,N (t).

Thus

dlog
(
Sn,N (t)

)
= [ft(x, t) + fx(x, t)µ(x, t) +

1

2
fxx(x, t)σ2(x, t)]dt+ [fx(x, t)σ(x, t)]dzn+1,N .

It then follows from substitution into the above equation that the log-price of the forward swap

rate, Sn,N (t) follows the SDE

dlog
(
Sn,N (t)

)
= −1

2
γ2
n,N (t)dt+ γn,N (t)dzn+1,N , (4.13)

which can be written in its integral form as

log(Sn,N (Tn))− log(Sn,N (t)) = −
∫ Tn

t

1

2
γ2
n,N (s)ds+

∫ Tn

t
γn,N (s)dzn+1,N .

7Refer to Proposition 2.3 and Proposition 2.4 in subsection 2.5.3.
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Therefore

log

[
Sn,N (Tn)

Sn,N (t)

]
= −

∫ Tn

t

1

2
γ2
n,N (s)ds+

∫ Tn

t
γn,N (s)dzn+1,N , (4.14)

which can be expressed as an explicit solution of Sn,N (Tn) given by

Sn,N (Tn) = Sn,N (t)exp

[
−
∫ Tn

t

1

2
γ2
n,N (s)ds+

∫ Tn

t
γn,N (s)dzn+1,N

]
. (4.15)

Thus from the above expression we can conclude that the process {Sn,N (Tn)} follows a log-normal

distribution with mean λn,N (t) = −
∫ Tn
t

1
2γ

2
n,N (s)ds and variance ξ2

n,N (t) =
∫ Tn
t γ2

n,N (s)ds , if

the volatility function of the forward swap rate given by γn,N (t) is a deterministic function of

time. P

The mean and variance is derived in a similar way as we did for the SDE of the forward LIBOR

rate8. Now that we have explored the dynamics of the forward swap rate we are now in a posi-

tion to state the existence of the SMM. This is stated in the proposition that follows.

Proposition 4.1 Suppose that the process {Sn,N (t)} is a solution to the SDE for forward swap

rates Sn,N (t), n = 1, ..., N − 1, de�ned by

dSn,N (t) = µn,N (t)dt+ γn,N (t)dz, n = 1, 2, ....N − 1,

where µn,N (t) is the drift function , γn,N (t) the volatility function and z = {z(t)} is a stan-

dard Brownian motion under empirical probability P . Then the log-normal Swap Market Model

(SMM) exists if and only if,

1. The dynamics of the forward swap rate Sn,N (t) is given by equation (4.7), and the initial

term structure Sn,N (0) is known.

2. Sn,N (t) is a martingale under forward swap probability measure P Tn+1,TN , and the SDE

of the log-price of the forward swap rate Sn,N (t) is given by equation (4.13) , for some

volatility γn,N (t) and zn+1,N = {zn+1,N (t)} is standard Brownian motion under P Tn+1,TN .

3. The volatility function γn,N (t), t ≤ Tn, is a deterministic function of time t, which im-

plies that Sn,N (t) is log-normally distributed with mean λn,N (t) = −
∫ Tn
t

1
2γ

2
n,N (s)ds and

variance ξ2
n,N (t) =

∫ Tn
t γ2

n,N (s)ds.

Remark: The implication of the above proposition is that each of the SDE's given by equation

(4.12) are known as the Swap Market Model for the forward swap rate Sn,N (t) under the forward

swap measure P Tn+1,TN . Brigo, Mercurio and Morini ([5]) cite that the SMM is not compatible

8Refer to Section 3.1 in Chapter 3 for this derivation.
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with the LMM, since the evolution of the forward swap rates, Sn,N (t) under a given numeraire

are di�erent within the two models.

4.2 Co-terminal Measure Dynamics of the forward swap rate.

In this section we outline the co-terminal measure dynamics of the forward swap rate, based

on the formulation done by Jamshidan ([12] ). We assume that the tenor structure of forward

swap rates is given by T0 < T1 < ... < Ti < Ti+1 < ... < TN , where the tenor is de�ned by

δi = Ti+1 − Ti, i = 1, 2, ..., N − 1. Under the co-terminal measure denoted by P TN ,TN , we

consider a forward (payer) swap which starts at time Tn and has N − n accrual periods whose

consecutive lengths are given by δn, n = 1, 2, ..., N − 1. Then last settlement date is thus TN

for every swap considered here. It is important to note that the underlying swap agreements

di�er in length, but they all have a common expiration date TN . This speci�c feature justi�es

the name of co-terminal forward swap rates (Rutkowski, [27]). The �gure below is a graphical

representation of the tenor structure for co-terminal forward swap rates.

Figure 4.1: Co-Terminal forward swap rates for the co-terminal SMM.

Now consider the forward swap rate Sn,N (t) given by equation (4.7). To derive the co-terminal

dynamics of the forward swap we shall set for every 1 ≤ n ≤ i ≤ N − 1, the variable

gni ≡ gni,N =

N−1∑
k=i

δk

k∏
l=n+1

(1 + δl−1Sl,N (t)), gn ≡ gnn, 1 ≤ n ≤ i ≤ N − 1. (4.16)

Under this technical condition it follows that the forward swap rates Sn,N (t) are martingales un-

der the co-terminal measure P TN ,TN . Now using the above expression, Jamshidan ([12]) suggests

that one can use backward induction to deduce the dynamics of the drift term of the forward

swap rates under the co-terminal measure. Its follows after rigorous computations- which are

beyond the scope of this thesis- that the drift term takes the form
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µco−termn,N (t) = −Sn,N (t)γn,N (t)
N−1∑
j=n+1

δj−1Sj,N (t)γ
′
j,N (t)

(1 + δj−1Sj,N (t))

gni
gn
.

The next proposition outlines the dynamics of the forward swap rates under the co-terminal

measure (see [12]) .

Proposition 4.2 Let Sn,N (t) denote the forward swap rate contracted for period TN − Tn, n =

1, 2, ..., N − 1, with volatility function γn,N (t) . Then under the co-terminal measure P TN ,TN the

forward swap rates are martingales following the SDE

dSn,N (t) = µco−termn,N (t)dt+ γn,N (t)Sn,N (N)dzN,N , n = 1, 2, ....N − 1,

where

µco−termn,N (t) = −Sn,N (t)γn,N (t)

N−1∑
j=n+1

δj−1Sj,N (t)γ
′
j,N (t)

(1 + δj−1Sj,N (t))

gni
gn
,

and the gni's are determined using equation (4.16) and zN,N ≡ {zN,N (t)} is a standard Brown-

ian motion under P TN ,TN

Remarks:(see [12] and [27])

1. The forward LIBOR rates and forward swap rates satisfy the following relationship

Sn,N (t) =

∏N−1
j=i (1 + δjLj(t))− 1∑N−1

j=1 δj
∏N−1
k=j+1(1 + δkLk(t))

. (4.17)

2. The LIBOR and swap market models are inconsistent with each other, that is the forward

LIBOR and swap rates cannot simultaneously have deterministic volatilities.

4.3 Pricing of Swaptions.

In this section we use the SMM constructed in section 4.1 to determine the time t arbitrage-free

price of a swaption. We show that swaption price constructed within the SMM has the same

structure as that of the Black-Scholes price for swaptions. Firstly we de�ne a swaption, and

then we develop the Black-Scholes formula for a swaption. Lastly we construct the arbitrage-free

price of swaptions using the SMM.

De�nition 4.4: Swaption
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Let Sn,N (t) ≡ S(t, Tn, TN ) denote the time t forward swap rate that starts at time Tn, n =

1, 2, ..., N − 1, and ends at time TN . Then an interest rate derivative whose payo� at time Tn

is given by

{V PS
n,N (Tn)}+ ≡

N∑
i=n+1

δi−1vi(Tn)
{
Sn,N (Tn)−K

}
+
, (4.18)

where

{x}+ = max{x, 0} =

{
x, x ≥ 0

0, x < 0
,

and
∑N

i=n+1 δi−1vi(Tn) = Pn+1,N (Tn), is known as a payer swaption.

From the above de�nition we note that a swaption is simply a call option written on the swap

rate Sn,N (t). To be more precise it is a �nancial contract that gives the holder the right but

not the obligation to enter into an interest rate swap that starts at time Tn and ends at time

TN , where the holder pays a �xed rate and receives a �oating rate. We denote the time t

price of the payer swaption as PSwp(t, Tn, TN ) ≡ PSwpn,N (t). Now in order to determine the

arbitrage-free price of the payer swaption at time t, we construct its price under the forward

swap measure P Tn+1,TN , with associated numeraire, the present value of a basis point (PVBP)

denoted Pn+1,N (t).

Now consider that the payer swaption is replicated through some self-�nancing portfolio, then

the discounted price process {PSwpn+1,N
n,N (t)} =

{
PSwpn,N (t)
Pn+1,N (t)

}
, is a martingale under the swap

measure P Tn+1,TN . Hence the time t price of the payer swaption is given by

PSwpn+1,N
n,N (t) = En+1,N

t

[
Pn+1,N (Tn)

{
Sn,N (Tn)−K

}
+

Pn+1,N (Tn)

]
.

Therefore

PSwpn,N (t) = Pn+1,N (t)En+1,N
t

[{
Sn,N (Tn)−K

}
+

]
,

which can be expressed as

PSwpn,N (t) =
N∑

i=n+1

δi−1vi(t)E
n+1,N
t

[{
Sn,N (Tn)−K

}
+

]
, (4.19)

since Pn+1,N (t) =
∑N−1

i=n δivi+1(t) ≡
∑N

i=n+1 δi−1vi(t).
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Remark: From the above expression we can subsequently derive the Black-Scholes formula

for a payer swaption. In the next subsection we state the Black-Scholes formula for a payers

swaption, with reference to the Black-Scholes formula for a European call option discussed in

chapter 2, section 2.8.

4.3.1 Pricing swaptions using the Black-Scholes Formula.

Proposition 4.3 Black Scholes formula for a payer swaption.

Let PSwpn,N (t) denote the time t price of a payer swaption. Then the time t Black-Scholes

price of a payer swaption, denoted by PSwpBLACKn,N (t), written on the forward swap rate Sn,N (t),

starting at time Tn, n = 1, ..., N − 1 and maturing at time TN with strike swap rate K is given

by

PSwpBLACKn,N (t) =

N∑
i=n+1

δi−1vi(t)

[
Sn,N (t)Φ(d)−KΦ

(
d− σn,N

√
Tn − t

)]
, (4.20)

where

d =
log
(
Sn,N (t)
K

)
+ 1

2σ
2
n,N (Tn − t)

σn,N
√
Tn − t

and

N∑
i=n+1

δi−1vi(t) = Pn+1,N (t) (PVBP).

The function σn,N denotes the volatility for the forward swap rate Sn,N (t) and Φ(d) is the dis-

tribution function of the standard normal distribution.

Remark: The above stated formula can be easily veri�ed using the Black-Scholes formula

for European call options given in Theorem 2.7 in section 2.8. This is achieved by setting

c(S, t) = PSwpBLACKn,N (t) , S(t) = Sn,N (t) , σ
√
T − t = σn,N

√
Tn − t and B(t) = Pn+1,N (t) .

4.3.2 Pricing swaptions using the Swap Market Model (SMM).

In this section we show how to price payer swaptions under the SMM. We show that the price of

a payer swaption coincides with that of the Black-Scholes formula for swaption equation (4.20),

in structure. Now under the no-arbitrage paradigm the time t price of the payer swaption is

given by equation (4.19). From this payo� function we are able to construct the SMM price of

a payer swaption, using the dynamics of the SMM developed in section 4.1. The time t price of

a payer swaption calculated using the SMM is given in the proposition below.
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Proposition 4.4 SMM price of a payers swaption.

Consider the payo� function of the payer swaption at time Tn accrued for the time interval

[Tn, TN ] , n = 1, ..., N − 1, given by

{V PS
n,N (Tn)}+ ≡

N∑
i=n+1

δi−1vi(Tn)
{
Sn,N (Tn)−K

}
+
.

Then under the Swap Market Model (SMM), the time t price of the payer swaption, denoted by

PSwpSMM
n,N (t) , written on the forward swap rate Sn,N (t) with maturity time TN and strike swap

rate K is given by

PSwpSMM
n,N (t) =

N∑
i=n+1

δi−1vi(t)
[
Sn,N (t)Φ(d)−KΦ(d− ξn,N (t))

]
, (4.21)

where

d =
log
(
Sn,N (t)
K

)
+ 1

2ξ
2
n,N (t)

ξn,N (t)
,

and ξn,N (t) =
√∫ Tn

t γ2
n,N (s)ds denotes the volatility function of the forward swap rate Sn,N (t).

Proof

Consider the time t price of an arbitrage-free payer swaption evaluated within the SMM, similar

to equation (4.19), such that

PSwpSMM
n,N (t) = Pn+1,N (t)En+1,N

t

[{
Sn,N (Tn)−K

}
+

]
,

where Pn+1,N (t) =
∑N−1

i=n δivi+1(t) ≡
∑N

i=n+1 δi−1vi(t), and En+1,N
t denotes that conditional

expectation under the forward swap measure P Tn+1,TN .

From equation (4.15), Sn,N (Tn) can be explicitly expressed as

Sn,N (Tn) = Sn,N (t)exp

[
−
∫ Tn

t

1

2
γ2
n,N (s)ds+

∫ Tn

t
γn,N (s)dzn+1,N

]
,
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where the forward swap rate Sn,N (TN ) is log-normally distributed with mean λn,N (t) = −
∫ Tn
t

1
2γ

2
n,N (s)ds

and variance ξ2
n,N (t) =

∫ Tn
t γ2

n,N (s)ds.

Therefore the time t price of the payer swaption is given by

PSwpn,N (t) = Pn+1,N (t)En+1,N
t

[{
Sn,N (t)e−

∫ Tn
t

1
2
γ2n,N (s)ds+

∫ Tn
t γn,N (s)dzn+1,N

−K
}

+

]
.

Now under the SMM, the volatility function γn,N (t) is assumed to be a deterministic function

of time, thus we have that

∫ Tn

t
γn,N (s)dzn+1,N ∼ N

(
0,

∫ Tn

t
γ2
n,N (s)ds

)
,

therefore

ξn,N (t)N(0, 1) ∼ N
(

0,

∫ Tn

t
γ2
n,N (s)ds

)
,

where ξn,N (t) =
√∫ Tn

t γ2
n,N (s)ds.

Simplifying notation, let ξn,N = ξn,N (t) and let the random variable Y ∼ N(0, 1). Therefore the

present value of the payer swaption is given by

PSwpn,N (t) = Pn+1,N (t)En+1,N
t

[{
Sn,N (t)e−

1
2
ξ2n,N+ξn,NY −K

}
+

]

= Pn+1,N (t)
[∫ ∞
−∞

{
Sn,N (t)e−

1
2
ξ2n,N+ξn,N y −K

}
+

1√
2π
e−

y2

2 dy
]
.

Now at each to maturity time, Tn, n = 1, ..., N − 1 , the holder of the payer swaption will

exercise the option if and only if Sn,N (Tn) ≥ K , which implies that

Sn,N (Tn) ≥ K

Sn,N (t)e−
1
2
ξ2n,N+ξn,N y ≥ K.

Therefore

y =
log
(

K
Sn,N (t)

)
+ 1

2ξ
2
n,N

ξn,N
.
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Now if we let ω1 =
log

(
K

Sn,N (t)

)
+ 1

2
ξ2n,N

ξn,N
, then the present value of the payer swaption is given by

PSwpn,N (t) = Pn+1,N (t)
[∫ ∞

ω1

{
Sn,N (t)e−

1
2
ξn,N+ξn,N y −K

}
+

1√
2π
e−

y2

2 dy
]

= Pn+1,N (t)

[
Sn,N (t)

∫ ∞
ω1

1√
2π
e−

y2

2
+ξn,N y− 1

2
ξn,Ndy −K

∫ ∞
ω1

1√
2π
e−

y2

2 dy

]

= Pn+1,N (t)

[
Sn,N (t)

∫ ∞
ω1

1√
2π
e−

1
2

(y−ξn,N )2dy −K(1− Φ(ω1))ξn,N

]
.

Also if we let x = y − ξn,N and ω2 = ω1 − ξn,N , then

PSwpn,N (t) = Pn+1,N (t)

[
Sn,N (t)

∫ ∞
ω2

1√
2π
e−

x2

2 dx−K(1− Φ(ω1))

]

= Pn+1,N (t)

[
Sn,N (t)(1− Φ(ω2))−K(1− Φ(ω1))

]

= Pn+1,N (t)

[
Sn,N (t)Φ(−ω2)−KΦ(−ω1)

]
,

where

Φ(−ω2) = Φ(−ω1 + ξn,N )

= Φ

(−log( K
Sn,N (t)

)
− 1

2ξ
2
n,N

ξn,N
+ ξn,N

)

Φ(−ω2) = Φ

( log(Sn,N (t)
K

)
+ 1

2ξ
2
n,N

ξn,N

)
,

and

Φ(−ω1) = Φ

(−log( K
Sn,N (t)

)
− 1

2ξ
2
n,N

ξn,N

)

Φ(−ω1) = Φ

( log(Sn,N (t)
K

)
+ 1

2ξ
2
n,N

ξn,N
− ξn,N

)
.

Substituting the above leads to the time t value of a payer swaption priced using the SMM, and
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is given by

PSwpSMM
n,N (t) =

N∑
i=n+1

δi−1vi(t)
[
Sn,N (t)Φ(d)−KΦ(d− ξn,N )

]
,

where

d =
log
(
Sn,N (t)
K

)
+ 1

2ξ
2
n,N

ξn,N
,

ξn,N = ξn,N (t) =
√∫ Tn

t γ2
n,N (s)ds denotes the volatility function of the forward swap rate

Sn,N (t) and Φ(d) is the distribution function of the standard normal distribution. P

Remark: From the above we can observe that the SMM price of a payer swaption has a similar

structure to that of the Black-Scholes formula if and only if σn,N
√
Tn − t = ξn,N (t), that is

σn,N = 1√
Tn−t

√∫ Tn
t γ2

n,N (s)ds. The consequence of this assumption is that the SMM can be

easily calibrated to calculate swaption prices by substituting the SMM volatility function with

Black-Scholes implied volatilities of the swaptions. This leads to a pricing formula similar to the

Black-Scholes pricing formula for swaptions.

In conclusion, in chapter 4 we constructed the arbitrage-free log-normal SMM for pricing swap-

tions, whose underlying asset is the forward swap rate Sn,N (t).We have shown that the SMM is

de�ned by the set of SDE's given by equation (4.13), where zn+1,N = {zn+1,N (t)} is a standard

Brownian motion under forward swap measure P Tn+1,TN .We have also discussed the co-terminal

SMM, and we observe that forward swap rates will not be martingale under the co-terminal prob-

ability measure P TN ,TN . This shows that the LMM and SMM are incompatible models. In the

next chapter we perform comparative numerical analysis of the �market models� with the Black-

Scholes model for pricing interest-rate derivatives. This will be done using Monte Carlo methods.
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Chapter 5

Methodology and Analysis

In Chapters 3 and 4 we constructed the arbitrage-free, log-normal models i.e. the LMM and

SMM for pricing caplets and swaptions, respectively using SDE's. In this chapter we imple-

ment the LMM and SMM for pricing the respective interest rate derivatives using Monte Carlo

methods. Now given the complexity of the stochastic processes of the LMM and SMM under

their respective martingale measures, it is not easy to solve them explicitly. Hence, if we want

to price caplets and swaptions within these market models , we need use numerical methods.

One method which is widely used for market models is Monte Carlo simulation. The aim in

this section is to thus illustrate the use such numerical methods. It is important to note that

the dynamics of the LMM and SMM were constructed in the continuous-time framework, but in

order to perform Monte Carlo simulation within these models we need to transform them into

their discrete-time counterparts. Such a transformation reduces the computational burden as

we only need to simulate the SDE's describing the forward rate (LIBOR or swap) dynamics for

a �nite number of maturities. The simplest and e�ective method for discretization of SDE's is

the Euler-Maruyama method. This will be outlined in the section that follows. First we describe

the idea behind the Monte Carlo simulation, and then we give the theoretical implication to the

LMM and SMM.

5.1 Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets

of random numbers as inputs. This method is often used when the model is complex, nonlinear,

or involves more than just a couple of uncertain parameters. At the core of Monte Carlo simu-

lation is the generation of random numbers. Several techniques can be used to generate random

numbers (see [26]), but for this thesis in particular, random number generation will be achieved

using built-in functions of the statistical software MATLAB. Once we have generated random

numbers, Monte Carlo techniques can be used to estimate the expected value of some random

variables. Before we proceed to implementation of Monte Carlo simulation for the LMM and

SMM , we need to state some crucial limit theorems on which this method is built on and they
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are given below1.

Theorem 5.1 Strong law of large numbers.

For a family of independent and identically distributed (i.i.d) random variables X1, X2, ..., Xn

suppose that the mean µ = E[Xi] exists. Then,

lim
n→∞

X1 +X2 + ...+Xn

n
= µ,

with probability one.

Remark: The strong law of large numbers ensures that the sample mean X̄n = E[X] =
1
n(X1 +X2 + ...+Xn) converges to the unknown population mean µ almost surely as n→∞. In

our case, the average E[X] is often called the Monte Carlo expectation of the random variable X.

Theorem 5.2 Central Limit Theorem

Let X1, X2, ..., Xn be i.i.d random variables with E[Xi] = µ and V [Xi] = σ2 <∞. De�ne

Zn =

∑n
i=1Xi − nµ
σ
√
n

=
X̄ − µ
σ/
√
n
, where X̄ =

1

n

n∑
i=1

Xi.

Then the distribution function of Zn converges to the standard normal distribution function as

n→∞, that is,

lim
n→∞

P (Zn ≤ z) = Φ(z) =

∫ z

−∞

1√
2π
e−

1
2
t2dt.

Remark: The central limit theorem implies that probability statements about Zn can be ap-

proximated by corresponding probabilities for the standard normal random variable if n is large,

usually for values n > 30.

Now in the context of �nancial engineering, Monte-Carlo simulation is a technique used for the

numerical realization of a stochastic process by means of normally distributed random variables.

It can then be used for the computation of the expected future value of option prices in situations

where explicit solutions are not accessible. In particular we can determine the prices of caplets

within the LMM by expressing them in the form of their future expected discounted payo�

function under the martingale measure (terminal measure) P TN as given in equation (3.20).

Similarly we can determine swaption prices within the SMM by expressing them in terms of

their future expected discounted payo� under the forward swap martingale measure P Tn+1,TN ,

1Refer to any text in mathematical statistics for proof and justi�cation of these theorems.
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as given in equation (4.19). Once we have expressed our interest-rate derivatives in terms of

expected future payo�s what is left is to calculate a quantities of the form E[X], where X is

a random variable representing the payo� functions for caplets and swaptions. This is when

we implement Monte-Carlo methods to evaluate the expected payo�s by generating random

variables under the distribution of X, and if the sample size n is large enough , it follows from

the Strong law of large numbers that we approximate E[X] with

E[X] ≈ 1

n

n∑
i=1

Xi.

As mentioned earlier, in order to determine the numerical solutions of the continuous-time

market models we need to �rst transform them into their discrete-time counterparts. This can

be achieved using the Euler-Maruyama method. We de�ne the Euler-Maruyama method (see

[17]) for a general SDE as the one developed in Chapter 22.

5.1.1 Euler-Maruyama (Euler) Method.

Let {X(t) t ≥ 0} be a di�usion process de�ned by SDE

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dz, 0 ≤ t ≤ T, (5.1)

where X(0) has a known distribution.

The Euler or Euler-Maruyama method for solving SDE's is a simple generalization of the Euler's

method for solving ordinary di�erential equations. A process {X(t), t ∈ [0, T ]}may be simulated

by partitioning the interval [0, T ] into M sub-intervals with step size or length h = T
M and then

replacing the SDE with the stochastic di�erence equation3

X̂k+1 = X̂k + µ(X̂k, kh)h+ σ(X̂k, kh)
√
hZk, (5.2)

where Z1, Z2, .... ∼i.i.d N(0, 1). The time series {X̂k, k = 0, 1, 2, ...,M} approximates the pro-

cess {X(t), t ≥ 0}, i.e. X̂k ≈ X(kh), k = 0, 1, 2, ...,M .

Now consider the case when the stochastic process {X(t) t ≥ 0} is a geometric Brownian motion

with SDE

dX(t)

X(t)
= µ(X(t), t)dt+ σ(X(t), t)dz, 0 ≤ t ≤ T. (5.3)

2Refer to equation (2.7) in subsection 2.5.3 of Chapter 2 for the general de�nition of a SDE.
3Here we use hats to distinguish the discretized variables.
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Then the stochastic di�erence equation describing the path of X(t) is given by

X̂k+1 = X̂kexp

[(
µ(X̂k, kh)− 1

2
σ2(X̂k, kh)

)
h+σ(X̂k, kh)

√
hZk

]
, 0 ≤ t ≤ T, k = 0, 1, 2, ...,M.

(5.4)

Below is an algorithm for the Euler Method for generating a stochastic process following a geo-

metric Brownian motion.

Algorithm 5.1 Euler Method.

1. Generate X0 from the distribution of X(0). Set k = 0.

2. Generate Zk ∼ N(0, 1).

3. Evaluate X̂k+1 from equation (5.4) as an approximation to X(kh).

4. Set k = k + 1 and go to step 2, and so on.

Now that we have given a general outline of Monte Carlo method , we are now in a position to

implement these techniques to pricing interest derivatives within the LMM and SMM.

5.2 Pricing Interest-rate Derivatives via Monte Carlo simulation.

In this section we outline how to implement Monte Carlo methods to price interest rate deriva-

tives such as caplets and swaptions within the LMM and SMM respectively. A general procedure

for pricing European style options using Monte Carlo methods is given below ((see [17])).

1. Simulate n paths of the Brownian motion which is the stochastic driver for the continuous-

time securities model.

2. Assuming that we are given the SDE for the underlying asset under martingale measure

P̃ , from which the options value is derived, we simulate n sample paths of asset prices

over the relevant time interval, say [0, T ] by applying a numerical scheme, such as Euler's

method.

3. Evaluate the discounted payo� of each asset on each sample path, as determined by the

speci�cs of the asset.

4. Compute a Monte Carlo estimate of the theoretical option value using the n discounted

cash �ows over the sample paths.

Having listed the general procedure to pricing interest-rate derivatives using Monte-Carlo meth-

ods, we can apply these four steps in order to price caplets and swaptions and this will be

discussed in the section that follows.

72



5.2.1 Simulation of caplet prices within the LMM.

Step 1- Simulating the path of the standard Brownian motion zi+1 = {zi+1(t)}.

In section 3.2 of Chapter 3 we established that under the terminal measure P TN , zi+1 = {zi+1(t)}
is a standard Brownian motion (s.b.m.). Now from the de�nition of standard Brownian motion4,

it follows that the increments zi+1(t + ∆t) − zi+1(t) are independent random variables which

are normally distributed with mean 0 and variance ∆t. The path for the standard Brownian

motion zi+1 can be constructed as follows. Let 0 = T0 < T1 < ... < Tk < ... < TN , be a set

discretized time intervals for which the path of the s.b.m. follows. Let ∆T = Tk+1−Tk = TN−T0
N

be the time step size for the s.b.m. for k = 0, 1, ..., N . Now assuming that the initial value is

given by zi+1(T0) = 0, we can then simulate the path of the s.b.m. using the following algorithm.

Algorithm 5.2 Simulating standard Brownian motion path.

1. Start with initial value zi+1(0) = 0, and step size ∆T = TN−T0
N .

2. Generate random variables εk ∼ N(0, 1) for k = 1, ..., N , using the randn function in

MATLAB.

3. Generate the path of the s.b.m. using the expression

zi+1(Tk+1) = zi+1(Tk) +
√

∆Tεk, k = 1, ..., N. (5.5)

Remark: This algorithm returns the discrete path of a s.b.m. which is exact in the sense that

the zi+1(Tk) are drawn from their respective distribution, in this case, the standard normal

distribution.

Step 2- Simulation of the LIBOR Market Model (LMM).

In step 1 we have the simulated path of the s.b.m. Next we generate the path of the forward

LIBOR rates within the LMM. For this we shall use algorithms similar those suggested by

Glasserman et.al ([9]). Consider the tenor structure T1 < ... < Ti < Ti+1 < ... < TN , tenor

δi = Ti+1 − Ti, i = 1, 2, ..., N − 1, and the time t forward LIBOR rate L(t, Ti, Ti+1) ≡ Li(t)

contracted for the period [Ti, Ti+1] as given in equation (3.3). Now under the terminal measure

P TN , we established that the forward LIBOR rate is martingale, and that the dynamics of the

LMM are described by the SDE given in equation (3.17), i.e

dLi(t) = Li(t)µ
term
i (t)dt+ Li(t)γi(t)dz

N , i = 1, .., N − 1,

4See de�nition 2.3 in Chapter 2.
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where

µtermi (t) =

{
−
∑N−1

j=i+1

δjLj(t)γ
′
j(t)γi(t)

1+δjLj(t) for i < N − 1

0 for i = N − 1
.

Now using Euler's discretization scheme it follows that the forward LIBOR rates Li(t), i =

1, ..., N − 1, are simulated at times Tk, k = 0, 1, ..., i with starting point being Li(T0) and step

size ∆T . Using hats to represent the Euler discretized variables, the LMM can be expressed by

the following stochastic di�erence equation

L̂i(Tk+1) = L̂i(Tk)exp

[(
µtermi (Tk)−

1

2
γi(Tk)γi(Tk)

′
)

∆T + γi(Tk)
√

∆Tεk

]
, (5.6)

where

µtermi (Tk) = −
N−1∑
j=i+1

δjL̂j(Tk)γ
′
j(Tk)γi(Tk)

1 + δjL̂j(Tk)
. (5.7)

Algorithm 5.3 Simulating forward LIBOR rates within the LMM.

1. Simulate the path of the s.b.m. under the respective terminal measure as in Step 1.

2. Start with initial value L̂i(T0) of the forward LIBOR rate, and respective volatility function

γi(T0), assumed known.

3. For k = 0, 1, ..., i and i = 1, 2, ..., N − 1, generate the paths for the discretized forward

LIBOR rates, L̂i(Tk+1) using equation (5.6).

Remarks: Even though the forward LIBOR rates are martingales with respect to forward mea-

sure, after discretization, they lose their martingale property. Therefore LIBOR rates are not

martingale under forward measure (Kim and Gaddam, [15]). Glasserman et.al ([9]) discuss the

methods of martingale discretization using the discount bonds as the underlying asset, and then

recovering the forward LIBOR rates from these bond prices. For simulation purposes, this thesis

will not implement martingale discretization as we do not have any market data on bond prices.

So once we simulate the forward LIBOR rates L̂i(Tk) we will be in a position to calculate the

caplet payo�s within the LMM.

Step 3-Simulating numeraire prices.

As noted in Chapter 3, in order to evaluate the LMM under the no-arbitrage paradigm we have

74



to �nd an equivalent probability measure under which the discounted forward LIBOR rates are

martingales. Our choice of numeraire under the terminal measure P TN is the bond with the

longest maturity v(t, TN ) ≡ vN (t). As a result we need to determine these set of bond prices

using simulation techniques. Once we determine the default-free discount bond prices we be in

a position to evaluated the numeraire based caplet payo�s, given by equation (3.20), i.e.

Cpli(t) = δivi+1(t)E
Ti+1

t

[
{Li(Ti)−K}+

]
, 0 ≤ t ≤ Ti.

Note that from the above equation the caplet prices are dependent on the prices of the discount

bond vi+1(t), that have not yet matured. As a result we establish a methodology for simulating

these bond prices. This can be achieved using equation (3.3), i.e.

Li(t) =
1

δi

(
vi(t)

vi+1(t)
− 1

)
, i = 1, 2, ..., N − 1, t ≥ 0.

Gaddam([15]) suggests that it is sometimes notationally convenient to extend the de�nition of

Li(t) beyond the ith tenor date. This is done by setting Li(t) = Li(Ti), t > Ti . At a tenor date

Ti the price of any bond vn(Ti), n = i+ 1, ...., N − 1 , that has not yet matured is given by

vn(Ti) =

n−1∏
j=i

(
1

(1 + δjLj(Ti))

)
=

n−1∏
j=i

(1 + δjLj(Ti))
−1. (5.8)

Thus from Euler's scheme it implies that we can �nd the discretized bond prices ˆvi+1(Ti) that

have not matured given in equation (3.20) as

ˆvi+1(Ti) =

n−1∏
j=i

(1 + δjL̂j(Ti))
−1. (5.9)

The following algorithm outlines the procedure for determining these bond prices.

Algorithm 5.4 Simulating bond prices.

1. Generate the path of the s.b.m. as in Step 1.

2. Generate the paths for the discretized forward LIBOR rates, L̂i(Tk+1) as in Step 2.

3. Generate the discretized bond prices ˆvi+1(Ti), using equation (5.9).

Step 4- Evaluating numeraire based caplet payo�s.

In step 4 , we calculate the numeraire based caplet payo�s. This step implements the Monte

Carlo procedure described in Section 5.1. Consider the time t price of the ith caplet given by

equation (3.20). Again using hats to denote the discretized variables, equation (3.20) can be
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written as

ˆCpli(t) = δi ˆvi+1(Ti)E
Ti+1

t

[
{L̂i(Ti)−K}+

]

= E
Ti+1

t

[
δi ˆvi+1(Ti){L̂i(Ti)−K}+

]
. (5.10)

Now if the sample size n is large enough, say n = 10000, Monte Carlo method suggests that the

future expected value of the caplet is estimated as the sample mean of the caplet at time t, as

shown in the expression below

ˆCpli(t) ≈
1

n

n∑
i=1

ˆCpli(t). (5.11)

Algorithm 5.5 Generating caplet prices within the LMM.

1. Generate the path of the s.b.m. as in Step 1.

2. Generate the paths for the discretized forward LIBOR rates, L̂i(Tk+1) as in Step 2.

3. Generate the discretized bond prices ˆvi+1(Ti), as in Step 3 .

4. Evaluate numeraire based caplet payo� using equation (5.10).

5. Repeat (4) , n=10 000 times.

6. Evaluate price of the caplet using equation (5.11).

5.2.2 Simulation of swaption prices within the LMM.

In this section we describe sets of algorithms used to generate swaption prices within the LIBOR

Market Model(SMM). Ideally this section was meant to prices swaptions using the SMM under its

terminal measure. But due to the complicated dynamics and expressions of the SMM under co-

terminal the reader is referred to Jamshidan([12]) and Glasserman et.al ([9]) for the discretization

of the SMM and in turn generation of the forward swap rates under the SMM. As a consequence,

results in this section are less explicit than in the previous section. We follow the general

procedures highlighted in Section 5.2 on pricing interest-rate derivatives using Monte Carlo

methods.

Jamshidan ([12]) and Rutkowski ([27]) highlight that the SMM and LMM are inconsistent mod-

els in that the forward swap rates Sn,N (t), do not follow log-normal processes within the LMM,

even though the forward swap rates are a linear combination of several forward LIBOR rates

as shown in equation (4.17). Swaptions can not be priced analytically by the LMM. One can

use simulation to obtain exact prices of swaptions, by simulating forward swap rates under the

LMM. Below are steps and algorithms outlining the procedure for simulating forward swap rates
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under the LMM which in turn can be used to price swaptions. Here is important to note that

we just highlight the procedure theoretically, but we shall not implement them numerically as

it is demanding and beyond the scope of this thesis.

Step 1- Simulating the path of the standard Brownian motion within the LMM dynamics.

• Refer to Algorithm 5.2.

Step 2- Simulating forward LIBOR rates within the LIBOR Market Model (LMM).

• Refer to Algorithm 5.3.

Step 3-Simulating the bond prices, that have not yet matured.

• Refer to Algorithm 5.4.

Step 4- Simulating forward swap rates within the LMM.

In this step we generate forward swap using forward LIBOR rates generated under the LMM.

This will achieved using expression (4.17), i.e.

Sn,N (t) =

∏N−1
j=i (1 + δjLj(t))− 1∑N−1

j=1 δj
∏N−1
k=j+1(1 + δkLk(t))

.

Thus the forward swap rates Sn,N (t) n = 1, 2, ..., N−1 are simulated at times Ti, i = 0, 1, ..., N−1

with starting point being T0 = 0 and step size ∆T = TN−T0
N . Now using hats to describe the

discretized forward swap rates, the expression above can be written as

ˆSn,N (Ti) =

∏N−1
j=i (1 + δjL̂j(Ti))− 1∑N−1

j=1 δj
∏N−1
k=j+1(1 + δkL̂k(Ti))

(5.12)

The algorithm below describes how to simulate forward swap rates.

Algorithm 5.6 Generating forward LIBOR rates within the LMM.

1. Generate the paths of the standard Brownian motion using algorithm 5.2.

2. Generate the paths for the discretized forward LIBOR rates, L̂i(Tk+1) using algorithm 5.3.

3. Generate the paths for the discretized bond prices , ˆvi+1(Ti) using algorithm 5.4.

4. Generate the forward swap rates ˆSn,N (t) equation (5.12).

Remarks: Once we have determined the forward swap rates one will be in a position to price

swaptions within the LMM. This will not be considered for this thesis.
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5.3 Results

5.3.1 Pricing caplets within the LMM.

Before we proceed to the results of the simulation exercise, we need to setup a base scenario.

For numerical comparison of our market models, literature suggests (e.g [9]) that the number of

variations of methods, scenarios, and instruments one could investigate numerically is limitless.

So our objective in this section is not to be exhaustive of all the scenarios, but instead choosing

a simple scenario to illustrate the dynamics of our models. Our choice of a base scenario is as

follows.

Scenario

We consider pricing a set of caplets contracted for a period of TN = 5 years. We assume an initial

value of the forward LIBOR rate to be Li(t) = 5%. For the non-exact calibration of the LMM

we use a time-homogeneous volatility function , that is constant over time and over individual

caplet maturities. Our choice is γi(t) = γ = 0.2, taking note this volatility is an intuitive guess.

Using a 6-month tenor for the forward LIBOR rate, i.e. δi = [Ti+1 − Ti] = 0.5, the forward

LIBOR rates Li(t) , will be reset every 6 months for the 5 year period. As a result the discretized

LMM, will have N = 10 sub-intervals and a time step of ∆T = TN−T0
N = 5

10 = 0.5. Lastly, we

generate the caplet prices assuming a cap rate of 3% and a notional principal of US$100, when

the caplet contract is entered.

Step 1-Simulating the path of the standard Brownian motion.

In step 1 we simulate the path of the standard Brownian motion (s.b.m.) over a 5 year period

from which the path of forward LIBOR rates will be determined. We assume an initial value

for the s.b.m. as {zN (T0)} = 0. To illustrate the general path of the s.b.m., we simulate it for

a 5 year period, with very small time steps , i.e. for small time intervals. We then simulate

for the base scenario mentioned above for forward LIBOR rates with semi-annual tenor, i.e. we

simulate the path of the s.b.m. with a time step of ∆T = 0.5. Below are the plots of the path

of the standard Brownian motion for the two cases. Refer to Appendix 1 for the MATLAB code

used for this step.
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Figure 5.1: Path of a standard Brownian motion.

Step 2: Simulating the forward LIBOR rates under the terminal measure.

In step 2 we simulate the path of the forward LIBOR rates which are the underlying assets for

the LMM. This is done within the dynamics of the LMM under the terminal measure P TN .

We simulate the LIBOR rates using the discretized LMM following Euler's scheme as shown in

equation (5.6). To achieve this step we assume the initial term structure for the LIBOR rate to

be 5% i.e. Li(T0) = 0.05, i = 1, 2, ...N−1, with tenor period δi = [Ti+1−Ti] = 0.5, which means

the LIBOR rates are reset on a 6-month basis (6-month LIBOR rate). The forward LIBOR rates

shall be simulated for a 5 year period with a time step of ∆T = TN−T0
N = 5

10 = 0.5. The table

below shows the forward LIBOR rates generated for a 6-month LIBOR over a period of 5 years

under the terminal measure P TN . See Appendix 1 for the MATLAB code.

Time (Tk) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
L0(Tk) 0.05
L1(Tk) 0.05 0.0491
L2(Tk) 0.05 0.0493 0.0487
L3(Tk) 0.05 0.0489 0.0481 0.0476
L4(Tk) 0.05 0.0494 0.0489 0.0487 0.0483
L5(Tk) 0.05 0.0495 0.0492 0.0487 0.0478 0.0474
L6(Tk) 0.05 0.0498 0.0492 0.0483 0.048 0.0482 0.0477
L7(Tk) 0.05 0.0487 0.048 0.0473 0.0472 0.0469 0.0466 0.0464
L8(Tk) 0.05 0.049 0.0483 0.048 0.0467 0.0468 0.046 0.046 0.0453
L9(Tk) 0.05 0.0495 0.0489 0.0483 0.0476 0.046 0.0464 0.045 0.0461 0.0449

Table 5.1: Forward LIBOR rates �before the last LIBOR� and on the �last LIBOR� settlement
dates.

From Table 5.1 we note that the value, say for example, L1(T1) = 0.0491 represents the forward

LIBOR rate contracted for T = 0.5 (6 months) to T = 1(1 year ). The cells with no entries are

a result of the fact that the forward LIBOR would have expired for that particular cell. One

can also observe that the forward LIBOR are are quite similar to each other. This is a result of

the �at-initial term structure of the forward LIBOR rates i.e. Li(T0) = 0.05, i = 1, 2, ...N − 1.
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The drift matrix was also generated under the terminal measure P TN , given by equation (5.7)

below

µtermi (Tk) = −
N−1∑
j=i+1

δjL̂j(Tk)γ
′
j(Tk)γi(Tk)

1 + δjL̂j(Tk)
.

This drift term corresponds to the forward LIBOR rates �before the last settlement date�, i.e.

Li(Tk), i < N − 1, k = 0, 1, ..., i. On the �last settlement date the drift term is equal to zero.

The table below shows the drift matrix for the forward LIBOR rates.

Time to maturity T1 = 0.5 T2 = 1 T3 = 1.5 T4 = 2 T5 = 2.5 T6 = 3 T7 = 3.5 T8 = 4

T1 = 0.5 -0.9756

T2 = 1 -0.9756 -0.9627

T3 = 1.5 -0.9756 -0.9552 -0.9385

T4 = 2 -0.9756 -0.9646 -0.9537 -0.951

T5 = 2.5 -0.9756 -0.966 -0.9608 -0.9504 -0.9332

T6 = 3 -0.9756 -0.9711 -0.9601 -0.9439 -0.9379 -0.9415

T7 = 3.5 -0.9756 -0.9513 -0.938 -0.9251 -0.9217 -0.9167 -0.9117

T8 = 4 -0.9756 -0.9569 -0.9437 -0.9374 -0.9135 -0.9146 -0.9000 -0.8997

Table 5.2: Drift term for the forward LIBOR rates (1 ∗ 10−3) for i < N − 1.

The plot below shows the forward LIBOR �before� and on the �last� settlement date. For us to

see the general path, we plot these forward LIBOR rates for a much smaller time step of say

∆T = 0.05, and then we also construct the same plot for our base scenario with a time step of

∆T = 0.5.

Figure 5.2: Path of the forward LIBOR rate "before" and on "last" settlement date.

From �gure 5.2 (a), we can note that the forward LIBOR rates generated �before the last� set-

tlement date, i.e. i < N − 1, are relatively more volatile as compared those generated on the

�last� settlement date for i = N − 1. This is a result of the drift term of the LMM given by
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equation (5.7) being a function of the volatility function of the forward LIBOR rates. On the

other hand we observe a decreasing trend in the forward LIBOR rates. This is possibly as result

of the negative drift term µtermi (Tk) and that the next forward LIBOR rate L̂i(Tk+1) generated

is a dependent on the current value L̂i(Tk) as shown in equation (5.6).

Step 3-Simulating the numeraire prices.

In step 3 we generated bond prices. This is our choice of numeraire for discounting the forward

LIBOR rates under the terminal measure P TN . The discretized bond prices ˆvi+1(Ti) were gener-

ated using equation (5.9), and the algorithm 5.4. The results are shown in the table that follows.

Time (Ti) Bond price ( ˆvi+1(Ti))

0 1
0.5 0.9756
1 0.9761
1.5 0.9762
2 0.9767
2.5 0.9764
3 0.9769
3.5 0.9767
4 0.9773
4.5 0.9779

Table 5.3: Default-free discount bond prices.

From Table 5.3 what is important to note is the value of the bond price at time T = 0, which

has a value of 1, i.e v̂1(T0) = 1. This bond price is contracted from [0, 0.5] and would have

matured and paid an amount of $1.

Step 4-Evaluating numeraire based caplet payo�s.

Now given the matrix of the forward LIBOR rates given in Table 5.1 , we are interested in the

main diagonal elements , as they will be used to determine the future expected caplet payo�s

as shown in equation (5.10), i.e. Li(Ti) i = 1, 2, ..., N − 1. The table belows shows the main

diagonal elements of the forward LIBOR rates �before last settlement� date and on the �last�

settlement date.
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Time (Ti) LIBOR rate (L̂i(Ti))

0 0.05
0.5 0.0491
1 0.0487
1.5 0.0476
2 0.0483
2.5 0.0474
3 0.0477
3.5 0.0464
4 0.0453
4.5 0.0449

Table 5.4: Forward LIBOR rates.

Once we have the forward LIBOR rates shown in Table 5.4 , and the bond prices that have not

matured as shown in Table 5.3, we are now in a position to evaluate the caplet prices using Monte

Carlo methods. This is done by using equation (5.10). We ran the simulation 10 000 times, and

estimate each caplet value as the sample mean of the 10 000 runs. The table below shows the the

current time t prices of caplets generated within the LMM and as described in our base scenario.

Time (Ti) Caplet Price ( ˆCpli(t)) Standard deviation 95% Con�dence interval

0

0.5 0.9506 0.0170 (0.9395 , 0.9617)

1 0.9260 0.0237 (0.9105 , 0.9415)

1.5 0.9012 0.0284 (0.8826 , 0.9197)

2 0.8764 0.0325 (0.8552 , 0.8977)

2.5 0.8525 0.036 (0.8290 , 0.8761)

3 0.8286 0.0388 (0.8032 , 0.8539)

3.5 0.8042 0.0411 (0.7773 , 0.8310)

4 0.7814 0.0432 (0.7532 , 0.8097)

4.5 0.7596 0.0449 (0.7302 , 0.7889)

Table 5.5: Caplet prices generated within the LMM.

Table 5.5 shows the mean of the ith caplet price for based on the 10000 runs preformed, and its

corresponding standard deviation and 95% con�dence interval. The value ˆCpl0.5(t) = 0.9506,

means that the holder of the caplet contract for time period 6 months (T = 0.5) to one year

(T = 1) will pay an amount of $0.95, to enter into this contract based on a notional principal of

$100. Finally we then compare the caplet prices generated using the Black-Scholes formula for

pricing caplets. These prices were generated using a MATLAB script of the Black-Scholes for-

mula (see Appendix 2), where as inputs we used forward LIBOR rates, bond prices and volatility

generated in the earlier steps. Below is a table and a graph comparing caplet prices generated

using the LMM against those generated using the Black-Scholes formula.
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Caplet Prices for a 5 year period ($)

Time (Ti) LMM Black-Scholes Relative error (%)

0

0.5 0.9506 0.9317 2.03

1 0.9260 0.9127 1.46

1.5 0.9012 0.8591 4.90

2 0.8764 0.8937 1.94

2.5 0.8525 0.8495 0.35

3 0.8286 0.8646 4.16

3.5 0.8042 0.8010 0.40

4 0.7814 0.7478 4.49

4.5 0.7596 0.7287 4.24

Table 5.6: Caplet prices: LMM vs Black-Scholes.

Figure 5.3: Plot of caplet prices LMM vs Black-Scholes

From the results shown in Table 5.6 and Figure 5.3, one can indeed conclude that we indeed get

similar caplet prices, using the di�erent models, that is the LIBOR market model (LMM) and

the Black-Scholes model. There is an average relative error of 2.66% between the two models,

and this is relatively desirable. Lastly the table below shows the prices one would pay to enter

an interest cap, which is the a collection or sum of caplets, for our base scenario, based on a

$100 notional principal.

LMM Black-Scholes

Cap price ($) 7.681 7.589

Standard deviation 0.06572 0.07067

95% Con�dence Interval (7.638,7.723) (7.543 ,7.635)

Table 5.7: Interest cap price: LMM vs Black-Scholes

From Table 5.7 we can see that the fair price of an interest cap generated using the LMM is

relatively similar to the cap price generated by the Black-Scholes formula. Hence we can see

that one can e�ciently use the LMM to price caplets as an alternative to the more popular

Black-Scholes model.
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Chapter 6

Conclusion

In this thesis we investigated the LIBOR Market Model (LMM) and Swap Market Model (SMM)

for arbitrage-free pricing of interest-rate derivatives such as caplets and swaption respectively.

We theoretically construct these models in the continuous-time framework. One can conclude

that the dynamics of these �new market models� can be constructed with some mathematical

ease, after taking some technical assumptions, as their construction relies on stochastic di�er-

ential equations (SDE's), unlike in the case of the Black-Scholes model where construction can

be based partial di�erential equations which are more mathematically demanding to implement.

Another advantage of the LMM and SMM is that the underlying assets for the models, i.e.

forward LIBOR and swap rates, respectively are observable or quoted daily in the �nancial

markets. This makes model implementation much more desirable compared to HJM model (see

[11]), where underlying assets are instantaneous interest-rates which are not quoted daily on the

market. In this thesis we have shown that even though the Black-Scholes model is considered

the standard pricing model for interest-rate derivatives, one can make use of alternative pricing

models such as the LMM and SMM to price derivatives. We have shown theoretically that the

pricing formula for caplets within the LMM will have similar structure to that of Black-Scholes

pricing formula for caplets. Similarly we showed that the SMM pricing formula for payer swap-

tions is similar to the Black-Scholes pricing formula for swaptions, in structure. This is a result

of the fact that we assume the our forward rates, i.e. forward LIBOR rate for the LMM and

forward swap rates for the SMM, follow geometric Brownian motion under empirical probability.

This implies that the forward rates are log-normally distributed. This is the same assumption

made for the Black-Scholes model. From a numerical point of view we generated caplet prices

within the LMM using Monte-Carlo simulation. Using a simple base scenario we showed that

caplet prices generated by the LMM will be more or less similar to the exact prices calculated

using the Black-Scholes formula. Even though we were not exhaustive in the numerical imple-

mentation of the LMM and SMM, it is important for one to perform accurate discretizations and

calibration of these models, as this may a�ect prices of interest rate derivatives considerably.
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Future Work

In line with this thesis, there are set of objectives we would like to address in the future. Our

main objective will be to investigate, understand and elaborate more on the co-terminal mea-

sure dynamics of the Swap Market Model, which were developed by Jamshidan ( [12]), which

was brie�y discussed in chapter 4, section 4.2. This is of great interest as it will allow one to

understand the discretization process of the SMM for simulation purposes. As a result in the

future we would like to perform Euler discretization to the SMM and then simulate swaption

prices within the SMM. Once that has been achieved, we will be in position to con�rm if the

swaption prices generated will be similar to swaption prices generated using the Black-Scholes

model. Secondly we would like to investigate simulation of forward swap rates within the LMM,

which we theoretically highlighted in chapter 5, subsection 5.2.2. We then intend to generate

swaption prices within the LMM. Even though the LMM and SMM are not consistent with each

other, Glasserman et.al ([9]) and Kawai ([13]) , suggest some techniques for simulating forward

swap rates within the LMM. One can then investigate which models performs better when it

comes to pricing swaptions.
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